
Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 236–240
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

236

IIT Gandhinagar at SemEval-2019 Task 3: Contextual Emotion Detection
Using Deep Learning

Arik Pamnani∗, Rajat Goel∗, Jayesh Choudhari, Mayank Singh
IIT Gandhinagar

Gujarat, India
{arik.pamnani,rajat.goel,choudhari.jayesh,singh.mayank}@iitgn.ac.in

Abstract

Recent advancements in Internet and Mobile
infrastructure have resulted in the development
of faster and efficient platforms of communi-
cation. These platforms include speech, facial
and text-based conversational mediums. Ma-
jority of these are text-based messaging plat-
forms. Development of Chatbots that automat-
ically understand latent emotions in the tex-
tual message is a challenging task. In this pa-
per, we present an automatic emotion detec-
tion system that aims to detect the emotion of a
person textually conversing with a chatbot. We
explore deep learning techniques such as CNN
and LSTM based neural networks and outper-
formed the baseline score by 14%. The trained
model and code are kept in public domain.

1 Introduction

In recent times, text has become a preferred mode
of communication (Reporter, 2012; ORTUTAY,
2018) over phone/video calling or face-to-face
communication. New challenges and opportuni-
ties accompany this change. Identifying sentiment
from text has become a sought after research
topic. Applications include detecting depres-
sion (Wang et al., 2013) or teaching empathy to
chatbots (WILSON, 2016). These applications
leverage NLP for extracting sentiments from
text. On this line, SemEval Task 3: EmoContext
(Chatterjee et al., 2019) challenges participants to
identify Contextual Emotions in Text.

Challenges: The challenges with extracting
sentiments from text are not only limited to the use
of slang, sarcasm or multiple languages in a sen-
tence. There is also a challenge which is presented
by the use of non-standard acronyms specific to in-
dividuals and others which are present in the task’s
dataset 2.
∗Equal Contribution

Existing work: For sentiment analysis, most of
the previous year’s submissions focused on neu-
ral networks (Nakov et al., 2016). Teams exper-
imented with Recurrent Neural Network (RNN)
(Yadav, 2016) as well as Convolutional Neu-
ral Network (CNN) based models (Ruder et al.,
2016). However, some top ranking teams also
used (Giorgis et al., 2016) classic machine learn-
ing models. Aiming for the best system, we started
with classical machine learning algorithms like
Support Vector Machine (SVM) and Logistic Re-
gression (LR). Based on the findings from them
we moved to complex models using Long Short-
Term Memory (LSTM), and finally, we experi-
mented with CNN in search for the right system.

Our contribution: In this paper, we present
models to extract emotions from text. All our
models are trained using only the dataset provided
by EmoContext organizers. The evaluation metric
set by the organizers is micro F1 score (referred
as score in rest of the paper) on three {Happy,
Sad, Angry} out of the four labels. We experi-
mented by using simpler models like SVM, and
Logistic regression but the score on dev set was
below 0.45. We then worked with a CNN model
and two LSTM based models where we were able
to beat the baseline and achieve a maximum score
of 0.667 on test set.

Outline: Section 2 describes the dataset and
preprocessing steps. Section 3 presents model de-
scription and system information. In the next sec-
tion (Section 4), we discuss experimental results
and comparisons against state-of-the-art baselines.
Towards the end, Section 5 and Section 6 conclude
this work with current limitations and proposal for
future extension.



237

2 Dataset

We used the dataset provided by Task 3 in SE-
MEVAL 2019. This task is titled as ‘EmoCon-
text: Contextual Emotion Detection in Text’. The
dataset consists of textual dialogues i.e. a user
utterance along with two turns of context. Each
dialogue is labelled into several emotion classes:
Happy, Sad, Angry or Others. Figure 1 shows an
example dialogue.

Turn 1: N u
Turn 2: Im fine, and you?
Turn 3: I am fabulous

Figure 1: Example textual dialogue from EmoCon-
text dataset.

Table 1 shows the distribution of classes in the
EmoContext dataset. The dataset is further subdi-
vided into train, dev and test sets. In this work, we
use training set for model training and dev set for
validation and hyper-parameter tuning.

Others Happy Sad Angry
Train 14948 4243 5463 5506
Dev 2338 142 125 150
Test 4677 284 250 298

Table 1: Dataset statistics.

Preprocessing: We leverage two pretrained
word embedding: (i) GloVe (Pennington et al.,
2014) and (ii) sentiment specific word embedding
(SSWE) (Tang et al., 2014). However, several
classes of words are not present in these embed-
dings. We list these classes below:
• Emojis: , , etc.
• Elongated words: Wowwww, noooo, etc.
• Misspelled words: ofcorse, activ, doin, etc.
• Non-English words: Chalo, kyun, etc.
We follow a standard preprocessing pipeline to

address the above limitations. Figure 2 describes
the dataset preprocessing pipeline.

By using the dataset preprocessing pipeline, we
reduced the number of words not found in GloVe
embedding from 4154 to 813 and in SSWE from
3188 to 1089.

†NLTK Library (Bird et al., 2009)
‡For spell check we the used the following PyPI package

- pypi.org/project/pyspellchecker/.

Tokenize sentences
using NLTK’s

TweetTokenizer†

Is the
token an
emoji?

Convert Unicode
to string
−→ “:)”

Use regex to remove
repetition of letters

at the end of a token.
“heyyyyy” −→ “hey”

Correct spelling‡

errors in tokens.

Lemmatize the
token using NLTKs

WordNetLemmatizer.

YES

NO

Figure 2: Data processing pipeline.

3 Experiments

We experiment with several classification systems.
In the following subsections we first explain the
classical ML based models followed by Deep
Neural Network based models.

3.1 Classical Machine Learning Methods

We learn§ two classical ML models, (i) Support
Vector Machine (SVM) and (ii) Logistic Regres-
sion (LR). The input consists a single feature vec-
tor formed by combining all sentences (turns). We
term this combination of sentences as ’Dialogue’.

We create feature vector by averaging over d di-
mensional GloVe representations of all the words
present in the dialogue. Apart from standard aver-
aging, we also experimented with tf-idf weighted
averaging. The dialogue vector construction from
tf-idf averaging scheme is described below:

V ectordialogue =
ΣN
i=1(tf-idfwi ×GloV ewi)

N

§We leverage the Scikit-learn (Pedregosa et al., 2011) im-
plementation.



238

Here, N is the total number of tokens in a sen-
tence and wi is the ith token in the dialogue. Em-
pirically, we found that, standard averaging shows
better prediction accuracy than tf-idf weighted av-
eraging.

3.2 Deep Neural Networks

In this subsection, we describe three deep neural
architectures that provide better prediction accu-
racy than classical ML models.

3.2.1 Convolution Neural Network (CNN)

We explore a CNN model analogous to (Kim,
2014) for classification. Figure 3 describes our
CNN architecture. The model consists of an em-
bedding layer, two convolution layers, a max pool-
ing layer, a hidden layer, and a softmax layer.
For each dialogue, the input to this model is a
sequence of token indices. Input sequences are
padded with zeros so that each sequence has equal
length n.

Hey

How

are

you

?

d = embedding 
dimension

Embedding 
matrix of 

size N x d

* =

Feature 
maps

Max 
pooling

.

.

.

.

.

.

.

.

.

.

.

.

Filters of size
2xd, 3xd, 4xd

Concat

Softmax

⊕

⊕

Fully Connected 
Layers

Figure 3: Architecture of the CNN model.

The embedding layer maps the input sequence
to a matrix of shape n× d, where n represents nth

word in the dialogue and d represents dimensions
of the embedding. Rows of the matrix correspond
to the GloVe embedding of corresponding words
in the sequence. A zero vector represents words
which are not present in the embedding.

At the convolution layer, filters of shape m× d
slide over the input matrix to create feature maps
of length n−m + 1. Here, m is the ‘region size’.
For each region size, we use k filters. Thus, the
total number of feature maps is m × k. We use
two convolution layers, one after the other.

Next, we apply a max-pooling operation over
each feature map to get a vector of length m × k.
At the end, we add a hidden layer followed by a

softmax layer to obtain probabilities for classifica-
tion. We used Keras for this model.

3.2.2 Long Short-Term Memory-I (LSTM-I)
We experiment with two Long Short-term Mem-
ory (Hochreiter and Schmidhuber, 1997) based ap-
proaches. In the first approach, we use an architec-
ture similar to (Gupta et al., 2017) Here, similar to
the CNN model, the input contains an entire dia-
logue. We experiment with two embedding layers,
one with SSWE embeddings, and the other with
GloVe embeddings. Figure 4 presents detailed de-
scription. Gupta et al. showed that SSWE embed-
dings capture sentiment information and GloVe
embeddings capture semantic information in the
continuous representation of words. Similar to the
CNN model, here also, we input the word indices
of dialogue. We pad input sequences with zeros so
that each sequence has length n.

The architecture consists of two LSTM layers
after each embedding layer. The LSTM layer out-
puts a vector of shape 128 × 1. Further, concate-
nation of these output vectors results a vector of
shape 256× 1. In the end, we have a hidden layer
followed by a softmax layer. The output from the
softmax layer is a vector of shape 4 × 1 which
refers to class probabilities for the four classes. We
used Keras for this model.

128

SSWE SSWE SSWE

TURN 1 <eos> TURN 2 <eos> TURN 3

TURN 1 <eos> TURN 2 <eos> TURN 3

Leaky
ReLU

Fully Connected 
Layer

Softmax

128

GloVe GloVe GloVe

LSTM

LSTM

LSTM

LSTM

Figure 4: LSTM-I architecture.

3.2.3 Long Short-Term Memory-II
(LSTM-II)

In the second approach, we use the architecture
shown in Figure 5. This model consists of embed-
ding layers, LSTM layers, a dense layer and a soft-
max layer. Here, the entire dialogue is not passed
at once. Turn 1 is passed through an embedding
layer which is followed by an LSTM layer. The
output is a vector of shape 256× 1. Turn 2 is also

https://github.com/keras-team/keras
https://github.com/keras-team/keras


239

passed through an embedding layer which is fol-
lowed by an LSTM layer. The output from Turn 2
is concatenated with the output of Turn 1 to form
a vector of shape 512 × 1. The concatenated vec-
tor is passed through a dense layer which reduces
the vector to 256× 1. Turn 3 is passed through an
embedding layer which is followed by an LSTM
layer. The output from Turn 3 is concatenated with
the reduced output of Turn 1 & 2, and the resultant
vector has shape 512 × 1. The resultant vector is
passed through a dense layer and then a softmax
layer to find the probability distribution across dif-
ferent classes. We used Pytorch for this model.

The motivation of this architecture was derived
from the Task’s focus to identify the emotion of
Turn 3. Hence, this architecture gives more weight
to Turn 3 while making a prediction and condi-
tions the result on Turn 1 & 2 by concatenating
their output vectors. The concatenated vector of
Turn 1 & 2 accounts for the context of the conver-
sation.

TURN 1

256

256

512

Leaky
ReLU

Fully Connected 
Layer

⊕

256

256

Softmax

LSTM

GloVe GloVe GloVe

TURN 2

LSTM

GloVe GloVe GloVe

TURN 3

LSTM

GloVe GloVe GloVe

Figure 5: LSTM-II architecture.

4 Results

In Table 2, we report the performance of all the
models described in the previous section. We train
each model multiple (=5) times and compute the
mean of scores.

Algorithm Scoredev Scoretest
SVM 0.46 0.41
LR 0.44 0.40
SVM
(tf-idf weighted averaging)

0.42 0.38

LR
(tf-idf weighted averaging)

0.37 0.34

CNN 0.632 0.612
LSTM-I 0.677 0.667
LSTM-II 0.684 0.661

Table 2: Model performance on dev & test dataset.

SVM and Logistic Regression models did not
yield very good results. We attribute this to the
dialogue features that we use for the models. Tf-
idf weighted average of GloVe vectors performed
worse than the simple average of vectors. Hand-
crafted features might have performed better than
our current implementation. Neural network based
models had very good results, CNN performed
better than classical ML models but lagged behind
LSTM based models. On the test set, our LSTM-
I model performed slightly better than LSTM-II
model.

Hyper-parameter selection for CNN was diffi-
cult, and we restricted to LSTM for the Phase
2 (i.e. test phase). We also noticed that the
LSTM model was overfitting early in the train-
ing process (4-5 epochs) and that was a challenge
when searching for optimal hyper-parameters. We
used grid search to find the right set of hyper-
parameters for our models. We grid searched over
dropout (Srivastava et al., 2014), number of LSTM
layers, learning rate and number of epochs. In case
of the CNN model, number of filters was an extra
hyper-parameter. We used Nvidia GeForce GTX
1080 for training our models.

5 Conclusion

In this paper, we experimented with multiple ma-
chine learning models. We see that LSTM and
CNN models perform far better than classical ML
methods. In phase-1 of the competition (dev
dataset), we were able to achieve a score of 0.71,
when the scoreboard leader had 0.77. But in
phase-2 (test dataset), our best score was only
0.634, when the scoreboard leader had 0.79. After
phase-2 ended, we experimented more with hyper-
parameters and achieved an increase in scores on
the test-set (mentioned in Table 2).

Full code for the paper can be found on
GitHub∗.

6 Future Work

Our scores on the test dataset suggest room for im-
provement. Now we are narrowing down to trans-
fer learning where the starting point for our model
will be a pre-trained network on a similar task.
Our assumption is, this will help in better con-
vergence on EmoContext dataset given the dataset
size is not too large.
∗https://github.com/lingo-iitgn/

emocontext-19

https://github.com/pytorch
https://github.com/lingo-iitgn/emocontext-19
https://github.com/lingo-iitgn/emocontext-19
https://github.com/lingo-iitgn/emocontext-19


240

References
Steven Bird, Ewan Klein, and Edward Loper. 2009.

Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Stavros Giorgis, Apostolos Rousas, John Pavlopoulos,
Prodromos Malakasiotis, and Ion Androutsopoulos.
2016. aueb. twitter. sentiment at semeval-2016 task
4: A weighted ensemble of svms for twitter senti-
ment analysis. In Proceedings of the 10th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2016), pages 96–99.

Umang Gupta, Ankush Chatterjee, Radhakrish-
nan Srikanth, and Puneet Agrawal. 2017. A
sentiment-and-semantics-based approach for emo-
tion detection in textual conversations. CoRR,
abs/1707.06996.

Sepp Hochreiter and Jrgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1746–1751.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio
Sebastiani, and Veselin Stoyanov. 2016. Semeval-
2016 task 4: Sentiment analysis in twitter. In Pro-
ceedings of the 10th international workshop on se-
mantic evaluation (semeval-2016), pages 1–18.

BARBARA ORTUTAY. 2018. Poll: Teens prefer tex-
ting over face-to-face communication.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In In EMNLP.

Daily Telegraph Reporter. 2012. Texting more popular
than face-to-face conversation.

Sebastian Ruder, Parsa Ghaffari, and John G Bres-
lin. 2016. Insight-1 at semeval-2016 task 4:

convolutional neural networks for sentiment clas-
sification and quantification. arXiv preprint
arXiv:1609.02746.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting
Liu, and Bing Qin. 2014. Learning sentiment-
specific word embedding for twitter sentiment clas-
sification. volume 1, pages 1555–1565.

Xinyu Wang, Chunhong Zhang, Yang Ji, Li Sun, Leijia
Wu, and Zhana Bao. 2013. A depression detection
model based on sentiment analysis in micro-blog so-
cial network. In Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining, pages 201–213.
Springer.

MARK WILSON. 2016. This startup is teaching chat-
bots real empathy.

Vikrant Yadav. 2016. thecerealkiller at semeval-2016
task 4: Deep learning based system for classifying
sentiment of tweets on two point scale. In Proceed-
ings of the 10th International Workshop on Semantic
Evaluation (SemEval-2016), pages 100–102.

http://arxiv.org/abs/1707.06996
http://arxiv.org/abs/1707.06996
http://arxiv.org/abs/1707.06996
https://doi.org/10.1162/neco.1997.9.8.1735
http://aclweb.org/anthology/D/D14/D14-1181.pdf
http://aclweb.org/anthology/D/D14/D14-1181.pdf
https://wjla.com/news/offbeat/poll-teens-prefer-texting-over-face-to-face-communication
https://wjla.com/news/offbeat/poll-teens-prefer-texting-over-face-to-face-communication
https://www.telegraph.co.uk/technology/9406420/Texting-more-popular-than-face-to-face-conversation.html
https://www.telegraph.co.uk/technology/9406420/Texting-more-popular-than-face-to-face-conversation.html
https://doi.org/10.3115/v1/P14-1146
https://doi.org/10.3115/v1/P14-1146
https://doi.org/10.3115/v1/P14-1146
https://www.fastcompany.com/3062546/this-startup-is-teaching-chatbots-real-empathy
https://www.fastcompany.com/3062546/this-startup-is-teaching-chatbots-real-empathy

