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Abstract

In this paper, we describe a deep-learning sys-
tem for emotion detection in textual conversa-
tions that participated in SemEval-2019 Task 3
“EmoContext”. We designed a specific archi-
tecture of bidirectional LSTM which allows
not only to learn semantic and sentiment fea-
ture representation, but also to capture user-
specific conversation features. To fine-tune
word embeddings using distant supervision we
additionally collected a significant amount of
emotional texts. The system achieved 72.59%
micro-average F1 score for emotion classes on
the test dataset, thereby significantly outper-
forming the officially-released baseline. Word
embeddings and the source code were released
for the research community.

1 Introduction

Emotion detection has emerged as a challeng-
ing research problem that can make some valu-
able contribution not only in basic spheres like
medicine, sociology and phycology but also in
more innovative areas such as human-computer
interaction. Nowadays, people increasingly com-
municate using text messages with dialogue sys-
tems, for which it is crucial to provide emotion-
ally aware responses to users. The SemEval-2019
Task 3 “EmoContext” is focused on the contex-
tual emotion detection in textual conversation. In
EmoContext, given a textual user utterance along
with 2 turns of context in a conversation, we must
classify whether the emotion of the next user ut-
terance is “happy”, “sad”, “angry” or “others” (4-
point scale). For a detailed description see (Chat-
terjee et al., 2019).

In this paper, we present bidirectional LSTM
for contextual emotion detection in textual con-
versations that participated in SemEval-2019 Task
3 “EmoContext”. The proposed architecture aims

to capture not only semantic and sentiment fea-
ture representation from the conversation turns,
but also to capture user-specific conversation fea-
tures. We avoided using traditional NLP features
like sentiment lexicons and hand-crafted linguistic
features by substituting them with word embed-
dings which were calculated automatically from
the text corpora. Based on this paper, we make
the following contributions1 freely available for
the research community:

• The source code of the deep-learning system
for emotion detection.

• Word embeddings fine-tuned for emotional
detection in short texts.

The rest of the article is organized as follows.
Section 2 gives a brief overview of the related
work. In section 3 we describe the proposed ar-
chitecture of LSTM used in our system. Section
4 is focused on the texts pre-processing and train-
ing process. Section 5 lays emphasis on the differ-
ent system architectures and approaches we have
tried. In conclusion, the performance of our sys-
tem and further ways of research are presented.

2 Related Work

In recent years deep learning techniques have cap-
tured the attention of researchers due to their abil-
ity to significantly outperform traditional methods
in sentiment analysis task (Tang et al., 2015). This
fact has also been confirmed by previous itera-
tions of SemEval competition, where leading so-
lutions used convolutional neural networks (CNN)
and long short-term memory (LSTM) networks
(Cliche, 2017; Baziotis et al., 2017, 2018) as well
as transfer learning techniques (Duppada et al.,
2018). However, limited research was focused

1https://github.com/sismetanin/
emosense-semeval2019-task3-emocontext

https://github.com/sismetanin/emosense-semeval2019-task3-emocontext
https://github.com/sismetanin/emosense-semeval2019-task3-emocontext


211

Figure 1: The architecture of a smaller version of the proposed architecture. LSTM unit for the first turn and for
the third turn have shared weights.

on emotion identification in textual conversations.
Since recurrent neural networks (RNNs) and their
variations have been efficient in capturing sequen-
tial information, they have been successfully ap-
plied in emotion recognition systems (Poria et al.,
2017; Gupta et al., 2017). Consequently, we draw
our primary attention to the emotion classification
in conversations using RRNs.

3 System Description

A recurrent neural network (RNN) is a family of
artificial neural networks which is specialized in
processing of sequential data. In contrast with
traditional neural networks, RRNs are designed
to deal with sequential data by sharing their in-
ternal weights processing the sequence. For this
purpose, the computation graph of RRNs includes
cycles, representing the influence of the previous
information on the present one. As an extension
of RNNs, Long Short-Term Memory networks
(LSTMs) have been introduced in 1997 (Hochre-
iter and Schmidhuber, 1997). In LSTMs recur-
rent cells are connected in a special way in or-
der to avoid vanishing and exploding gradient is-
sues. Traditional LSTMs only preservs informa-
tion from the past since they process the sequence
only in one direction. Bidirectional LSTMs com-
bine output from two hidden LSTM layers mov-
ing in opposite directions, where one moves for-
ward through time, and another moves backwards
through time, thereby enabling to capture infor-
mation from both past and future states simulta-
neously (Schuster and Paliwal, 1997).

A high-level overview of our approach is pro-

vided in Figure 1. The proposed architecture of the
neural network consists of the embedding unit and
two bidirectional LSTM units (dim = 64). The
former LSTM unit is intended to analyze the utter-
ance of the first user (i.e. the first turn and the third
turn of the conversation), and the latter is intended
to analyze the utterance of the second user (i.e. the
second turn). These two units learn not only se-
mantic and sentiment feature representation, but
also how capture user-specific conversation fea-
tures, which allows classifying emotions more ac-
curately. At the first step, each user utterance is
fed into corresponding bidirectional LSTM unit
using pre-trained word embeddings. Next, these
three feature maps are concatenated in a flatten
feature vector and then passed to a fully connected
hidden layer (dim = 30), which analyzes inter-
actions between obtained vectors. Finally, these
features proceed through the output layer with the
softmax activation function to predict a final class
label. To reduce overfitting, regularization layers
with Gaussian noise were added after the embed-
ding layer, dropout layers (Srivastava et al., 2014)
were added at each LSTM unit (p = 0.2) and be-
fore the hidden fully connected layer (p = 0.1).

4 Training

To train this model we had access to 30160
human-labelled tweets provided by task organiz-
ers, where about 5000 samples each from “angry”,
“sad”, “happy” class and 15000 for “others” class
(Table 1). Dev and test sets, which were also pro-
vided by organizers, in contrast with train set, have
a real-life distribution, which is about 4% for each
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Dataset Happy Sad Angry Others Total
Train 14.07% 18.11% 18.26% 49.56% 30160
Dev 5.15% 4.54% 5.45% 84.86% 2755
Test 5.16% 4.54% 5.41% 84.90% 5509
Distant 33.3% 33.3% 33.3% 0% 900k

Table 1: Emotion class label distribution in datasets.

emotional class and the rest for the “others” class.
Data provided by Microsoft.

In addition to this data, we collected 900k En-
glish tweets in order to create a distant dataset of
300k tweets for each emotion. To form the dis-
tant dataset, we based on the strategy of Go et al.
(2009), under which we simply associate tweets
with the presence of emotion-related words such
as ’#angry’, ’#annoyed’, ’#happy’, ’#sad, ’#sur-
prised’, etc. The list of query terms was based
on the query terms of SemEval-2018 AIT DISC
(Duppada et al., 2018).

The key performance metric of EmoContext is a
micro-average F1 score for three emotion classes,
i.e. ‘sad’, ‘happy’, and ‘angry’. It is calculated as
the harmonic mean of Precision and Recall.

4.1 Pre-processing

Before any training stage, texts were pre-
processed by text pre-processing tool Ekphrasis
(Baziotis et al., 2017). This tool helps to perform
spell correction, word normalization and segmen-
tation and allows to specify which tokens should
be omitted, normalized or annotated with special
tags. We used the following techniques for the pre-
processing stage:

• URLs, emails, the date and time, usernames,
percentage, currencies and numbers were re-
placed with the corresponding tags.

• Repeated, censored, elongated, and capital-
ized terms were annotated with the corre-
sponding tags.

• Elongated words were automatically cor-
rected based on built-in word statistics cor-
pus.

• Hashtags and contractions unpacking (i.e.
word segmentation) was performed based on
built-in word statistics corpus.

• A manually created dictionary for replacing
terms extracted from the text was used in or-
der to reduce a variety of emotions.

In addition, Emphasis provides with the tokenizer
which is able to identify most emojis, emoticons
and complicated expressions such as censored,
emphasized and elongated words as well as dates,
times, currencies and acronyms.

4.2 Unsupervised Training
Word embeddings have become an essential part
of any deep-learning approaches for NLP systems.
To determine the most suitable vectors for emo-
tions detection task, we try Word2Vec (Mikolov
et al., 2013), GloVe (Pennington et al., 2014)
and FastText (Joulin et al., 2017) models as well
as DataStories pre-trained word vectors (Baziotis
et al., 2017). The key concept of Word2Vec is
to locate words, which share common contexts in
the training corpus, in close proximity in vector
space. Both Word2Vec and Glove models learn
geometrical encodings of words from their co-
occurrence information, but essentially the former
is a predictive model and the latter is a count-
based model. In other words, while Word2Vec
tries to predict a target word (CBOW architec-
ture) or a context (Skip-gram architecture), i.e. to
minimize the loss function, GloVe calculates word
vectors doing dimensionality reduction on the co-
occurrence counts matrix. FastText is very similar
to Word2Vec except for the fact that it uses char-
acter n-grams in order to learn word vectors, so
it’s able to solve the out-of-vocabulary issue. For
all techniques mentioned above, we used the de-
fault training prams provided by the authors. We
train a simple LSTM model (dim = 64) based on
each of these embeddings and compare effective-
ness using cross-validation. According to the re-
sult, DataStories pre-trained embeddings demon-
strated the best average F1 score.

4.3 Distant Pre-training
To enrich selected word embeddings with the
emotional polarity of the words, we consider per-
forming distant pre-training phrase by a fine-
tuning of the embeddings on the automatically
labelled distant dataset. The importance of us-
ing pre-training was demonstrated in (Deriu et al.,
2017). We use the distant dataset to train the
simple LSTM network to classify angry, sad and
happy tweets. The embeddings layer was frozen
for the first training epoch in order to avoid sig-
nificant changes in the embeddings weights, and
then it was unfrozen for the next 5 epochs. After
the training stage, the fine-tuned embeddings was
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System Happy Sad Angry Happy&Sad&Angry
F1 P R F1 P R F1 P R F1 P R

Baseline n/a n/a n/a n/a n/a n/a n/a n/a n/a 58.61 n/a n/a
Random 8.89 5.36 26.06 7.96 4.70 26.00 8.45 5.14 23.67 8.43 5.06 25.18
LSTM1 67.07 59.07 77.68 76.95 71.57 83.36 71.18 61.75 84.67 71.37 63.31 81.89
LSTM2 68.16 61.25 77.25 78.19 74.34 82.72 72.51 63.32 85.13 72.58 65.34 81.73
LSTM3 67.33 60.70 75.77 75.23 69.60 82.00 70.06 59.08 86.27 70.58 62.34 81.41
LSTMs 64.83 56.70 77.30 73.53 67.27 81.84 66.93 55.10 86.78 67.89 58.34 82.07
LSTMa 66.50 58.71 77.00 75.64 71.40 80.71 69.88 59.27 85.56 70.30 62.15 81.19
LSTMw 68.67 62.30 76.60 77.51 73.87 81.60 70.35 60.25 84.67 71.77 64.45 81.00

Table 2: Comparison of various models on dev dataset using micro-average Precision, Recall and F1-score for
emotional classes. Baseline is an official baseline approach released by task organizers.

saved for the further training phases.

4.4 Supervised Training

At the final stage, the training dataset provided by
SemEval-2019 was split into training and valida-
tion subsets. The validation subset was utilized
as an unbiased accuracy evaluation of a model to
fine-tune hyperparameters during training. The
embedding layer was initialized with pre-trained
word vectors from the previous distant training
step. We use Adam optimizer (Kingma and Ba,
2014) with the initial learning rate of 0.001 and
categorical cross-entropy as a loss function.

We train our network with frozen embeddings
for the 15 epochs. We tried to unfrozen embed-
dings on the different epoch with the simultane-
ous reduction of learning rate but failed to get bet-
ter results. It is probably connected with the size
of the training dataset (Baziotis et al., 2017). The
model was implemented using Keras with Tensor-
flow (Abadi et al., 2016) backend.

5 Experiments and Results

In the process of searching for optimal architec-
ture, we experimented not only with the number
of cells in layers, activation functions and regular-
ization parameters but also with the architecture of
the neural network. Let us take a closer look at the
latter type of experiments. Comparison of various
models presented in Table 2.

• LSTM1 is a model with one bidirectional
LSTM unit for all three conversation turns.

• LSTM2 is a final model with two bidirec-
tional LSTM units described in Section 2.

• LSTM3 is a model with three bidirectional
LSTM unit, where each unit is intended to
analyze the corresponding conversation turn.

• LSTMw is LSTM2 with an additional regu-
larization based on class weights.

• LSTMs is LSTM2 with an additional
LSTM unit above concatenated layer.

• LSTMa is LSTM2 with additional context-
attention layer (Yang et al., 2016).

Since LSTM2 demonstrated the best scores on
the dev dataset, it was used in the final evaluation
stage of the competition. On the final test dataset,
it achieved 72.59% micro-average F1 score for
emotional classes. This is well above the official
baseline released by task organizers, which was
58.68%.

6 Conclusion

In this paper, we presented the deep-learning sys-
tem for emotion detection in textual conversa-
tions we used to compete in SemEval-2019 Task 3
”EmoContext” competition. Utilizing state-of-
the-art approaches in the literature, we decided to
use RNNs to detect emotions. We designed a spe-
cific architecture of LSTM which allows not only
to learn semantic and sentiment feature represen-
tation, but also to capture user-specific conversa-
tion features. In this work, we didn’t use any tradi-
tional NLP features such as sentiment lexicons or
hand-crafted linguistic by substituting them with
word embeddings which were calculated automat-
ically from the text corpora with an advanced pre-
processing stage.

Our approach achieved 72.59% micro-average
F1 score for emotion classes at the test dataset,
thereby significantly outperform the officially-
released baseline, namely larger in 14%. Further
research will be focused on the advanced usage of
techniques to handle imbalanced data. It also can
be useful to consider the application of character-
level language models.
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