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Abstract

We present a homogeneous ensemble of lin-
ear perceptrons trained for emotion classifi-
cation as part of the SemEval-2019 shared-
task 3. The model uses a matrix of proba-
bilities to weight the activations of the base-
classifiers and makes a final prediction us-
ing the sum rule. The base-classifiers are
multi-class perceptrons utilizing character and
word n-grams, part-of-speech tags and senti-
ment polarity scores. The results of our exper-
iments indicate that the ensemble outperforms
the base-classifiers, but only marginally. In
the best scenario our model attains an F-Micro
score1 of 0.672, whereas the base-classifiers
attained scores ranging from 0.636 to 0.666.

1 Introduction

Our task is to detect emotions in multi-turn chat
messages (see examples in table 1). The four
emotion categories the model has choose from are
happy, sad, angry and others. A major
caveat of the task is the imbalance of class dis-
tribution in the dataset, as described in 4.1. The
dataset, as well as the task itself are described in
detail in (Chatterjee et al., 2019).

We choose to deploy ensemble of linear classi-
fiers for this task, rather than a single model for
a number of reasons. Firstly, given the inherent
ambiguity of emotions (Brainerd, 2018) we expect
that ensembles are better suited for any emotion
prediction task. Secondly, it has been shown that
ensembles are more immune to overfitting in sim-
ilar tasks (Dong and Han, 2004). And finally, a
single model trained on a large number of feature
sets, tend to perform significantly worse than an
ensemble where each model is trained on a differ-
ent subset (or combinations) of feature types.

1This is a custom F-Micro score. See more details under
4.3 Evaluation

Conversation Emotion

A: Yes

B: How so?

A: Don’t message me ever angry

A: I am fine

B: I am good how is ur week

A: I am single others

Table 1: Two samples from the dataset with angry and
others respectively as gold labels.

For this purpose, we deploy BrainT, a multi-
class perceptron model utilizing word n-grams and
POS-tags, built and trained for implicit emotion
detection in Tweets (Gratian and Haid, 2018). In
the current scenario, we extend the feature sets of
BrainT with character n-grams and Sentiment po-
larity scores. We combine n = 11 and n = 5
classifiers into an ensemble model where a fi-
nal prediction is made based on the activations.
Our model also calculates a matrix of probabili-
ties used to weigh the input activations. Each el-
ement in the matrix is the probability of a given
node making correct prediction for a given emo-
tion class. In the initial experiments the nodes are
trained on the full train data. In the second group
of experiments, nodes are assigned a random sub-
sets of the train data separately. We hope that this
will promote diversity in the base-classifiers and
boost the performance of the ensemble.

The results of our experiments indicate that in
both cases the ensemble outperforms the base-
classifiers, however only slightly. In the following
sections we describe the architecture of the model,
the actual results on the SemEval shared-task. Fi-
nally we suggest ways to maximize the effective-
ness of ensemble models as ideas for future work.
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2 Related Work

Ensemble learning aims at exploiting the ”shared
knowledge” of multiple classifiers based on Sta-
tistical Learning theory. A theoretical analysis
of ensemble learning using linear perceptrons,
can be found in (Hara and Okada, 2005) and
(Miyoshi et al., 2005). The authors demonstrate
that the generalization error of ensemble learn-
ing depends on (hence, can be calculated from)
two cosine measures: the similarity between the
base-classifiers and the training data and the mu-
tual similarity of the base-classifiers. In plain En-
glish, to maximize the performance of the ensem-
ble model, we want to increase the accuracy of the
base-classifiers but in such a way that we promote
diversity in the base-classifiers.

A simple way of combining the base-classifiers
is to take the average of their weights after train-
ing. A more common approach is to exploit the
output activations using different techniques. In
(Xia et al., 2011a) three such techniques are an-
alyzed for sentiment classification: fixed combi-
nation, weighted combination and meta-classifier
combination. The authors found fixed combina-
tion to be the weakest of all three, while weighted
combination and meta-classifier added on average
3-4% improvement over the performance of the
best base-classifier.

In our work, we deploy the weighted combina-
tion technique with the addition of a learned prob-
ability matrix, as described below.

3 The Model

3.1 Base-Classifiers
We use as base-classifier the linear perceptron
model described in (Gratian and Haid, 2018)
which reduces the task of multi-class prediction
into |Y | binary classification problems (where |Y |
is the number of emotion classes) following the
”one-against-all” approach described by Xia et al.
(2011b).

The output of each base-classifier is a vector α
of size |Y | corresponding to the number of emo-
tions. Before passing this vector to the ensemble
model, each activation αy is calibrated as follows:

α̂y =
αy∑

ŷ∈Y
αŷ

By doing so, each α̂y can be treated as a con-
fidence level of the node that the instance xi ex-

presses the emotion class y. The advantage of this
approach is that even when the true emotion class
is not the one predicted by the node (i.e., it is not
the highest activation), it can still contribute to the
true class being predicted by the ensemble if it has
a positive value.

3.2 Ensemble

The ensemble model M represents a matrix of
probabilities of size n×m:

M =


ϕ1,1 ϕ1,2 · · · ϕ1,m

ϕ2,1 ϕ2,2 · · · ϕ2,m

...
...

. . .
...

ϕn,1 ϕn,2 · · · ϕn,m


The ij-th element of this matrix is the proba-

bility that i-th node’s prediction for j-th class is
correct. This parameter is initialized to 1 and is
learned during training as:

ϕi,j =
|Rij |

|Rij |+ |R′
ij |

where |Rij | and |R′
ij | are respectively the cor-

rect and incorrect predictions of node i for class j
during training. This probability value, thus, cor-
responds to the Precision metric.

The input of the model is a matrix of equal size:
those are the activations of n nodes, each a vector
of size m (or |Y |). We weigh these activations by
the probabilities learned by the model by taking
the Hadamard product of the two matrices. The
final prediction is made by the ensemble following
the sum rule as described by (Xia et al., 2011b).
The predicted class ŷ is the one that has the highest
sum of weighted activations:

ŷ = argmaxmi=1

n∑
j=1

ϕi,j âi,j

4 Experiments

4.1 Dataset

The dataset we use is provided by the Se-
mEval2019 shared-task 3 and is described in de-
tail by (Chatterjee et al., 2019). It contains a train
set with 30,160 and a test set with 5,509 conversa-
tions. In both sets the emotion class others is dis-
proportionately overrepresented. Moreover, there
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Angry Sad Happy Others Total

5,506 5,463 4,243 14,948 30,160

18.3% 18.1% 14.1% 49.6% 100%

Table 2: Class distribution in the train dataset.

Angry Sad Happy Others Total

298 250 284 4,677 5,509

5.4% 4.5% 5.2% 84.9% 100%

Table 3: Class distribution in the test dataset.

is a significant difference between the class distri-
butions in the train and test datasets as can be seen
in tables 2 and 3 imposing an additional challenge
for the classification task.

The evaluation metric of the shared task is
a custom F-micro measure which takes only
into account the three emotion classes (happy,
angry, sad) and disregards the overrepre-
sented class others.

4.2 Preprocessing

As in the previous experimental setup, we apply
minimal preprocessing. We don’t normalize to-
kens and don’t filter stopwords as this proved to
decrease system performance in our previous ex-
periments. We treat the 3 turns in each conversa-
tion as one stream of tokens by concatenating them
using the special token 〈STOP 〉.

4.3 Features

Our feature types are word and character n-grams,
as well as POS tags extracted with the NLTK
part-of-speech tagger and polarity scores from
the Sentiment Classification using
WSD library 2.

The word n-grams include unigrams, bigrams,
trigrams and tetragrams where one token is re-
placed with the placeholder 〈SKIP 〉 tag as this
feature type proved to be highly efficient in our
previous experiments.

The list of feature types used in our experiments
is in table 4.

4.4 Experimental Setup

We assign each node 2 to 4 feature types. In
the preparatory stage of the experiments we train
nodes with different combinations of the feature

2The library is free-software and is available on-
line: https://github.com/kevincobain2000/
sentiment_classifier

Feature Set Description

1GR word n-grams

2GR

3GR

4GR-S1

1CH character n-grams

2CH

3CH

POS Lexicon-based

SENTA

Table 4: The feature types utilized by the base-
classifiers.

False Positives False Negatives

Happy, Sad, Angry 0.8 1.5

Others 0.1 0.5

Table 5: Learning rates

types and select the 11 highest ranking nodes. Ta-
ble 6 lists these nodes.

To overcome overrepresantation of the class
others we apply a lower learning rate for this
class. We furthermore apply a higher learning rate
for false negatives than false positives, since in the
preparatory experiments all nodes showed a sig-
nificantly lower Recall than Precision. Table 5
lists those learning rates.

Finally, we test the ensemble model in two
experimental setups: uniform learning and dis-
tributed learning. In the first scenario, the entire
train data is used to train the 11 nodes. Either
all 11 node activations are passed to the ensemble
or only those of the 5 highest performing nodes.
In the second scenario, each node is assigned and
trained on a random 50% subset of the train data.

For all our experiments we choose the number
of epochs to be 60.

5 Results

5.1 Uniform Learning

In all of our experiments the ensemble per-
forms only slightly better than the best perform-
ing node(s). The results of the experiment with
uniform training are in Table 6. We observe that
reducing the number of nodes from 11 to 5, de-
creases Precision of the ensemble, but increases
Recall, however in both cases the difference is in-
significant.
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Node Precision Recall F-micro

1GR 3GR 3CH POS 0.604 0.672 0.636

2GR 4GR-S1 3CH POS 0.627 0.675 0.65

2GR 4GR-S1 3CH 0.622 0.69 0.654

1GR 2GR 0.613 0.706 0.656

2GR SENTA 0.661 0.661 0.661

2GR 3CH SENTA 0.649 0.677 0.662

1GR 2GR POS 0.632 0.695 0.662

1GR 2GR SENTA 0.636 0.692 0.663

1GR 2GR 3CH SENTA 0.632 0.697 0.663

1GR 2GR 1CH 0.638 0.696 0.666

1GR 2GR 3CH 0.631 0.704 0.666

ENSEMBLE N=5 0.640 0.700 0.672

ENSEMBLE N=11 0.649 0.694 0.671

Table 6: Results for Exp 1 with 11 nodes and uniform
training.

We also observe that while the ensemble out-
performs the nodes in the F-micro measure, it has
a lower Precision and Recall than at least one of
the nodes.

5.2 Distributed Learning
In the second experiment each node is trained on a
50% random subset of the train data. We observe a
drop in the performance of both the ensemble and
the nodes, although the ensemble outperforms the
nodes with a slightly larger margin.

Compared to the results of uniform learning, we
see that the ensemble has roughly the same Pre-
cision, but a lower Recall. However when we
compare the performance of the ensemble with
the base-classifiers, we see that the ensemble now
has now a higher Precision score than any of the
nodes. This indicates that the ensemble benefits
more from the ”shared knowledge” of the base-
classifiers.

6 Discussion

The goal of our experiments was to build an en-
semble that makes better predictions than any of
the base-classifiers individually. While the results
of our experiments prove this to be a success,
they also indicate that the ensemble exploits the
strengths of the nodes weakly. For most of the
emotion classes, the ensemble underperforms at
least one of the nodes.

This disparity is especially vivid in the Recall
measure. We presume that this due to the fact that

Node Precision Recall F-micro

1GR 3GR 3CH POS 0.594 0.614 0.604

2GR SENTA 0.635 0.579 0.606

2GR 4GR-S1 3CH POS 0.6 0.629 0.614

2GR 4GR-S1 3CH 0.589 0.649 0.617

2GR 3CH SENTA 0.639 0.626 0.633

1GR 2GR 3CH 0.607 0.665 0.635

1GR 2GR 1CH 0.615 0.669 0.641

1GR 2GR SENTA 0.622 0.666 0.643

1GR 2GR 3CH SENTA 0.623 0.663 0.643

1GR 2GR 0.616 0.675 0.644

1GR 2GR POS 0.623 0.668 0.645

ENSEMBLE N=11 0.648 0.666 0.657

Table 7: Results for Exp 2 with 11 nodes and dis-
tributed training.

the probabilities matrix learned by the model re-
flects only Precision, not Recall. As a future im-
provement to the model, we could adapt the prob-
abilities to reflect Recall as well.

7 Future Work

In our future work we want to adopt a different
approach to ensemble learning. Firstly, we think
an important starting point should be a concrete
estimation of the ensemble’s upper bound perfor-
mance given n base-classifiers. This can then
serve as banchmark to evaluate the actual perfor-
mance of an ensemble model. In most, if not all,
real-world situations, the probability that a node
ni makes a correct prediction for an instance xj
will always be conditional to the probability of an-
other node nj . This means that the upper boundary
of the ensemble model depends on the conditional
probabilities of its nodes.

This implies that in our future work we will de-
scribe ensemble learning as the task to minimize
joint entropy of the base-classifiers in addition to
maximizing accuracy.

8 Conclusion

In this paper we describe an ensemble model
trained for emotion classification. We evaluate our
model on uniform and distributed learning of the
train data. The results of the experiments indicate
that while the model outperforms the strongest
model, it benefits weakly from the strengths and
variance of the base-classifiers.
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