
Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 97–101
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

97

 1

DANGNT@UIT.VNU-HCM at SemEval 2019 Task 1: Graph Trans-
formation System from Stanford Basic Dependencies to Universal

Conceptual Cognitive Annotation (UCCA)

Dang Tuan Nguyen and Trung Tran
University of Information Technology, VNU-HCM

Ho Chi Minh City, Vietnam
dangnt@uit.edu.vn, ttrung@nlke-group.net

Abstract

This paper describes the graph transfor-
mation system (GT System) for SemEval
2019 Task 1: Cross-lingual Semantic Pars-
ing with Universal Conceptual Cognitive
Annotation (UCCA)1. The input of GT
System is a pair of text and its unannotated
xml, which is a layer 0 part of UCCA
form. The output of GT System is the cor-
responding full UCCA xml. Based on the
idea of graph illustration and transfor-
mation, we perform four main tasks when
building GT System. At the first task, we
illustrate the graph form of stanford
dependencies2 of input text. We then trans-
form into an intermediate graph in the sec-
ond task. At the third task, we continue to
transform into ouput graph form. Finally,
we create the output UCCA xml.

The evaluation results show that our
method generates good-quality UCCA xml
and has a meaningful contribution to the
semantic representation sub-field in Natu-
ral Language Processing.

1 Introduction

In the past few years, semantic representation is
receiving growing attention in NLP. Researchers
have recently proposed different semantic
schemes. Examples include Abstract Meaning
Representation (Banarescu et al. 2013), Broad-
coverage Semantic Dependencies (Oepen et al.
2014), Universal Decompositional Semantics
(White et al. 2016), Parallel Meaning Bank (Ab-
zianidze et al. 2016), Universal Conceptual Cog-
nitive Annotation (Abend and Rappoport 2013).
These advances in semantic representation, along
with corresponding advances in semantic parsing,
text understanding, summarization, paraphrase
detection, and semantic evaluation.

In SemEval 2019 Task 1: Cross-lingual Se-
mantic Parsing with Universal Conceptual Cogni-

tive Annotation (UCCA)1, the Committee focuses
on parsing text according to the UCCA semantic
annotation. UCCA (Abend and Rappoport 2013)
is a cross-linguistically applicable semantic repre-
sentation scheme, based on Basic Linguistic The-
ory (Dixon 2010). In general, UCCA represents
the semantics of linguistic utterances as directed
acyclic graphs (DAGs). In one DAG, nodes and
edges belong to one of several layers. There are
two types of node: (i) terminal nodes express the
text tokens; (ii) non-terminal nodes express se-
mantic units. Edges are labelled, indicating the
role of a child in the relation the parent represents.
As an example, consider sentence in Example 1:
“The album was recorded in Switzerland .”. Two
layers of UCCA xml of this sentence:

· Layer0:
<root annotationID="0" passageID="503012">

 <attributes />
 <layer layerID="0">
 <attributes />
 <extra ... />
 <node ID="0.1" type="Word">
 <attributes ... text="The" />
 <extra dep="det" ... tag="DT" />
 </node>
 ...
 </layer>

</root>

The relations of NodeID and corresponding lexi-
con:
{[ID="0.1" è dep="det" è “The”]

[ID="0.2" è dep="nsubj:pass" è “album”]

[ID="0.3" è dep="aux:pass" è “was”]

[ID="0.4" è dep="root" è “recorded”]

[ID="0.5" è dep="case" è “in”]

[ID="0.6" è dep="obl" è “Switzerland”]

[ID="0.7" è dep="punct" è “.”]}

· Layer1:
<layer layerID="1">

 <attributes />
 <node ID="1.1" type="FN">
 <attributes />

1 https://competitions.codalab.org/competitions/19160

98

 2

 <edge toID="1.2" type="H">
 <attributes />
 </edge>
 </node>
 <node ID="1.2" type="FN">
 <attributes />
 <edge toID="1.4" type="A">
 <attributes />
 </edge>
 ...
 </node>
 <node ID="1.4" type="FN">
 <attributes />
 <edge toID="1.10" type="E">
 <attributes />
 </edge>
 ...
 </node>
 <node ID="1.10" type="FN">
 <attributes />
 <edge toID="0.1" type="Terminal">
 <attributes />
 </edge>
 </node>
 ...

 </layer>

We have the graphical representation of the above
UCCA:

Figure 1: Graph form of UCCA xml of sentence in Ex-

ample 1.
The primary purpose of this article is to present
our system called graph transformation system
(GT System) for Task1. We perform four tasks
when building GT System. At the first task, we il-
lustrate the graph form of Stanford dependencies2
(Manning et al. 2014; Marie-Catherine et al.
2014) of input text. We then transform into an in-
termediate graph in the second task. At the third
task, we continue to transform into ouput graph
form. Finally, we create the output UCCA xml.

The rest of article is separated as follows. We
briefly describe Stanford dependencies in Section
2. In Section 3, we introduce our GT system for
Task1. Section 4 details the experiments and

2 https://stanfordnlp.github.io/CoreNLP/

analyzes the results. We offer conclusions in Sec-
tion 5.

2 Stanford Dependencies

Stanford dependencies2 (Manning et al. 2014; Ma-
rie-Catherine et al. 2014; Marie-Catherine and
Manning 2008) provides a representation of
grammatical relations between words in a sen-
tence. Stanford dependencies (SD) have three
parts: name of the relation, governor and depend-
ent. Consider English sentence in Example 1, be-
low is the xml representation of SD basic depend-
encies. This representation is the result of running
Stanford CoreNLP pipeline (Manning et al. 2014).

<dependencies type="basic-dependencies">

 <dep type="root">
 <governor idx="0">ROOT</governor>
 <dependent idx="4">recorded</dependent>
 </dep>
 <dep type="det">
 <governor idx="2">album</governor>
 <dependent idx="1">The</dependent>
 </dep>
 <dep type="nsubjpass">
 <governor idx="4">recorded</governor>
 <dependent idx="2">album</dependent>
 </dep>
 <dep type="auxpass">
 <governor idx="4">recorded</governor>
 <dependent idx="3">was</dependent>
 </dep>
 <dep type="case">
 <governor

idx="6">Switzerland</governor>
 <dependent idx="5">in</dependent>
 </dep>
 <dep type="nmod">
 <governor idx="4">recorded</governor>
 <dependent

idx="6">Switzerland</dependent>
 </dep>

</dependencies>

We have the graphical representation of the above
SD basic dependencies:

Figure 2: Graph form of SD basic dependencies of sen-

tence in Example 1.

99

 3

3 The Graph Transformation System

In this section, we express our GT system for cre-
ating UCCA xml of the input text. The general ar-
chitecture is represented in Figure 2:

Figure 3: Architecture of Graph Transformation Sys-

tem.
When building GT System, we perform two pro-
cesses: training and testing process. At training
process, we build the intermediate graph from
UCCA and SD basic dependencies of training da-
ta1. At the testing process, which can be called the
inverse process of training, we build the ouput
UCCA from intermediate graph of testing data.

3.1 Intermediate Graph

In general, the intermediate graph is an irreducible
representation of UCCA graph form. This inter-
mediate graph is quite similar to graph form of SD
basic dependencies. The main difference of the in-
termediate graph and graph form of SD basic de-
pendencies is: each edge label in the intermediate
graph is the combination of UCCA categories
(Abend and Rappoport. 2013) and Stanford de-
pendency relations (Marie-Catherine and Man-
ning 2008a, 2008b).

Below is the intermediate graph of sentence in
Example 1. This graph is the reduction of graph in
Figure 1, and quite similar to graph in Figure 2.

Figure 4: Intermediate graph of sentence in Example 1.

3.2 Training Process

Firstly, at training process, we consider train data1
and performed main tasks. The first and second

task is in turn viewing the graph from of SD basic
dependencies and UCCA of input text. At the third
task, we propose Left-First-Search liked algorithm
with Bottom-Up idea to reduce the graph form of
UCCA to intermediate graph. At the final task, we
propose rules and heuristics for matching graph
form of SD basic dependencies and intermediate
graph.

The main steps of Left-First-Search (LFS) al-
gorithm is as follow. Step 1. Browse to terminal
on the left. Step 2. Back to parent node of this
terminal. Check if parent having any other child
or not. Step 2.1. If yes. Repeat Step 1 with root is
this child node. Step 3. Swap the position of root
of sub-tree with position of child having important
annotation. Step 4. Back to parent node of this
root. Repeat Step 2 with this parent.

To perform LFS algorithm, we determine the
priority of SD and UCCA annotations according
to two factors. First. The meaning of each annota-
tion, representing the dependency relations and
grammatical roles of lexicons. Second. The posi-
tion of each node in graph.

Apply LFS algorithm for graph in Figure 3, we
in turn have three level reductions in Figure 5, 6, 4
(respectively):

Figure 5: First reduction of Graph form in Figure 1.

Figure 6: Second reduction of Graph form in Figure 1.

After having the final reduction, which is inter-
mediate graph, of graph form of UCCA, we com-
pare with graph form of SD basic dependencies.
We consider the similarities between two graphs
and propose rules and heuristics to (i) determine
the level of one node, and (ii) determine the group

100

 4

of UCCA annotation for each level. The general
idea of mechanism is:

· Collect all SD-type of relations in UCCA and
SD basic dependencies of training data. Be-
low is the collection:

SD basic
dependencies

acl:relcl / expl / csubjpass / cop / aux / conj / acl /
xcomp / dep / appos / advmod / neg / det /
cc:preconj / nmod:tmod / ccomp / root / advcl /
nsubj / case / iobj / cc / det:predet / nmod:poss /
compound:prt / csubj / nsubjpass / nummod /
nmod:npmod / nmod / auxpass / parataxis / amod
/ compound / discourse / mwe / dobj / mark

UCCA acl:relcl / expl / obl:npmod / cop / aux / conj / acl
/ appos / xcomp / goeswith / advmod / det /
ccomp / nsubj:pass / cc:preconj / nmod:tmod /
flat / root / obl:tmod / advcl / punct / nsubj / case
/ iobj / cc / vocative / det:predet / nmod:poss /
compound:prt / csubj / nummod / nmod:npmod /
nmod / parataxis / amod / list / compound / dis-
course / aux:pass / obj / obl / fixed / mark

· Determine the priority order of SD-type rela-
tions.

Example 2: dobj -> amod -> dep -> nmod -> case.

· Determine the compound (UCCA and SD) re-
lation in each node level.

Example 3: type conj at level 7: “H - A - E - C - C - C -

conj”

3.3 Testing Process

At the testing process, which can be called the in-
verse process of training, we considered develop-
ment and test data1 and performed main tasks. The
first task is viewing the graph from of SD basic
dependencies of input text. At the second task, we
applied proposed rules and heuristics to transform
this graph to intermediate graph. We then, at the
final task, we proposed Breadth-First-Search liked
algorithm with Top-Down idea to re-create the
graph form of UCCA from intermediate graph.
This BFS algorithm is, in fact, the inverse mecha-
nism of LFS algorithm in Section 3.2.

The main steps of Breadth-First-Search (BFS)
algorithm is as follow. Step 1. Reduce the first
level of node. Step 2. Determine the intergrated-
Child which adheres to this node. Step 3. If there
is no intergratedChild. Step 3.1. Repeat Step 1 un-
til node come down to terminal position. Step 3.2.
Repeat from Step 1 to Step 4 with each child of
this node. Step 4. If there is intergratedChild. Step
4.1. Repeat from Step 1 to Step 4 with each child
of this node which are different from intergrated-
Child. Step 4.2. Repeat from Step 1 to Step 4 with
this node. Step 4.3. Repeat from Step 1 to Step 4
with intergratedChild.

4 Experiment and Evaluation

At the evaluation phase, we focus on English in-
domain setting, using the Wiki corpus. In testing
data, this domain consists of 515 small texts with
corresponding unannotated UCCA xmls.

We test our method for both open and closed
track in the English setting: (i) closed track sub-
mission is only allowed to use the gold-standard
UCCA annotation distributed for the task in the
target language, and limited in its use of additional
resources; (ii) open track submission is allowed to
use any additional resource.

Table 1 and 2 view the results of testing data for
open and closed tracks with labeled (first row) and un-
labeled scores (second row).

Averaged
F1

 P R F1

0.708 Primary 0.738 0.694 0.715
 Remote 1.000 0.000 0.000

0.822 Primary 0.857 0.806 0.831
 Remote 1.000 0.000 0.000

Table 1: Results of testing data in open track.

Averaged
F1

 P R F1

0.706 Primary 0.737 0.692 0.714
 Remote 1.000 0.000 0.000

0.825 Primary 0.860 0.808 0.833
 Remote 1.000 0.000 0.000

Table 2: Results of testing data in closed track.

The testing results show that our GT system
creates good quality UCCA semantic representa-
tions in English Wiki testing data.

5 Conclusion

We have presented the graph transformation
method for creating UCCA semantic representa-
tion from English in-domain setting, using the
Wiki corpus1. Our method performs four main
tasks: (i) illustrate the graph form of Stanford de-
pendencies2 of input text; (ii) transform into an in-
termediate graph; (iii) continue to transform into
ouput graph form; (iv) create the output UCCA
xml. The experiment results show that our method
meets the requirements from SemEval Task1.

In future works, we intend to improve the trans-
formational algorithms and propose more accurate
rules for selecting best nodes and dependency
tags. Besides, we expand our method and test with
other datasets for a broader comparison.

101

 5

References

Aaron Steven White, Drew Reisinger, Keisuke
Sakaguchi, Tim Vieira, Sheng Zhang, Rachel
Rudinger, Kyle Rawlins, Benjamin Van Durme.
2016. Universal Decompositional Semantics on
Universal Dependencies. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing. Austin, Texas, pages 1713–
1723.

Daniel Hershcovich, Omri Abend and Ari Rappoport.
2017. A Transition-Based Directed Acyclic Graph
Parser for UCCA. In Proceedings of the 55th Annu-
al Meeting of the Association for Computational
Linguistics. Association for Computational Lin-
guistics, Vancouver, Canada, pages 1127–1138.

Daniel Hershcovich, Omri Abend and Ari Rappoport.
2018. Multitask Parsing Across Semantic Repre-
sentations. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguis-
tics (Long Papers). Association for Computational
Linguistics, Melbourne, Australia, pages 373–385.

Joakim Nivre, Marie-Catherine de Marneffe, Filip
Ginter, Yoav Goldberg, Jan Hajič, Christopher D.
Manning, Ryan McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel
Zeman. 2016. Universal Dependencies v1: A Mul-
tilingual Treebank Collection. In LREC 2016.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for Sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse. Association for Computational Linguis-
tics, pages 178–186.

Lasha Abzianidze, Johannes Bjerva, Kilian Evang,
Hessel Haagsma, Rik van Noord, Pierre Ludmann,
Duc-Duy Nguyen, Johan Bos. 2017. The Parallel
Meaning Bank: Towards a Multilingual Corpus of
Translations Annotated with Compositional Mean-
ing Representations. In Proceedings of the 15th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics (EACL). Va-
lencia, Spain, pages 242–247.

Manning, Christopher D., Mihai Surdeanu, John Bau-
er, Jenny Finkel, Steven J. Bethard, and David
McClosky. 2014. The Stanford CoreNLP Natural
Language Processing Toolkit. In Proceedings of
the 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstra-
tions, pages 55-60.

Marie-Catherine de Marneffe, Timothy Dozat, Natalia
Silveira, Katri Haverinen, Filip Ginter, Joakim
Nivre, and Christopher D. Manning. 2014. Univer-

sal Stanford Dependencies: A cross-linguistic ty-
pology. In Proceedings of LREC.

Marie-Catherine de Marneffe and Christopher D.
Manning. 2008a. The Stanford typed dependencies
representation. In COLING 2008 Workshop on
Cross-framework and Cross-domain Parser Evalu-
ation.

Marie-Catherine de Marneffe and Christopher D.
Manning. 2008b. Stanford Dependencies manual.

Omri Abend and Ari Rappoport. 2013. Universal
Conceptual Cognitive Annotation (UCCA). In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics. Association for
Computational Linguistics, Sofia, Bulgaria, pages
228–238.

Omri Abend, Shai Yerushlami and Ari Rappoport.
2017. UCCAApp: Web-application for Syntactic
and Semantic Phrase-based Annotation. In Pro-
ceedings of ACL 2017.

Robert M. W. Dixon. 2010. Basic Linguistic Theory:
Grammatical Topics, Volume 2. Oxford University
Press.

Sebastian Schuster and Christopher D. Manning.
2016. Enhanced English Universal Dependencies:
An Improved Representation for Natural Language
Understanding Tasks. In LREC 2016.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajic, Angelina
Ivanova, and Yi Zhang. 2014. SemEval 2014 Task
8:Broad-Coverage Semantic Dependency Parsing.
In Proceedings of the 8th International Workshop
on Semantic Evaluation (SemEval 2014). Dublin,
Ireland, pages 63–72.

