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Abstract 

This paper describes the graph transfor-
mation system (GT System) for SemEval 
2019 Task 1: Cross-lingual Semantic Pars-
ing with Universal Conceptual Cognitive 
Annotation (UCCA)1. The input of GT 
System is a pair of text and its unannotated 
xml, which is a layer 0 part of UCCA 
form. The output of GT System is the cor-
responding full UCCA xml. Based on the 
idea of graph illustration and transfor-
mation, we perform four main tasks when 
building GT System. At the first task, we 
illustrate the graph form of stanford 
dependencies2 of input text. We then trans-
form into an intermediate graph in the sec-
ond task. At the third task, we continue to 
transform into ouput graph form. Finally, 
we create the output UCCA xml. 

The evaluation results show that our 
method generates good-quality UCCA xml 
and has a meaningful contribution to the 
semantic representation sub-field in Natu-
ral Language Processing. 

1 Introduction 

In the past few years, semantic representation is 
receiving growing attention in NLP. Researchers 
have recently proposed different semantic 
schemes. Examples include Abstract Meaning 
Representation (Banarescu et al. 2013), Broad-
coverage Semantic Dependencies (Oepen et al. 
2014), Universal Decompositional Semantics 
(White et al. 2016), Parallel Meaning Bank (Ab-
zianidze et al. 2016), Universal Conceptual Cog-
nitive Annotation (Abend and Rappoport 2013). 
These advances in semantic representation, along 
with corresponding advances in semantic parsing, 
text understanding, summarization, paraphrase 
detection, and semantic evaluation.  

In SemEval 2019 Task 1: Cross-lingual Se-
mantic Parsing with Universal Conceptual Cogni-

tive Annotation (UCCA)1, the Committee focuses 
on parsing text according to the UCCA semantic 
annotation. UCCA (Abend and Rappoport 2013) 
is a cross-linguistically applicable semantic repre-
sentation scheme, based on Basic Linguistic The-
ory (Dixon 2010). In general, UCCA represents 
the semantics of linguistic utterances as directed 
acyclic graphs (DAGs). In one DAG, nodes and 
edges belong to one of several layers. There are 
two types of node: (i) terminal nodes express the 
text tokens; (ii) non-terminal nodes express se-
mantic units. Edges are labelled, indicating the 
role of a child in the relation the parent represents. 
As an example, consider sentence in Example 1: 
“The album was recorded in Switzerland .”. Two 
layers of UCCA xml of this sentence: 

· Layer0: 
<root annotationID="0" passageID="503012"> 

  <attributes /> 
  <layer layerID="0"> 
    <attributes /> 
    <extra ... /> 
    <node ID="0.1" type="Word"> 
      <attributes ... text="The" /> 
      <extra dep="det" ... tag="DT" /> 
    </node> 
    ...     
  </layer> 

</root> 

 
The relations of NodeID and corresponding lexi-
con: 
{[ID="0.1" è dep="det" è “The”] 

[ID="0.2" è dep="nsubj:pass" è “album”] 

[ID="0.3" è dep="aux:pass" è “was”] 

[ID="0.4" è dep="root" è “recorded”] 

[ID="0.5" è dep="case" è “in”] 

[ID="0.6" è dep="obl" è “Switzerland”] 

[ID="0.7" è dep="punct" è “.”]} 
 

· Layer1: 
<layer layerID="1"> 

    <attributes /> 
    <node ID="1.1" type="FN"> 
      <attributes /> 

                                                      
1 https://competitions.codalab.org/competitions/19160 
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      <edge toID="1.2" type="H"> 
        <attributes /> 
      </edge> 
    </node> 
    <node ID="1.2" type="FN"> 
      <attributes /> 
      <edge toID="1.4" type="A"> 
        <attributes /> 
      </edge> 
      ... 
    </node> 
    <node ID="1.4" type="FN"> 
      <attributes /> 
      <edge toID="1.10" type="E"> 
        <attributes /> 
      </edge> 
      ... 
    </node> 
    <node ID="1.10" type="FN"> 
      <attributes /> 
      <edge toID="0.1" type="Terminal"> 
        <attributes /> 
      </edge> 
    </node> 
    ... 

  </layer> 

We have the graphical representation of the above 
UCCA: 

 
Figure 1: Graph form of UCCA xml of sentence in Ex-

ample 1. 
The primary purpose of this article is to present 
our system called graph transformation system 
(GT System) for Task1. We perform four tasks 
when building GT System. At the first task, we il-
lustrate the graph form of Stanford dependencies2 
(Manning et al. 2014; Marie-Catherine et al. 
2014) of input text. We then transform into an in-
termediate graph in the second task. At the third 
task, we continue to transform into ouput graph 
form. Finally, we create the output UCCA xml. 

The rest of article is separated as follows. We 
briefly describe Stanford dependencies in Section 
2. In Section 3, we introduce our GT system for 
Task1. Section 4 details the experiments and 

                                                      
2 https://stanfordnlp.github.io/CoreNLP/ 
 
 

analyzes the results. We offer conclusions in Sec-
tion 5. 

2 Stanford Dependencies 

Stanford dependencies2 (Manning et al. 2014; Ma-
rie-Catherine et al. 2014; Marie-Catherine and 
Manning 2008) provides a representation of 
grammatical relations between words in a sen-
tence. Stanford dependencies (SD) have three 
parts: name of the relation, governor and depend-
ent. Consider English sentence in Example 1, be-
low is the xml representation of SD basic depend-
encies. This representation is the result of running 
Stanford CoreNLP pipeline (Manning et al. 2014). 

 
<dependencies type="basic-dependencies"> 

  <dep type="root"> 
    <governor idx="0">ROOT</governor> 
    <dependent idx="4">recorded</dependent> 
  </dep> 
  <dep type="det"> 
    <governor idx="2">album</governor> 
    <dependent idx="1">The</dependent> 
  </dep> 
  <dep type="nsubjpass"> 
    <governor idx="4">recorded</governor> 
    <dependent idx="2">album</dependent> 
  </dep> 
  <dep type="auxpass"> 
    <governor idx="4">recorded</governor> 
    <dependent idx="3">was</dependent> 
  </dep> 
  <dep type="case"> 
    <governor 

idx="6">Switzerland</governor> 
    <dependent idx="5">in</dependent> 
  </dep> 
  <dep type="nmod"> 
    <governor idx="4">recorded</governor> 
    <dependent 

idx="6">Switzerland</dependent> 
  </dep> 

</dependencies> 

We have the graphical representation of the above 
SD basic dependencies: 

 
Figure 2: Graph form of SD basic dependencies of sen-

tence in Example 1. 
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3 The Graph Transformation System 

In this section, we express our GT system for cre-
ating UCCA xml of the input text. The general ar-
chitecture is represented in Figure 2: 

 
Figure 3: Architecture of Graph Transformation Sys-

tem. 
When building GT System, we perform two pro-
cesses: training and testing process. At training 
process, we build the intermediate graph from 
UCCA and SD basic dependencies of training da-
ta1. At the testing process, which can be called the 
inverse process of training, we build the ouput 
UCCA from intermediate graph of testing data. 

3.1 Intermediate Graph 

In general, the intermediate graph is an irreducible 
representation of UCCA graph form. This inter-
mediate graph is quite similar to graph form of SD 
basic dependencies. The main difference of the in-
termediate graph and graph form of SD basic de-
pendencies is: each edge label in the intermediate 
graph is the combination of UCCA categories 
(Abend and Rappoport. 2013) and Stanford de-
pendency relations (Marie-Catherine and Man-
ning 2008a, 2008b). 

Below is the intermediate graph of sentence in 
Example 1. This graph is the reduction of graph in 
Figure 1, and quite similar to graph in Figure 2. 

 
Figure 4: Intermediate graph of sentence in Example 1. 

3.2 Training Process 

Firstly, at training process, we consider train data1 
and performed main tasks. The first and second 

task is in turn viewing the graph from of SD basic 
dependencies and UCCA of input text. At the third 
task, we propose Left-First-Search liked algorithm 
with Bottom-Up idea to reduce the graph form of 
UCCA to intermediate graph. At the final task, we 
propose rules and heuristics for matching graph 
form of SD basic dependencies and intermediate 
graph. 

The main steps of Left-First-Search (LFS) al-
gorithm is as follow. Step 1. Browse to terminal 
on the left. Step 2. Back to parent node of this 
terminal. Check if parent having any other child 
or not. Step 2.1. If yes. Repeat Step 1 with root is 
this child node. Step 3. Swap the position of root 
of sub-tree with position of child having important 
annotation. Step 4. Back to parent node of this 
root. Repeat Step 2 with this parent. 

To perform LFS algorithm, we determine the 
priority of SD and UCCA annotations according 
to two factors. First. The meaning of each annota-
tion, representing the dependency relations and 
grammatical roles of lexicons. Second. The posi-
tion of each node in graph. 

Apply LFS algorithm for graph in Figure 3, we 
in turn have three level reductions in Figure 5, 6, 4 
(respectively): 

 
Figure 5: First reduction of Graph form in Figure 1. 

 
Figure 6: Second reduction of Graph form in Figure 1. 

After having the final reduction, which is inter-
mediate graph, of graph form of UCCA, we com-
pare with graph form of SD basic dependencies. 
We consider the similarities between two graphs 
and propose rules and heuristics to (i) determine 
the level of one node, and (ii) determine the group 



100

 
 
 

   4 

of UCCA annotation for each level. The general 
idea of mechanism is: 

· Collect all SD-type of relations in UCCA and 
SD basic dependencies of training data. Be-
low is the collection: 

SD basic  
dependencies 

acl:relcl / expl / csubjpass / cop / aux / conj / acl / 
xcomp / dep / appos / advmod / neg / det / 
cc:preconj / nmod:tmod / ccomp / root / advcl / 
nsubj / case / iobj / cc / det:predet / nmod:poss / 
compound:prt / csubj / nsubjpass / nummod / 
nmod:npmod / nmod / auxpass / parataxis / amod 
/ compound / discourse / mwe / dobj / mark 

UCCA acl:relcl / expl / obl:npmod / cop / aux / conj / acl 
/ appos / xcomp / goeswith / advmod / det / 
ccomp / nsubj:pass / cc:preconj / nmod:tmod / 
flat / root / obl:tmod / advcl / punct / nsubj / case 
/ iobj / cc / vocative / det:predet / nmod:poss / 
compound:prt / csubj / nummod / nmod:npmod / 
nmod / parataxis / amod / list / compound / dis-
course / aux:pass / obj / obl / fixed / mark 

· Determine the priority order of SD-type rela-
tions. 

Example 2: dobj -> amod -> dep -> nmod -> case. 

· Determine the compound (UCCA and SD) re-
lation in each node level. 

Example 3: type conj at level 7: “H - A - E - C - C - C - 

conj” 

3.3 Testing Process 

At the testing process, which can be called the in-
verse process of training, we considered develop-
ment and test data1 and performed main tasks. The 
first task is viewing the graph from of SD basic 
dependencies of input text. At the second task, we 
applied proposed rules and heuristics to transform 
this graph to intermediate graph. We then, at the 
final task, we proposed Breadth-First-Search liked 
algorithm with Top-Down idea to re-create the 
graph form of UCCA from intermediate graph. 
This BFS algorithm is, in fact, the inverse mecha-
nism of LFS algorithm in Section 3.2.  

The main steps of Breadth-First-Search (BFS) 
algorithm is as follow. Step 1. Reduce the first 
level of node. Step 2. Determine the intergrated-
Child which adheres to this node. Step 3. If there 
is no intergratedChild. Step 3.1. Repeat Step 1 un-
til node come down to terminal position. Step 3.2. 
Repeat from Step 1 to Step 4 with each child of 
this node. Step 4. If there is intergratedChild. Step 
4.1. Repeat from Step 1 to Step 4 with each child 
of this node which are different from intergrated-
Child. Step 4.2. Repeat from Step 1 to Step 4 with 
this node. Step 4.3. Repeat from Step 1 to Step 4 
with intergratedChild. 

4 Experiment and Evaluation 

At the evaluation phase, we focus on English in-
domain setting, using the Wiki corpus. In testing 
data, this domain consists of 515 small texts with 
corresponding unannotated UCCA xmls. 

We test our method for both open and closed 
track in the English setting: (i) closed track sub-
mission is only allowed to use the gold-standard 
UCCA annotation distributed for the task in the 
target language, and limited in its use of additional 
resources; (ii) open track submission is allowed to 
use any additional resource. 

Table 1 and 2 view the results of testing data for 
open and closed tracks with labeled (first row) and un-
labeled scores (second row). 

 
Averaged 
F1 

 P R F1 

0.708 Primary 0.738 0.694 0.715 
 Remote 1.000 0.000 0.000 

0.822 Primary 0.857 0.806 0.831 
 Remote 1.000 0.000 0.000 

Table 1: Results of testing data in open track. 

 
Averaged 
F1 

 P R F1 

0.706 Primary 0.737 0.692 0.714 
 Remote 1.000 0.000 0.000 

0.825 Primary 0.860 0.808 0.833 
 Remote 1.000 0.000 0.000 

Table 2: Results of testing data in closed track. 

 
The testing results show that our GT system 
creates good quality UCCA semantic representa-
tions in English Wiki testing data. 

5 Conclusion 

We have presented the graph transformation 
method for creating UCCA semantic representa-
tion from English in-domain setting, using the 
Wiki corpus1. Our method performs four main 
tasks: (i) illustrate the graph form of Stanford de-
pendencies2 of input text; (ii) transform into an in-
termediate graph; (iii) continue to transform into 
ouput graph form; (iv) create the output UCCA 
xml. The experiment results show that our method 
meets the requirements from SemEval Task1. 

In future works, we intend to improve the trans-
formational algorithms and propose more accurate 
rules for selecting best nodes and dependency 
tags. Besides, we expand our method and test with 
other datasets for a broader comparison. 
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