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Abstract

Feature sparseness is a problem common
to cross-domain and short-text classification
tasks. To overcome this feature sparseness
problem, we propose a novel method based
on graph decomposition to find candidate fea-
tures for expanding feature vectors. Specif-
ically, we first create a feature-relatedness
graph, which is subsequently decomposed into
core-periphery (CP) pairs and use the periph-
eries as the expansion candidates of the cores.
We expand both training and test instances
using the computed related features and use
them to train a text classifier. We observe
that prioritising features that are common to
both training and test instances as cores dur-
ing the CP decomposition to further improve
the accuracy of text classification. We evalu-
ate the proposed CP-decomposition-based fea-
ture expansion method on benchmark datasets
for cross-domain sentiment classification and
short-text classification. Our experimental re-
sults show that the proposed method consis-
tently outperforms all baselines on short-text
classification tasks, and perform competitively
with pivot-based cross-domain sentiment clas-
sification methods.

1 Introduction

Short-texts are abundant on the Web and ap-
pear in various different formats such as micro-
blogs (Kwak et al., 2010), Question and Answer
(QA) forums, review sites, Short Message Ser-
vice (SMS), email, and chat messages (Cong et al.,
2008; Thelwall et al., 2010). Unlike lengthy re-
sponses that take time to both compose and to
read, short responses have gained popularity par-
ticularly in social media contexts. Considering the
steady growth of mobile devices that are physi-
cally restricted to compact keyboards, which are
suboptimal for entering lengthy text inputs, it is
safe to predict that the amount of short-texts will

continue to grow in the future. Considering the
importance and the quantity of the short-texts in
various web-related tasks, such as text classifica-
tion (kun Wang et al., 2012; dos Santos and Gatti,
2014), and event prediction (Sakaki et al., 2010), it
is important to be able to accurately represent and
classify short-texts.

Compared to performing text mining on longer
texts (Guan et al., 2009; Su et al., 2011; Yogatama
and Smith, 2014), for which dense and diverse fea-
ture representations can be created relatively eas-
ily, handling of shorter texts poses several chal-
lenges. The number of features that are present
in a given short-text will be a small fraction of
the set of all features that exist in all of the train
instances. Moreover, frequency of a feature in a
short-text will be small, which makes it difficult
to reliably estimate the salience of a feature using
term frequency-based methods. This is known as
the feature sparseness problem in text classifica-
tion.

Feature sparseness is not unique to short-
text classification but also encountered in cross-
domain text classification (Blitzer et al., 2006,
2007; Bollegala et al., 2014), where the train-
ing and test data are selected from different do-
mains with small intersection of feature spaces.
In the domain adaptation (DA) setting, a classifier
trained on one domain (source) might be agnostic
to the features that are unique to a different do-
main (target), which results in a feature mismatch
problem similar to the feature-sparseness problem
discussed above.

To address the feature sparseness problem en-
countered in short-text and cross-domain classi-
fication tasks, we propose a novel method that
computes related features that can be appended to
the feature vectors to reduce the sparsity. Specif-
ically, we decompose a feature-relatedness graph
into core-periphery (CP) structures, where a core
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feature (a vertex) is linked to a set of periph-
eries (also represented by vertices), indicating the
connectivity of the graph. This graph decompo-
sition problem is commonly known as the CP-
decomposition (Csermely et al., 2013; Rombach
et al., 2017; Kojaku and Masuda, 2018, 2017).

Our proposed CP-decomposition algorithm
significantly extends existing CP-decomposition
methods in three important ways.

• First, existing CP-decomposition methods
consider unweighted graphs, whereas edges
in feature-relatedness graphs are weighted
(possibly nonnegative) real-valued feature-
relatedness scores such as positive pointwise
mutual information (PPMI). Our proposed
CP-decomposition method can operate on
edge-weighted graphs.

• Second, considering the fact that in text clas-
sification a particular periphery can be related
to more than one core, we relax the hard as-
signment constraints on peripheries and al-
low a particular periphery attach to multiple
cores.

• Third, prior work on pivot-based cross-
domain sentiment classification methods
have used features that are frequent in train-
ing (source) and test (target) data as ex-
pansion candidates to overcome the feature
mismatch problem. Inspired by this, we
define coreness of a feature as the point-
wise mutual information between a feature
and the source/target domains. The CP-
decomposition algorithm we propose will
then compute the set of cores considering
both structural properties of the graph as well
as the coreness values computed from the
train/test data.

To perform feature vector expansion, we first
construct a feature-relatedness graph, where ver-
tices correspond to features and the weight of the
undirected edge connecting two features repre-
sent the relatedness between those two features.
Different features and relatedness measures can
be flexibly used in the proposed graph construc-
tion. In our experiments, we use the simple (yet
popular and effective) setting of n-gram features
as vertices and compute their relatedness using
PPMI. We compute the coreness of features as the
sum of the two PPMI values between the feature

and the source, and the feature and the target do-
mains.1 Next, CP-decomposition is performed on
this feature-relatedness graph to obtain a set of
core-periphery structures. We then rank the set of
peripheries of a particular core by their PPMI val-
ues, and select the top-ranked peripheries as the
expansion features of the core. We expand the core
features in training and train a logistic regression-
based binary classifier using the expanded feature
vectors, and evaluate its performance on the ex-
panded test feature vectors.

We evaluate the effectiveness of the proposed
method using benchmark datasets for two dif-
ferent tasks: short-text classification and cross-
domain sentiment classification. Experimental
results on short-text classification show that the
proposed method consistently outperforms pre-
viously proposed feature expansion-based meth-
ods for short-text classification and even some of
the sentence embedding learning-based methods.
Moreover, the consideration of coreness during
the CP-decomposition improves the text classifi-
cation accuracy. In cross-domain sentiment clas-
sification experiments, the proposed method out-
performs previously proposed pivot-based meth-
ods such as the structural correspondence learning
(SCL) (Blitzer et al., 2006).

2 Related Work

Two complementary approaches for overcoming
feature sparseness in text classification can be
identified in the literature: (a) expanding the in-
stances by predicting the missing features, and
(b) projecting the instances to a dense (poten-
tially lower-dimensional) space and performing
the classification task in this projected space. Our
work can be categorised to the first group of meth-
ods. We next review prior work on both types of
approaches.

Man (2014) proposed a feature vector expan-
sion based on frequent term sets (FTS), where
they first define the co-occurrence among the fea-
tures and then the expansion candidates are se-
lected by a pre-defined threshold on frequency. Fi-
nally, the features in the original feature vectors
are expanded using these frequently co-occurring
features. Ma et al. (2016) proposed an improve-
ment based on FTS by introducing the support and
confidence to the co-occurrence relationship when

1In short-text classification experiments, coreness is com-
puted using unlabelled training and test instances.
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they create the frequent term sets for expansion.

Our proposed method is related to the pivot se-
lection methods proposed in prior work on un-
supervised cross-domain sentiment classification,
where common features (called the pivots) are first
identified using some heuristic measure, and pre-
dictors are learnt that can accurately predict those
pivots using the other (non-pivot) features. For ex-
ample, in spectral feature alignment (SFA) (Pan
et al., 2010), a bipartite graph is created be-
tween non-pivots (domain-specific) and pivots
(domain-independent) then spectral methods are
used to learn a projection from domain-specific to
domain-independent feature spaces. Blitzer et al.
(2006) proposed the frequency (FREQ) of a fea-
ture in the source and the target domain as the
criterion for selecting pivots for structural corre-
spondence learning (SCL) when performing cross-
domain named entity recognition. However, they
found (Blitzer et al., 2007) that mutual informa-
tion (MI) to be a better pivot selection criterion for
cross-domain sentiment classification tasks. Bol-
legala et al. (2015) proposed a feature expansion-
based domain adaptation method, where a senti-
ment sensitive thesaurus (SST) is built using the
pointwise mutual information (PMI) between a
feature and the source/target domains. The cores
identified by CP-decomposition can be seen as
playing the role of pivots in cross-domain text
classification tasks because cores get expanded by
their corresponding peripheries during the feature
expansion step. However, one notable characteris-
tic in the proposed method is that we induce cores
via CP-decomposition instead of applying heuris-
tic measures such as MI or PMI. As we later see
in the experiments, the proposed method outper-
forms the previous pivot-based feature expansion
methods in cross-domain sentiment classification
benchmarks.

A complementary approach to overcome
feature-sparseness is to learn a (potentially
lower dimensional) dense feature representation
for the training and test instances that suffer
from feature sparseness, and train and evaluate
classifiers in this dense feature space instead of
the original sparse feature space. Skip-thought
vectors (Kiros et al., 2015) encodes a sentence
into a lower-dimensional dense vector using
bidirectional long short-term memory (bi-LSTM),
whereas FastSent (Hill et al., 2016) learns sen-
tence embeddings by predicting the words in the

adjacent sentences in a corpus, ignoring the word
ordering. Paragraph2Vec (Le and Mikolov, 2014)
jointly learns sentence and word embeddings that
can mutually predict each other in a short-text
such as a paragraph in a document. Sequential
Denoising Autoencoder (SDAE) (Hill et al., 2016)
transforms an input sentence into an embedding
by a look-up table consisting of pre-trained word
embeddings and attempts to reconstruct the orig-
inal sentence embedding from a masked version.
Sentence embedding learning methods such as
skip-thought vectors, FastSent, SDAE etc. require
a large amount of unlabelled texts for training
such as 80 million sentence Toronto books corpus,
which might not be available for specialised
domains. As shown in our experiments, the pro-
posed methods perform competitively with these
embedding-based methods, while not requiring
any additional training data, other than the small
(typically less than 50,000 sentences) benchmark
training datasets.

In the CP-decomposition problem, one seeks
a partition of vertices into two groups called a
core and a periphery. The core vertices are
densely interconnected and the peripheral vertices
are sparsely interconnected. The core and pe-
ripheral vertices may be densely interconnected or
sparsely interconnected. Various algorithms have
been developed to find a single core-periphery
structure (Csermely et al., 2013; Rombach et al.,
2017) or multiple core-periphery structures (Ko-
jaku and Masuda, 2018, 2017) in a graph. Many
existing algorithms assume that each vertex be-
longs to only one core-periphery structure. This
assumption is problematic for text classification
because a peripheral vertex can belong to multi-
ple core-periphery structures. To circumvent this
problem, here we present a novel algorithm for
the CP-decomposition that allows a peripheral ver-
tex to belong to more than one core-periphery
structures. Some existing CP-decomposition algo-
rithms allow peripheral vertices to belong to multi-
ple core-periphery structures (Yan and Luo, 2016;
Sardana and Bhatnagar, 2016; Xiang et al., 2018).
These algorithms detect non-overlapping commu-
nities (i.e., groups of densely interconnected ver-
tices) in a graph. Then, they regard vertices that
do not belong to any community as peripheral ver-
tices. Therefore, the detected peripheries might
not be strongly related to the associated cores be-
cause they are not densely interconnected with the
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cores in general. Another CP-decomposition al-
gorithm allows communities to overlap and regard
the vertices belonging to many communities as a
core (Yang and Leskovec, 2014). Then, the de-
tected peripheral vertices may be densely intercon-
nected because they belong to the same commu-
nity. In contrast to these algorithms, the present
algorithm seeks peripheries that are densely inter-
connected with the associated cores while sparsely
interconnected with other peripheral vertices.

To the best of our knowledge, we are the first
to apply CP-decomposition to any NLP task, let
alone short-text classification. Moreover, our for-
mulation of the CP-decomposition is customised
to the needs in the NLP domain such as prioritis-
ing linguistically appropriate cores and allows a
single periphery to link to multiple cores. We hope
that our work will inspire NLP practitioners to use
CP-decomposition in related NLP tasks such as
information retrieval (Mihalcea and Radev, 2011)
(measuring similarity between short-text docu-
ments), query suggestion/expansion (Fang, 2008)
(suggesting related peripheral terms to a query
corresponding to a core).

3 CP-decomposition-based Feature
Expansion

Our proposed method consists of three steps: (a)
building a feature-relatedness graph (Section 3.1),
(b) performing CP-decomposition on the feature-
relatedness graph (Sections 3.2 and 3.3) and (c)
using the core-peripheries from the decomposition
to perform feature expansion (Section 3.4). Next,
we describe each of those steps in detail.

3.1 Feature-Relatedness Graph

Given a set of texts, we build a feature-relatedness
graph G(V, E ,W), where V is the set of vertices
corresponding to the features, E is the set of undi-
rected edges between two vertices in G and the
weight of the edge eij ∈ E connecting two fea-
tures i and j is given by the Wij element of the
weight matrix W. Let us denote the number of
vertices and edges respectively by N and M (i.e.
|V| = N and |E| = M ). Different types of fea-
tures such as n-grams, part-of-speech sequences,
named entities, dependency relations etc. can be
used as vertices in the feature-relatedness graph.
Moreover, different relatedness measures such as
co-occurrence frequency, pointwise mutual infor-
mation, χ2, log-likelihood ratio etc. can be used

to compute the weights assigned to the edges. For
simplicity, in this paper, we represent each text-
document using the set of unigrams extracted from
that document, and use PPMI to compute a non-
negative W. We connect two words if PPMI val-
ues between them are greater than zero. This for-
mulation is used for both short-text classification
and cross-domain sentiment classification experi-
ments conducted in the paper.

3.2 Core-Periphery Decomposition

Given a feature-relatedness graph G created using
the process described in Section 3.1, we propose
a method that decomposes G into a set of overlap-
ping core-periphery structures. A core-periphery
structure assumed in this study consists of one
core vertex and an arbitrarily number of periph-
eral vertices that are adjacent (i.e., directly con-
nected) to the core vertex.2 Therefore, a core-
periphery structure forms a star graph. We fur-
ther assume that a core belongs only to one core-
periphery structure, but a periphery can belong to
multiple core-periphery structures.

Let C ⊆ V be the set of cores and Pi be the
set of peripheries associated with the core i(∈ C).
We regard that a core-periphery structure is a good
pair if the core is adjacent to its peripheries with
large edge weights. One goodness measure is the
sum of edge weights between the core i and pe-
ripheries, which is given by

∑
j∈Pi

Wij . This
quantity should be larger than the value expected
from a null model (i.e., randomised graph) for the
detected core-periphery structure to be meaning-
ful. We seek C and Pi (∀i ∈ C) by maximising

Q =
∑

i∈C

∑

j∈Pi

Wij −
∑

i∈C

∑

j∈Pi

E[Wij ], (1)

where E[Wij ] is the expected edge weight between
vertices i and j in the null model. The first term
on the right-hand side of (1) is the total weights of
the edges between the cores and peripheries. The
second term is the expected value of the first term
according to the null model. Therefore, a large
positive Q value indicates that cores and periph-
eries are connected with large edge weights. To
compute E[Wij ], we must specify a null model.
We consider a simple null model where any pair
of vertices is adjacent by an edge with an equal

2In the remainder of the paper, we refer to core vertices
as cores and peripheral vertices as peripheries to simplify the
terminology.
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expected weight (Erdős and Rényi, 1959). Then,
we can rewrite (1) as

Q =
∑

i∈C

∑

j∈Pi

(Wij − p), (2)

where p is the average edge weight of the original
graph given by

p =
2

N(N − 1)

∑

i,j∈V,i 6=j

Wij . (3)

We maximise Q as follows. Given a set of
cores C, it is easy to find peripheries that max-
imise Q. Suppose a core i and a vertex j /∈ Pi,
which may belong to one or more different core-
periphery structures. Adding the vertex j to Pi
increases Q, if Wij − p is positive. Therefore, Pi
associated with core i must be the neighbours of
vertex i with an edge weight of Wij > p. There-
fore, we have

max
C

max
Pi,i∈C

Q = max
C

∑

i∈C

∑

j∈V\C
W̃ij , (4)

where

W̃ij =

{
Wij − p Wij − p > 0,
0 otherwise.

(5)

(4) indicates that the maximisation of Q is equiv-
alent to partitioning of the set of vertices V into C
and V \ C such that the sum of edge weights given
by (5) between C and V \ C is maximised. This
is known as the max-cut problem (Goemans and
Williamson, 1995). However, solving the max-cut
problem is NP-hard (Karp, 1972). Therefore, we
use the Kernighan-Lin’s algorithm (Kernighan and
Lin, 1970) to find a good (but generally a subopti-
mal) solution.

It should be noted that Q is conserved when we
regard V \ C as the cores and C as peripheries.
This is because Q is the sum of edge weights be-
tween C and V \ C. For example, suppose a graph
with a single core-periphery structure as shown in
Figure 1(a). By regarding the core as a periph-
ery and vice versa, we have another assignment of
the core-periphery structure achieving the same Q
value as shown in Figure 1(b). Although Q is the
same in the two assignments, we would like to pri-
oritise the core-periphery structure shown in Fig-
ure 1(a), because we would like to have a smaller
set of cores than peripheries. Therefore, we regard
C as the set of cores if |C| < |V \ C|; otherwise we
regard C as the set of peripheries.

3.3 Semi-supervised Core-Periphery
Decomposition

The objective given by (4) depends only on G
and does not consider any prior linguistic knowl-
edge that we might have about which features
are appropriate as cores. For example, for cross-
domain sentiment classification, it has been shown
that features that express similar sentiment in both
source and target domains are suitable as piv-
ots (Blitzer et al., 2007). To incorporate this in-
formation, we integrate the coreness of words into
the objective as follows:

max
C

max
Pi,i∈C

Q = max
C

∑

i∈C

∑

j∈V\C
W̃ij + λ

∑

i∈C
coreness(i).

(6)

In (6), coreness(i) is a nonnegative value that indi-
cates the appropriateness of i as a core. Hyperpa-
rameter λ adjusts the importance we would like to
give to coreness as opposed to determining cores
based on the graph structure. We tune λ using a
held out portion of the training data in our exper-
iments. Different measures can be used to pre-
computed the coreness values from the train/test
data such as FREQ, MI, PMI, PPMI etc, which
have been proposed in prior work on DA for se-
lecting pivots (Blitzer et al., 2006, 2007; Bollegala
et al., 2015). In this work, we use PPMI to pre-
compute the coreness for a word i as follows:

coreness(i) = (PPMI(i,Dtrain)− PPMI(i,Dtest))
2. (7)

Here, Dtrain and Dtest are respectively the set of
training and test data (or in the case of DA selected
from the source and the target domains).

3.4 Feature Expansion

To overcome feature-sparseness in training and
test instances, we expand features that are cores by
their corresponding peripheral sets. Specifically,
for each core i ∈ C, we sort its peripheries Pi by
their coreness values and select the top-k ranked
peripheries as the expansion features for a core i if
it appears in a document. The values of these ex-
pansion features are set to their PPMI values with
the corresponding core after `1 normalising over
the set of expansion features in each instance. The
effect of k on performance is experimentally stud-
ied later.
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(a) (b)

Core

Periphery

Figure 1: Core-periphery structures with an equal quality, Q. Each filled and empty circles indicate core
and peripheral vertices, respectively. Each shared region indicates a core-periphery structure.

Dataset SCL CP-decomposition

FREQ MI PMI PPMI No Expansion Non-overlapping Overlapping
w/o coreness

Overlapping
w/ coreness

TR 67.60 66.12 67.44 63.21 78.86 80.34 80.56 80.86
CR 77.85 74.83 78.52 75.50 80.87 83.89 83.89 84.40
SUBJ 87.65 82.15 85.65 82.75 88.05 89.75 90.15 90.48
MR 64.68 58.07 64.26 59.10 73.55 75.23 74.95 75.66
AVG 74.45 70.29 73.97 70.14 80.33 82.30 82.39 82.85

Table 1: Results for the short-text classification task. For each dataset, the best results are shown in bold.

4 Experiments

We evaluate the proposed method on two tasks:
short-text classification (a non-DA task) and cross-
domain sentiment classification (a DA task). For
short-text classification we use the Stanford sen-
timent treebank (TR)3, customer reviews dataset
(CR) (Hu and Liu, 2004), subjective dataset
(SUBJ) (Pang and Lee, 2004) and movie reviews
(MR) (Pang and Lee, 2005). For DA we use Ama-
zon multi-domain sentiment dataset (Blitzer et al.,
2007) containing product reviews from four cat-
egories: Books (B), DVDs (D), Electronics (E)
and Kitchen Appliances (K). Each category is re-
garded as a domain and has 1000 positive and
1000 negative reviews, and a large number of unla-
belled reviews.4 We train a classifier on 12 domain
pairs adapting from source to target (S-T): B-D, B-
E, B-K, D-B, D-E, D-K, E-B, E-D, E-K, K-B, K-
D, K-E. For the short-text classification datasets,
we use the official train/test split.

We represent each instance (document) using
a bag-of-features consisting of unigrams. Stop
words are removed using a standard stop words
list. We train an `2 regularised binary logistic
regression classifier with each dataset, where the
regularisation coefficient is tuned via 5-fold cross
validation.

3https://nlp.stanford.edu/sentiment/treebank.html
4Blitzer et al. (2007) considered 4 and 5 star rated reviews

as positive and 1 or 2 as negative in sentiment.

Methods TR CR SUBJ MR

No Expansion 76.31 81.54 88.05 73.35
FTS (Man, 2014) 76.47 62.41 50.15 66.83
SCL (Blitzer et al., 2006) 67.60 78.52 87.65 64.68
SFA (Pan et al., 2010) 60.08 70.13 79.00 59.57
Proposed 80.86 84.40 90.48 75.66

Table 3: Proposed vs. feature-based methods for
short-text classification.

4.1 Classification Accuracy

We use the classification accuracy on the test
data (i.e. ratio between the number of cor-
rectly classified test instances and the total num-
ber of test instances in the dataset) as the per-
formance evaluation measure. As baselines we
evaluate the classification accuracy without ex-
panding features (No Expansion), expanding the
features by a non-overlapping version of the CP-
decomposition method where a single periphery
will be assigned to only a single core, overlapping
CP-decomposition with and without the consider-
ation of coreness (described respectively in Sec-
tions 3.2 and 3.3). We apply SCL with pivots se-
lected from four different criteria (FREQ, MI, PMI
and PPMI) for each S-T pair in the DA datasets.
Strictly speaking, SCL is a DA method but if we
can apply to short-text classification tasks as well
if we consider training and test datasets respec-
tively as a source and a target domain and select
pivots using some selection criterion. Results on
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S-T SCL CP-decomposition

FREQ MI PMI PPMI No Expansion Non-overlapping Overlapping
w/o coreness

Overlapping
w/ coreness

B-D 72.75 65.50 71.50 69.25 75.00 75.75 76.75 76.38
B-E 72.75 71.00 74.50 66.00 71.00 71.00 69.75 69.75
B-K 77.25 64.00 80.50 77.25 78.25 78.25 77.75 78.00
D-B 71.00 53.00 66.25 65.50 74.00 74.25 74.25 75.25
D-E 72.00 67.00 72.75 74.75 74.75 73.75 73.00 74.75
D-K 79.75 57.50 79.00 76.75 79.25 78.00 79.25 79.25
E-B 62.75 57.25 66.25 60.25 69.50 68.50 68.75 68.75
E-D 64.50 62.75 65.50 62.75 73.25 71.75 73.25 73.50
E-K 82.00 77.75 81.25 79.50 84.25 84.00 82.50 84.00
K-B 65.75 52.50 68.00 68.75 70.00 70.00 69.75 69.50
K-D 67.25 53.75 66.75 68.50 72.75 72.00 72.75 73.63
K-E 77.25 74.50 74.50 74.75 79.00 79.75 79.00 80.50
AVG 72.08 63.04 72.23 70.33 75.08 74.75 74.73 75.27

Table 2: Results for DA tasks. For each S-T pair, the best results are shown in bold. The last row shows
the average of performance over the 12 S-T pairs.

the short-text and DA tasks are summarised re-
spectively in Tables 1 and 2.

As shown in Table 1, all variants of the
CP-decomposition outperform the No Expansion
baseline and the best performance is reported
by the overlapping CP-decomposition considering
the coreness values. According to binomial test re-
sults, there is no statistical significance in Table 1.
SCL performs poorly on this non-DA task, indicat-
ing that it is specifically customised for DA tasks.

Table 3 compares the performance of the pro-
posed method (i.e., overlapping version of the CP-
decomposition with coreness) against FTS, a pre-
viously proposed feature expansion method and
DA methods such as SCL and SFA applied to
short-text classification. We see that the proposed
method consistently outperforms FTS, which uses
frequently occurring features as expansion candi-
dates. This result implies that frequency of a fea-
ture alone does not enable us to find useful features
for expanding sparse feature vectors. The subop-
timal performance of SFA and SCL for short-text
classification indicates that, despite the fact that
the feature-mismatch problem in DA has some re-
semblance to the feature-sparseness problem in
short-text classification, applying DA methods to
short-text classification is not effective. On the
other hand, as shown in Table 2, proposed method
reports equal or the best performance for 10 out
of 12 domain pairs indicating that it is effective
not only for short-text classification but also for
DA. However, the improvements reported in Ta-
ble 2 are not statistically significant (according
to Clopper-Pearson confidence intervals (Clopper

Methods MR CR SUBJ

Skip-thought (Kiros et al., 2015) 76.5 80.1 93.6
Paragraph2Vec (Le and Mikolov, 2014) 74.8 78.1 90.5
FastSent (Hill et al., 2016) 70.8 78.4 88.7
SDAE (Hill et al., 2016) 74.6 78.0 90.8
CNN (Kim, 2014) 76.1 79.8 89.6
Proposed 75.7 84.4 90.5

Table 4: Proposed vs. document-level embedding-
based methods for short-text classification.

and Pearson, 1934) computed at p < 0.01), im-
plying that CP-decomposition is less effective on
DA datasets, which contain longer (on average 5-
10 sentence reviews) texts.

We compare the proposed method against the
state-of-the-art embedding-based short-text classi-
fication methods in Table 4. For skip-thought vec-
tors (Kiros et al., 2015), Paragraph2Vec (Le and
Mikolov, 2014), FastSent (Hill et al., 2016) and
SDAE (Hill et al., 2016) provided by Hill et al.
(2016), we show the published results on MR,
CR and SUBJ.5 CNN represents the convolutional
neural network-based document-level embedding
learning method proposed by Kim (2014). The
proposed method reports the best results on CR,
whereas skip-thought does so for MR and SUBJ
datasets. An interesting future research direction
would be to combine feature-expansion method
and document-level embedding methods to further
improve the accuracy of short-text classification.

An example feature expansion is shown in Ta-
ble 5, where 6 cores are expanded by the over-
lapping version of the CP-decomposition method

5These methods have not been evaluated on the TR
dataset.
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Sentence: The film makes a strong case for the importance of the musicians in creating the motown sound.
Methods: Overlapping w/o coreness Overlapping w/ coreness

Cores: film strong case musicians creating sound motown

Peripheries:

tribeca
remakes
grossing
slasher
blaxploitation

willed
fliers
syllabic
roderick
oxidizing

neko
genitive
accusative
dative
eeml

remixers
trombonists
bandleaders
saxophonists
clarinetists

irritation
populating
abolishing
duopoly
soundscapes

puget
stereophonic
nootka
mcmurdo
blaster

discographer
gordy
supremes
stax
dozier

Table 5: An example of cores and top 5 peripheries chosen by overlapping CP-decomposition
with/without coreness (k = 5). This example sentence in TR is classified incorrectly using the method
without coreness (and the No Expansion baseline) but correctly after considering coreness.

(a) (b)

Figure 2: Number of expansion candidates for the proposed method. The marker for the best result for
each dataset is filled.

without using coreness and one core with the
proposed method. Top 5-ranked peripheries are
shown for each core, which are used as the ex-
pansion features. We see that many cores are
found without constraining the CP-decomposition
by coreness, introducing noisy expansions result-
ing in an incorrect prediction. On the other
hand, although by integrating coreness into the
CP-decomposition process we have only a single
matching core, motown, it is adequate for making
the correct prediction. motown is a music com-
pany, which is expanded by a more general pe-
riphery discographer, which is a type of music
performer, helping the final classification. Con-
sideration of coreness improves the classification
accuracy in both short-text classification as well
as DA.

In both Tables 1 and 2, the non-overlapping
version performs poorly compared to the over-
lapping counterpart. With non-overlapping CP-
decomposition, peripheries are not allowed to con-
nect to multiple cores. This results in producing a
large number of cores each with a small number

of peripheries, which does not help to overcome
the feature-sparseness because each core will be
expanded by a different periphery.

Figure 2 shows the effect of the number of
expansion candidates k on the performance of
the proposed overlapping CP-decomposition with
coreness. For short-text classification (Figure 2a),
the accuracy increases for k ≥ 100 (TR and CR
obtain the best for k = 1000). For DA (Figure 2b),
k ≤ 100 yields better performance in most of the
domain pairs (10 out of 12). For all 12 domain
pairs, the accuracy achieved a peak when k ≤ 500.

5 Conclusion

We proposed a novel algorithm for decompos-
ing a feature-relatedness graph into core-periphery
structures considering coreness of a feature. Our
experimental results show that the induced core-
periphery structures are useful for reducing the
feature-sparseness in short-text classification and
cross-domain sentiment classification tasks, as in-
dicated by their improved performance. We hope
this research will encourage the society to imply
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different CP decomposition methods with differ-
ent tasks in NLP.
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