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Abstract

We propose a practical model for named en-
tity recognition (NER) that combines word
and character-level information with a specific
learned representation of the prefixes and suf-
fixes of the word. We apply this approach
to multilingual and multi-domain NER and
show that it achieves state of the art results
on the CoNLL 2002 Spanish and Dutch and
CoNLL 2003 German NER datasets, consis-
tently achieving 1.5-2.3 percent over the state
of the art without relying on any dictionary fea-
tures. Additionally, we show improvement on
SemEval 2013 task 9.1 DrugNER, achieving
state of the art results on the MedLine dataset
and the second best results overall (-1.3% from
state of the art). We also establish a new bench-
mark on the I2B2 2010 Clinical NER dataset
with 84.70 F-score.

1 Introduction

Named entity recognition (NER), or identifying
the specific named entities (eg. person, location,
organization etc) in a text, is a precursor to other in-
formation extraction tasks such as event extraction.
The oldest and perhaps most common approach to
NER is based on dictionary lookups, and indeed,
when the resources are available, this is very useful
(e.g., Uzuner et al., 2011). However, hand-crafting
these lexicons is time-consuming and expensive
and so these resources are often either unavailable
or sparse for many domains and languages.

Neural network (NN) approaches to NER, on the
other hand, do not necessitate these resources, and
additionally do not require complex feature engi-
neering, which can also be very costly and may not
port well from domain to domain and language to
language. Commonly, these NN architectures for
NER include a learned representation of individual
words as well as an encoding of the word’s char-
acters. However, neither of these representations

makes explicit use of the semantics of sub-word
units, i.e., morphemes.

Here we propose a simple neural network archi-
tecture that learns a custom representation for af-
fixes, allowing for a richer semantic representation
of words and allowing the model to better approxi-
mate the meaning of words not seen during train-
ing1. While a full morphological analysis might
bring further benefits, to ease re-implementation
we take advantage of the Zipfian distribution of lan-
guage and focus here on a simple approximation of
morphemes as high-frequency prefixes and suffixes.
Our approach thus requires no language-specific
affix lexicon or morphological tools.

Our contributions are:

1. We propose a simple yet robust extension of
current neural NER approaches that allows
us to learn a representation for prefixes and
suffixes of words. We employ an inexpensive
and language-independent method to approxi-
mate affixes of a given language using n-gram
frequencies. This extension is able to be ap-
plied directly to new languages and domains
without any additional resource requirements
and it allows for a more compositional, and
hence richer, representation of words.

2. We demonstrate the utility of including a ded-
icated representation for affixes. Our model
shows as much as a 2.3% F1 improvement
over an recurrent neural network model with
only words and characters, demonstrating that
what our model learns about affixes is comple-
mentary to a recurrent layer over characters.
We find filtering to high-frequency affixes is
essential, as simply using all word-boundary
character trigrams degrades performance in
some cases.

1All code required for reproducibility is available at:
https://github.com/vikas95/Pref_Suff_Span_NN
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3. We establish a new state-of-the-art for Span-
ish, Dutch, and German NER, and MedLine
drug NER. Additionally, we achieve near
state-of-the-art performance in English NER
and DrugBank drug NER, despite using no
external dictionaries.

2 Related Work

Recent neural network (RNN) state of the art tech-
niques for NER have proposed a basic two-layered
RNN architecture, first over characters of a word
and second over the words of a sentence (Ma and
Hovy, 2016; Lample et al., 2016). Many variants
of such approaches have been introduced, e.g., to
model multilingual NER (Gillick et al., 2016) or
to incorporate transfer-learning (Yang et al., 2016).
Such approaches have typically relied on just the
words and characters, though Chiu and Nichols
(2016) showed that incorporating dictionary and
orthography-based features in such neural networks
improves English NER. In other domains such as
DrugNER, dictionary features are extensively used
for NER (Segura Bedmar et al., 2013; Liu et al.,
2015), but relying on these resources limits the
languages and domains in which an approach can
operate, hence we propose a model that does not
use external dictionary resources.

Morphological features were highly effective
in named entity recognizers before neural net-
works became the new state-of-the-art. For ex-
ample, prefix and suffix features were used by sev-
eral of the original systems submitted to CoNLL
2002 (Sang, 2002; Cucerzan and Yarowsky, 2002)
and 2003 (Tjong Kim Sang and De Meulder, 2003)
as well as by systems for NER in biomedical
texts (Saha et al., 2009). We have used prefix and
suffix features by filtering our trigrams based on
frequency, which better approximate the true af-
fixes of the language. We show in Section 5 that
our filtered set of trigram affixes performs better
than simply adding all beginning and ending tri-
grams. Bian et al. (2014) incorporated both affix
and syllable information into their learned word
representations. The Fasttext word embeddings
(Bojanowski et al., 2017) represent each word as a
bag of n-grams and thus incorporate sub-word in-
formation. Here, we provide explicit representation
for only the high-frequency n-grams and learn a
task-specific semantic representation of them. We
show in Section 5 that including all n-grams re-
duces performance.

Other sub-word units, such as phonemes (from
Epitran2 - a tool for transliterating orthographic text
as International Phonetic Alphabet), have also been
found to be useful for NER (Bharadwaj et al., 2016).
Tkachenko and Simanovsky (2012) explored contri-
butions of various features, including affixes, on the
CoNLL 2003 dataset. Additionally, morpheme dic-
tionaries have been effective in developing features
for NER tasks in languages like Japanese (Sasano
and Kurohashi, 2008), Turkish (Yeniterzi, 2011),
Chinese (Gao et al., 2005), and Arabic (Maloney
and Niv, 1998). However, such morphological fea-
tures have not yet been integrated into the new
neural network models for NER.

3 Approach

We consider affixes at the beginnings and ends of
words as sub-word features for NER. Our base
model is similar to Lample et al. (2016) where we
apply an long short term memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) layer over the char-
acters of a word and then concatenate the output
with a word embedding to create a word repre-
sentation that combines both character-level and
word-level information. Then, another layer of
LSTM is applied over these word representations
to make word-by-word predictions at the sentence
level. Our proposed model augments this Lample
et al. (2016) architecture with a learned represen-
tation of the n-gram prefixes and suffixes of each
word.

3.1 Collecting Approximate Affixes

We consider all n-gram prefixes and suffixes of
words in our training corpus, and select only
those whose frequency is above a threshold, T ,
as frequent prefixes and suffixes should be more
likely to behave like true morphemes of a lan-
guage.To determine the n-gram size, n, and the
frequency threshold, T , we experimented with
various combinations of n = 2, 3, 4 and T =
10, 15, 20, 25, 50, 75, 100, 150, 200 by filtering af-
fixes accordingly and evaluating our model (de-
scribed below) on the CoNLL 2002 and CoNLL
2003 validation data. The best and consistent pa-
rameter setting over all 4 languages was n = 3
(three character affixes) and T = 50 (affixes that
occurred at least 50 times in the training data). We
have used n = 3 and T = 10 for DrugNER after
getting best performance with this threshold on val-

2https://pypi.org/project/epitran/0.4/
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Figure 1: Architecture of our approach. We concatenate a learned representation for our approximated affixes
(shown in brown) to a Bi-LSTM encoding of the characters (in blue) and the learned representation of the word
itself (in green). This is then passed through another Bi-LSTM and CRF to produce the named entity tags.

idation data and we have used T = 20 for I2B2
NER dataset.

3.2 Model and Hyper-parameters

Our proposed model, shown in Figure 1, has sepa-
rate embeddings for characters, prefixes, suffixes,
and words. First, a character embedding maps each
of the characters of a word to a dense vector. Then
a bidirectional-LSTM (Bi-LSTM) layer is passed
over the character embeddings to produce a single
vector for each word. The output of this Bi-LSTM
layer is concatenated with embeddings for the pre-
fix, suffix, and the word itself, and this concatena-
tion is the final representation of the word. Then
the representations of each word in the sentence are
passed through another Bi-LSTM layer, followed
by a conditional random field (CRF) layer, to pro-
duce the begin-inside-outside (BIO) named entity
tags.

We randomly initialized character, prefix and
suffix affix embeddings. We used Fasttext 300-
dimension word embeddings (Bojanowski et al.,
2017) for Spanish, Dutch CoNLL 2002 and Ger-
man language CoNLL 2003. We experimented
with 300-dimension Fasttext embeddings and 100-
dimension Glove embeddings for CoNLL 2003 En-
glish data and saw no appreciable differences (±
0.2%). Thus, we report scores with 100-dimension
Glove embeddings due to the reduced training time
and fewer parameters. We used 300 dimension
Pubmed word embeddings (Pyysalo et al., 2013)
for DrugNER and I2B2 clinical NER. Across all
evaluations in the Section 4, we use the same hyper-
parameter settings: Character embedding size = 50;
prefix embedding size = 30; suffix embedding size
= 30; hidden size for LSTM layer over characters =
25; hidden size for LSTM layer over [prefix, suffix,

word, LSTM(characters)] = 50; maximum number
of epochs = 200; early stopping = 30 (i.e., if no
improvement in 30 epochs, stop); dropout value =
0.55, applied after concatenating character LSTM
representation, word embedding and affix embed-
ding; learning rate (LR) = 0.15; LR decay rate=
0.99; optimizer = SGD; and batch size = 100 (for
all datasets except Dutch = 80).

4 Experiments

We evaluate our model across multiple languages
and domains.

4.1 Multilingual Datasets

To evaluate on the CoNLL 2002 and 2003 test sets,
we trained our model on the combined training +
validation data with the general hyper-parameter
set from Section 3.2. Since on the validation data,
the majority of our models terminated their training
between 100 and 150 epochs, we report two models
trained on the combined training + validation data:
one after 100 epochs, and one after 150 epochs.

We evaluated our model with all the languages
in CoNLL 2002 and 2003, as reported in Table 1.
Our model achieved state of the art performance on
Spanish CoNLL 2002 (Sang, 2002), outperform-
ing Yang et al. (2016) by 1.49%, on Dutch CoNLL
2002, outperforming Yang et al. (2016) by 2.35%,
and on German CoNLL 2003, outperforming Lam-
ple et al. (2016) by 0.25%. Our reimplementation
of Lample et al. (2016) using Fasttext word em-
bedding (Dutch) could also achieve state of the art
results on Dutch CoNLL 2002 dataset. This demon-
strates the utility of our affix approach, despite its
simplicity.
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Dict ES NL EN DE

Gillick et al. (2016) – Byte-to-Span (BTS) No 82.95 82.84 86.50 76.22
Yang et al. (2016) No 85.77 85.19 91.26 -
Luo et al. (2015) Yes - - 91.20 -
Chiu and Nichols (2016) Yes - - 91.62 (±0.33) -
Ma and Hovy (2016) No - - 91.21 -
Lample et al. (2016) No 85.75 81.74 90.94 78.76

Our base model (100 Epochs) No 85.34 85.27 90.24 78.44
Our model (with Affixes) (100 Epochs) No 86.92 87.50 90.69 78.56
Our model (with Affixes) (150 Epochs) No 87.26 87.54 90.86 79.01

Table 1: Performance of our model (with and without affixes), using general set of hyper-parameters and previous
work on four datasets: CoNLL 2002 Spanish (ES), CoNLL 2002 Dutch (NL), CoNLL 2003 English (EN), and
CoNLL 2003 German (DE). Dict indicates whether or not the approach makes use of dictionary lookups.

Model ML (80.10% ) DB (19.90% ) Both datasets
Dict P R F1 P R F1 P R F1

Rocktäschel et al. (2013) Yes 60.7 55.8 58.10 88.10 87.5 87.80 73.40 69.80 71.50
Liu et al. (2015) (baseline) No - - - - - - 78.41 67.78 72.71
Liu et al. (2015) (MedLine emb.) No - - - - - - 82.70 69.68 75.63
Our model (with affixes) No 74 64 69 89 86 87 81 74 77
Liu et al. (2015) (state of the art) Yes 78.77 60.21 68.25 90.60 88.82 89.70 84.75 72.89 78.37

Table 2: DrugNER results with official evaluation script on test dataset consisting of MedLine (ML) (80.10% of
the total test data) and DrugBank (DB) test data (19.90 % of the total test data). We report precision (P), recall (R),
and F1-score.

4.2 Clinical and Drug NER
To prove the effectiveness of our proposed model
in multiple domains, we also evaluated our model
on the SemEval 2013 task 9.1 DrugNER dataset
(Segura Bedmar et al., 2013) and the I2B2 clinical
NER dataset (Uzuner et al., 2011) .

We first converted these datasets into CoNLL
BIO format and then evaluated the performance
with CoNLL script. We have also evaluated
DrugNER performance with the official evaluation
script (Segura Bedmar et al., 2013)3 after convert-
ing it to the required format. These results are given
in Table 2. The SemEval 2013 task 9.1 DrugNER
dataset is composed of two parts: the MedLine test
data which consists of 520 sentences and 382 enti-
ties, and the DrugBank test data which consists of
145 sentences and 303 entities. We outperform Liu
et al. (2015) by 0.75% and Rocktäschel et al. (2013)
by 10.90% on MedLine test dataset. On the overall
dataset, we outperform Liu et al.’s dictionary-free

3The official evaluation script available on the SemEval
2013 website outputs only whole numbers, despite the shared
task reporting results to 2 decimal places.

model and Rocktäschel et al. by at least 6.50 per-
cent. Again, this shows the benefit from allowing
the model to learn a representation of affixes as well
as of words and characters. Overall, we achieved
the second best result after Liu et al. (2015) but
get state of the art results on MedLine test dataset
which is 80.10% of the total test data.

For fair comparison with previous work (Unanue
et al., 2017) which has re-implemented Lample
et al. (2016) model, we tested our model on BIO
converted dataset used by Unanue et al. (2017).
The results are summarized in table 3.

On the I2B2 NER dataset (Uzuner et al., 2011;
Unanue et al., 2017) in the BIO format, we evalu-
ated our approach using the CoNLL 2003 evalua-
tion script. Our final model achieves 84.70 F-score,
a gain of 3.68% as compared to the base model
without affixes (81.02%) and a gain of 0.67 % over
the model of Unanue et al. (2017). For fair compar-
ison with Unanue et al. (2017), we provide results
on the I2B2 NER dataset in BIO format evaluated
with the CoNLL 2003 evaluation script in Table 4.
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Model drug brand group drug n ML drug brand group drug n DB Both

Unanue et al. (2017) 75.57 28.57 64.37 37.19 60.66 91.83 87.27 84.67 0 88.38 -
BASE 72 41.67 75.86 4.88 60.86 89.92 79.12 86.13 0 86.52 72.31
BASE+Affix(10) 79.25 44.44 85.39 32.73 69.71 92.09 86.60 87.41 20 88.93 78.39

Table 3: DrugNER results on test data using CoNLL evaluation script. ML indicates the results for MedLine test
data and DB indicates results for DrugBank test data. We have reported F1 scores for each entity type in MedLine,
DrugBank and overall dataset (Both). The last column (Both) provides performance on the the combined dataset.

Model Problem Test Treatment
P R F1 P R F1 P R F1

Unanue et al. (2017) 81.29 83.62 82.44 84.74 85.01 84.87 83.36 83.55 83.46
Base Model 82.45 77.88 80.10 87.24 77.96 82.34 85.53 76.97 81.02
Base+Affix(20) 84.35 84.27 84.31 87.37 84.34 85.82 85.73 82.58 84.13

Table 4: Performance on I2B2 2010 NER (Uzuner et al., 2011) test data 5 using CoNLL evaluation script. We
have reported precision (P), recall (R), and F1-score.

5 Analysis

To better understand the performance of our model,
we conducted several analyses on the English
CoNLL 2003 dataset.

To determine if the performance gains were truly
due to the affix embeddings, and not simply due to
having more model parameters, we re-ran our base
model (without affixes), increasing the character
embeddings from 25 to 55 to match the increase of
30 of our affix embeddings. This model’s F-score
(90.28%) was similar to the original base model
(90.24%), and was more than a half a point below
our model with affixes (90.86%).

To determine the contribution of filtering our
affixes based on frequency (as compared to sim-
ply using all word-boundary n-grams) we ran our
model with the full set of affixes found in train-
ing. The performance without filtering (89.87%
F1) was even lower than the base model without
affixes (90.24% F1), which demonstrates that fil-
tering based on frequency is beneficial for affix
selection.

6 Conclusion
Our results across multiple languages and do-
mains show that sub-word features such as pre-
fixes and suffixes are complementary to character
and word-level information. Our straight-forward
and language-independent approach shows perfor-
mance gains compared to other neural systems for
NER, achieving a new state of the art on Spanish,
Dutch, and German NER as well as the MedLine
portion of DrugNER, despite our lack of dictionary
resources. Additionally, we also achieve 3.67% im-
provement in the I2B2 clinical NER dataset which

points towards potential applications in biomedi-
cal NER. While our model proposes a very simple
idea of using filtered affixes as an approximation
of morphemes, we suggest there are further gains
to be had with better methods for deriving true
morphemes (e.g., the supervised neural model of
Luong et al., 2013). We leave this exploration to
future work.
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Tim Rocktäschel, Torsten Huber, Michael Weidlich,
and Ulf Leser. 2013. Wbi-ner: The impact of
domain-specific features on the performance of iden-
tifying and classifying mentions of drugs. In Se-
mEval@ NAACL-HLT . pages 356–363.

Sujan Kumar Saha, Sudeshna Sarkar, and Pabitra Mitra.
2009. Feature selection techniques for maximum
entropy based biomedical named entity recognition.

Journal of Biomedical Informatics 42(5):905 – 911.
Biomedical Natural Language Processing.

Erik F Tjong Kim Sang. 2002. Introduction to the
CoNLL-2002 shared task: language-independent
named entity recognition, proceedings of the 6th
conference on natural language learning. August
31:1–4.

Ryohei Sasano and Sadao Kurohashi. 2008. Japanese
named entity recognition using structural natural lan-
guage processing. In IJCNLP. pages 607–612.

Isabel Segura Bedmar, Paloma Martı́nez, and Marı́a
Herrero Zazo. 2013. Semeval-2013 task 9: Ex-
traction of drug-drug interactions from biomedical
texts (ddiextraction 2013). Association for Compu-
tational Linguistics.

Erik F Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003-Volume 4.
Association for Computational Linguistics, pages
142–147.

Maksim Tkachenko and Andrey Simanovsky. 2012.
Named entity recognition: Exploring features. In
KONVENS. pages 118–127.
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