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en Matemáticas Aplicadas

y en Sistemas – UNAM
ivanvladimir@turing

.iimas.unam.mx

Carlos F. Méndez-Cruz
Centro de Ciencias
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Abstract

In this paper we report an unsupervised
method aimed to identify whether an at-
tribute is discriminative for two words
(which are treated as concepts, in our par-
ticular case). To this end, we use geo-
metrically inspired vector operations un-
derlying unsupervised decision functions.
These decision functions operate on state-
of-the-art neural word embeddings of the
attribute and the concepts. The main idea
can be described as follows: if attribute
q discriminates concept a from concept
b, then q is excluded from the feature set
shared by these two concepts: the inter-
section. That is, the membership q ∈
(a ∩ b) does not hold. As a, b, q are
represented with neural word embeddings,
we tested vector operations allowing us to
measure membership, i.e. fuzzy set oper-
ations (t-norm, for fuzzy intersection, and
t-conorm, for fuzzy union) and the simi-
larity between q and the convex cone de-
scribed by a and b.

1 Introduction

There exist nowadays a number of arithmetic vec-
tor operations for computing word relationships
interpreted as linguistic regularities. A very pop-
ular setting is solving word analogies (Lepage,
1998), which is mainly used to evaluate the quality
of word embeddings (Mikolov et al., 2013). Re-
cently other alternatives to solve word analogies
have been proposed (Linzen, 2016), including su-
pervised methods (Drozd et al., 2016).

Solving word analogies requires three word ar-
guments, and a fourth one is inferred. Such an
inference raises from the similarity between com-
mon or similar contexts shared by the two pairs

of words. Thus, given words “queen”, “woman”,
“king”, “man”, the following arithmetic operation
holds for their corresponding embeddings x(·):
xking − xman + xwoman = xqueen.

In this work, we explore similar approaches
for Discriminative Attribute Identification (DAI).
This task requires tree word arguments a, b, q,
and a binary label y ∈ {0, 1} is inferred from
them (Cree and McRae, 2003; Lazaridou et al.,
2016; McRae et al., 2005). Such a label indi-
cates whether the third word, q, is identified as a
discriminative (semantic) attribute between words
(concepts) a, b. We observed that the task of iden-
tifying discriminative attributes between words,
represented via word embeddings, evokes that of
solving word analogies.

We propose geometrically inspired vector oper-
ations on word embeddings xa, xb, xq ∈ Rn of the
words a, b, q, respectively. The output of each of
these operations is in turn operated by a unsuper-
vised decision function aimed to predict the label
y. The decision functions are based on the reason-
ing given originally in (Lepage, 1998) for solving
word analogies. Under this reasoning, the impor-
tant thing is to look for those items shared by the
objects compared, and verify whether the item of
interest is included among them.

In other words, in the case of DAI, if we are
asked whether xq, the attribute embedding, dis-
criminates xa from xb, then an idea is to verify
whether the attribute is contained in the set shared
by the two concepts in question, i.e. does the set
operation q ∈ (a∩b) hold? Our hypothesis, is that
xq discriminates xa from xb if the result of such
an operation is false in terms of the subspace de-
limited by xa and xb, i.e. a convex cone. Thus,
a number of vector operations and decision func-
tions were tested as different vector versions of
this set operation on state-of-the-art neural word
embeddings.
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The proposed method does not rely on language
or knowledge resources (i.e. knowledge bases and
graphs, PoS or any kind of taggers, etc.). Further-
more, with the help of the geometrical insight that
our method provides, we also discuss the possi-
bilities of it for being used to study measures of
how concepts can be generated from attributes in
the sense of vector space modeling of natural lan-
guage. Thus, this study can be considered, e.g.,
for designing semantically driven word embed-
ding methods or to explore alternatives for build-
ing knowledge resource applications.

Our results showed that the proposed approach
hold coherence with respect to the semantic no-
tions proposed in the DAI task. This approach
reached 0.622 of F-measure in predicting discrim-
inative attributes.

2 Literature Review

Up to our knowledge, there is not work proposing
unsupervised methods for discriminative attribute
identification or extraction with a direct link to
word embeddings. Most related work deals with
semantic relation extraction or with labeling se-
mantic relations in lexical semantics, e.g. given
a hypernym, to perform hyponym extraction (Fu
et al., 2014).

There is also work on using semantic attributes
to classify images of objects in a supervised fash-
ion (Chen et al., 2012; Lazaridou et al., 2016). In
this case, dictionaries of discriminative attributes
of objects are used (e.g. fruits by their color or
form), but experiments are not performed on text
data, e.g., a snippet describing the object. In more
applicative cases, the use of dictionaries of ob-
ject attributes has shown to be a good approach
in clothing recommender systems. These systems
group images of items sharing attributes the cus-
tomers are usually interested in, e.g. images of
jackets with a hat (Chen et al., 2012; Kalra et al.,
2016; Zhou et al., 2016).

Other contributions provide methods for object
classification by using multiple data sources, in-
cluding text. In (Farhadi et al., 2009, 2010; Lam-
pert et al., 2009) it is proposed supervised learn-
ing of semantic attributes and textual descriptions
of objects. Their methods are aimed to generalize
recognition and (template) textual description of
unseen objects with similar and shared attributes.
In the particular case of (Berg et al., 2010), a su-
pervised algorithm learns to label object attributes

by fitting multinomial associations between text
segments and recognized image segments as co-
occurring objects within a Web corpus (Su and
Jurie, 2012). After that, the learned attributes of
the objects are detected and used as features for
feeding an unsupervised method for categorizing
images and text. In (Deeptimahanti and Sanyal,
2011; Overmyer et al., 2001) natural language
descriptions of case uses of user requirements
are parsed to obtain Unified Modeling Language
(UML) diagrams including object attributes. This
approach is aimed to facilitate design in software
engineering by semi-automatically building code
objects (Yue et al., 2011).

3 A Convex Combination

Lepage (1998) proposed solving word analogies
based on characters shared by words and sen-
tences. We extrapolated such an idea for fea-
ture similarities, similarly to what (Mikolov et al.,
2013) did on vectors for solving word analogies.
Thus, our method attempts taking into account
these two ideas in the following way. Thinking
about neural word embeddings as vectors gener-
ated by axis of attributes, our approach is to ob-
serve the linear subspace A delimited by embed-
dings of words a and b, and to see how the embed-
ding of q is contained in it. This linear subspace
has the properties of a convex cone. Thus, in ge-
ometrical terms, to assess whether an attribute can
generate a pair of concepts or not, we propose to
measure the degree, λ, to which the embedding xq

is a convex combination of the embeddings xa and
xb. This measure can be derived from the convex
combination

λxa + (1 − λ)xb = xq, (1)

where λ ∈ [0, 1]. The embeddings xa, xb, xq ∈ Rd

represent nouns a and b and the query attribute q,
respectively (see Figure 1). The requirement of
xa, xb to describe a convex cone A is due to the
fact that, geometrically, features shared by these
embeddings would be enclosed within such cone.
This can be observed by testing extreme values in
Eq. (1). Assume all embeddings are normalized in
magnitude. Let us making q to be, simultaneously,
as far as possible from a and b while keeping the
volume of A greater than zero. Also make that
⟨xa, xb⟩ to be small. In this scenario, embeddings
xa, xb delimit a cone of less than 90 degrees. As
the embedding xq is as far as possible from the
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Figure 1: The d−dimensional vector space de-
fined in the unitary-sphere Sd.

xa and xb and it is contained in A, then it passes
close to the center of the circular basis of the cone.
Thus, we have

∥xq − xa∥ ≈ ∥xq − xb∥.

This geometrical scenario indicates that q is shared
equably by a and b, so it is not discriminative for
them. In the case of ⟨xa, xb⟩ ≈ −1 it means that
the set A is not convex. This is because xa and xb

describe a unique line and have opposite directions
(they are anti-parallel). This geometrical scenario
prevents the pair of word embeddings from being
generated by linear combinations of attributes in
common to them (see xa and x′

b in Figure 1). In
the case when a, b are semantically very similar,
we have that1 ⟨xa, xb⟩ → 1. It means that both
vectors are (almost) parallel, so they refer concepts
sharing most of their attributes. In this case, if xq

is far away from both xa and xb, then determining
discriminativeness has not sense (probably xq is
not an attribute of either of them).

The geometrical scenario of identifying a dis-
criminative attribute q can occur when ⟨xa, xb⟩ is
small and either ⟨xq, xa⟩ → 1 or ⟨xq, xb⟩ → 1.
For example, if ⟨xq, xb⟩ → 1, it means that xq

tends to be parallel to xb and we can see xb as
a linear combination of xq. As ⟨xa, xb⟩ is small
(xa and xb are almost orthogonal), then ⟨xa, xq⟩
is also small. Therefore, this analysis leads us to
think that q discriminates a from b, and that q is an
attribute of b rather than of a.

1The symbol ‘→’ denotes tendency (“tends to”).

4 The Convex Cone Method

The scenarios depicted in Section 3 overall show
how projections among word embeddings form
convex combinations and how these projections
can be exploited in DAI. Without loss of gener-
ality, these projections can be seen as distances. In
this sense, the convex parameter λ in Eq. (1) in-
deed weighs distances involving xa, xb, xq. Now,
notice that Eq. (1) expresses xq in terms of xa and
xb. However, in DAI they are know and we would
like to measure the relationship among them given
they are d−dimensional vectors. This measure
is can be given by λ, which now becomes into
the unknown. In this case, λ acts as a bounded
measure of how much a given pair of concepts
a, b shares a given attribute q. Thus, by perform-
ing some comprehensive algebra starting from Eq.
(1), we arrive at

λ(xa − xb) + xb = xq,

which leads to the d−dimensional Euclidean
(cone) version of the convex parameter

λ =
∥xq − xb∥
∥xa − xb∥

. (2)

Furthermore, in addition to (2), we consider an al-
ternative distance criterion. That is, it is possible
measuring distance in terms of arcs instead of do-
ing it in terms of straight line segments. Therefore,
we have the arc (arcone) version of the convex pa-
rameter:

λ =
cos−1⟨xq, xb⟩
cos−1⟨xa, xb⟩

, (3)

where ⟨x, x′⟩ ∈ [−1, 1] given that ∥x∥ = 1
for all x ∈ Sd (the unitary sphere). Both arcs
cos−1⟨x, x′⟩ in the numerator and in the denom-
inator of (3) are in the interval [0, 2π].

The convex parameter λ measures the degree
to which xq is a convex combination of xa and
xb. Form the point of view of the combination
degree, rather than from the point of view of the
absolute value of λ, some function f(λ) must be
maximum at λ = 0.5 (see Figure 2). When it oc-
curs, xq passes close to the axis of the cone A (so
it also passes close to the center of the shaded cir-
cular area of radius 0.5∥xa − xb∥ in Figure 1).
Therefore, λ → 0.5 indicates that the attribute q
is highly shared by both concepts a and b.

The extreme values of λ must be interpreted
contrarily by f , i.e. λ → 0 means that, on the
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Figure 2: The decision function f(λ).

one hand, the attribute q uniquely characterizes (or
generates) the concept a, so xa is approximately
parallel to xq. On the other hand, λ → 1 means
that the attribute q uniquely characterizes the con-
cept b. Thus, we need that some decision func-
tion f to take advantage of extreme values of λ
for making decision on whether an attribute q is
discriminative of a pair of concepts a and b.

Therefore, we define our decision criterion sub-
ject to some threshold δ ∈ [0, 1] (say δ = 0.7):

f(λ) =

{
1 if − 2|λ − 1/2| + 1 < δ
0 if − 2|λ − 1/2| + 1 ≥ δ

(4)

where if upper inequality (4) holds, it means ei-
ther that λ → 0 or that λ → 1.0, so f(λ) = 1
and therefore attribute q discriminates concepts a
and b. Conversely, if lower inequality (4) holds,
it means that λ → 0.5. Therefore, f(λ) = 0 and
the decision function determines that q does not
discriminate a and b. See Figure 2.

5 Other Geometrical Methods

In addition to the convex cone method, we also
tested mean-based, sum-based and fuzzy methods
for quantifying the containment q ∈ (a ∩ b).

5.1 Similarity with Respect to the Sum and to
the Mean

The sum-based method computes the resultant
vector of xa and xb. The similarity between such
a vector and the candidate attribute xq should be
smaller than some threshold δ so as to consider
that q discriminates a from b, that is:

f(xq; xa, xb) =

{
1 if ⟨xq, xa + xb⟩ < δ
0 if ⟨xq, xa + xb⟩ ≥ δ

(5)

Unlike to the convex cone method, Eq. (5) indi-
cates that the sum-based method measures directly
the similarity between the resultant vector xa +xb

and xq. The motivation of this operation is similar
to that of the convex cone method. That is, xa+xb

is an embedding that embeddings xa and xb have
in common. Therefore, probably such embedding
is similar to xq if this latter also is common to xa

and xb.
The mean-based method follows exactly the

same principle, but only requires multiplying xa +
xb in (5) by 0.5.

5.2 Similarity with Respect to a Fuzzy
Connective

The fuzzy method computes the connective:

x{a,b} = α min{xa, xb} + (1 − α)max{xa, xb}

between the fuzzy intersection (min{·}) and the
fuzzy union (max{·}) of the embeddings xa, xb

(Zadeh, 1965). These set operations are known as
the Gödel’s t-norm and t-conorm (Klement et al.,
2013), respectively and they are defined element-
wise for vectors. α is known as the compensation
parameter and controls the mixture between union
and intersection. Thus, the connective acts as a
convex combination of the fuzzy union and the
fuzzy intersection operators, so if α → 0 it causes
that the intersection (min{·}) vanishes whereas
the union (max{·}) survives. The contrary effect
can be induced if α → 1.

Fuzzy set operations are conceptually more akin
to the idea of observing whether the intersection
set of concept attributes contains some query at-
tribute. To contextualize word embeddings with
fuzzy sets, we assume the embedding xa ∈ Rd

is given by a membership function xa = µ(A).
Herein, A is the set of items in some subset (of
cardinality d) of the contexts of the word a. We
also assume that the subset of contexts was statis-
tically estimated by the word embedding method,
which is in this case though as the membership
function defined on the set C ⊃ A of all contexts
in the corpus µ : C → Sd.

As a first attempt to explore a relationship be-
tween fuzzy sets and word embeddings, in this pa-
per we induced bias α to a decision function f
based on the inner product between the connective
x{a,b} (a biased version of xa + xb) and the query
attribute xq. In this way, the decision of DAI is
made according to the threshold δ, i.e.:

f(xq; α; xa, xb) =

{
1 if ⟨xq, x{a,b}⟩ < δ

0 if ⟨xq, x{a,b}⟩ ≥ δ
(6)
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where α is the tolerance parameter of the fuzzy
connective and it must be manually set.

6 Experiments and Results

For our experiments, we computed our de-
cision functions f(·) on tuples of the form
{xa, xb, xq, y}. To this end, we used state-of-
the-art word embeddings, i.e. Glove (Penning-
ton et al., 2014), FastText (Bojanowski et al.,
2016), Word2Vec (Mikolov et al., 2013) and
Dependency-Based Word2Vec (DBW2V) (Levy
and Goldberg, 2014). We also explored embed-
dings tanking into account external knowledge.
This is the case of ConceptNet embeddings (Speer
and Lowry-Duda, 2017). DBW2V embeddings
are W2V embeddings enriched by using syntac-
tic dependencies and Conceptnet are embeddings
enriched with both syntactic dependencies and
knowledge graphs (Faruqui et al., 2015). We
trained W2V and FastText by using the Wikipedia
dataset2. In the case of Glove3, ConceptNet4 and
DBW2V5 we downloaded pretrained embeddings
from authors’ websites. For Word2Vec and Fast-
Text we trained models of 200, 300, 400, 500 and
1000 dimensions. In our results we only report the
dimensionality that performed best.

As our approach is unsupervised, we report ex-
periments on the validation dataset available on
the competition’s repository6. We can see in Table
1 that the arcone operation defined in (3) provided
the best results for all word embedding methods.
Our general best result was obtained by using
Glove embeddings of 300 dimensions. We ex-
pected a good result from these embeddings as
they specifically learn from mutual information
statistics of word pairs. This enables Glove to
encode feature contrasts, which also allows it for
being the state-of-the-art method in word analogy
tasks. During the competition we submitted our
best configuration as unique run (Glove 300d and
arcone operation with δ = 0.4), which gave us
F1 = 0.60 (place 19/26).

2The 2012 English Wikipedia available at
http://inex.mmci.uni-saarland.de/data/
documentcollection.html

3https://nlp.stanford.edu/projects/
glove

4https://github.com/commonsense/
conceptnet-numberbatch

5https://levyomer.wordpress.com/2014/
04/25/dependency-based-word-embeddings

6https://github.com/dpaperno/
DiscriminAtt/tree/master/training

Regarding to the threshold δ of the decision
functions f(·), we tested a set of values δ ∈
{0.0, 0.1, 0.4, 0.7, 1.0}. Our best result was ob-
tained when δ = 0.4 for almost all embedding
methods, excepting DBW2V. This means that the
convex parameter λ can vary 60% around the max-
imum (0.5) in order to consider that an attribute q
is shared by (or to generate) both concepts a, b.
Thus, by evaluating δ in (4) we see either that
xq is too biased towards xa if it holds that λ <
0.4(0.5) = 0.2, or that xq is too biased towards xb

if it holds that λ > 0.3 + 0.5 = 0.8. In these cases
we can say that q is discriminative for the concepts
a, b as it is an attribute only (or mainly) of one of
them.

Embedding Dim. f(·) δ F1-score

Glove 300

arcone 0.4 0.622
cone 0.4 0.615
sum -0.4 0.457

fuzzy -0.4 0.438
mean -0.4 0.426

ConceptNet 300

arcone 0.4 0.585
cone 0.4 0.581
mean 0.1 0.469
fuzzy -0.1 0.465
sum -0.4 0.451

Word2Vec 300

arcone 0.4 0.584
cone 0.4 0.577
fuzzy -0.1 0.448
mean -0.1 0.444
sum -0.4 0.439

FastText 500

arcone 0.4 0.570
cone 0.4 0.568
fuzzy 0.4 0.451
mean 0.4 0.450
sum 0.7 0.437

DBW2V 300

arcone 0.7 0.541
cone 0.7 0.536
sum -0.7 0.498

fuzzy -0.4 0.485
mean -0.4 0.475

Table 1: Best results for all the word embed-
ding and vector operation methods on the valida-
tion dataset.

Given that it was needed δ = 0.7 for DBW2V,
we inferred that these embeddings allowed much
less bias from the center of the cone and λ must be
within 30% of its maximum in order to decide that
an attribute is shared by two concepts. In other
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words, with DBW2V, it is more difficult to distin-
guish whether the attribute q is discriminative of
a, b because it is allowed to be distant from both
them even when it can be discriminative. This
condition allows for much more feature overlap-
ping and therefore the ranking on bottom of these
embeddings can be explained.

Notice that the Euclidean version of the cone
vector operation was the second best method for
all word embedding methods. In fact, no differ-
ence was registered greater than 0.7% between
cone and arcone operations.

The fuzzy approach did not show noticeable re-
sults. The variation of both, the threshold and the
compensation parameter.

7 Discussion

We consider a bit surprising the difference in
performance of Glove with respect to knowledge-
based (ConceptNet) and Dependency-based
(DBW2V) embeddings: 5.9% with respect to
ConceptNet and 13.0% with respect to DBW2V.
Such embeddings were expected to provide much
more information about discriminative features
because they are trained by taking into account
semantic features explicitly by using knowledge
and language resources for training.By using
our arcone vector operation, W2V was ranked
barely next to ConceptNet with a small difference
of 0.17%. We think there are three possible
motivations for this behavior. The first one is
that the nature of our decision functions did not
allowed to capture semantic features embedded
into ConceptNet and into DBW2V. The second
possibility is that semantic features are better
embedded by Glove and, the third possibility,
is that embedding semantic features explicitly
can lead to overfitting of the resulting word
representations. This latter possibility could be
an additional explanation that DBW2V ended at
bottom of our ranking.

In the case of FastText, these embeddings have
been tested in word analogy tasks with success.
However, as in the case of DBW2V, they are better
than W2V or Glove mainly for syntactic analogies,
which probably makes better FastText (and prob-
ably DBW2V) for NLP tasks other than DAI, e.g.
sentence representation (Arroyo-Fernández et al.,
2017).

Some assumptions were made for practical rea-
sons in the case of fuzzy set operations. We are

aware that this could affected drastically the re-
sults. The first assumption was that word embed-
dings were produced by membership functions,
which take values in [0, 1] ⊂ R exclusively. This
is not the case of word embeddings and they can-
not directly mapped to identifiable textual items.
Therefore, applying the t-norm and the t-conorm
to these vectors is not completely intuitive. Nev-
ertheless, with real-valued vectors we still had: as
both embeddings tend to be in the same quadrant,
the larger the magnitude of the connective embed-
ding x{a,b}. This latter embedding is somewhat
oriented to the direction of the resultant xa + xb,
which can be regulated by α, inducing a bias with
respect to that direction. Although, this interpreta-
tion was worth exploring it did not gave us inter-
esting results. Thus a better version of this fuzzy
approach is pending.

At this moment, we have not clear what was
the reason several of our results were contradic-
tory with respect to the F-measure. Particularly
for distributed representations. That is, we have
balanced binary labels in the gold standard, but
some scores resulted less than 50%. It is difficult
to figure out how it happened analyzing directly
distributed representations. Therefore, it remains
an open issue proposing an alternative geometrical
approach to tackle this inconsistency with respect
to the main hypothesis of this paper.

8 Conclusions

The results of our experiments showed that the ar-
cone vector operation is a simple method for quan-
tifying discriminativeness. This operation showed
to be correlated with respect to human judgments
annotated in the validation dataset when Glove
word embeddings were used. From the vector op-
erations presented in this paper, the arcone opera-
tion, Eq. (3), best represents the abstract operation
between sets a ∩ b = A. Notice that the concept
of cone is limited to euclidean metrics neither on
Rd nor on Sd. Therefore, other kind of transfor-
mations and related theories can be explored.

The effectiveness of our approach can be further
explored as part of a learning algorithm aimed to
obtain specialized (or enriched) word embeddings
such that their geometrical structure is fitted in sets
of convex volumes. An immediate experiment is
using vector operations proposed in this paper as
restrictions or as objectives for learning such em-
beddings for building knowledge resources.

982



Acknowledgments

Thanks to Laboratorio Universitario de Cómputo
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