
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 570–575
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

IronyMagnet at SemEval-2018 Task 3: A Siamese Network for Irony
Detection in Social Media

Aniruddha Ghosh
University College Dublin

Dublin, Ireland
aniruddha.ghosh@ucdconnect.ie

Tony Veale
University College Dublin

Dublin, Ireland
tony.veale@ucd.ie

Abstract

This paper describes our system, entitled
IronyMagnet, for the 3rd Task of the SemEval
2018 workshop, “Irony Detection in English
Tweets”. In Task 1, irony classification task
has been considered as a binary classification
task. Now for the first time, finer categories of
irony are considered as part of a shared task.
In task 2, three types of irony are considered;
“Irony by contrast” - ironic instances where
evaluative expression portrays inverse polarity
(positive, negative) of the literal proposition;
“Situational irony” - ironic instances where
output of a situation do not comply with its
expectation; “Other verbal irony” - instances
where ironic intent does not rely on polarity
contrast or unexpected outcome. We proposed
a Siamese neural network for irony detection,
which is consisted of two subnetworks, each
containing a long short term memory layer
(LSTM) and an embedding layer initialized
with vectors from Glove word embedding1.
The system achieved a f-score of 0.72, and
0.50 in task 1, and task 2 respectively.

1 Introduction

Irony is one of the most prominent and pervasive
figures of speech in human communication, dat-
ing back to ancient religious texts to modern mi-
crotexts. According to literary scholars (Grice,
1978; Lakoff, 1993), irony has been defined as a
trope where the speaker intends to communicate
a contradictory situation or the opposite meaning
of what is literally said. It adopts a subtle tech-
nique where incongruity is used to suggest a dis-
tinction between reality and expectation in order
to produce a humorous or emphatic effect on the
listener. Irony poses an important challenge not
only from a linguistic perspective but also from a
cognitive one. Even without a solid understand-
ing of irony, one can still recognize and produce

1https://nlp.stanford.edu/projects/glove/

ironic utterances from as early as childhood (Har-
ris and Pexman, 2003). Such capabilities are of-
ten associated with one’s ability to correctly in-
fer others’ communicative intentions and perspec-
tives towards a given situation. Psychological the-
ories, such as “echoic reminder theory” (Kreuz
and Glucksberg, 1989), “allusion pretense theory”
(Kumon-Nakamura et al., 1995), and “implicit dis-
play theory” (Utsumi, 2000), confirm that cues
for understanding ironic intent are not restricted
to language. Ironic intent involves several other
aspects including, but not limited to, the context
of an utterance, the world’s perception and famil-
iarity between the listener and the speaker, and
psychological dimensions. Thus, as a purely text
classification task, the irony detection task poses a
significant challenge for computational linguists.
Computational approaches focus on identifying
the subtle incongruity between different parts of
the text. Often, an ironic statement starts with an
overtly positive attitude (“Yay I love”) and ends
up in an disappointment (“working on my birth-
day”) or a negative attitude/statement (“another
outage in less than 8 hours.”) followed by an ap-
preciation (“Keep up the good work!”) or an in-
cident (“I asked God to protect me from my ene-
mies”) resulting in a completely unexpected out-
put (“shortly after I started losing friends”).

Due to the limited scope of expression in social
media such as Twitter2, authors often end up lac-
ing their statements with ironic cue words (‘Yay’)
or social media specific features such as hash-
tags (‘#irony’) to make their ironic intent more
obvious for the reader. Following this intuition,
most of the attempts were made using proba-
bilistic classification models which relied on tex-
tual cues such as lexical indicators like punctua-
tion symbols (e.g., ‘?’), interjections (e.g., “gee”
or “gosh”), and intensifiers (Kreuz and Caucci,
2007); the juxtaposition of positive sentiment and

2www.Twitter.com

570



negative situations (Riloff et al., 2013); discrim-
inative N-grams like ‘yay!’ or ‘great!’ or “oh
really” or “yeah right” (Tsur et al., 2010; Lukin
and Walker, 2013); social media markers like
hashtags (Davidov et al., 2010); emoticon usage
(González-Ibánez et al., 2011); and topics asso-
ciated with irony (e.g. schools, dentists, church
life, public transport, the weather). Carvalho et al.
(2009) exploited text patterns in comments on ar-
ticles of online newspapers to detect ironic state-
ments, while Van Hee et al. (2016) developed a
irony detection model using support vector ma-
chine (SVM) with a combination of lexical, syn-
tactic, sentiment, and semantic (Word2Vec em-
bedding) features. In recent times, multiple re-
search attempts, founded on variants of the deep
neural network built on top of word embeddings,
showed a significant improvement over traditional
methods over several natural language processing
(NLP) tasks. A few representative works in this
direction for detecting sarcasm, a demeaning vari-
ant of irony, especially in the colloquial form, are
based on Convolutional Neural Networks(CNN)
(Mishra et al., 2017), Recurrent Neural Networks
(RNN) (Zhang et al., 2016) and a combination
of CNNs and RNNs (Ghosh and Veale, 2016).
Siamese networks (Bromley et al., 1994), widely
used in image classification, have displayed a good
performance over sentence similarity or document
similarity tasks. A Siamese architecture contains
two identical sub-networks, which are trained with
two different inputs to distinguish the difference
among them. Since in irony, different parts of a
sentence can be incongruous with each other, we
adopted the Siamese architecture to detect such in-
congruity between different sections of a sentence.
In this implementation, each of the subnetworks
consists of an embedding layer and a LSTM layer.
We slice each input sentence into two fragments
and feed them to the subnetworks. The output rep-
resentations of subnetworks are then compared to
distinguish if the two fragments are incongruous
or not i.e. a sentence is considered as non-ironic if
two fragments of a sentence are semantically non-
incongruous, otherwise it is ironic.

2 Dataset Preparation & Resources

The train and test dataset consists of 3834 tweets
and 784 tweets, respectively. The train dataset for
Task 1 is balanced but in task 2, the prominent cat-
egory was “irony by polarity contrast” (table 1).

2.1 Data Normalization
The distorted language, use of abbreviation, and
high number of one-off words, prevents a model
from being robust. Thus, each tweet is prepro-
cessed, normalized, and cleaned with the follow-
ing criteria.

1. To emphasize the ironic effect, an author of-
ten uses repetition of a character or a word.
A set of regular expressions is used to nor-
malize the word (“loooong” to “long”) and
the word is replaced with a word from Word-
Net3 which has the lowest minimum edit dis-
tance4 between them. The repeated word se-
quence is split using a regular expression into
multiple words(“YAYYAYYAYYAYYAY” to
“YAY YAY YAY YAY YAY”).

2. Since this is a text based classification task,
each link from the tweets is discarded.

3. The limited scope of social media incen-
tivizes users to exploit different features of
social media such as hashtags and emoticons
more creatively and efficiently to express an
opinion. Hashtags are often used by authors
to emphasize key parts or themes in their
texts or to convey their attitude or feeling to-
wards the subject. This can provide a toe-
hold for NLP techniques in order to infer the
intended sense behind an ironic statement.
Thus, each hashtag is processed and split into
words. For example, “#TheReasonForThe-
Season” is converted in “The Reason For The
Season”.

4. Emojis have played a significant role in ex-
pressing the hidden feelings of a person not
evident in plain text. Each individual emoji
is replaced with their official name5.

5. The high number of one-off words increases
the vocabulary size of a network. Due to
the sparsity in the dataset because of one-
off words, the model finds it difficult to train.
Thus, all non-valid English words, according
to WordNet dictionary, occurring less than
twice in the entire dataset are removed.

6. Neural network models are data hungry and
their success often relies on the size of the

3https://wordnet.princeton.edu/
4https://en.wikipedia.org/wiki/Edit distance
5https://unicode.org/emoji/charts/full-emoji-list.html

571



train dataset. Since the train dataset is rela-
tively small, it can not extract the distinctive,
robust features for detecting irony. Thus, the
dataset is extended by replacing the overtly
positive and negative words with “positive”
and “negative” respectively using the Senti-
wordnet6.

7. In order to capture the incongruity between
topics, the dataset is further extended by
replacing words with its category type ex-
tracted from WordNet.

2.2 Building Train Dataset

Since a Siamese network expects two inputs and
performs a comparison between the generated
weights, each tweet is split into two parts. A num-
ber of training examples are generated by splitting
the tweets where each split contains a minimum
r number of words. Consider as an input a tweet
containing n words with label y. The tweet will be
split into (n − 2 × r + 1) combinations. In this
experiment, the value of r is chosen as 3. For ex-
ample, “Working on Boxing Day is so fun” will
produce the following combinations:

1. (“Working on Boxing”, “Day is so fun”)

2. (“Working on Boxing Day”, “is so fun”)

For training purposes, the train dataset is split with
a 90%-10% split ratio.

3 Siamese Network

3.1 Input Layer

Each tweet, with length n, is converted to a vector
by replacing a word with its index value in the dic-
tionary s ∈ <1×n. To resolve different lengths of
input, each tweet is either padded or truncated to
convert into a vector of size s ∈<1×l where l is the
maximum allowed length. The maximum allowed
length for the input vector for each sub-network is
set to the average length of the tweets. The input
vector is fed to an embedding layer which converts
each word into a distributional vector of dimen-
sion D. Thus, the input tweet matrix is converted
s ∈ <l×D. The embedding layer is initialized with
the embeddings extracted from Glove word em-
bedding. We freeze the embedding layer to keep
the general meaning of a word intact.

6http://sentiwordnet.isti.cnr.it/

task 0 1 2 3
1 1923 1911 - -
2 1923 1390 316 205
Table 1 Train Data Statistics

3.2 LSTM Layer
Among the variants of RNN networks, LSTM has
demonstrated the power of semantic modelling
by efficiently handling long term dependencies
(Hochreiter and Schmidhuber, 1997) by defining
each memory cell with a set of gates<d, where d is
the memory dimension of hidden states of LSTM.
It does not suffer from a vanishing or exploding
gradient problem while performing back propaga-
tion through time. There are three gates, which are
functions of xt and ht−1: input gate it, forget gate
ft, and output gate ot. The gates jointly decide
whether the memory update mechanism will occur
or not. Equation (2) and (1) denotes the amount of
information to discard and what to store in mem-
ory. Equation (4) denotes the output of a cell ct.
Equation (3), (5), and (6) denotes the input activa-
tion, cell state, and output vector of a LSTM cell
respectively.

it = σ(Wi[ht−1, xt] + bi) (1)

ft = σ(Wf [ht−1, xt] + bf ) (2)

qt = sigmoid(Wq[ht−1, xt] + bq) (3)

ot = σ(Wo[ht−1, xt] + bo) (4)

ct = ft � ct−1 + it � qt (5)

ht = ot � sigmoid(ct) (6)

Due to the small dataset size, extra attention has
been paid in order to prevent the network from
overfitting. A recurrent Dropout is used between
each time step of an input. Each LSTM layer
outputs a weight matrix s ∈ <l×m (m = num-
ber of hidden memory units), which is passed to
a Dropout layer.

3.3 Subtract Layer
The generated weights of each LSTM layer car-
ries the conceptual representation of its input. In-
tuitively, the weight difference between the out-
put of two LSTM layers should signify concep-
tual representations as either incongruous to each
other or not. A subtract layer is used to calculate
the weight difference between two sub networks.

572



The subtract layer produced an output matrix s ∈
<l×m, which is passed as an input to a fully con-
nected layer.

3.4 Fully Connected Layer

The fully connected layer produces a higher order
feature set, based on the weight matrix obtained
from the LSTM layer, which is easily separable
into different classes. At the end, a Softmax layer
is added on top of the fully connected layer.

4 Experimental Setup

Success with a neural network model largely
depends on the apt input and optimal hyper-
parameters settings. After investigating differ-
ent combinations of hyper-parameters, the optimal
setting is obtained for each layer of the network.
The LSTM has 32 hidden memory units with a
sigmoid activation function and recurrent dropout
ratio of 0.5. The fully-connected layer consisted of
16 hidden memory units and uses ReLu as the ac-
tivation function. Both of the layers are initialized
with Xavier normal initializer (Glorot and Bengio,
2010). As an optimizer function, Adam optimiza-
tion is used with a learning rate set to 0.001, while
categorical cross-entropy is chosen as a loss func-
tion. The code is developed using the keras7 li-
brary.

5 Results

For both of the tasks, our model is compared
with the state-of-the-art composite neural network
model (Ghosh and Veale, 2016). Each model is
trained with the same datasets. For the composite
model, the entire tweet is fed as an input instead
of just fragments of the tweet.

6 Output Analysis

In both tasks, the Siamese network outperforms
the composite neural network model. The com-
posite neural network model, trained with origi-
nal tweets, is only able to capture certain ironic
utterances where a similar pattern is encountered
in the training dataset. The model responds well
to obvious ironic markers such as “Ohh” in fig-
ure 2. Without the obvious ironic markers, the
model mis-classifies the statement as non-ironic.
Whereas the Siamese network classifies the state-
ment correctly even without the obvious ironic

7http://keras.io/

Figure 1 Siamese Neural network

Task Model P R F1

Task1

Ghosh
and
Veale
(2016)?

0.6449 0.4437 0.5257

Siamese
network

0.7878 0.6688 0.7234

Task2

Ghosh
and
Veale
(2016)

0.4099 0.4187 0.3988

Siamese
network?

0.5768 0.5044 0.5074

Table 2 Experiment Results; ?submissions consid-
ered in final standing

marker, the subtract layer captures the incon-
gruity between two concepts in an ironic state-
ment. However, the Siamese network fails to
detect ironic statements with dropped negations.
For example, the network could not figure out
the ironic intent behind the following statement
“Hey there! Nice to see you Minnesota/ND Win-
ter Weather”, the model has no information about
“Minnesota/ND Winter Weather”.

573



Figure 2 Output Vector of LSTM Layer

7 Conclusion and Future Works

We introduced IronyMagnet, a Siamese neural net-
work model that is capable of separating ironic
statements from non-ironic statements, as well as
at a fine-grained level. Even with small datasets,
the Siamese neural network is able to robustly cap-
ture the incongruity between two concepts. How-
ever, the system lacks the sophistication of under-
standing incongruity at a pragmatic level. Take,
for example, “Whatever happened to the Guano
Apes? Did they ever make it “Big in Japan”?”. In
this example, none of the models are able to estab-
lish the incongruity between “Guano Apes” and
“Big in Japan”. Also, it can not correctly detect
if the incongruous elements are located very close
to one another within the tweet. However, since
the Siamese network is able to correctly classify
simple cases of irony, we can therefore hypothe-
size that the Siamese network can be a stepping
stone towards determining contrastive figurative
languages. In the future, we would like to extend
our model by incorporating an attention network
and other psychological stimuli which pertain to
Irony.

References

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard
Säckinger, and Roopak Shah. 1994. Signature ver-
ification using a” siamese” time delay neural net-
work. In Advances in Neural Information Process-
ing Systems, pages 737–744.

Paula Carvalho, Luı́s Sarmento, Mário J Silva, and
Eugénio De Oliveira. 2009. Clues for detecting
irony in user-generated contents: oh...!! it’s so
easy;-. In Proceedings of the 1st international
CIKM workshop on Topic-sentiment analysis for
mass opinion, pages 53–56. ACM.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010.
Semi-supervised recognition of sarcastic sentences
in twitter and amazon. In Proceedings of the Four-
teenth Conference on Computational Natural Lan-
guage Learning, pages 107–116. Association for
Computational Linguistics.

Aniruddha Ghosh and Tony Veale. 2016. Fracking
sarcasm using neural network. In Proceedings of
the 7th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 161–169.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the Thirteenth In-
ternational Conference on Artificial Intelligence and
Statistics, pages 249–256.

Roberto González-Ibánez, Smaranda Muresan, and
Nina Wacholder. 2011. Identifying sarcasm in twit-
ter: a closer look. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies: Short
Papers-Volume 2, pages 581–586. Association for
Computational Linguistics.

H Paul Grice. 1978. Further notes on logic and conver-
sation. 1978, 1:13–128.

Melanie Harris and Penny M Pexman. 2003. Chil-
dren’s perceptions of the social functions of verbal
irony. Discourse Processes, 36(3):147–165.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Roger J. Kreuz and Gina M. Caucci. 2007. Lexical in-
fluences on the perception of sarcasm. In Proceed-
ings of the Workshop on Computational Approaches
to Figurative Language.

Roger J Kreuz and Sam Glucksberg. 1989. How to
be sarcastic: The echoic reminder theory of verbal
irony. Journal of Experimental Psychology: Gen-
eral.

Sachi Kumon-Nakamura, Sam Glucksberg, and Mary
Brown. 1995. How about another piece of pie: The
allusional pretense theory of discourse irony. Jour-
nal of Experimental Psychology: General, 124(1):3.

George Lakoff. 1993. The contemporary theory of
metaphor.

Stephanie Lukin and Marilyn Walker. 2013. Really?
well. apparently bootstrapping improves the perfor-
mance of sarcasm and nastiness classifiers for online
dialogue. In Proceedings of the Workshop on Lan-
guage Analysis in Social Media, pages 30–40.

Abhijit Mishra, Kuntal Dey, and Pushpak Bhat-
tacharyya. 2017. Learning cognitive features from
gaze data for sentiment and sarcasm classification

574



using convolutional neural network. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), volume 1, pages 377–387.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalin-
dra De Silva, Nathan Gilbert, and Ruihong Huang.
2013. Sarcasm as contrast between a positive senti-
ment and negative situation. In EMNLP, volume 13,
pages 704–714.

Oren Tsur, Dmitry Davidov, and Ari Rappoport. 2010.
Icwsm-a great catchy name: Semi-supervised recog-
nition of sarcastic sentences in online product re-
views. In ICWSM.

A. Utsumi. 2000. Verbal irony as implicit display of
ironic environment: Distinguishing ironic utterances
from nonirony. Journal of Pragmatics.

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2016. Monday mornings are my fave:)# not ex-
ploring the automatic recognition of irony in en-
glish tweets. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 2730–2739.

Meishan Zhang, Yue Zhang, and Guohong Fu. 2016.
Tweet sarcasm detection using deep neural network.
In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 2449–2460.

575


