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Abstract
Character identification is a task of entity link-
ing that finds the global entity of each personal
mention in multiparty dialogue. For this task,
the first two seasons of the popular TV show
Friends are annotated, comprising a total of 448
dialogues, 15,709 mentions, and 401 entities.
The personal mentions are detected from nomi-
nals referring to certain characters in the show,
and the entities are collected from the list of
all characters in those two seasons of the show.
This task is challenging because it requires the
identification of characters that are mentioned
but may not be active during the conversation.
Among 90+ participants, four of them submit-
ted their system outputs and showed strengths
in different aspects about the task. Thorough
analyses of the distributed datasets, system out-
puts, and comparative studies are also provided.
To facilitate the momentum, we create an open-
source project for this task and publicly release
a larger and cleaner dataset, hoping to support
researchers for more enhanced modeling.

1 Introduction

Most of the earlier works in natural language pro-
cessing (NLP) had focused on formal writing such
as newswires, whereas many recent works have tar-
geted at colloquial writing such as text messages or
social media. Since the evolution of Web 2.0, the
amount of user-generated contents involving col-
loquial writing has exceeded the one with formal
writing. NLP tasks are relatively well-explored at
this point for certain types of colloquial writing i.e.,
microblogs and reviews (Ritter et al., 2011; Kong
et al., 2014; Ranganath et al., 2016; Shin et al.,
2017). However, the genre of multiparty dialogue
is still under-explored, even though digital contents
in dialogue forms keep increasing at a faster rate
than any other types of writing.1 This inspires us
1https://medium.com/hijiffy/10-graphs-that-show-the-
immense-power-of-messaging-apps-4a41385b24d6

to create a new task called character identification
that aims to link personal mentions (e.g, she, mom)
to their global entities across multiple dialogues,
where the entities indicate the specific characters
referred by those mentions (e.g., Judy).

Due to the nature of multiparty dialogue where
several speakers take turns to complete a context,
character identification is a crucial step for adapting
higher-end NLP tasks (e.g., summarization, ques-
tion answering, machine translation) to this genre.
It can also bring another level of sophistication to
intelligent personal assistants or tutoring systems.
This task is challenging because it needs to process
through colloquialism that includes slangs, gram-
mar mistakes, and/or rhetorical questions, as well
as to handle cross-document resolution for the iden-
tification of entities that are mentioned but may not
be actively participating during the conversation.
Nonetheless, we believe that models produced by
this task will remarkably enhance inference on di-
alogue contexts (e.g., business meetings, doctor-
patient conversations) by providing finer-grained
information about individual characters.

Section 2 illustrates the task of character identi-
fication and explains the key differences between
it and other types of entity linking tasks. Section 3
describes the corpus, based on TV show transcripts,
used for this task with annotation details. Section 4
gives brief overviews of the systems participated in
this shared task. Section 5 explains the evaluation
metrics and the results produced by those systems.
Finally, Section 6 gives thorough analysis and com-
parative studies between these systems. This task
was originally conducted at CodaLab.2 The latest
dataset and the system outputs can be found from
our open source project, Emory NLP.3

2https://competitions.codalab.org/
competitions/17310

3https://github.com/emorynlp/
semeval-2018-task4
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Ross I told mom and dad last night, they seemed to take it pretty well.

Monica Oh really, so that hysterical phone call I got from a woman at sobbing 3:00 A.M., "I'll 
never have grandchildren, I'll never have grandchildren." was what?  A wrong number?

Ross Sorry.

Joey Alright Ross, look. You're feeling a lot of pain right now. You're angry. You're hurting.  
Can I tell you what the answer is?

MonicaJack Judy

Ross Joey

Figure 1: An example of character identification, excerpted from the Season 1 Episode 1 of Friends, where
mentions are indicated in red boxes and entities are linked by arrows.

2 Task Description

Let a mention be a nominal that refers to a singular
or a collective entity (e.g., she, mom, Judy), and an
entity be the actual person that the mention refers
to. Given a dialogue transcribed in text where all
mentions are detected, the objective is to find the
entity for each mention, who can be either active or
passive in the dialogue. In Figure 1, entities such
as Ross, Monica, and Joey are the active speakers
of the dialogue, whereas Jack and Judy are not
although they are passively mentioned as mom and
dad in this context. Linking such mentions to their
global entities demands inferred knowledge about
the kinship from other dialogues, challenging cross-
document resolution. Thus, character identification
can be viewed as an entity linking task that aims
for holistic understanding in multiparty dialogue.

Most of previous works on entity linking have
focused on Wikification, which links named entity
mentions to their relevant Wikipedia articles (Mi-
halcea and Csomai, 2007; Ratinov et al., 2011; Guo
et al., 2013). Unlike Wikification where most enti-
ties come with structured information from knowl-
edge bases (e.g., Infobox, Freebase, DBPedia), enti-
ties in character identification have no such precom-

piled information, which makes this task even more
challenging. It is similar to coreference resolution
in a sense that it groups mentions into entities, but
distinguished because this task requires to identify
each mention group as a known person. In Figure 1,
coreference resolution would give a cluster of the
four mentions, {mom, woman, I, I}; however, it
would not identify that cluster to be the entity Judy,
which in this case is not possible to identify without
getting contexts from other dialogues.

3 Corpus

The character identification corpus was first created
by collecting transcripts from the popular TV show,
Friends (Chen and Choi, 2016). These transcripts
were voluntarily provided by fans who made them
publicly available.4 Dialogues in this corpus mimic
daily conversations that are more natural and vari-
ous in topics than other dialogue corpora (Janin
et al., 2003; Danescu-Niculescu-Mizil and Lee,
2011; Hu et al., 2013; Kim et al., 2015; Lowe et al.,
2015). Although they are scripted, the interpreta-
tion of these dialogues is no easier than unscripted

4http://www.livesinabox.com/friends/
scripts.shtml
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Episodes Scenes Speakers Utterances Sentences Tokens
Season 1 24 229 105 4,725 8,680 66,355
Season 2 23 219 101 4,501 7,380 65,675

Total 47 448 171 9,226 16,060 132,030

Table 1: Distributions from the subset of the character identification corpus used for this shared task.

dialogues; they not only involve as much disfluency
and context switching as real dialogues do, but also
include more humor, sarcasm, or metaphor. Thus,
models evaluated on this corpus should give a gen-
eral sense about the state of character identification
on multiparty dialogue.

The original transcripts collected from the fan
site were formatted in HTML; we converted them
into JSON so that they could be easily processed.
This structured data were then manually checked
for potential errors. Table 1 shows the distributions
from the subset of the character identification cor-
pus used for this shared task. The provided dataset
is divided into two seasons, each season is divided
into episodes, each episode is divided into scenes,
each scene contains utterances, where each utter-
ance indicates a turn of speech.

3.1 Mention Annotation

For mention annotation, a heuristic-based mention
detector was developed, which utilized dependency
relations (Choi and McCallum, 2013), named en-
tity tags (Choi, 2016), and personal noun gazetteers,
then automatically detected mentions for the entire
corpus. In this heuristic, a noun phrase was consid-
ered a personal mention if it was either:

1. A PERSON named entity, or

2. A pronoun or a possessive pronoun excluding
the pronouns it and they, or

3. One of the personal noun gazetteers that are 603
common and singular personal nouns selected
from Freebase and DBPedia.

Specific mentions such as it and they were excluded
because they often referred to the ambiguous entity
types, collective, general, and other (Section 3.2).
For the quality assurance, about 10% of this pseudo
annotation were randomly sampled and manually
evaluated, showing a precision, a recall, and the F1-
score of 97.58%, 94.34%, and 95.93%, respectively.
Finally, the annotation was manually checked again
while it was systematically corrected for routinely
produced errors. Although mention detection was

the foundational step, including it as a part of this
shared task could over-complicate the evaluation.
Thus, gold mentions were provided for this year’s
shared task such that participants could purely con-
centrate on the task of entity linking.

3.2 Entity Annotation

All mentions were double-annotated with their ref-
erent entities, and adjudicated upon disagreements.
Annotation and adjudication tasks were conducted
on Amazon Mechanical Turk. Each mention was
annotated with either a primary character, that are
Ross, Chandler, Joey, Rachel, Monica, and Pheobe,
a secondary character (other frequently recurring
characters across the show), or one of the following
ambiguous types suggested by Chen et al. (2017):

• Generic: indicates actual characters in the show
whose identities are unknown (e.g., That waitress
is really cute, I am going to ask her out). Generic
entities are annotated with their group names and
optional numberings (e.g., Man 1, Woman 1).

• Collective: indicates the plural use of the pro-
noun you, which cannot be deterministically dis-
tinguished from the singular use.

• General: indicates mentions used in reference to
a general case rather than an specific entity (e.g.,
The ideal guy you look for doesn’t exist).

• Other: indicates all the other kinds of entities.

For this year’s shared task, mentions annotated with
the last three ambiguous types, collective, general,
and other, were excluded from the dataset to reduce
the high complexity of this task (Table 2).

Primary Secondary Generic Total
Season 1 5,160 2,526 178 7,864
Season 2 5,385 2,340 120 7,845

Total 10,545 4,866 298 15,709

Table 2: Distributions of the annotated entity types
used for this shared task.
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Speaker Utterance
Joey Yeah, right! ... You1 serious?

Rachel Everything you2 need to know is in that first kiss.
Chandler Yeah. For us3, it’s like the stand-up comedian4 you5 have to sit through before the main dude6 starts.

Ross It’s not that we7 don’t like the comedian8, it’s that ... that’s not why we9 bought the ticket.

{You1} → Rachel, {us3, we7,9} → Collective, {you2,5} → General, {comedian4,8} → Generic, {dude6} → Other

Table 3: Examples of the entity annotation described in Section 3.2.

Episodes Scenes Entities Mentions ClustersE ClustersS SingletonE SingletonS

Training 47 374 372 13,280 893 2,051 209 472
Evaluation 7 74 106 2,429 304 370 54 83

Total 47 448 401 15,709 1,197 2,421 263 555

Table 4: Distributions of the training and the evaluation sets in Section 3.3.

Table 3 shows examples of these ambiguous types.
About 83% were assigned to the primary and sec-
ondary characters, 1.4% were assigned to generic,
and the rest were assigned to the other ambiguous
types, collective, general, and other. To evaluate
the annotation quality, the annotation agreement
scores as well as Cohen’s kappa scores were mea-
sured, showing 82.83% and 79.96%, respectively.

3.3 Data Split

The corpus was split into training and evaluation
sets for this shared task (Table 4). No dedicated
development set was provided; participants were
encouraged to use sub-parts of the training set to
create their own development sets or perform cross-
validation for the optimization of statistical models.
Two types of datasets are provided for both training
and evaluation sets, one treating each episode as
an individual dialogue and the other treating each
scene as an independent dialogue.5

Processing a larger dialogue makes coreference
resolution harder because it needs to link referential
mentions that are farther apart; on the other hand,
each cluster comprises a greater number of men-
tions which can help identifying the global entity
of that cluster. The numbers of clusters grouped in
each dataset are shown as ClustersE and ClustersS ,
implying episode-level and scene-level clusters, re-
spectively. Our corpus includes singleton mentions,
which take about 22% of all mentions.

3.4 Data Format

To help participants adapting their existing coref-
erence resolution systems to this task, the original
dataset in JSON was converted into the CoNLL’12
5Each episode consists of about 10 scenes on average.

shared task format (Pradhan et al., 2012), where
each column is delimited by white spaces and rep-
resents the following:

1. Season and episode ID.

2. Document ID.

3. Token ID.

4. Word form.

5. Part-of-speech tag (auto-generated).

6. Phrase structure tag (auto-generated).

7. Lemma (auto-generated).

8. Predicate sense (not provided).

9. Word sense (not provided).

10. Speaker.

11. Named entity tag (auto-generated).

12. Entity ID.

The part-of-speech tags, lemmas, and named en-
tity tags were automatically generated by NLP4J,6

and the phrase structure tags were produced by the
Stanford parser.7 Table 5 shows the example of the
first utterance in Figure 1 in the CoNLL’12 format.

4 System Description

This section describes the top-2 scoring systems
of this shared task. The AMORE-UPF is a group
of researchers from the Universitat Pompeu Fabra
in Spain (Section 4.1). The KNU CI is a group of
researchers from Kangwon National University in
South Korea (Section 4.2).
6https://emorynlp.github.io/nlp4j
7https://nlp.stanford.edu/software/
lex-parser.shtml
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s1e1u38 0 0 I PRP (TOP(S(S(NP*) I - - Ross * (7)
s1e1u38 0 1 told VBD (VP* tell - - Ross * -
s1e1u38 0 2 mom NN (NP* mom - - Ross * (9)
s1e1u38 0 3 and CC * and - - Ross * -
s1e1u38 0 4 dad NN *) dad - - Ross * (10)
s1e1u38 0 5 last JJ (NP-TMP* last - - Ross (TIME* -
s1e1u38 0 6 night NN *))) night - - Ross *) -
s1e1u38 0 7 , , * , - - Ross * -
s1e1u38 0 8 they PRP (NP*) they - - Ross * -
s1e1u38 0 9 seemed VBD (VP* seem - - Ross * -
s1e1u38 0 10 to TO (S(VP* to - - Ross * -
s1e1u38 0 11 take VB (VP* take - - Ross * -
s1e1u38 0 12 it PRP (NP*) it - - Ross * -
s1e1u38 0 13 pretty RB (ADVP* pretty - - Ross * -
s1e1u38 0 14 well RB *))))) well - - Ross * -
s1e1u38 0 15 . . *)) . - - Ross * -

Table 5: Example of the first utterance in Figure 1 annotated in the CoNLL’12 format.

4.1 AMORE-UPF System

The AMORE-UPF system approaches this task as
a multi-class classification. It uses a bidirectional
Long Short-Term Memory (LSTM) that processes
the input dialogue and resolves mentions, by means
of a comparison between the LSTM’s hidden state,
for each mention, to vectors in an entity library. In
this model, learned representations of each entity
are stored in the entity library, that is a matrix where
each row represents an entity and whose values are
learned during training (Figure 2).

lution (e.g., the aforementioned approaches, as
well as Wiseman et al. 2016; Lee et al. 2017,
Francis-Landau et al. 2016). For instance, we
avoid feature engineering, focusing instead on the
model’s ability to learn meaningful entity repre-
sentations from the dialogue itself. Moreover, we
deviate from the common strategy to entity linking
of incorporating a specialized coreference resolu-
tion module (e.g., Chen et al. 2017).

3 Model description

We approach the task of character identification
as one of multi-class classification. Our model is
depicted in Figure 1, with inputs in the top left and
outputs at the bottom. In a nutshell, our model
is a bidirectional LSTM (long short-term memory,
Hochreiter and Schmidhuber 1997) that processes
the dialogue text and resolves mentions, by means
of a comparison between the LSTM’s hidden state
(for each mention) to vectors in a learned entity
library.

The model is given chunks of dialogue, which
it processes token by token. The ith token ti and
its speakers Si (typically a singleton set) are repre-
sented as one-hot vectors, embedded via two dis-
tinct embedding matrices (Wt and Ws, respec-
tively) and finally concatenated (Eq. 1; see also xi

in Figure 1). In case Si contains multiple speakers,
their embeddings are summed.

xi = Wt ti k
X

s2Si

Ws s (1)

The resulting embedding xi of a token with its
speakers is passed on to a bidirectional LSTM. The
hidden state

�!
hi of a unidirectional LSTM for the

ith input is recursively defined as a combination of
that input with the LSTM’s previous hidden state�!
hi�1. For a bidirectional LSTM, the hidden state
hi is a concatenation of the hidden states

�!
hi and �

hi of two unidirectional LSTMs which process
the data in opposite directions (Eq. 2; see also Fig-
ure 1). In principle, this enables a bidirectional
LSTM to represent the entire dialogue with a focus
on the current input, including for instance its rele-
vant dependencies on the context (e.g., coreference,
agreement).

hi = BiLSTM(xi,
�!
hi�1,

 �
hi+1) (2)

In the model, learned representations of each en-
tity are stored in the entity library E (see Figure 1).
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Figure 1: The AMORE-UPF model.

This is a matrix where each row vector represents
an entity, and whose values are updated (only) dur-
ing training. For tokens ti that are tagged as men-
tions, we map the hidden state to a representation
that has the same dimensionality as the vectors in
the entity library.3 Its similarity to each entity rep-
resentation is computed using cosine. Softmax is
then applied to the resulting similarity profile to
obtain a probability distribution oi over entities
(‘class scores’ in Figure 1):

oi = softmax(cosine(E, (Wo hi + b)| {z }
ei

) (3)

We train the model with backpropagation, using
negative log-likelihood as loss function. Besides
the BiLSTM parameters, we optimize Wt, Ws,
Wo, E and b. At testing time, the model’s predic-
tion ĉi for the ith token is the entity with highest
probability:

ĉi = argmax(oi) (4)

In order for this architecture to be successful, ei
needs to be as similar as possible to the entity vector
of the entity to which mention i refers. We refer
to this model as AMORE-UPF, our team name in
the SemEval competition.

In order to assess the contribution of the entity
library, we compare our model to a similar architec-
ture which does not include it (NoEntLib). This
model obtains scores by directly applying softmax

3For multi-word mentions this is done only for the last
token in the mention.

Figure 2: The overview of AMORE-UPF system.

4.2 KNU-CI System

The KNU-CI system tackles this task as a sequence-
labeling problem. It uses an attention-based recur-
rent neural network (RNN) encoder-decoder model.
The input dialogue of character identification con-
sists of several conversations, resulting a long se-
quence of text. The RNN encoder-decoder model

suffers from poor performance when the length of
the input sequence is long. To overcome this issue,
this system applies an attention, position encoding,
and the self-matching network to the original RNN
encoder-decoder model. As a result, the best per-
formance is achieved by the attention-based RNN
depicted in Figure 3.
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the decoder and the hidden state of the encoder 
when performing decoding. 

2.1 Model 1: Attention-based Enc–Dec 
model 

The first model proposed in this paper is a general 
attention mechanism-based Enc–Dec model, as 
shown in Figure 1. 

The input of the encoder is one document that 
contains 𝑆  sentences (multiparty dialogue). Each 
sentence 𝑆 consists of 𝑛𝑆 words, and the input se-
quence 𝑋𝑖𝑛𝑝𝑢𝑡  is 𝑋𝑖𝑛𝑝𝑢𝑡 = {𝑥1, 𝑥2, … , 𝑥𝑛𝑆} . The 
input to the decoder is 𝑌𝑖𝑛𝑝𝑢𝑡 = {𝑦𝑖0, 𝑦𝑖1,… , 𝑦𝑖𝑚} 
consisting of the positions of the words given in 
the gold mentions, and the output sequence ac-

cordingly becomes 𝑌𝑜𝑢𝑡𝑝𝑢𝑡 = {𝑦𝑜0, 𝑦𝑜1,… , 𝑦𝑜𝑚} 
consisting of the character number, which is cor-
responded with the decoder’s input mentions. 

 We use word embedding and adopt the K-
dimensional word embedding 𝑒𝑖

𝑘, 𝑘 ∈ [1, 𝐾]  for 
all input words, where 𝑖 is the word index in the 
input sequence. We perform feature embedding 
for three features — speaker, named entity recog-
nition (NER) tags, and capitalization — and con-
catenate them to make �̃�𝑖. The uppercase feature 
is a binary feature (1 or 0) that verifies whether 
the uppercase is included in the word. 10-
dimensional speaker embedding for a total of 205 
different types of speakers included by “un-
known”. 19-dimensional NER embedding for a 
total of 19 different types of NER tags. 

We use bidirectional gated recurrent unit 
(BiGRU) (Cho et al., 2014) for the encoder. The 
hidden state of the encoder for the input (word) 
sequence is defined as ℎ𝑖

𝑁. 

 𝑒𝑖 = 𝑊𝑒𝑥𝑖   (1) 

 �̃�𝑖 = [𝑒𝑖; 𝑢𝑐𝑖; 𝑠𝑝𝑘𝑖; 𝑁𝐸𝑅𝑖]  (2) 

 ℎ𝑖 = 𝑏𝑖𝐺𝑅𝑈(�̃�𝑖 , ℎ𝑖−1)  (3) 

where ℎ⃗ 𝑖  and ℎ⃗⃖𝑖  are forward and backward net-
works, respectively, and ℎ𝑖

𝑁 concatenates ℎ⃗ 𝑖 and ℎ⃗⃖𝑖. 
The decoder of our model uses the GRU as fol-

lows. 

 ℎ𝑡 = 𝐺𝑅𝑈(ℎ𝑦𝑖𝑡
𝑁 , ℎ𝑡−1)  (4) 

The input of the decoder is the hidden state ℎ𝑖
𝑁 

generated by the encoder corresponding to each 
position of 𝑌𝑖𝑛𝑝𝑢𝑡  which is the gold mention se-
quence. The hidden state ℎ𝑡 of the current decoder 
receives the hidden state ℎ𝑖

𝑁 of the encoder corre-
sponding to the output position of the previous de-
coder and the previous hidden state of the decoder. 

 𝛼𝑖
𝑡 =

exp(𝑠𝑐𝑜𝑟𝑒𝑎(ℎ𝑡,ℎ𝑦𝑖𝑖
𝑁 ))

∑ exp(𝑠𝑐𝑜𝑟𝑒𝑎(ℎ𝑡,ℎ𝑦𝑖𝑗
𝑁 ))𝑗

  (5) 

𝑠𝑐𝑜𝑟𝑒𝑎 (ℎ𝑡, ℎ𝑦𝑖
𝑁

𝑖
) = vt

𝑇tanh(𝑊𝑎 [ℎ𝑡; ℎ𝑦𝑖
𝑁

𝑖
; ℎ𝑦𝑖𝑡

𝑁 ]) (6) 

 𝑦𝑡 = argmax𝑖(𝑎𝑖
𝑡)  (7) 

 𝑐𝑡 = ℎ𝑦𝑡
𝑁 ,ℎ𝑎𝑟𝑑𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛  (8) 

At the attention layer of the decoder, we use the 
attention weight 𝛼𝑖

𝑡  to compute the alignment 
score for the gold mention input into the decoder 
and the encoder hidden state ℎ𝑖

𝑁 input. The atten-
tion layer acts as a coreference resolution for each 
gold mention and input sequence. After calculat-
ing the attention weights, we create the context 
vector 𝑐𝑡. We use hard attention in Eq. (8). Hard 
attention 𝑐𝑡 = ℎ𝑦𝑡

𝑁  is an attention-pooling vector, 
which is based on the argmax function Eq. (7) for 
attention weight 𝛼𝑖

𝑡  to choose the position with 
high score for the decoder input as the gold men-
tion. 

𝑠𝑐𝑜𝑟𝑒𝑧(ℎ𝑡, 𝑐𝑡, ℎ𝑦𝑖𝑡
𝑁 ) = 𝑊𝑧2

𝑇 ReLU(𝑊𝑧[ℎ𝑡; 𝑐𝑡; ℎ𝑦𝑖𝑡
𝑁 ])  (9) 

𝑦𝑜𝑡 = argmax𝑡 (𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑠𝑐𝑜𝑟𝑒𝑧(ℎ𝑡, 𝑐𝑡, ℎ𝑦𝑖𝑡
𝑁 )))  (10) 

After calculating the context vector between the 
input of the encoder and the input of the decoder, 
we calculate 𝑠𝑐𝑜𝑟𝑒𝑧, using which the context vec-
tor 𝑐𝑡, decode hidden state ℎ𝑡 and encoder hidden 
state ℎ𝑁  are concatenated in the decoder hidden 
layer. Next, the softmax function is used to calcu-
late the alignment score for 𝑠𝑐𝑜𝑟𝑒𝑧, and then the 
character index (𝑌𝑜𝑢𝑡𝑝𝑢𝑡 ) for the CI task corre-
sponding to the input of the decoder is obtained 
using the argmax function. 

 
Figure 1: Attention-based Enc-Dec. Figure 3: The overview of KNU-CI system.

5 Evaluation

Following Chen et al. (2017), the labeling accuracy
(Acc) and the macro-average F1 score (F1) are used
for the evaluation (C: the total number of charac-
ters, F1i: the F1-score for the i’th character):

Acc =
# of corrected identified mentions

# of all mentions

F1 =
1

C

C∑

i=1

F1i

Table 6 shows the overall scores from all submitted
systems. Two types of evaluation are performed for
this task. The first one is based on seven characters
where six of them compose the primary characters
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(Section 3.2) and every other character is grouped
as one entity called Others (Main + Others). The
other is based on 78 characters comprising all char-
acters appeared in the dataset, except for the ones
appear either in the training or the evaluation set but
not both, which is grouped to the Others (ALL).

Main + Others ALL
System Acc F1 Acc F1

AMORE-UPF 77.23 79.36 74.72 41.05
KNU-CI 85.10 86.00 69.49 16.98
Kampfpudding 73.36 73.51 59.45 37.37
Zuma-AR 46.85 44.68 33.06 16.09

Table 6: Overall scores from the submitted systems.

Table 7 shows the F1 scores for the primary charac-
ters and Others, illustrating detailed evaluation
for Main + Others. Table 8 gives detailed evalua-
tion for ALL, showing the F1-scores for the top-12
most frequently appeared secondary characters and
Others that appear only in the training or the eval-
uation set but not both. The 18 characters in these
two tables comprise about 85% of all mentions.

6 Analysis

Based on the evaluation results, several interesting
observations can be made for how different system
architectures affect model performance on this task.
The analysis in this section primarily focuses on the
top-2 scoring systems, AMORE-UPF an KNU-CI,
as their results vastly outperform the other two and
the authors of those systems provide more detailed
descriptions to the organizers.

6.1 Overall Performance

It is worth pointing out the significance of the two
evaluation metrics proposed in Section 5 in terms
of the model performance. The labeling accuracy
indicates the raw predicative power of the model.
This metric is biased towards more frequently ap-
pearing characters such as the primary characters, a
total of which compose 70+% of the evaluation set.
Thus, it is possible to achieve a relatively high label-
ing accuracy score without handling referents for
the secondary characters well. On the contrary, the
macro-average F1 score neutralizes the imbalance
between frequently and not so frequently appearing
characters. It reveals the model performance on a
per-entity basis, which tends to favor transient and
extra characters more because every character is
treated equally in this metric.

For the overall performance, KNU-CI outperforms
for Main + Others with the labeling accuracy of
85.10% and the macro-average F1 score of 86.00%,
whereas AMORE-UPF outperforms for ALL with
the labeling accuracy of 74.72% and the macro-
average F1 of 41.05% (Table 6). All systems pro-
duce better results for Main + Others than ALL,
which is expected due to the fewer number of enti-
ties to classify (7 vs 78). It is possible that KNU-
CI’s attention model is highly optimized for the
identification of the primary characters, whereas
AMORE-UPF’s LSTM model distributes weights
for the secondary characters more evenly, but more
detailed analysis needs to be made to see the com-
parative strengths between these two systems.

6.2 Main + Other Identification
Table 7 depicts the strength of the KNU-CI system
for the primary characters in comparisons to the
others, which is attributed to its unique sequence
labeling architecture and the attention mechanism.
Their encoder-decoder architecture helps consoli-
dating sequential information of the input dialogue
along with the mentions. The hidden units in RNNs
enable the network to aggregate character-related
information and to disambiguate timeline shifts
across utterances. The encoder takes the input dia-
logue and provides the decoder with context-rich
features. Coupled with the attention mechanism,
this model focuses on the primary characters; thus,
it results better performance on Main + Others.
However, this architecture is not as well-adaptive
as the number of characters increases for the identi-
fication, which can be observed from the system’s
low macro-average F1 score for All.

6.3 All Character Identification
Table 8 describes the strength of the AMORE-UPF
system for the secondary characters using the bidi-
rectional LSTM model, leading it to outperform all
the others for All. Although both AMORE-UPF
and KNU-CI utilize variations of RNNs as their un-
derlying architectures, the performance downfall is
not as prominent for AMORE-UPF as the number
of characters increases, thanks to its entity library.
The entity library is consumed and updated as nec-
essary given the mention embeddings. It is used to
regularize training each individual character, which
helps avoiding the bias towards frequently appear-
ing characters. As the result, AMORE-UPF yields
better performance for All while accomplishing
reasonable results for Main + Others as well.
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Character Ross Rachel Chandler Joey Phoebe Monica Others

Evaluation 18.98 13.96 9.80 9.51 9.02 8.97 29.77
Training 13.93 12.37 11.43 9.43 8.79 10.61 33.44
AMORE-UPF 78.57 82.98 81.36 79.83 86.52 85.22 61.02
KNU-CI 85.86 92.49 84.94 79.67 88.09 91.16 79.79
Kampfpudding 73.48 70.67 79.25 63.38 79.79 73.35 74.61
Zuma-AR 38.72 43.05 43.04 36.10 42.90 46.43 51.78

Table 7: Detailed evaluation for Main + Others in Table 6. The Evaluation and Training rows show the
percentages of individual characters appeared in the evaluation and the training set, respectively.

Character Be Ca Ed Pa Ju MB Ri Sc Ca Fr Ja OT

Evaluation 3.46 1.73 1.56 1.44 1.32 0.86 0.86 0.78 0.74 0.70 0.62 2.92
Training 1.41 1.46 1.06 0.71 1.15 0.60 1.83 0.21 0.13 0.51 0.43 13.51
AMORE-UPF 50.00 57.14 80.60 35.56 72.73 64.52 80.85 10.00 61.54 0.00 42.11 7.89
KNU-CI 38.46 62.79 73.02 15.38 42.55 0.00 66.67 38.46 0.00 18.18 16.00 0.00
Kampfpudding 31.86 33.33 68.85 33.33 60.32 50.00 61.22 10.00 0.00 0.00 23.53 0.00
Zuma-AR 0.00 12.24 44.44 0.00 27.91 15.38 77.78 0.00 38.46 0.00 12.50 0.00

Table 8: Detailed evaluation for ALL in Table 6. Be: Ben, Ca: Carol, Ed: Eddie, Pa: Paolo, Ju: Julie: MB:
Mrs. Bing, Ri: Richard, Sc: Scott, Ca: Carl, Fr: Frank, Ja: Janice, OT: Others.

7 Conclusion

In this shared task, we propose a novel entity link-
ing task called character identification that aims to
find the global entities for all personal mentions,
representing individual characters in the contexts
of multiparty dialogue. Among 90+ participants
signed up for this task at CodaLab, only four sub-
mitted their system outputs, which is unfortunate.
However, the top-2 scoring systems depict unique
strengths, allowing us to make a good analysis for
this task. It would be interesting to see if the se-
quence labeling architecture from KNU-CI coupled
with the entity library from AMORE-UPF could
produce an even higher performing model for both
the Main + Other and All evaluation.

To facilitate the momentum, we create an open-
source project that will continuously support this
task.8 It is worth mentioning that Character Identi-
fication is a part of a bigger project called Charac-
ter Mining that strives for machine comprehension
on dialog.9 Currently, this project provides more
and cleaner annotation for character identification
than the corpus described in Section 3, hoping to
engage more researchers to this task.

8https://github.com/emorynlp/
character-identification

9https://github.com/emorynlp/
character-mining
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