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Abstract

In this paper, we present MayoNLP’s
results from the participation in the Sci-
enceIE share task at SemEval 2017. We
focused on the keyphrase classification
task (Subtask B). We explored semantic
similarities and patterns of keyphrases in
scientific publications using pre-trained
word embedding models. Word Embed-
ding Distance Pattern, which uses the head
noun word embedding to generate distance
patterns based on labeled keyphrases,
is proposed as an incremental feature
set to enhance the conventional Named
Entity Recognition feature sets. Support
vector machine is used as the supervised
classifier for keyphrase classification. Our
system achieved an overall F1 score of
0.67 for keyphrase classification and 0.64
for keyphrase classification and relation
detection.

1 Introduction

In this paper, we present details of our partic-
ipation in the SemEval 2017 Task 10, Scien-
ceIE (Augenstein et al., 2017). Named Entity
Recognition (NER) is one of the major challenges
in Natural Language Processing (NLP) and text
mining. The interesting entity types in NER
tasks vary from communities and corpora. In
general, NLP community mainly focused on the
identification of proper nouns or noun phrases,
e.g., locations, names and organizations in news
corpora (Nadeau and Sekine, 2007). In contrast,
biomedical community is more interested in find-
ing biomedical or clinical terminologies (Leaman
and Gonzalez, 2008; Tsuruoka and Tsujii, 2005)
in biomedical texts and scientific literatures. There
are several machine learning based methods used

in biomedical NER, which include Support Vector
Machine (SVM) (Lee et al., 2004), Hidden
Markov Model (HMM) (Zhou and Su, 2004) and
Conditional Random Field (CRF) (Tsai et al.,
2006).

Semantic word embedding (Mikolov et al.,
2013) is designed to capture different degrees
of similarity between words using a vectorized
representation, which preserves semantic and
syntactic relationships. Word embeddings and
word embedding based features have drawn
increasing attention for classification tasks (Ma
et al., 2015) and similarity prediction tasks (Afzal
et al., 2016).

We leveraged pre-trained word embeddings to
obtain head noun pattern features, and combined
several other NER feature sets to improve the
keyphrase classification performance. Although
our team participated in Scenario 2 (keyphrase
classification and relation detection), our efforts
were focused on keyphrase classification task
(Subtask B). For the relation detection problem
(Subtask C), we implemented a straightforward
rule-based system to detect synonyms and hy-
ponyms given annotated keyphrases.

The rest of the paper is organized as follows.
Section 2 briefly introduces the corpus used in this
task. Section 3 discusses the methods proposed
in our NER system. Section 4 addresses the
experimental results in the development set, our
submitted runs and official evaluation results.
Finally, Section 5 concludes the paper with
possible extensions for future work.

2 Materials

The corpus provided by the ScienceIE organizers
consisted of 500 introductory paragraphs from
ScienceDirect journal articles in Computer Sci-
ence, Material Sciences and Physics. The corpus
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was divided into training, development and test
sets, which contained 350, 50 and 100 documents,
respectively. It is the first publicly available corpus
with annotations focused on the research topics
and goals of general domain scientific literature.
The annotated keyphrases were relatively longer
than other annotated corpora, which makes the
boundary detection and classification task very
challenging. More details of the corpus can be
found in (Augenstein et al., 2017).

3 Methods

3.1 Preprocessing

To facilitate feature extraction for supervised
classification, all plain text sentences and an-
notations were pre-processed by NLTK1 for
tokenizing, Part-of-Speech (POS) tagging and
sentence detection.

3.2 Head Noun Extraction

Intuitively, the head noun of a keyphrase provides
important information of its semantic category
(Li, 2010). For example, in the phrase
“homonuclear chains of tangent Mie spherical
CG segments” from the ScienceIE 2017 corpus,
the noun “chains” determines the phrase is from
the category “Material”. In another example,
the category of the phrase “applications of
methodology of research” is determined by the
head noun “application”, which is an instance
of “Task”. Extracting the head noun can help
eliminate ambiguous contexts while preserving
the semantic information for the classification
step. Therefore, we used the extracted head
noun features, rather than the features from whole
phrase, to determine the semantic category.

A shallow parsing approach is applied to extract
the head nouns from given phrases. We removed
the part at and after the preposition token “of”,
“with”, “for” and “on”, and kept only the features
from the head noun for the feature extraction step.
In the above examples, we extracted the head noun
“chains” and “applications”.

3.3 Feature Set

Given a sentence and a head noun token wi, we
adopted several commonly used feature sets as
the input of supervised classifiers for the baseline
system.

1http://www.nltk.org/

Lexical features The lower case of tokens in
±2 window.

Orthographic features The set of case, char-
acter and symbolic features of given token.
Orthographic features are all binary features: if the
token contains only upper case letters, if only the
first letter is in upper case, if the token contains
only alphabetic characters, if the token contains
numbers, and if the token starts with alphabetic
characters and ends with numbers.

Part-Of-Speech features The Part-Of-Speech
(POS) tags for the tokens in ±2 window.

Lemma features Lemmatized word of wi and
its verb form from WordNet. For example, for
the token “derivations”, the lemmatized word is
“derivation” and the verb form is “derive”.

3.4 Word Embedding Distance Pattern

The extraction of head nouns in keyphrases
enables utilizing word embedding information as
features in the keyphrase classification task.

To improve the performance using baseline
NER features described above, we proposed Word
Embedding Distance Pattern (WEDP). It is based
on the assumption that the differences among
the head nouns in each semantic category should
follow similar patterns in semantic word vector
space. We would like to validate and obtain the
patterns in this keyphrase classification task.

We selected 10 most frequent head nouns from
each category in the training corpus. After
excluding the duplications, we obtained the
following list of keywords M={model, particle,
data, system, film, problem, algorithm, function,
effect, equation, reaction, method, surface, alloy,
layer, structure}. We also added the category
names (task, material, process) into M .

Given a token w, the word embedding distance
to each of the k-th word-embedding above is
calculated by

dk(w) = dist(w2v(w), w2v(Mk)), (1)

where k = 1, . . . , |K|, the distance function dist
is the cosine distance, and w2v is the dictionary
lookup method, which returns the embedding of
the input token from a pre-trained word to vector
(word2vec) model. If the token w cannot be found
in the word embedding dictionary, we set dk(w) =
1 for all k.

In this study, we used the word embedding
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“ ()”, “, where .”, “, i.e. )”,
“ (i.e., in terms of )”, “, or equivalently, .”,
“, which is the ,”, “, the so-called ”,
“, which are called [,.]”, “, which is called [,.]”,
“ (the )”

Table 1: Matching contexts for synonym detec-
tion, separated by comma (“,”)

model GloVe 2. We tested the overall classification
performance against different dimensions, ranging
from 50 to 300, but found the differences are
negligible. For better algorithm efficiency, we
selected the 50-dimension model as the final
solution.

3.5 Classification

In this study, we modeled the keyphrase classifica-
tion task as a supervised multi-class classification
problem. All features described in Section 3.3
were encoded into a sparse vector, and then
combined with the WEDP as the input of
supervised classifiers.

3.6 Relation Extraction

For the relation extraction subtask, we imple-
mented a simple rule-based system. For each
sentence, we considered all possible pairs of
the entities as relation candidates. For each
candidate, the context texts between two entities
were extracted, including one character after the
entity appeared later of the pair. The matching
patterns we used are shown in Table 1. If any
of those patterns matched with the context, we
identified the pair as a detected relation. Relations
sharing at least one entity were grouped together
as one relation, according to the requirement of
output format.

We used hearstPattern3 which implements
Hearst patterns (Hearst, 1992) for hyponym
detection.

4 Results

We tested several supervised classification meth-
ods, The results on development set are shown
in Table 2. The L2-loss linear kernel SVM was
selected as the classifier and used the scikit-learn4

implementation. The result also validated that

2http://nlp.stanford.edu/projects/glove/
3https://github.com/mmichelsonIF/hearst patterns python
4http://scikit-learn.org/

SVM can outperform other classification methods
in high dimensional data (Chang and Lin, 2011).
The hyperparameter C was tested in the range
from 0.01 to 10. The F1 scores5 range from 0.70
to 0.78 and yields the highest F1-score on the
development set when C is set to 0.5.

Classifier Material Process Task Avg
ExtraTrees 0.77 0.69 0.45 0.68

SGD 0.76 0.67 0.35 0.65
5-NN 0.66 0.59 0.24 0.56

RBF-SVM 0.76 0.71 0.29 0.65
Linear SVM 0.88 0.75 0.45 0.78

Table 2: F1 scores for different classification
methods on development set for Subtask B.
(5-NN: 5 Nearest Neighbor; SGD: Stochastic
Gradient Descent; RBF: Radial Basis Function)

Ablation experiments were conducted on the
development set to find the importance of indi-
vidual feature sets. The ablation results in F1
scores are shown in Table 3. From Table 3, we see
that both the baseline feature sets and the WEDP
contributed to the overall performance, since the
combination of these two sets outperform the other
feature settings.

Feature sets F1 score
Lexical features, ±1 window 0.68

+ ±2 window 0.69
+ Orthographic features 0.71

+ POS features 0.72
+ Lemma feastures 0.72

baseline features only 0.72
WEDP features only 0.67

All 0.78

Table 3: Ablation F1 scores of keyphrase
classification on the development set

The official evaluation uses the standard preci-
sion (P), recall (R) and F1 score as the metrics. We
submitted two runs for official evaluation. Run 1
uses the feature set described in Section 3.3 with
synonym detection result. Run 2 is derived by
extending Run 1 by predicted hyponyms. Both
runs achieved F1 score of 0.64 for Subtasks B
and C. This was due to the insignificance from
the positive cases of “Hyponym-of” relations on
Run 2. The results of Run 2 are shown in

5Unless specified, the F1 scores mentioned in this section
are micro-average F1 scores in keyphrase classification.
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Category P R F1 score Support
Material 0.74 0.78 0.76 904
Process 0.69 0.64 0.66 954

Task 0.28 0.29 0.28 193
Synonym-of 0.42 0.27 0.33 112
Hyponym-of 0.16 0.03 0.05 95

Entity 0.67 0.67 0.67 2051
Relation 0.37 0.16 0.23 207
Overall 0.66 0.62 0.64 2258

Table 4: Official evaluation results of the best
submitted run on the test set using annotated
keyphrase boundaries (Scenario 2).

Table 4. From the results, “Task” is the most
difficult category for our proposed method, but its
relatively low proportion reduces its impact on the
overall F1 score. Compared to the development
set Table 2, the F1 scores of all three categories
drop by at least 0.09, which indicates the selected
classifier suffers from overfitting.

5 Conclusion

In this paper, we presented details of MayoNLP’s
participation in the ScienceIE share task at
SemEval 2017. We used a supervised classifier
for the keyphrase classification task using word
embedding distance patterns, which improves the
performance of conventional feature sets. Our
system achieved an overall F1 score of 0.67
for keyphrase classification subtask and 0.64 for
keyphrase classification and relation detection
subtasks. It outperformed other participating
systems in Scenario 2.

A future extension of this work is to test the pat-
terns on different pre-trained word embeddings.
We will also develop methods for more accurate
key noun extraction such as dependency parsing,
to improve the overall classification performance.

Acknowledgments

We would like to thank Yanshan Wang, Raviku-
mar Komandur Elayavilli, and Majid Rastegar-
Mojarad for their valuable suggestions. This work
is supported by NIH grants R01GM102282-01A1
and R01EB19403-01 and NSF IPA grant.

References
Naveed Afzal, Yanshan Wang, and Hongfang Liu.

2016. MayoNLP at SemEval-2016 Task 1: Seman-

tic textual similarity based on lexical semantic net
and deep learning semantic model. In Proceedings
of the 10th International Workshop on Semantic
Evaluation (SemEval 2016). San Diego, CA, USA.

Isabelle Augenstein, Mrinal Kanti Das, Sebastian
Riedel, Lakshmi Nair Vikraman, and Andrew Mc-
Callum. 2017. SemEval 2017 Task 10: ScienceIE -
Extracting Keyphrases and Relations from Scientific
Publications. In Proceedings of the International
Workshop on Semantic Evaluation. Association for
Computational Linguistics, Vancouver, Canada.

Chih-Chung Chang and Chih-Jen Lin. 2011. Lib-
svm: A library for support vector machines.
ACM Trans. Intell. Syst. Technol. 2(3):27:1–27:27.
https://doi.org/10.1145/1961189.1961199.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of
the 14th Conference on Computational Linguistics
- Volume 2. Association for Computational Linguis-
tics, Stroudsburg, PA, USA, COLING 1992, pages
539–545. https://doi.org/10.3115/992133.992154.

Robert Leaman and Graciela Gonzalez. 2008. Banner:
An executable survey of advances in biomedical
named entity recognition. In Pacific Symposium on
Biocomputing (PSB). pages 652–663.

Ki-Joong Lee, Young-Sook Hwang, Seonho Kim, and
Hae-Chang Rim. 2004. Biomedical named entity
recognition using two-phase model based on SVMs.
Journal of Biomedical Informatics 37(6):436 –
447. Named Entity Recognition in Biomedicine.
https://doi.org/10.1016/j.jbi.2004.08.012.

Xiao Li. 2010. Understanding the semantic structure
of noun phrase queries. In Proceedings of
the 48th Annual Meeting of the Association
for Computational Linguistics. Association
for Computational Linguistics, Stroudsburg,
PA, USA, ACL ’10, pages 1337–1345.
http://dl.acm.org/citation.cfm?id=1858681.1858817.

Mingbo Ma, Liang Huang, Bing Xiang, and
Bowen Zhou. 2015. Dependency-based con-
volutional neural networks for sentence em-
bedding. In Proceedings of the 53st An-
nual Meeting of the Association for Computa-
tional Linguistics (ACL). Association for Computa-
tional Linguistics, Beijing, China, pages 174–179.
http://aclweb.org/anthology/P/P15/P15-2029.pdf.

Tomas Mikolov, Scott Wen-tau Yih, and Geoffrey
Zweig. 2013. Linguistic regularities in continuous
space word representations. In Proceedings of the
2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL-HLT-2013).
Association for Computational Linguistics.

David Nadeau and Satoshi Sekine. 2007. A
survey of named entity recognition and classi-
fication. Lingvistic Investigationes 30(1):3–26.
https://doi.org/10.1075/li.30.1.03nad.

959



Tzong-han Tsai, Wen-Chi Chou, Shih-Hung Wu,
Ting-Yi Sung, Jieh Hsiang, and Wen-Lian Hsu.
2006. Integrating linguistic knowledge into a condi-
tional random fieldframework to identify biomedical
named entities. Expert Syst. Appl. 30(1):117–128.
https://doi.org/10.1016/j.eswa.2005.09.072.

Yoshimasa Tsuruoka and Jun’ichi Tsujii. 2005. Bidi-
rectional inference with the easiest-first strategy
for tagging sequence data. In Proceedings of
the Conference on Human Language Technology
and Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics,
Stroudsburg, PA, USA, HLT ’05, pages 467–474.
https://doi.org/10.3115/1220575.1220634.

Guodong Zhou and Jiang Su. 2004. Exploring
deep knowledge resources in biomedical
name recognition. In Proceedings of the
International Joint Workshop on Natural Language
Processing in Biomedicine and Its Applications.
Association for Computational Linguistics,
Stroudsburg, PA, USA, JNLPBA ’04, pages 96–99.
http://dl.acm.org/citation.cfm?id=1567594.1567616.

960


