
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 942–946,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

EELECTION at SemEval-2017 Task 10:
Ensemble of nEural Learners for kEyphrase ClassificaTION

Steffen Eger†‡, Erik-Lân Do Dinh†, Ilia Kuznetsov†, Masoud Kiaeeha†, Iryna Gurevych†‡

†Ubiquitous Knowledge Processing Lab (UKP-TUDA)
Department of Computer Science, Technische Universität Darmstadt

‡Ubiquitous Knowledge Processing Lab (UKP-DIPF)
German Institute for Educational Research and Educational Information

http://www.ukp.tu-darmstadt.de

Abstract

This paper describes our approach to
the SemEval 2017 Task 10: “Extracting
Keyphrases and Relations from Scientific
Publications”, specifically to Subtask (B):
“Classification of identified keyphrases”.
We explored three different deep learn-
ing approaches: a character-level convo-
lutional neural network (CNN), a stacked
learner with an MLP meta-classifier, and
an attention based Bi-LSTM. From these
approaches, we created an ensemble of
differently hyper-parameterized systems,
achieving a micro-F1-score of 0.63 on the
test data. Our approach ranks 2nd (score
of 1st placed system: 0.64) out of four ac-
cording to this official score. However, we
erroneously trained 2 out of 3 neural nets
(the stacker and the CNN) on only roughly
15% of the full data, namely, the origi-
nal development set. When trained on the
full data (training+development), our en-
semble has a micro-F1-score of 0.69. Our
code is available from https://github.
com/UKPLab/semeval2017-scienceie.

1 Introduction

Although scientific experiments are often accom-
panied by vast amounts of structured data, full-text
scientific publications still remain one of the main
means for communicating academic knowledge.
Given the dynamic nature of modern research and
its ever-accelerating pace, it is crucial to automat-
ically analyze new works in order to have a com-
plete picture of advances in a given field.

Recently, some progress has been made in this
direction for the fixed-domain use case1. How-
ever, creating a universal open-domain system still

1 E.g. BioNLP: http://2016.bionlp-st.org/

remains a challenge due to significant domain dif-
ferences between articles originating from differ-
ent fields of research. The SemEval 2017 Task 10:
ScienceIE (Augenstein et al., 2017) promotes
the multi-domain use case, providing source ar-
ticles from three domains: Computer Science,
Material Sciences and Physics. The task con-
sists of three subtasks, namely (A) identification
of keyphrases, (B) classifying them into broad
domain-independent classes and (C) inferring re-
lations between the identified keyphrases.

For example, for the input sentence ‘The ther-
modynamics of copper-zinc alloys (brass) was
subject of numerous investigations’ the following
output would be expected:

(A) 1. The thermodynamics of copper-zinc alloys
2. copper-zinc alloys
3. brass

(B) 1. TASK
2. MATERIAL
3. MATERIAL

(C) synonym(2,3)

Our submission focuses on (B) keyphrase clas-
sification given item boundaries. We avoid task-
specific feature engineering, which would poten-
tially render the system domain-dependent. In-
stead, we build an ensemble of several deep learn-
ing classifiers detailed in §3, whose inputs are
word embeddings learned from general domains.

2 Task and Data

In the annotation scheme proposed by the task or-
ganizers, keyphrases denoting a scientific model,
algorithm or process should be classified as
PROCESS (P), which also comprises methods
(e.g. ‘backpropagation’), physical equipment (e.g.
‘plasmatic nanosensors’, ‘electron microscope’)
and tools (e.g. ‘MATLAB’). TASK (T) contains

942



concrete research tasks (e.g. ‘powder processing’,
‘dependency parsing’) and research areas (e.g.
‘machine learning’), while MATERIAL (M) in-
cludes physical materials (e.g. ‘iron’, ‘nanotube’),
and corpora or datasets (e.g. ‘the CoNLL-2003
NER corpus’).

The corpus for the shared task consisted of
500 journal articles retrieved from ScienceDirect2,
evenly distributed among Computer Science, Ma-
terial Sciences and Physics domains. It was split
into three segments of 350 (training), 50 (develop-
ment), and 100 (test) documents. The corpus used
in subtask (B) contains paragraphs of those arti-
cles, annotated with spans of keyphrases. Table 1
shows the distribution of the classes M, T, and P in
the data. We note that class T is underrepresented
and makes up less than 16% of all instances.

Material Process Task

Train+Dev 40% 44% 16%
Test 44% 47% 9%

Table 1: Class distribution in the datasets.

Inter-annotator agreement for the dataset was
published to be between 0.45 and 0.85 (Cohen’s κ)
(Augenstein et al., 2017). Reviewing similar anno-
tation efforts (QasemiZadeh and Schumann, 2016)
already shows that despite the seemingly simple
annotation task, usually annotators do not reach
high agreement neither on span of annotations nor
the class assigned to each span3.

3 Implemented Approaches

In this section, we describe the individual systems
that form the basis of our experiments (see §4).

Our basic setup for all of our systems was as
follows. For each keyphrase we extracted its left
context, right context and the keyphrase itself
(center). We represent each of the three contexts
as the concatenation of their word tokens: to have
fixed-size representations, we limit the left context
to the ` previous tokens, the right context to the r
following tokens and the center to the c initial to-
kens of the keyphrase. We consider `, r and c as
hyper-parameters of our modeling. If necessary,
we pad up each respective context with ‘empty’
word tokens. We then map each token to a d-
dimensional word embedding. The choices for

2 http://www.sciencedirect.com/
3F1-scores ranging from 0.528 to 0.755 for span bound-

aries and from 0.471 to 0.635 for semantic categories.

word embeddings are described below. To sum-
marize, we frame our classification problem as a
mapping fθ (θ represents model parameters) from
concatenated word embeddings to one of the three
classes MATERIAL, PROCESS, and TASK:

fθ : R`·d × Rc·d × Rr·d → {M,P,T}.
Next, we describe the embeddings that we used
and subsequently the machine learning models fθ.

Word Embeddings
We experimented with three kinds of word em-
beddings. We use the popular Glove embeddings
(Pennington et al., 2014) (6B) of dimensions 50,
100, and 300, which largely capture semantic in-
formation. Further we employ the more syntac-
tically oriented 300-dimensional embeddings of
Levy and Goldberg (2014), as well as the 300-
dimensional embeddings of Komninos and Man-
andhar (2016), which are trained to predict both
dependency- and standard window-based context.

Deep Learning models
Our first model is a character-level convolutional
neural network (char-CNN) illustrated in Fig-
ure 1. This model (A) considers each of the three
contexts (left, center, right) independently, repre-
senting them by a 100-dimensional vector as fol-
lows. Each character is represented by a 1-hot
vector, which is then mapped to a 32-dimensional

1-hot

H

1-hot

M

1-hot

M

1-hot

SsS

32-d 32-d 32-d 32-d

100-d

Figure 1: CNN. Each character is represented by a 1-hot vec-
tor, which is then mapped to a learned 32-d embedding vec-
tor. On these, m (m = 2 in the example) filters operate,
which are combined to an m-dimensional vector via max-
over-time-pooling. The output layer, with tanh activation, is
100-d and is fully connected with the m-dim layer that feeds
into it. We represent the left context, right context, and center
via the same illustrated CNN, and then concatenate the 100-d
representations to a 300-d representation of the input.

943



embedding (not pre-trained, and updated during
learning). Then m filters, each of size s, are
applied on the embedding layer. Max-over-time
pooling results in anm-dimensional layer which is
fully connected with the 100-dimensional output
layer, with tanh activation function. The 100-d
representations of each context are then (B) con-
catenated, resulting in a 300-dimensional repre-
sentation of the input. A final softmax layer pre-
dicts one of our three target classes. The hyper-
parameters of this model—additional to `, r, c
mentioned above—are: number of filters m, fil-
ter size s, and a few others, such as the number of
characters to consider in each context window.

Our second model, which operates on the token-
level, is a “stacked learner”. We take five base
classifiers from scikit-learn (RandomForestClassi-
fier with two different parameterizations; Extra-
TreesClassifier with two different parameteriza-
tions; and XGBClassifier), and train them repeat-
edly on 90% of the training data, extracting their

... ...xt−1

ht−1

ht−1

concat

forward

backward

xt

ht

ht

concat

xt+1

ht+1

ht+1

concat

...

...

softmax

concat

max-over-time pooling

convolutional layers
filter widths = 2, 3, 5, 7

convolutional layers
filter widths = 2, 3, 5, 7

Figure 2: Bi-LSTM with attention. Pre-trained word embed-
dings xt are fed to an ensemble of CNN layers with 4 differ-
ent filter widths. For each timestep the outputs are concate-
nated and we employ max-over-time pooling. The resulting
attention vector is supplied to the nodes in the forward and
backward LSTM layers. The output of both LSTM layers is
concatenated to a 128-dim vector, which is fed to the final
softmax layer.

predictions on the remaining 10%. This process is
iterated 10 times, in a cross-validation manner, so
that we have a complete sample of predictions of
the base classifiers on the training data. We then
use a multi-layer perceptron (MLP) as a meta-
classifier that is trained to combine the predictions
of the base classifiers into a final output prediction.
The MLP is trained for 100 epochs and the model
with best performance on a 10% development set
is chosen as the model to apply to unseen test data.

Our third model (Figure 2), also operating
on the token level, is an attention based Bi-
directional Long Short-Term Memory network
(AB-LSTM)4. After loading pre-trained word em-
beddings, we apply 4 convolutional layers with fil-
ter sizes 2, 3, 5 and 7, followed by max-over-time-
pooling. We concatenate the respective vectors to
create an attention vector. The forward and back-
ward LSTM layers (64-dimensional) are supplied
with the pre-trained embeddings and the computed
attention vector. Their output is concatenated and,
after applying dropout of 0.5, is used by the final
softmax layer to predict the label probabilities.

4 Submitted Systems

We set the c hyper-parameter to 4, and draw
left and right context length hyper-parameters `, r
(` = r) from a discrete uniform distribution over
the multi-set {1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5}.

Performance measure was micro-F1 as com-
puted by the task’s evaluation script.5 Table 2
shows average, maximum, and minimum perfor-
mances of the systems we experimented with. We
indicate the ‘incorrect’ systems (those trained on
only the dev set) with a star. We tested 56 dif-
ferent CNNs—hyper-parameters randomly drawn
from specific ranges; e.g., we draw the number
of filters m from a normal distribution N (µ =
250, σ = 50)—90 different stackers, and 20 dif-
ferent AB-LSTMs. Our three submitted systems
were simple majority votes of (1) the 90 stackers,
(2) the 90 stackers and 56 CNNs, (3) the 90 stack-
ers, 56 CNNs and 20 AB-LSTMs. Overall, ma-
jority voting is considerably better than the mean
performances of each system.

4 Code was adapted from https://github.com/
codekansas/keras-language-modeling

5 We report results without the “rel” flag, i.e., correspond-
ing to the column “Overall” in Augenstein et al. (2017), Ta-
ble 4. Setting “rel” leads to consistently higher results. E.g.,
with this flag, we have 72% micro-F1 for our best ensemble
(corresponding to column “B” in Augenstein et al. (2017),
Table 4), rather than 69% as reported in our Table 2.

944



Mean Max Min

CNN 58.32∗/64.08 61∗/65 54∗/60
Stacker 61.57∗/67.11 64∗/68 59∗/65
AB-LSTM 59.12 64 56

Majority 63∗/69 63∗/69 62∗/68

Table 2: Micro-F1 results in % for our systems.

For the stacker, the Komninos embeddings
worked consistently best, with an average F1-
score of 63.83%. Levy embeddings were second
(62.50), followed by Glove embeddings of size
50 (61%), size 300 (60.80) and size 100 (59.50).
We assume this is due to the Komninos embed-
dings being ‘richest’ in nature, capturing both se-
mantic and syntactic information. However, with
more training data (corrected results), mean per-
formances as a function of embedding type are
closer: 67.77 (Komninos), 67.61 (Levy), 67.38
(Glove-300), 66.88 (Glove-50), 65.77 (Glove-
100). The AB-LSTM could not capitalize as much
on the syntactic information, and performed best
with the Glove embeddings, size 100 (60.35%),
and worst with the Levy embeddings (57.80).

The char-level CNN and the stacker performed
individually considerably better than the AB-
LSTM. However, including the AB-LSTM in the
ensemble slightly increased the majority F1-score
on both the M and T class, as Table 3 shows.

Ensemble M P T

(1) Stackers 76 71 46
(2) Stackers+CNNs 76 72 46
(3) Stackers+CNNs+AB-LSTMs 77 72 47

Table 3: F1 results in % across different classes.

Error analysis: Table 4 details that TASK is
often confused with PROCESS, and—though less
often—vice versa, leading to drastically lower F1-
score than for the other two classes. This mis-
match is because PROCESS and TASK can de-
scribe similar concepts, resulting in rather sub-
tle differences. E.g., looking at various ‘analy-
sis’ instances, we find that some are labeled as
PROCESS and others as TASK in the gold data.
This holds even for a few seemingly very simi-
lar keyphrases (‘XRD analysis’, ‘FACS analysis’).
The ensemble has trouble labeling this correctly,
tagging 6 of 17 ‘analysis’ instances wrongly. Be-
yond further suspicious labelings in the data (e.g.,

‘nuclear fissions reactors’ as Task), other cases
could have been resolved by knowledge of syntax
(‘anionic polymerization of styrene’ is a process,
not a material) and/or POS tags, and by knowledge
of common abbreviations such as ‘PSD’.

We note that our submitted systems have
the best F1-score for the minority class TASK
(45%∗/47% vs. ≤28% for all other participants).
Thus, our submission would have scored 1st using
macro-F1 (60.66∗/65.33 vs. ≤56.66), even in the
erroneous setting of much less training data.

Prediction
Material Process Task

G
ol

d Material 710 194 0
Process 218 708 28
Task 22 105 67

Table 4: Stackers+CNNs+AB-LSTMs confusion matrix.

5 Conclusion

We present an ensemble-based keyphrase classi-
fication system which has achieved close-to-the-
best results in the ScienceIE Subtask (B) while us-
ing only a fraction of the available training data.
With the full training data, our approach ranks 1st.
To avoid using expert features has been one of our
priorities, but we believe that incorporating addi-
tional task-neutral information beyond words and
word order would benefit the system performance.

We also experimented with document embed-
dings, created from additionally crawled Sci-
enceDirect6 articles. Even though the stacker de-
scribed in §3 acting as a document classifier ob-
tained a reasonably high accuracy of ∼87%, its
predictions had little effect on the overall results.

Manual examination of system errors shows
that using part-of-speech tags, syntactic relations
and simple named entity recognition would very
likely boost the performance of our systems.

Acknowledgments

This work has been supported by the Volkswagen
Foundation, FAZIT, DIPF, KDSL, and the EU’s
Horizon 2020 research and innovation programme
(H2020-EINFRA-2014-2) under grant agreement
№ 654021. It reflects only the authors’ views and
the EU is not liable for any use that may be made
of the information contained therein.

6 https://dev.elsevier.com/api docs.html

945



References
Isabelle Augenstein, Mrinal Das, Sebastian Riedel,

Lakshmi Vikraman, and Andrew McCallum. 2017.
Semeval 2017 task 10: Scienceie - extract-
ing keyphrases and relations from scientific pub-
lications. In Proceedings of the 11th In-
ternational Workshop on Semantic Evaluation
(SemEval-2017). Association for Computational
Linguistics, Vancouver, Canada, pages 544–553.
http://www.aclweb.org/anthology/S17-2091.

Alexandros Komninos and Suresh Manandhar. 2016.
Dependency Based Embeddings for Sentence Clas-
sification Tasks. In Proceedings of NAACL-HLT
’16. ACL, San Diego, CA, USA, pages 1490–1500.
http://www.aclweb.org/anthology/N16-1175.

Omer Levy and Yoav Goldberg. 2014. Dependency-
Based Word Embeddings. In Proceedings of ACL
’14. ACL, Baltimore, MD, USA, pages 302–308.
http://aclweb.org/anthology/P/P14/P14-2050.pdf.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global Vectors for
Word Representation. In Proceedings of EMNLP
’14. ACL, Doha, Qatar, pages 1532–1543.

Behrang QasemiZadeh and Anne-Kathrin Schumann.
2016. The ACL RD-TEC 2.0: A Language Re-
source for Evaluating Term Extraction and Entity
Recognition Methods. In Proceedings of LREC ’16.
ELRA, Portorož, Slovenia, pages 1862–1868.

946


