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Abstract

This paper presents a system that partic-
ipated in SemEval 2017 Task 10 (subtask
A and subtask B): Extracting Keyphrases
and Relations from Scientific Publica-
tions (Augenstein et al., 2017). Our pro-
posed approach utilizes external knowl-
edge to enrich feature representation of
candidate keyphrase, including Wikipedia,
IEEE taxonomy and pre-trained word em-
beddings etc. Ensemble of unsupervised
models, random forest and linear models
are used for candidate keyphrase ranking
and keyphrase type classification. Our sys-
tem achieves the 3rd place in subtask A
and 4th place in subtask B.

1 Introduction

Keyphrases summarize the most important aspects
of a document. They can be helpful in many areas
such as information retrieval, topic modeling and
text classification. However, manually labeling
keyphrase would be far too time-consuming, and
unrealistic especially when dealing with web-scale
collection of documents. Therefore, automatic
keyphrase extraction has drawn growing interests
among NLP research communities for years.

For state-of-the-art system on keyphrase extrac-
tion, Hasan and Ng(2014) presents a comprehen-
sive survey. Their experiments demonstrate that
unsupervised approaches including graph-based
ranking and topic modeling techniques perform
best on News and Blogs dataset. In SemEval
2010 Task 5 (Kim et al., 2010) (Kim et al.,
2013), which also aims to tackle the challenge of
keyphrase extraction in scientific area, a majority
of the participants adopt supervised approaches,
and especially the top 2 systems are both super-
vised. Thus, in our work, we argue that super-

vised approaches can enable combination of rich
features, with parameters learned efficiently and
automatically, while their unsupervised counter-
parts often involve simply designed features and
manually fine-tuned hyperparameters.

Based on the consideration above, for Se-
mEval 2017 Task 10, our system is designed
as a supervised one which also explore unsu-
pervised techniques as auxiliaries. It involves
three steps: candidate generation, keyphrase rank-
ing and keyphrase type classification. For can-
didate generation, we use chunking-based ap-
proach to discover phrases that match a prede-
fined part-of-speech pattern. Heuristic rules are
manually designed by experience and applied to
filter out those phrases which are unlikely to be
keyphrases. For keyphrase ranking in subtask A,
we use a straightforward regression-based point-
wise ranking method. Here, two unsupervised al-
gorithms TextRank (Mihalcea and Tarau, 2004)
and SGRank (Danesh et al., 2015) are incorpo-
rated into random forest by providing their out-
put as complementary features. In our experi-
ments, we find that stacking linear model upon
random forest can provide extra performance gain.
For keyphrase type classification in subtask B, we
model it as a three-way classification problem,
with the same feature set and classifiers used in
subtask A.

Feature engineering is a critical part for super-
vised model. The task of keyphrase extraction
heavily relies on statistical features(such as TF-
IDF) and semantic features. However, due to the
limited size of labeled dataset, it is hard to get reli-
able estimation of phrases’ IDF value or semantic
representation. In this paper, we solve this prob-
lem by exploiting external knowledge resources
such as Wikipedia and pre-trained word embed-
dings. Experiments show the effectiveness of our
proposed feature set.
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2 Methodology

Our system works in a pipeline fashion. It involves
candidate generation, keyphrase ranking for sub-
task A and keyphrase type classification for sub-
task B. As the third step use the same feature set
and classifiers as second step, we omit its detailed
description.

2.1 Keyphrase Candidate Generation
There are generally two approaches for candidate
generation: n-grams and part-of-speech pattern
matching. Even though n-grams strategy usually
achieves higher recall, it also brings in more false
positives, which could cause serious problem for
classifiers. Our strategy is a combination of part-
of-speech pattern matching and heuristic rules.

First, let’s define the heuristic rules with the
format of functions, which take a phrase p as an
argument and output a boolean value. Assume
NP = (NN ∗ |JJ∗) ∗ (NN∗).
f1(p) = whether p matches pattern NP (1)

f2(p) = whether p consists of capital letters (2)

f3(p) = whether p consists of <5 words (3)

f4(p) = whether p contains ‘[’ or ‘]’ or ‘,’ (4)

f5(p) = whether p consists of only digits (5)

A phrase p becomes a keyphrase candidate if
(f1(p) ∨ f2(p)) ∧ f3(p) ∧ ¬f4(p) ∧ ¬f5(p) is
true. Candidate generation is carried out at sen-
tence level, we don’t consider the possibility that
a keyphrase may span across multiple sentences.

2.2 External Knowledge
To deal with the aforementioned problem, we ex-
ploit several external knowledge resources to get
more reliable estimation of statistical and seman-
tic features.

• English Wikipedia.1 It consists of more than
5 million articles covering almost every area
you can think of. We use this corpus D to
calculate IDF of word t. Words with top 10k
IDF score are kept.

IDF (t,D) = log
|D|

|{d ∈ D : t ∈ d}| (6)

• IEEE taxonomy. Official IEEE taxon-
omy2 includes a list of manually summarized

1https://dumps.wikimedia.org/enwiki/
2https://www.ieee.org/documents/taxonomy v101.pdf

keyphrases related to technical areas. Arti-
cles in this shared task come from three do-
mains: computer science, material science
and physics. All three domains are cov-
ered by IEEE. We add a boolean feature
which indicates whether the given candidate
keyphrase appears in this list.

• Pre-trained Glove embeddings.3 (Penning-
ton et al., 2014) Word embeddings trained on
billions of tokens provide a simple way to in-
corporate semantic knowledge. They prove
to be helpful in many NLP tasks especially
when labeled data is limited. In our system,
we use IDF-weighted word embeddings for
phrase representation. Given a phrase con-
sisting of n words w1, w2...wn, its represen-
tation is calculated as follows.∑n

i=1 IDF (wi) · Ewi∑n
i=1 IDF (wi)

(7)

Ewi is the glove embedding of word wi.

2.3 Feature Engineering
Based upon the experience of many previous work
on keyphrase extraction and the unique character-
istics of scientific publications, our system incor-
porates four types of features: linguistic features,
context features, external knowledge based fea-
tures and unsupervised model based features, as
shown in Table 4.

feature type feature definition

linguistic features

stemmed unigram
avg/max/min of TF/IDF/TF·IDF
whether p consists of capital letters
part-of-speech for every word in p
number of tokens/characters in p

context features

previous/next token of p
POS of previous/next token of p
distance between p and citation
relative position of p in given text

external knowledge
whether p is in IEEE taxonomy list
Wikipedia based avg/max/min IDF
glove embedding of p

unsupervised feature
whether p is in top 20 keyphrases
according to TextRank algorithm
whether p is in top 20 keyphrases
according to SGRank algorithm

Table 1: Features for a candidate keyphrase p.

2.4 Model Ensemble for Keyphrase Ranking
Model ensemble has been shown to be an effec-
tive way to boost generalization performance both

3http://nlp.stanford.edu/projects/glove/
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in practice and theoretically (Zhou, 2012). Ran-
dom forest itself is an ensemble model, with vari-
ant of decision trees combined via Bagging. In this
shared task, we explore two layers of stacking.

At the first layer, we stack trees upon output
from unsupervised algorithms. There are numer-
ous algorithms for unsupervised keyphrase ex-
traction based on clustering, graph-based ranking
etc, different algorithms reflect different aspects of
phrase. Stacking provides a convenient and pow-
erful way to combine those information. In this
paper, we use two algorithms: TextRank (Mihal-
cea and Tarau, 2004) and SGRank (Danesh et al.,
2015).

At the second layer, we stack linear model upon
random forest. Instead of treating decision tree as
a classifier, it can be seen as learning to transform
input features. Each leaf node corresponds to a
feature transformation path from root node, and
therefore can serve as a boolean feature. Linear
model can be applied to learn the weights of those
features. Logistic regression is usually used, how-
ever, we find linear SVM is more robust to overfit-
ting in this shared task.

For keyphrase ranking in subtask A, probabilis-
tic score is required, candidates with score no less
than α are chosen as keyphrases. α is tuned on
validation dataset to balance precision and recall.
For keyphrase type classification in subtask B, it is
a three-way classification problem.

In deep learning community, “stacking” usually
means joint training of multiple layers. In this pa-
per, “stacking” means that lower layers provide
their output as features for upper layer, different
layers are trained separately.

3 Experiments

For details about this shared task and dataset,
please refer to SemEval 2017 Task 10 description
paper (Augenstein et al., 2017).

3.1 Experimental Setup

Preprocessing We use nltk (Bird, 2006) to seg-
ment each paragraph into a list of sentences, tok-
enize every sentence and then get part-of-speech
tag for every token. Snowball Stemmer is used for
stemming. Stop words, punctuations and digits
are removed for feature engineering, but not for
keyphrase candidate generation. We use simple
heuristics to parse the IEEE taxonomy pdf file and
get 6978 phrases in total.

Configurations Library scikit-learn is used for
implementation of our supervised models. Ran-
dom forest is set to have 200 trees and other pa-
rameters are set to default. Parameters of linear
SVM are all set to default. We use 50-dimensional
glove embeddings for calculating phrase repre-
sentation. For subtask A, we choose threshold
α = 0.15 to balance recall and precision.

3.2 Results and Analysis

precision recall f1-score
subtask A 0.522 0.498 0.510

subtask B

Material 0.464 0.456 0.460
Process 0.441 0.364 0.399
Task 0.286 0.041 0.072
Average 0.450 0.374 0.409

Table 2: Official results on test set.

Our system’s final results are shown in Table 2,
f1-score for subtask A is 0.510 (3rd place), and
micro-averaged f1-score for subtask B is 0.409
(4th place). The f1-score of the 1st place solution
in a similar task SemEval 2010 Task 5 is 27.5%
(Kim et al., 2010). In comparison with the prior
work, our system seems to be surprisingly well.
We attribute such performance gap to unique char-
acteristics of this shared task. Instead of keyphrase
extraction from entire document, participants are
only asked to extract keyphrase from single para-
graph, and the density of keyphrases is higher.

Another interesting phenomenon is the poor
numbers for Task keyphrases. Most of Mate-
rial and Process keyphrases are noun phrases or
have capital letters, they are relatively easy to
discriminate by part-of-speech pattern. However,
Task keyphrases cover a wide range of part-of-
speech patterns, and some of them have verb or
conjunction. It remains a challenge for our sys-
tem to achieve satisfying performance for Task
keyphrases.

Material Process Task Micro-average
recall 0.715 0.608 0.334 0.606

Table 3: Recall for keyphrases.

An important metric for our pipeline system is
recall for keyphrases in candidate generation step.
Table 3 shows that our heuristic rules cover 60.6%
of keyphrases in training data, although it’s possi-
ble to improve recall by introducing more part-of-
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subtask A subtask B
precision recall f1-score precision recall f1-score

unsupervised features 0.378 0.341 0.359 0.186 0.168 0.177
+ linguistic features 0.481 0.417 0.447 0.352 0.305 0.327
+ context features 0.499 0.497 0.498 0.371 0.369 0.370
+ external knowledge 0.522 0.498 0.510 0.450 0.374 0.409

Table 4: Performance with different combinations of features.

speech patterns, precision will go lower. There has
to be a tradeoff between recall and precision.

precision recall f1-score
tf-idf 0.163 0.216 0.186
rf 0.510 0.507 0.508
rf+svm 0.524 0.520 0.522
best 0.510 0.610 0.560

Table 5: Comparison of different models on test
data. (a) tf-idf output phrases with top 15 tf·idf score; (b)
rf stands for random forest; (c) rf+svm stacks a linear SVM
upon random forest; (d) best is the 1st place solution for this
shared task.

Table 5 shows the effectiveness of our approach.
Even though rf and rf+svm share the same input
features and random forest already has a built-in
ensemble mechanism, rf+svm model still manages
to improve all three metrics via stacking, with f1-
score increasing by 1.4%, from 50.8% to 52.2%.

We also examine how different feature combi-
nations would affect overall performance. Results
are shown in Table 4. Unsupervised features are
pretty impressive to discriminate keyphrase and
non-keyphrase (subtask A), but they fail to reli-
ably identify keyphrase type (subtask B). Incor-
poration of external knowledge is clearly a key to
further boost system performance. All six metrics
improve as more features are added. Once again
it shows our model’s ability to combine many fea-
tures without worrying too much about overfitting.
It is possible to add more relevant features.

4 Conclusion

This paper gives a brief description of our system
at SemEval 2017 Task 10 for keyphrase extraction
of scientific papers. By incorporating multiple ex-
ternal knowledge resources, careful feature engi-
neering and model ensemble, our system achieves
competitive performance.
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