
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 802–806,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

TSA-INF at SemEval-2017 Task 4: An Ensemble of Deep Learning
Architectures Including Lexicon Features for Twitter Sentiment Analysis

Amit Ajit Deshmane
Infosys Limited

Pune, Maharashtra 411057, India
amitad87@gmail.com

Jasper Friedrichs
Infosys Limited

Newark, CA 94560, USA
jasper friedrichs@infosys.com

Abstract

This paper describes the submission of
team TSA-INF to SemEval-2017 Task 4
Subtask A. The submitted system is an
ensemble of three varying deep learning
architectures for sentiment analysis. The
core of the architecture is a convolutional
neural network that performs well on text
classification as is. The second subsystem
is a gated recurrent neural network imple-
mentation. Additionally, the third system
integrates opinion lexicons directly into a
convolution neural network architecture.
The resulting ensemble of the three archi-
tectures achieved a top ten ranking with
a macro-averaged recall of 64.3%. Ad-
ditional results comparing variations of
the submitted system are not conclusive
enough to determine a best architecture,
but serve as a benchmark for further im-
plementations.

1 Introduction

The SemEval competitions continually offer suit-
able dataset and resulting benchmarks for a va-
riety of natural language processing tasks. The
SemEval-2017 Task 4 Subtask A addresses the po-
larity classification task of informal texts (Rosen-
thal et al., 2017). Tweets serve as a very accessi-
ble sample of the abundant social media content.
Submitted systems must classify tweets into the
categories of negative, positive and neutral opin-
ion. Submitted results are compared over macro-
averaged recall.

In recent benchmarks across this task, deep
learning implementations achieved top re-
sults (Nakov et al., 2016). We seek to combine
three varying deep learning approaches in an
ensemble. Conventional methods seem to become

obsolete since convolutional neural networks
(CNN) have first shown state-of-the-art results
in sentiment analysis (Kim, 2014). SemEval
has since seen successful results by similar
models (Severyn and Moschitti, 2015) as well
as ensembles of CNNs (Deriu et al., 2016).
Long term short term recurrent neural networks
(LSTM) (Hochreiter and Schmidhuber, 1997)
have also been applied successfully in ensemble
with a CNN (Xu et al., 2016). As an alternative to
LSTMs gated recurrent neural networks (GRNN)
have been shown to be competitive in other
domains (Chung et al., 2014). These models are
well suited to model sequential data and were
successfully applied for sentiment analysis of
larger documents (Yang et al., 2016). The core
contribution of a recent non deep learning system
to win this task (Kiritchenko et al., 2014) back
to back in 2013 and 2014, was the integration of
opinion lexicons into a support vector machine
system. Opinion lexicons have since then also
been integrated into CNN architectures (Rouvier
and Favre, 2016; Shin et al., 2016). In this work
we combine these diverse architectures.

We use a CNN, thoroughly optimized for text
classification, as the foundation of our ensemble
approach. We add a lexicon integrated CNN to
take advantage of lexicon features. In order to di-
versify the approach we also include a GRNN ar-
chitecture as a sequential model. The idea is to get
better and more robust results with a broader ar-
chitecture. Results show that adding the latter two
systems does not improve overall results, though
the results for the core CNN approach were al-
ready good. Furthermore, results for individual
classes do improve, making this a viable option
when prioritizing specific classes or evaluation
metrics. With this work we seek to contribute to
the growing body of literature that presents com-
parable and reproducible solutions for this task.

802

Ensemble
Layer

CNN

GRNN

CNN-lex

v1

v2

v3

o

Figure 1: Ensemble component output vectors vi

are used as input to an ensemble, which deter-
mines a classification output vector o.

2 Approach

This section outlines the overall approach before
detailing the subcomponents of the architecture.
The purpose of the system is to classify an input
tweet into an element of the opinion classes C,
with |C| = 3. This is determined by the maxi-
mal value of an system output vector o ∈ R|C|.
As outlined in Fig. 1 we propose an ensemble of
three deep learning architectures to solve this task.
A CNN and a GRNN over word embeddings as
well as a CNN over lexicon embeddings. The en-
semble components output vector representations
v1/2/3 can be considered an abstraction of the in-
put tweet. These representations are the input to an
ensemble system which determines the final out-
put. We will describe preprocessing steps to cre-
ate the ensemble layer input before outlining the
ensemble architecture.

2.1 Preprocessing
First of all the tweet data is tokenized with NLP4J1

as a preprocessing step for creating embeddings.
In the following we refer to a tweet as a document,
which is a sequence of tokens, constrained to n =
120. If the actual document is less in size, it is
padded with zero vectors, otherwise it is truncated.

The tokens are then converted into either word
embeddings of dimension d or lexicon embed-
dings of dimension l. We use pretrained word
embeddings from Frederic Godin2 (Godin et al.,
2015), with d = 400. The embeddings were
trained on 400 million tweets. The lexicon embed-
dings are polarity scores from three different lexi-
cons, thus l = 3. We use Bing Liu’s Opinion lex-
icon (Hu and Liu, 2004), the Hashtag Sentiment

1https://github.com/emorynlp/nlp4j
2http://www.fredericgodin.com/software/

Lexicon and the Sentiment 140 Lexicon (Moham-
mad et al., 2013) to form the complete lexicon em-
bedding.

Tensorflow3(Abadi et al., 2016) is used as the
deep learning framework for implementing the
system. The next subsections describe the com-
ponents of this system, followed by an outline of
how their outputs are combined into an ensemble.

2.2 Convolution Neural Network

This component is based on a standard CNN ar-
chitecture used for text classification (Kim, 2014).
We make small changes for fine tuning to the task.
The input to this component are the word embed-
dings described in the preceding subsection. The
embeddings of dimension d are formed into a doc-
ument matrixD ∈ Rn×d across the n input tokens.
The document matrixD is passed through k filters
of filter size s. The convolution weights belong
to Rs×d. The convolutions result in k convolu-
tion output vectors of dimension Rn−s+1. A max
pool layer converts these vectors to a vector of size
Rk. We then add a normalization layer (Ioffe and
Szegedy, 2015) so as to merge outputs from dif-
ferent filter sizes. With f filter sizes, we finally ar-
rive at vector v1 ∈ Rk×f . This vector is passed to
a dense layer of 256 ReLu units. The dense layer
is followed by an output softmax layer. We apply
dropout (Hinton et al., 2012) at the beginning of
the dense layer as well as the output layer. The
implementation uses following the configuration:

• Weights are initialized using Xavier weight
initialization (Glorot and Bengio, 2010).

• The Learning rate is set to 0.0001 with a
batch size of 100.

• The architecture uses f = 5 filter sizes,
[1,2,3,4,5], and k = 256 filters per filter size
over n = 120 word embedding vectors of di-
mension d = 400.

• The input vector to the dense layer v1 thus
has a dimension of 1280.

• At the dense layer and output layer, we use
dropout with a keep probability of 0.7.

• We run 200 training iterations and select the
model that performed best on development
data.

3https://www.tensorflow.org/

803

2.3 Gated Recurrent Neural Network
The GRNN is based on the gated recurrent unit
(GRU) (Cho et al., 2014), which uses a gating
mechanism while tracking the input sequence with
a latent variable. GRUs seemed to perform better
compared to other RNN cells like LSTM in our
experiments, which go beyond the scope of this
paper. The input to the GRNN are the word em-
beddings described in Section 2.1. The input is
read sequentially by a GRU layer. The GRU cell
is designed to learn how to represent a state, based
on previous inputs and the current input. The GRU
layer consists of g hidden units. After the last to-
ken of the sequence is processed, the output vector
v2 ∈ Rg of this layer is collected to be merged into
other architectures. The implementation is config-
ured by:

• g = 256 hidden units with tanh activation,

• resulting in the 256 dimensional output vec-
tor v2.

2.4 Lexicon Integrated Convolution Neural
Network

The lexicon integrated CNN (CNN-lex) is simi-
lar to the previously described CNN architecture.
The fundamental difference is that convolutions
are done over lexicon embeddings, described in
Section 2.1. The input to this component is a doc-
ument matrix L ∈ Rn×l across the l dimensional
lexicon embeddings of n input tokens. The archi-
tecture uses j filters per e convolution filter sizes.
The convolution layer output is passed through a
max pool and normalization layer. This results in
an output vector v3 ∈ Rj×e that is collected to be
merged into other architectures. The implementa-
tion uses following configuration:

• The architecture uses e = 3 filter sizes,
[3,4,5], and j = 64 filters per filter size over
n = 120 lexicon embeddings of dimension
l = 3.

• The ensemble output vector v3 thus has a di-
mension of 192.

2.5 Ensembles
The previously described architectures can be
combined into ensemble systems. The CNN-lex
and GRNN architectures are already defined as en-
semble subsystems through their output vectors v2
and v3. While the CNN architecture was previous

Twitter Corpus Pos Neg Neut Total
2013-train 3640 1458 4586 9684
2013-dev 575 340 739 1654
2013-test 1475 559 1513 3547
2014-sarcasm 33 40 13 86
2014-test 982 202 669 1853
2015-test 1038 365 987 2390
2016-train 3094 863 2043 6000
2016-dev 843 391 765 1999
2016-devtest 994 325 681 2000
2016-test (A) 7059 3231 10342 20632
2017-test (B) 2375 3972 5937 12284

Table 1: SemEval data subsets as available to au-
thors. Aside from development test (A) and test
(B) split, all sets where combined for a train and
dev split.

introduced as a stand alone system it is naturally
described as an ensemble component. The vector
v1 described in Section 2.2 is the output vector of
the CNN as a subsystem. The three vectors are
concatenated as inputs to the ensemble layer. The
ensemble layer consists of a dense layer of 256
ReLu units followed by a softmax output layer,
which results in the output vector o of dimension
|C|. The CNN is combined into three ensembles
by concatenating its input vector v1 with v2 (CNN,
GRNN) and with v3 (CNN, CNN-lex) as well as
with both v2 and v3 (CNN, CNN-lex, GRNN). The
latter is the submission architecture while the other
two are evaluated for comparison. These ensem-
bles are trained as a single system. Training is con-
ducted as previously described for the CNN archi-
tecture.

3 Data

The training data for this approach was con-
strained to data published in the context of the Se-
mEval workshops. Table 1 lists the data available
to the authors. It is important to note that the data
is heavily imbalanced. Before submission the sys-
tem was tested with the 2016-test set as develop-
ment test data. The results described in this pa-
per focus on the 2017-test data, which was used
to rank the submissions. All other data in Table 1
was combined into one data set, shuffled and split
four to one into training and development data.

4 Results

The following results compare the core CNN ar-
chitecture against ensembles with the CNN as a
subsystem. The ranked submission marked by
∗ in Table 4 ranked ninth out of 37 participants.

804

2017-test, detailed
Recall Precision F1

pos neg neut pos neg neut pos neg neut
CNN 68.3 78.3 47.6 54.8 57.7 71.7 60.8 66.5 57.2
CNN, CNN-lex 74.3 85.6 33.1 50.3 54.7 76.7 60.0 66.7 46.3
CNN, GRNN 73.2 71.0 50.1 50.4 61.2 70.3 59.7 65.7 58.5
CNN, CNN-lex, GRNN ∗ 74.1 64.0 55.0 50.9 63.6 67.6 60.3 63.8 60.6

Table 2: Per class results of recall precision and F1 on test data (2017-test, Table 1) for CNN and
ensemble architectures, where ∗ marks the submission system

2016-test ρ FPN
1 Acc.

CNN 66.1 62.6 62.8
CNN, CNN-lex 64.9 61.0 56.4
CNN, GRNN 64.2 61.9 61.3
CNN, CNN-lex, GRNN 64.0 62.4 64.1

Table 3: Macro-averaged recall ρ, negative posi-
tive macro-averaged F1 and accuracy on develop-
ment test data (2016-test, Table 1) for CNN and
ensemble architectures.

2017-test ρ FPN
1 Acc.

CNN 64.7 63.6 61.5
CNN, CNN-lex 64.3 63.4 58.0
CNN, GRNN 64.8 62.7 61.3
CNN, CNN-lex, GRNN 64.3∗ 62.0 61.6

Table 4: Macro-averaged recall ρ, negative posi-
tive macro-averaged F1 and accuracy on test data
(2017-test, Table 1) for CNN and ensemble archi-
tectures, where ∗ marks the ranked submission.

For detailed rankings we refer to the task descrip-
tion (Nakov et al., 2016), we only put this result in
context with the described architectures. Three en-
sembles are used for comparison, the basic CNN
combined with either the GRNN or the lexicon in-
tegrated CNN as well as both. The two result data
sets are the 2016-test set as pre-submission test
data and the final 2017-test data set used to bench-
mark the submissions.

Overall the CNN performs en par or better
than the ensembles on macro-averaged recall and
macro-averaged positive negative F1. For both de-
velopment test data in Table 3 and test data in
Table 4 we observe that the CNN outperforms
the ensembles across macro-averaged F1. Though
there is a substantial difference between macro-
averaged recall of the CNN versus the ensembles
on the development test data, macro-averaged re-
call on the test data is consistent across all sys-
tems.

The strongest fluctuation in averaged results is
the drop in accuracy for the CNN, CNN-lex en-
semble across both data sets. Detailed results in
Table 2 show that this is due to a steep drop in neu-
tral class recall, a class the data is heavily biased
towards (Table 1). We note that though macro-
averaged recall stays consistent on the test data
(Table 4), per class results do fluctuate substan-
tially (Table 2). These class trends were gener-
ally consistent across both 2017-test and 2016-test
data, thus the later results are omitted for brevity.

5 Conclusions

In the previous sections we described experiments
of adding various deep learning architecture ele-
ments to a basic CNN. Results show that the de-
rived ensembles of approaches did not improve
performance over the more relevant metrics of
macro-averaged recall and F1. To give further
context it is important to mention that substan-
tially more effort went into engineering and tuning
of the CNN model than of the additional architec-
tures. Just as the submission system, the CNN ar-
chitecture itself would have ranked within the top
ten of this sentiment analysis task. Room for im-
provement was thus limited. We do note that per
class results do fluctuate quite a bit across ensem-
bles, which means these architecture can be used
to prioritize class specific recall and precision.

It remains open whether the more complex ar-
chitectures perform more robustly across diverse
datasets. We will seek more clarity on this issue
by experimenting with different data sets. Another
architecture choice to pursue is to include an atten-
tion mechanism so that the ensemble system can
learn which subcomponents to prioritize.

Acknowledgments

We thank assistant professor Jinho D. Choi at
Emory University for guidance.

805

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467 .

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder- decoder ap-
proaches. arXiv preprint arXiv:1409.1259 .

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555 .

Jan Deriu, Maurice Gonzenbach, Fatih Uzdilli, Au-
relien Lucchi, Valeria De Luca, and Martin Jaggi.
2016. Swisscheese at semeval-2016 task 4: Sen-
timent classification using an ensemble of convo-
lutional neural networks with distant supervision.
Proceedings of SemEval pages 1124–1128.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Aistats. volume 9, pages 249–256.

Fréderic Godin, Baptist Vandersmissen, Wesley
De Neve, and Rik Van de Walle. 2015. Multime-
dia lab @ acl w-nut ner shared task: Named entity
recognition for twitter microposts using distributed
word representations. ACL-IJCNLP 2015:146–153.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580 .

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM, pages 168–
177.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint
arXiv:1502.03167 .

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882 .

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M Mo-
hammad. 2014. Sentiment analysis of short infor-
mal texts. Journal of Artificial Intelligence Research
50:723–762.

Saif M. Mohammad, Svetlana Kiritchenko, and Xiao-
dan Zhu. 2013. Nrc-canada: Building the state-
of-the-art in sentiment analysis of tweets. In Pro-
ceedings of the seventh international workshop on
Semantic Evaluation Exercises (SemEval-2013). At-
lanta, Georgia, USA.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Veselin
Stoyanov, and Fabrizio Sebastiani. 2016. SemEval-
2016 task 4: Sentiment analysis in Twitter. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation (SemEval 2016). Association for
Computational Linguistics, San Diego, California.

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
SemEval-2017 task 4: Sentiment analysis in Twit-
ter. In Proceedings of the 11th International Work-
shop on Semantic Evaluation. Association for Com-
putational Linguistics, Vancouver, Canada, SemEval
’17.

Mickael Rouvier and Benoit Favre. 2016. Sensei-lif at
semeval-2016 task 4: Polarity embedding fusion for
robust sentiment analysis. Proceedings of SemEval
pages 202–208.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Unitn: Training deep convolutional neural network
for twitter sentiment classification. In Proceedings
of the 9th International Workshop on Semantic Eval-
uation (SemEval 2015), Association for Computa-
tional Linguistics, Denver, Colorado. pages 464–
469.

Bonggun Shin, Timothy Lee, and Jinho D Choi.
2016. Lexicon integrated cnn models with at-
tention for sentiment analysis. arXiv preprint
arXiv:1610.06272 .

XingYi Xu, HuiZhi Liang, and Timothy Baldwin.
2016. Unimelb at semeval-2016 tasks 4a and 4b: An
ensemble of neural networks and a word2vec based
model for sentiment classification. Proceedings of
SemEval pages 183–189.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of NAACL-HLT . pages 1480–1489.

806

