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Abstract

This paper describes the system we sub-
mitted to SemEval-2017 Task 4 (Sen-
timent Analysis in Twitter), specifically
subtasks A, B, and D. Our main focus
was topic-based message polarity classi-
fication on a two-point scale (subtask B).
The system we submitted uses a Support
Vector Machine classifier with rich set of
features, ranging from standard to more
creative, task-specific features, including a
series of rating-based features as well as
features that account for sentimental rem-
iniscence of past topics and deceased fa-
mous people. Our system ranked 14th out
of 39 submissions in subtask A, 5th out of
24 submissions in subtask B, and 3rd out
of 16 submissions in subtask D.

1 Introduction

Sentiment analysis (Pang et al., 2002), a task of
determining polarity of text towards some topic,
recently gained a lot of interest, mostly due to its
applicability in various fields, such as public rela-
tions (Pang et al., 2008) and market analysis (He
et al., 2013). Following the growing popularity of
social networks and an increasing number of user
comments that can be found there, sentiment anal-
ysis of texts on social networks, such as tweets
from Twitter, has been the focus of much research.

However, determining the sentiment of a tweet
is often not an easy task, since the length of the
tweet is limited and language is mostly informal,
including slang, abbreviations, and hashtags. Var-
ious systems have been proposed for tackling this
problem, ranging from simple unsupervised mod-
els that use precompiled sentiment lexicons for
evaluating polarity of tweets (O’Connor et al.,
2010) to more complex supervised models that

use textual feature representations in combination
with machine learning algorithms such as Sup-
port Vector Machines (SVM) (Khan et al., 2015;
Barbosa and Feng, 2010) or deep neural networks
(Dos Santos and Gatti, 2014; Tang et al., 2014).

In this paper, we present our system for de-
termining sentiment of tweets, which we submit-
ted SemEval-2017 Task 4 (Rosenthal et al., 2017),
more specifically to the English versions of sub-
tasks A, B, and D. In subtask A, the goal was to
predict the sentiment of a tweet as either positive,
neutral, or negative. Subtask B consisted of pre-
dicting the sentiment of a given tweet on a 2-point
scale (positive or negative) given a topic. In sub-
task D, the task was to determine the distribution
of positive and negative tweets for each topic in a
given set of tweets annotated with topics.

The system we submitted uses an SVM clas-
sifier with a linear kernel and a number of fea-
tures. We experiment with basic features such
as tf-idf and pretrained word embeddings, as well
as more task-specific features including sentiment
lexicons, ratings-based, “nostalgia features”, and
“recent deaths”. Ratings-based features use exter-
nal data from different online resources to leverage
the information such as rating of a movie or an ac-
tor mentioned in a tweet. “Recent deaths” features
make use of information about recent deaths of no-
table people, while “nostalgia feature” makes use
of topic’s “age” – the rationale being that people
usually reminisce about past events in a sentimen-
tal and positive way. Our system ranked 3rd out
of 16 teams in subtask D, 5th out of 24 teams in
subtask B, and 14th out of 39 teams in subtask A.

2 Features

To build our model, we first preprocess tweets and
extract various features. We use standard features
such as bag-of-words (more precisely tf-idf), pre-
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trained word embeddings, and count-based stylis-
tic features. Additionally, we design task-specific
features based on publicly available ratings for
certain topics. We next describe the preprocessing
and the features in more detail.

2.1 Preprocessing of Tweets

As a first preprocessing step, we tokenize tweets
using a basic Twitter-adapted tokenizer.1 After to-
kenization, we lemmatize and stem tweets and re-
move stopwords from each tweet using the NLTK
toolkit (Bird et al., 2009).

Additionally, since some of our features require
recognizing named entities in a tweet, we use the
named entity tagger, also from the NLTK toolkit,
for recognizing entities in tweet. Unfortunately,
using NLTK-provided named entity tagger yielded
unsatisfactory results, i.e., many of named entities
in tweets were not recognized correctly. We as-
sume this is due to tweets generally having poor
capitalization, which is something named entity
taggers in general are rather sensitive to.

As a remedy, we replaced the tagger with a
greedy search algorithm. This approach simply
looks for an occurrence of any string in tweet in
some of our named-entity databases (introduced in
the following sections). This proved to be a work-
ing solution for named entities longer than one
word, but led to problems with unigrams, which
were falsely recognized as named entities due to
the existence of a movie or a game with that exact
name. For instance, the word “her” would falsely
be recognized as the 2013 movie “Her”.

Finally, we settled for a combination of the two
approaches. We introduced parameters for the
length range of word sequences. For the named
entity tagger, we set the length range to [0, 1],
while for the greedy search algorithm we used the
range [2, 7]. This way, we try to reduce the number
of falsely recognized named entities in the greedy
search algorithm (by omitting single word entities
from its scope), while ensuring that some single
word entities still get recognized by the named en-
tity chunker.

2.2 Standard Features

We use a number of standard features typically
used in sentiment analysis and other text classi-
fication tasks.

1http://sentiment.christopherpotts.
net/codedata/happyfuntokenizing.py

Word embeddings. For word embeddings we
use GloVe (Pennington et al., 2014). We use 200-
dimensional word embeddings, pretrained on 2B
tweets. Final vector representation of a tweet is
calculated as an average of the sum of vectors of
all the words in a tweet.

Tf–idf. The standard tf–idf vectorizer from
Python’s scikit–learn package.2

Counting features. For each tweet we count the
number of occurrences of various stylistic fea-
tures: exclamation marks, question marks, elon-
gated words, capitalized words, emoticons, and
hashtags.

User information. We collected the informa-
tion about authors of the tweets using the script
provided by the organizers. From this data we
extracted the number of followers, friends, and
tweets of each user.

Sentiment polarity lexicons. We use senti-
ment lexicons developed by Bravo-Marquez et al.
(2016), which contain three weights per word, in-
dicating word’s positive, neutral, and negative sen-
timent. These lexicons are built from automat-
ically annotated tweets and existing hand-made
opinion lexicons. We use the most positive word
sentiment and the most negative word sentiment
in each tweet as features, together with the num-
ber of extremely positive and extremely negative
words in a tweet. A word is considered extremely
positive if its positive weight in lexicon is higher
than 0.75, and extremely negative if its negative
weight is higher than 0.8.

2.3 Nostalgia Feature
We presume that some topics, such as games,
movies, and music from years ago, are usually
mentioned in positive light due to nostalgia.3 To
leverage this, for many of our topic-based features
we try to take the age of the certain topic into ac-
count.

We use the following metric for calculating nos-
talgia feature, where applicable:

nost(y) = min(m, ycurr − y) (1)

where y is the year of the content’s release, ycurr

current year, and m empirically determined upper
bound for age.

2http://scikit-learn.org/
3Nostalgia is a sentimentality for the past, typically for a

period or place with happy personal associations. (Wikipedia)
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2.4 Ratings Features

We introduce a series of features that are calcu-
lated if a certain “rateable” topic is mentioned
in a tweet. In order to build those features, we
collected information from publicly available rat-
ings for various domains: movies and TV shows,
actors, games, musicians, historically influential
people, and companies. It is worth noting that we
are collecting these publicly available ratings in-
dependently of training the classifier, which makes
our system applicable to tweets about new movies,
TV shows, actors, etc.

Movies and TV shows. To gather movies’ and
TV shows’ data, we used IMDb’s publicly avail-
able plaintext database.4 As the plaintext database
is quite comprehensive, we filtered the data, leav-
ing only movies and TV shows released in 2005 or
later, with more than 50,000 user votes, and a min-
imum average rating of 4.0. This reduction left us
with an acceptable amount of ~4,300 entries.

Movie-ratings features are implemented as a
vector of 14 values: a binary value indicating if a
movie was found in a tweet, movie’s rating, num-
ber of user votes, movie’s nostalgia value (as de-
fined above), and 10 values representing user votes
distribution per rating (from 0 to 9).

Actors. In the same manner as for the movies,
we obtained the IMDb’s plaintext database of ac-
tors using the same resource. We filtered out all
actors that do not appear in the previously filtered
movies database, to reduce the number of entries
in an otherwise huge database. This left us with
approximately 135,000 actor entries.

If an actor is mentioned in a tweet, his or her
mention is represented with a single value in the
feature vector – actor’s rating. This rating is cal-
culated by taking into account actor’s appearances
in various movies, as well as actor’s position in
movie’s credits; the latter captures the intuition
that each actor in a movie does not equally con-
tribute to the movie’s overall rating.

We calculated each actor’s (a) rating for a single
movie (m) as follows:

r(a,m) = r(m) ·
(
1 + c

1−pos(a,m)
k

−1
)

(2)

where c is the percentage of the movie’s rating
taken into account, k is the rate of how much the

4ftp://ftp.fu-berlin.de/pub/misc/
movies/database/

position affects the rating, r(m) is the movie’s rat-
ing, and pos(a,m) is the actor’s position in the
movie’s credits. Actor’s final rating is then defined
as mean of their ratings in all the movies they par-
ticipated in. During the evaluation, we set the hy-
peparameters c and k to 0.1 and 50, respectively.

Games. We obtained the data about video games
by scraping GameRankings5 website for all games
with at least 10 reviews. This way we gathered
about 8,500 game entries.

A mention of a game in a tweet is represented
with three values in the feature vector: a binary
value representing game’s mention in a tweet,
game’s rating, and game’s nostalgia metric, as de-
fined in Section 2.3.

Musicians. For musicians’ data, we scraped
Metacritic’s Music People pages.6 This gave us
names, numbers of albums, and ratings for about
10,500 artists and bands.

Three values were added to the feature vector
for musicians: a binary value representing musi-
cian’s mention in a tweet, number of musician’s
albums, and musician’s rating.

Important people. We use MIT’s Pantheon7

list of historically influential people, with around
10,000 entries, to obtain a number of useful fea-
tures. Based on this list, we compute 28 features,
as follows:

• binary value indicating a person has been
found in the obtained list;

• person’s historic ranking on Pantheon;

• person’s nostalgia value, derived from their
birth year;

• person’s Wikipedia page views;

• person’s Wikipedia page views standard de-
viation;

• person’s historic popularity;

• person’s place of birth as a vector of 10 bi-
nary values representing the highest-ranked
birth sites by Pantheon: U.S., U.K., France,
Italy, Germany, Russia, Spain, Turkey,
Poland, the Netherlands;

5http://www.gamerankings.com/
6http://www.metacritic.com/browse/

albums/people
7http://pantheon.media.mit.edu/

rankings/people/all/all/-4000/2010/H15
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• person’s occupation as a vector of 10 bi-
nary values representing the most historically
influential occupations by Pantheon: Politi-
cian, Actor, Writer, Soccer Player, Religious
Figure, Singer, Musician, Philosopher, Physi-
cist, Composer.

Companies. Using Good Company Ratings’
2014 report,8 we gathered the data about various
companies, consisting of about 300 entries.

Company features contain four values: a binary
value indicating company’s mention in a tweet, its
Fortune rank, seller ratings, and steward ratings.

2.5 Recent Deaths
Due to the impact celebrity deaths have on social
media and the fact that people usually reminisce
in a positive way about deceased people, we posit
that the information whether a person mentioned
in a tweet died recently would prove useful for
sentiment analysis. To this end, we gathered from
Wikipedia9 a list of significant people who died in
the last three years.

We represent deaths using a single value indi-
cating the number of years that have passed from
the person’s death. While at first similar to nos-
talgia metric introduced above, the death metric
accounts for recent events and, therefore, empha-
sizes values that are the opposite of the values ob-
tained with nostalgia metric. The death metric is
given by 1−nost(y), where y is the year of death,
with m set to 3 (last three years only).

2.6 Controversy
We encode controversial topics as 41 binary val-
ues, one for each of the currently controversial
events listed in the University of Michigan-Flint’s
Frances Willson Thompson Library.10 To further
improve the performance of correct identification
of controversial topics, we additionally provide al-
ternative phrases for some of the issues, for exam-
ple “Affordable Care Act” is also triggered by its
popular nickname “Obamacare”.

2.7 Curse Words
We use a list of 165 curse words often used
in tweets, compiled by Kukovačec et al. (2017).

8http://www.goodcompanyindex.com/
ratings/

9http://en.wikipedia.org/wiki/Lists_
of_deaths_by_year

10http://libguides.umflint.edu/topics/
current

Presence of a curse word in a tweet is encoded
with a single binary value, indicating whether a
curse word was found in tweet or not.

2.8 Topics and Hashtags

We built the above-mentioned features for three
cases: topic identified from tweet’s text, topic ex-
plicitly given as tweet’s topic in subtasks B and D,
and for the topic that might appear in a hashtag as
a part of tweet.

Since hashtags usually contain more than one
word in a single string, we adapt the greedy split-
ting procedure proposed by Tutek et al. (2016),
which uses a dictionary of known words to split a
hashtag that is a concatenation of multiple words.
Additionally, for each word obtained from hashtag
splitting we generate sentiment lexicon features,
acknowledging that sentiment is often expressed
via a hashtag.

3 Evaluation

We started with a number of different classifiers
and chose the one that gave the best result on
a hold-out test set (2016 test set) (Nakov et al.,
2016) for each subtask. After the official results
were published, together with the gold labels for
test sets, we additionally performed a simple fea-
ture analysis over predefined feature groups to an-
alyze the impact each of these groups has on the
final result.

3.1 Evaluation Metrics

We submitted our solution to three subtasks: A, B,
and D. Subtask A uses macro-averaged recall (ρ)
over all three classes (positive, neutral, and nega-
tive) as an official metric. For subtask B, macro-
averaged recall over positive and negative classes
(ρPN ) is used, while subtask D uses Kullback-
Leibler Divergence (KLD) as the official measure.

3.2 Classifier Selection

We experimented with a number of classifica-
tion algorithms from the scikit-learn package (Pe-
dregosa et al., 2011): Support Vector Machine
with a linear kernel (SVM), Logistic Regression
(LR), Multinomial Naive Bayes (MB), Random
Forest (RF), and a Stohastic Gradient Descent
classifier (SGD). For training, we used all the
available data provided by the organizers, except
for the 2016 test set, which we used for testing the
classifiers. We performed 5-fold cross-validation
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Classifier Subtask A (ρ) Subtask B (ρPN )

LR 0.620 0.742
NB 0.467 0.663
RF 0.487 0.549
SGD 0.488 0.614
SVM 0.623 0.752

Table 1: Results for subtasks A and B on 2016 test
set using the official measures for both subtasks

on our training set for optimizing each classifier’s
parameters. We used all of the described features
for evaluating classifiers for subtask B and a subset
of features for subtask A (everything except rating
features extracted from explicit topic, features ex-
tracted from hashtags, user information features,
curse words presence, and controversial topics).11

We observed that macro-averaged recall in sub-
task B (the official measure) improved (from 0.705
to 0.752) when we completely excluded the rat-
ings and user information features, although the
accuracy notably dropped (from 0.899 to 0.855).
For this reason, we decided to submit our solution
to both subtasks B and D without those two feature
groups, since it led to higher recall at the expense
of lower overall accuracy.

Table 1 shows the results in terms of macro-
averaged recall on the 2016 test set for subtasks A
and B for all of the models we experimented with
and the final set of features that we included in the
final submissions. We chose SVM with a linear
kernel for all of our submissions, as it gave the
best result on both subtask A and B. For subtask
D, we used the outputs of the classifier built for
subtask B and calculated the distribution of tweets
using a simple “classify and count” approach.

Our submissions ranked 14th on the leader-
board for subtask A, 5th for subtask B, and 3rd
for subtask D. Table 2 shows scores of top 7 sub-
missions for subtasks B and D.

3.3 Feature Analysis

After the testing phase finished, we carried out
an analysis of the impact of the specific feature
groups in classification, for each of the three sub-
tasks we took part in. We performed an ablation
study over all feature groups. The results of these
analyses are shown in Table 3.

11Unfortunately, we did not finish our system in time for
the submission of subtask A, which resulted in differences
between submissions for subtask A and the other two sub-
tasks.

Team ρPN

BB twtr 0.882
DataStories 0.856
Tweester 0.854
TopicThunder 0.846
TakeLab 0.845
funSentiment 0.834
YNU-HPCC 0.834

Team KLD

BB twtr 0.036
DataStories 0.048
TakeLab 0.050
CrystalNest 0.056
Tweester 0.057
funSentiment 0.060
NileTMRG 0.077

Table 2: Official results for subtasks B and D (top
7 teams only)

Excluded group A (ρ) B (ρPN ) D (KLD)

None 0.615 0.849 0.054
Counting 0.616 0.852 0.050
Lexicon 0.617 0.850 0.052
Ratings 0.617 0.846 0.053
Tf-idf 0.610 0.840 0.061
User info 0.615 0.849 0.053
Word2vec 0.602 0.798 0.116

Table 3: Feature analysis results for all subtasks

The analysis confirmed that excluding some
feature groups indeed helps in obtaining higher re-
call in both subtask A and B. More specifically,
excluding counting or lexicon features improved
recall in subtask B, while excluding counting, lex-
icon, or ratings features from the set of features
used for subtask A led to an increase in recall as
well. Moreover, KLD score improves as well,
when the group of counting features is excluded
from complete set of features.

4 Conclusion

In this paper we described our solutions to Se-
mEval 2017 Task 4 – subtasks A, B, and D.
Our solution is based on a linear SVM classifier
with some standard and a series of task-specific
features, including rating-based features obtained
from various websites as well as features that ac-
count for sentimental reminiscence of past topics
and deceased famous people. Our system per-
formed relatively well in all three subtasks. We
ranked 14th out of 39 in subtask A, 5th out of 24th
in subtask B, and 3rd out of 14 in subtask D.

For future work, it would be interesting to ex-
pand our model’s feature set to non-covered do-
mains (e.g., sports), and also to investigate how
our model behaves on a more diverse set of topics.
Expanding the system with a topic classifier as a
pre-sentiment processing step might also be worth
investigating, since the way sentiment is expressed
varies across different domains.
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