
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 457–460,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

Fermi at SemEval-2017 Task 7: Detection and Interpretation of
Homographic puns in English Language

Vijayasaradhi Indurthi
SIEL, IIIT Hyderabad

vijaya.saradhi@research.iiit.ac.in

Oota Subba Reddy
SIEL, IIIT Hyderabad

oota.subba@students.iiit.ac.in

Abstract

This paper describes our system for de-
tection and interpretation of English puns.
We participated in 2 subtasks related to
homographic puns achieve comparable re-
sults for these tasks. Through the paper
we provide detailed description of the ap-
proach, as well as the results obtained in
the task.

Our models achieved an F1-score of
77.65% for Subtask 1 and 52.15% for Sub-
task 2.

1 Introduction

The pun, also called paronomasia, is a form of
word play that suggests two or more meanings,
by exploiting multiple meanings of words, or of
similar-sounding words, for an intended humorous
or rhetorical effect. A pun is also a special form
of ambiguity (mostly lexical) that is consciously
used to create statements with ambiguous-distinct-
meanings. These ambiguities can arise from
the intentional use of homophonic, homographic,
metonymic, or figurative language. A homo-
graphic pun exploits distinct meanings of the same
written word, and a homophonic pun exploits dis-
tinct meanings of the same spoken word.

Examples of homographic puns.

• ”I used to be a banker but I lost interest”,

• ”Tires are fixed for a flat rate”

• ”Getting rid of your boat for another could
cause a whole raft of problems”

In the first example, the word interest is the pun
denoting interest as willingness and also as a fixed
charge for borrowing money. In the second exam-
ple, the word flat is the pun denoting flat as in a flat

tyre and flat as in flat rate. The third example, the
word raft is the pun denoting raft as a batch and
raft as a type of boat.

In the present work, we focus on homographic
puns. We present methods to a) identify a pun sen-
tence, b) identify the pun word given a pun sen-
tence and c) interpret the different word senses
of the pun word. The details of the shared task
are available at (Tristan Miller and Hempelmann,
2017)

2 Subtask 1 - Pun detection

In this task, for each sentence, the system must
decide whether it contains a pun or not. While
this task is mostly unsupervised, we cast this prob-
lem as a supervised learning classification prob-
lem. We have randomly selected part of the dataset
and manually annotated them as a pun sentence or
a non-pun. We decided to leverage on models that
try to model sequences of word vectors. We can
view the each sentence as a sequence where we
only have one label at the end. This many-to-one
mapping lends itself nicely to Recurrent Neural
Network. Due to this reason, we used a recurrent
neural network to train the classifier and generate
the model. Using this model we classify the re-
maining dataset.

We used two settings for the train and test split.
In setting 1, we used 70% of the dataset for train-
ing and 30% of the data for testing. In Setting 2,
we used 30% of the dataset for training and the
remaining 70% of the data for testing.

Recent research has shown that deep learning
methods can minimize the reliance on feature en-
gineering by automatically extracting meaningful
features from raw text (Collobert, 2012). Thus,
we propose to use distributed word embeddings
which capture lexical and semantic features as in-
put features to our neural network model.

457



Figure 1: BiDirectional RNN architecture for de-
tecting puns

Distributed word embeddings map words in a
language to high dimensional real-valued vectors
in order to capture hidden semantic and syntac-
tic properties of words. These embeddings are
typically learned from large unlabeled text cor-
pora. In our work, we use the pre-trained 50 di-
mensional GloVe embeddings (Pennington et al.,
2014) which were trained on about 6B words from
the twitter using the Continuous Bag of Words ar-
chitecture.

2.1 Model

The network architecture of our model as illus-
trated in Figure 1 has the following structure

• Embedding Layer: This layer transforms
each word into embedded features. The em-
bedded features are a concatenation of the
words Distributed word embeddings. The
embedding layer acts as input to the hidden
layer.

• Hidden Layer: The hidden layer consists of a
Bi-Directional RNN. The output of the RNN
is a fixed sized representation of its input.

• Output Layer: In the output layer, the rep-
resentation learned from the RNN is passed
through a fully connected neural network
with a sigmoid output node that classifies the
sentence as a pun or a non-pun.

2.2 Performance

We train the network for 25 epochs. The follow-
ing table describes the results on the pun dataset.

Table 1 shows the performance of our classifier on
the two settings.

2.3 Discussion
While the pun classification was supposed to be an
unsupervised classification problem, we cast the
problem into a supervised classification problem
by annotating the data partially. This might be a
reason for very high precision for the Setting 1
as the classifier might have overfit the model to
a wider range of training data than in the second
setting. We used a dropout of 0.5 in Bi-Direction
RNN to avoid the overfitting problem.

3 Subtask 2 - Pun location

In this task, for each sentence containing a pun, the
system must identify the pun word. We introduce
the algorithm which takes a sentence containing a
pun as an input and returns the pun word.

3.1 Observations
Empirical observations of the puns show the fol-
lowing characteristics of the pun word

• The pun word usually appears towards the
end of the pun (Miller, 2014)

• There exists a non-pun word whose similarity
is more than a threshold, than any other word
to word similarity in the sentence.

• Stopwords and non content words can not be
puns

• The pun word will have atleast two word
senses in the wordnet corpus (Miller, 1995)

3.2 Methodology
From the examples given in section 1, we see that
the pun word interest is semantically close to the
word banker and its root bank. In the next exam-
ple, we observe that the word flat is semantically
close to the word tires because tires can go flat. In
the last example the word raft is semantically close
to the word boat as both are used as transport ob-
jects in water.

Based on the above observations, we propose
the following algorithm to identify the pun word in
a sentence having a pun. The function FIND PUN
takes a sentence containing a pun as an input and
returns the pun word discussed in Algorithm 1.
First, a list of probable pun words is generated
by removing the stopwords and punctuation in the

458



Setting Train Test Precision Recall Accuracy. F1
Setting 1 70% 30% 0.9697 0.7953 0.8360 0.8738
Setting 2 30% 70% 0.8918 0.6876 0.7173 0.7765

Table 1: Performance of the pun classifier using Bidirectional RNN in 2 settings for Subtask 1

sentence. Next, all words which have less than 2
entries in the wordnet are removed. If there is only
1 word left, we return this word as a pun word.
In case multiple words are present in the proba-
ble puns list, then a list of pairs with all combina-
tion of words in the sentence with all the possible
words in the probable puns is made. For every
pair in the list of pairs, the similarity of the two
words is calculated. The similarity of two words
is also calculated by expanding the synsets of both
the words and finding the most similar pair be-
tween the pairs of every synset in word 1 with ev-
ery synset in word2.

Algorithm 1 PUN Detection Algorithm
1: INPUT Sentence
2: OUTPUT PUN word.
3: Step 1: Tokenize the input sentence.
4: Step 2: Remove punctuations and stop words
5: from the tokens.
6: Step 3: Remove tokens which have less than
7: 2 entries from the wordnet.
8: if Only one Word in list then
9: return Word(PUN word)

10: else
11: for All pair of words in sentence do
12: Bestpair=MAXSIM(Pair of words)
13: end for
14: return Word ∈ Bestpair which occurs
15: towards end of the sentence.
16: end if

The MAXSIM function takes two words as in-
put and returns the maximum similarity between
all pairs of words in their synsets. The algorithm
is described in 2.

For every possible pair between synsets1 and
synsets2, calculate the word to word similarity us-
ing the word embeddings. Return the pair which
has the maximum similarity.

For the pun example 3, the following table
shows the similarity between all pairs of the words
in the descending order of the similarity.

Algorithm 2 MAXSIM Model
1: INPUT Words={Word1, Word2}
2: Initialization MaxSimilarity=0
3: OUTPUT Maximum similarity between all

pairs of words in their synsets
4: Step 1: synsets1 = get the synsets of word1
5: Step 2: synsets2 = get the synsets of word2
6: for pairword1 in synsets1 do
7: for pairword2 in synsets2 do
8: Step 3:WordSimilarity=
9: similarity(pairword1,pairword2)

10: if MaxSimilarity ≤ WordSimilarity
then

11: a:MaxSimilarity= WordSimilarity
12: end if
13: end for
14: end for
15: Step 4:return MaxSimilarity

Word 1 Word 2 Max similarity
boat raft 0.68
boat whole 0.61

getting whole 0.5
rid whole 0.5

getting problems 0.46
getting raft 0.4

rid raft 0.4
getting boat 0.28

boat problems 0.26
boat whole 0.24
rid raft 0.23
rid whole 0.21
rid problems 0.20

Table 2: All word similarity pairs for the example
pun 3

Precision Recall Coverage. F1
0.5215 0.5215 1 0.5215

Table 3: Performance of the pun word identifica-
tion using MAXSIM for Subtask 2

In the first step, the following non content words

459



are removed - of, your, for, could, cause. The
remaining words are - rid, boat, getting, whole,
problems. Table 2 shows the similarities between
all pairs of the words. The highest pair boat-raft is
returned by the maxsim function. Since the word
raft appears later in the sentence, the word raft is
identified as the pun word.

3.3 Performance

Table 2 describes the result of our teams run for
Subtask 2.

3.4 Discussion

We have observed that our algorithm maxsim has
performed decently for pun sentences which are
short in length having up to 10 words in the sen-
tence. We observed that as the length of the sen-
tence increases, there are more number of words
which are similar together and the accuracy of pun
word identification decreased.

4 Subtask 3 - Pun interpretation

In this subtask, the pun word is given and the sys-
tem has to annotate the word with the right Word-
Net sense keys. While we did not participate in
this subtask, it is trivial to extend the work done
for Subtask 2 to achieve the objective of Subtask
3.

5 Conclusion

Classifying an English sentence as a pun or not is
a non trivial task. It is much more difficult and
challenging to solve this problem as an unsuper-
vised classification task. Experimentation can be
done to use LSTMs, and BiDirectional LSTMs to
improve the performance of the classifier. Char-
acter Level Embeddings can be used as features
to capture orthographic and morphological fea-
tures of a word. word2vec embeddings from the
Google News dataset can be evaluated as alterna-
tive features for GloVe vectors. For pun identifi-
cation task, cluster based approaches can be ex-
plored specifically for the long sentences. As the
interpretation of most of the puns relies on specific
domain knowledge, additional corpora can be used
to augment our models for better performance.

References
R. Weston J. Bottou L. Karlen M. Kavukcuoglu K.

Kuksa P Collobert. 2012. Natural language process-

ing (almost) from scratch. journal of machine learn-
ing research.

George A Miller. 1995. Wordnet: A lexical database
for english. communications of the acm vol. 38, no.
11: 39-41.

Tristan Miller. 2014. Towards the automatic detection
and identification of english puns.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1532–
1543. http://www.aclweb.org/anthology/D14-1162.

Iryna Gurevych Tristan Miller and Christian F.
Hempelmann. 2017. Systemdescription paper for
semeval 2017 task 7. In Proceedings of the 11th An-
nual Meeting of the SemEval). Association for Com-
putational Linguistics.

460


