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Abstract

Apun is a form of wordplay in which aword
suggests two or more meanings by exploit-
ing polysemy, homonymy, or phonological
similarity to another word, for an intended
humorous or rhetorical effect. Though a
recurrent and expected feature in many dis-
course types, puns stymie traditional ap-
proaches to computational lexical semantics
because they violate their one-sense-per-
context assumption. This paper describes
the first competitive evaluation for the auto-
matic detection, location, and interpretation
of puns. We describe the motivation for
these tasks, the evaluation methods, and
the manually annotated data set. Finally,
we present an overview and discussion of
the participating systems’ methodologies,
resources, and results.

1 Introduction
Word sense disambiguation (WSD), the task of
identifying a word’s meaning in context, has long
been recognized as an important task in compu-
tational linguistics, and has been the focus of a
considerable number of Senseval/SemEval evalu-
ation tasks. Traditional approaches to WSD rest
on the assumption that there is a single, unambigu-
ous communicative intention underlying each word
in the document. However, there exists a class
of language constructs known as puns, in which
lexical-semantic ambiguity is a deliberate effect
of the communication act. That is, the speaker or
writer intends for a certain word or other lexical
item to be interpreted as simultaneously carrying
two or more separate meanings. Though puns are a
recurrent and expected feature in many discourse

types, they have attracted relatively little attention
in the fields of computational linguistics and nat-
ural language processing in general, or WSD in
particular. In this document, we describe a shared
task for evaluating computational approaches to the
detection and semantic interpretation of puns.
A pun is a form of wordplay in which one sign

(e.g., a word or phrase) suggests two or more mean-
ings by exploiting polysemy, homonymy, or phono-
logical similarity to another sign, for an intended hu-
morous or rhetorical effect (Aarons, 2017; Hempel-
mann and Miller, 2017). For example, the first of
the following two punning jokes exploits the sound
similarity between the surface sign “propane” and
the latent target “profane”, while the second exploits
contrasting meanings of the word “interest”:

(1) When the church bought gas for their annual
barbecue, proceeds went from the sacred
to the propane.

(2) I used to be a banker but I lost interest.

Puns where the two meanings share the same pro-
nunciation are known as homophonic or perfect,
while those relying on similar- but not identical-
sounding signs are known as heterophonic or im-
perfect. Where the signs are considered as written
rather than spoken sequences, a similar distinction
can be made between homographic and hetero-
graphic puns.
Conscious or tacit linguistic knowledge—

particularly of lexical semantics and phonology—is
an essential prerequisite for the production and in-
terpretation of puns. This has long made them an
attractive subject of study in theoretical linguistics,
and has led to a small but growing body of research
into puns in computational linguistics. Most compu-
tational treatments of puns to date have focused on
generative algorithms (Binsted and Ritchie, 1994,

58



1997; Ritchie, 2005; Hong and Ong, 2009; Waller
et al., 2009; Kawahara, 2010) or modelling their
phonological properties (Hempelmann, 2003a,b).
However, several studies have explored the detection
and interpretation of puns (Yokogawa, 2002; Taylor
and Mazlack, 2004; Miller and Gurevych, 2015;
Kao et al., 2015; Miller and Turković, 2016; Miller,
2016); the most recent of these focus squarely on
computational semantics. In this paper, we present
the first organized public evaluation for the compu-
tational processing of puns.

We believe computational interpretation of puns
to be an important research question with a number
of real-world applications. For example:

• It has often been argued that humour
can enhance human–computer interaction
(HCI) (Hempelmann, 2008), and at least one
study (Morkes et al., 1999) has already shown
that incorporating canned humour into a user
interface can increase user satisfaction with-
out adversely affecting user efficiency. An
interactive system that is able to recognize and
produce contextually appropriate responses
to users’ puns could further enhance the HCI
experience.

• Recognizing humorous ambiguity is also im-
portant in machine translation, particularly
for sitcoms and other comedic works, which
feature puns and other forms of wordplay as
a recurrent and expected feature (Schröter,
2005). Puns can be extremely difficult for
non-native speakers to detect, let alone trans-
late. Future automatic translation aids could
scan source texts, flagging potential puns for
special attention, and perhaps even propos-
ing ambiguity-preserving translations that best
match the original pun’s double meaning.

• Wordplay is a perennial topic of scholarship
in literary criticism and analysis, with entire
books (e.g., Wurth, 1895; Rubinstein, 1984;
Keller, 2009) having been dedicated to cata-
loguing the puns of certain authors. Computer-
assisted detection and classification of puns
could help digital humanists in producing sim-
ilar surveys of other œuvres.

2 Data sets

The pun processing tasks at SemEval-2017 used
two manually annotated data sets, both of which

we are freely releasing to the research community.1
Our first data set, containing English homo-

graphic puns, is based on the one described by
Miller and Turković (2016) and Miller (2016).2 It
contains punning and non-punning jokes, apho-
risms, and other short, self-contained contexts
sourced from professional humorists and online
collections. For the purposes of deciding which
contexts contain a pun, we used a somewhat weaker
definition of homography: the lexical units corre-
sponding to a pun’s two distinct meanings must be
spelled exactly the same way, with the exception
that inflections and particles (e.g., the prepositions
or dummy object pronouns in phrasal verbs such
as “duke it out”) may be disregarded. The contexts
have the following characteristics:

• Each context contains a maximum of one pun.

• Each pun (and its latent target) contains exactly
one content word (i.e., a noun, verb, adjective,
or adverb) and zero or more non-content words
(e.g., prepositions or articles). Here “word” is
defined as a sequence of letters delimited by
space or punctuation. This means that puns
and targets do not include hyphenated words,
and they do not consist of multi-word expres-
sions containing more than one content word,
such as “get off the ground” or “state of the art”.
Puns and targets may be multi-word expres-
sions containing only one content word—this
includes phrasal verbs such as “take off” or
“put up with”.

• Each pun (and its target) has a lexical entry in
WordNet 3.1. However, the sense of the pun or
the target may or may not exist in WordNet 3.1.

The homographic data set contains 2250 contexts,
of which 1607 (71%) contain a pun. Sense annota-
tion was carried out by three trained human judges,
two of whom independently applied sense keys
from WordNet 3.1. Each pun word was annotated
with two sets of sense keys, one for each meaning
of the pun. As in previous Senseval/SemEval word
sense annotation tasks, annotators were permitted
to select more than one sense key per meaning,
or to indicate that the meaning was not listed in

1https://www.ukp.tu-darmstadt.de/data/sense-
labelling-resources/sense-annotated-english-
puns/

2The only significant difference is that we removed several
hundred of the contexts not containing puns and added them
to our new heterographic data set.
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words / context
pun type subtask contexts words min mean max

homographic detection 2 250 24 499 2 10.9 44
homographic location 1 607 18 998 3 11.8 44
homographic interpretation 1 298 15 510 3 11.9 44
heterographic detection 1 780 19 461 2 10.9 69
heterographic location 1 271 15 145 3 11.9 69
heterographic interpretation 1 098 13 258 3 12.1 69

Table 1: Data set statistics

WordNet. Interannotator agreement, as measured
by Krippendorff’s (1980) α and a variation of the
MASI set comparison metric (Passonneau, 2006;
Miller, 2016), was 0.777. Disagreements were
resolved automatically by taking the intersection of
the corresponding sense sets; for contexts where
this was not possible, the third judge manually adju-
dicated the disagreements. Of the 1607 puns, 1298
(81%) have both meanings in WordNet.

The second data set is similar to the first, except
that the puns are heterographic rather than homo-
graphic. It was constructed in a similar manner,
including the use of two annotators and an adju-
dicator. However, as heterographic puns have an
extra level of complexity (it being sometimes nec-
essary to discuss or explain an obscure joke before
one “gets it”), the annotators were given an oppor-
tunity to resolve their disagreements themselves
before passing the remainder on to the adjudicator.
Pre-adjudication agreement for the sense annota-
tions was α = 0.838. The final data set contains
1780 contexts, of which 1271 (71%) contain a pun.
Of the puns, 1098 (86%) have both meanings in
WordNet.

As described in the following section, the two
data sets are used in three subtasks—pun detection,
pun location, and pun interpretation. The pun
detection subtask uses the full data sets, while the
other two subtasks use subsets of the full data sets.
Table 1 presents some statistics on the size of each
subtask’s data set in terms of the number of contexts
and word tokens.

3 Task definition

Participating systems competed in any or all of the
following three subtasks, evaluated consecutively.
Within each subtask, participants had the choice of
running their system on either or both data sets.

Subtask 1: Pun detection. For this subtask, par-
ticipants were given an entire raw data set. For each
context in the data set, the system had to decide
whether or not it contains a pun. For example, take
the following two contexts:
(2) I used to be a banker but I lost interest.
(3) What if there were no hypothetical ques-

tions?
For (2), the system should have returned “pun”,
whereas for (3) the system should have returned
“non-pun”.

Systems had to classify all contexts in the data set.
Scores were calculated using the standard precision,
recall, accuracy, and F-score measures as used in
classification (Manning et al., 2008, §8.3):

P =
TP

TP + FP

R =
TP

TP + FN

A =
TP + TN

TP + TN + FP + FN

F1 =
2PR

P + R
where TP, TN , FP, and FN are the numbers of true
positives, true negatives, false positives, and false
negatives, respectively.

Subtask 2: Pun location. For this subtask, the
contexts not containing puns were removed from
the data sets. For any or all of the contexts, systems
had to make a single guess as to which word is
the pun. For example, given context (2) above, the
system should have indicated that the tenth word,
“interest”, is the pun.

Scores were calculated using the standard cover-
age, precision, recall, and F-score measures as used
in word sense disambiguation (Palmer et al., 2007):

C =
# of guesses
# of contexts

60



P =
# of correct guesses

# of guesses

R =
# of correct guesses

# of contexts

F1 =
2PR

P + R
.

Note that, according to the above definitions, it
is always the case that P ≥ R, and F1 = P = R
whenever P = R.

Subtask 3: Pun interpretation. For this subtask,
the punword in each context ismarked, and contexts
where the pun’s two meanings are not found in
WordNet are removed from the data sets. For any or
all of the contexts, systems had to annotate the two
meanings of the given pun by reference to WordNet
sense keys. For example, given context (2), the
system should have returned the WordNet sense
keys interest%1:09:00:: (glossed as “a sense
of concern with and curiosity about someone or
something”) and interest%1:21:00:: (“a fixed
charge for borrowing money; usually a percentage
of the amount borrowed”).
As with the pun location subtask, scores were

calculated using the coverage, precision, recall, and
F-score measures from word sense disambiguation.
A guess is considered to be “correct” if one of
its sense lists is a non-empty subset of one of the
sense lists from the gold standard, and the other of
its sense lists is a non-empty subset of the other
sense list from the gold standard. That is, the order
of the two sense lists is not significant, nor is the
order of the sense keys within each list. If the gold
standard sense lists contain multiple senses, then it
is sufficient for the system to correctly guess only
one sense from each list.

4 Baselines
For each subtask, we provide results for various
baselines:

Pun detection. The only baseline we use for this
subtask is a random classifier. It makes no as-
sumption about the underlying class distribution,
labelling each context as “pun” or “non-pun” with
equal probability. On average, its recall and accu-
racy will therefore be 0.5, and its precision equal
to the proportion of contexts containing puns.

Pun location. For this subtask we present the
results of three naïve baselines. The first simply
selects one of the context words at random. The

second baseline always selects the last word of the
context as a pun. It is informed by empirical studies
of large joke corpora, which have found that punch-
lines tend to occur in a terminal position (Attardo,
1994). The third baseline is a slightly more sophis-
ticated pun location baseline inspired by Mihalcea
et al. (2010). In that study, genuine joke punchlines
were selected among several non-humorous alterna-
tives by finding the candidate whose words have the
highest mean polysemy. We adapt this technique
by selecting as the pun the word with the highest
polysemy (counting together senses from all parts
of speech). In the case of a tie, we choose the most
polysemous word nearest to the end of the context.

Pun interpretation. Following the practice in
traditional word sense disambiguation, we present
the results of the random and most frequent sense
baselines, as adapted to pun annotation.
The random baseline attempts to lemmatize the

pun word, looks it up in WordNet, and selects two
of its senses at random, one for each meaning of
the pun. It scores

P = R =
1
n

n∑
i=1

Gi
1 · G

i
2(Si

2
) ,

where n is the number of contexts, Gi
j is the number

of gold-standard sense keys in the jth meaning of
the pun word in context i, and Si is the number of
sense keys WordNet contains for the pun word in
context i. We compute the random baseline only
for the homographic data set. (It would in principle
be adaptable to the heterographic data set, though
the large number of potential target words means
the scores would be negligible.)
The most frequent sense (MFS) baseline is a

supervised baseline in that it depends on a man-
ually sense-annotated background corpus. As its
name suggests, it involves always selecting from the
candidates that sense that has the highest frequency
in the corpus. For the homographic data set, our
MFS implementation attempts to lemmatize the
pun word (if necessary, building a list of candidate
lemmas) and then selects the two most frequent
senses of these lemmas according to WordNet’s
built-in sense frequency counts.3 For the hetero-
graphic data set, only the first sense is selected
from the list of candidate lemmas. A second list is
constructed by finding all other lemmas inWordNet

3These counts come from the SemCor (Miller et al., 1993)
corpus.
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with the minimum Levenshtein (1966) distance to
the lemmas in the first list. The most frequent sense
of the lemmas in the second list is selected as the
second meaning of the pun.
In addition to the two naïve baselines, we also

provide scores for the homographic pun interpre-
tation system described by Miller and Gurevych
(2015). This system works by running each pun
through a variation of the Lesk (1986) algorithm
that scores each candidate sense according to the
lexical overlap with the pun’s context. The two
top-scoring senses are then selected; in case of ties,
the system attempts to select senses which are not
closely related to each other, and at least one of
whose parts of speech matches the one applied to
the pun by a POS tagger.

The baseline pun interpretation scores presented
in this paper differ slightly from those given in
Miller and Gurevych (2015) and Miller (2016).
This is because the scoring program used in those
studies compared sense keys on the basis of their
underlyingWordNet synsets, whereas in this shared
task the sense keys are compared directly.

5 Participating systems
Our shared task saw participation from ten systems:

BuzzSaw (Oele and Evang, 2017). BuzzSaw as-
sumes that each meaning of the pun will ex-
hibit high semantic similarity with one and
only one part of the context. The system’s
approach to homographic pun interpretation
is to compute the semantic similarity between
the two halves of every possible contiguous,
binary partitioning of the context, retaining the
partitioning with the lowest similarity between
the two parts. A Lesk-like WSD algorithm
based on word and sense embeddings is then
used to disambiguate the pun word separately
with respect to each part of the context.
The pun interpretation system is also used for
homographic pun location. First, the interpre-
tation system is run once for each polysemous
word in the context. The word whose two
disambiguated senses have maximum cosine
distance between their sense embeddings is
selected as the pun word.

Duluth (Pedersen, 2017). For pun detection, the
Duluth system assumes that all-words WSD
systems will have difficulties in consistently
assigning sense labels to contexts containing

puns. The system therefore disambiguates
each context with four slightly different config-
urations of the same WSD algorithm. If more
than two sense labels differ across runs, the
context is assumed to contain a pun. For pun
location, the system selects the word whose
sense label changed across runs; if multiple
words changed senses, then the system selects
the one closest to the end of the context.
Homographic pun interpretation is carried out
by running various configurations of aWSD al-
gorithm on the pun word and selecting the two
most frequently returned senses. For hetero-
graphic puns, the system attempts to recover
the target form either by generating a list of
WordNet lemmas with minimal edit distance
to the pun word, or by querying the Datamuse
API for words with similar spellings, pronun-
ciations, and meanings. WSD algorithms are
then run separately on the pun and the set of
target candidates, with the best matching pun
and target senses retained.

ECNU (Xiu et al., 2017). ECNU uses a super-
vised approach to pun detection. The au-
thors collected a training set of 60 homo-
graphic and 60 heterographic puns, plus 60
proverbs and famous sayings, from various
Web sources. The data is then used to train a
classifier, using features derived from Word-
Net and word2vec embeddings. The ECNU
pun locator is knowledge-based, determining
each context word’s likelihood of being the
pun on the basis of the distance between its
sense vectors, or between its senses and the
context.

ELiRF-UPV (Hurtado et al., 2017). This sys-
tem’s approach to homographic pun location
rests on two hypotheses: that the pun will
be semantically very similar to one of the
non-adjacent words in the sentence, and that
the pun will be located near the end of the
sentence. The system therefore calculates the
similarity between every pair of non-adjacent
words in the context using word2vec, retaining
the pair with the highest similarity. The word
in the pair that is closer to the end of the
context is selected as the pun.
To interpret homographic puns, ELiRF-UPV
first finds the two context words whose word
embeddings are closest to that of the pun.
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Then, for each context word, the system builds
a bag-of-words representation for each of its
candidate senses, and for each of the pun
word’s candidate senses, using information
from WordNet. The lexical overlap between
every pair of pun and context senses is cal-
culated, and the pun sense with the highest
overlap is selected as one of the meanings of
the pun.

Fermi (Indurthi and Oota, 2017). Fermi takes a
supervised approach to the detection of homo-
graphic puns. Unlike ECNU, the authors did
not construct their own data set of puns, but
rather split the shared task data set into sep-
arate training and test sets, the first of which
they manually annotated. A bi-directional
RNN then learns a classification model, using
distributed word embeddings as input features.
Fermi’s approach to pun location is a
knowledge-based approach similar to that of
ELiRF-UPV. For every pair of words in the
context, a similarity score is calculated on the
basis of the maximum pairwise similarity of
their WordNet synsets. In the highest-scoring
pair, the word closest to the end of the context
is selected as the pun.

Idiom Savant (Doogan et al., 2017). Idiom Sa-
vant uses a variety of different methods de-
pending on the subtask and pun type, butwhich
are generally based on Google n-grams and
word2vec. Target recovery in heterographic
puns involves computing phonetic distance
with the aid of the CMU Pronouncing Dictio-
nary. Uniquely among participating systems,
Idiom Savant attempts to flag and specially
process TomSwifties, a genre of punning jokes
commonly seen in the test data.

JU_CSE_NLP (Pramanick and Das, 2017). As
a supervised approach, JU_CSE_NLP relies
on a manually annotated data set of 413
puns sourced by the authors from Project
Gutenberg. The data is used to train a
hidden Markov model and cyclic dependency
network, using features from a part-of-speech
tagger and a syntactic parser. The classifiers
are applied to the pun detection and location
subtasks.

PunFields (Mikhalkova and Karyakin, 2017).
PunFields uses separate methods for pun

detection, location, and interpretation; central
to all of them is the notion of semantic fields.
The system’s approach to pun detection
is a supervised one, with features being
vectors tabulating the number of words in the
context that appear in each of the 34 sections
of Roget’s Thesaurus. For pun location,
PunFields uses a weakly supervised approach
that scores candidates on the basis of their
presence in Roget’s sections, their position
within the context, and their part of speech.

For pun interpretation, the system partitions
the context on the basis of semantic fields,
and then selects as the first sense of the pun
the one whose WordNet gloss has the greatest
number of words in common with the first
partition. For homographic puns, the second
sense selected is the one with the highest fre-
quency count in WordNet (or the next-highest
frequency count, in case the first selected sense
already has the highest frequency). For hetero-
graphic puns, a list of candidate target words is
produced using Damerau-Levenshtein (1964)
distance. Among their corresponding Word-
Net senses, the system selects the one whose
definition has the highest lexical overlap with
the second partition.

UWaterloo (Vechtomova, 2017). UWaterloo is a
rule-based pun locator that scores candidate
words according to eleven simple heuristics.
These heuristics involve the position of the
word within the context or relative to certain
punctuation or function words, the word’s in-
verse document frequency in a large reference
corpus, normalized pointwise mutual informa-
tion (PMI) with other words in the context,
and whether the word exists in a reference set
of homophones and similar-sounding words.
Only words in the second half of the context
are scored; in the event of a tie, the system
chooses the word closer to the end of the
context.

UWAV (Vadehra, 2017). UWAV participated in
the pun detection and location subtasks. The
detection component is another supervised
system, taking the votes of three classifiers
(support vector machine, naïve Bayes, and
logistic regression) trained on lexical-semantic
and word embedding features of a manually
annotated data set.
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For pun location, UWAV splits the context in
half and checkswhether anyword in the second
half is in some predefined lists of homonyms,
homophones, and antonyms. If so, one of
those words is selected as the pun. Otherwise,
word2vec similarity is calculated between ev-
ery pair of words in the context. In the highest-
scoring word pair, the word closest to the end
of the context is selected.

One further team submitted answers after the
official evaluation period was over:

N-Hance (Sevgili et al., 2017). The N-Hance sys-
tem assumes every pun has a particularly
strong association with exactly one other word
in the context. To detect and locate puns,
then, it calculates the PMI between every pair
of words in the context. If the PMI of the
highest-scoring pair exceeds a certain thresh-
old relative to the other pairs’ PMI scores, then
the context is assumed to contain a pun, with
the pun being the word in the pair closest to
the end of the context. Otherwise, the context
is assumed to have no pun.

For homographic pun interpretation, the first
sense is selected by finding the maximum over-
lap between the candidate sense definitions
and the pun’s context. N-Hance then finds
the word in the context that has the highest
PMI score with the pun. The system selects as
the second sense of the pun that sense whose
synonyms have the greatest word2vec cosine
similarity with the paired word.

6 Results and analysis
Tables 2 through 4 show the results for each of
the three subtasks and two data sets. Results for
the participating systems are shown in the upper
section of each table; the lower section shows the
baselines and the N-Hance system entered out of
competition. Pun detection results for ECNU and
Fermi are also in the non-competition section, since
their training data, by accident or design, included
some contexts from the test data. To calculate the
pun detection scores for these two systems, we
first removed the overlapping contexts from the test
set.4 The PunFields pun locator is also marked

4Two further supervised pun detection systems, UWAV
and Punfields, were found to have inadvertently used training
contexts that also appear in the test data. In these two cases,
however, the authors removed the overlapping contexts from

as it makes use of POS frequency counts of the
homographic data set that were published in Miller
and Gurevych (2015).

For each metric, the result of the best-performing
participating system is shown in boldface. Where a
baseline or non-competition entry matched or out-
performed the best participating system, its result
is also shown in boldface. Generally only the best-
scoring run submitted by each system is shown;5 we
have made an exception for Duluth’s Datamuse- and
edit distance–based pun interpretation variations
(“DM” and “ED”, respectively), neither of which
outperformed the other on all metrics.

Subtask 1: Pun detection. No one system
emerged as the clear winner for this subtask, mak-
ing it hard to draw conclusions on what approaches
work best. Among the participating systems for
the homographic data set, Punfields achieved the
highest precision (0.7993), JU_CSE_NLP the high-
est recall (0.9079), and Duluth the highest accu-
racy and F-score (0.7364 and 0.8254, respectively).
N-Hance equalled or outperformed the participat-
ing systems on recall, accuracy, and F-score. For the
heterographic data set, Idiom Savant had the highest
precision, accuracy, and F-score (0.8704, 0.7837,
and 0.8439, respectively), while JU_CSE_NLP
achieved the best recall (0.9402). N-Hance per-
formed about as well as Idiom Savant in terms of
F-Score (0.8440). For both data sets, all systems
outperformed the random baseline.

Subtask 2: Pun location. The last word baseline
(F1 = 0.4704 and 0.5704 for homographic and
heterographic puns, respectively) turned out to be
surprisingly hard to beat for this subtask. For the
homographic data set, this baseline was exceeded
only by Idiom Savant (F1 = 0.6631) and UWaterloo
(F1 = 0.6523). For the heterographic puns, it
was bested only by Idiom Savant (F1 = 0.6845),
UWaterloo (F1 = 0.7964), and N-Hance (F1 =

0.6553).
Idiom Savant was not the only system to measure

semantic relatedness via word2vec, though it was
the only one to do so with n-grams from a large
background corpus. It was also the only system
to directly (albeit simplistically) measure phonetic

their training data, retrained their systems, and submitted new
results, which we report here.

5Participants were permitted to submit the results of up
to two runs for each subtask and data set. The intention was
to allow participants the opportunity to fix problems in the
formatting of their output files, or to try minor variations of
the same system.
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homographic heterographic
system P R A F1 P R A F1

Duluth 0.7832 0.8724 0.7364 0.8254 0.7399 0.8662 0.6871 0.7981
Idiom Savant — — — — 0.8704 0.8190 0.7837 0.8439
JU_CSE_NLP 0.7251 0.9079 0.6884 0.8063 0.7367 0.9402 0.7174 0.8261
PunFields 0.7993 0.7337 0.6782 0.7651 0.7580 0.5940 0.5747 0.6661
UWAV 0.6838 0.4723 0.4671 0.5587 0.6523 0.4178 0.4253 0.5094

random 0.7142 0.5000 0.5000 0.5882 0.7140 0.5000 0.5000 0.5882
ECNU* 0.7127 0.6474 0.5628 0.6785 0.7807 0.6761 0.6333 0.7247
Fermi† 0.9024 0.8970 0.8533 0.8997 — — — —
N-Hance 0.7553 0.9334 0.7364 0.8350 0.7725 0.9300 0.7545 0.8440

Table 2: Pun detection results

homographic heterographic
system C P R F1 C P R F1

BuzzSaw 1.0000 0.2775 0.2775 0.2775 — — — —
Duluth 1.0000 0.4400 0.4400 0.4400 1.0000 0.5311 0.5311 0.5311
ECNU 1.0000 0.3373 0.3373 0.3373 1.0000 0.5681 0.5681 0.5681
ELiRF-UPV 1.0000 0.4462 0.4462 0.4462 — — — —
Fermi 1.0000 0.5215 0.5215 0.5215 — — — —
Idiom Savant 0.9988 0.6636 0.6627 0.6631 1.0000 0.6845 0.6845 0.6845
JU_CSE_NLP 1.0000 0.3348 0.3348 0.3348 1.0000 0.3792 0.3792 0.3792
PunFields‡ 1.0000 0.3279 0.3279 0.3279 1.0000 0.3501 0.3501 0.3501
UWaterloo 0.9994 0.6526 0.6521 0.6523 0.9976 0.7973 0.7954 0.7964
UWAV 1.0000 0.3410 0.3410 0.3410 1.0000 0.4280 0.4280 0.4280

random 1.0000 0.0846 0.0846 0.0846 1.0000 0.0839 0.0839 0.0839
last word 1.0000 0.4704 0.4704 0.4704 1.0000 0.5704 0.5704 0.5704
max. polysemy 1.0000 0.1798 0.1798 0.1798 1.0000 0.0110 0.0110 0.0110
N-Hance 0.9956 0.4269 0.4250 0.4259 0.9882 0.6592 0.6515 0.6553

Table 3: Pun location results

homographic heterographic
system C P R F1 C P R F1

BuzzSaw 0.9761 0.1563 0.1525 0.1544 — — — —
Duluth (DM) 0.8606 0.1683 0.1448 0.1557 0.9791 0.0009 0.0009 0.0009
Duluth (ED) 0.9992 0.1480 0.1479 0.1480 0.9262 0.0315 0.0291 0.0303
ELiRF-UPV 0.9646 0.1014 0.0978 0.0996 — — — —
Idiom Savant 0.9900 0.0778 0.0770 0.0774 0.8434 0.0842 0.0710 0.0771
PunFields 0.8760 0.0484 0.0424 0.0452 0.9709 0.0169 0.0164 0.0166

random 1.0000 0.0931 0.0931 0.0931 — — — —
MFS 1.0000 0.1348 0.1348 0.1348 0.9800 0.0716 0.0701 0.0708
Miller & Gurevych 0.6826 0.1975 0.1348 0.1603 — — — —
N-Hance 0.9831 0.0204 0.0200 0.0202 — — — —

Table 4: Pun interpretation results
*Evaluated on 2237 of the 2250 homographic contexts, and 1778 of the 1780 heterographic contexts.
†Evaluated on 675 of the 2250 homographic contexts.
‡Uses POS frequency counts from the homographic test set.
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distance using a pronunciation dictionary, and the
only system that flagged puns of a certain genre
for special processing. These features, alone or in
combination, may have contributed to the system’s
success.
UWaterloo and N-Hance were the only systems

making use of pointwise mutual information, to
which their success might be credited. Evidently
the notion of a unique “trigger” word in the context
that activates the pun is an important one to model.
UWaterloo also shares with Idiom Savant the use of
hand-crafted rules based on real-world knowledge
of punning jokes.

Subtask 3: Pun interpretation. As in the pun
detection subtask, no one approach worked best
here, at least for the homographic data set. Only
two systems (BuzzSaw and Duluth) were able to
beat the most frequent sense baseline. The Miller
and Gurevych (2015) system remains the best-
performing pun interpreter in terms of precision
(0.1975) and F-score (0.1603), though BuzzSaw
was able to exceed it in terms of recall (0.1525).
Both BuzzSaw and Miller and Gurevych (2015)
apply Lesk-like algorithms to “disambiguate” the
pun word. However, lexical overlap approaches
are also used by most of the lower-performing sys-
tems. For heterographic pun interpretation, Idiom
Savant achieved the highest scores (P = 0.0842,
R = 0.0710, F1 = 0.0771), though its recall is not
much higher than the most frequent sense baseline
(0.0701).

It seems that for probabilistic approaches like
those submitted, classifying texts as puns and, to
a lesser degree, pinpointing the punning lexical
material are easier than actual semantic tasks like
our Subtask 3. This may be because probabilis-
tic approaches cannot, in principle, see past the
arbitrariness of the linguistic sign, instead relying
on context to reflect meaning. We assume that
producing a full semantic analysis in terms of a
knowledge-based system, akin to those proposed in
Bar-Hillel’s (1960) famous evaluation of fully auto-
matic high-quality translation, might be necessary,
because only these approaches can get beyond ob-
served shared features to natural language meaning.
Such knowledge-based approaches to meaning in
humour, based on relevant semantic humour theo-
ries (Raskin, 1985; Attardo and Raskin, 1991), have
been in development since Raskin et al. (2009) and
one recent (albeit non-scalable) approach, Kao et al.
(2015), has already shown very interesting results.

7 Concluding remarks

In this paper we have introduced SemEval-2017
Task 7, the first shared task for the computational
processing of puns. We have described the rules for
three subtasks—pun detection, pun location, and
pun interpretation—and described the manually
annotated data sets used for their evaluation. Both
data sets are now freely available for use by the
research community. We have also described the
approaches and presented the results of ten partici-
pating teams, as well as several baseline algorithms
and a further system entered out of competition.

We observe most systems performed well on the
pun detection task, with F-scores in the range of
0.5587 to 0.8440. However, only a few systems beat
a simple baseline on pun location. Pun interpre-
tation remains an extremely challenging problem,
with most systems failing to exceed the baselines,
and with sense assignment accuracy much lower
than what is seen with traditional word sense dis-
ambiguation. Interestingly, though there exists
a considerable body of research in linguistics on
phonological models of punning (Hempelmann
and Miller, 2017) and on semantic theories of hu-
mour (Raskin, 2008), little to none of this work
appeared to inform the participating systems.
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