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Abstract

This paper explores the possibilities of
analogical reasoning with vector space
models. Given two pairs of words with
the same relation (e.g. man:woman ::
king:queen), it was proposed that the off-
set between one pair of the corresponding
word vectors can be used to identify the
unknown member of the other pair (

−−→
king

− −−→man + −−−−−→woman = ?−−−→queen). We ar-
gue against such “linguistic regularities”
as a model for linguistic relations in vector
space models and as a benchmark, and we
show that the vector offset (as well as two
other, better-performing methods) suffers
from dependence on vector similarity.

1 Introduction

This paper considers the phenomenon of “vector-
oriented reasoning” via linear vector offset in
vector space models (VSMs) (Mikolov et al.,
2013c,a). Given two pairs of words with the same
linguistic relation (woman:man :: king:queen), it
has been proposed that the offset between one pair
of word vectors can be used to identify the un-
known member of a different pair of words via
solving proportional analogy problems (

−−→
king −−−→man + −−−−−→woman = ?−−−→queen), as shown in Fig. 1.

We will refer to this method as 3CosAdd.
This approach attracted a lot of attention, both

as the “poster child” of word embeddings, and
for its potential practical utility. Given the vi-
tal role that analogical reasoning plays in human
cognition for discovering new knowledge and un-
derstanding new concepts, automated analogical
reasoning could become a game-changer in many
fields, providing a universal mechanism for detect-
ing linguistic relations (Turney, 2008) and word
sense disambiguation (Federici et al., 1997). It is

already used in many downstream NLP tasks, such
as splitting compounds (Daiber et al., 2015), se-
mantic search (Cohen et al., 2015), cross-language
relational search (Duc et al., 2012), to name a few.

Figure 2: Left panel shows vector offsets for three word
pairs illustrating the gender relation. Right panel shows
a different projection, and the singular/plural relation for
two words. In high-dimensional space, multiple relations
can be embedded for a single word.

provided. We have explored several related meth-
ods and found that the proposed method performs
well for both syntactic and semantic relations. We
note that this measure is qualitatively similar to rela-
tional similarity model of (Turney, 2012), which pre-
dicts similarity between members of the word pairs
(xb, xd), (xc, xd) and dis-similarity for (xa, xd).

6 Experimental Results

To evaluate the vector offset method, we used
vectors generated by the RNN toolkit of Mikolov
(2012). Vectors of dimensionality 80, 320, and 640
were generated, along with a composite of several
systems, with total dimensionality 1600. The sys-
tems were trained with 320M words of Broadcast
News data as described in (Mikolov et al., 2011a),
and had an 82k vocabulary. Table 2 shows results
for both RNNLM and LSA vectors on the syntactic
task. LSA was trained on the same data as the RNN.
We see that the RNN vectors capture significantly
more syntactic regularity than the LSA vectors, and
do remarkably well in an absolute sense, answering
more than one in three questions correctly. 2

In Table 3 we compare the RNN vectors with
those based on the methods of Collobert and We-
ston (2008) and Mnih and Hinton (2009), as imple-
mented by (Turian et al., 2010) and available online
3 Since different words are present in these datasets,
we computed the intersection of the vocabularies of
the RNN vectors and the new vectors, and restricted
the test set and word vectors to those. This resulted
in a 36k word vocabulary, and a test set with 6632

2Guessing gets a small fraction of a percent.
3http://metaoptimize.com/projects/wordreprs/

Method Adjectives Nouns Verbs All
LSA-80 9.2 11.1 17.4 12.8
LSA-320 11.3 18.1 20.7 16.5
LSA-640 9.6 10.1 13.8 11.3
RNN-80 9.3 5.2 30.4 16.2
RNN-320 18.2 19.0 45.0 28.5
RNN-640 21.0 25.2 54.8 34.7
RNN-1600 23.9 29.2 62.2 39.6

Table 2: Results for identifying syntactic regularities for
different word representations. Percent correct.

Method Adjectives Nouns Verbs All
RNN-80 10.1 8.1 30.4 19.0
CW-50 1.1 2.4 8.1 4.5
CW-100 1.3 4.1 8.6 5.0
HLBL-50 4.4 5.4 23.1 13.0
HLBL-100 7.6 13.2 30.2 18.7

Table 3: Comparison of RNN vectors with Turian’s Col-
lobert and Weston based vectors and the Hierarchical
Log-Bilinear model of Mnih and Hinton. Percent correct.

questions. Turian’s Collobert and Weston based vec-
tors do poorly on this task, whereas the Hierarchical
Log-Bilinear Model vectors of (Mnih and Hinton,
2009) do essentially as well as the RNN vectors.
These representations were trained on 37M words
of data and this may indicate a greater robustness of
the HLBL method.

We conducted similar experiments with the se-
mantic test set. For each target word pair in a rela-
tion category, the model measures its relational sim-
ilarity to each of the prototypical word pairs, and
then uses the average as the final score. The results
are evaluated using the two standard metrics defined
in the task, Spearman’s rank correlation coefficient
ρ and MaxDiff accuracy. In both cases, larger val-
ues are better. To compare to previous systems, we
report the average over all 69 relations in the test set.

From Table 4, we see that as with the syntac-
tic regularity study, the RNN-based representations
perform best. In this case, however, Turian’s CW
vectors are comparable in performance to the HLBL
vectors. With the RNN vectors, the performance im-
proves as the number of dimensions increases. Sur-
prisingly, we found that even though the RNN vec-

Figure 1: Linguistic relations modeled by linear
vector offset (Mikolov et al., 2013c)

The idea that linguistic relations are mirrored in
neat geometrical relations (as shown in Fig. 1) is
also intuitively appealing, and 3CosAdd has be-
come a popular benchmark. Roughly, the current
VSMs score between 40% (Lai et al., 2016) and
75% (Pennington et al., 2014) on the Google test
set (Mikolov et al., 2013a). However, in fact per-
formance varies widely for different types of re-
lations (Levy and Goldberg, 2014; Köper et al.,
2015; Gladkova et al., 2016).

One way to explain the current limitations is to
attribute them to the imperfections of the current
models and/or corpora with which they are built:
with this view, in a perfect VSM, any linguistic
relation should be recoverable via vector offset.

The alternative to be explored in this paper is
that perhaps natural language semantics is more
complex than suggested by Fig. 1, and there may
be both theoretical and mathematical issues with
analogical reasoning with word vectors and its
3CosAdd implementation.

We present a series of experiments with two
popular VSMs (GloVe and Word2Vec) to show
that the accuracy of 3CosAdd depends on the
proximity of the target vector to its source (i.e.
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−−−→queen should be quite similar to
−−→
king). Since

not all linguistic relations can be expected to result
in high word vector proximity, the method is lim-
ited to those that happen to be so in a given VSM.
Furthermore, its accuracy also varies because the
“linguistic regularities” are actually not so regu-
lar, and should not be expected to be so. We also
compare 3CosAdd to two alternative methods to
investigate whether better algorithms can improve
on these and other accounts.

2 Background: “Relational Similarity”
vs “Word Analogies”

The most fundamental term for what 3CosAdd is
supposed to capture is actually not analogy, but
rather relational similarity, i.e. the idea that pairs
of words may hold similar relations to those be-
tween other pairs of words. For example, the re-
lation between cat and feline is similar to the re-
lation between dog and canine. Notably, this is
similarity rather than identity: “instances of a sin-
gle relation may still have significant variability in
how characteristic they are of that class” (Jurgens
et al., 2012).

Analogy as it is known in philosophy and logic
is something quite different. The “classical” ana-
logical reasoning follows roughly this template:
objects X and Y share properties a, b, and c; there-
fore, they may also share the property d. For ex-
ample, both Earth and Mars orbit the Sun, have at
least one moon, revolve on axis, and are subject to
gravity; therefore, if Earth supports life, so could
Mars (Bartha, 2016).

The NLP move from relational similarity to
analogy follows the use of the term by P. Turney,
who distinguishes between attributional similarity
between two words and relational similarity be-
tween two pairs of words. On this interpretation,
two word pairs that have a high degree of rela-
tional similarity are analogous (Turney, 2006).

In terms of practical NLP tasks, Turney et al.
(2003) introduced the task of solving SAT1 anal-
ogy problems by choosing from several provided
options. These problems were formulated as pro-
portional analogies, written in the form a : a′ ::
b : b′ (a is to a′ as b is to b′)

It is this use of the term “analogy” that Mikolov
et al. (2013c) followed in proposing the 3CosAdd
method. They formulated the task as selecting a
single best fitting vector out of the whole vocabu-

1Scholastic Aptitude Test.

lary of the VSM. It became known as word anal-
ogy task, but in its core it is still basically esti-
mation of relational similarity, and could be for-
mulated as such: given a pair of words a and a′,
find how they are related and then find word b′,
such that it has a similar relation with the word b.
A crucial difference is that the graded, non-binary
nature of relational similarity is now not in focus:
the goal is to find a single correct answer.

The dataset that came to be known as the
Google analogy test set (Mikolov et al., 2013a),
included 14 linguistic relations with 19544 ques-
tions in total. It has become one of the most
popular benchmarks for VSMs. This evaluation
paradigm assumes that:

(1) Words in similar linguistic relations should in
principle be recoverable via relational similar-
ity to known word pairs.

(2) 3CosAdd score reflects the extent to which a
given VSM encodes linguistic relations.

(1) became dubious when it was shown that ac-
curacy of 3CosAdd varies widely between cate-
gories (Levy and Goldberg, 2014), and even the
best-performing GloVe model scores under 30%
on the more challenging Bigger Analogy Test Set
(BATS) (Gladkova et al., 2016). It appears that
not all relations can be identified in this way, with
lexical semantic relations such as synonymy and
antonymy being particularly difficult (Köper et al.,
2015; Vylomova et al., 2016). The assumption of
a single best-fitting candidate answer is also being
targeted (Newman-Griffis et al., 2017).

(2) was refuted when Drozd et al. (2016)
demonstrated that some relations missed by
3CosAdd could be recovered with a supervised
method, and therefore the information was present
in the VSM – just not recoverable with 3CosAdd.

Let us consider why both (1) and (2) failed.

3 What Does 3CosAdd Really Do?

3.1 Methodology

We present a series of experiments performed with
BATS dataset. Although there are more results on
analogy task published with Google test than with
BATS, Google test only contains 15 types of lin-
guistic relations, and these happen to be the easier
ones (Gladkova et al., 2016).

Table 1 lists examples of each BATS category:
there are 50 word pairs for each of 40 linguistic

136



Inflectional Nouns regular plurals (student:students), plurals with orthographic changes (wife:wives)
morphology Adjectives comparative degree (strong:stronger), superlative degree (strong:strongest)

Verbs infinitive: 3Ps.Sg (follow:follows), infinitive: participle (follow:following), infinitive:
past (follow:followed), participle: 3Ps.Sg (following:follows), participle: past (follow-
ing:followed), 3Ps.Sg : past (follows:followed)

Derivational
morphology

Stem
change

verb+er (bake:baker), verb+able (edit:editable), verb+ation (continue:continuation),
verb+ment (argue:argument)

No stem
change

re+verb (create:recreate), noun+less (home:homeless), adj.+ness (mad:madness),
un+adj. (able:unable), adj.+ly (usual:usually), over+adj. (used:overused)

Lexicographic Hypernyms animals (turtle:reptile), miscellaneous (peach:fruit)
semantics Hyponyms miscellaneous (color:white)

Meronyms part-whole (car:engine), substance (sea:water), member (player:team),
Antonyms opposites (up:down), gradable (clean:dirty)
Synonyms exact (sofa:couch), intensity (cry:scream)

Encyclopedic Animals the young (cat:kitten), sounds (dog:bark), shelter fox:den
semantics Geography capitals (Athens:Greece), languages (Peru:Spanish), UK city:county York:Yorkshire

People occupation (Lincoln:president), nationalities (Lincoln:American)
Other thing:color (blood:red), male:female (actor:actress)

Table 1: The Bigger Analogy Test Set: categories and examples

relations (98,000 questions in total). BATS covers
most relations in the Google set, but it adds many
new and more difficult relations, balanced across
derivational and inflectional morphology, lexico-
graphic and encyclopedic semantics (10 relations
of each type). Thus BATS provides a less flatter-
ing, but more accurate estimate of the capacity for
analogical reasoning in the current VSMs.

We use pre-trained GloVe vectors by Penning-
ton et al. (2014), released by the authors2 and
trained on Gigaword 5 + Wikipedia 2014 (300 di-
mensions, window size 10). We also experiment
with Word2Vec vectors (Mikolov et al., 2013b) re-
leased by the authors3, trained on a subcorpus of
Google news (also with 300 dimensions).

The evaluation with 3CosAdd and LRCos meth-
ods was conducted with the Python script that ac-
companies BATS. We also added an implementa-
tion of 3CosMul, a multiplicative objective pro-
posed by Levy and Goldberg (2014), now avail-
able in the same script4. Since 3CosMul requires
normalization, we used normalized GloVe and
Word2Vec vectors in all experiments.

Questions with words not in the model vocab-
ulary were excluded (0.01% BATS questions for
GloVe and 0.016% for Word2Vec).

3.2 The “Honest” 3CosAdd

Let us remember that 3CosAdd as initially formu-
lated by Mikolov et al. (2013c) excludes the three

2https://nlp.stanford.edu/projects/
glove/

3https://code.google.com/archive/p/
word2vec/

4http://vsm.blackbird.pw/tools/

source vectors a, a′ and b from the pool of possi-
ble answers. Linzen (2016) showed that if that is
not done, the accuracy drops dramatically, hitting
zero for 9 out of 15 Google test categories.

Let us investigate what happens on BATS data,
split by 4 relation types. The rows of Fig. 2
represent all questions of a given category, with
darker color indicating higher percentage of pre-
dicted vectors being the closest to a, a′, b, b′, or
any other vector.

a a' b b' other

Encyclopedia

Lexicography

Inflections

Derivation

0.00

0.15

0.30

0.45

0.60

0.75

0.90

Figure 2: The result of a − a′ + b calculation on
BATS: source vectors a, a′, and b are not excluded.

Fig. 2 shows that if we do not exclude the
source vectors, b is the most likely to be predicted;
in derivational and encyclopedic categories a′ is
also possible in under 30% of cases. b′ is as un-
likely to be predicted as a, or any other vector.

This experiment suggests that the addition of
the offset between a and a′ typically has a very
small effect on the b vector – not sufficient to in-
duce a shift to a different vector on its own. This
would in effect limit the search space of 3CosAdd
to the close neighborhood of the b vector.

It explains another phenomenon pointed out by
Linzen (2016): for the plural noun category in the
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The numerical values for all data can be found in the Appendix.

Figure 3: Accuracy of 3CosAdd method on GloVe vs characteristics of the vector space.

Google test set 70% accuracy was achieved by
simply taking the closest neighbor of the vector
b, while 3CosAdd improved the accuracy by only
10%. That would indeed be expected if most sin-
gular (a) and plural (a′) forms of the same noun
were so similar, that subtracting them would result
in a nearly-null vector which would not change
much when added to b.

3.3 Distance to the Target Vector
Levy and Goldberg (2014, p.173) suggested that
3CosAdd method is “mathematically equivalent to
seeking a word (b′) which is similar to b and a′ but
is different from a.” We examined the similarity
between all source vector pairs, looking not only
at the actual, top-1 accuracy of the 3CosAdd (i.e.
the vector the closest to the hypothetical vector),
but also at whether the correct answer was found
in the top-3 and top-5 neighbors of the predicted
vector. For each similarity bin we also estimated
how many questions of the whole BATS dataset
there were. The results are presented in Fig. 3.

Our data indicates that, indeed, for all combina-
tions of source vectors, the accuracy of 3CosAdd
decreases as their distance in vector space in-
creases. It is the most successful when all three
source vectors are relatively close to each other
and the target vector. This is in line with the above

evidence from the “honest” 3CosAdd: if the offset
is typically small, for it to lead to the target vector,
that target vector should be close.

Consider also the ranks of the b vectors in the
neighborhood of b′, shown in Fig. 3f. For nearly
40% of the successful questions b′ was within 10
neighbors of b – and over 40% of low-accuracy
questions were over 90 neighbors away.

As predicted by Levy et al., b′ and a vectors do
not exhibit the same clear trend for higher accu-
racy with higher similarity that is observed in all
other cases (Fig. 3f). However, in experiments
with only 20 morphological categories we did ob-
serve the same trend for b′ and a as for the other
vector pairs (see Fig. 4). This is counter-intuitive,
and requires further examination.
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Figure 4: The similarity between b′ and a on
GloVe: morphological BATS categories only.
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The observed correlation between the accuracy
of 3CosAdd and the distance to the target vec-
tor could explain in particular the overall lower
performance on BATS derivational morphology
questions (only 0.08% top-1 accuracy) as opposed
to inflectional (0.59%) or encyclopedic seman-
tics (0.26%). −−→man and −−−−−→woman could be ex-
pected to be reasonably similar distributionally,
as they combine with many of the same verbs:
both men and women sit, sleep, drink etc. How-
ever, the same could not be said of words derived
with prefixes that change part of speech. Going
from

−−−→
happy to

−−−−−−−→
happiness, or from −−−−→govern to−−−−−−−−→

government, is likely to have to take us further
in the vector space.

To make sure that the above trend is not spe-
cific to GloVe, we repeated these experiments with
Word2Vec, which exhibited the same trends. All
data is presented in Appendix A.1.

3.4 Uniqueness of a Relation

Note that the dependence of 3CosAdd on similar-
ity is not entirely straightforward: Fig. 3b shows
that for the highest similarity (0.9 and more) there
is actually a drop in accuracy. The same trend was
observed with Word2Vec (Fig 10 in Appendix 1).
Theoretically, it could be attributed to there not be-
ing much data in the highest similarity range; but
BATS has 98,000 questions, and even 0.1% of that
is considerable.

The culprit is the “dishonesty” of 3CosAdd: as
discussed above, it excludes the source vectors a,
a′, and b from the pool of possible answers. Not
only does this mask the real extent of the differ-
ence between a and a′, but it also creates a funda-
mental difficulty with categories where the source
vectors may be the correct answers.

This is what explains the unexpected drops in
accuracy at the highest similarity between vec-
tors b′ and a′. Consider the question

−−−→
blood:

−→
red

:: −−−→snow:
−−−−→
?white. The vector offset could theoret-

ically solve it, but if the question is −−−→snow:
−−−→
white

:: −−−→sugar:
−−−−→
?white, the correct answer would a pri-

ori be excluded. In BATS data, this factor af-
fects several semantic categories, including coun-
try:language, thing:color, animal:young, and ani-
mal:shelter.

3.5 Density of Vector Neighborhoods

If solving proportional analogies with word vec-
tors is like shooting, the farther away the target

vector is, the more difficult it should be to hit.
Also, we can hypothesize that the more crowded
a particular region is, the more difficult it should
be to hit a particular target.

However, density of vector neighborhoods is
not as straightforward to measure as vector sim-
ilarity. We could look at average similarity be-
tween, e.g., top-10 ranking neighbors, but that
could misrepresent the situation if some neighbors
were very close and some were very far.

In this experiment we estimate density as the
similarity to the 5th neighbor. The higher it is, the
more highly similar neighbors a word vector has.
This approach is shown in Fig. 5.
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Figure 5: The similarity between b′ and its 5th
neighbor

The results seem counter-intuitive: denser
neighborhoods actually yield higher accuracy (al-
though there are virtually no cases of very tight
neighborhoods). One explanation could be its re-
verse correlation with distance: if the neighbor-
hood of b′ is sparse, the closest word is likely to be
relatively far away. But that runs contrary to the
above findings that closer source vectors improve
the accuracy of 3CosAdd. Then we could expect
lower accuracy in sparser neighborhoods.

In this respect, too, GloVe and Word2Vec be-
have similarly (Fig. 15).

4 Comparison with Other Methods

We repeat the above experiments on GloVe with
3CosMul, a multiplication-based alternative to
3CosAdd proposed by Levy and Goldberg (2014):

argmaxb′∈V
cos(b′, b)cos(b′, a′)

cos(b′, a) + ε

(ε = 0.001 is used to prevent division by zero)

As 3CosMul does not explicitly calculate the
predicted vector, we did not plot the similarity of
b′ to the predicted vector. But for other vector
pairs shown in Fig. 6, we can see that 3CosMul,
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Figure 6: Accuracy of 3CosMul method on GloVe model vs characteristics of the vector space.

like 3CosAdd, has much higher chances of success
where target vectors are close to the source.

We also consider LRCos, a method based on su-
pervised learning from a set of word pairs (Drozd
et al., 2016). LRCos reinterprets the analogy
task as follows: given a set of word pairs (e.g.
brother:sister, husband:wife, man:woman, etc.),
the available examples of the class of the target
b′ vector (sister, wife, woman, etc.) and randomly
selected negative examples are used to learn a rep-
resentation of the target class with a supervised
classifier. The question is this: what word is the
closest to

−−→
king, but belongs to the “women” class?

With LRCos it is only meaningful to look at the
similarity of b to b′ (Fig. 7). Once again, we see
the same trend: closer targets are easier to hit.
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Figure 7: Accuracy of LRCos method vs similar-
ity between vectors b and b′

However, if we look at overall accuracy, there is
a big difference between the three methods.

Fig. 8b shows that the accuracy of LRCos is
much higher than the top-1 3CosAdd or 3Cos-
Mul. Moreover, its “honest” version (Fig. 8a) per-
forms just as well as the “dishonest” one. These
results are consistent with the results reported by
Drozd et al. (2016). As for 3CosMul, Levy et al.
(2015) show that 3CosMul outperforms 3CosAdd
in PPMI, SGNS, GloVe and SVD models with the
Google dataset, sometimes yielding 10-25% im-
provement. Our BATS experiment confirms the
overall superiority of 3CosMul to 3CosAdd, al-
though the difference is less dramatic.

Thus LRCos considerably outdoes its competi-
tors, although it does not manage to avoid the sim-
ilarity problem. We attribute this to the set-based,
supervised nature of LRCos that gives it an edge
on a different problem that affects both 3CosAdd
and 3CosMul: the assumption of “linguistic regu-
larities” from which we started.

5 Discussion: What Should We Expect
from the Word Analogy Task?

5.1 How Regular Are “Linguistic
Regularities”?

There are unresolved questions about the underly-
ing assumption that the offset between vectors a′
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Figure 8: LRCos performance on BATS

and a provides access to certain features combin-
able with vector b to detect b′, and that such offset
should be more or less constant for all words in a
given linguistic relations.

Table 2 shows that this does not happen in a re-
liable way (data: BATS category D06 “re+verb”).

Table 2: 3CosAdd: effect of various a : a′ vector
pairs with the same b : b′ pair (−−−−→marry:−−−−−−→remarry)

No a a′ b predicted
vector

Sim.
score

correct
b′ score

1 acquire reacquire marry fiancée 0.54 <0.51
2 tell retell marry betrothed 0.51 0.49
3 engage reengage marry eloped 0.52 0.51
4 appear reappear marry marries 0.65 0.55
5 establish reestablish marry marries 0.58 0.52
6 invest reinvest marry marries 0.59 0.57
7 adjust readjust marry marrying 0.59 0.55
8 arrange rearrange marry marrying 0.52 0.43
9 discover rediscover marry marrying 0.54 0.49
10 apply reapply marry remarry 0.53 0.53

Both correct and incorrect answers lie in about
the same similarity range, so we cannot attribute
the failures to the reliance of 3CosAdd on close
neighborhoods. The distance from −−−−→marry to

−−−−−−→remarry is the same; thus it must be the case
that the offset between different a and a′ is not
the same, and leads to different answers – with a
frustratingly small margin of error.

5.2 Can We Just Blame the Corpus?
Source corpora are noisy, and it is tempting to
blame almost anything on that. It could be lit-
eral text-processing noise (e.g. not quite cleaned
HTML data and ad texts) or, more broadly, any
kind of information in the VSM that is irrelevant
to the question at hand. This includes polysemy:
for a word-level VSM the difference between

−−→
king

and−−−→queen is not exactly the same as the difference
between −−→man and −−−−−→woman just for the existence
of the Queen band (although that factor should not
affect the “re-” prefix verbs in Table 2).

In addition to irrelevant information, there is
also missing information. Corpora of written texts
are a priori not the same source of input as what
children get when they learn their language. Natu-
ral language semantics relies on much data that the
current VSMs do not have, including multimodal
data and frequencies of events too commonplace
to be mentioned in writing (Erk, 2016, p.18).

This means that the distributional difference be-
tween

−→
tell and

−−−→
retell (or −−−−→marry and −−−−−−→remarry,

or both pairs) does not necessarily reflect the full
range of the relevant difference, which could per-
haps have helped to bring the vector offset calcula-
tion closer to the desired outcome. On this view, in
the ideal world all word vectors with the “re-” fea-
ture would be nearly aligned. Some blame could
also be passed to the condensed vectors such as
SVD or neural word embeddings, which blend dis-
tributional features in a non-transparent way, po-
tentially obscuring the relevant ones.

The current source corpora and VSMs could
certainly be improved. But both linguistics and
philosophy suggest that there are also issues with
the idea of linguistic relations being so regular.

5.3 Semantics is Messy
In theory, according to the distributional hypoth-
esis, we would expect the relatively straightfor-
ward “repeated action” paradigm of verbs with
and without the prefix “re-” in Table 2 to surface
distributionally in the use of adverbs like “again”.
However, we have no reason to expect this to hap-
pen in quantitatively exactly the same way for all
the verbs, even in an “ideal” corpus. And variation
would lead to irregularities that we observe.
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In fact, such variation would make VSMs more
like human mental lexicon, not less. A well-
known problem in psychology is the asymmetry of
similarity judgments, upon which relational simi-
larity and analogical reasoning are based. Logi-
cally a is like b is equivalent to b is like a, but
humans do not necessarily agree with both state-
ments to the same degree (Tversky, 1977).

Consider the “re-” prefix examples above. We
could expect 100% success by native English
speakers on a “complete the verb paradigm” task,
because they would be inevitably made aware of
the “add re-” rule during its completion. Even so,
processing time would vary due to such factors
as frequencies and prototypicality. The psycho-
logical evidence is piling for certain gradedness
in mental representation of morphological rules:
people can rate the same structure differently on
complexity (“settlement” is reported more affixed
that “government”), similarity judgments for se-
mantically transparent and non-transparent bases
are continuous, and there are graded priming ef-
fects for both orthographic, semantic and phono-
logical similarity between derived words and their
roots (Hay and Baayen, 2005).

There are several connectionist proposals to
simulate asymmetry through biases, saliency
features, or structural alignment (Thomas and
Mareschal, 1997, p.758). The irregularities we
observe in the VSMs could perhaps even be wel-
comed as another way to model this phenomenon
- although it remains to be seen to what extent the
parallel we draw here is appropriate.

As a side note, let us remember that equations
such as

−−→
king − −−→man + −−−−−→woman = −−−→queen should

only be interpreted distributionally, although it is
tempting to suppose that they reflect something
like semantic features. That would be mislead-
ing on several accounts. First of all, the 3CosAdd
math is commutative, which would be dubious for
semantic features5. Secondly, it would bring us
to the wall that componential analysis in linguistic
semantics has hit a long time ago: semantic fea-
tures defy definitions6, they only apply to a por-
tion of vocabulary, and they impose binary op-
positions that are psycholinguistically unrealistic
(Leech, 1981, pp.117-119).

5((−−−−−−→remarry −−−−−→marry) +
−−−→
write) makes some sense, but

((
−−−→
write − −−−−→marry) + −−−−−−→remarry) does not.

6Is the−−→man−−−−−−→woman result certainly “femaleness” – or
perhaps “maleness”, or some mysterious “malefemale gender
change” semantic feature?

5.4 Analogy Is Not an Inference Rule

Let us now come back to the fact that the “linguis-
tic regularities” are in fact relying on relational
similarity (Section 2), and relational similarity is
not something binary. That takes us straight to the
most fundamental difficulty with analogy as it is
known in philosophy and logic. Analogy is unde-
niably fundamental to human reasoning as an in-
strument for discovery and understanding the un-
known from the known – but it is not, and has
never been an inference rule.

Consider the example where Mars is similar to
Earth in several ways, and therefore could be sup-
porting life. This analogy does not guarantee the
existence of Martians, and it could even be simi-
larly applied to even less suitable planets.

Basically, the problem with analogy is that not
all similarities warrant all conclusions, and estab-
lishing valid analogies requires much case-by-case
consideration. For this and some other reasons,
analogy has long been rejected in generative lin-
guistics as a mechanism for language acquisition
through discovery, although now it is making a
comeback (Itkonen, 2005, p.67-75).

This general difficulty with analogical reason-
ing – it does work in humans, but selectively, so
to say, – is inherited by the so-called proportional
analogies of the a : a′ :: b : b′ kind. A case in
point is their use in schools as verbal reasoning
tests. In 2005 analogies were removed from SAT,
its criticisms including ambiguity, guesswork and
puzzle-like nature (Pringle, 2003). It is also telling
that SAT analogy problems came with a set of po-
tential answers to choose from, because otherwise
students would supply a range of answers with
varying degrees of incorrectness.

In case of the “re-” prefix above, once again, we
could expect 100% success rate by humans who
could see the “add re-” pattern; but semantic BATS
questions would yield more variation. Consider
the question “trout is to river as lion is to ”.
Some would say den, thinking of the river as the
trout’s “home”, but some could say savanna in the
broader habitat terms; cage or zoo or safari park
or even circus would all be valid to various de-
grees. BATS accepts several answer options, but it
is hardly feasible to list them all for all cases.

Given the above, the question is: if analogi-
cal reasoning requires much case-by-case consid-
eration in humans, what should we expect from
VSMs with a single linear algebra operation?
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6 Implications for Evaluation of VSMs

The analogy task continues to enjoy immense pop-
ularity in the NLP community as the standard eval-
uation task for VSMs. We have already mentioned
two problems with the task: the problem of the
Google test scores being flattering to the VSMs
(Gladkova et al., 2016), and also 3CosAdd disad-
vantaging them, because the required semantic in-
formation may be encoded in more complex ways
(Drozd et al., 2016).

What the present work adds to the discussion is
the demonstration of how strongly the accuracy on
the analogy task depends on the target vector being
relatively close to the source in the vector space
model – not only for 3CosAdd, but also 3CosMul
and LRCos. This is in fact a fundamental problem
that is encountered in many other NLP tasks7.

That problem brings about the following ques-
tion: what have we been evaluating with 3CosAdd
all this time?

The answer seems to be this: analogy task
scores indicate to what extent the semantic space
of a given VSM was structured in a way that, for
each word category, favored the linguistic relation
that happened to be picked by the creators of the
particular test dataset. BATS makes this clearer,
because it is well balanced across different types
of relations. Most models score well on morpho-
logical inflections – because morphological forms
of the same word are highly distributionally sim-
ilar and are likely to be close. But we do not
see equal success for synonyms, suffixes, colors
and other categories – because it is hard to ex-
pect of any one model to “guess” which words
should have synonyms as closest neighbors and
which words should be close to their antonyms.

As a matter of fact, for a general-purpose VSM
we would not want that: every word can partic-
ipate in hundreds of linguistic relations that we
may be interested in, but we cannot expect them
all to be close neighbors. We would want a VSM
whose vector neighborhoods simply reflect what-
ever distributional properties were observed in a
corpus. The challenge is to find reasoning meth-
ods that could reliably identify linguistic relations
from vectors at any distance.

Given the irregularities discussed in section 5,

7E.g. in taxonomy construction it was found helpful to
narrow the semantic space with domains or clusters, essen-
tially “zooming in” on certain relations (Fu et al., 2014; Es-
pinosa Anke et al., 2016).

these methods would also have to rely on a more
linguistically and cognitively realistic model of
how meanings are reflected in distributional prop-
erties of words.

LRCos made a step in the right direction, as it
does not rely on unique and neatly aligned word
pairs, but it can only work for relations between
coherent word classes. That excludes many lexi-
cographic relations like synonyms (car is to auto-
mobile as snake is to serpent), frame-semantic or
encyclopedic relations (white is to snow as red is
to rose).

7 Conclusion

While it would be highly desirable to have au-
tomated reasoning about linguistic relations with
VSMs as a powerful, all-purpose tool, it is so far
a remote goal. We investigated the potential of
the vector offset method in solving the so-called
proportional analogies, which rely on one pair of
words with a known linguistic relation to identify
the missing member of another pair of words.

We have presented a series of experiments
showing that the success of the linear vector off-
set (as well as two better-performing methods) de-
pends on the structure of the VSM: the targets that
are further away in the vector space have worse
chances of being recovered. This is a crucial lim-
itation: no model could possibly hold all related
words close in the vector space, as there are many
thousands of linguistic relations, and many are
context-dependent.

Furthermore, the offsets of different word vec-
tor pairs appear to not be so regular, even for rel-
atively straightforward linguistic relations. We ar-
gue that the observed irregularities should not just
be blamed on the corpus. There is a number of the-
oretical issues with the very approach to linguistic
relations as something neat and binary. We hope
to drive attention to the graded nature of relational
similarity that underlies analogical reasoning, and
the need for automated reasoning algorithms to be-
come more psychologically plausible in order to
become more successful.

Acknowledgements

This work was partially supported by JST CREST
Grant number JPMJCR1303, JSPS KAKENHI
Grant number JP17K12739, and performed under
the auspices of Real-world Big-Data Computation
Open Innovation Laboratory, Japan.

143



References
Paul Bartha. 2016. Analogy and analogical reason-

ing. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy, Metaphysics Research
Lab, Stanford University. Winter 2016 edition.
https://plato.stanford.edu/archives/win2016/entries/
reasoning-analogy/.

Trevor Cohen, Dominic Widdows, and Thomas Rind-
flesch. 2015. Expansion-by-analogy: a vec-
tor symbolic approach to semantic search. In
Quantum Interaction, Springer, pages 54–66.
https://doi.org/10.1007/978-3-319-15931-7 5.

Joachim Daiber, Lautaro Quiroz, Roger Wechsler, and
Stella Frank. 2015. Splitting compounds by seman-
tic analogy. In Proceedings of the 1st Deep Machine
Translation Workshop. Charles University in Prague,
Praha, Czech Republic, 3-4 September 2015, pages
20–28. http://www.aclweb.org/anthology/W15-
5703.

Aleksandr Drozd, Anna Gladkova, and Satoshi Mat-
suoka. 2016. Word embeddings, analogies, and
machine learning: beyond king - man + woman
= queen. In Proceedings of COLING 2016, the
26th International Conference on Computational
Linguistics: Technical Papers. pages 3519–3530.
https://www.aclweb.org/anthology/C/C16/C16-
1332.pdf.

Nguyen Tuan Duc, Danushka Bollegala, and Mitsuru
Ishizuka. 2012. Cross-language latent relational
search between Japanese and English languages us-
ing a Web corpus. ACM Transactions on Asian Lan-
guage Information Processing (TALIP) 11(3):11.
http://dl.acm.org/citation.cfm?id=2334805.

Katrin Erk. 2016. What do you know about
an alligator when you know the company it
keeps. Semantics and Pragmatics 9(17):1–63.
https://doi.org/10.3765/sp.9.17.

Luis Espinosa Anke, Jose Camacho-Collados, Clau-
dio Delli Bovi, and Horacio Saggion. 2016. Su-
pervised distributional hypernym discovery via do-
main adaptation. In Proceedings of the 2016
Conference on Empirical Methods in Natural
Language Processing. Association for Computa-
tional Linguistics, Austin, Texas, pages 424–435.
https://aclweb.org/anthology/D16-1041.

Stefano Federici, Simonetta Montemagni, and Vito Pir-
relli. 1997. Inferring semantic similarity from dis-
tributional evidence: An analogy-based approach
to word sense disambiguation. In Proceedings
of the ACL/EACL Workshop on Automatic Infor-
mation Extraction and Building of Lexical Se-
mantic Resources for NLP Applications. pages
90–97. http://aclweb.org/anthology/W/W97/W97-
0813.pdf.

Ruiji Fu, Jiang Guo, Bing Qin, Wanxiang Che,
Haifeng Wang, and Ting Liu. 2014. Learn-
ing semantic hierarchies via word embeddings.

In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguis-
tics. Association for Computational Linguistics,
Baltimore, Maryland, USA, pages 1199–1209.
http://202.118.253.69/ rjfu/publications/acl2014.pdf.

Anna Gladkova, Aleksandr Drozd, and Satoshi Mat-
suoka. 2016. Analogy-based detection of mor-
phological and semantic relations with word em-
beddings: What works and what doesn’t. In
Proceedings of the NAACL-HLT SRW. ACL, San
Diego, California, June 12-17, 2016, pages 47–54.
https://doi.org/10.18653/v1/N16-2002.

Jennifer B. Hay and R. Harald Baayen. 2005. Shift-
ing paradigms: Gradient structure in morphol-
ogy. Trends in cognitive sciences 9(7):342–348.
https://doi.org/10.1016/j.tics.2005.04.002.

Esa Itkonen. 2005. Analogy as Structure and Pro-
cess: Approaches in Linguistic, Cognitive Psy-
chology, and Philosophy of Science. Num-
ber 14 in Human cognitive processing. John
Benjamins Pub. Co, Amsterdam ; Philadelphia.
https://doi.org/10.1075/hcp.14.

David A. Jurgens, Peter D. Turney, Saif M. Mo-
hammad, and Keith J. Holyoak. 2012. Semeval-
2012 task 2: measuring degrees of relational sim-
ilarity. In Proceedings of the First Joint Con-
ference on Lexical and Computational Semantics
(*SEM). Association for Computational Linguistics,
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A Supplementary Material

A.1 3CosAdd on GloVe and Word2Vec
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(a) GloVe

Similarity Share Accuracy (%)
Bin top 1 top 3 top 5

0 - 0.1 8.5 7.2 13.1 16.0
0.1 - 0.2 10.9 12.0 21.0 25.7
0.2 - 0.3 13.1 12.4 22.7 28.0
0.3 - 0.4 14.0 16.9 29.2 35.4
0.4 - 0.5 15.9 21.8 34.6 41.3
0.5 - 0.6 14.0 31.8 46.7 53.3
0.6 - 0.7 10.1 51.4 65.7 70.4
0.7 - 0.8 10.3 54.1 73.6 78.2
0.8 - 0.9 3.1 56.2 76.7 81.9
0.9 - 1 0.1 61.4 77.3 77.3
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(b) Word2Vec

Similarity Share Accuracy (%)
Bin top 1 top 3 top 5
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0.8 - 0.9 1.3 37.5 53.1 59.7
0.9 - 1 0.3 32.6 48.5 56.8

Figure 9: Similarity between vectors a and a′
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Figure 10: Similarity between vectors a′ and b′
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Figure 11: Similarity between vectors b and b′
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Figure 12: Similarity between vector b′ and predicted vector

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.0

0.2

0.4

0.6

0.8

1.0

sh
ar

e 
/ a

cc
ur

ac
y

share of all questions
accuracy (top 1)
accuracy (top 3)
accuracy (top 5)

(a) GloVe

Similarity Share Accuracy (%)
Bin top 1 top 3 top 5

0 - 0.1 52.0 21.5 34.0 39.6
0.1 - 0.2 25.8 29.2 42.7 48.3
0.2 - 0.3 14.3 33.5 46.5 51.6
0.3 - 0.4 5.8 35.8 48.9 53.5
0.4 - 0.5 1.6 37.0 48.0 52.6
0.5 - 0.6 0.4 35.7 44.3 48.1
0.6 - 0.7 0.1 33.6 41.8 46.4
0.7 - 0.8 0.0 47.6 52.4 52.4
0.8 - 0.9 0.0 – – –
0.9 - 1 0.0 6.2 6.2 12.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.0

0.2

0.4

0.6

0.8

1.0

sh
ar

e 
/ a

cc
ur

ac
y

share of all questions
accuracy (top 1)
accuracy (top 3)
accuracy (top 5)

(b) Word2Vec

Similarity Share Accuracy (%)
Bin top 1 top 3 top 5

0 - 0.1 43.5 27.1 39.9 45.8
0.1 - 0.2 32.4 27.6 39.1 44.3
0.2 - 0.3 14.2 25.7 35.8 40.7
0.3 - 0.4 6.0 16.7 25.8 30.7
0.4 - 0.5 2.8 13.6 22.2 26.9
0.5 - 0.6 0.8 17.2 23.5 26.7
0.6 - 0.7 0.2 33.5 36.0 37.8
0.7 - 0.8 0.0 50.0 53.8 53.8
0.8 - 0.9 0.0 66.7 66.7 66.7
0.9 - 1 0.0 13.3 13.3 13.3

Figure 13: Similarity between vector b′ and a
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Figure 14: The rank of b in the neighborhood of b′
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Figure 15: Similarity between b′ and its 5th neighbor

A.2 3CosMul on GloVe
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Figure 16: Similarity between vectors a and a′
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Figure 17: Similarity between vectors a′ and b′
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Figure 18: Similarity between vectors b and b′
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Figure 19: Similarity between vector b′ and a
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Figure 20: The rank of b in the neighborhood of b′
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Figure 21: Similarity between b′ and its 5th neigh-
bor
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A.3 LRCos on GloVe and Word2Vec
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Figure 22: Similarity between vectors b and b′

A.4 Comparison between 3CosAdd, 3CosMul and LRCos on GloVe
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LRCos 44.3 57.6 62.6 67.9 71.4
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3CosAdd 26.3 36.6 41.2 46.9 50.1
3CosMul 26.2 35.4 39.2 44.5 47.5
LRCos 45.1 58.6 64.2 70.2 73.6

Lexicography
3CosAdd 10.2 21.8 28.7 38.0 43.3
3CosMul 8.8 17.9 23.6 31.9 36.9
LRCos 25.2 43.1 50.2 58.0 65.3

Derivation
3CosAdd 8.2 17.3 23.3 30.4 34.1
3CosMul 9.1 16.5 20.7 26.3 29.5
LRCos 29.0 41.5 46.6 51.8 54.8

Inflections
3CosAdd 59.5 79.5 83.6 87.4 89.4
3CosMul 62.8 78.6 82.2 86.1 88.0
LRCos 77.9 87.2 89.4 91.6 91.8

Figure 23: 3CosAdd vs 3CosMul vs LRCos
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Figure 24: 3CosAdd vs 3CosMul vs LRCos (“honest” version)
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