
Proceedings of the Fifth Joint Conference on Lexical and Computational Semantics (*SEM 2016), pages 125–130,
Berlin, Germany, August 11-12, 2016.

Unsupervised Text Segmentation Using
Semantic Relatedness Graphs
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Abstract

Segmenting text into semantically coher-
ent fragments improves readability of text
and facilitates tasks like text summariza-
tion and passage retrieval. In this pa-
per, we present a novel unsupervised al-
gorithm for linear text segmentation (TS)
that exploits word embeddings and a mea-
sure of semantic relatedness of short texts
to construct a semantic relatedness graph
of the document. Semantically coherent
segments are then derived from maximal
cliques of the relatedness graph. The al-
gorithm performs competitively on a stan-
dard synthetic dataset and outperforms the
best-performing method on a real-world
(i.e., non-artificial) dataset of political man-
ifestos.

1 Introduction

Despite the fact that in mainstream natural lan-
guage processing (NLP) and information retrieval
(IR) texts are modeled as bags of unordered words,
texts are sequences of semantically coherent seg-
ments, designed (often very thoughtfully) to ease
readability and understanding of the ideas con-
veyed by the authors. Although authors may explic-
itly define coherent segments (e.g., as paragraphs),
many texts, especially on the web, lack any explicit
segmentation.

Linear text segmentation aims to represent texts
as sequences of semantically coherent segments.
Besides improving readability and understandabil-
ity of texts for readers, automated text segmenta-
tion is beneficial for NLP and IR tasks such as text
summarization (Angheluta et al., 2002; Dias et al.,
2007) and passage retrieval (Huang et al., 2003;
Dias et al., 2007). Whereas early approaches to
unsupervised text segmentation measured the co-

herence of segments via raw term overlaps between
sentences (Hearst, 1997; Choi, 2000), more recent
methods (Misra et al., 2009; Riedl and Biemann,
2012) addressed the issue of sparsity of term-based
representations by replacing term-vectors with vec-
tors of latent topics.

A topical representation of text is, however,
merely a vague approximation of its meaning. Con-
sidering that the goal of TS is to identify seman-
tically coherent segments, we propose a TS algo-
rithm aiming to directly capture the semantic re-
latedness between segments, instead of approxi-
mating it via topical similarity. We employ word
embeddings (Mikolov et al., 2013) and a measure
of semantic relatedness of short texts (Šarić et al.,
2012) to construct a relatedness graph of the text in
which nodes denote sentences and edges are added
between semantically related sentences. We then
derive segments using the maximal cliques of such
similarity graphs.

The proposed algorithm displays competitive
performance on the artifically-generated bench-
mark TS dataset (Choi, 2000) and, more im-
portantly, outperforms the best-performing topic
modeling-based TS method on a real-world dataset
of political manifestos.

2 Related Work

Automated text segmentation received a lot of at-
tention in NLP and IR communities due to its use-
fulness for text summarization and text indexing.
Text segmentation can be performed in two differ-
ent ways, namely (1) with the goal of obtaining
linear segmentations (i.e. detecting the sequence
of different segments in a text) , or (2) in order
to obtain hierarchical segmentations (i.e. defining
a structure of subtopics between the detected seg-
ments). Like the majority of TS methods (Hearst,
1994; Brants et al., 2002; Misra et al., 2009; Riedl
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and Biemann, 2012), in this work we focus on lin-
ear segmentation of text, but there is also a solid
body of work on hierarchical TS, where each top-
level segment is further broken down (Yaari, 1997;
Eisenstein, 2009).

Hearst (1994) introduced TextTiling, one of the
first unsupervised algorithms for linear text seg-
mentation. She exploits the fact that words tend to
be repeated in coherent segments and measures the
similarity between paragraphs by comparing their
sparse term-vectors. Choi (2000) introduced the
probabilistic algorithm using matrix-based ranking
and clustering to determine similarities between
segments. Galley et al. (2003) combined content-
based information with acoustic cues in order to
detect discourse shifts whereas Utiyama and Isa-
hara (2001) and Fragkou et al. (2004) minimized
different segmentation cost functions with dynamic
programming.

The first segmentation approach based on topic
modeling (Brants et al., 2002) employed the proba-
bilistic latent semantic analysis (pLSA) to derive
latent representations of segments and determined
the segmentation based on similarities of segments’
latent vectors. More recent models (Misra et al.,
2009; Riedl and Biemann, 2012) employed the la-
tent Dirichlet allocation (LDA) (Blei et al., 2003)
to compute the latent topics and displayed supe-
rior performance to previous models on standard
synthetic datasets (Choi, 2000; Galley et al., 2003).
Misra et al. (2009) used dynamic programming
to find globally optimal segmentation over the set
of LDA-based segment representations, whereas
Riedl and Biemann (2012) introduced TopicTiling,
an LDA-driven extension of Hearst’s TextTiling al-
gorithm where segments are, represented as dense
vectors of dominant topics of terms they contain
(instead of as sparse term vectors). Riedl and Bie-
mann (2012) show that TopicTiling outperforms
at-that-time state-of-the-art methods for unsuper-
vised linear segmentation (Choi, 2000; Utiyama
and Isahara, 2001; Galley et al., 2003; Fragkou
et al., 2004; Misra et al., 2009) and that it is also
faster than other LDA-based methods (Misra et al.,
2009).

In the most closely related work to ours,
Malioutov and Barzilay (2006) proposed a graph-
based TS approach in which they first construct
the fully connected graph of sentences, with edges
weighted via the cosine similarity between bag-
of-words sentence vectors, and then run the mini-

mum normalized multiway cut algorithm to obtain
the segments. Similarly, Ferret (2007) builds the
similarity graph, only between words instead of
between sentences, using sparse co-occurrence vec-
tors as semantic representations for words. He then
identifies topics by clustering the word similarity
graph via the Shared Nearest Neighbor algorithm
(Ertöz et al., 2004). Unlike these works, we use the
dense semantic representations of words and sen-
tences (i.e., embeddings), which have been shown
to outperform sparse semantic vectors on a range
of NLP tasks. Also, instead of looking for mini-
mal cuts in the relatedness graph, we exploit the
maximal cliques of the relatedness graph between
sentences to obtain the topic segments.

3 Text Segmentation Algorithm

Our TS algorithm, dubbed GRAPHSEG, builds a
semantic relatedness graph in which nodes denote
sentences and edges are created for pairs of seman-
tically related sentences. We then determine the
coherent segments by finding maximal cliques of
the relatedness graph. The novelty of GRAPHSEG

is in the fact that it directly exploits the semantics
of text instead of approximating the meaning with
topicality.

3.1 Semantic Relatedness of Sentences

The measure of semantic relatedness between sen-
tences we use is an extension of a salient greedy
lemma alignment feature proposed in a supervised
model by Šarić et al. (2012). They greedily align
content words between sentences by the similar-
ity of their distributional vectors and then sum the
similarity scores of aligned word pairs. However,
such greedily obtained alignment is not necessarily
optimal. In contrast, we compute the optimal align-
ment by (1) creating a weighted complete bipartite
graph between the sets of content words of the two
sentences (i.e., each word from one sentence is con-
nected with a relatedness edge to all of the words
in the other sentence) and (2) running a bipartite
graph matching algorithm known as the Hungarian
method (Kuhn, 1955) that has the polynomial com-
plexity. The similarities of content words between
sentences (i.e., the weights of the bipartite graph)
are computed as the cosine of the angle between
their corresponding embedding vectors (Mikolov
et al., 2013).

Let A be the set of word pairs in the optimal
alignment between the content-word sets of the two
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sentences S1 and S2, i.e., A = {(w1, w2) | w1 ∈
S1 ∧ w2 ∈ S2}. We then compute the semantic
relatedness for two given sentences S1 and S2 as
follows:

sr(S1, S2) =
∑

(w1,w2)∈A

cos(v1, v2) ·min(ic(w1), ic(w2))

where vi is the embedding vector of the word wi

and ic(w) is the information content (IC) of the
word w, computed based on the relative frequency
of w in some large corpus C:

ic(w) = − log
freq(w) + 1

|C|+∑w′∈C freq(w′)
.

We utilize the IC weighting of embedding similar-
ity because we assume that matches between less
frequent words (e.g., guitar and ukulele) contribute
more to sentence relatedness than pairs of similar
but frequent words (e.g., do and make). We used
Google Books Ngrams (Michel et al., 2011) as a
large corpus C for estimating relative frequencies
of words in a language.

Because there will be more aligned pairs be-
tween longer sentences, the relatedness score will
be larger for longer sentences merely because of
their length (regardless of their actual similarity).
Thus, we normalize the sr(S1, S2) score first with
the length of S1 and then with the length S2 and
we finally average these two normalized scores:

rel(S1, S2) =
1
2
·
(

sr(S1, S2)
|S1| +

sr(S1, S2)
|S2|

)
.

3.2 Graph-Based Segmentation
All sentences in a text become nodes of the relat-
edness graph G. We then compute the semantic
similarity, as described in the previous subsection,
between all pairs of sentences in a given document.
For each pair of sentences for which the seman-
tic relatedness is above some treshold value τ we
add an edge between the corresponding nodes of
G. Next, we employ the Bron-Kerbosch algorithm
(Bron and Kerbosch, 1973) to compute the setQ of
all maximal cliques of G. We then create the initial
set of segments SG by merging adjacent sentences
found in at least one maximal clique Q ∈ Q of
graph G. Next, we merge the adjacent segments
sgi and sgi+1 for which there is at least one clique
Q ∈ Q containing at least one sentence from sgi

and one sentence from sgi+1. Finally, given the

Step Sets

Cliques Q {1, 2, 6}, {2, 4, 7}, {3, 4, 5}, {1, 8, 9}
Init. seg. {1, 2}, {3, 4, 5}, {6}, {7} {8, 9}
Merge seg. {1, 2, 3, 4, 5}, {6}, {7}, {8, 9}
Merge small {1, 2, 3, 4, 5}, {6, 7}, {8, 9}

Table 1: Creating segments from graph cliques
(n = 2). In the third step we merge segments
{1, 2, 3} and {4, 5} because the second clique
contains sentences 2 (from the left segment) and
4 (from the right segment). In the final step
we merge single sentence segments (assuming
segs({1, 2, 3, 4, 5}, {6}) < segs({6}, {7}) and
segs({7}, {8, 9}) < segs({6}, {7})).

minimal segment size n, we merge segments sgi

with less than n sentences with the semantically
more related of the two adjacent segments – sgi−1

or sgi+1. The relatedness between two adjacent
segments (sgr(sg i, sg i+1)) is computed as the aver-
age relatedness between their respective sentences:

sgr(SG1,SG2) =
1

|SG1||SG2|
∑

S1∈SG1
S2∈SG2

rel(S1, S2).

We exemplify the creation of segments from maxi-
mal cliques in Table 1. The complete segmentation
algorithm is fleshed out in Algorithm 1.1

4 Evaluation

In this section, we first introduce the two evaluation
datasets that we use one being the commonly used
synthetic dataset and the other a realistic dataset
of politi- cal manifestos. Following, we present
the experimental setting and finally describe and
discuss the results achieved by our GRAPHSEG

algorithm and how it compares to other TS models.

4.1 Datasets
Unsupervised methods for text segmentation have
most often been evaluated on synthetic datasets
with segments from different sources being con-
catenated in artificial documents (Choi, 2000; Gal-
ley et al., 2003). Segmenting such artificial texts is
easier than segmenting real-world documents. This
is why besides on the artificial Choi dataset we also
evaluate GRAPHSEG on a real-world dataset of po-
litical texts from the Manifesto Project,2,3 manually

1We make the GraphSeg tool freely available at the fol-
lowing address: https://gg42554@bitbucket.org/
gg42554/graphseg.git

2https://manifestoproject.wzb.eu
3We used the set of six documents manifestos – three

Republican and three Democrat manifestos from the 2004,
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Algorithm 1: Segment(text , τ , n)
G← (V ← ∅, E ← ∅)
S ← sentences(text)
SG ← ∅
// constructing the similarity graph
for each sentence Si ∈ S do
V ← V ∪ {Si}

for each pair (Si, Sj) | Si, Sj ∈ S do
if rel(Si, Sj) > τ do
E ← E ∪ ({Si}, {Sj})

// creating initial segments from cliques
Q ← cliques(G)
for each clique Q ∈ Q do

for each (Si, Sj), Si, Sj ∈ Q do
if j − i = 1 do

if sg(Si) = ∅ and sg(Sj) = ∅ do
SG ← SG ∪ {Si, Sj}

elif sg(Si) 6= ∅ and sg(Sj) = ∅ do
sg(Si)← sg(Si) ∪ {Sj}

elif sg(Si) = ∅ and sg(Sj) 6= ∅ do
sg(Sj)← sg(Sj) ∪ {Si}

// merging adjacent segments
for each segment sg i ∈ SG do

if ∃Q ∈ Q | (∃Sj , Sk ∈ Q |
Sj ∈ sgi ∧ Sk ∈ sgi+1) do

SG ← SG \ {sg i, sg i+1}
SG ← SG ∪ (sg i ∪ sg i+1)

// merging too small segments
for each segment sg i ∈ SG do

if |sg i| < n do
if sgr(sg i−1, sg i) > sgr(sg i, sg i+1) do

SG ← SG \ {sg i−1, sg i}
SG ← SG ∪ (sg i−1 ∪ sg i)

else do
SG ← SG \ {sg i, sg i+1}
SG ← SG ∪ (sg i ∪ sg i+1)

return SG

labeled by domain experts with segments of seven
different topics (e.g., economy and welfare, quality
of life, foreign affairs). The selected manifestos
contain between 1000 and 2500 sentences, with
segments ranging in length from 1 to 78 sentences,
which is in sharp contrast to the Choi dataset where
all segments are of similar size.

4.2 Experimental Setting

To allow for comparison with previous work, we
evaluate GRAPHSEG on four subsets of the Choi
dataset, differing in number of sentences the seg-

2008, and 2012 U.S. elections

ments contain. For the evaluation on the Choi
dataset, the GRAPHSEG algorithm made use of
the publicly available word embeddings built from
a Google News dataset.4

Both LDA-based models (Misra et al., 2009;
Riedl and Biemann, 2012) and GRAPHSEG rely
on corpus-derived word representations. Thus, we
evaluated on the Manifesto dataset both the domain-
adapted and domain-unadapted variants of these
methods. The domain-adapted variants of the mod-
els used the unlabeled domain corpus – a test set
of 466 unlabeled political manifestos – to train the
domain-specific word representations. This means
that we obtain (1) in-domain topics for the LDA-
based TopicTiling model of Riedl and Biemann
(2012) and (2) domain-specific embeddings for the
GRAPHSEG algorithm. On the Manifesto dataset
we also evaluate a baseline that randomly (50%
chance) starts a new segment at points m sentences
apart, withm being set to half of the average length
of gold segments.

We evaluate the performance using two stan-
dard TS evaluation metrics – Pk (Beeferman et al.,
1999) and WindowDiff (WD) (Pevzner and Hearst,
2002). Pk is the probability that two randomly
drawn sentences mutually k sentences apart are
classified incorrectly – either as belonging to the
same segment when they are in different gold seg-
ments or as being in different segments when they
are in the same gold segment. Following Riedl and
Biemann (2012), we set k to half of the document
length divided by the number of gold segments.
WindowDiff is a stricter version of Pk as, instead
of only checking if the randomly chosen sentences
are in the same predicted segment or not, it com-
pares the exact number of segments between the
sentences in the predicted segmentation with the
number of segments in between the same sentences
in the gold standard. Lower scores indicate better
performance for both these metrics.

The GRAPHSEG algorithm has two parameters:
(1) the sentence similarity treshold τ which is used
when creating edges of the sentence relatedness
graph and (2) the minimal segment size n, which
we utilize to merge adjacent segments that are too
small. In all experiments we use grid-search in a
folded cross-validation setting to jointly optimize
both parameters. In view of comparison with other
models, the parameter optimization is justified be-

4https://drive.google.com/file/d/
0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=
sharing
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3-5 6-8 9-11 3-11

Method Pk WD Pk WD Pk WD Pk WD

Choi (2000) 12.0 – 9.0 – 9.0 – 12.0 –
Brants et al. (2002) 7.4 – 8.0 – 6.8 – 10.7 –
Fragkou et al. (2004) 5.5 – 3.0 – 1.3 – 7.0 –
Misra et al. (2009) 23.0 – 15.8 – 14.4 – 16.1 –
GRAPHSEG 5.6 8.7 7.2 9.4 6.6 9.6 7.2 9.0

Misra et al. (2009)* 2.2 – 2.3 – 4.1 – 2.3 –
Riedl and Biemann (2012)* 1.2 1.3 0.8 0.9 0.6 0.7 1.0 1.1

Table 2: Performance on different portions of the Choi dataset (*with domain-adapted topic model).

Method Pk WD

Random baseline 40.60 49.17
Riedl and Biemann (2012) 33.39 38.31
GRAPHSEG 28.09 34.04

Riedl and Biemann (2012)* 32.94 37.59
GRAPHSEG* 28.08 34.00

Table 3: Performance on the Manifesto dataset
(*domain-adapted variant).

cause other models, e.g., TopicTiling (Riedl and
Biemann, 2012), also have parameters (e.g., num-
ber of topics for the topic model) which are opti-
mized using cross-validation.

4.3 Results and Discussion

In Table 2 we report the performance of GRAPH-
SEG and prominent TS methods on the synthetic
Choi dataset. GRAPHSEG performs competitively,
outperforming all methods but (Fragkou et al.,
2004) and domain-adapted versions of LDA-based
models (Misra et al., 2009; Riedl and Biemann,
2012). However, the approach by (Fragkou et al.,
2004) uses the gold standard information – the aver-
age gold segment size – as input. On the other hand,
the LDA-based models adapt their topic models on
parts of the Choi dataset itself. Despite the fact that
they use different documents for training the topic
models from those used for evaluating segmenta-
tion quality, the evaluation is still tainted because
snippets from the original documents appear in
multiple artificial documents – some of which be-
long to the the training set and others to the test set,
as admitted by Riedl and Biemann (2012) and this
is why their reported performance on this dataset
is overestimated.

In Table 3 we report the results on the Man-
ifesto dataset. Results of both TopicTiling and
GRAPHSEG indicate that the realistic Manifesto
dataset is much more difficult to segment than the
artificial Choi dataset. The GRAPHSEG algorithm

significantly outperforms the TopicTiling method
(p < 0.05, Student’s t-test). In-domain training of
word representations, topics for TopicTiling and
word embeddings for GraphSeg, does not signifi-
cantly improve the performance for neither of the
two models. This result contrasts previous findings
(Misra et al., 2009; Riedl and Biemann, 2012) in
which the performance boost was credited to the in-
domain trained topics and supports our hypothesis
that the performance boost of the LDA-based meth-
ods’ with in-domain trained topics originates from
information leakage between different portions of
the synthetic Choi dataset.

5 Conclusion

In this work we presented GRAPHSEG, a novel
graph-based algorithm for unsupervised text seg-
mentation. GRAPHSEG employs word embeddings
and extends a measure of semantic relatedness to
construct a relatedness graph with edges estab-
lished between semantically related sentences. The
segmentation is then determined by the maximal
cliques of the relatedness graph and improved by
semantic comparison of adjacent segments.

GRAPHSEG displays competitive performance
compared to best-performing LDA-based methods
on a synthetic dataset. However, we identify and
discuss evaluation issues pertaining to LDA-based
TS on this dataset. We also performed an evaluation
on the real-world dataset of political manifestos
and showed that in a realistic setting GRAPHSEG

significantly outperforms the state-of-the-art LDA-
based TS model.
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