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Introduction

*SEM, the Joint Conference on Lexical and Computational Semantics, has been organized yearly since
2012 under the auspices of ACL SIGLEX and SIGSEM. Its long term goal is to become a stable forum
for the growing number of NLP researchers working on all aspects of semantics. To this end, each
year it brings together researchers interested in the semantics of natural languages and its computational
modeling. The conference embraces symbolic and probabilistic approaches, and everything in between.
Theoretical contributions as well as practical applications are welcome.

The 2016 edition of *SEM takes place in Berlin on August 11 and 12 and is collocated with ACL. We
accepted 27 papers (16 long and 11 short papers) for publication at the conference, out of 66 paper
submissions (resulting in an overall acceptance rate of 40

The *SEM 2016 program consists of oral presentations for long papers, a poster session for short papers
and three keynote talks by Yoav Artzi, Alexander Koller and Bonnie Webber.

Following the tradition initiated at *SEM 2015, *SEM 2016 will award two Adam Kilgarriff *SEM Best
Paper Awards for Lexical Semantics.

We thank EACL and SIGLEX for sponsoring the three keynotes and Google and Lexical Computing for
sponsoring the Adam Kilgarriff *SEM Best Paper Award. We would also like to thank Phong Le, *SEM
2016 Publication Chair, for his valuable work in editing these proceedings and the area chairs for their
efforts in recruiting reviewers, stimulating discussion among them and for their dedication to carefully
select the papers that make *SEM 2016 the high quality event we will all enjoy in Berlin. Last but not
least, we thank the reviewers without whom *SEM could not be.

Claire Gardent, General Chair (CNRS and Université de Lorraine, Nancy, France)
Raffaella Bernardi, Program Co-Chair (University of Trento, Italy)
Ivan Titov, Program Co-Chair (University of Amsterdam, the Netherlands)
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Invited Talk: Context and Non-compositional Phenomena in Language
Understanding

Yoav Artzi

Cornell University

Abstract

Sentence meaning can be recovered by composing the meaning of words following the syntac-
tic structure. However, robust understanding requires considering non-compositional and contextual
cues as well. For example, a robot following instructions must consider its observations to accurately
complete its task. Similarly, to correctly map temporal expressions within a document to standard
time values, a system must consider previously mentioned events. In this talk, I will address such
phenomena within compositional approaches, and focus on the non-compositional parts of the rea-
soning process.

Joint work with Kenton Lee and Luke Zettlemoyer.
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Invited Talk: Top-down and bottom-up views on success in semantics
Alexander Koller

University of Potsdam

Abstract

As participants of *SEM, all of us are excited about the resurgence of research in computational
semantics over the past few years. There is a general feeling that modern data-driven approaches
to semantics, especially distributional ones, are great success stories. This is in contrast to classical
knowledge-based approaches, which are widely accepted as respectable and pretty, but not useful in
practice.

In my talk, I will challenge this perception by asking what the measure of success of research in
semantics should be. I will distinguish between bottom-up and top-down views on linguistic theories,
and argue that we count (computational) truth-conditional semantics as failed for top-down reasons,
but data-driven semantics as a success for bottom-up reasons. I will argue that identifying top-down
goals for modern computational semantics would help us understand the relationship between clas-
sical and modern approaches to semantics, and distinguish research directions in modern semantics
that are useful from those that are merely fun.

In the second part of the talk, I will focus on one candidate for a top-down goal that is mentioned
frequently, namely similarity of arbitrary phrases based on distributional methods. I will ask whether
our evaluation methods for similarity are appropriate, and whether similarity is even a meaningful
concept if the task and context are left unspecified. I will conclude with some thoughts on how we
might obtain top-down goals by taking a more task-based perspective.
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Invited Talk: Exploring for Concurrent Discourse Relations
Bonnie Webber

University of Edinburgh

Abstract

Discourse relations are an element of discourse coherence, indicating how the meaning and/or
function of clauses in a text make sense together. Evidence for discourse relations can come from
a range of sources, including explicit discourse connectives such as coordinating and subordinating
conjunctions and discourse adverbials. While some clauses may require an explicit connective to
provide evidence for a discourse relation, other clauses don’t.

This talk starts from the observation that there may be more than one piece of explicit evidence
for how a clause relates to the rest of the discourse. I first consider why this may be so, before
considering the related questions of why there may only be one piece of explicit evidence or none
at all. The amount of explicit evidence, however, does not constrain the possibility that a clause
bears more than one relation to the previous discourse, what we have called “Concurrent Discourse
Relations”.

Since we don’t fully understand concurrent discourse relations, I present work we have been
doing on exploring for evidence from corpora and on getting evidence from crowdsourcing experi-
ments. The goal is to be able to use such evidence to help automatically annotate concurrent relations
in corpora and improve the ability of systems to extract information from text by recognizing more
of the relations underlying text coherence.
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Abstract
Do distributional word representations en-
code the linguistic regularities that theo-
ries of meaning argue they should encode?
We address this question in the case of the
logical properties (monotonicity, force) of
quantificational words such as everything
(in the object domain) and always (in the
time domain). Using the vector offset ap-
proach to solving word analogies, we find
that the skip-gram model of distributional
semantics behaves in a way that is remark-
ably consistent with encoding these fea-
tures in some domains, with accuracy ap-
proaching 100%, especially with medium-
sized context windows. Accuracy in oth-
ers domains was less impressive. We com-
pare the performance of the model to the
behavior of human participants, and find
that humans performed well even where
the models struggled.

1 Introduction

Vector-space models of lexical semantics (VSMs)
represent words as points in a high-dimensional
space. Similar words are represented by points
that are close together in the space. VSMs are typ-
ically trained on a corpus in an unsupervised way;
the goal is for words that occur in similar contexts
to be assigned similar representations. The con-
text of a word in a corpus is often defined as the set
of words that occur in a small window around the
word of interest (Lund and Burgess, 1996; Turney
and Pantel, 2010). VSM representations have been
shown to be useful in improving the performance
of NLP systems (Turian et al., 2010; Bansal et al.,
2014) as well as in predicting cognitive measures
such as similarity judgments and semantic priming
(Jones et al., 2006; Hill et al., 2015).

While there is evidence that VSM representa-
tions encode useful information about the mean-
ing of open-class words such as dog or table, less
is known about the extent to which they capture
abstract linguistic properties, in particular the as-
pects of word meaning that are crucial in logical
reasoning. Some have conjectured that those prop-
erties are unlikely to be encoded in VSMs (Lewis
and Steedman, 2013), but evidence that VSMs en-
code features such as syntactic category or verb
tense suggests that this pessimism is premature
(Mikolov et al., 2013c; Levy and Goldberg, 2014).

The goal of this paper is to evaluate to what ex-
tent logical features are encoded in VSMs. We un-
dertake a detailed analysis of words with quantifi-
cational features, such as everybody or nowhere.
To assess whether a particular linguistic feature is
encoded in a vector space, we adopt the vector off-
set approach to the analogy task (Turney, 2006;
Mikolov et al., 2013c; Dunbar et al., 2015). In the
analogy task, a system is requested to fill in the
blank in a sentence:

(1) man is to woman as king is to .

The system is expected to infer the relation be-
tween the first two words—man and woman—and
find a word that stands in the same relation to king.
When this task is solved using the offset method,
there is no explicit set of relations that the system
is trained to identify. We simply subtract the vec-
tor for man from the vector for woman and add it
to king. If the offset woman − man represents an
abstract gender feature, adding that offset to king
should lead us to queen (Figure 1).

In the rest of this paper, we describe the set
of analogy problems that we used to evaluate the
VSMs’ representation of quantificational features,
and explore how accuracy is affected by the con-
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king

queen

man

woman?woman?

Figure 1: Using the vector offset method to solve
the analogy task (Mikolov et al., 2013c).

text windows used to construct the VSM. We then
report two experiments that examine the robust-
ness of the results. First, we determine whether
the level of performance that we expect from the
VSMs is reasonable, by testing how well humans
solve the same analogy problems. Second, we in-
vestigate how the quality of the representations is
affected by the size of the training corpus.

A large and constantly expanding range of VSM
architectures have been proposed in the literature
(Mikolov et al., 2013a; Pennington et al., 2014;
Turney and Pantel, 2010). Instead of exploring the
full range of architectures, the present study will
focus on the skip-gram model, implemented in
word2vec (Mikolov et al., 2013b). This model
has been argued to perform either better than or
on a par with competing architectures, depending
on the task and on hyperparameter settings (Ba-
roni et al., 2014; Levy et al., 2015). Particularly
pertinent to our purposes, Levy et al. (2015) find
that the skip-gram model tends to recover formal
linguistic features more accurately than traditional
distributional models.

2 Quantificational words

We focus on words that quantify over the elements
of a domain, such as everyone or nowhere. We
restrict our attention to single words that include
the domain of quantification as part of their mean-
ing – that is, we exclude determiners (every) and
phrases (every person). The meaning of a quanti-
fier is determined by three factors: quantificational
force, polarity and domain of quantification. We
describe these factors in turn.

2.1 Quantificational force

We focus on universal and existential quantifica-
tional words, which can be translated into first-
order logic using a universal (∀) or existential (∃)
quantifier. For example, everybody and nobody are
both universal:

INC. DEC.
Universal Existential Universal

PERSON everybody somebody nobody
OBJECT everything something nothing
PLACE everywhere somewhere nowhere
TIME always sometimes never
MODAL must can cannot
MODAL V. require allow forbid

Table 1: All of the words tested in the experiments
(INC = Increasing, DEC = Decreasing).

(2) Everybody smiles:
∀x.person(x)→ smiles(x)

(3) Nobody smiles:
∀x.person(x)→ ¬smiles(x)

Somebody is existential:

(4) Somebody smiles:
∃x.person(x) ∧ smiles(x)

English has quantificational expressions that don’t
fall into either category (three people, most
things). Those are usually not encoded as a sin-
gle English word, and are therefore not considered
in this paper.

2.2 Polarity

Quantifiers that can be expressed as a single word
are in general either increasing or decreasing. A
quantifier is increasing if any predicate that is true
of the quantifier can be broadened without affect-
ing the truth value of the sentence (Barwise and
Cooper, 1981). For example, since everyone is in-
creasing, (5-a) entails (5-b):

(5) a. Everybody went out to a death metal
concert last night.

b. Everybody went out last night.

By contrast, in decreasing quantifiers such as no-
body the truth of broader predicates entails the
truth of narrower ones:

(6) a. Nobody went out last night.
b. Nobody went out to a death metal

concert last night.

2.3 Domain

We studied six domains. The first three domains
are intuitively straightforward: PERSON (e.g., ev-
erybody); OBJECT (e.g., everything); and PLACE

2



(e.g., everywhere). The three additional domains
are described below.

TIME: Temporal adverbs such as always and
seldom are naturally analyzed as quantifying over
situations or events (Lewis, 1975; de Swart, 1993).
The sentence Caesar always awoke before dawn,
for example, can be seen as quantifying over wak-
ing events and stating that each of those events oc-
curred before dawn.

MODAL: Modal auxiliaries such as must or can
quantify over relevant possible worlds (Kripke,
1959). Consider, for example, the following sen-
tences:

(7) a. Anne must go to bed early.
b. Anne can go to bed early.

Assuming deontic modality, such as the statement
of a rule, (7-a) means that in all worlds in which
the rule is obeyed, Anne goes to bed early, whereas
(7-b) means that there exists at least one world
consistent with the speaker’s orders in which she
goes to bed early.

MODAL VERB: Verbs such as request and forbid
can be paraphrased using modal auxiliaries: he al-
lowed me to stay up late is similar in meaning to he
said I can stay up late. It is plausible to argue that
allow is existential and increasing, just like can.

3 Evaluation

In what follows, we use the following notation
(Levy and Goldberg, 2014):

(8) a : a∗ :: b :

The offset model is typically understood as in
Figure 1: the analogy task is solved by finding
x = a∗ − a+ b. In practice, since the space is
continuous, x is unlikely to precisely identify a
word in the vocabulary. The guess is then taken
to be the word x∗ that is nearest to x:

x∗ = arg max
x′ cos(x′, a∗ − a+ b) (1)

where cos denotes the cosine similarity between
the vectors. This point has a significant effect on
the results of the offset method, as we will see be-
low. Following Mikolov et al. (2013c) and Levy
and Goldberg (2014), we normalize a, a∗ and b
prior to entering them into Equation 1.

Trivial responses: x∗ as defined above is al-
most always trivial: in our experiments the nearest
neighbor of x was either a∗ (11% of the time) or b
(88.9% of the time). Only in a single analogy out
of the 2160 we tested was it not one of those two
options. Following Mikolov et al. (2013c), then,
our guess x∗ will be the nearest neighbor of x that
is not a, a∗ or b.

Baseline: The fact that the nearest neighbor of
a∗− a+ b tends to be b itself suggests that a∗ − a
is typically small in comparison to the distance be-
tween b and any of its neighbors. Even if b is ex-
cluded as a guess, then, one might be concerned
that the analogy target b∗ is closer to b than any of
its neighbors. If that is the case, our success on
the analogy task would not be informative: our re-
sults would stay largely the same if a∗ − a were
replaced by a random vector of the same magni-
tude (Linzen, 2016). To address this concern, we
add a baseline that solves the analogy task by sim-
ply returning the nearest neighbor of b, ignoring a
and a∗ altogether.

Multiplication: Levy and Goldberg (2014)
point out that the word x∗ that is closest to
a∗ − a+ b in terms of cosine similarity is the one
that maximizes the following expression:

arg max
x′ (cos(x′, a∗)− cos(x′, a) + cos(x′, b))

(2)
They report that replacing addition with multi-

plication improves accuracy on the analogy task:

arg max
x′

cos(x′, a∗) cos(x′, b)
cos(x′, a)

(3)

We experiment with both methods.

Synonyms: Previous studies required an exact
match between the guess and the analogy target
selected by the experimenter. This requirement
may underestimate the extent to which the space
encodes linguistic features, since the bundle of
semantic features expressed by the intended tar-
get can often be expressed by one or more other
words. This is the case for everyone and every-
body, prohibit and forbid or can’t and cannot. As
such, we considered synonyms of b∗ to be exact
matches. Likewise, we considered synonyms of a,
a∗ and b to be trivial responses and excluded them
from consideration as guesses.

This treatment of synonyms is reasonable when
the goal is to probe the VSM’s semantic represen-
tations (as it often is), but may be inappropriate for
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other purposes. If, for example, the analogy task
is used as a method for generating inflected forms,
prohibiting would not be an appropriate guess for
like : liking :: forbid : .

Partial success metrics: We did not restrict the
guesses to words with quantificational features:
all of the words in the vocabulary, including
words like penguin and melancholy, were poten-
tial guesses. In addition to counting exact matches
(x∗ = b∗), then, we keep track of the proportion
of cases in which x∗ was a quantificational word
in one of the six relevant domains.

Within the cases in which x∗ was a quantifi-
cational word, we separately counted how often
x∗ had the expected domain, the expected polarity
and the expected force. To be able to detect such
partial matches, we manually added some words
to our vocabulary that were not included in the set
in Table 1. These included items starting with any,
such as anywhere or anybody, as well as additional
temporal adverbs (seldom, often).

Finally, we record the rank of b∗ among the 100
nearest neighbors of x, where a rank of 1 indi-
cates an exact match. It was often the case that
b∗ was not among the 100 nearest neighbors of x;
we therefore record how often b∗ was ranked at all.

4 Experimental setup

4.1 Analogies

For each ordered pair of domains (6 × 5 = 30
pairs in total), we constructed all possible analo-
gies where a and a∗ were drawn from one domain
(the source domain) and b and b∗ from the other
(the target domain). Since there are three words
per domain, we had six possible analogies per do-
main pair, for a total of 180 analogies.

Each set of four words was used to construct
multiple analogies. Those analogies are in general
not equivalent. For example, the words everybody,
nobody, everywhere and nowhere make up the fol-
lowing analogies:

(9) everybody : nobody :: everywhere :

(10) nobody : everybody :: nowhere :

(11) everywhere : nowhere :: everybody :

(12) nowhere : everywhere :: nobody :

The neighborhoods of everywhere and nobody
may well differ in density. Since the density of the
neighborhood of b affects the results of the offset

method, the result is not invariant to a permuta-
tion of the words in an analogy. It is, however, in-
variant to replacing a within-domain analogy with
an across-domain one. The following analogy is
equivalent to (9):

(13) everybody : everywhere :: nobody :

This analogy would be solved by finding the near-
est neighbor of everywhere−everybody+nobody,
which is, of course, the same as the nearest neigh-
bor of nobody − everybody + everywhere used to
solve (9). We do not include such analogies.

4.2 VSMs
We trained our VSMs using the skip-gram
with negative sampling algorithm implemented in
hyperwords,1 which extends word2vec to al-
low finer control over hyperparameters. The vec-
tors were trained on a concatenation of ukWaC
(Baroni et al., 2009) and a 2013 dump of the En-
glish Wikipedia, 3.4 billion words in total.

The skip-gram model has a large number of pa-
rameters. We set most of those parameters to val-
ues that have been previously shown to be effec-
tive (Levy et al., 2015); we list those values be-
low. We only vary three parameters that control
the context window. Syntactic category informa-
tion has been shown to be best captured by narrow
context windows that encode the position of the
context word relative to the focus word (Redington
et al., 1998; Sahlgren, 2006). Our goal in varying
these parameters is to identity the contexts that are
most conducive to recovering logical information.

Window size: We experimented with context
windows of 2, 5 or 10 words on either side of the
focus word (i.e., a window of size 2 around the
focus word consists of four context words).

Window type: When constructing the vector
space, the skip-gram model performs frequency-
based pruning: rare words are discarded in all
cases and very frequent words are discarded prob-
abilisitically. We experimented with static and dy-
namic windows. The size of static windows is de-
termined prior to frequency-based word deletion.
By contrast, the size of dynamic windows is de-
termined after frequent and infrequent words are
deleted. This means that dynamic windows of-
ten include words that are farther away from the
focus words than the nominal window size, and

1https://bitbucket.org/omerlevy/hyperwords
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Size Context Window B O M O - B

2 Nonpos Dynamic .08 .32 .34 .24
2 Nonpos Static .06 .23 .24 .17
2 Pos Dynamic .06 .29 .32 .24
2 Pos Static .06 .24 .27 .19
5 Nonpos Dynamic .07 .28 .29 .22
5 Nonpos Static .11 .35 .36 .24
5 Pos Dynamic .03 .29 .31 .27
5 Pos Static .06 .28 .29 .23

10 Nonpos Dynamic .08 .28 .29 .19
10 Nonpos Static .17 .31 .31 .14
10 Pos Dynamic .17 .32 .31 .16
10 Pos Static .11 .26 .26 .15

Table 2: Results on all hyperparameter set-
tings, evaluated using three methods: B(aseline),
O(ffset) and M(ultiplication).

that words that tend to have very frequent func-
tion words around them will systematically have a
larger effective context window.

Context type: We experimented with bag-of-
words (nonpositional) contexts and positional con-
texts. In nonpositional contexts, a context word
cat is treated in the same way regardless of its dis-
tance from the focus word and of whether it fol-
lows or precedes it. In positional contexts, on the
other hand, context words are annotated with their
position relative to the focus words; the context
word cat−2 is considered to be distinct from cat+1.

Fixed hyperparameters: We used the follow-
ing values for the rest of the hyperparameters:
500-dimensional words vectors; 15 negative sam-
ples per focus word; words with a frequency of
less than 100 were discarded; words with uni-
gram probability above 10−5 were probabilisti-
cally discarded (preliminary experiments showed
that a 10−3 threshold reduced performance across
the board); negative samples were drawn from the
unigram frequency distribution, after that distribu-
tion was smoothed with exponent α = 0.75; we
performed one iteration through the data.

5 Results

We first report results averaged across all do-
mains. We then show that there was large variabil-
ity across domains: the VSMs showed excellent
performance on some domains but struggled with
others.

Offset method: Overall accuracy was fairly low
(mean: 0.29, range: 0.23−0.35), somewhat lower
than the 0.4 accuracy that Mikolov et al. (2013c)
report for their syntactic features.2 Strikingly, b∗

was among the 100 nearest neighbors of x only in
70% of the cases. When the guess was a quantifi-
cational word (61% of the time), it was generally
in the right domain (93%). Its polarity was correct
72% of the time, and its force 54% of the time.

The static nonpositional 5-word VSM achieved
the best accuracy (35%), best average rank (5.5)
and was able to recover the most quantificational
features (polarity: 82% correct; force: 63% cor-
rect; both proportions are conditioned on the guess
being a quantificational word).

Alternatives to the offset method: In line with
the results reported by Levy and Goldberg (2014),
we found that substituting multiplication for ad-
dition resulted in slightly improved performance
in 10 out of 12 VSMs, though the improvement
in each individual VSM was never significant ac-
cording to Fisher’s exact test (Table 2). If we take
each VSM to be an independent observation, the
difference across all VSMs is statistically signifi-
cant in a t-test (t = 2.45, p = 0.03).

The baseline that ignores a and a∗ altogether
reached an accuracy of up to 0.17, sometimes ac-
counting for more than half the accuracy of the
offset method. The success of the baseline is sig-
nificant, given that chance level is very low (recall
that all but the rarest words in the corpus were pos-
sible guesses). Still, the offset method was signifi-
cantly more accurate than the baseline in all VSMs
(10−12 < p < 0.003, Fisher’s exact test).

Differences across domains: We examine the
performance of the offset method in the best-
performing VSM in greater detail. There were
dramatic differences in accuracy across target do-
mains. When b∗ was a PERSON, guesses were cor-
rect 73% of the time; the correct guess was one
of the top 100 neighbors 87% of the time, and its
average rank was 1.31. Conversely, when b∗ was
a MODAL VERB, the guess was never correct; in
fact, in this target tomain, b∗ was one of the 100
nearest neighbors of x only 7% of the time, and
the average rank in these cases was 59 (see Table

2Note that the figure reported by Mikolov et al. (2013c)
collapses across several different types of syntactic features,
some of which are encoded with accuracy higher than 0.4
and some with lower accuracy (Levy and Goldberg, 2014;
Linzen, 2016).

5



a a∗ b b∗ x∗1 x∗2 x∗3 Rank

sometimes always somebody everybody nobody anybody everybody 3
forbid require nobody everybody need needed any-one n/a
can must somebody everybody nobody whoever no-one 4
always sometimes everybody somebody often or occasionally n/a
require permit everything something anything everybody sneakily 13
forbid require nothing everything need needed turn-round n/a
must can everything something anything things you”ll 5
never always nothing everything something anything everything 3
cannot must never always once always hadn’t 2
everybody somebody always sometimes some-one if whoever’s n/a
everything nothing always never certainly indeed certaintly 37
nobody somebody never sometimes you’ve ”if myslef n/a
somebody everybody can must cannot could will 4
forbid require cannot must can need must 3
everything something must can should might ought 9
sometimes always can must could must cannot 2
cannot must forbid require prohibit enjoin forswear n/a
sometimes always permit require anyads.co.uk re-confirm withold n/a
somebody nobody permit forbid npdes restrictions eu/eea n/a
something everything permit require npdes h-1b authorizations n/a

Table 3: A sample of errors made by the [5, Nonpositional, Static] VSM (an error is an analogy problem
where the correct answer was not the nearest neighbor of x = a∗− a+ b). Four analogies are shown per
target domain; x∗1, x∗2 and x∗3 are the nearest, second nearest and third nearest neighbors of x, respectively.
The rank is marked as n/a the correct answer was not one of the 100 nearest neigbors of x.

3 for examples of the errors of the offset method).
Variability across source domains was somewhat
less pronounced; Figure 2a shows the interaction
between source and target domain.

In light of the differences across domains, we
repeated our investigation of the influence of con-
text parameters, this time restricting the source
and target domains to PERSON, PLACE and OB-
JECT. Exact match accuracy ranged from 0.5 for
the static nonpositional 2-word window to 0.83 for
the static nonpositional 5-word window. The lat-
ter VSM achieved almost perfect accuracy in cases
where the guess was a quantificational word (do-
main: 1.0, polarity: 0.97, force: 1.0). We conclude
that in some domains logical features can be ro-
bustly recovered from distributional information;
note, however, that even the baseline method oc-
casionally succeeds on these domains (Figure 2c).

Effect of context parameters: Overall, the in-
fluence of context parameters on accuracy was not
dramatic. When the VSMs are compared based
on the extent that the offset method improves over
the baseline (O − B in Table 2), a somewhat
clearer picture emerges: the improvement is great-
est in intermediate window sizes, either 5-word

windows or dynamic 2-word windows. This con-
trasts with findings on the acquisition of syntac-
tic categories, where narrower contexts performed
best (Redington et al., 1998), suggesting that the
cues to quantificational features are further from
the focus word than cues to syntactic category.

One candidate for such a cue is the word’s com-
patibility with negative polarity items (NPI) such
as any. NPIs are often licensed by decreasing
quantifiers (Fauconnier, 1975): nobody ate any
cheese is grammatical, but *everybody ate any
cheese isn’t. Whereas contextual cues to syntac-
tic category—e.g., the before nouns—are often di-
rectly adjacent to the focus word, any will typi-
cally be part of a different constituent from the fo-
cus word, and is therefore quite likely to fall out-
side a narrow context window.

We did not find a systematic effect of the type of
context (positional vs. nonpositional). However,
as Section 7 below shows, this parameter does af-
fect performance when the VSMs are trained on
smaller corpora.
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(d) Correlation between human responses and the accuracy of
the offset method (each point represents a source + domain
pair)

Figure 2: On the left: accuracy of the best model (static nonpositional 5-word context), broken down by
source (in the y-axis) and target (in the x-axis) domain. On the right: human responses.

6 How well do humans do the task?

Some of the analogies are intuitively fairly diffi-
cult: quantification over possible deontic worlds
(require vs. forbid) is quite different from quan-
tification over individuals (everybody vs. nobody).
Those are precisely the domains in which the
VSMs performed poorly. Are we asking too much
of our VSM representations? Can humans per-
form this task?3

To answer this question, we gave the same
analogies to human participants recruited through
Amazon Mechanical Turk. We divided our 180

3These two questions are highly related from a cognitive
modeling perspective, but in general it is far from clear that
human performance on a logical task is an appropriate yard-
stick for a computational reasoning system. In the domain of
quantifier monotonicity, in particular, there are documented
discrepancies between normative logic and human reasoning
(Chemla et al., 2011; Geurts and van Der Slik, 2005). In
many cases it may be preferable for a reasoning system to
conform to normative logic rather than mimic human behav-
ior precisely.

quantificational analogies into five lists of 36
analogies each. Each list additionally contained
four practice trials presented in the beginning of
the list and ten catch trials interspersed throughout
the list. These additional trials contained simple
analogies, such as big : bigger :: strong : or
brother : sister :: son : . Each of the lists was
presented to ten participants (50 participants in to-
tal). They were asked to type in a word that had
the same relationship to the third word as the first
two words had to each other.

We excluded participants that made more than
three mistakes on the catch trials (three partic-
ipants) as well as one participant who did not
provide any answer to some of the questions.
While mean accuracy varied greatly among sub-
jects (range: 0.22− 1; mean: 0.68; median: 0.69;
standard deviation: 0.17), it was in general much
higher than the accuracy of the VSMs.

Figure 2b presents the human participants’ aver-
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age accuracy by source and target domain. Mean
accuracy was 0.45 or higher for all combinations
of source and target domains. Logistic regression
confirmed that having MODAL VERB and MODAL

as either the source or target domain led to lower
accuracy. There were no statistically significant
differences between those two domains or among
the remaining four domains, with the exception of
TIME as a target domain, which was less accurate
than PLACE, OBJECT and PERSON.

The VSMs did not have access to the
morphological structure of the words. This
makes the comparison with humans difficult:
it is hard to see how human participants
could be stopped from accessing that knowl-
edge when performing an analogy such as
nowhere : somewhere :: nobody : . Notably,
however, the difference in performance between
the morphologically marked domains and the
other domains is if anything more marked in the
VSMs than in humans. Moreover, there is a fairly
small difference in the accuracy of our human par-
ticipants between PLACE and TIME as target do-
mains, even though the former is morphologically
marked and the latter isn’t.

7 Effect of training corpus size

The VSMs trained on our 3.4 billion token corpus
achieved very good performance on the analogy
task, at least in some of the domains. How depen-
dent is the performance of the models on the size
of the training corpus? To address this question,
we sampled four subcorpora from our Wikipedia
corpus, with 100K, 1M, 3M and 10M sentences.
As the average sentence length in the corpus is
18 words, the corpora contained 1.8M, 18M, 54M
and 180M tokens, respectively.

Given that VSM accuracy was low in some of
the domains even when the spaces were trained
on 3.4G tokens, we limit our experiments in this
section to the OBJECT and PERSON domains. We
made two changes to the hyperparameters settings
that were not modulated in the VSMs trained on
the full corpus. First, we lowered the threshold for
rare word deletion (100K / 1M sentences: 10; 3M
sentences: 50; 10M sentences: 100). Second, we
experimented with smaller vectors (100, 300 and
500), under the assumption that it may be more
difficult to train large vectors on a small data set.
As before, we experimented with window sizes
of 2, 5 and 10 words on either side of the focus

100K 1M 3M 10M 188M

0.0

0.2

0.4

0.6

0.8

1.0
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Nonpos

Figure 3: Effect of training corpus size (in sen-
tences) on the accuracy of the analogy task, aver-
aged across vector and window size settings.

word and with positional and nonpositional con-
texts. The size of the windows was always static.

Figure 3 shows the accuracy of the analogy task
averaged across vector sizes and window sizes.
VSMs trained on the 100K and 1M subcorpora
completely failed to perform the task: with the
exception of one model that performed one out
the 12 analogies correctly, accuracy was always
0. The VSMs trained on the 3M and 10M sen-
tences subcorpora perform better (between 0.27
and 0.39 on average), though still much worse
than the VSMs trained on the full corpus. The
type of context had a large effect on the success of
the model: VSMs with positional contexts trained
on the 3M subcorpus had extremely low accuracy,
whereas on the 10M subcorpus positional contexts
performed better than nonpositional ones. The
performance advantage of positional contexts was
larger on the 10M corpus than on the full corpus.

Hart and Risley (1995) estimate that Ameri-
can children are exposed to between 3 and 11
million words every year, depending on the so-
cioeconomic status of their family. The 1M and
3M sentence corpora therefore represent plausi-
ble amounts of exposure for a child; the adults
tested in Section 6 may have seen the equivalent of
10M sentences. The degraded performance of the
VSMs on these smaller training corpora suggests
that distributional information alone is unlikely to
be sufficient for humans’ acquisition of quantifica-
tion, and that an adequate cognitive model would
need to consider richer types of context, such as
syntactic context and discourse structure, or to
make explicit reference to the way these words are
used in logical reasoning.
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8 Related work

There is a large body of work on the evaluation of
VSMs (Turney and Pantel, 2010; Hill et al., 2015).
A handful of recent papers have looked at distri-
butional representations of logical words. Baroni
et al. (2012) extracted corpus-based distributional
representations for quantifier phrases such as all
cats and no dogs, and trained a classifier to detect
entailment relations between those phrases; for ex-
ample, the classifier might learn that all cats en-
tails some cats. Bernardi et al. (2013) introduce a
phrase similarity challenge that relies on the cor-
rect interpretation of determiners (e.g., orchestra
is expected to be similar to many musicians), and
use it to evaluate VSMs and composition methods.
Hermann et al. (2013) discuss the difficulty of ac-
counting for negation in a distributional semantics
framework.

Another line of work seeks to combine the
graded representations of content words such as
mammal or book with a symbolic representation
of logical words (Garrette et al., 2014; Lewis and
Steedman, 2013; Herbelot and Vecchi, 2015). Our
work, which focuses on the quality of graded rep-
resentation of logical words, can be seen as largely
orthogonal to this line of work.

Finally, our study is related to recent neural net-
work architectures designed to recognize entail-
ment and other logical relationships between sen-
tences (Bowman et al., 2015; Rocktäschel et al.,
2016). Those systems learn word vector represen-
tations that are optimized to perform an explicit
entailment task (when trained in conjunction with
a compositional component). In future work, it
may be fruitful to investigate whether those repre-
sentations encode logical features more faithfully
than the unsupervised representations we experi-
mented with.

9 Conclusion

The skip-gram model, like earlier models of dis-
tributional semantics, represents words in a vec-
tor space using only their bag-of-words contexts
in a corpus. We tested whether the representations
that this model acquires for words with quantifica-
tional content encode the logical features that the-
ories of meaning predict they should encode. We
addressed this question using the offset method for
solving the analogy task, a : a∗ :: b : (e.g.,
everyone : someone :: everywhere : ).

Distributional methods successfully recovered

quantificational features in many cases. Accuracy
was higher when the context window was of an in-
termediate size, sometimes approaching 100% on
simpler domains. Performance on other domains
was poorer, however. Humans given the same
task also showed variability across domains, but
achieved better accuracy overall, suggesting that
there is room for improving the VSMs. Finally,
we showed that the VSMs require large amounts
of training data to perform the task well, suggest-
ing that the simplest form of distributional learn-
ing is not sufficient for acquiring logical features
given the amount of language input that humans
are exposed to.
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Abstract

The automatic prediction of aspectual
classes is very challenging for verbs whose
aspectual value varies across readings,
which are the rule rather than the excep-
tion. This paper sheds a new perspective
on this problem by using a machine learn-
ing approach and a rich morpho-syntactic
and semantic valency lexicon. In con-
trast to previous work, where the aspec-
tual value of corpus clauses is determined
on the basis of features retrieved from the
corpus, we use features extracted from the
lexicon, and aim to predict the aspectual
value of verbal readings rather than verbs.
Studying the performance of the classifiers
on a set of manually annotated verbal read-
ings, we found that our lexicon provided
enough information to reliably predict the
aspectual value of verbs across their read-
ings. We additionally tested our predic-
tions for unseen predicates through a task
based evaluation, by using them in the
automatic detection of temporal relation
types in TempEval 2007 tasks for French.
These experiments also confirmed the re-
liability of our aspectual predictions, even
for unseen verbs.

1 Introduction

It is well known that the aspectual value of a sen-
tence plays an important role in various NLP tasks,
like for instance the assessment of event factual-
ity (Saurí and Pustejovsky, 2012), automatic sum-
marisation (Kazantseva and Szpakowicz, 2010),
the detection of temporal relations (Costa and
Branco, 2012) or machine translation (Meyer et
al., 2013). Since, however, the aspectual value of a
sentence results from a complex interplay between

lexical features of the predicate and its linguistic
context, the automatic detection of this aspectual
value is quite challenging.

Studies on the computational modelling of as-
pectual classes emerged about two decades ago
with the work of Passonneau (1988) and Klavans
and Chodorow (1992), among others. In proba-
bly the most extensive study on the field, Siegel
and McKeown (2000) extract clauses from a cor-
pus and classify them into states and events, sort-
ing the latter into culminated and non-culminated
events in a subsequent step. The classification is
based on features inspired by classic Vendlerian
aspectual diagnostics, themselves collected from
the corpus. Since, however, these features are
collected on a type level, this method does not
give satisfying results for verbs whose aspectual
value varies across readings (henceforth ‘aspectu-
ally polysemous verbs’), which are far from ex-
ceptional (see section 3)1.

This problem is directly addressed by Zarcone
and Lenci (2008). These authors classify cor-
pus clauses into the four Vendlerian aspectual cat-
egories (states, activities, accomplishments and
achievements), and like Siegel and McKeown,
base their classification on (classic aspectual) fea-
tures collected from the corpus. However, they ad-
ditionally employ some syntactic properties of the
predicate, a move that enables them to better ac-
count for the influence of the linguistic context on
the aspectual value of the verb across readings.

Friedrich and Palmer (2014), who extend Siegel
and McKeown’s (2000) model to distributional
features, also address the problem of aspectually
polysemous verbs, by making use of instance-
based syntactic and semantic features, obtained
from an automatic syntactic analysis of the clause.

1Type-based classification selects a dominant sense for
any given verb and then always assigns it for each reading
of this verb.
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The approach we present here is designed to
tackle the issue of aspectual variability and is com-
plementary to the methods just described. As we
know from detailed work on verbal syntax and se-
mantics in the tradition of Dowty (1979), Levin
(1993), Rappaport and Levin (1998) and subse-
quent work, many morpho-syntactic and seman-
tic properties of the verb exert a strong influence
on its aspectual value in context. As far as we
know, no study on the computational modelling of
aspectual classes has tried to systematically take
advantage of these correlations between lexical
properties and lexical aspect. We aim to capi-
talise on these correlations with the help of a rich
French lexical resource, “Les Verbes Français”
(Dubois and Dubois-Charlier (1997; François et
al. (2007), henceforth LVF). The LVF is a valency
lexicon of French verbs providing a detailed mor-
pho-syntactic and semantic description for each
reading (use) of a verb.

Differently from previous work, the instances
we classify aspectually are verbal readings as de-
lineated in the LVF (rather than corpus phrases).
We therefore study lexical aspect on an interme-
diate level between the coarse-grained type (verb)
level and the fine-grained corpus utterance level.
Also, while in previous approaches, the features
are collected from corpora, those we make use of
are retrieved from the lexicon entries. The sub-
stantial advantage of this approach, that heavily
makes use of the colossal amount of information
manually coded in the LVF, is that it enables us to
fully investigate the aspectual flexibility of verbs
across readings and the factors that determine it.

For our automatic aspectual classification, we
firstly extracted verbal readings from the LVF
for a set of 167 frequent verbs chosen in such
a way that each of the four Vendlerian aspectual
classes are roughly equally represented. A se-
manticist manually annotated each of the corre-
sponding 1199 readings based on a refinement of
the classic Vendlerian 4-way aspectual categorisa-
tion. This refinement is motivated by recent stud-
ies in theoretical linguistics converging in the view
that the traditional quadripartite aspectual typol-
ogy has to be further refined (see (Hay et al., 1999;
Piñón, 2006; Mittwoch, 2013) among many oth-
ers). Such a refinement enables one to better ac-
count for the variable degree of aspectual flexibil-
ity among predicates, so as to e.g. delineate be-
tween ‘strictly stative’ predicates (e.g. know), and

those stative predicates that also naturally display
an activity reading (e.g. think). This annotation
provides the gold standard for our classification
experiments. For each annotated reading, we then
collected morpho-syntactic and semantic features
from the LVF, chosen for their relevance for the
aspectual value of the verb in context. Based on
these features, we trained classifiers to automati-
cally predict the aspectual class of the LVF read-
ings.

We assessed the accuracy of our automatic as-
pectual classification in a task based evaluation
as follows. Costa and Branco (2012) showed
that (type-based/verb-level) aspectual indicators
improve temporal relation classification in Tem-
pEval challenges (Verhagen et al., 2007), which
emerged in conjunction with TimeML and Time-
Banks (Pustejovsky and Mani, 2003). The tasks
involved in these challenges require temporal rea-
soning. Following Branco and Costa’s exam-
ple, we performed TempEval tasks on the French
TempEval data, using aspectual indicators derived
from the predictions generated by our classifier.
This way, we could show that our aspectual clas-
sification based on lexical features is reliable.

The paper is structured as follows. Section 2
presents the resource used. Section 3 explains on
which criteria verbal readings were manually an-
notated. Section 4 describes the features collected
from the LVF. Section 5 presents the automatic
aspectual classification based on these features.
Section 6 presents the aspectual indicators derived
from the classification. Section 7 describes how
our automatic classification was evaluated through
TempEval tasks.

2 The Resource – LVF

The LVF, which roughly covers 12 300 verbs (lem-
mas) for a total of 25 610 readings, is a detailed
and extensive lexical resource providing a sys-
tematic description of the morpho-syntactic and
syntactico-semantic properties of French verbs2.
The basic lexical units are readings of the verbs,
determined by their defining syntactic environ-
ment (argument structure, adjuncts) and a semi-
formal semantic decomposition (with a finite
repertoire of ‘opérateurs’). Once the idiosyn-

2The paper version is available online at http:
//talep.lif.univ-mrs.fr/FondamenTAL/. On-
line access and electronic versions in XML are avail-
able at http://rali.iro.umontreal.ca/rali/
?q=fr/lvf.
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crasies are put aside, this decomposition very
roughly uses the same inventory of labels and
features as in the lexical templates found in e.g.
Pinker (1989) or Jackendoff (1983). In Table 1, we
give the sample entries for the verb élargir ‘widen’
to illustrate LVF’s basic layout.

Syntactic description (Table 1a). Each reading
of a verb is coupled with a representation of its
syntactic frames. In principle, a verbal reading
can be coupled with a transitive frame (labelled
‘T’), a reflexively marked frame (‘P’) and an in-
transitive frame (‘A’, ‘N’) unmarked by the reflex-
ive. The syntactic description additionally speci-
fies some semantic features of the main arguments
(e.g. whether the subject and direct object are ani-
mate and/or inanimate, whether the indirect object
refers to a location, etc). This information is of-
ten crucial for the aspectual value of the reading
(e.g. a ‘human-only’ intransitive frame strongly
indicates unergativity and henceforth atelicity).

Semantic description (Table 1b). Each entry in
the LVF is also characterised by a semi-formal se-
mantic decomposition providing a rough approx-
imation of the meaning of each verbal reading.
Each entry is therefore paired with a finite set of
primitive semantic features and labels on the ba-
sis of which verbal readings are sorted into 14 se-
mantic classes (eg. psych-verbs, verbs of physi-
cal state and behaviour, etc.). The semantic fea-
tures and labels used in the semantic decompo-
sition provide other cues about the type of verbs
(unergative/ unaccusative verbs, manner/ result
verbs, etc.) which is instantiated by each reading.
For instance, for the reading 01 of élargir ‘widen’
(‘élargir01’ for short) in Table 1b, ‘r/d +qt [p]’
roughly corresponds to BECOME(more(p)) (‘r/d’
stands for ‘(make) become’; ‘+qt’ stands for an
increase along a scale). From this, one can safely
infer that élargir01 is a ‘degree achievement’ verb.

Derivational properties. The LVF also indi-
cates when a verb is formed through a derivational
process, and in the positive case, provides infor-
mation about the category of the verbal root, thus
enabling one to identify deadjectival or denominal
verbs. Finally, for each entry is specified which
suffix is used for the available reading-preserving
deverbal nominalisations and adjectives (-ment, -
age, -ion, -eur, -oir, -ure or zero-derived nominal-
isations, and -able, -ant, -é adjectives).

3 The annotation

We retrieved 1199 entries (verbal readings) for the
selected 167 frequent verbs mentioned earlier. On
average, each verb has roughly 15 readings, while
50% have more than 133. These readings were
manually annotated according to a fine-grained as-
pectual classification on a ‘telicity scale’ of eight
values.

At the bottom of the scale are readings that are
unambiguously (‘strictly’) stative (i.e. for which
any other aspectual value is excluded), rated with
1 (S-STA). For instance, élargir02 (see Table 1a) is
rated with 1, given (a.o.) its incompatibility with
the progressive. Those are distinguished from sta-
tive verbs that also display a dynamic reading (e.g.
penser ‘think’), rated with 2 (STA-ACT). Readings
that are unambiguously dynamic and atelic (‘strict
activity’ readings) are rated with 3 (S-ACT).

At the top are found achievement readings for
which any other aspectual value is excluded, rated
with 8 (S-ACH). At the middle of the scale are
found ‘variable telicity’ readings, that have no
preference for the telic use in a neutral context and
are compatible both with for- and in- adverbials,
rated with 4 (ACT-ACC). For instance, élargir01
is rated with 4, because (a.o.) it is compatible
both with for- and in- adverbials and has no pref-
erence for the telic reading in a neutral context.
These variable telicity readings are distinguished
from ‘weak accomplishment’ readings, rated with
5 (W-ACC). Out of context, weak accomplishment
readings trigger an inference of completion and
have a preference for the telic use; however, they
are nevertheless acceptable with a for-adverbial
(on the relevant interpretation of this adverbial).
For instance, remplir01 ‘fill’ (Pierre a rempli le
seau d’eau ‘Peter filled the bucket with water’)
is rated with 5, because it by default triggers an
inference of completion, but is nevertheless still
acceptable with a for-adverbial under the ‘par-
titive’ reinterpretation of this adverbial. Under
this reinterpretation, described e.g. by Smollett
(2005) or Champollion (2013), the sentence trig-
gers an inference of non-completion (Bott (2010),
see e.g. Peter filled the bucket with water for 10
minutes). ‘Strong’ accomplishment readings —
like remplir09 (Cette nouvelle a rempli Pierre de

3Interestingly, the average number of 15 readings per verb
very closely matches the number of event categories per verb
obtained in the experiment reported by Marvel and Koenig
(2015), who propose a new method of automatically cate-
gorising event descriptions.
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id frame encoded information
01 T1308 transitive, human subject, inanimate direct object, instrumental adjunct

P3008 reflexive, inanimate subject, instrumental adjunct
A30 intransitive with adjunct, inanimate subject

02 N1i intransitive, animate subject, prep. phrase headed by de (of )
A90 intransitive with adjunct, subject human or thing
T3900 transitive, inanimate subject, object human or thing

(a) Syntactic descriptions
id examplea semantic decomposition sem. primitive sem. class
01 On élargit une route/ La route (s’)élargit. r/d+qt large become Transformation
02 Cette veste élargit Paul aux épaules/ La robe élargit la taille. d large a.som become Transformation
03 On élargit ses connaissances. r/d large abs become Transformation
04 On élargit le débat à la politique étrangère. f.ire abs VRS directed move Enter/Exit

(b) The four readings illustrated by sample sentences and their semantic description

aLiteral translations – 01: One widens a road/the road is REFL widened/the road widens. 02: This jacket widens Paul ‘at
the’ shoulders/ The dress widens the waist. 03: One widens one’s knowledge. 04: One extends the debate to foreign policy.

Table 1: LVF entries for élargir

joie ‘This news filled Peter with joy’) — are in-
compatible with the partitive reinterpretation of
for-adverbials.4 Those are rated with 6 (S-ACC).
Finally, accomplishments that share a proper sub-
set of properties with achievements are rated with
7 (ACC-ACH).

The annotator evaluated each entry with a def-
inite or singular indefinite internal argument, in
order to abstract away from the role of the deter-
miner in the aspectual value of the VP (see e.g.
Verkuyl (1993)).

We also used a coarser grained aspectual scale
and group the verbal readings into the following
classes: ATElic (rating 1–3), with VARiable telic-
ity (rating 4), and TELic (5 or more). Table 2 gives
an overview of the distribution of the aspectual rat-
ings.

The first finding is that verbs display a consid-
erable aspectual variability across readings, which
confirms the need to go beyond the type level for
the computational modelling of aspectual classes.
The aspectual value of 2/3 of the 151 verbs with
more than one reading varies with the instantiated
reading (on the 8 value scale). With respect to the
coarser grained scale, roughly half of the verbs
(82, for a total of 793 readings) have readings in
more than one of the three overarching aspectual
classes.

4The for-adverbial is nevertheless compatible with rem-
plir09, but only under its (non-partitive) ‘result state-related
interpretation’, under which it scopes on the result state, cf.
Piñón (1999); see e.g. This news filled Peter with joy for ten
minutes.

4 The features

The LVF connects each verbal reading with spe-
cific morphological, syntactic and semantic fea-
tures. Among such features, those that influence
the lexical aspect of the verb in context are known
to be pervasive: Verbs encoding the BECOME op-
erator in their event structure generally have a telic
use; intransitive manner verbs are mostly activ-
ity verbs (see e.g. Rappaport Hovav and Levin
(1998) and subsequent work); ditransitive verbs
like give are mostly result verbs (see e.g. Pylkkä-
nen (2008)) and thus accomplishments.5. We took
advantage of many of these features for our classi-
fication. Also, some semantic classes give very
clear hints to the lexical aspect of its members.
For instance, readings instantiating the class of
‘enter/exit verbs’ are telic, those instantiating the
‘transformation’ class are never atelic only, etc.6

We also made use of features conveyed by the se-
mantic decomposition, in particular its main com-
ponent (BECOME, DO, ITER, STATE, etc.).

We also took advantage of the encoded infor-
mation on the suffixes used in reading-preserving
nominalisations. For instance, readings with an
intransitive but no transitive frame can in prin-

5Relevant features are sometimes coded in an indirect
way. For instance, the difference between verbs like donner
x à y ‘give x to y’, that subcategorise the indirect object, and
verbs like dire x à y ‘say x to y’, that do not, is retrievable
through the difference in the associated syntactic frames.

6On this respect, note that the semantic decomposition
of élargir02, which involves BECOME, shows the limits of
the analysis provided by the LVF: Under the ‘spatial’ use of
which élargir02 is an instance, degree achievements do not
describe events in which an individual undergoes change over
time (see Deo et al. (2013)).
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1 2 3 4 5 6 7 8
S-STA ACT-STA S-ACT ACT-ACC W-ACC S-ACC ACC-ACH S-ACH

182 67 175 195 172 227 29 152

(a) 8 value scale

1-3 4 5-8
ATE VAR TEL
424 195 580

(b) 3 value scale

Table 2: Aspectual distribution of the 1199 manually annotated verbal readings

Features collected from corpus Related features
Example Clause in LVF

frequency –
not or never –
She can not explain why.
temporal adverb durative adverbial
I saw to it then. in semantic decomposition
implicit or no external argument canonical passive, refl.
He was admitted to the hospital. constr. w. instrumental adj.
past/pres participle –
. . . blood pressure going up.
in adverbial –
She built it in an hour.
4 tense related features –
manner adverb manner argument or adjunct
She studied diligently.
evaluative adverb +ql
They performed horribly. in semantic decomposition
for adverbial durative adverbial
I sang for ten minutes. in semantic decomposition
continuous adverb +re (iterative operator)
She will live indefinitely. in semantic decomposition

Table 3: Siegel and McKeown’s (2000) and LVF features.

ciple characterise unaccusative (telic) or unerga-
tive (atelic) verbs. But only the latter undergo -
eur nominalisation, as in English (see Keyser and
Roeper (1984)). The availability of the -eur nom-
inalisation is therefore a reliable aspectual feature
too.

Tables 3 and 4 compare features used in some
previous aspectual classifications and their equiv-
alents in the LVF. As one can check, the LVF fea-
tures cover most of the features used in Siegel and
McKeown (2000) and Zarcone and Lenci (2008)7.
For obvious reasons, features related to grammat-
ical aspect conveyed by tenses are not covered in
our valency lexicon. But overall, our set of fea-
tures roughly corresponds to those used in previ-
ous work, for a total of 38 features.

5 Classifying LVF entries

The items we classified are the 1199 readings for
the 167 verbs selected. Our classification task
consisted in predicting the right (coarse-grained)
aspectual class for these readings (ATE, VAR or
TEL). In this supervised learning setting, we ap-

7The features used by Friedrich and Palmer (2014) are
mainly derived from those of Siegel and McKeown (2000).

Features collected Related features
from corpus in LVF

temporal adverbs temporal arg. or adj.
intentional adverbs –
frequency adverbs +qt in sem. decomp.
iterative adverbs +re in sem. decomp.
tense –
only subject A* or N* frame
presence of direct obj T* frame
presence of indirect obj N* frame

presence of locative arg
encoded in frame
sem class = L

presence of sent. compl. encoded in frame
canonical passive T* and A* schema
subj & dobj, plural subj or obj
number, animacy, human/animal subj or obj
definiteness thing subj or obj

Table 4: Zarcone and Lenci’s (2008) and LVF features.

plied the classifiers shown in Table 5 with the
implementation provided by Weka (Hall et al.,
2009), mostly with their default settings8. We
measured the performance of the classifiers by as-
sessing the accuracy in 10-fold cross-validation,
and compared it to the accuracy of a baseline
classifier which always assigns the majority class
(TEL, rules.ZeroR). We also performed a linear
forward feature selection using the Naïve Bayes
algorithm9. This way, nine features were selected,
coding, among others:

• the presence of a temporal or manner argu-
ment/adjunct in the semantic decomposition;

• the main primitive in the semantic decompo-
sition;

• the use of the suffixes -ment and -ure in the
reading-preserving nominalisation;

• the relative polysemy of the lemma (indicated
by the number of its readings);

• a subject that must be inanimate;

• the presence of a reflexive reading.
8For libsvm (the SVM implementation), we used a linear

kernel and normalisation. We selected roughly one classifier
from each class.

9An exhaustive search with the 38 features in this group
was computationally too time-consuming.
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Algorithm complete selected
trees.j48 61.80 63.00
rules.jrip 63.89 61.56
lazy.kstar 62.89 67.47
functions.libsvm 62.72 61.13
bayes.naivebayes 60.22 65.80
baseline 48.37 48.37

Table 5: Classification accuracy for LVF readings, with com-
plete feature set and selected in feature selection process.

The results in Table 5 show that the features re-
trieved from the LVF enable one to predict the as-
pectual class considerably better than the baseline:
The accuracy ranges from 12 points to almost 20
above the baseline accuracy of 48.37. The best
configuration, achieving an accuracy of 67.48%,
is the lazy.kstar classifier based on the feature
set reduced by feature selection. A comparison
with the results reported in previous work is dif-
ficult, due to the great discrepancies in the ex-
perimental settings (see the introduction). How-
ever, our results clearly show that the aspectual
class characterising verbal readings can be pre-
dicted with a reasonable precision on the basis of
lexical-related information only. They once again
empirically confirm the well-documented corre-
lations between lexical aspect and the morpho-
syntactic/semantic properties of the verb.

6 Aspectual indicators

In this section, we take a more qualitative look at
the results obtained in section 5. We assessed the
quality of the predictions of our model (henceforth
LVF-model) in two ways. Firstly, we derived as-
pectual indicators for the type level, describing the
general ‘aspectual profile’ of a verb across all its
readings. These are later used in the task based
evaluation described in section 710. Secondly, we
looked at the aspectual values assigned to the read-
ings of particular verbs (see indicators for the ver-
bal readings below).

Indicators for the type-level. The aspectual in-
dicators for the type-level are computed on the ba-
sis of the aspectual values predicted for each read-
ing of the verb. As shown in Table 6, they are de-
signed to reflect how aspectual values vary across
the readings of the verb. For example, the indica-

10Assigning a value to the type level was necessary to test
our predictions on the TempEval corpus, since aligning each
utterance of this corpus with a specific LVF-reading is not
feasible.

v. var > 1 telicity value for same lemma?
m. maj Telicity value of majority
t. tel Any telic reading?
a. ate Any atelic reading?

(a) Nominal and binary aspectual indicators
1. %tel Proportion of telic readings
2. %ate Proportion of atelic readings
3. %var Proportion of flexible readings
4. probest.max Max of probability estimates
5. probest.min Min of probability estimates
6. probest.avg Average of probability estimates

(b) Numeric aspectual indicators.

Table 6: Aspectual indicators

tor ‘v’ in Table 6a shows whether there is any vari-
ation at all, ‘t’ assesses the presence of at least one
telic reading, etc. Whereas the indicators in Ta-
ble 6a provide qualitative cues, those in Table 6b
convey quantitative information. The first three
give the proportion of readings of a particular as-
pectual class. The last three are computed from
the probability estimates generated by the libsvm

classifier.

In order to get an idea of the quality of our pre-
dictions, we computed from automatic predictions
the aspectual indicators for all annotated verbs.
We provide some of them in Table 7 for verbs
judged aspectually polysemous by the annotator.
These ‘automatic’ aspectual indicators are given
in normal font. For the same verbs, we also com-
puted the ‘manual’ aspectual indicators, i.e. those
computed on the basis of the manual annotations
(when possible)11. These are set in bold face. The
verbs in Table 7a are dominantly telic, those in 7b
dominantly atelic and those in 7c dominantly vari-
able. As one can check, the dominant aspectual
value is correctly assigned in most cases. Also,
in most cases, the proportion of uses of the non-
preferred readings closely matches the proportion
obtained manually. Unsurprisingly, the sample
of verbs predicted to be ‘mostly telic’ are mostly
(quasi-)achievement verbs or strong accomplish-
ments describing ‘non-gradual’ changes (verbs
lexicalising changes involving a two-point scale,
e.g. dead or not dead for kill, see e.g. Beavers
(2008)). Unsurprisingly again, many verbs pre-
dicted to be ‘mostly variable’ are degree achieve-
ment verbs. More remarkably, remplir ‘fill’ is

11Indicators derived from the probability estimates are not
computable from the manual annotations.
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rightly predicted to be ‘mostly telic’, although it
is a verb of gradual change. The model there-
fore preserves here the crucial distinction between
degree achievements associated with a close scale
like remplir, tolerating atelic readings under some
uses although they conventionally encode a max-
imal point (see Kennedy and Levin (2008)), and
achievement verbs associated with an open scale
like élargir ‘widen’, that also accept both for- and
in- adverbials, but do not show a preference for the
telic reading in absence of any adverbial. These
observations suggest that even if predictions for
some readings are wrong, the aspectual indicators
might still rightly capture the general ‘aspectual
profile’ of verbs at the type level.

Indicators for the verbal readings. We also in-
spected the predicted values for some predicates
and compared them to the values assigned man-
ually. For predicates showing a high degree of
aspectual variability like élargir ‘widen’ (see Ta-
ble 7c), the results are very good: élargir01 (‘They
are widening the road’) is correctly analysed as
VAR and élargir04 (‘They are extending the major-
ity’) as TEL. Interestingly, élargir02 (‘This jacket
widens Pierre’s shoulders’) is correctly analysed
as ATE, despite of the fact that it is wrongly
analysed by the LVF as instantiating the class of
change of state verbs (see footnote 6). This sug-
gests that the computational model could leverage
the information provided by the syntactic frames
associated to élargir02 (see Table 1b) to outweigh
the wrongly assigned semantic class and produce
the correct aspectual prediction.

7 Task based evaluation

Reliable automatic aspectual classifications are
expected to enhance existing solutions to tempo-
ral relation classification. Thus, if our LVF-model
improves such a solution, we can conclude that our
learned aspectual values are reliable. We there-
fore evaluated the predictive power of the LVF-
model on unseen verbs through such tasks, fol-
lowing the method proposed in Costa and Branco
(2012). While Costa and Branco (2012) collected
their aspectual indicators from the web and im-
proved the temporal relation detection in the Por-
tuguese TimeBank (PTiB), we derive ours from
the predictions generated using the LVF-model, as
described in section 6 and use them in TempEval
tasks for the French TimeBank.
The data used in these experiments are the French

lemma m t a %tel %ate %var
casser TEL 1 0 95.00 0 0.05
‘break’ TEL 1 1 95.65 4.35 0
mourir TEL 1 1 75.00 25.00 0
‘die’ TEL 1 1 75.00 25.00 0
remplir TEL 1 1 70.00 30.00 0
‘fill’ TEL 1 1 80.00 20.00 0

(a) Mostly telic

lemma m t a %tel %ate %var
regarder ATE 0 1 0 91.67 8.33
‘look at’ ATE 1 1 16.67 83.33 0
chanter ATE 0 1 0 66.67 33.33
‘sing’ ATE 0 1 0 66.67 33.33
étudier ATE 1 1 30.00 60.00 10.00
‘study’ ATE 1 1 20.00 80.00 0

(b) Mostly atelic

lemma m t a %tel %ate %var
vieillir VAR 0 1 0 11.11 88.89
‘get older’ VAR 0 1 0 22.22 77.78
embellir VAR 0 1 0 33.33 66.67
‘beautify’ VAR 1 0 33.33 0 66.67
élargir VAR 1 1 25.00 25.00 50.00
‘widen’ VAR 1 1 25.00 25.00 50.00

(c) Mostly variable

Table 7: Aspectual indicators computed from predictions and
from manual annotations. Indicators in bold face are com-
puted based on manual annotations. The names of the indi-
cators refer to the labels used in Table 6.

TempEval data, a corpus for French annotated in
ISO-TimeML (FTiB in the following) described
in Bittar et al. (2011). This data contains about
15 000 tokens12 annotated with temporal relations.
Of these, roughly 2/3 are marked between 2 event
arguments and 1/3 between an event and a tem-
poral expression. The classification tasks we are
concerned with deal with the automatic detection
of the type of these temporal relations, namely
the tasks A, B and C in the TempEval 2007 chal-
lenge13. Table 8 gives an overview of the data for
each of the three classification tasks. We build our
experiments on top of a base system addressing
these challenges and show that the performance of
this base system can be improved using our aspec-

12This corresponds to 1/4 of the English TimeBank.
13Task A is about temporal relations between an event and

a time, task B focuses on relations between events and the
document’s creation time, and task C is concerned with rela-
tions between two events.
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FTiB PTiB LVF
tlinks rel. types tlinks lemmas(seen) readings

A 302 10 1659 164(16) 1597
B 264 5 2887 149(14) 1329
C 1172 15 1993 427(40) 3827

Table 8: Event instances for TempEval tasks A, B and C
for French and Portuguese (left) and corresponding verbs and
readings in LVF (right).

Attribute A B C
event-aspect × X X
event-polarity × X X
event-pos × X X
event-class X X X
event-tense × × ×
event-mood∗ × X X
event-vform∗ × X X
order-adjacent × N/A N/A
order-event-first × N/A N/A
order-event-between X N/A N/A
order-timex-between × N/A N/A
timex-mod × × N/A
timex-type X × N/A
tlink-relType class

Table 9: Features used in the base system for TempEval tasks
A, B and C. Features checked (X) were selected in the feature
selection process.

tual indicators.
Like Costa and Branco (2012), we implemented

as base system the classifiers proposed for English
by Hepple et al. (2007), which only rely on rel-
atively simple annotation attributes. Table 9 lists
the features used in the context of our FTiB data,
basically the same as in Hepple et al. (2007) and
Costa and Branco (2012). As in their work, we
also determined the final set of features by per-
forming an exhaustive search on all possible fea-
ture combinations for each task, using again the
Naïve Bayes algorithm. The features marked ‘X’
are those finally selected this way. Using this set of
features, we trained the same classifiers and under
the same conditions described in section 5 on the
FTiB data. The accuracy of the resulting models
in 10-fold cross-validation on the three TempEval
tasks are shown in italics in Table 10.

Following again Costa and Branco (2012), we
then enhanced this basic set of features with each
of the aspectual indicators computed from the pre-
dictions generated by the LVF-model. The aspec-
tual indicators are listed in Table 6; we described
their computation in section 6. This way, we ob-
tained 10 enhanced feature sets, one for each as-

pectual indicator. Using these feature sets and the
same classifiers as before, we learned models on
the FTiB data and computed their accuracy in 10
fold cross-validation.

The improvements achieved this way are shown
in Table 10. Whenever an aspectual indicator im-
proves the results of the base system, we give its
accuracy (in bold face) below the accuracy of the
base system. The superscripts refer to the lines in
Table 6 and show which of the aspectual indicators
was used to enhance the base feature set to obtain
the reported improved accuracy14.

The results given in Table 10 show that the ac-
curacy of 8 out of the 15 tested classifiers could
be improved by 1-3 points by adding the aspec-
tual indicators. The indicator which produced the
most and largest improvements was the average
over the probability estimates, suggesting that this
value best reflects the dominant aspectual value
of the verb. Overall, the improvement obtained
through our classification is quantitatively compa-
rable to the enhancement realised by Costa and
Branco (2012): Their results show an improve-
ment similar in size to ours for 9 out of the same
15 classifiers. They evaluate on a test set, whereas
we compare accuracy in 10-fold cross-validation.
This was necessary since the French TimeBank
is considerably smaller (roughly 1/4 of Costa and
Branco’s data set for Portuguese, see PTiB col-
umn in Table 8). As mentioned earlier, a qual-
itative comparison is nevertheless difficult, given
the substantial differences between the data and
the methodology used here and there.

The results clearly show however that the LVF-
model trained on our annotated lexical entries per-
forms well on unseen predicates.

8 Conclusion and future work

This paper focuses on the issue of aspectual vari-
ability for the computational modelling of aspec-
tual classes, by using a machine learning approach
and a rich morpho-syntactic and semantic valency
lexicon. In contrast to previous work, where the
aspectual value of corpus clauses is determined at
the type (verb) level on the basis of features re-
trieved from the corpus, we make use of features
retrieved from the lexicon in order to predict an
aspectual value for each reading of a same verb
(as they are delineated in this lexicon). We firstly

14We only show improvements of at least 1%, and only
show the largest gains in performance.
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Classifier A B C
trees.j48 0.71 0.81 0.40

0.731 0.823 0.41a

rules.jrip 0.71 0.83 0.36
0.736 0.846 0.37m

lazy.kstar 0.72 0.82 0.42
0.855

functions.libsvm 0.74 0.83 0.40
0.856

bayes.naivebayes 0.73 0.84 0.40
baseline 0.72 0.62 0.29

Table 10: Accuracy of classifiers obtained on FTiB with base
and enhanced feature sets. Values for the base classifiers are
in italics. In bold face improvements of an enhanced classi-
fier, no values represent no improvement. Superscripts give
the aspectual indicator used to enhance the base feature set
and obtain the improved result. They refer to rows in Table 6.

studied the performance of the classifier on a set
of manually annotated verb readings. Our results
experimentally confirm the theoretical assump-
tion that a sufficiently detailed lexicon provides
enough information to reliably predict the aspec-
tual value of verbs across their readings. Sec-
ondly, we tested the predictions for unseen predi-
cates through a task based evaluation: We used the
aspectual values predicted by the LVF-model to
improve the detection of temporal relation classes
in TempEval 2007 tasks for French. Our predic-
tions resulted in improvements quantitatively sim-
ilar to those achieved by Costa and Branco (2012)
for Portuguese and thus confirm the reliability of
our aspectual predictions for unseen verbs.

The investigation reported here can be further
pursued in many interesting ways. One possible
line of work consists in exploring the aspectual re-
alisation and distribution of the LVF readings in
corpus data. This would also provide means to re-
late our findings for verbal readings to corpus in-
stances.

Our study strongly relies on the LVF lexi-
cal database, a very extensive source of morpho-
syntactic and semantic information. For other lan-
guages, this kind of information, when it is avail-
able, is generally not contained in a single lexicon.
Therefore, a further interesting research direction
would be to evaluate the applicability of our tech-
nique to suitable information from distributed re-
sources. On this respect, recent efforts made
for linking linguistic and lexical data and making
these data accessible and interoperable would cer-
tainly be very helpful. For English in particular,
available suitable resources are already abundant.

One of these is the Pattern Dictionary of English
Verbs, see (Hanks, 2008). Other interesting data
bases are FrameNet (Baker et al., 1998), VerbNet
(Levin, 1993; Kipper Schuler, 2006) and Prop-
Bank (Palmer et al., 2005), especially since these
different resources have been mapped together by
(Loper et al., 2007), thus giving access to both the
lexical and distributional properties defining each
entry.

Increasing the reliability of automatic identifi-
cation of aspectual classes also represents inter-
esting opportunities for several NLP applications.
A finer-grained and more reliable automatic as-
sessment of aspectual classes can among others be
quite useful for increasing the accuracy of textual
entailment recognition, and, particularly, the sen-
sitivity of systems to event factuality (Saurí and
Pustejovsky, 2009). For instance, for telic perfec-
tive sentences, while the inference of event com-
pletion amounts to an entailment with strong ac-
complishments and (quasi-)achievements (at least
in absence of an adverb signalling incompletion
like partly), the same inference is to some ex-
tent defeasible with weak accomplishments. In-
tegrating finer-grained distinctions among predi-
cates could also enable one to better disambiguate
verbal modifiers like durative adverbials. A for-
adverbial typically signals that the event is incom-
plete when it modifies a weak accomplishment;
e.g., Peter filled the truck for one hour suggests
that the filling event is not finished, see (Bott,
2010) a.o. However, the same adverbial does not
trigger this inference when it applies to a strong
accomplishment or a (quasi)-achievement. For in-
stance, They broke the law for five days does not
suggest that the breaking event is not finished. A
system that performs better in the identification
of fine grained aspectual classes would therefore
evaluate with more precision the probability that
the reported event is completed in the actual world.
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Abstract

It is generally believed that a metaphor
tends to have a stronger emotional im-
pact than a literal statement; however,
there is no quantitative study establishing
the extent to which this is true. Further,
the mechanisms through which metaphors
convey emotions are not well understood.
We present the first data-driven study
comparing the emotionality of metaphor-
ical expressions with that of their literal
counterparts. Our results indicate that
metaphorical usages are, on average, sig-
nificantly more emotional than literal us-
ages. We also show that this emotional
content is not simply transferred from the
source domain into the target, but rather is
a result of meaning composition and inter-
action of the two domains in the metaphor.

1 Introduction

Metaphor gives our expression color, shape and
character. Metaphorical language is a result of
complex knowledge projection from one domain,
typically a physical, closely experienced one, to
another, typically more abstract and vague one
(Lakoff and Johnson, 1980). For instance, when
we say “He shot down all of my arguments”, we
project knowledge and inferences from the domain
of battle (the source domain) onto our reasoning
about arguments and debates (the target domain).
While preserving the core meaning of the sen-
tence, the use of metaphor allows us to introduce
additional connotations and emphasize certain as-
pects of the target domain, while downplaying oth-
ers. Consider the following examples:

(1) a. The new measures are strangling business.

b. The new measures tightly regulate business.

When we talk about “strangling business” in (1a)
we express a distinct viewpoint on governmental
regulation of business, as opposed to a more neu-
tral factual statement expressed in (1b).

The interplay of metaphor and emotion has been
an object of interest in fields such as linguistics
(Blanchette et al., 2001; Kovecses, 2003), polit-
ical science (Lakoff and Wehling, 2012), cogni-
tive psychology (Crawford, 2009; Thibodeau and
Boroditsky, 2011) and neuroscience (Aziz-Zadeh
and Damasio, 2008; Jabbi et al., 2008). A num-
ber of computational approaches for sentiment po-
larity classification of metaphorical language have
also been proposed (Veale and Li, 2012; Kozareva,
2013; Strzalkowski et al., 2014). However, there
is no quantitative study establishing the extent to
which metaphorical language is used to express
emotion nor a data-supported account of the mech-
anisms by which this happens.

Our study addresses two questions: (i) whether
a metaphorical statement is likely to convey a
stronger emotional content than its literal coun-
terpart; and (ii) how this emotional content arises
in the metaphor, i.e. whether it comes from the
source domain, or from the target domain, or
rather arises compositionally through interaction
of the source and the target. To answer these ques-
tions, we conduct a series of experiments, in which
human subjects are asked to judge metaphoricity
and emotionality of a sentence in a range of set-
tings. We test two experimental hypotheses.

Hypothesis 1: metaphorical uses of words
tend to convey more emotion than their
literal paraphrases in the same context.

Hypothesis 2: the metaphorical sense of a
word tends to carry more emotion than
the literal sense of the same word.

To test Hypothesis 1, we compare the emotional
content of a metaphorically used word to that of
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its literal paraphrase in a fixed context, as in the
following example.

(2) a. Hillary brushed off the accusations.

b. Hillary dismissed the accusations.

To test Hypothesis 2, we compare the emotional
content of the metaphorical sense of a word to a
literal sense of that same word in its literal context,
as follows.

(3) a. Hillary brushed off the accusations.

b. He brushed off the snow.

Here, brushed off is metaphorical in the context of
“accusations” but literal in the context of “snow”.

Our experiments focus on metaphors expressed
by a verb, since this is the most frequent type of
metaphor, according to corpus studies (Cameron,
2003; Shutova and Teufel, 2010). In order to ob-
tain a sufficient coverage across metaphorical and
literal verb senses we extract our data from Word-
Net. For 1639 senses of 440 verbs, we anno-
tate their usage as metaphorical or literal using the
crowdsourcing platform, CrowdFlower1. We then
create datasets of pairs of these usages to test Hy-
potheses 1 and 2.

Our results support both hypotheses, providing
evidence that metaphor is an important mecha-
nism for expressing emotions. Further, the fact
that metaphorical uses of words tend to carry more
emotion than their literal uses indicates that the
emotional content is not simply transferred from
the source domain into the target, but rather is
a result of meaning composition and interaction
of the two domains in the metaphor. For this
project, we created a dataset in which verb senses
are annotated for both metaphoricity and emo-
tionality. In addition, the metaphorical uses are
paired with their human-validated interpretations
in the form of literal paraphrases. We have made
this dataset freely available online.2 We expect
that this dataset, the first of its kind, will find
many applications in NLP, including the develop-
ment and testing of metaphor identification and in-
terpretation systems, modeling regular polysemy
in word sense disambiguation, distinguishing be-
tween near-synonyms in natural language genera-
tion, and, not least, the development of sentiment
analysis systems that can operate on real-world,
metaphor-rich texts.

1www.crowdflower.com
2http://saifmohammad.com/WebPages/metaphor.html

2 Related Work

Word sense, metaphor and emotion: The stan-
dard approach to word sense disambiguation
(WSD) is to develop a model for each polyse-
mous word (Navigli, 2009). The model for a word
predicts the intended sense, based on context. A
problem with this approach to WSD is that good
coverage of common polysemous English words
would require about 3,200 distinct models. Kil-
garriff (1997) has argued there are systematic re-
lations among word senses across different words,
focusing in particular on metaphor as a ubiqui-
tous source of polysemy. This area of research
is known as regular polysemy. Thus, there is a
systematic relation between metaphor and word
sense (Kilgarriff, 1997; Turney et al., 2011) and
the emotion associated with a word depends on the
sense of the word (Strapparava and Valitutti, 2004;
Mohammad and Turney, 2013).3 This raises the
question of whether there is a systematic relation
between presence of metaphor and the emotional
content of words. As far as we know, this is the
first paper to quantitatively explore this question.

Gibbs et al. (2002) conducted a study that
looked at how listeners respond to metaphor and
irony when they are played audio tapes describing
emotional experiences. They found that on aver-
age metaphors were rated as being more emotional
than non-metaphoric expressions. However, that
work did not compare paraphrase pairs that dif-
fered in just one word (metaphorically or literally
used) and thus did not control for context. Citron
and Goldberg (2014) compared metaphorical and
literal sentences differing only in one word, and
found that metaphorical sentences led to more ac-
tivity in the the amygdala and the anterior portion
of the hippocampus. They hypothesized that this
is because metaphorical sentences are more emo-
tionally engaging than literal sentences.

Metaphor annotation: Metaphor annotation
studies have typically been corpus-based and in-
volved either continuous annotation of metaphor-
ical language (i.e., distinguishing between literal
and metaphorical uses of words in a given text),
or search for instances of a specific metaphor in
a corpus and an analysis thereof. The majority
of corpus-linguistic studies were concerned with
metaphorical expressions and mappings within a
limited domain, e.g., WAR, BUSINESS, FOOD or

3Words used in different senses convey different affect.
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PLANT metaphors (Santa Ana, 1999; Izwaini,
2003; Koller, 2004; Skorczynska Sznajder and
Pique-Angordans, 2004; Lu and Ahrens, 2008;
Low et al., 2010; Hardie et al., 2007), in a partic-
ular genre or type of discourse (Charteris-Black,
2000; Cameron, 2003; Lu and Ahrens, 2008; Mar-
tin, 2006; Beigman Klebanov and Flor, 2013).

Two recent studies (Steen et al., 2010; Shutova
and Teufel, 2010) moved away from investigat-
ing particular domains to a more general study
of how metaphor behaves in unrestricted con-
tinuous text. Steen and colleagues (Pragglejaz
Group, 2007; Steen et al., 2010) proposed a
metaphor identification procedure (MIP), in which
every word is tagged as literal or metaphorical,
based on whether it has a “more basic mean-
ing” in other contexts than the current one. The
basic meaning was defined as “more concrete;
related to bodily action; more precise (as op-
posed to vague); historically older” and its iden-
tification was guided by dictionary definitions.
Shutova and Teufel (2010) extended MIP to the
identification of conceptual metaphors along with
the linguistic ones. Lönneker (2004) investi-
gated metaphor annotation in lexical resources.
Their Hamburg Metaphor Database contains ex-
amples of metaphorical expressions in German
and French, which are mapped to senses from Eu-
roWordNet4 and annotated with source–target do-
main mappings taken from the Master Metaphor
List (Lakoff et al., 1991).

Emotion annotation: Sentiment analysis is de-
fined as detecting the evaluative or affective atti-
tude in text. A vast majority of work in sentiment
analysis has focused on developing classifiers for
valence prediction (Kiritchenko et al., 2014; Dong
et al., 2014; Socher et al., 2013; Mohammad et
al., 2013), i.e., determining whether a piece of text
expresses positive, negative, or neutral attitude.
However, there is a growing interest in detecting a
wider range of emotions such as joy, sadness, op-
timism, etc. (Holzman and Pottenger, 2003; Alm
et al., 2005; Brooks et al., 2013; Mohammad,
2012). Much of the this work has been influenced
by the idea that some emotions are more basic
than others (Ekman, 1992; Ekman and Friesen,
2003; Plutchik, 1980; Plutchik, 1991). Moham-
mad (2012) polled the Twitter API for tweets that
have hashtag words such as #anger and #sadness
corresponding to the eight Plutchik basic emo-

4http://www.illc.uva.nl/EuroWordNet/

tions. He showed that these hashtag words act as
good labels for the rest of the tweets. Suttles and
Ide (2013) used a similar distant supervision tech-
nique and collected tweets with emoticons, emoji,
and hashtag words corresponding to the Plutchik
emotions. Emotions have also been annotated in
lexical resources such as the Affective Norms for
English Words, the NRC Emotion Lexicon (Mo-
hammad and Turney, 2013), and WordNet Affect
(Strapparava and Valitutti, 2004). The annotated
corpora mentioned above have largely been used
as training and test sets, and the lexicons have
been used to provide features for emotion classifi-
cation. (See Mohammad (2016) for a survey on af-
fect datasets.) None of this work explicitly studied
the interaction between metaphor and emotions.

3 Experimental Setup

To test Hypotheses 1 and 2, we extracted pairs
of metaphorical and literal instances from Word-
Net. In WordNet, each verb sense corresponds to a
synset, which consists of a set of near-synonyms, a
gloss (a brief definition), and one or more example
sentences that show the usage of one or more of
the near-synonyms. We will refer to each of these
sentences as the verb-sense sentence, or just sen-
tence. The portion of the sentence excluding the
target verb will be called the context. We will refer
to each pair of target verb and verb-sense sentence
as an instance. We extracted the following types
of instances from WordNet:

Instance 1
Target verb: erase

Sentence: The Turks erased the Armenians.

Here, erase is used metaphorically. We will refer
to such instances as metaphorical instances.

Now consider an instance similar to the one
above, but where the target verb is replaced by its
near-synonym or hypernym. For example:

Instance 2
Target verb: kill

Sentence: The Turks killed the Armenians.

The sentence in Instance 2 has a different target
verb (although with a very similar meaning to the
first) and an identical context w.r.t. Instance 1.
However, in this instance, the target verb is used
literally. We will refer to such instances as literal
instances. To test Hypothesis 1, we will compare
pairs such as Instance 1–Instance 2. We will then
ask human annotators to examine these instances
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both individually and in pairs to determine how
much emotion the target verbs convey in the sen-
tences.

Another instance of the verb erase, correspond-
ing to a different sense, is shown below:

Instance 3
Target verb: erase

Sentence: Erase the formula on the blackboard.

This instance contains a literal use of erase. To
test Hypothesis 2, we will compare pairs such as
Instance 1–Instance 3 that have the same target
verb, but different contexts such that one instance
is metaphorical and another is literal. We will ask
human annotators to examine these instances both
individually and in pairs to determine how much
emotion the target verbs convey in the sentences.

In the sub-sections below, we describe: (3.1)
How we compiled instance pairs to test Hypothe-
ses 1 and 2. This involved annotating instances
as metaphorical or literal. (3.2) How we anno-
tated pairs of instances to determine which is more
metaphorical. (3.3) How we annotated instances
for emotionality. And finally, (3.4) how we anno-
tated pairs of instances to determine which is more
emotional.

3.1 Compiling pairs of instances

In order to create datasets of pairs such as In-
stance 1–Instance 2 and Instance 1–Instance 3, we
first determine whether WordNet verb instances
are metaphorical or literal. Specifically, we chose
verbs with at least three senses (so that there
is a higher chance of at least one sense being
metaphorical) and less than ten senses (to avoid
highly ambiguous verbs). In total, 440 verbs sat-
isfied this criterion, yielding 1639 instances. We
took example sentences directly from WordNet
and automatically checked to make sure that the
verb appeared in the gloss and the example sen-
tence. In cases where the example sentence did
not contain the focus word, we ignored the synset.
We used the Questionnaire 1 to annotate these in-
stances for metaphoricity:

Questionnaire 1: Literal or Metaphorical?

Instructions

You will be given a focus word and a sentence that contains
the focus word (highlighted in bold). You will be asked to
rate whether the focus word is used in a literal sense or a
metaphorical sense in that sentence. Below are some typical
properties of metaphorical and literal senses:

Literal usages tend to be:
- more basic, straightforward meaning; more physical,
closely tied to our senses: vision, hearing, touching, tasting

Metaphorical usages tend to be:
- more complex; more distant from our senses; more abstract;
more vague; often surprising; tend to bring in imagery from
a different domain

Example 1

Focus Word: shoot down
Sentence: The enemy shot down several of our aircraft.

Question: In the above sentence, is the focus word used in a
literal sense or a metaphorical sense?

- the focus word’s usage is metaphorical
- the focus word’s usage is literal

Solution: the focus word’s usage is literal

Example 2

Focus Word: shoot down
Sentence: He shot down the student’s proposal.

Question: In the above sentence, is the focus word used in a
literal sense or a metaphorical sense?

- the focus word’s usage is metaphorical
- the focus word’s usage is literal

Solution: the focus word’s usage is metaphorical

Your Task

Focus Word: answer
Sentence: This steering wheel answers to the slightest touch.

In the above sentence, is the focus word used in a literal
sense or a metaphorical sense?
- the focus word’s usage is metaphorical
- the focus word’s usage is literal

This questionnaire, and all of the others de-
scribed ahead in this paper, were annotated
through the crowdsourcing platform Crowd-
Flower. The instances in all of these question-
naires were presented in random order. Each in-
stance was annotated by at least ten annotators.
CrowdFlower chooses the majority response as the
answer to each question. For our experiments, we
chose a stronger criterion for an instance to be con-
sidered metaphorical or literal – 70% or more of
the annotators had to agree on the choice of the
category. The instances for which this level of
agreement was not reached were discarded from
further analysis. This strict criterion was chosen so
that greater confidence can be placed on the results
obtained from the annotations. Nonetheless, we
release the full set of 1,639 annotated instances for
other uses and further research. Additionally, we
selected only those instances whose focus verbs
had at least one metaphorical sense (or instance)
and at least one literal sense (or instance). This
resulted in a Master Set of 176 metaphorical in-
stances and 284 literal instances.
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3.1.1 Instances to test Hypothesis 1
For each of the 176 metaphorical instances in the
Master Set, the three authors of this paper inde-
pendently chose a synonym of the target verb that
would make the instance literal. For example, for
Instance 1 shown earlier, kill was chosen as syn-
onym of erase (forming Instance 2). The synonym
was chosen either from the list of near-synonyms
in the same synset as the target word or from
WordNet hypernyms of the target word. The three
authors discussed amongst themselves to resolve
disagreements. Five instances were discarded be-
cause of lack of agreement. Thus corresponding to
each of the remaining 171 metaphorical instances,
171 literal instances were generated that had non-
identical, similar meaning target verbs, but iden-
tical contexts. This set of 171 pairs of instances
forms the dataset used to test Hypothesis 1, and we
will refer to these instance pairs as the Hypothesis
1 Pairs and to the set of 342 (171×2) instances as
the Hypothesis 1 Instances.

3.1.2 Instances to test Hypothesis 2
In order to test Hypothesis 2, we compare in-
stances with the same target verb, but correspond-
ing to its different senses. We use all of the 460
(176+284) instances in the Master Set, and refer to
them as Hypothesis 2 Instances. As for Hypoth-
esis 1, we also group these instances into pairs.
For each of the verbs in the Master Set, all pos-
sible pairs of metaphorical and literal instances
were generated. For example, if a verb had two
metaphorical instances and three literal instances,
then 2 × 3 = 6 pairs of instances were generated.
In total, 355 pairs of instances were generated. We
will refer to his set of instance pairs as Hypothe-
sis 2 Cross Pairs (pairs in which one instance is
labeled metaphoric and the other is literal).

Rather than viewing instances as either
metaphorical or literal, one may also consider a
graded notion of metaphoricity. That is, on a scale
from most literal to most metaphorical, instances
may have different degrees of metaphoricity (or
literalness). Therefore, we also evaluate pairs
where the individual instances have not been ex-
plicitly labeled as metaphorical or literal; instead,
they have been marked according to whether one
instance is more metaphorical than the other. For
each of the verbs in the Master Set, all possible
pairs of instances were generated. For example,
if a verb had five instances in the Master Set,
then ten pairs of instances were generated. This

resulted in 629 pairs in total. We will refer to
them as Hypothesis 2 All Pairs (all possible pairs
of instances, without regard to their labels).

3.2 Relative metaphoricity annotation

For each of the pairs in both Hypothesis 2 Cross
Pairs and in Hypothesis 2 All Pairs, we ask an-
notators which instance is more metaphorical, as
shown in Questionnaire 2 below:

Questionnaire 2: Which is more metaphorical?

Instructions

You will be given two sentences with similar meanings.
Each sentence contains a focus word. You will be asked to
compare how the focus words are used in the two sentences.
You will be asked to decide whether the focus word’s usage
in one sentence is more metaphorical than the focus word’s
usage in the other sentence.

– Description of metaphorical and literal usages same as in
Questionnaire 1 (not repeated here due to space constraints)–

Your Task

Focus Word 1: attack
Sentence 1: I attacked the problem as soon as I was up.
Focus word 2: attack
Sentence 2: The Serbs attacked the village at night.

Which is more metaphorical?
- focus word’s usage in the sentence 1 is more metaphorical
- the focus word’s usage in sentence 2 is more metaphorical
- the usages in the two sentences are equally metaphorical or
equally literal

The instance pairs within a question were pre-
sented in random order. The questions themselves
were also in random order.

3.3 Absolute emotion annotation

For each of the Hypothesis 1 and Hypothesis 2
instances, we used responses to Questionnaire 3
shown below to determine if the target verb con-
veys an emotion in the sentence.

Questionnaire 3: Does the focus word convey emotion?

Instructions

You will be given a focus word and a sentence that includes
the focus word. You will be asked to rate whether the focus
word conveys some emotion in the sentence.

Your Task

Focus Word: answer
Sentence: This steering wheel answers to the slightest touch.

How much emotion is conveyed?
- the focus word conveys some emotion
- the focus word conveys no emotion
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3.4 Relative emotion annotation

Just as instances can have degrees of metaphoric-
ity, they can have degrees of emotion. Thus, for
each of the Hypothesis 1 Pairs we asked annota-
tors to mark which instance is more emotional, as
shown in Questionnaire 4 below:

Questionnaire 4: Which of the two given sentences
conveys more emotion?

Instructions

You will be given two sentences with similar meanings.
Each sentence contains a focus word. You will be asked to
compare how the focus words are used in the two sentences
and whether the focus word conveys more emotion in one
sentence than in the other sentence.

Your Task

Focus Word 1: attack
Sentence 1: I attacked the problem as soon as I was up.
Focus word 2: start
Sentence 2: I started on the problem as soon as I was up.

Which conveys more emotion?
- focus word in first sentence conveys more emotion
- focus word in second sentence conveys more emotion
- focus words in the two sentences convey a similar degree
of emotion

The order in which the instance pairs were pre-
sented for annotation was determined by random
selection. Whether the metaphorical or the literal
instance of a pair was chosen as the first instance
shown in the question was also determined by ran-
dom selection. The same questionnaire was used
for Hypothesis 2 pairs as well.

4 Results and data analysis

4.1 Hypothesis 1 results

An analysis of the responses to Questionnaire 3
for the Hypothesis 1 instances is shown in Ta-
ble 1. Recall that the annotators were given 342 in-
stances where half were metaphoric and half were
literal. Additionally each literal instance was cre-
ated by replacing the target verb in a metaphorical
instance with a synonym of the target verb. Recall
also that the 342 instances were presented in ran-
dom order. Table 1 shows that a markedly higher
number of metaphorical instances (39.8%) are
considered emotional than literal ones (16.1%).
Fisher’s exact test shows that this difference is sig-
nificant with greater than 95% confidence5.

5In the following experiments, we use Fisher’s exact test
for two-by-two tables of event counts and we use the bino-
mial exact test (i.e., the Clopper-Pearson interval) for binary
(heads/tails) event counts (Agresti, 1996).

Table 1: Summary of responses to Q3 (emotional
or not emotional) for Hypothesis 1 Instances (342
instances – 171 metaphorical and 171 literal).

# instances that are:
emotional 191 (55.8%)
not emotional 151 (44.2%)

Total 342 (100%)

# instances that are:
metaphorical and emotional 136 (39.8%)
metaphorical and not emotional 35 (10.2%)
literal and emotional 55 (16.1%)
literal and not emotional 116 (33.9%)

Total 342 (100%)

Table 2: Summary of responses to Q4 (which is
more emotional) for Hypothesis 1 Pairs (171 pairs
of metaphorical and literal instances).

# instances that are:
metaphorical and more emotional 143 (83.6%)
literal and more emotional 17 (09.9%)
similarly emotional 11 (06.4%)

Total 171 (100%)

An analysis of the responses to Questionnaire
4 for the Hypothesis 1 pairs is shown in Table 2.
Here, the annotators were given pairs of instances
where one is metaphorical and one is literal (and
the two instances differ only in the target verb),
and the annotators were asked to determine which
instance is more emotional. Metaphorical in-
stances were again predominantly marked as more
emotional (83.6%) than their literal counterparts
(9.9%). This difference is significant with greater
than 95% confidence, using the binomial exact
test. Thus, results from both experiments support
Hypothesis 1.

4.2 Hypothesis 2 results

Table 3 shows an analysis of the responses to
Questionnaire 3 for the Hypothesis 2 instances.
Recall that the annotators were given 460 in-
stances where 176 were metaphoric and 284 were
literal. The data corresponds to verbs that have
both metaphorical and literal senses. The various
instances generated for each verb have the same
focus verb but different context (verb-sense sen-
tence). The 460 instances were again presented
in random order. Table 3 shows that a markedly
higher number of metaphorical instances are con-
sidered emotional (14.1%), whereas much fewer
of the literal instances are considered emotional
(3.7%). This difference is significant with greater
than 95% confidence, using Fisher’s exact test.
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Table 3: Summary of responses to Q3 (emotional
or not emotional) for Hypothesis 2 Instances (460
instances – 176 metaphorical and 284 literal).

# instances that are:
emotional 82 (17.8%)
not emotional 378 (82.2%)

Total 460 (100%)

# instances that are:
metaphorical and emotional 65 (14.1%)
metaphorical and not emotional 111 (24.1%)
literal and emotional 17 (03.7%)
literal and not emotional 267 (58.0%)

Total 460 (100%)

Hypothesis 2 All Pairs received lower over-
all emotionality scores than Hypothesis 1 Pairs.
Some variation is expected because the two
datasets are not identical. Additionally, when
an annotator finds the same word in many literal
(non-emotional contexts) as in the Hypothesis 2
setup (but not in Hypothesis 1 setup), then they
are less likely to tell us that the same word, even
though now used in a metaphorical context, is con-
veying emotion. Despite the lower overall emo-
tionality of Hypothesis 2 All Pairs, our hypoth-
esis that metaphorical instances are more emo-
tional than the literal ones still holds. Further,
experiments with pairs of emotions (described be-
low) avoid the kind of bias mentioned above, and
also demonstrate the higher relative emotionality
of metaphorical instances.

Table 4 shows the analysis for Hypothesis 2
Cross Pairs in the relative emotion annotation set-
ting. The annotators were given pairs of in-
stances where one is metaphorical and one is lit-
eral (and the two instances have the same focus
verb in different context). The annotators were
asked to determine which instance is more emo-
tional. Metaphorical instances were marked as be-
ing more emotional than their literal counterparts
in 59.4% of cases. Literal instances were marked
as more emotional only in 8.7% of cases. This dif-
ference is significant with greater than 95% confi-
dence, using the binomial exact test.

An analysis of the responses to Questionnaire
4 for the Hypothesis 2 All Pairs is shown in Ta-
ble 5. This dataset included all possible pairs of
instances associated with each verb in the Master
Set. Thus in addition to pairs where one is highly
metaphorical and one highly literal, this set also
includes pairs where both instances may be highly
metaphorical or both highly literal. Observe that

Table 4: Summary of responses to Q4 (which is
more emotional) for Hypothesis 2 Cross Pairs (355
pairs of metaphorical and literal instances).

# instances that are:
metaphorical and more emotional 211 (59.4%)
literal and more emotional 31 (08.7%)
similarly emotional 113 (31.8%)

Total 355 (100%)

Q1: drain-v-1 The rain water drains into this big vat. LIT 0.9
drain-v-2 The [..] class drains me of energy. MET 0.8
drain-v-3 We drained the oil tank. LIT 0.9
drain-v-4 Life in the camp drained him. MET 0.91

Q1 and Q3, Hypothesis 1 (Table 1):
Life in the camp drained him. MET some emotion
Life in the camp weakened him. LIT some emotion
The [..] class drains me of energy. MET some emotion
The [..] class depletes me of energy. LIT some emotion

Q1 and Q4, Hypothesis 1 (Table 2):
Life in the camp drained him. MET
Life in the camp weakened him. LIT
– the first sentence conveys more emotion
The exercise class drains me of energy. MET
The exercise class depletes me of energy. LIT
– the first sentence conveys more emotion

Q1 and Q3, Hypothesis 2 (Table 3):
Life in the camp drained him. MET some emotion
The rain water drains into this big vat. LIT no emotion
The [..] class drains me of energy. MET some emotion
We drained the oil tank. LIT no emotion

Q1 and Q4, Hypothesis 2 (Table 4):
Life in the camp drained him. MET
The rain water drains into this big vat. LIT
– the first sentence conveys more emotion
We drained the oil tank. LIT
The exercise class drains me of energy. MET
– the second sentence conveys more emotion

Figure 1: Complete annotation cycle for the verb
drain (some sense pairs are omitted for brevity).
LIT stands for literal and MET for metaphoric.
The annotations in Q1 are accompanied by their
confidence scores.

once again a higher number of instances that were
marked as more metaphorical were also marked as
being more emotional (than less or similarly emo-
tional). This difference is significant with greater
than 95% confidence (binomial exact test).

Overall, these results support Hypothesis 2, that
metaphorical senses of the same word tend to carry
more emotion than its literal senses. Figure 1
demonstrates the complete annotation cycle (Q1
to Q4) for the verb drain.
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Table 5: Summary of responses to Q4 (which is more emotional) for Hypothesis 2 All Pairs (629 pairs
of instances). Note that in addition to pairs where one is highly metaphorical and one highly literal, the
All Pairs set also includes pairs where both instances may be highly metaphorical or both highly literal.

# instances that are more metaphorical and more emotional 227 (36.1%)
# instances that are more metaphorical but less emotional 28 (04.4%)
# instances that are more metaphorical but similarly emotional 119 (18.9%)
# instances that are similarly metaphorical and similarly emotional 196 (31.2%)
# instances that are similarly metaphorical but differ in emotionality 59 (09.4%)
Total 629 (100%)

5 Discussion

It is generally believed that the senses of a word
can be divided into a metaphorical subset and a
literal subset (Kilgarriff, 1997). It is easy to find
examples of this particular pattern of polysemy,
but a few examples do not justify the claim that
this pattern is a widespread regularity. The annota-
tions of our dataset confirm the hypothesis that the
metaphorical/literal distinction is a common pat-
tern for polysemous verbs (as many as 38% of all
verb senses we annotated were metaphorical). As
far as we know, this is the first study that gives
a solid empirical foundation to the belief that the
metaphorical/literal distinction is a central form of
regular polysemy.

Furthermore, the annotated dataset can be used
for research into the nature of metaphorical/literal
regular polysemy. Previous research on metaphor
annotation identified metaphorical uses of words
in text, thus analysing data for only one sense at a
time. In contrast, our dataset allows one to anal-
yse a range of metaphorical and literal uses of the
same word, potentially shedding light on the ori-
gins of regular polysemy and metaphor. Such a
structure of the dataset also provides a new frame-
work for computational modelling of metaphor. A
system able to systematically capture metaphori-
cal sense extensions will be in a better position to
generalise to unseen metaphors rather than a sys-
tem trained on individual examples of metaphori-
cal word uses in their specific contexts. The large
size and coverage across many senses makes this
dataset particularly attractive for computational
modeling of metaphor. Our analysis also sug-
gests that the work on emotion detection in text
may be useful to support algorithms for handling
metaphorical sense extension. Perhaps emotion
analysis may yield insights into other forms of reg-
ular polysemy (Boleda et al., 2012).

We hypothesized that literal paraphrases tend to
express less emotion than their metaphorical coun-

terparts. This conjecture is related to Hypothesis
1. All of the sentence pairs that we used to test
Hypothesis 1 are essentially a special type of para-
phrase, in which only one word is varied. The re-
sults in Section 4.1 support Hypothesis 1, and thus
they lend some degree of support to our hypothe-
sis about paraphrases. It might be argued that we
have only tested a special case of paraphrase, and
we agree that further experiments are needed, with
more general types of paraphrase (including, for
instance, multi-word paraphrases). We leave this
as a topic for future work. However, our results
confirm the validity of our hypothesis with respect
to metaphorical and literal lexical substitutes.

The results of our experiments are also rele-
vant to many other NLP tasks modelling lexical
meaning, for instance, natural language genera-
tion (NLG). It can be difficult to make the cor-
rect choice among several near-synonyms in NLG
(Inkpen and Hirst, 2006); for example, the near-
synonyms error, mistake, slip, and blunder con-
vey the same core meaning but have different con-
notations. The degree to which two words are
near-synonyms is proportional to the degree to
which one can substitute for another in a given
context (Inkpen and Hirst, 2006). Substituting
a metaphoric term with a literal one tends to
change the meaning of the sentence in an im-
portant respect—its emotional content. The de-
gree of metaphor in the generated sentences would
thus become an important factor in selecting the
most appropriate candidate in NLG. It follows
from Hypothesis 1 that terms with the same de-
gree of metaphor will be more substitutable than
terms with different degrees of metaphor. There-
fore NLG systems can benefit from taking the de-
gree of metaphor into account.

Our experiments and data also provide new in-
sights into the nature of metaphorical emotions.
Our results confirm both hypotheses, supporting
the claim that metaphorical uses of words carry
stronger emotions than their literal uses, as well
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Table 6: Summary of data annotated for metaphoricity and emotionality.

File Data Annotations

1. Data-metaphoric-or- WordNet Verb-Sense metaphorical or Literal (Questionnaire 1)
literal.txt Instances (1639)

2. Data-Table1-emotional- Hypothesis 1 metaphorical or Literal (Questionnaire 1) and
or-not.txt Instances (342) Emotional or Not Emotional (Questionnaire 3)

3. Data-Table2-which-is- Hypothesis 1 metaphorical or Literal (Questionnaire 1) and
more-emotional.txt Instance Pairs (171) Which Instance is More Emotional (Questionnaire 4)

4. Data-Table3-emotional- Hypothesis 2 metaphorical or Literal (Questionnaire 1) and
or-not.txt Instances (460) Emotional or Not Emotional (Questionnaire 3)

5. Data-Table4-which-is- Hypothesis 2 metaphorical or Literal (Questionnaire 1) and
more-emotional.txt Instance Pairs (355) Which Instance is More Emotional (Questionnaire 4)

6. Data-Table5-which-is- Hypothesis 2 Which Instance is more metaphorical (Questionnaire 2) and
more-emotional.txt Unmarked Pairs (629) Which Instance is More Emotional (Questionnaire 4)

The judge clapped him in jail. MET some emotion
The judge put him in jail. LIT no emotion
The wings of the birds clapped loudly. LIT no emotion

This writer fractures the language. MET some emotion
This writer misuses the language. LIT no emotion
The pothole fractured a bolt on the axle. LIT no emot.

The spaceship blazed out into space. MET some emot.
The spaceship departed out into space. LIT no emotion
The summer sun can cause a pine to blaze. LIT no emot.

Figure 2: Hypothesis 1 and 2 pairs merged into
triples, demonstrating higher emotionality arising
through metaphorical composition.

as their literal paraphrases. This suggests that
emotional content is not merely a property of
the source or the target domain (and the respec-
tive word senses), but rather it arises through
metaphorical composition. Figure 2 shows some
examples of this phenomenon in our dataset. This
is the first such finding, and it highlights the im-
portance of metaphor as a mechanism for express-
ing emotion. This, in turn, suggests that joint mod-
els of metaphor and emotion are needed in order to
create real-world systems for metaphor interpreta-
tion, as well as for sentiment analysis. All of the
data created as part of this project, as summarized
in Table 6, is made freely available.6

6 Conclusions

This paper confirms the general belief that
metaphorical language tends to have a stronger
emotional impact than literal language. As far as
we know, our study is the first attempt to clearly
formulate and test this belief. We formulated two
hypotheses regarding emotionality of metaphors.
Hypothesis 1: metaphorical uses of words tend to

6http://saifmohammad.com/WebPages/metaphor.html

convey more emotion than their literal paraphrases
in the same context. Hypothesis 2: the metaphor-
ical sense of a word tends to carry more emotion
than the literal sense of the same word. We con-
ducted systematic experiments to show that both
hypotheses are true for verb metaphors. A further
contribution of this work is to the areas of senti-
ment analysis and metaphor detection. At training
time, sentiment classifiers could, for example, use
the information that a particular word or expres-
sion is metaphorical as a feature, and similarly,
metaphor detection systems could use the infor-
mation that a particular word or expression con-
veys sentiment as a feature.

The results are significant for the study of reg-
ular polysemy as the senses of many verbs read-
ily divide into literal and metaphorical groups. We
hope that research in regular polysemy will be able
to build on the datasets that we have released. Our
results also support the idea that a metaphor con-
veys emotion that goes beyond the source and tar-
get domains taken separately. The act of bridg-
ing the two domains creates something new, be-
yond the component domains. This remains a
rich topic for further research. Finally, we hope
that the results in this paper will encourage greater
collaboration between the Natural Language Pro-
cessing research communities in sentiment analy-
sis and metaphor analysis. All of the data anno-
tated for metaphoricity and emotionality is made
freely available.
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Abstract

This paper presents a rule-based approach
to constructing lexical axioms from Word-
Net verb entries in an expressive semantic
representation, Episodic Logic (EL). EL
differs from other representations in be-
ing syntactically close to natural language
and covering phenomena such as general-
ized quantification, modification, and in-
tensionality while still allowing highly ef-
fective inference. The presented approach
uses a novel preprocessing technique to
improve parsing precision of coordina-
tors and incorporates frames, hand-tagged
word senses, and examples from WordNet
to achieve highly consistent semantic in-
terpretations. EL allows the full content
of glosses to be incorporated into the for-
mal lexical axioms, without sacrificing in-
terpretive accuracy, or verb-to-verb infer-
ence accuracy on a standard test set.

Evaluation of semantic parser perfor-
mance is based on EL-match, introduced
here as a generalization of the smatch met-
ric for semantic structure accuracy. On
gloss parses, the approach achieves an EL-
match F1 score of 0.83, and a whole-
axiom F1 score of 0.45; verb entailment
identification based on extracted axioms is
competitive with the state-of-the-art.

1 Introduction

Words encapsulate a great deal of knowledge, and
in conjunction with language syntax, allow human
beings to construct sentences that convey novel
ideas to one another. Any system intended for
broad natural language understanding will need to
be able to perform inferences on the words that are
the building blocks of language. For this reason,

Gloss – slam2.v : “strike violently”
Axiom – ((x slam2.v y) ** e)

→ ((x (violently.adv (strike.v y))) ** e)

Figure 1: Example of rule extraction from ma-
chine readable dictionaries for WordNet entry of
slam2.v.

there have been many attempts to transduce in-
formal lexical knowledge from machine readable
dictionaries into a formally structured form (Cal-
zolari, 1984; Chodorow et al., 1985; Harabagiu et
al., 1999; Moldovan and Rus, 2001; Hobbs, 2008;
Allen et al., 2013).

Consider an example of the types of knowl-
edge these approaches seek to extract in Figure 1.
WordNet defines slam2.v, i.e., sense 2 of the verb
slam, as “strike violently”. This gloss states an im-
plication that if “x slams y” characterizes an event
e, then “x strikes y violently” also characterizes
event e. All language phenomena must be able
to be represented and reasoned about for such ax-
ioms to be useful in a language understanding sys-
tem. This is where previous approaches share a
common shortcoming: the logical representations
that the lexical knowledge is mapped into are in-
sufficient for representing many common natural
language devices or for performing inference.

The contributions of this paper are the follow-
ing:

• We demonstrate limitations in previous ap-
proaches to extracting lexical knowledge
from machine readable dictionaries, partic-
ularly in their choices of logical representa-
tion.

• We present an approach to extracting lexical
axioms in EL, which is a logical representa-
tion that overcomes these limitations. Our
approach includes novel preprocessing and
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information synthesis strategies for making
precise axioms.

• We present EL-smatch, a generalized smatch
scoring metric for partial scoring of seman-
tic parses with complex operators and predi-
cates.

The remainder of the paper presents related
work in Section 2, background in Section 3, then
a description of our semantic parsing approach in
Section 4. A description of EL-smatch is presented
in Section 5, followed by experimental results in
Section 6, and future work and conclusions in Sec-
tion 7.

2 Related Work

There have been many approaches in the past
to extracting lexical information from machine-
readable dictionaries. Early approaches to this
problem focused on surface-level techniques, in-
cluding hypernym extraction (Calzolari, 1984;
Chodorow et al., 1985), pattern matching (Al-
shawi, 1989; Vossen et al., 1989; Wilks et al.,
1989), and co-occurrence data extraction (Wilks
et al., 1989).

In an evaluation of such methods, Ide & Vero-
nis (1993) identified key challenges that thwart
progress on this problem—challenges that persist
to this day. Among these are the fact that dictio-
nary glosses are often abstract, sometimes miss
important information (such as arguments), and
may be inconsistent with one another. Evidently
there is a need for sophisticated extraction tech-
niques to acquire accurate and consistent knowl-
edge from dictionaries.

Most modern approaches to this problem use
WordNet (Miller, 1995) as the lexical resource be-
cause of the linguistic and semantic annotations
that accompany the glosses. Some work encodes
WordNet glosses into variants of first-order logic
(FOL) (Harabagiu et al., 1999; Moldovan and
Rus, 2001; Hobbs, 2008), such as Hobbs Logical
Form (HLF) (Hobbs, 1985), while other work en-
codes them into OWL-DL (OWL Working Group,
2004; Allen et al., 2011; Allen et al., 2013; Or-
fan and Allen, 2015; Mostafazadeh and Allen,
2015). A particularly noteworthy line of work is
that by Allen et al. (2013), which integrates in-
formation from a high-level ontology with glosses
of semantically related clusters of words to con-
struct inference-supporting micro-theories of con-

cepts corresponding to these words. While these
advances are significant, they are limited by the
expressivity of the representations used, in com-
parison with the richness of natural language.

2.1 Limitations of Logical Representations
Used by Previous Approaches

As discussed by Schubert (2015), the choice of se-
mantic representation is an important component
of the natural language understanding problem.
Because of space constraints, we will discuss only
a few of the relevant issues and point the reader
to (Schubert, 2015) for a more in-depth analysis
of the issues at hand. The logical representation
used for robust language understanding must sat-
isfy the following requirements:

• Express the semantic content of most, if not
all, possible natural language constructions;

• Have associated methods of inference;

• Have a formal interpretation.

The semantic representations used by previous
approaches fall short on at least one of the above
requirements. FOL struggles to express predicate
modification (especially nonintersective modifi-
cation), nonstandard quantifiers such as most or
at least 50, and modality. Approaches that rely
on functionalizing predication and connectives as
a means of allowing for arbitrary propositional
attitudes ultimately fail because quantifiers cannot
be functionalized; thus they cannot capture the
meaning of sentences with a modally embedded
quantifier such as the following (with believes
taking scope over every):

Kim believes that every galaxy harbors life.

HLF (Hobbs, 1985) is another common choice
of semantic representation. It strives to capture
sentential meaning within a subset of FOL by
treating all words as predicates, including nega-
tion, disjunction, quantifiers, and modifiers. But it
is unable to distinguish between events and propo-
sitions and between predicate and sentence mod-
ifiers, and the formal interpretation of quantifica-
tion in HLF can lead to contradiction (Schubert,
2015).

OWL-DL (OWL Working Group, 2004) was
designed for knowledge engineering on specific
domains and thus cannot handle many common
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natural language phenomena, such as predicate
and sentence reification, predicate modification,
self-reference, and uncertainty. There have been
many efforts to allow for such phenomena, with
varying degrees of success. As just one exam-
ple, consider the common practice in OWL-DL of
treating predicate modification as predicate inter-
section. For example, “whisper loudly” is repre-
sented as whisper u ∀of -1.(loudly). whisper is
the set of individual whispering events and ∀of -
1.(loudly) is the set of individual events that are
modified by the adverb loudly. But according to
WordNet, to whisper is to speak softly, so under an
intersective interpretation of the modifiers, a loud
whisper is both soft and loud. Similarly, WordNet
glosses the verb spin as revolve quickly, so that
under an intersective interpretation, a slow spin is
both quick and slow. Analogously for nouns, a
large pond or large brochure would be both large
and small (brochure is glossed as a small book,
and pond as a small lake). Even more difficult
issues, from an OWL-DL perspective, are gener-
alized quantifiers, uncertainty, attitudes, and reifi-
cation, such as exemplified in the sentence

When self-driving cars are properly adopted,
vehicles that need humans to drive them will prob-
ably be banned, according to Tesla CEO Elon
Musk.

For a fuller discussion of issues in representa-
tions based on FOL, HLF, OWL-DL, etc., again
see (Schubert, 2015).

3 Background

This section describes background material under-
lying our semantic parsing approach. First, we de-
scribe WordNet (Miller, 1995), our input lexical
resource. Then, we describe Episodic Logic (EL),
our choice of semantic representation for lexical
axioms.

3.1 WordNet

WordNet is a lexical knowledge base that contains
glosses for words, enumerates the word senses
of each word, groups synonyms into synsets,
encodes generality/specificity relations as hyper-
nym/hyponyms, and provides schematic sentence
structures for each word in the form of simple
frames. The semantic annotations accompanying
the glosses help in building a robust parser by
reducing the amount of inference necessary for
building axioms and assisting in handling mistakes

in the glosses. Also, a significant proportion of
the words in WordNet glosses have been tagged
with their word senses and part-of-speech in the
Princeton Annotated Gloss Corpus.1 This helps
with the important but often neglected word sense
disambiguation (WSD) aspect of the interpretation
problem; certainly ambiguous or faulty WSD can
lead to misunderstandings and faulty inferences (is
Mary had a little lamb about ownership or din-
ing?). We use WordNet 3.0, which at the time
of writing is the most recent version that is fully
available for the UNIX environment, and focus on
the verbs in this paper.

3.2 Episodic Logic

EL (Schubert and Hwang, 2000) was designed to
be close to natural language, with the intuition that
a logical representation that retains much of the
expressivity of natural language will be able to
more fully represent the complex constructs in nat-
ural language. EL provides constructs that are not
common in most FOL-based languages, such as
predicate modifiers, generalized quantifiers, reifi-
cation, and ways of associating episodes (events
or situations) with arbitrarily complex sentences.
Importantly, EL is backed by a comprehensive in-
ference system, EPILOG, which has been shown to
be competitive with FOL theorem provers despite
its substantially greater expressivity (Morbini and
Schubert, 2009).

EL uses infix notation for readability, with the
“subject” argument preceding the predicate and
any additional arguments following the predicate.
For associating episodes with logical sentences,
EL introduces two modal operators ‘**’ and ‘*’.
[Φ ** e] means that Φ characterizes (i.e. describes
as a whole) episode e and [Φ * e] means that Φ is
true in (i.e. describes a piece or aspect of) episode
e.

We show that EL overcomes some of the limi-
tations of previous work that have been discussed
using an example. Below is the EL representation
for the sentence Kim believes that every galaxy
harbors life.

(Kim.name believe.v

(That (∀x (x galaxy.n)

(x harbor.v (K life.n)))))

That and K are sentence and predicate reifica-

1http://wordnet.princeton.edu/glosstag.shtml
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tion operators, respectively and (∀x Φ(x) Ψ(x))

is equivalent to (∀x (Φ(x) → Ψ(x))).2 For dis-
cussion of the semantic types of the operators
alluded to in this section and the connection to
Davidsonian event semantics and other variants of
event/situation semantics, see the papers describ-
ing EL (Schubert and Hwang, 2000; Schubert,
2000).

4 Gloss Axiomatization

In this section, we describe our approach to se-
mantic parsing and axiomatization of WordNet en-
tries. Our approach consists of three major steps:

1. Argument structure inference (Section 4.1)

2. Semantic parsing of the gloss (Section 4.2)

3. Axiom construction (Section 4.3)

Figure 2 shows the entire process for the pre-
viously introduced example, slam2.v. The argu-
ment inference step refines the WordNet sentence
frames using the provided examples. Specific pro-
nouns associated with argument position are in-
serted as dummy arguments into the correspond-
ing argument positions in the gloss, and the mod-
ified gloss is semantically parsed into EL. Axiom
construction replaces the dummy arguments with
variables and constructs a scoped axiom relating
the entry word and the semantic parse of the gloss
using the characterization operator ‘**’. In the
simple example slam2.v, most of the subroutines
used in each step have no effect. All transforma-
tions outside the scope of the BLLIP parser are
performed with hand-written rules, which were
fine-tuned using a development set of 550 verb
synset entries.

4.1 Argument Structure Inference

We initially use the frames in WordNet to hypoth-
esize the argument structures. For example, the
frames for quarrel1.v are [Somebody quarrel1.v]
and [Somebody quarrel1.v PP]. From this we hy-
pothesize that quarrel1.v has a subject argument
that is a person, no object argument, and may in-
clude a prepositional phrase adjunct.

Then we refine the frames by looking at the
examples and gloss(es) available for the synset.

2However, EL’s quantifier syntax also allows, e.g.,

(most.det x Φ(x) Ψ(x)), which is not re-
ducible to FOL.

The examples for quarrel1.v: “We quarreled over
the question as to who discovered America” and
“These two fellows are always scrapping3 over
something” suggest that the subject argument can
be plural and the PP can be specialized to PP-
OVER. We identify the arguments and semantic
types of the examples through a semantic parse,
which is obtained using the method described in
Section 4.2. Then we either update existing frames
or introduce additional frames based on the agree-
ment among examples and the number of available
examples. We similarly obtain semantic types for
arguments from glosses. For example, paint1.v
has the gloss “make a painting” and the frame
[Somebody -s Something]. Based on the gloss, we
infer that the semantic type for the object argument
is painting. Gloss-based argument structure infer-
ence can be done during the gloss parsing step, to
avoid redundant computation.

Finally, we merge redundant frames. For ex-
ample, frames that differ only in that one has
somebody in a certain argument position where
the other has something are merged into one
frame where we simply use something (as a
category allowing for both things and persons).
Also there are rules for merging predicate com-
plement types (Adjective/Noun & PP → Adjec-
tive/Noun/PP) and adding dative alternations to di-
transitive frames [Somebody -s Somebody Some-
thing]→ [Somebody -s Something to Somebody].

4.2 Semantic Parsing of Glosses

Sentence-level semantic parsers for EL have been
developed previously, which we can use for se-
mantic parsing of the glosses (Schubert, 2002;
Schubert and Tong, 2003; Gordon and Schubert,
2010; Schubert, 2014). For the parser to be ef-
fective, some preprocessing of the glosses is nec-
essary because glosses often omit arguments, re-
sulting in an incomplete sentence. There are
also some serious shortcomings to general seman-
tic parsers, particularly in handling coordinators
and/ or. In this section, we describe the complete
semantic parsing process of glosses and the details
of each step. Throughout our semantic parsing im-
plementation, we use the tree-to-tree transduction
tool (TTT) (Purtee and Schubert, 2012) for trans-

3quarrel1.v and scrap2.v are in the same synset, so they
share example sentences and are interchangeable in this con-
text.
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WordNet entry
slam2.v
Tagged gloss: (VB strike1) (RB violently1)

Frames: [Somebody slam2.v Something]

[Somebody slam2.v Somebody]

Examples: (“slam the ball”)

4.1 Argument Structure Inference
Refined Frames:

[Somebody slam2.v Something]

4.2 Semantic Parsing
Parse: (Me.pro (violently1.adv

(strike1.v It.pro)))
4.3 Axiom Construction
Axiom: (∀x1 (∀y1 (∀e [[x1 slam2.v y1] ** e]

[[[x1 (violently1.adv (strike1.v y1))] ** e]
and [x1 person1.n] [y1 thing12.n]

Figure 2: Example gloss axiomatization process for WordNet entry slam2.v. The numbering corresponds
to the subsections where these stages are discussed in detail.

parent and modular tree transformations4 and the
BLLIP parser (Charniak, 2000) to get Treebank
parses.

The general outline of the gloss processing steps
is described below:

1. Create separate POS-tagged word sequences
for distinct glosses:

a. Label gloss g with POS tags using the
Princeton Annotated Gloss Corpus, backing
off to the synset type in the sense key.5

b. Split multigloss trees along semicolons for
individual POS tagged glosses p1, p2, ..., pn.

2. Create an easy-to-parse sentence for each gloss:

a. Factor out coordinators, leaving the first
conjunct in the gloss. Save the coordinated
phrases cpi for later insertion.

b. Insert dummy arguments (I, it, them).
c. Drop POS tags to create new gloss g′

i.

3. Syntactically parse each gloss sentence into ini-
tial LFs:

a. Parse g′
i into tree ti using the BLLIP parser.

b. Refine POS tags in ti using the Princeton
Annotated Gloss Corpus.

c. Run ti through the sentence-level semantic
parser to get logical form si.

4. Refine the initial LFs:

a. Reinsert coordinated phrases cpi into si.
4We do not explicitly state where TTT is used in the al-

gorithm since it is a general tree transformation tool, which
is used throughout the algorithm whenever a tree transforma-
tion is necessary.

5Every word in the glosses of the Princeton Annotated
Gloss Corpus is labeled with the POS tag or the sense key.
The synset type distinguishes between nouns, verbs, adjec-
tives, and adverbs.

b. Introduce word senses into the logical form.

We now describe the sentence-level semantic
parser, coordinator factorization, argument inser-
tion/inference, and word sense introduction in
more detail.

4.2.1 Sentence Level Semantic Parser
The sentence-level semantic (EL) parser we use is
modeled after the partial interpreter used by the
KNEXT system (Van Durme et al., 2009; Gor-
don and Schubert, 2010). First, the parser applies
corrective and disambiguating transformations to
raw Treebank trees. For example, these correct
certain systematic prepositional phrase (PP) at-
tachment errors, distinguish copular be from other
forms, assimilate verb particles into the verb, par-
ticularize SBAR constituents to relative clauses,
adverbials, or clausal nominals, insert traces for
dislocated constituents, etc. Second, the parser
uses about 100 rules to compositionally interpret
Treebank parses into initial interpretations. Fi-
nally, coreference resolution, quantifier, coordi-
nator, and tense scoping, temporal deindexing,
(non-embedded) Skolemization, equality reduc-
tion, conjunction splitting and other canonicaliza-
tion operations are applied to refine the logical
form.

4.2.2 Argument Insertion and Inference
WordNet glosses (and glosses in general) only in-
clude arguments when necessary to specify some
semantic type for the argument. Figure 3 displays
example glosses from WordNet that demonstrate
this treatment of arguments. Both the subject and
object arguments in the gloss of slam2.v are omit-
ted, and the subject is omitted from the gloss of
paint1.v, while the object in the gloss is included.
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Argument position English text EL atom
subject I/my/myself Me.pro
direct object it It.pro
indirect object them They.pro

Table 1: Mappings between dummy argument po-
sition, text, and EL atoms.

slam2.v – subject strike object violently
paint1.v – subject make a painting

Figure 3: Example glosses demonstrating the
treatment of arguments in glosses. Underlined
words are arguments and italicized arguments in-
dicate where an argument should exist, but does
not in the gloss.

We make arguments explicit and unify their
treatment in order to improve Treebank and se-
mantic parses and simplify the axiom construc-
tion step, described in Section 4.3. Figure 4 shows
unified versions of the glosses that appear in Fig-
ure 3, slam2.v and paint1.v. In this unified treat-
ment, all arguments are represented by argument
position-specific dummy arguments. Table 1 lists
the dummy arguments and their relation to the ar-
gument position and EL. Dummy arguments are
inserted into the POS tagged gloss pi based on the
inferred argument structure from Section 4.1 and
the insertions are achieved through pattern match-
ing of the POS tags.

Finally, some glosses contain references to the
subject using the terms one, one’s, or oneself (e.g.
sprawl1.v : sit or lie with one’s limbs spread out).
These are mapped to I, my, and myself, respec-
tively to correctly corefer with the dummy subject
argument I.

4.2.3 Coordinator Factorization
Treebank and semantic parsers are prone to errors
for coordinated phrases, often mistaking them for
appositives, or vice-versa. To minimize such er-
rors, we developed a method of factorizing coordi-
nated phrases. The conjuncts can usually be iden-
tified by syntactic and semantic relatedness. This

slam2.v – I’ll strike it violently
paint1.v – I’ll make it; (it : a painting)

Figure 4: Unified versions of WordNet glosses
from Figure 3.

can be seen in the WordNet gloss for edit1.v: pre-
pare for publication or presentation by correcting,
revising, or adapting. We use linguistic phrase
types as a proxy for syntactic and semantic relat-
edness. That is, we identify coordinated groups
of verb phrases, noun phrases, adjectival phrases,
and prepositional phrases. These phrase groups
are pulled out of the sentence, and only the first
phrase in the group is left in the sentence.

The phrase groups are identified using a set of
rules that were fine-tuned with reference to the
development set of verb synsets. The rules tend
to handle common modifications, such as adjec-
tives in noun phrases. For ambiguous cases, such
as prepositional modification, factorization is not
performed.

The phrase groups are passed through a modi-
fied sentence-level semantic parser (stopping short
of the coordinator scoping step), and embedded
back into the gloss logical form before the co-
ordinator scoping step in the semantic parsing of
the gloss. The place of insertion is identified by
matching the first phrase in the phrase group with
a phrase in the logical form.

4.2.4 Word Sense Introduction
Word sense introduction is assisted by the hand-
tagged word senses in WordNet. All words that are
not hand-tagged with a word sense are given the
lowest numbered word sense with a frame match-
ing the context of its use in the gloss. Generally,
the lower numbered word senses in WordNet are
the most relevant senses of the word.

4.3 Axiom Construction
Finally, we take the results from Sections 4.1 and
4.2 and construct the axiom. Dummy arguments in
the parsed gloss are correlated with the arguments
in the frame using the mapping in Table 1. We re-
place the arguments with variables, introduce log-
ical formulas asserting the semantic types (from
the argument structure in Section 4.1), and con-
struct an axiom asserting that the truth of the entry
word with the proper argument structure (without
semantic types) implies the truth of the semantic
parse of the gloss and semantic types of the ar-
guments. Before axiom construction, the example
from Figure 2, slam2.v, has the following refined
frame and semantic parse of the gloss from Sec-
tions 4.1 and 4.2, respectively:
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[Somebody slam2.v Something]
[Me.pro

(violently1.adv (strike1.v It.pro))]

After we replace the arguments and create for-
mulas asserting the semantic types, we have:
[x1 slam2.v y1]
[x1 (violently1.adv (strike1.v y1))]
[x1 person1.n], [y1 thing12.n]

Finally, we construct an axiom of form
(∀x Φ(x) Ψ(x)) (equivalent to (∀x (Φ(x) →
Ψ(x)))) and using the modal characterization op-
erator **:
(∀x1,y1,e

[[x1 slam2.v y1] ** e]
[[[x1 (violently1.adv

(strike1.v y1))] ** e]
and [x1 person1.n] [y1 thing12.n]

We can easily generate converse axioms as well,
such as that if a person strikes something violently,
then it is probably the case that he or she slams it
(in the slam2.v sense). EL allows us to express
a degree of uncertainty in the formulation of the
converse, and this is appropriate to the extent that
lexical glosses cannot be expected to provide com-
plete, “airtight” definitions, but rather just the most
important semantic content. However, in this pa-
per we limit ourselves to discussion of the “for-
ward” version of gloss-derived axioms.

5 EL-smatch

In this section we introduce EL-smatch, a gen-
eralized formulation of smatch (Cai and Knight,
2013), the standard evaluation metric for AMR
parsing (Banarescu et al., 2013). Smatch repre-
sents each logical form as a conjunction of triples
of three types:

1. instance(variable, type)

2. relation(variable, variable)

3. attribute(variable, value)

Every node instance of the logical form is asso-
ciated with a variable, and the nodes are described
and related to each other using the above triples.
Thus, type and value can both only be atomic con-
stants. The smatch score is then defined as the
maximum f-score (of triples) obtainable via a one-
to-one matching of variables between the two for-
mulas (Cai and Knight, 2013).

In order to capture complex types of EL, we in-
troduce an additional triple:

instance(variable, variable).

EL
(me.pro (very.adv happy.a))

EL-smatch Triple Representation
instance(a, very.adv) ∧
instance(b, happy.a) ∧
instance(d, me.pro) ∧
ARG0(a, b) ∧
instance(c, a) ∧
ARG0(c, d)

EL-smatch Graph Representation

instance ARG0

ARG0instance

instance

instance

very.adv

happy.a

me.pro

a

b

c

d

Figure 5: Example of syntactic mapping from EL
to EL-smatch triple and graph representations for
sentence “I am very happy”.

The first variable argument is associated with
the instance, and the second variable argument,
with the type.

With this addition to the representation, we can
syntactically map EL formulas into a conjunction
of triples by introducing a node variable for every
component of the formula and then describing and
relating the components using the triples. Since
the representation used by smatch is the same as
that of AMR, we can map the triple representation
into a graph representation in the same manner as
AMR formulas. Figure 5 shows an example of the
use of the new instance triple in mapping the EL
formula for “I am very happy” into these represen-
tations. However, this mapping does not relate the
semantics of EL to AMR since the interpretation
of the triples differ for AMR and EL formulas.

6 Experiments

We conducted two experiments to demonstrate the
efficacy of our approach for semantic parsing and
the usefulness of the resulting axioms for infer-
ence.6

6One reviewer suggested comparing our axioms with on-
tologies linked to WordNet, such as SUMO (Niles and Pease,
2001) and DOLCE (Gangemi et al., 2002), or with the hy-
pernym hierarchy of WordNet. Such an experiment was per-
formed by Allen et al. (2013), which showed that WordNet
glosses contain information that is not found in the structural

40



Measure Precision Recall F1
EL-smatch 0.85 0.82 0.83
Full Axiom 0.29 1.00 0.45

Table 2: Performance against gold standard parses
of 50 synsets.

6.1 Semantic Parsing Evaluation

We constructed a gold standard set of axioms by
selecting 50 random WordNet synsets that were
not used during development. Gold standard ax-
ioms for these synsets were written by the first
author, then refined in collaboration between the
two authors.7 The 50 synsets resulted in 52 ax-
ioms and 2,764 triples in the gold standard. The
results in Table 2 show the system performance us-
ing both EL-smatch and full axiom metrics. In the
full axiom metric, the precision measures the num-
ber of axioms that are completely correct, and the
recall measures the number of axioms generated
(which can vary due to merged glosses and multi-
ple frames). The EL-smatch score of 0.83 shows
that the axioms are generally good, even when not
completely correct. Generating completely correct
axioms is difficult because there are multiple non-
trivial subproblems, such as prepositional attach-
ment and word sense disambiguation. EL-smatch
displays a more fine-grained measure of our sys-
tem performance than the full axiom metric.

6.2 Inference Evaluation

To our knowledge, no earlier work evaluates infer-
ence in a manner that captures the details of se-
mantically rich lexical axioms. Therefore, in or-
der to compare our results to previous work, we
evaluate a stripped-down version of our inference
mechanism on a manually created verb entailment
dataset (Weisman et al., 2012). This dataset con-
tains 812 directed verb pairs, v1 → v2, which
are annotated ‘yes’ if the annotator could think
of plausible contexts under which the entailment
from v1 to v2 holds. For example, identify en-
tails recognize in some contexts, does not entail
describe is any context. Though the dataset is not
rich, many previous systems (Mostafazadeh and
Allen, 2015; Weisman et al., 2012; Chklovski and

relations of WordNet. A similar experiment by us is unlikely
to shed additional light on the topic.

7Due to time constraints, this evaluation was performed
on a gold standard developed primarily by only one annotator.
We hope to remedy this in future work including an analysis
of interannotator agreement.

Method Precision Recall F1
Our Approach 0.43 0.53 0.48
TRIPS 0.50 0.45 0.47
Supervised 0.40 0.71 0.51
VerbOcean 0.33 0.15 0.20
Random 0.28 0.29 0.28

Table 3: Performance against gold standard parses
of 50 synsets.

Pantel, 2004) have evaluated on this dataset, es-
tablishing it as a basic standard of comparison. In
order to fit our axioms to this dataset, we remove
semantic roles (verb arguments and adjuncts) from
our axioms. Also, since the dataset has no word
senses, the inferences begin with every synset that
contains a sense of the starting word, and the final
predicted entailments suppress sense distinctions.
When generating inferences, we find verbs in the
consequent of the axiom that are not modified by
a negation or negating adverb (e.g., nearly, al-
most, etc.). Such inferences are chained up to three
times, or until an abstract word is reached (e.g.,
be, go, etc.), which glosses do not sufficiently de-
scribe. This blacklist contains 24 abstract words.

Table 3 shows the results on this dataset. TRIPS
is an approach by Mostafazadeh & Allen (2015),
which constructs axioms from WordNet using the
TRIPS parser and represents its axioms in OWL-
DL, Supervised is a supervised learning approach
by Weisman et al. (2012), VerbOcean classifies
entailments according to the strength relation of
the VerbOcean knowledege-base (Chklovski and
Pantel, 2004), and Random is a method that ran-
domly classifies the pair with probability equal to
the distribution in the testset (27.7%). The perfor-
mance of our system is competitive with state-of-
the-art systems TRIPS and Supervised on this task.
Our system performance splits the performance of
TRIPS and Supervised in all three measures.

The inference capabilities of our axioms exceed
what is evaluated by this testset. Because of space
constraints, an example of a more expressive in-
ference using extracted axioms is included in sup-
plementary material8.

6.3 Error Analysis

In the semantic parsing evaluation, most of the
parsing errors arose from a failure in the sentence

8http://www.cs.rochester.edu/u/gkim21/papers/high-
fidelity-lex-supplementary.pdf

41



parser or preprocessing directly preceding the sen-
tence parser. That is, 17 out of the 52 axioms had
errors arising from the sentence parser. These er-
rors arose from either linguistic patterns that we
did not encounter in our development set or in
complex sentences (e.g. take a walk for one’s
health or to aid digestion, as after a meal). Many
of these can be avoided in the future by increas-
ing the development set. Fortunately, the semantic
parser uses keywords to mark ambiguous attach-
ments or phrases, so that in many cases, axioms
that are not fully parsed can be identified and ig-
nored, rather than using an incorrectly parsed ax-
iom.

WSD and incorrect scoping of semantic types
are also major sources of errors. The challenge of
WSD was minimized by the subset of hand-tagged
word senses in WordNet. We may be able to re-
duce such errors in the future by merging together
redundant or overly specific word senses. Incor-
rect scoping of semantic types is particularly prob-
lematic when the semantic type is specified in the
gloss itself, as the type constraint needed to move
across scopes. Our system performed well on co-
ordinator scoping. We correctly scoped 23 of the
27 instances of coordinators in the dataset. Co-
ordinators are generally a great source of error in
parsers and this result is evidence of the effective-
ness of our coordinator handling mechanism. In
all four instances, the disjunctions were extracted
from the gloss correctly, but were not reintroduced
into the axiom. As such, this error did not make
these axioms incorrect, rather incomplete.

7 Future Work and Conclusions

There are many attractive directions for future
work. The scope of this project can be broadened
to include nouns, adjectives, and adverbs, as re-
quired for any system that actually tackles the nat-
ural language understanding problem. There are
also many ways to refine and deepen the gloss
interpretation process. The parses may be im-
proved by looking through the hypernym graph
and borrowing results from parses of parents (gen-
eralizations) of words. We can also incorporate
techniques from Allen et al. (2011; 2013) and
Mostafazadeh & Allen (2015) to integrate results
from related sets of glosses. The high-level TRIPS
ontology could be used to improve robustness in
the face of inconsistencies in WordNet and inter-
pretation errors. Also, more sophisticated WSD

techniques, such as those from the SENSEVAL-
3 task on WSD (Litkowski, 2004), could be used
to improve semantic precision, and argument co-
herence could be improved using techniques from
Mostafazadeh & Allen (Mostafazadeh and Allen,
2015). Another possible avenue is concurrent use
of information from multiple dictionaries, such as
Wiktionary, VerbNet, and WordNet, to construct
more complete and reliable axioms, in particular
with respect to argument structure and types.

We argued that the semantic representations
used in previous approaches to extracting lexi-
cal axioms from dictionaries are insufficient for
achieving a natural language understanding sys-
tem. We presented an approach to extracting lex-
ical axioms of verbs from WordNet into EL, an
expressive semantic representation that overcomes
the shortcomings of the representations used in the
past. We also presented a generalized smatch scor-
ing metric, EL-smatch, which we used to evalu-
ate our system. The evaluation shows that our ap-
proach constructs precise verb axioms from Word-
Net. Furthermore, we demonstrate that the gen-
erated axioms perform competitively against the
state of the art in a verb entailment task. We aim
to apply these axioms to more comprehensive lan-
guage understanding tasks and commonsense rea-
soning tests when we have sufficient coverage of
the lexicon.
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Abstract

Extending semantic role labeling (SRL)
to detect and recover non-local arguments
continues to be a challenge. Our work is
the first to address the detection of im-
plicit roles from a multilingual perspec-
tive. We map predicate-argument struc-
tures across English and German sen-
tences, and we develop a classifier that dis-
tinguishes implicit arguments from other
translation shifts. Using a combination
of alignment statistics and linguistic fea-
tures, we achieve a precision of 0.68 de-
spite a limited training set, which is a sig-
nificant gain over the majority baseline.
Our approach does not rely on pre-existing
knowledge bases and is extendible to any
language pair with parallel data and de-
pendency parses.

1 Introduction

Understanding events and their participants is a
core NLP task, and SRL is the standard approach
for identification and labeling of these events in
text. SRL systems (Täckström et al., 2015; Roth
and Woodsend, 2014) have benefited NLP appli-
cations, and many approaches have been proposed
to transfer semantic roles from English to other
languages without further reliance on manual an-
notation (Kozhevnikov and Titov, 2013; Padó and
Lapata, 2009). However, event structures – both
predicates and their arguments – are known to shift
in the translation process, and this poor correspon-
dence presents a bottleneck for the transference of
semantic roles across languages. In some cases,
the semantic content of an entire argument can be
missing from the scope of its translated predicate.

Arguments that are omitted are often treated as
noise in state-of-the-art projection models; how-
ever, our work views them as a valuable source of

data - such arguments serve as naturally occurring
training data for implicit role detection. We tar-
get arguments that have been dislocated from their
predicates, or are dropped entirely, in translated
sentences. These non-isomorphic event structures
can not only be leveraged as new training data
for implicit role detection, but analyzing the shifts
that trigger these implicit roles can guide improve-
ments to systems that perform cross-lingual se-
mantic role projection.

Implicit Roles If a predicate is known to have
multiple semantic arguments, only a subset might
be expressed within the local boundary of its
clause or sentence. SRL models typically restrict
their search for semantic arguments to this local
domain and are not designed to recover arguments
situated in the broader discourse context. Non-
local role linking extends the SRL task by recov-
ering the semantic arguments not instantiated in
the local scope of the predicate. One complicating
factor is that these implicit arguments can either
be found in the context, and thereby are recover-
able, or they could be existentially interpreted and
might not correspond to any referent in the text at
all. In the examples below, the argument for the
predicate withdrawn in (1) is resolvable while the
implicit argument for reading in (2) is not:

(1) El Salvador is now the only Latin Ameri-
can country which still has troops in [Iraq]1.
Nicaragua, Honduras, and the Dominican Re-
public have withdrawn their troops ø.
Implicit role: Location

(2) I was sitting reading ø in the chair.
Implicit role: Theme

Implicit role labeling systems consistently re-
port low performance due to lack of training data.
Combining the few existing resources improves

1In this and other examples throughout the paper, the
brackets [] indicate the antecedent of the implicit argument.
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performance (Feizabadi and Padó, 2015) when
they contribute diversity in predicate and argument
types. Since much of the multilingual parallel cor-
pora vary in domain and genre, mining these cor-
pora for implicit roles should provide new training
data that is sufficiently diverse to benefit the im-
plicit role labeling task.

Predicate-Argument Structures across Lan-
guages Translational correspondences have been
used in previous work to acquire resources for su-
pervised monolingual tasks, such as word sense
disambiguation (Diab and Resnik, 2002). Simi-
larly, semantic role annotations can be transferred
to new languages when predicate-argument struc-
tures are stable across language pairs (Padó and
Lapata, 2009). In this work, we target predicate-
argument structures that do not express such sta-
bility and have shifted in the translation process.
In example (3), the role farmers is dropped en-
tirely in the aligned German sentence:

(3) The only change is that [farmers] are not
required to produce.

Die
The

einzige
only

Neuerung
change

ist,
is,

dass
that

nicht
not

gefordert
required

wird
are

zu
to

produzieren.
produce.

The challenge in detecting implicit roles across
languages is that these omissions represent only
a fraction of the kinds of poor alignments that can
occur. In fact, different types of translational shifts
may occur that do not constitute cases of implicit
role omission. Such factors include: change in
part-of-speech from a verbal predicate to a noun
or adjective, light verb constructions, single predi-
cates that are expressed as both a verb and comple-
ment in the target language, and expressions with
no direct translations (Samardžic et al., 2010).

Aims and Contributions To find implicit (non-
local) semantic roles in translation, we distin-
guish role omissions from other types of transla-
tion shifts. We test linguistic features to automat-
ically detect such role omissions in parallel cor-
pora. We divide our work into alignment (Section
3.1) and classification (Section 3.2), with an anno-
tation task for data construction (Section 4).

Our contributions are (i) a novel method for au-
tomatically identifying implicit roles in discourse,
(ii) a classifier that is able to distinguish general
translational divergences from true cases of im-
plicit roles, (iii) an annotated, multilingual dataset

of manually tagged implicit arguments, and (iv) a
classifier that achieves precision of 0.68 despite a
small training set size, which is a significant im-
provement over a majority class baseline. Finally,
we perform detailed analysis of our annotation and
automatic classification results.

2 Related Work

2.1 Implicit Semantic Role Labeling

Previous resources for implicit SRL were devel-
oped over diverging schemas, texts, and predi-
cate types. An initial dataset was constructed in
the SemEval-2010 Shared Task “Linking Events
and Their Participants in Discourse”, under the
FrameNet paradigm; authors annotated short sto-
ries with implicit arguments and their antecedents,
resulting in approx. 500 resolvable and 700 non-
resolvable implicit roles out of roughly 3,000
frame instances (Ruppenhofer et al., 2010). Ger-
ber and Chai (2010) focused on the implicit ar-
guments of a constrained set of 10 nominal predi-
cates in the NomBank scheme, annotating 966 im-
plicit role instances for these specific predicates.

Numerous studies on the recovery of implicit
roles have concluded that a lack of training data
has been the stopping point towards improvements
on the implicit role labeling task (Gorinski et al.,
2013; Laparra and Rigau, 2013). To address this
problem, Silberer and Frank (2012) generated ar-
tificial training data by removing arguments from
coreference chains and showed that adding such
instances yields performance gains. However,
their quality was low and later work (Roth and
Frank, 2015) has shown that smaller numbers of
naturally occurring training data performed bet-
ter. Roth and Frank (2015) applied a graph-based
method for automatically acquiring high-quality
data for non-local SRL using comparable mono-
lingual corpora. They detect implicit semantic
roles across documents and their antecedents from
the prior context, again following cross-document
links. In contrast, our work does not rely on se-
mantic resources (SRL and lexical ontologies), but
builds on parallel corpora enriched with dependen-
cies and word alignments. Finally, Stern and Da-
gan (2014) generate training data for implicit SRL
from textual entailment data sets. However, this
type of resource needs to be manually curated.
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2.2 Cross-lingual Annotation Projection
Aside from English, resources for SRL only ex-
ist for a select number of languages. For the lan-
guages that have such resources, annotated data
still tends to vastly underrepresent the variability
and breadth of coverage that exists for English. To
extend SRL to new languages without reliance on
manual annotation, models for role transference
have been developed under both the supervised
(Padó and Lapata, 2009; Akbik et al., 2015) and
unsupervised (Kozhevnikov and Titov, 2013) set-
ting. Most relevant to our work are previous stud-
ies that address the problem of projecting semantic
role annotations across parallel corpora.

To transfer semantic annotations across lan-
guages, Padó and Lapata (2009) score the con-
stituents of word-aligned parallel sentences and
project role labels for the arguments that achieve
highest constituent alignment scores. Akbik et
al (2015) use filtered projection by constraining
alignments through lexical and syntactic filters to
ensure accuracy in predicate and argument role
projection. Complete predicate-argument map-
pings are then used to bootstrap a classifier to re-
cover further unaligned predicates and arguments.

3 Detecting Implicit Roles across
Languages

We hypothesize that implicit semantic roles can
be found in translated sentences, even in corpora
where sentences are typically close translations.
Our goal is to distinguish implicit roles from other
translation shifts that cause poor alignment in SRL
projection. A model is constructed based on lex-
ical, syntactic, and alignment properties of paral-
lel predicate-argument structures, and this classi-
fier is, to the best of our knowledge, the first to
detect a wide range of omitted roles in multilin-
gual, parallel corpora. Our implicit role detection
applies to both core and non-core arguments and
is not dependent on large-scale SRL resources.

3.1 Identifying Poorly Aligned Arguments
Our first goal is to find candidates for implicit
arguments by aligning predicate-argument struc-
tures across parallel English and German sen-
tences.

Predicate and Argument Identification We tar-
get all non-auxiliary verbs as predicates, and de-
tect their dependents through grammatical rela-
tions in dependency parses. We extract subjects,

direct objects, indirect objects, prepositional ob-
jects, adverbial or nominal modifiers as well as
embedded clauses. These recover both the core
and non-core arguments (adjuncts) of the pred-
icate.2 Arguments are attached to their nearest
predicate and cannot be attached to more than one,
as might occur in cases of embedded clauses.

Aligning Arguments for Detection of Unaligned
Roles We use word alignments between paral-
lel source (sl) and target (tl) language sentences
as input. A predicate in the source language psl

is mapped to a predicate in the target language
ptl if there exists a word alignment link between
them, and their arguments are then aligned using
the scoring function ArgALp (Eq 3). ArgALp

uses word alignment links between the source and
target arguments asl, atl of the aligned predicate
pair to produce an optimal mapping between cor-
responding predicate-argument structures.

For scoring, we adapt Padó and Lapata (2009)’s
constituent alignment-based overlap measure (Eq
1) to dependencies, where yield(a) denotes the set
of words in the yield (headword and dependents)
of an argument a, and align(a) the set of words
in the target language that are aligned to the yield
of a. Because the automatic word alignment tool
gives predictions for links in both directions, we
apply this asymmetric measure from the English-
German and German-English links and average
their results (Eq 2). The ascore is computed for
the Cartesian product Asl × Atl over all source
and target arguments of the aligned predicates psl

and ptl. We select the argument alignments A′sl

× A′tl ⊆ Asl × Atl that return the maximal sum
of scores for all arguments across the aligned ar-
gument structure (Eq 3).

Anticipating noise in the word alignments, we
set a threshold to enforce accurate mappings be-
tween arguments. From the obtained mappings,
we consider any argument whose alignment score
does not exceed a threshold Θ as unaligned and
thus as a candidate for an implicit role. The selec-
tion of threshold Θ is discussed in Section 5.

ovlp(asl, atl) =
| align(asl) ∩ yield(atl) |
| align(asl) ∪ yield(atl) | (1)

ascore(asl, atl) =
ovlp(asl, atl) + ovlp(atl, asl)

2
(2)

2Since we are treating arguments and adjuncts alike, in
the following we loosely refer to both types of dependents as
‘arguments’.
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Alignment Aligned Alignment

Type Arguments Score

headword asl
1 ,– 0

asl
2 ,atl

1 1

asl
3 ,– 0

ascore asl
1 ,–tl 0

asl
2 ,atl

1 (1 + 1)/2 = 1.0

asl
3 ,atl

3 (2/3 + 2/3)/2 = 0.67

Figure 1: Predicate-argument structures with noisy word alignments (left), and alignment scores for
the arguments (right). Headword scoring aligns only headwords of the source (asl) and target (atl)
arguments, while ascore uses headwords and dependents of an entire argument span for alignment.

ArgALp = arg max
A′sl×A′tl⊆Asl×Atl

∑
Asl×Atl ascore(asl, atl)

where

Asl ×Atl = {〈asl, atl〉 | asl ∈ 〈psl, asl〉, atl ∈ 〈ptl, atl〉}
(3)

An example of the alignment scoring is given
in Figure 1, where predicates and arguments are
detected over parallel English-German sentences,
and word alignments are automatically generated.
The argument ‘an in-depth analysis’ consists of
a headword and two dependents, with two noisy
word alignments that link the arguments across
languages. Given these word alignment links, the
ascore (Eq 2) is computed by taking the number
of alignments and the yield of the arguments for
both English and German, and these scores are
then averaged for a final alignment score of 0.67.
In this case, the scoring function still produces
correct mappings across the predicate-argument
structures despite imperfect word alignments, and
an implicit role, We, is correctly unaligned to the
German sentence.

3.2 Classification of Poor Alignments as
Implicit Roles

Our objective is to build a classifier that automati-
cally detects implicit roles across parallel corpora.
To achieve this goal, we construct a classifier that
takes as input an unaligned argument in English
and, based on linguistic features in the aligned En-
glish and German sentences, determines whether
this unaligned argument is an implicit role in Ger-
man. Our dataset, described in Section 4.2, con-
sists of instances of poorly aligned roles that have
been annotated as either implicit, not implicit,

or not a role of the predicate. In classification,
we reduce the annotation classes (implicit/not im-
plicit/not a role of the predicate) to a binary de-
cision where the positive class represents the im-
plicit roles, and the negative class is any unaligned
argument that annotators determined as either not
implicit or not a semantic role. We reduced the
task to a binary decision to avoid sparsity in the
classification.

Features We hypothesize that we can predict the
existence of an implicit role through features of the
predicate-argument structures in the source and
target languages. These features include mono-
lingual predicate-argument structures, as well as
cross-lingual features that represent the quality
of the alignments across the parallel sentences.
Monolingual features encode the syntactic prop-
erties of the arguments and predicates for source
and target sentences, as well as sentential-level
features that include the presence of modal and
auxiliary verbs and conjunctions. To incorporate
cross-lingual information, the alignment scores
described in Section 3.1 are kept as features to the
classifier, based on our assumption that the over-
all alignment between source and target predicate-
argument structures should impact the classifica-
tion of an implicit role. Both monolingual and
cross-lingual features apply to surrounding pred-
icate/arguments, where arguments can either be
aligned or unaligned, and predicates that have
fully aligned structures are considered complete.
A complete list of features is shown in Table 1.

Classifiers We experimented with three classi-
fiers, a Support Vector Machine (SVM) with a lin-
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TYPE FEATURE XLING

Argument Lemma

POS

Grammatical relation to predicate

Distance to predicate

Number of dependents

Syntactic path to predicate

Alignment type of neighboring ar-
gument (aligned, unaligned)

+

Predicate Lemma

POS

Total number of arguments

Number of aligned arguments +

Number of unaligned arguments +

ArgALp score +

Alignment type of neighboring
predicate (complete, incomplete)

+

Sentential Presence of a modal or auxiliary

Sentence-final punctuation marks
before end

Conjunction between psl,psl-1

Sum of ArgALp scores

Total number of arguments

Total number of predicates

Sum of ArgALp scores over all
predicates

+

Table 1: Features investigated for classification,
where Xling are cross-lingual features.

ear kernel, Decision Tree, and Gradient Boosting,
under the framework of the Scikit-learn library
(Pedregosa et al., 2011).

4 Constructing a Dataset for Classifying
Implicit Arguments

This section presents the construction of our ex-
perimental dataset for implicit role detection.

4.1 Corpora and Tools

We conduct our experiments over the Europarl
corpus (Koehn, 2005), which contains over 1.9
million aligned sentences in our target lan-
guages. Anticipating noise in the automatic word
alignments, we first take sentences from manu-
ally word-aligned German-English Europarl data
(Padó and Lapata, 2005) to conduct our initial
experiments. These sentences give us an upper
bound for the number of implicit roles we should
expect to obtain. Automatic word alignments are
generated with GIZA++ (Och and Ney, 2003).

Predicates and their arguments are first detected

through dependency parses on English and Ger-
man parallel corpora. Parses are generated for En-
glish with ClearNLP (Choi and McCallum, 2013).
German sentences are run through the MarMot
morphological analyzer (Mueller et al., 2013), and
dependency parses for German are then generated
using the RBG Parser (Lei et al., 2014). The
Universal Dependencies project facilitates cross-
lingual consistency in parsing and provides bet-
ter compatibility amongst multiple languages. We
trained the RBG Parser with the Universal Depen-
dencies tagset (Rosa et al., 2014), and thus our
argument detection can be applied to other lan-
guages in the Universal Dependencies project.

4.2 Annotation of Poorly Aligned Arguments

Annotation Instances Our goal is to find any ar-
gument that is either missing or dislocated from
its predicate in translation. With this objective in
mind, we focused our annotation on incomplete
predicate structures whose argument(s) remained
unaligned. Any argument with scores below the
alignment threshold (see Section 3.1) was a candi-
date for annotation.

Annotation Task and Guidelines Three annota-
tors worked on this task. Each annotator was a na-
tive German speaker with high fluency in English,
and had taken at least one undergraduate course
in linguistics. Annotators were given guidelines
that define predicates as events or scenarios, and
semantic roles as an element that has a semantic
dependence on the predicate, including the who,
what, where, when, and why type of information.
Implicit roles were defined as “any role that is
missing from the scope, or clausal boundary, of
the predicate”. Each annotator was trained on a
test set of 10 example sentences.

Annotators were given pairs of sentences with
aligned predicates in English and German, where
the English predicate had a poorly aligned argu-
ment. Annotation instances were presented as:
two preceding English sentences, the English sen-
tence with both the argument and predicate high-
lighted, the German sentence with the aligned
predicate highlighted, and two preceding German
sentences. An example of the annotation task is
shown in Figure 2.

The annotation task was broken into two sub-
tasks. First, annotators were asked to judge
whether the marked argument is a correct seman-
tic role for the English predicate. The second sub-
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Context - 2 preceding English sentences

——

The only change is that [farmers] are not –required– to
produce .
Die einzige Neuerung ist , dass nicht –gefordert– wird
zu produzieren .

——

Context - 2 preceding German sentences

—————————————————————-

[farmers]
Can ‘farmers’ be considered a role of the English
predicate ‘required’?

If ‘no’: please choose:
not a role of English predicate

Can ‘farmers’ be considered an implicit role for
the German predicate ‘gefordert’?

If ‘no’: please choose:
not an implicit role of German predicate
If ‘yes’: please indicate the location of the German
translation of ‘farmers’ by marking it in (**)

Figure 2: Example annotation task. Aligned pred-
icates are marked in dashes (–) and implicit role
candidates are surrounded by squared brackets [].

task asked annotators to judge whether a transla-
tion for the argument was available in the scope
of the highlighted German predicate. If it was not
available in the scope, they were asked to annotate
the example as implicit.

Difficult Annotation Cases The annotations were
adjudicated by one of the authors, and the annota-
tor with the highest agreement with the adjudicator
was asked to complete the entire dataset.

Cases that resulted in higher annotator disagree-
ment included arguments of nominal predicates
that were themselves the argument of the aligned
predicate. In Example 4 below, 30 August is a
role for the nominal predicate participation but not
continue:

(4) The massive participation [from 30 August]
must continue.

Other difficult annotation cases included roles
that were partially, or entirely, encoded in the
translated predicate. These included temporal ad-
juncts that could either be interpreted as present
tense or implicit in the translated sentence:

(5) I will [now] give the floor to the President

Ich
I

gebe
give

dem
the

Präsidenten
President

das
the

Wort
floor

After a review of these difficult cases, annota-
tion guidelines were modified and annotators were
re-trained.

Annotation Quality Inter-annotator agreement
was measured by Cohen’s Kappa scores over 114
instances, and the entire 700 candidates were then
completed by Annotator 1. One of the authors ad-
judicated for agreement. Results are given in Table
2 where “Role + Implicit” reports Kappa scores
over all three categories - not a role, implicit, and
not implicit, while “Implicit” reports agreement
over binary implicit vs non-implicit decisions.

ANNOTATOR vs ADJUDICATOR ROLE + IMPLICIT IMPLICIT

ANNOTATOR 1 0.76 0.96

ANNOTATOR 2 0.48 0.92

ANNOTATOR 3 0.29 0.69

Table 2: Kappa agreements

Annotation Results In total, we took 700 poorly
aligned arguments whose scores were below the
alignment threshold (Section 3.1), where 500 were
selected from manual word alignments and 200
from GIZA++ alignments. The 500 candidate ar-
guments were sampled from 987 gold-aligned Eu-
roparl sentences, in which over 3,000 arguments
fell below the threshold. The 200 candidates were
sampled from 500 automatically aligned Europarl
sentence pairs (excluding the sentences from the
manually aligned dataset), with nearly 3,000 argu-
ments below the threshold, to estimate the differ-
ence in implicit roles between manual and auto-
matic word alignments.

Over the completed dataset, results for the an-
notation types are given in Table 3. Out of the
manually aligned Europarl sentences, annotations
produced 45 positive implicit role instances (9%
of the annotated candidates). The automatic align-
ments, with 200 examples, contained 6 instances
(3% of the annotated candidates) of implicit roles.
Over the total 700 instances, 24.5% were classified
as ‘not a predicate role’, 68.3% as ‘not implicit’,
and 7.2% as ‘implicit’.

INSTANCES NOT A ROLE NOT IMPLICIT IMPLICIT

Manual 500 154 301 45
GIZA++ 200 18 176 6

Table 3: Final annotation dataset.
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Classifier P R F1

Majority Baseline 0 0 0

SVM-ablated 0.6805 0.4444 0.5128
SVM-all 0.1555 0.2238 0.18333

Decision Tree-ablated 0.6682 0.4155 0.4934

Decision Tree-all 0.4134 0.2222 0.2748

Gradient Boosting-ablated 0.6688 0.3777 0.4631

Gradient Boosting-all 0.6466 0.2222 0.3268

Table 4: Precision, Recall and F1 for the positive
class (implicit role), with stratified 5-fold CV.

5 Classification Experiments and Results

5.1 Argument Alignment and Scoring

With the scoring function described in Section
3.1, perfectly aligned arguments should produce a
score of 1.0. We experimentally set the threshold
Θ for the minimum alignment score at 0.2 for ar-
guments such that arguments with imperfect word
alignments will still be aligned.

5.2 Classification of Implicit Arguments

The data set constructed in Section 4 resulted in 51
manually validated implicit roles and 649 negative
instances that were input for classification.

We measure precision, recall, and F1 scores,
and for the SVM and Gradient Boosting classi-
fiers we experimented with parameters to optimize
precision. The SVM classifier with a linear ker-
nel produced the highest scores, but results were
closely followed by Decision Tree and Gradient
Boosting classifiers. For the SVM classifier, we
experimented with different regularization {0.5,
1, 10, 20} and class weight increments {None,
1:2, 1:10} and found the highest precision scores
were achieved with C=0.5 and class weight 1:2.
In Gradient Boosting, we experimented with max
depth {1, 2, 3} and found the highest precision
scores were obtained with a max depth of 2. Since
the data set is heavily biased towards the negative
class, we divided training and test sets with a strat-
ified 5-fold cross-validation (CV). We later exper-
imented with upsampling for the positive class but
found no significant improvement.

Feature Ablation To determine the optimal fea-
ture set, we performed ablation tests by incre-
mentally removing a feature and performing train-
ing/testing over the reduced feature set. Ablation
was performed individually for each classifier. Af-
ter these tests, we eliminated features that caused

Type Feature

asl lemma, POS, path to predicate
asl+1 POS, path to predicate
asl–1 alignment type, number of dependents
ptl POS
ptl–1 sum of ArgALp scores
ptl+1 POS, number of arguments, number of

unaligned arguments, sum of ArgALp

scores, alignment type

Table 5: Final feature set used in classification.
Notation is defined in Section 3.1, where ± 1 are
the arguments/predicates preceding (–1) and fol-
lowing (+1) the candidate.

a drop in performance and used only the best per-
forming features in the final classification. The fi-
nal feature set is shown in Table 5.

The SVM model obtains the best results of 0.68
precision and F1-score of 0.51 with the ablated
feature set, closely followed by the other classifier
models and outperforming the majority baseline,
which always predicts the negative class (see Ta-
ble 4 for both ablated and full feature results).

Feature Analysis The final feature set used in
the classification experiment included both cross-
lingual features of the predicate and arguments on
source/target sentences, as well as monolingual
predicate and argument features. The ablation re-
sults support our initial hypothesis that the sur-
rounding predicate/argument structures and align-
ment scores are relevant to the detection of an
omitted role.

5.3 Analysis of Results

Translation Shifts that Trigger Implicit Roles
Through observation of the positive instances, we
determined a number of syntactic environments
that trigger omission of semantic roles from En-
glish to German. Shift in voice, finite to infi-
nite verb forms, and coordination could all mo-
tivate the deletion of a role across translated sen-
tences. While these syntactically licensed implicit
roles composed 57% of our positive instances, a
large number (43%) were not found to have an
explanation on syntactic grounds alone. In these
cases, the arguments seem to have been omitted
by pragmatic or semantic factors. The distribution
of these shift types over our dataset is given in Ta-
ble 6.
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Voice A change from active (source) to passive
(target). Subjects are dropped in translation:

(6) The more [we] refuse to democratize the in-
stitutions ....
Je
The

mehr
more

die
the

Demokratisierung
democratization

der
of the

Institutionen
institution

verweigert
refused

wird
are

...

Coordination An argument might be the repeated
subject of two conjoined clauses, but expressed as
a shared argument in the parallel sentence:

(7) I was faced with this system and [I] do not
know any parliament
Ich
I

fand
faced

dieses
this

System
system

vor
before

und
and

kenne
know

kein
no

Parlament
parliament

Extraposition Complex clausal embeddings can
cause roles to be extraposed from their predicates
in the target language text:

(8) ...but would also want to encourage both par-
ties [to observe the spirit of this new agree-
ment].
...er
...it

kann
can

die
that

beiden
both

Parteien
parties

nur
only

veranlassen
encourage

wollen,
want,

[den
the

Geist
spirit

dieses
of-this

neuen
new

Abkommens
agreement

zu
to

achten].
observe

Coordination and extraposition are borderline
cases with regard to the non-locality of roles.
PropBank does annotate coordinated arguments,
and in these cases the syntactic parse tree can be
leveraged for recovery of the non-local role. How-
ever, we still consider these implicit arguments
since they are expressed outside of the local scope
of the predicates.

Nonfinite Similar to change in voice, the subject
of a finite verb can be dropped when the translated
verb is nonfinite:

(9) I would ask that [they] reconsider these deci-
sions
Ich
I

bitte,
ask,

diese
these

Entscheidung
decisions

zu überdenken
to reconsider

Semantic/Pragmatic A role can be dropped in
translation without a structural shift that licenses
the omission. In these instances, the role could
have been incorporated into the aligned sentence
without a change to the syntactic environment.

(10) ... I am asking you to do this directly, [in
this House].

...wende

...turn
ich
I

mich
myself

hiermit
hereby

direkt
directly

an
to

Sie
you

.

Since the directionality of our implicit role
search focused on English to German, we do not
account for syntactic shifts that could cause omis-
sions in the opposite direction, i.e. German to En-
glish. There are imperative constructions in Ger-
man that overtly encode the addressee of the com-
mand (“go outside” in English can be translated as
“go you outside” in German) which can trigger im-
plicit roles in translation from German to English.

Shift Type Count %
Voice 7 14%

Coordination 8 16%

Extraposition 8 16%

Nonfinite 6 11%

Semantic/Pragmatic 22 43%

Table 6: Shift types that trigger implicit roles.

Semantic Role Types of Omitted Arguments We
adopt the VerbNet roleset (Kipper et al., 2000) to
manually label semantic role across all our im-
plicit argument instances. A full analysis of the
role types, shown in Table 7, found that a majority
of implicit roles are Agent and Theme. This re-
flects the general distributions for role frequency
(Merlo and Van Der Plas, 2009), but could also
be due to the syntactic shifts that produce a higher
omission of the subject, such as passivization and
coordination, which are commonly filled by the
Agent and Theme roles.

Core Role Count Non-Core Role Count

Agent 15 Time 6

Theme 14 Topic 5

Recipient 3 Location 3

Experiencer 2 Manner 1

Cause 2

Table 7: Thematic roles, both core and non-core,
of the implicit cases.

Antecedents to the Implicit Role The analyses
above described the shift types that trigger argu-
ment omission, but only two of these types, co-
ordination and extraposition, would guarantee the
missing argument to be recoverable from the non-
local context. Cases where the annotators were
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able to recover the antecedent roles, either from
the previous clause or sentences, were less than the
majority (21 out of the 51 cases), while many in-
stances were not instantiated in the non-local con-
text. Table 8 gives the proportion of recovered an-
tecedents according to shift types. The fact that
extraposition and coordination cases yield higher
number of resolvable roles can be exploited in fu-
ture work for antecedent linking.

Shift Type Resolvable Not resolvable

Voice 1 6

Coordination 8 0

Extraposition 8 0

Nonfinite 1 5

Semantic/Pragmatic 3 19

Table 8: Availability of the antecedent in the sur-
rounding context.

6 Conclusion and Future Work

In this work, we investigated the hypothesis that
implicit semantic roles can be identified in transla-
tion. Our method is knowledge-lean and achieves
respectable performance despite a small training
set. While the present work has focused on miss-
ing arguments of verbal predicates, implicit role
detection in this multilingual framework can be
easily extended to nominal predicates. Combin-
ing both predicate types is expected to improve
the overall results, as some of the noise we are
currently observing pertains to implicit roles oc-
curring with nouns. Additional noise is produced
by the automatic word alignments, which can be
addressed by employing triangulation techniques
using multiple language pairs. Further, with our
current classifier we can predict role omissions
across parallel sentences with better accuracy than
reliance on noisy word alignments alone, and with
these predictions we can generate better candi-
dates for annotation and reduce the time and cost
of future annotation effort.

A next step from the current work would be
to automatically recover the antecedent of the im-
plicit role in the target language when it is avail-
able. By doing so, we can construct new training
data for monolingual implicit role labeling, im-
prove transference of semantic roles across paral-
lel corpora, and generate novel training data for
implicit role labeling for new languages.
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Abstract

We describe a new technique for improv-
ing statistical machine translation training
by adopting scores from a recent crosslin-
gual semantic frame based evaluation met-
ric, XMEANT, as outside probabilities
in expectation-maximization based ITG
(inversion transduction grammars) align-
ment. Our new approach strongly biases
early-stage SMT learning towards seman-
tically valid alignments. Unlike previ-
ous attempts that have proposed using se-
mantic frame based evaluation metrics as
the objective function for late-stage tun-
ing of less than a dozen loglinear mix-
ture weights, our approach instead applies
the semantic metric at one of the earliest
stages of SMT training, where it may im-
pact millions of model parameters. The
choice of XMEANT is motivated by em-
pirical studies that have shown ITG con-
straints to cover almost all crosslingual se-
mantic frame alternations, which resem-
ble the crosslingual semantic framematch-
ing measured by XMEANT. Our exper-
iments purposely restrict training data to
small amounts to show the technique’s util-
ity in the absence of a huge corpus, to
study the effects of semantic generaliza-
tions while avoiding overreliance on mem-
orization. Results show that directly driv-
ing ITG training with the crosslingual se-
mantic frame based objective function not
only helps to further sharpen the ITG con-
straints, but still avoids excising relevant
portions of the search space, and leads
to better performance than either conven-
tional ITG or GIZA++ based approaches.

1 Introduction

We propose a new technique that biases early
stage statistical machine translation (SMT) learn-
ing towards semantics. Our algorithm adopts the
crosslingual evaluation metric XMEANT (Lo et
al., 2014) to initialize expectation-maximization
(EM) outside probabilities during inversion trans-
duction grammar or ITG (Wu, 1997) induction.
We show that injecting a crosslingual semantic
frame based objective function in the actual learn-
ing of the translation model helps to bias the train-
ing of the SMT model towards semantically more
relevant structures. Our approach is highly mo-
tivated by recent research which showed that in-
cluding a semantic frame based objective function
during the formal feature weights tuning stage in-
creases the translation quality. More precisely,
Lo et al. (2013a); Lo and Wu (2013); Lo et al.
(2013b); Beloucif et al. (2014) showed that tuning
against a semantic frame based evaluation metric
like MEANT (Lo et al., 2012), improves the trans-
lation adequacy.
Our choice to improve ITG alignments is moti-

vated by the fact that they have already previously
been empirically shown to cover essentially 100%
of crosslingual semantic frame alternations, even
though they rule out themajority of incorrect align-
ments (Addanki et al., 2012). Our technique uses
XMEANT for rewarding good translations while
learning bilingual correlations of the translation
model. We also show that integrating a semantic
frame based objective function much earlier in the
training pipeline not only produces more seman-
tically correct alignments but also helps to learn
bilingual correlations without memorizing from a
huge amounts of parallel corpora. We report re-
sults and examples showing that this way for in-
ducing ITGs gives a better translation quality com-
pared to the conventional ITGs and GIZA++ (Och
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and Ney, 2000) alignments.

2 Related work

The choice of XMEANT, a crosslingual ver-
sion of MEANT (Lo and Wu, 2011, 2012; Lo et
al., 2012), is motivated by the work of Lo et al.
(2014) who showed that XMEANT can correlate
better with human adequacy judgement than most
other metrics under some conditions. Further-
more, previous empirical studies have shown that
the crosslingual semantic frame matching mea-
sured by XMEANT is fully covered within ITG
constraints (Addanki et al., 2012).

2.1 Inversion transduction grammars

Inversion transduction grammars (ITGs, Wu
(1997)) are a subset of syntax-directed transduc-
tion grammar (Lewis and Stearns, 1968; Aho and
Ullman, 1972). A transduction is a set of bisen-
tences that define the relation between an input lan-
guageL0 and an output languageL1. Accordingly,
a transduction grammar is able to generate, trans-
late or accept a transduction or a set of bisentences.
Inversion transductions are a subset of transduc-
tionwhich are synchronously generated and parsed
by inversion transduction grammars (ITGs, (Wu,
1997)).
An ITG can always be written in a 2-

normal form and it is represented by a tuple
⟨N, V0, V1, R, S⟩whereN is a set of nonterminals,
V0 and V1 are the bitokens of L0 and L1 respec-
tively, R is a set of transduction rules and S ∈ N
is the start symbol.
We can write each transduction rule as follows:

S → A
A → [BC]
A → ⟨BC⟩
A → e/ϵ
A → ϵ/f
A → e/f

ITGs allow both straight and inverted rules,
straight transduction rules use square brackets and
take the form A → [BC] and inverted rules use
inverted brackets and take the form A → ⟨BC⟩ .
Straight transduction rules generate transductions
with the same order in L0 and L1 which means
that, in the parse tree, the children instantiated by
straight rules are read in the same order.
The rule probability function p is defined using

fixed probabilities for the structural rules, and a

translation table t that is trained using IBM model
1 (Brown et al., 1993) in both directions.
There are different classes of inversion trans-

duction grammars. LTGs or linear transduction
grammars (Saers et al., 2010) impose harsher con-
straints than ITGs but still cover almost 100%
of verb frame alternations (Addanki et al., 2012).
There are also many ways to formulate the model
over ITGs: Wu (1995); Zhang and Gildea (2005);
Chiang (2007); Cherry and Lin (2007); Blunsom
et al. (2009); Haghighi et al. (2009); Saers et al.
(2010); Neubig et al. (2011).
In this work, we use BITGs or bracketing trans-

duction grammars (Saers et al., 2009) which only
use one single nonterminal category and surpris-
ingly achieve a good result.

2.2 Semantic frame based evaluation metrics
2.2.1 MEANT’s algorithm
Unlike n-gram or edit-distance based metrics,

the MEANT family of metrics (Lo and Wu, 2011,
2012; Lo et al., 2012) adopt the principle that a
good translation is one in which humans can suc-
cessfully understand the general meaning of the in-
put sentence as captured by the basic event struc-
ture: who did what to whom, for whom, when,
where, how and why (Pradhan et al., 2004). Recent
work have shown that the semantic frame based
metric, MEANT, correlates better with human ad-
equacy judgment than most common evaluation
metrics (Lo and Wu, 2011, 2012; Lo et al., 2012)
such as BLEU (Papineni et al., 2002), NIST (Dod-
dington, 2002), METEOR (Banerjee and Lavie,
2005), CDER (Leusch et al., 2006), WER (Nießen
et al., 2000), and TER (Snover et al., 2006).
Algorithm one in figure 2 shows how aMEANT

score is computed (Lo and Wu, 2011, 2012; Lo et
al., 2012).

2.2.2 XMEANT: crosslingual MEANT
XMEANT (Lo et al., 2014) is the crosslin-

gual version of the semantic evaluation metric
MEANT. It has been shown that the crosslingual
evaluation metric, XMEANT, correlates even bet-
ter with human adequacy judgment than MEANT,
and also better than most evaluation metrics like
BLEU (Papineni et al., 2002), NIST (Dodding-
ton, 2002), METEOR (Banerjee and Lavie, 2005),
CDER (Leusch et al., 2006), WER (Nießen et al.,
2000), and TER (Snover et al., 2006).
Unlike MEANT which needs expensive man-

made references, XMEANT uses the foreign in-
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Figure 1: Example of how XMEANT aligns words and phrases

put to evaluate the MT translation output. Figure 1
shows an example of shallow semantic parsing in a
Chinese input sentence and an English MT output.
It also shows how XMEANT aligns the role fillers
between two parallel sentences from different lan-
guages based on their semantic frames matching.
Figure 2 underlines the differences between

MEANT and XMEANT algorithms. XMEANT
usesMEANT’s f-score basedmethod for aggregat-
ing lexical translation probabilities within seman-
tic role filler phrases. Each token of the role fillers
in the output/input string is aligned to the token of
the role fillers in the input/output string that has
the maximum lexical translation probability. In
contrast to MEANT which measures lexical sim-
ilarity using a monolingual context vector model,
XMEANT instead substitutes simple crosslingual
lexical translation probabilities. The crosslingual
phrasal similarities are computed as follows:

ei,pred ≡ the output side of the pred of aligned frame i

fi,pred ≡ the input side of the pred of aligned frame i

ei,j ≡ the output side of the ARG j of aligned frame i

fi,j ≡ the input side of the ARG j of aligned frame i

p(e, f) =
√

t (e|f) t (f |e)

prece,f =

∑
e∈e max

f∈f
p(e, f)

|e|

rece,f =

∑
f∈f maxe∈e

p(e, f)

|f|

si,pred =
2 · precei,pred,fi,pred

· recei,pred,fi,pred

precei,pred,fi,pred
+ recei,pred,fi,pred

si,j =
2 · precei,j ,fi,j

· recei,j ,fi,j

precei,j ,fi,j
+ recei,j ,fi,j

where the joint probability p is defined as the har-

monic mean of the two directions of the translation
table t trained using IBM model 1 (Brown et al.,
1993). prece,f is the precision and rece,f is the recall
of the phrasal similarities of the role fillers. si,pred
and si,j are the f-scores of the phrasal similarities
of the predicates and role fillers of the arguments
of type j between the input and the MT output.
Our approach uses the XMEANT score of every

bisentence in the training data and uses it to ini-
tialize the outside probability of the expectation-
maximization algorithm, then uses this crucial in-
formation for weighting meaningful sentences to
inducing bracketing inversion transduction gram-
mars. We show in this paper that using this seman-
tic objective function at an early stage of training
SMT system, we are not only able to learnmore se-
mantic bilingual correlations between the two lan-
guages, but we are also able get rid of the heavy
memorization that most of the conventional align-
ment systems rely heavily on.

2.3 Alignment

Word alignment is considered to be a neces-
sary step in training SMT systems, it helps to
learn bilingual correlations between the input and
the output languages. In this work, we com-
pare the alignment produced by our system to
the traditional GIZA++ alignment and the conven-
tional ITG alignment. Most of the conventional
alignment algorithms: IBM models (Brown et al.,
1990) and hidden Markov models or HMM (Vo-
gel et al., 1996) are flat and directed. In fact, (a)
they allow the unstructured movement of words
leading to a weak word alignment, (b) consider
translations in one direction in isolation, and (c)
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Figure 2: MEANT vs XMEANT algorithms

need two separate alignments to form a single bidi-
rectional alignment. The harmonization of two di-
rected alignments is typically done heuristically.
This means that there is no model that considers
the final bidirectional alignment that the transla-
tion system is trained on to be optimal. Inversion
transduction grammars (Wu, 1997), on the other
hand, have proven that learning word alignments
using a system that is compositionally-structured,
can provide optimal bidirectional alignments. Al-
though this structured optimality comes at a higher
cost in terms of time complexity, it allows preexist-
ing structured information to be incorporated into
the model. It also allows models to be compared
in a meaningful way. Saers and Wu (2009) pro-
posed a better method of producing word align-
ment by training inversion transduction grammars
(Wu, 1997). One problem encountered with such
model was that the exhaustive biparsing that runs
in O(n6). Saers et al. (2009) proposed a more ef-
ficient algorithm that runs in O(n3).
Zens and Ney (2003) showed that ITG con-

straints allow a higher flexibility in word-ordering
for longer sentences than the conventional IBM
model. Furthermore, they demonstrate that ap-
plying ITG constraints for word alignment leads
to learning a significantly better alignment than
the constraints used in conventional IBM mod-
els for both German-English and French-English
language pairs. Zhang and Gildea (2005) on the
other hand showed that the tree learned while
training using ITG constraints gives much more
accurate word alignments than those trained on
manually annotated treebanks like in Yamada

and Knight (2001) in both Chinese-English and
German-English. Haghighi et al. (2009) show that
using ITG constraints for supervised word align-
ment methods not only produce alignments with-
out lower alignment error rates but also produces
a better translation quality.
Some of the previous work on word align-

ment used morphological and syntactic features
(De Gispert et al., 2006). Log linear models have
been proposed to incorporate those features (Chris
et al., 2011). The problem with those approaches
is that they require language specific knowledge
and they always work better on more morphologi-
cal rich languages.
A few studies that try to integrate some seman-

tic knowledge in computing word alignment are
proposed by Jeff et al. (2011) and Theerawat and
David (2014). However, the former needs to have
a prior word alignment learned on lexical items.
The latter proposes a semantically oriented word
alignment, but requires extracting word similari-
ties from the monolingual data first, before pro-
ducing alignment using word similarities.

3 Adopting XMEANT scores as EM
outside probabilities

We implemented a token based BITG system as
our ITG baseline, our choice of BITG is motivated
by previous work that showed that BITG align-
ments outperformed alignments from GIZA++
(Saers et al., 2009).
Figure 3 shows the BITG induction algorithm

that we used in this paper. We initialize it with
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Figure 3: Token based BITG induction algorithm

Table 1: Comparison of translation quality for three methods used to train Moses for Chinese-English
MT under small corpus IWSLT 2007 conditions

cased uncased
System BLEU TER BLEU TER
Giza++ based induction 19.23 63.94 19.83 63.40
ITG based induction 20.05 63.19 20.42 62.61
XMEANT outside probabilities based 27.59 59.48 28.54 58.81

uniform structural probabilities, setting aside half
of the probability mass for lexical rules. This prob-
ability mass is distributed among the lexical rules
according to co-occurrence counts from the train-
ing data, assuming each sentence to contain one
empty token to account for singletons. The novelty
in our model consists of adopting the XMEANT
score of each bisentence as the initial value for the
outside probabilities as follows:

β(0,|ei|,0,|f i|) = XMEANT (ei, fi) (1)

where i represents the bisentences number i in
the corpus.
These initial probabilities are refined with 10

iterations of expectation maximization where the

expectation step is calculated using beam pruned
parsing (Saers et al., 2009) with a beam width of
100. On the last iteration, we extract the align-
ments imposed by the Viterbi parses as the word
alignments outputted by the system.

In our experiments, we tried to show that includ-
ing semantic earlier in learning SMT systems can
help us get rid of the expensive huge corpora used
in the traditional SMT training. Although Chinese
is not a low resource language, we tried purposely
to simulate low resource conditions, we used a rel-
atively small corpus (IWSLT07). The training set
contained 39,953 sentences. The dev set and test
set were the same for all systems in order to keep
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Alignment1: GIZA++ based alignment

Alignment3: XMEANT as outside probability based alignment

Alignment2: ITG based alignment

Figure 4: Alignments of bisentences produced by the three discussed alignment systems

the experiments comparable.
We compare the performance of our proposed

semantic frame based alignment to the con-
ventional ITG alignment and to the traditional
GIZA++ baseline with grow-diag-final-and to har-
monize both alignment directions. We tested the
different alignments described above by using the
standard Moses toolkit (Koehn et al., 2007), and a
6-gram language model learned with the SRI lan-
guage model toolkit (Stolcke, 2002) to train our
model.

4 Results

We compared the performance of the seman-
tic frame based ITG alignment against both the
conventional ITG alignment and the traditional
GIZA++ alignment. We evaluated our MT output
using the surface based evaluation metric BLEU
(Papineni et al., 2002) and the edit distance eval-
uation metric TER (Snover et al., 2006). Table 1
shows that the alignment based on our proposed
algorithm helps achieving much higher scores in
term of BLEU and TER in comparison to both con-
ventional ITG and GIZA++ alignment.
Figure 4 illustrates the alignments generated by

the three systems described in this paper for a
given example. The traditional GIZA++ align-
ment (top left) and the conventional ITG align-
ment (top right) fail to align all the crucial parts

of the given bisentence. The English sentence can
be divided into three major parts: “the Japanese
islands”, “run northeast to southwest” and “in the
northwest part of the pacific ocean.”. The conven-
tional ITG based alignment only succeeds to align
the first part of the sentence. GIZA++ based sys-
tem correctly aligns part one and parts of part two.
We note from the sentence’s gloss (figure 5) that
our proposed alignment outperforms the two other
alignments by capturing the relevant information
in both part one and part three, and also success-
fully aligns the token “in” to “在”.

Figure 6 shows four interesting examples ex-
tracted from our translated data and compared to
the translations obtained by other systems. We see
from the examples that ITG based models can pro-
duce a slightly better outputs compared to GIZA++
based alignment, but our semantic frame based
alignment highly outperform both alignments. We
clearly see how the outputs from our new submit-
ted system capture more strong bilingual correla-
tions although we are using the same small corpus
for every system. In example 2 and 4, our sys-
tem produces a translation that is as good as the
human reference. For example number one, our
system produces a more precise translation than
the human reference since the Chinese character
“偷” is normally translated to “stolen” and not
“pickpocketed”. Example 3, our proposed system
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Figure 5: The gloss of the bisentence used in figure 4

Example 1

Input                   在地铁里钱包被偷了。
Gloss in	subway	in	wallet	steal		
Reference I	had	my	wallet	pickpocketed	in	the	subway	.	
GIZA++               the	subway	in	my	wallet	was	stolen	.	
ITG                       the	subway	in	my	wallet	was	stolen	.
XMEANT based    my	wallet	was	stolen	in	the	subway	.

Example 2

Input                   我想往日本寄航空邮件。
Gloss I	want	to	Japan	send	air	mail
Reference           I	'd	like	to	send	it	to	Japan	by	airmail	.	
GIZA++               I	'd	like	to	Japan	by	air	mail	.		
ITG                       I	'd	like	to	call	to	Japan	by	air	mail	.	
XMEANT based    I	'd	like	to	send	it	to	Japan	by	air	mail	.

Example 3

Input 在这儿能买到歌剧的票吗？
Gloss at	here	can	buy	opera	ticket?	 																		
Reference can	I	get	an	opera	ticket	here	?
GIZA++    here	you	can	buy	tickets	 																							
ITG   where	can	I	buy	tickets	for	"	The	here	?
XMEANT based   where	can	I	buy	a	ticket	for	the	opera	here	?

Example 4

Input 我的座位在哪里？
Gloss I					‘s	seat	at	where																				
Reference where	is	my	seat	?	
GIZA++    my	seat	is?
ITG   my	seat	is	where	?		
XMEANT based   where	's	my	seat	?

Figure 6: Four interesting examples comparing the output from the three discussed alignment systems

give the most accurate and understandable transla-
tion among all systems. The only small problem
with this output is the fact that the Chinese charac-
ter “在” which represents “at” but sometimes gets
translated to “where”.
The results and examples we see above show

that we should be more focused on incorporating
semantic information during the actual early-stage
learning of the translation model’s structure, rather
than merely tuning a handful of late-stage loglin-
ear mixture weights against a semantic objective
function.

5 Conclusion

We presented a semantic frame based align-
ment method that adopts the crosslingual seman-
tic evaluation metric, XMEANT, as expectation
maximization (EM) outside probabilities for inver-
sion transduction grammar (ITG) induction. We
show that our new approach biases early stage
SMT training towards semantics by injecting a se-
mantic frame objective function in the initial steps

of learning the translation model. Incorporating
the semantic frame based objective function at the
early stage of induction biases ITG alignments at
a point where it still has the potential to influence
millions of model parameters. Finally, we show
that directly driving ITG induction with a crosslin-
gual semantic frame objective function not only
helps to further sharpen the ITG constraints, but
still avoids excising relevant portions of the search
space, and leads to better performance than either
conventional ITG or GIZA++ based approaches.
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Abstract

Reasoning over several premises is not
a common feature of RTE systems as it
usually requires deep semantic analysis.
On the other hand, FraCaS is a collec-
tion of entailment problems consisting of
multiple premises and covering semanti-
cally challenging phenomena. We employ
the tableau theorem prover for natural lan-
guage to solve the FraCaS problems in a
natural way. The expressiveness of a type
theory, the transparency of natural logic
and the schematic nature of tableau infer-
ence rules make it easy to model chal-
lenging semantic phenomena. The effi-
ciency of theorem proving also becomes
challenging when reasoning over several
premises. After adapting to the dataset, the
prover demonstrates state-of-the-art com-
petence over certain sections of FraCaS.

1 Introduction

Understanding and automatically processing the
natural language semantics is a central task for
computational linguistics and its related fields. At
the same time, inference tasks are regarded as the
best way of testing an NLP systems’s semantic ca-
pacity (Cooper et al., 1996, p. 63). Following this
view, recognizing textual entailment (RTE) chal-
lenges (Dagan et al., 2005) were regularly held
which evaluate the RTE systems based on the RTE
dataset. The RTE data represents a set of text-
hypotheses pairs that are human annotated on the
inference relations: entailment, contradiction and
neutral. Hence it attempts to evaluate the systems
on human reasoning. In general, the RTE datasets
are created semi-automatically and are often mo-
tivated by the scenarios found in the applications
like question answering, relation extraction, infor-

mation retrieval and summarization (Dagan et al.,
2005; Dagan et al., 2013). On the other hand,
the semanticists are busy designing theories that
account for the valid logical relations over nat-
ural language sentences. These theories usually
model reasoning that depends on certain seman-
tic phenomena, e.g., Booleans, quantifiers, events,
attitudes, intensionality, monotonicity, etc. These
types of reasoning are weak points of RTE systems
as the above mentioned semantic phenomena are
underrepresented in the RTE datasets.

In order to test and train the weak points of
an RTE system, we choose the FraCaS dataset
(Cooper et al., 1996). The set contains complex
entailment problems covering various challeng-
ing semantic phenomena which are still not fully
mastered by RTE systems. Moreover, unlike the
standard RTE datasets, FraCaS also allows multi-
premised problems. To account for these com-
plex entailment problems, we employ the theorem
prover for higher-order logic (Abzianidze, 2015a),
which represents the version of formal logic mo-
tivated by natural logic (Lakoff, 1970; Van Ben-
them, 1986). Though such expressive logics usu-
ally come with the inefficient decision procedures,
the prover maintains efficiency by using the infer-
ence rules that are specially tailored for the reason-
ing in natural language. We introduce new rules
for the prover in light of the FraCaS problems and
test the rules against the relevant portion of the set.
The test results are compared to the current state-
of-the-art on the dataset.

The rest of the paper is structured as follows.
We start with introducing a tableau system for nat-
ural logic (Muskens, 2010). Section 3 explores
the FraCaS dataset in more details. In Section 4,
we describe the process of adapting the theorem
prover to FraCaS, i.e. how specific semantic phe-
nomena are modeled with the help of tableau rules.
Several premises with monotone quantifiers in-
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1 every prover (quickly halt) : [] : T
2 most (tableau prover) terminate : [] : F

MON↑[1,2]

3 quickly halt : [c] : T
4 terminate : [c] : F

7 halt : [c] : T

15 ×

5 every prover : [P ] : T
6 most (tableau prover) : [P ] : F

MON↓[5,6]

8 prover : [d] : F
9 tableau prover : [d] : T

13 prover : [d] : T

14 ×

10 every : [Q,P ] : T
11 most : [Q,P ] : F

12 ×

⊆[3]

≤×[4,7]

⊆[9]

≤×[8,13]

≤×[10,11]

Figure 1: A closed tableau proves that every
prover halts quickly entails most tableau provers
terminate. Each branch growth is marked with the
corresponding rule application.

crease the search space for proofs. In Section 5,
we present several rules that contribute to shorter
proofs. In the evaluation part (Section 6), we an-
alyze the results of the prover on the relevant Fra-
CaS sections and compare them with the related
RTE systems. We end with possible directions of
future work.

2 Tableau theorem prover for natural
language

Reasoning in formal logics (i.e., a formal language
with well-defined semantics) is carried out by au-
tomated theorem provers, where the provers come
in different forms based on their underlying proof
system. In order to mirror this scenario for rea-
soning in natural language, Muskens (2010) pro-
posed to approximate natural language with a ver-
sion of natural logic (Lakoff, 1970; Van Benthem,
1986; Sánchez-Valencia, 1991) while a version of
analytic tableau method (Beth, 1955; Hintikka,
1955; Smullyan, 1968), hereafter referred to as
natural tableau, is introduced as a proof system
for the logic. The version of natural logic em-
ployed by Muskens (2010) is higher-order logic
formulated in terms of the typed lambda calcu-
lus (Church, 1940).1 As a result, the logic is

1More specifically, the logic is two-sorted variant of Rus-
sell’s type theory, which according to Gallin (1975) rep-
resents a more general and neat formulation of Montague
(1970)’s intensional logic. For theorem proving, we employ

much more expressive (in the sence of modeling
certian phenomena in an intuitive way) than first-
order logic, e.g., it can naturally account for gener-
alized quantifiers (Montague, 1973; Barwise and
Cooper, 1981), monotonicity calculus (Van Ben-
them, 1986; Sánchez-Valencia, 1991; Icard and
Moss, 2014) and subsective adjectives.

What makes the logic natural are its terms,
called Lambda Logical Forms (LLFs), which are
built up only from variables and lexical constants
via the functional application and λ-abstraction.
In this way the LLFs have a more natural ap-
pearance than, for instance, the formulas of first-
order logic. The examples of LLFs are given in
the nodes of the tableau proof tree in Figure 1,
where the type information for terms is omitted.
A tableau node can be seen as a statement of truth
type which is structured as a triplet of a main LLF,
an argument list of terms and a truth sign. The se-
mantics associated with a tableau node is that the
application of the main LLF to the terms of an ar-
gument list is evaluated according to the truth sign.
For instance, the node 9 is interpreted as the term
tableau prover d being true, i.e. d is in the ex-
tension of tableau prover. Notice that LLFs not
only resemble surface forms in terms of lexical el-
ements but most of their constituents are in cor-
respondence too. This facilitates the automatized
generation of LLFs from surface forms.

The natural tableau system of (Muskens, 2010),
like any other tableau systems (D’Agostino et
al., 1999), tries to prove statements by refuting
them. For instance, in case of an entailment proof,
a tableau starts with the counterexample where
the premises are true and the conclusion is false.
The proof is further developed with the help of
schematic inference rules, called tableau rules (see
Figure 2). A tableau is closed if all its branches
are closed, i.e. are marked with a closure (×)
sign. A tableau branch intuitively corresponds to
a situation while a closed branch represents an
inconsistent situation. Refutation of a statement
fails if a closed tableau is obtained. Hence the
closed tableau serves as a proof for the statement.
The proof of an entailment in terms of the closed
tableau is demonstrated in Figure 1. The tableau
starts with the counterexample ( 1 , 2 ) of the en-
tailment. It is further developed by applying the
rule (MON↑) to 1 and 2 , taking into account that

one-sorted type theory, i.e. with the entity e and truth t types,
and hence omit a type s for world-time pairs.
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G A : [
#–

C ] : T
H B : [

#–

C ] : F

A : [
#–

d ] : T
B : [

#–

d ] : F
G : [P,

#–

C ] : T
H : [P,

#–

C ] : F

MON↑

G or H is mon↑ and
#–

d and P are fresh

G A : [
#–

C ] : T
H B : [

#–

C ] : F

A : [
#–

d ] : F
B : [

#–

d ] : T
G : [P,

#–

C ] : T
H : [P,

#–

C ] : F

MON↓

G or H is mon↓ and
#–

d and P are fresh

A N : [
#–

C ] : T

N : [
#–

C ] : T
⊆ where A is subsective

A : [
#–

C ] : T
B : [

#–

C ] : F

×
≤×where A entails B

written as A ≤ B

Figure 2: The tableau rules employed by the
tableau proof in Figure 1

every is upward monotone in the second argument
position. The rule application is carried out un-
til all branches are closed or no new rule applica-
tion is possible. In the running example, all the
branches close as (≤×) identifies inconsistencies
there; for instance, 4 and 7 are inconsistent ac-
cording to (≤×) assuming that a knowledge base
(KB) provides that halting entails termination, i.e.
halt ≤ terminate.

The natural tableau system was succesfully ap-
plied to the SICK textual entailment problems
(Marelli et al., 2014) by Abzianidze (2015a). In
particular, the theorem prover for natural lan-
guage, called LangPro, was implemented that inte-
grates three modules: the parsers for Combinatory
Categorial Grammar (CCG) (Steedman, 2000),
LLFgen that generates LLFs from the CCG deriva-
tion trees, and the natural logic tableau prover
(NLogPro) which builds tableau proofs. The
pipeline architecture of the prover is depicted in
Figure 3: the sentences of an input problem are
first parsed, then converted into LLFs, which are
further processed by NLogPro. For a CCG parser,
there are at least two options, C&C (Clark and
Curran, 2007; Honnibal et al., 2010) and Easy-
CCG (Lewis and Steedman, 2014). The inventory
of rules (IR) of NLogPro is a crucial component
for the prover; it contains most of the rules found

LangPro

CCG parser
C&C
EasyCCG

LLFgen
Tree to term
Fixing terms

Aligner

Type-raising

NLogPro
Proof engine (PE)

Inventory of rules (IR)

Knowledge base (KB)

Signature

Figure 3: The architecture of LangPro

in (Muskens, 2010) and also additional rules that
were collected from SICK. In order to make the-
orem proving robust, LangPro employs a conser-
vative extension of the type theory for accessing
the syntactic information of terms (Abzianidze,
2015b): in addition to the basic semantic types e
and t, the extended type theory incorporates ba-
sic syntactic types n, np, s and pp corresponding
to the primitive categories of CCG.

Abzianidze (2015a) shows that on the unseen
portion of SICK LangPro obtains the results com-
parable to the state-of-the-art scores while achiev-
ing an almost perfect precision. Based on this in-
spiring result, we decide to adapt and test LangPro
on the FraCaS problems, from the semantics point
of view much more harder than the SICK ones.2

3 FraCaS dataset

The FraCaS test suite (Cooper et al., 1996) is a
set of 346 test problems. It was prepared by the
FraCaS consortium as an initial benchmark for se-
mantic competence of NLP systems. Each Fra-
CaS problem is a pair of premises and a yes-no-
unknown question that is annotated with a gold
judgment: yes (entailment), no (contradiction), or
unknown (neutral). The problems mainly con-
sist of short sentences and resemble the problems
found in introductory logic books. To convert the
test suite into the style of RTE dataset, MacCart-
ney and Manning (2007) translated the questions
into declarative sentences. The judgments were
copied from the original test suite with slight mod-
ifications.3 Several problems drawn from the ob-
tained FraCaS dataset are presented in Table 1.

Unlike other RTE datasets, the FraCaS prob-
lems contain multiple premises (45% of the total

2An online version of LangPro is available at: http:
//lanthanum.uvt.nl/labziani/tableau/

3More details about the conversion, including informa-
tion about several noisy problems (e.g., a problem missing
a premise or hypothesis, or having a non-standard gold an-
swer) can be found in MacCartney (2009). The FraCaS RTE
dataset is available at: http://www-nlp.stanford.
edu/˜wcmac/downloads/fracas.xml
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problems) and are structured in sections accord-
ing to the semantic phenomena they concern. The
sections cover generalized quantifiers (GQs), plu-
rals, anaphora, ellipsis, adjectives, comparatives,
temporal reference, verbs and attitudes. Due to
the challenging problems it contains, the FraCaS
dataset can be seen as one of the most complex
RTE data from the semantics perspective. Unfor-
tunately, due to its small size the dataset is not
representative enough for system evaluation pur-
poses. The above mentioned facts perhaps are the
main reasons why the FraCaS data is less favored
for developing and assessing the semantic compe-
tence of RTE systems. Nevertheless, several RTE
systems (MacCartney and Manning, 2008; Angeli
and Manning, 2014; Lewis and Steedman, 2013;
Tian et al., 2014; Mineshima et al., 2015) were
trained and evaluated on (the parts of) the dataset.
Usually the goal of these evaluations is to show
that specific theories/frameworks and the corre-
sponding RTE systems are able to model deep se-
mantic reasoning over the phenomena found in
FraCaS. Our aim is also the same in the rest of
the sections.

4 Modeling semantic phenomena

Modeling a new semantic phenomenon in the nat-
ural tableau requires introduction of special rules.
The section presents the new rules that account for
certain semantic phenomena found in FraCaS.

FraCaS Section 1, in short FrSec-1, focuses on
GQs and their monotonicity properties. Since the
rules for monotonicity are already implemented in
LangPro, in order to model monotonicity behav-
ior of a new GQ, it is sufficient to define its mono-
tonicity features in the signature. For instance, few
is defined as fewn↓,vp↓,s while many and most are
modeled as manyn,vp↑,s and mostn,vp↑,s respec-
tively.4 The contrast between monotonicity prop-
erties of the first arguments of few and many is
conditioned solely by the intuition behind the Fra-
CaS problems: few is understood as an absolute
amount while many as proportional (see Fr-56 and
76 in Table 1). Accounting for the monotonicity
properties of most, i.e. mostn,vp↑,s, is not suf-
ficient for fully capturing its semantics. For in-
stance, solving Fr-26 requires more than just up-

4Following the conventions in (Sánchez-Valencia, 1991),
we mark the argument types with monotonicity properties as-
sociated with the argument positions. In this way, fewn↓,vp↓,s

is downward monotone in its noun and VP arguments, where
vp abbreviates (np, s).

ID FraCaS entailment problem
6
no

P: No really great tenors are modest.
C: There are really great tenors who are modest.

26
yes

P1: Most Europeans are resident in Europe.
P2: All Europeans are people.
P3: All people who are resident in Europe can travel
freely within Europe.
C: Most Europeans can travel freely within Europe.

44
yes

P1: Few committee members are from southern Europe.
P2: All committee members are people.
P3: All people who are from Portugal are from southern
Europe.
C: There are few committee members from Portugal.

56
unk

P1: Many British delegates obtained interesting results
from the survey.
C: Many delegates obtained interesting results from the
survey.

76
yes

P1: Few committee members are from southern Europe.
C: Few female committee members are from southern
Europe.

85
no

P1: Exactly two lawyers and three accountants signed the
contract.
C: Six lawyers signed the contract.

99
yes

P1: Clients at the demonstration were all impressed by
the system’s performance.
P2: Smith was a client at the demonstration.
C: Smith was impressed by the system’s performance.

100
yes

P: Clients at the demonstration were impressed by the
system’s performance.
C: Most clients at the demonstration were impressed by
the system’s performance.

211
no

P1: All elephants are large animals.
P2: Dumbo is a small elephant.
C: Dumbo is a small animal.

Table 1: Samples of the FraCaS problems

ward monotonicity of most in its second argument.
We capture the semantics, concerning more than a
half, of most by the following new rule:

mostq N A : [] : T
mostq N B : [] : X

A : [ce] : T
B : [ce] : X
N : [ce] : T

MOST, where q ≡ (n, vp, s)
and X is either T or F

With (MOST), now it is possible to prove Fr-26
(see Figure 4). The rule efficiently but partially
captures the semantics of most. Modeling its com-
plete semantics would introduce unnecessary inef-
ficiency in the theorem proving.5

FrSec-1 involves problems dedicated to the con-
servativity phenomenon (1). Although we have

5For complete proof-theoretic semantics of most wrt same
and all in syllogistic logic see Endrullis and Moss (2015).
Similar rules that account for additional semantics of few and
many are presented in Section 5 as they coincide with efficient
rules for other quantifiers.
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1 most E iriE: []: T
2 every E (λx. s person (λy. be y x)): []: T

3 every (who iriE person) cftwE: []: T
4 most E cftwE: []: F

7 iriE: [c]: T
8 cftwE: [c]: F

9 E: [c]: T

10 (λx. s person (λy. be y x)): [c]: T

11 s person (λy. be y c): []: T

12 person: [c]: T

13 who iriE person: [c]: F

∧F[13]

21 person: [c]: F

23 ×
≤×[12,21]

20 iriE: [c]: F

22 ×
≤×[7,20]

∀v
T[3,8]

λBE[11]

λ<[10]

∀n
T [2,9]

MOST[1,4]

Figure 4: The tableau proof, generated by Lang-
Pro, classifies Fr-26 as entailment. The abbrevia-
tions cftwE, iriE and E stand for the LLFs of can
freely travel within Europe, is resident in Europe
and European, respectively. The nodes that do not
contribute to the closure of the tableau are omitted.
The proof also employs the admissible rules (∀nT)
and (∀vT) from Section 5.

not specially modeled the conservativity property
of GQs in LangPro, it is able to solve all 16
poblems about conservativity except one. The rea-
son is that conservativity is underrepresented in
FraCaS. Namely, the problems cover conservativ-
ity in the form of (2) instead of (1) (see Fr-6).

Q A are B ↔ Q A are A who are B (1)

Q A are B ↔ There are Q A who are B (2)

We capture (2) with the help of the existing rules
for GQs and (THR×), from (Abzianidze, 2015b),
which treats the expletive constructions, like there
is, as a universal predicate, i.e., any entity not sat-
isfying it leads to inconsistency (×).

be c there : [] : F

×
THR×

But these rules are not enough for solving Fr-

44 because the monotonicity rules cannot lead to
the solution when applied to the following nodes
representing P1 and C of Fr-44, respectively.

few M (be from S) : [] : T (3)

few (from P M) (λx.be x there) : [] : F (4)

To solve Fr-44, we introduce a new tableau rule
(THR PP) which acts as a paraphrase rule. After
the rule is applied to (4), (MON↓) can be applied
to the resulted node and (3) which contrasts being
from southern Europe to being from Portugal.
Q (pnp,n,nA N)(λx.be x there) : [] : X

Q N (be (p A)) : [] : X
THR PP

FrSec-2 covers the problems concerning plu-
rals. Usually the phrases like bare plurals, definite
plurals and definite descriptions (e.g., the dog) do
not get special treatment in wide-coverage seman-
tic processing and by default are treated as indefi-
nites. Since we want to take advantage of the ex-
pressive power of the logic and its proof system,
we decide to separately model these phrases. We
treat bare plurals and definite plurals as GQs of the
form sn,vp,sNn, where s stands for the plural mor-
pheme. The quantifier s can be ambiguous in LLFs
due to the ambiguity related to the plurals: they
can be understood as more than one, universal or
quasi-universal (i.e. almost every). Since most of
the problems in FraCaS favor the latter reading,
we model s as a quasi-universal quantifier. We in-
troduce the following lexical knowledge, s ≤ a
and s ≤ most, in the KB and allow the existential
quantification rules (e.g., ∃T) to apply the plural
terms sN . With this treatment, for instance, the
prover is able to prove the entailment in Fr-100.

We model the definite descriptions as general-
ized quantifiers of the form theN , where the rules
make the act as the universal and existential quan-
tifiers when marked with T and as the existential
quantifier in case of F. Put differently, (∀T), (∃T)
and (∃F) allow the quantifier in their antecedent
nodes to match the.

gq N V : [] : T

N : [ce] : F V : [ce] : T
∀T

g ∈ {every, the} and ce is old

gq N V : [] : F

N : [ce] : F V : [ce] : F
∃F

g ∈ {a, the} and ce is old

gq N V : [] : T

N : [ce] : T
V : [ce] : T

∃T

g ∈ {a, s, the}
and ce is fresh

This choice guarantees that, for example, the
demonstration in the premises of Fr-99 co-refer
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and allow the proof for entailment. This approach
also maintains the link if there are different sur-
face forms co-referring, e.g., the demonstration
and the presentation, in contrast to the approach
in Abzianidze (2015a).

FrSec-2 also involves several problems with
contrasting cardinal phrases like exactly n and m,
where n < m (see Fr-85). We account for these
problems with the closure rule (×EXCT), where
the type q, the predicate greater/2 and the do-
main for E act as constraints.

Eq,qNq : [
#–

C ] : T
Mq : [

#–

C ] : T

×
×EXCT

such that
E ∈ {just, exactly}
and greater(M,N)

FrSec-5 contains RTE problems pertaining to
various types of adjective. First-order logic has
problems with modeling subsective or privative
adjectives (Kamp and Partee, 1995), but they
are naturally modeled with higher-order terms.
A subsective term, e.g., smalln,n, is a rela-
tion over a comparison class and an entity, e.g.,
smalln,n animaln ce is of type t as n is a subtype of
et according to the extended type theory (Abzian-
idze, 2015b). The rule (⊆) in Figure 2 accounts
for the subsective property. With the help of it,
the prover correctly identifies Fr-211 as contradic-
tion (see Figure 5). In case of the standard first-
order intersective analysis, the premises of Fr-211
would be translated as:

small(dumbo) ∧ elephant(dumbo) ∧
∀x(elephant(x)→ (large(x) ∧ animal(x)))
which is a contradiction given that small and
large are contradictory predicates. Therefore,
due to the principle of explosion everything, in-
cluding the conclusion and its negation, would be
entailed from the premises.

FrSec-9, about attitudes, is the last section we
explore. Though the tableau system of (Muskens,
2010) employs intensional types, LangPro only
uses extensional types due to simplicity of the sys-
tem and the paucity of intensionality in RTE prob-
lems. Despite the fact, with the proof-theoretic ap-
proach and extensional types, we can still account
for a certain type of reasoning on attitude verbs by
modeling entailment properties of the verbs in the
style of Nairn et al. (2006) and Karttunen (2012).
For example, know has (+/+) property meaning
that when it occurs in a positive embedding con-
text, it entails its sentential complement with a
positive polarity. Similarly, manage to is (+/+)

1 every elephant (λx. s (large animal) (λy be y x)) : [] : T
2 a (small elephant) (λx.be x dumbo) : [] : T
3 a (small animal) (λx.be x dumbo) : [] : T

4 small animal : [dumbo] : T

5 small elephant : [dumbo] : T

6 elephant : [dumbo] : T

7 λx. s (large animal) (λy.be y x) : [dumbo] : T

8 s (large animal) (λy.be y dumbo) : [] : T

9 large animal : [dumbo] : T

10 small : [animal,dumbo] : T
11 large : [animal,dumbo] : T

12 ×

λBE[3]

λBE[2]

⊆[5]

∀n
T [1,6]

λ<[7]

λBE[8]

>[4,9]

×| [10,11]

Figure 5: The closed tableau by LangPro proves
Fr-211 as contradiction.

and (-/-) because John managed to run entails
John run and John did not manage to run entails
John did not run. We accommodate the entail-
ment properties in the tableau system in a straight-
forward way, e.g., terms with (+/+) property, like
know and manage, are modeled via the rule (+/+)
where ?p is an optional prepositional or particle
term. The rest of the three entailment properties
for attitude verbs are captured in the similar way.

h++
α,vp(?pα,α Vα) : [d] : T

Vα : [
#–

E] : T
+/+

such that if α = vp, then
#–

E = d;
otherwise α = s and

#–

E is empty

We also associate the entailment properties with
the phrases it is true that and it is false that and
model them via the corresponding tableau rules.

Our account for intensionality with the exten-
sional types represents a syntactic approach rather
than semantic. From the semantics perspective,
the extensional types license John knowing all true
statement if he knows at least one of them. But us-
ing the proof system, a syntactic machinery, we
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avoid such unwanted entailments with the absence
of rules. In future, we could incorporate inten-
sional types in LangPro if there is representative
RTE data for the intensionality phenomenon.

The rest of the FraCaS sections were skipped
during the adaptation phase for several reasons.
FrSec-3 and FrSec-4 are about anaphora and el-
lipsis respectively. We omitted these sections as
recently pronoun resolution is not modeled in the
natural tableau and almost all sentences involving
ellipsis are wrongly analyzed by the CCG parsers.
In the current settings of the natural tableau, we
treat auxiliaries as vacuous, due to this reason
LangPro cannot properly account for the problems
in FrSec-8 as most of them concern the aspect of
verbs. FrSec-6 and FrSec-7 consists of problems
with comparatives and temporal reference respec-
tively. To account the latter phenomena, the LLFs
of certain constructions needs to be specified fur-
ther (e.g., for comparative phrases) and additional
tableau rules must be introduced that model calcu-
lations on time and degrees.

5 Efficient theorem proving

Efficiency in theorem proving is crucial as we do
not have infinite time to wait for provers to termi-
nate and return an answer. Smaller tableau proofs
are also easy for verifying and debugging. The
section discusses the challenges for efficient theo-
rem proving induced by the FraCaS problems and
introduces new rules that bring efficiency to some
extent.

The inventory of rules is a main component of a
tableau method. Usually tableau rules are such in-
ference rules that their consequent expressions are
not larger than the antecedent expressions and are
built up from sub-parts of the antecedent expres-
sions. The natural tableau rules also satisfy these
properties which contribute to the termination of
tableau development. But there is still a big chance
that a tableau does not terminate or gets unneces-
sarily large. The reasons for this is a combina-
tion of branching rules, δ-rules (introducing fresh
entity terms), γ-rules (triggered for each entity
term), and non-equivalent rules (the antecedents
of which must be accessible by other rules too).6

6For instance, (MON↑) and (MON↓) in Figure 2 are both
branching and δ. They are also non-equivalent since their
consequents are semantically weaker than their antecedents;
this requires that after their application, the antecedent nodes
are still reusable for further rule applications. On the other
hand, (∀T) is non-equivalent and γ; for instance, for any en-

Efficeint theorem proving with LangPro becomes
more challenging with multi-premised problems
and monotonic GQs. More nodes in a tableau
give rise to more choice points in rule applications
and monotonic GQs are usually available for both
monotonic and standard semantic rules.

To encourage short tableau proofs, we introduce
eight admissible rules — the rules that are redun-
dant from completeness point of view but repre-
sent smart shortcuts of several rule applications.7

Half of the rules for the existential (e.g., a and the)
and universal (e.g., every, no and the) quantifiers
are γ-rules.8 To make application of these rules
more efficient, we introduce two admissible rules
for each of the γ-rules. For instance, (∀nT) and (∀vT)
are admissible rules which represent the efficient
but incomplete versions of (∀T):

q N V : [] : T
N : [c] : T

V : [c] : T
∀nT

q N V : [] : T
V : [c] : F

N : [c] : F
∀vT

where q ∈ {every, the}
Their efficiency is due to choosing a relevant en-
tity ce, rather than any entity like (∀T) does: (∀nT)
chooses the entity that satisfies the noun term
while (∀vT) picks the one not satisfying the verb
term. Moreover, the admissible rules are not
branching unlike their γ counterparts. Other four
admissible rules account for a and the in a false
context and no in a true context in the similar way.

The monotonicity rules, (MON↑) and (MON↓),
are inefficient as they are branching δ-rules. On
the other hand, the rules for GQs are also inef-
ficient for being a γ or δ-rule. Both types of
rules are often applicable to the same GQs, e.g.,
every and a, as most of GQs have monotonicity
properties. Instead of triggering these two types
of rules separately, we introduce two admissible
rules, (∃FUN↑) and (∅FUN↓), which trigger them
in tandem:
gqN A : [] : T 1
gqN B : [] : F 2

A : [ce] : T 3
B : [ce] : F 4
N : [ce] : T 5

∃FUN↑

g ∈ {a, s,many, every}

hqN A : [] : F
hqN B : [] : T

A : [ce] : T
B : [ce] : F
N : [ce] : T

∅FUN↓

h ∈ {no, few}
tity term ce, it is applicable to every dog bark : [ ] : T and
asserts that either c is not dog or c does bark.

7In other words, if a closed tableau makes use of an ad-
missible rule, the tableau can still be closed with a different
rule application strategy that ignores the admissible rule.

8Remember from Section 4 that the is treated like the uni-
versal and existential quantifiers in certain cases.
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ID FraCaS entailment problem
64
unk

P: At most ten female commissioners spend time at
home.
C: At most ten commissioners spend time at home.

88
unk

P: Every representative and client was at the meeting.
C: Every representative was at the meeting.

109
no

P: Just one accountant attended the meeting.
C: Some accountants attended the meeting.

215
unk

P1: All legal authorities are law lecturers.
P2: All law lecturers are legal authorities.
C: All competent legal authorities are competent law
lecturers.

Table 2: Problems with false proofs

For instance, if g = every, a single application
of (∃FUN↑) already yields the fine-grained seman-
tics: there is ce that is A and N but not B. If the
nodes were processed by the rules for every, (∀F)
would first entail 4 and 5 from 2 and then (∀T)
or (∀nT) would introduce 3 from 1 . (∃FUN↑) also
represents a more specific version of the admissi-
ble rule (FUN↑) of Abzianidze (2015a), which it-
self is an efficient and partial version of (MON↑).

(∃FUN↑) and (∅FUN↓) not only represent ad-
missible rules but they also model semantics of
few and many not captured by the monotonicity
rules. For instance, if few dog bark : [] : F and
few dog bite : [] : T, then a set of entities that
are dog and bark, denoted by [[dog]] ∩ [[bark]], is
strictly larger than [[dog]] ∩ [[bite]] (despite the ab-
solute or relative readings of few). Due to this set
relation, there is an entity in [[dog]] ∩ [[bark]] and
not in [[bite]]. Therefore, we get the inference en-
coded in (∅FUN↓). Similarly, it can be shown that
many satisfies the inference in (∃FUN↑).

6 Evaluation

After adapting the prover to the FraCaS sections
for GQs, plurals, adjectives and attitudes, we eval-
uate it on the relevant sections and analyze the per-
formance. Obtained results are compared to re-
lated RTE systems.

We run two version of the prover, ccLangPro
and easyLangPro, that employ CCG derivations
produced by C&C and EasyCCG respectively. In
order to abstract from the parser errors to some
extent, the answers from both provers are aggre-
gated in LangPro: a proof is found iff one of the
parser-specific provers finds a proof. The evalua-
tion results of the three versions of LangPro on the
relevant FraCaS sections are presented in Table 3
along with the confusion matrix for LangPro.

Meas% ccLP eLP LP
Prec 94 93 94
Rec 73 71 81
Acc 80 79 85

Gold\LP YES NO UNK

YES 60 0 14
NO 1 14 2
UNK 4 0 47

Table 3: Measures of ccLangPro (ccLP), easy-
LangPro (eLP) and LangPro (LP) on FraCaS sec-
tions 1, 2, 5, 9 and the confusion matrix for LP.

The results show that LangPro performs slightly
better with C&C compared to EasyCCG. This is
due to LLFgen which is mostly tuned on the C&C
derivations. Despite this bias, easyLangPro proves
8 problems that were not proved by ccLangPro. In
case of half of these problems, C&C failed to re-
turn derivations for some of the sentences while
in another half of the problems the errors in C&C
derivations were crucial, e.g., in the conclusion of
Fr-44 committee members was not analyzed as a
constituent. On the other hand, ccLangPro proves
10 problems unsolved by easyLangPro, e.g., Fr-
6 was not proved because EasyCCG analyzes re-
ally as a modifier of are in the conclusion, or even
more unfortunate, the morphological analyzer of
EasyCCG cannot get the lemma of clients cor-
rectly in Fr-99 and as a result the prover cannot
relate clients to client.

The precision of LangPro is high due to its
sound inference rules. Fr-109 in Table 2 was
the only case when entailment and contradiction
were confused: plurals are not modeled as strictly
more than one.9 The false proves are mostly due
to a lack of knowledge about adjectives. Lang-
Pro does not know a default comparison class
for clever, e.g., clever person→clever but clever
politician6→clever). Fr-215 was proved as entail-
ment because we have not modeled intensionality
of adjectives. Since EasyCCG was barely used
during adaptation (except changing most of NP
modifiers into noun modifiers), it analyzed at most
in Fr-64 as a sentential modifier which was not
modeled as downward monotone in the signature.
Hence, by default, it was considered as upward
monotone leading to the proof for entailment.

There are several reasons behind the problems
that were not proved by the prover. Several prob-
lems for adjectives were not proved as they con-

9Moreover, Fr-109 is identical to Fr-107 which has yes as
a gold answer. Another inconsistency in gold answers of Fr-
87 and Fr-88 (due to the ambiguous premise) is a reason for a
false proof. While Fr-87 was correctly proved by the prover,
obviously Fr-88 was misclassified automatically.
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Sec (Sing/All)
Single-premised (Acc %) Multi-premised (Acc %) Overall (Acc %)

BL NL07,08 LS P/G NLI T14a,b M15 LP BL LS P/G T14a,b M15 LP BL LS P/G T14a,b M15 LP

1 GQs (44/74) 45 84 98 70 89 95 80 93 82 93 57 50 80 80 97 73 93 50 62 85 80 95 78 93
2 Plur (24/33) 58 42 75 - 38 - 67 75 67 - - 67 67 61 - - 67 73
5 Adj (15/22) 40 60 80 - 87 - 87 87 43 - - 29 43 41 - - 68 73
9 Att (9/13) 67 56 89 - 22 - 78 100 50 - - 75 75 62 - - 77 92

1,2,5,9 (92/142) 50 - 88 - - - 78 88 56 - - 66 80 52 - - 74 85

Table 4: Comparison of RTE systems tested on FraCaS: NL07 (MacCartney and Manning, 2007), NL08
(MacCartney and Manning, 2008), LS (Lewis and Steedman, 2013) with Parser and Gold syntax, NLI
(Angeli and Manning, 2014), T14a (Tian et al., 2014), T14b (Dong et al., 2014) and M15 (Mineshima et
al., 2015). BL is a majority (yes) baseline. Results for non-applicable sections are strikeout.

tained comparative constructions, not covered by
the rules. Some problems assume the universal
reading of plurals. A couple of problems involv-
ing at most were not solved as the parsers often
analyze the phrase in a wrong way.10

We also check the FraCaS sections how repre-
sentative they are for higher-order GQs (HOGQs).
After replacing all occurrences of most, several,
many, s and the with the indefinite a in LLFs,
LangPro–HOGQ (without the HOGQs) achieves an
overall accuracy of 81% over FrSec-1,2,5,9. Com-
pared to LangPro only 6 problems, including Fr-
56, 99, were misclassified while Fr-26, 100 were
solved. This shows that the dataset is not repre-
sentative enough for HOGQs.

In Table 4, the current results are compared to
the RTE systems that have been tested on the sin-
gle or multi-premised FraCaS problems.11 Ac-
cording to the table, the current work shows that
the natural tableau system and LangPro are suc-
cessful in deep reasoning over multiple premises.

The natural logic approach in MacCartney and
Manning (2008) and Angeli and Manning (2014)
models monotonicity reasoning with the exclusion
relation in terms of the string edit operations over
phrases. Since the approach heavily hinges on a
sequence of edits that relates a premise to a con-
clusion, it cannot process multi-premised prob-
lems properly. Lewis and Steedman (2013) and
Mineshima et al. (2015) both base on first-order
logic representations. While Lewis and Steed-
man (2013) employs distributional relation clus-
tering to model the semantics of content words,
Mineshima et al. (2015) extends first-order logic

10Tableau proofs of the FraCaS problems are available at:
http://lanthanum.uvt.nl/langpro/fracas

11Since the FraCaS data is small and usually the prob-
lems are seen during the system development, the compari-
son should be understood in terms of an expressive power of
a system and the underlying theory.

with several higher-order terms (e.g., for most,
believe, manage) and augments first-order infer-
ence of Coq with additional inference rules for the
higher-order terms. Tian et al. (2014) and Dong
et al. (2014) build an inference engine that rea-
sons over abstract denotations, formulas of rela-
tional algebra or a sort of description logic, ob-
tained from Dependency-based Compositional Se-
mantic trees (Liang et al., 2011). Our system and
approach differ from the above mentioned ones in
its unique combination of expressiveness of high-
order logic, naturalness of logical forms (making
them easily obtainable) and flexibility of a seman-
tic tableau method. All these allow to model sur-
face and deep semantic reasoning successfully in
a single system.

7 Future work

We have modeled several semantic phenomena in
the natural tableau theorem prover and obtained
high results on the relevant FraCaS sections. Con-
cerning the FraCaS dataset, in future work we plan
to account for the comparatives and temporal ref-
erence in the natural tableau. After showing that
the natural tableau can successfully model deep
reasoning (e.g., the FraCaS problems) and (rela-
tively) wide-coverage and surface reasoning (e.g.,
the SICK dataset), we see the RTE datasets, like
RTE-1 (Dagan et al., 2005) and SNLI (Bowman et
al., 2015), involving texts obtained from newswire
or crowd-scouring as a next step for developing
the theory and the theorem prover.
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Abstract

In a complex sentence comprised of one or
more subclauses, the overt or hidden atti-
tudes between the various entities depend
on the factuality projection of the verbs,
their polar effects, and the modality and
affirmative status (negated or not) of the
clauses. If factuality is given, some refer-
ents might even be considered to benefit or
to suffer from the (effects of the) described
situation, independently of their relations
to the other referents. An interesting ques-
tion is, how the reader evaluates all this
from his/her perspective. We introduce an
approach based on Description Logics that
integrates these various perspectives into a
joint model.

1 Introduction

Sentences can express a positive or negative re-
lationship between people, organizations, and na-
tions etc. For instance, in the sentence “the EU
supports Greece”, a positive attitude of the EU
towards Greece is expressed. At the same time,
a positive effect that is meant to be true, is as-
serted. That is, Greece benefits from the situa-
tion described. If the reader has a negative atti-
tude towards the beneficiary (Greece), he might
regard the apparent benefactor (EU) as his oppo-
nent. However, if the sentence is embedded into a
non-factive verb like “to pretend” (“The EU pre-
tends to support Greece”), neither the positive re-
lationship between the referents nor the positive
effect on Greece hold any longer. Instead, the ma-
trix verb “to pretend” casts a negative effect on the
EU. If the reader adheres to this common sense
verb connotation, he will adopt the negative at-
titude towards the EU. Furthermore, if some ac-
tor criticizes that the EU supports Greece, factu-
ality of the embedded clause is given (compared

to “pretend”). Thus, the positive effect on Greece
still takes place, but now there is a negative at-
titude of this actor of the matrix clause towards
both referents of the complement clause. Finally,
if an actor criticizes that the EU does not support
Greece, his attitude towards Greece is positive (but
negative towards the EU).

Given a text, we would like to be able to answer
the following questions: What is good or bad for
the entities mentioned in the text? What is good
or bad of these entities? What are the attitudes of
the entities towards each other? And last but not
least, what follows from the reader’s stance, i.e.
his prior attitudes towards some entities?

A user of our system then could mine texts for
proponents and opponents of his, in the sense that
entities that do things (or like others that) he likes
are proponents, and entities that act in the opposite
way (or like others he dislikes) are opponents.

In contrast to existing work (e.g. Deng and
Wiebe (2015)), we stress the point that verb sig-
natures in the sense of Karttunen (2012) that cap-
ture (non-)factuality information regarding com-
plement clauses need to be taken into account in
order to properly draw such inferences. We fo-
cus on complex sentences where a matrix verb re-
stricts its subclauses with respect to factuality de-
pending on its affirmative status (i.e. whether the
matrix clause is affirmative or negated). The inter-
play of (non-)factuality with negation, the various
polar restrictions projected by the verbs, and the
aforementioned relational layer give rise to a com-
plex model.

We have implemented a joint model with De-
scription Logics (DL), namely OWL (Horrocks
and Patel-Schneider, 2011) and SWRL (Hor-
rocks and Patel-Schneider, 2004). The model
is language-independent. However, the mapping
from a sentence to input structures is mediated by
a dependency parser, a predicate-argument extrac-
tor and a verb lexicon covering the polar restric-
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tions – these components are language-dependent.
We give English examples in this paper, although
our pipeline (and the empirical evaluation) is for
German. Our English example sentences were
manually converted to OWL representations.

2 Related Work

The topic of event factuality in natural language
applications is thoroughly discussed in Saurı́ and
Pustejovsky (2009). For their FactBank annota-
tions, they differentiate between factual (it is the
case) and counterfactual (it is not the case).

The certainty (epistemic modality) to which
factuality holds is a continuum, but according to
Saurı́ and Pustejovsky (2009) it has often been
divided into the following three-fold distinction
that they also adhere to: certain, probable, and
possible. Saurı́ and Pustejovsky (2009) addition-
ally provide annotation labels for cases where
the factuality is underspecified. An important
trait of their approach lies in the fact that these
annotations are always relative to sources men-
tioned in the text, typically subjects or objects of
source-introducing predicates, for instance, “said
the minister”. In our work, we focus on the identi-
fication and extraction of certain facts that convey
polar effects, opposition or support.

A rule-based approach to sentiment inference is
Neviarouskaya et al. (2009). Each verb instanti-
ation is described from an internal and an exter-
nal perspective. For example, “to admire a mafia
leader” is classified as affective positive (the sub-
ject’s attitude towards the direct object) given the
internal perspective while it is (as a whole) a nega-
tive judgment, externally (here the concepts intro-
duced by the Appraisal theory are used, cf. Martin
and White (2005)). However, the authors do not
give any details about how they carry out rule ap-
plication, and factuality does not play any role in
their work.

The same is true for Reschke and Anand (2011).
They capture the polarity of a verb frame instantia-
tion as a function of the polarity of the verb’s roles.
In our approach, we do not assume to know the
polarity of the roles in advance, but intend to infer
them contextually. In their approach, if a murderer
looses something positive, then this is positive as
a whole. It is hard to see how less drastic cases
are to be treated. For instance, “the thief looses all
his friends” – is this positive? We would say: it
is negative for the thief and that the friends have a

negative attitude towards the thief.
How Description Logics can be used to identify

so-called polarity conflicts was described in Klen-
ner (2015). However, attitudes and the factuality
of situations were not part of that model.

3 The Verb Model: Polarity Frames

The basis of our approach is a verb resource that
we call polarity frames (Klenner et al., 2014;
Klenner and Amsler, 2016). The current lexicon
is comprised of 330 German verbs that instantiate
690 polarity frames. A verb can have more than
one polarity frame due to polysemy. We are par-
ticularly interested in those verbs that subcatego-
rize complement clauses (78 verbs), since they are
crucial for complex inferences.

For each argument of a polarity frame (agent,
patient, theme, etc.), we specify whether it casts
a polar effect on its argument filler. For instance,
the patient argument of “to help” receives a pos-
itive effect. We distinguish between polar roles
that indicate that something is good/bad of or for
someone. The agent role is an of-role – it is good
of A to help B. The patient role (depending on the
verb also theme or recipient) is a for-role, i.e. it is
good for B if A helps her.

Given the verb “to help”, there are at least two
polarity frames, the transitive one (“A helps B”)
and the one with an embedded (infinitival) sub-
clause (“A helps to XCOMP”). In the first frame,
both argument fillers receive a positive effect. The
agent is a positive of-role, which we call the posof
role. Accordingly, the patient is a posfor role.
Both roles are generalizations of the traditional se-
mantic roles.

In the second frame (“A helps to XCOMP”), the
agent again is the bearer of the posof role. But
now it is XCOMP that receives a positive effect,
i.e. it is good for the situation denoted by XCOMP
to receive help. Thus, not only entities but also sit-
uations are affected by the polarity that a verb casts
on its arguments. In order to distinguish roles for
situations from roles for entities, we call the roles
for positively and negatively affected subclauses
poscl and negcl, respectively. This nomenclature
(posof, posfor, poscl) eases the development of
general inference rules over entities and situations.

3.1 Verb Signatures

Verbs that subcategorize a clausal complement are
further specified for factuality of the clausal com-
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Label Explanation Matrix Verb
F factual in any case to regret
NF non-factual in any case to hope
AF factual if affirmative to force
ANF non-factual if affirmative to forget
NaF factual if non-affirmative to forget
NaNF non-factual if non-affirmative to manage
NaO true or false if non-affirmative to help

Table 1: (Non-)Factuality of subclauses

plement. Factuality means that the situation de-
scribed in the subclause is meant (by the author) to
be true (to hold). We follow the work of Karttunen
(2012), who distinguishes factive, non-factive and
implicative verbs. Factuality of the subclause de-
pends on the matrix verb’s signature and the pres-
ence or absence of negation in the matrix clause.

Table 1 summarizes the signatures of example
matrix verbs and introduces our short labels (e.g.
AF). Factive verbs, such as “to regret”, cast factu-
ality on their subclause, whether the main clause
is negated or not. If A regrets that COMP, then
COMP is true in the sense that the speaker believes
(or a least asserts) COMP to be true. The same
holds for “A does NOT regret that COMP” (fac-
tuality here is constant under negation, thus fac-
tuality is a presupposition of factive verbs). Sub-
clauses of non-factive verbs, on the other hand, are
never meant to be factual (e.g. “to pretend”, “to
hope”).

Then, there are verbs called implicatives that
cast a mixture of factuality and non-factuality.
Two-way implicatives, like “to forget to”, have
non-factual subclauses in an affirmative use, but
factual subclauses if negated. One-way implica-
tives only give rise to factuality in either the af-
firmative (like “to force”) or negated matrix verb
contexts (like “to refuse”). For instance, if A
forces B to lie, B lies. If A does not force B to
lie, then B might lie as well, we just cannot tell.

Non-factuality blocks some, but not all infer-
ences. In “A hopes that B wins”, the subclause
is non-factual, so B does not receive a positive
effect (he is not a beneficiary): this inference is
blocked. However, the attitude of the of-role of the
(factual) matrix sentence (A) towards the for-role
of the (non-factual) embedded verb holds (a pos-
itive relationship): it is not blocked. Relationship
inference within a non-factual clause, however, is
blocked, e.g. if A hopes that B loves C, the in-
ference that B has a positive attitude towards C is
blocked.

Verb of-role for-role cl-role aff neg
criticize of n/a negcl AF NaF
approve of n/a poscl AF NaF
help posof n/a poscl AF NaO
help posof posfor n/a n/a n/a
survive n/a posfor n/a n/a n/a

Table 2: Polarity frames

Table 2 shows the polarity frames of some
verbs. The polar roles poscl and negcl stand for
positive and negative effects of the verb on its sub-
clause (cl-role), respectively, while of indicates a
neutral effect. The last two columns relate to the
verb signatures as introduced in Table 1, the sec-
ond last column reports the restriction whether the
matrix verb is aff(irmative) and the last column
whether it is neg(ated). For example, the subclause
of “help” (row 3) is factual if the “help” sentence
is affirmative (AF), but its truth value is unspeci-
fied (NaO) if negated.

4 Preprocessing Pipeline

Our polarity frames provide a mapping from
grammatical roles to our generalized set of seman-
tic roles, which we call the polar semantic roles
of a verb. For instance, the subject of “to sur-
vive” is mapped to a posfor role while the sub-
ject of “to cheat” realizes a negof role. In order
to provide a proper mapping, we have to identify
these grammatical roles given a dependency parse.
Among others, passive voice, but also implicit ar-
guments given control or raising verbs raise the
need to reconstruct the real fillers of the grammat-
ical roles of the verbs from the surface structure of
the dependency parse. Also coreference needs to
be coped with.

We have implemented a rule-based polar se-
mantic role labeler. Extraction rules were auto-
matically learned from treebank parses and the
corresponding, manually annotated verb frame in-
stantiations. Given a parse tree and a gold standard
annotation of the underlying verb frames, paths
between the verbs and the heads of their grammat-
ical roles can be derived and saved as extraction
patterns. Given proper verb frame instances, each
filler of a grammatical role is mapped to a polar
role according to the polarity frame of the verb.

Clearly, there is a great number of syntactic
variations that need to be accounted for. However,
80 to 100 well-chosen correct sentences might al-
ready cover the most frequent cases of syntactic
variation (cf. Klenner and Amsler (2016)).
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Effect Attitude Reader
beneficiary pro MyOpponent
benefactor con MyProponent
victim SympathyEntity
villain NonSympathyEntity

Table 3: Projections: Concepts and Properties

5 The Overall Model

We strive to combine three different perspectives
in a joint model. Firstly, there is the question of
who actually profits (or has a disadvantage) from
the described situation. We call this the layer of
effect projection. Secondly, there is the relational
level that determines the attitudes of the partici-
pants towards each other, this is called the attitude
projection. Both are derived from the input text
and represent the way the text puts the world (the
text perspective). Thirdly, there is the perspective
of the reader, the reader projection: what he or she
takes from it. From the text perspective, the atti-
tudes of the author (the author projection) some-
times are evident, but in the sentences envisaged
by our approach this is normally not the case. We
focus on sentences that report the view of the sub-
ject of the matrix clause (“A criticizes that . . . ”).

Table 3 shows the concepts and properties (re-
lations) of these projection layers: The inference
task is to instantiate them given a sentence, only
(Non)SympathyEntity are specified in advance by
the user (reader). The starting point of the infer-
ence process are the instantiated polarity frames
derived from an input sentence, say, “the EU helps
Greece”. We know from a dependency parse that
“Greece” is the object of “help” and the polarity
lexicon tells us that the object of “help” realizes
a posfor role. This is the core of our lexical re-
source: grammatical roles are mapped to semantic
roles (mainly specializations of for-roles and of-
roles). The sentence is affirmative and since no
modal verbs or modifiers are present it is factual.
In a factual, affirmative sentence, the filler of the
posfor role is a beneficiary. A beneficiary in our
setting is someone who actually benefits from the
situation described and must not be confused with
the thematic role beneficiary from the literature: If
the sentence would be negated, the beneficiary sta-
tus of Greece no longer would hold. It would still
occupy the posfor role, but since negated, it would
no longer count as an entity that has received a
positive, beneficial effect from the situation. On
the contrary, it would now be a victim, since it is

denied help.
The properties pro and con establish the attitude

projection. A pro relation represents a positive at-
titude, while con means a negative attitude. The
filler of any of-role of a verb that also has a pos-
for role obviously has a positive attitude (a pro re-
lation) towards the filler of the posfor role (here:
EU pro Greece), provided again a factual affirma-
tive use. If the filler of the posfor role moreover is
an instance of SympathyEntity of the reader – this
is given in advance, the user (modelled reader) has
to specify which entities he likes or dislikes – then
(among others) the filler of the of-role (EU) be-
comes an instance of the concept MyProponent of
the reader (since the filler, EU, has, according to
the sentence, a positive attitude, a pro relation, to-
wards someone the reader likes, here Greece).

The attitude projection is realized with SWRL
rules which refer to OWL concepts (e.g. factual)
and A-Box representations of the sentence. They
instantiate OWL properties which in turn are used
by other OWL concepts to draw conclusions re-
lated to effects and reader projections.

6 Description Logics Model

Description Logics seem to be well suited for
such intermingled inference tasks that we envis-
age. One must not care about the actual order
the inferences are drawn, and global consistency
checks help to identify and get rid of unwanted
side effects. One drawback of pure Description
Logics is that relational concepts are a problem.
We cannot define a concept opponent that relates
two individuals A and B, we always have to state a
direction1 namely that B is an opponent of A, i.e.,
B is an A-opponent, so to speak. We have chosen
this possibility to define relational concepts w.r.t.
the reader. We define the concepts MyOpponent
and MyProponent to capture the reader’s perspec-
tive. However, we found it much more convenient
to use SWRL rules (Horrocks and Patel-Schneider,
2004) instead of pure OWL concepts (Horrocks
and Patel-Schneider, 2011) to define the remain-
ing relational inference layer.

Our system was developed in the Protégé editor,
which eased the semantical engineering task. Her-
miT (Glimm et al., 2014) was used for SWRL and
OWL reasoning. In the following, we introduce
the properties, instance representations, concepts,

1We could introduce a property opponent, but reasoning
at the level of properties is limited.
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of-role the agent
posof the filler gets a positive effects
negof the filler gets a negative effects

for-role the patient,recipient, beneficiary or theme
posfor a positive for-role
negfor a negative for-role

cl-role the subclause
poscl subclause filler receives a positive effect
negcl subclause filler receives a negative effect

Table 4: Properties for verb argument roles

and SWRL rules of our model.

6.1 Properties

OWL properties represent two-placed relations
between concepts, they have domain and range re-
strictions (we do not specify the concrete restric-
tions here). We have properties that realize the se-
mantic roles of polarity frames. They are used to
represent verb instantiations. We have a property
for-role with subproperties posfor and negfor and
a property of-role with posof, negof as subproper-
ties. These are roles for entities. For situations, a
general role cl-role denotes a non-polar subclause
restriction (e.g. the verb “to remember that” casts
it). negcl and poscl denote positive and negative
effects that the matrix verb casts on its comple-
ment clause. These roles also have inversed roles,
indicated by a preceding initial I (e.g. I-posof), to
cope with the problem of bidirectional relational
properties in Description Logics. Table 4 summa-
rizes our role inventory.

pro and con of the attitude layer are also realized
as properties. These properties are to be inferred
by the system (as specified in section 7), in con-
trast to the verb argument properties from Table 4
which are instantiated via the dependency tree and
the polarity frame lexicon.

6.2 Sentence Representation (A-Box)

We represent sentences and their verb instantia-
tions in a manner that is inspired by Davidson’s
approach (Davidson, 1966), i.e. verbs are referred
to by a constant that represents a verbal event in-
stantiation. Technically, mentions of entities and
events are represented by their base form followed
by a digit. For example, survive-1 is an instance
of a survive event, and minister-1 represents a
reference to a member of the class of ministers.
Our example sentence “The minister has criticized
that the EU has helped Greece to survive” is rep-
resented by the A-Box assertions from Table 5.
The specifications are given in a slightly simpli-

criticize-1 : (aff AND AF) help-1 : (aff AND AF)
criticize-1 of-role minister-1 help-1 posof EU
criticize-1 negcl help-1 help-1 posfor Greece
survive-1 : affirmative help-1 poscl survive-1
survive-1 posfor Greece criticize: factual

Table 5: A-Box representation

fied Manchester syntax (Horridge et al., 2006).
criticize-1 is an instance of both the classes

aff (firmative) and AF (i.e. factual if affirmative;
and, not shown here, NaF, i.e. factual if non-
affirmative), and it has the role negcl with help-
1 as its filler. The concepts affirmative and non-
affirmative are used to represent the affirmative or
negated use of a predicate in a sentence.

6.3 Concept Hierarchy (T-Box)

As mentioned, we distinguish between the per-
spective of the reader, MyView, and the perspec-
tive of the text, TextView, see Fig.1. TextView tells
us what the author believes to be true. One task of
the reader as part of the understanding of a text is
to find out what the text entails (class Implication)
about the described situation (class Situation). A
situation is either affirmative (class affirmative) or
negated (class non-affirmative), which is known
given the sentence (thus, both are primitive con-
cepts). The whole sentence is meant to be true
(if no modals are present), so the matrix clause
is by definition factual (be it affirmative or non-
affirmative). The factuality of an embedded situ-
ation (class Embedded) depends on the factuality
class of the embedding situation denoted by the
(embedding) verb (see Fig.1 for the subclasses of
Embedded, e.g. AF). A factuality class like AF of
a situation stems directly from the verb signatures,
e.g. in Table 5, where criticize-1 is an instance of
AF since the verb ”to criticize” bears that signa-
ture: whatever affirmative “to criticize” embeds, it
is factual2. Thus, all subclasses of Embedded are
primitive concepts (given by the verb signatures).
Whether an embedded (individual) situation is fac-
tual or non-factual (its Factuality Status) depends
on the factuality class of the embedding verb and
whether the embedding verb is affirmative or non-
affirmative: factual and non-factual are defined
classes. The definition of factual in Manchester
syntax is:

(I-cl-role some (F or (affirmative and AF) or

2Clearly, in: ”A criticizes that B intends to lie”, the inten-
tion is factual, not the lying.
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Figure 1: T-Box

(non-affirmative and NaF)))

I-cl-role is the inverse of cl-role (describing the
embedding of situations). A situation is factual
if it is embedded (I-cl-role) into a situation that is
described by a factive verb (class F in Table 1), or
is affirmative and has the signature AF or is non-
affirmative and of type NaF. Given this (together
with the definition of non-factual), we are able to
determine the factuality status of an embedded sit-
uation of any depth of embedding.

6.3.1 Effect Projection Concepts
We now turn to the effect layer represented by the
concept EntityStatus. We distinguish four classes
and call them programmatically benefactor, bene-
ficiary, villain, and victim. We just give the defini-
tion of beneficiary. The idea behind our definition
is that the beneficiary of a situation is somebody
who benefits from it independently of any attitude
that somebody might have towards him. So if A
wins, A is the beneficiary, whether A is liked by
someone or not. What must be the case is that A
occupies the posfor role of a situation that is fac-
tual (not just imagined) and affirmative (i.e. not
negated). Here is the definition of beneficiary:

(I-posfor some (affirmative and factual))

For convenience, we also give the predicate logic
equivalent:
∀x∃y : I-posfor(x, y) ∧ affirmative(y) ∧ factual(y) →
beneficiary(x)

6.3.2 Reader Projection Concepts
The reader layer depends on prior information
concerning the stance of the reader towards real-
world entities (his prior attitudes). The user of our

system thus has to specify these kind of prefer-
ences in advance. He might state that Greece has
his sympathy. This brings us to the concepts of
the MyView class. We distinguish SympathyEn-
tity, NonSympathyEntity, all primitive concepts. A
SympathyEntity is either an entity that especially
the reader (and maybe only he) likes (e.g. his dog)
or an entity (concrete or abstract) that he, as most
people from his culture, believe to be valuable
(e.g. freedom). NonSympathyEntity is defined cor-
respondingly.

Given the user’s prior attitudes, his (non-
)sympathies, and given a sentence from which the
attitude projections (attitudes among the referents
of the sentence) has been derived, the question is
what actually makes referents opponents or propo-
nents of the reader.

We exemplify the concept of MyProponent
here. Trivially, any SympathyEntity is also an in-
stance of MyProponent. However, there are more
sophisticated ways to become someone who is
in line with the reader’s world view (MyView).
Namely, if someone has a positive attitude (a pro
relation) towards a SympathyEntity of the reader.
Or, if someone is against (a con relation) someone
the reader does not like (a NonSympathyEntity).
Here is the definition of MyProponent:

(SympathyEntity or (pro some SympathyEntity) or (con some

NonSympathyEntity))

The definition relies on the properties pro and
con. We now turn to the part of our model which
describes how to infer the referents’ attitudes to-
wards each other. The way they behave as indi-
cated by the text determines their relationship and
if at least one of the involved participants is a Sym-
pathyEntity or NonSympathyEntity of the reader,
the reader projection, i.e., his opponents and pro-
ponents can be derived. If A supports B and B is a
NonSympathyEntity of the reader, then A is an op-
ponent of the reader (since A con B holds, but see
the next section for the definition of these inferred
properties).

7 Attitude Projection Rules

We use SWRL rules to specify the attitude in-
ference layer. SWRL rules are neatly coupled
with OWL concepts (T-Box) and instances (A-
Box). For instance, we can refer to an instance
of class factual by a predicate of the form fac-
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# Input Predicates
1 posfor(help,GR) negcl(criticize,help)
2 posof(help,EU) of-role(criticize,min.)
3 poscl(help,survive) posfor(survive,GR)
4 aff(criticize) aff(help)
5 aff(survive) factual(criticize)

Table 6: Input representation

tual(?x)3. Properties are referred to accordingly,
e.g. negcl(?s,?s2) binds ?s and ?s2 to any A-
Box expression (in Manchester Syntax) of the
form: someInstance1 negcl someInstance2, e.g.
criticize-1 negcl help-1 from Table 5. This might
be somewhat intransparent to readers unfamil-
iar with OWL and SWRL. For convenience, we
have translated Table 5 into Table 6, where A-
Box expressions are mapped to a notation closer
to SWRL. We also have stripped indices, e.g.
criticize-1 is now just criticize.

In order to introduce our scheme, we go through
the example sentence S (repeated):

S: The minister has criticized that the EU has
helped Greece to survive.

The instantiations from Table 6 are based on the
polarity frames of the verbs and the dependency
parse of the sentence. Since no negation is present,
it holds that aff(criticize), aff(help), aff(survive)
(line 4 and 5), where aff means affirmative use.
The matrix clause (since no modal is present) is
factual (line 5), i.e., factual(criticize). Note that
posfor(help,Greece) just means that Greece occu-
pies a particular polar role. Whether Greece actu-
ally gets a positive effect depends on the factuality
as determined by the matrix verb and its affirma-
tive status (and also the affirmative status of the
complement verb itself).

Before reading the further outline of our rule
component, the reader is invited to verify that the
following inferences drawn from the example sen-
tence S are in line with his/her intuition (i4 and i6
needs further explanation, though):

Greece as a beneficiary (i1 from Table 7) fol-
lows from the OWL definition (Greece takes the
posfor role in a factual affirmative sentence).

In general, the goal is to find out whether A is
for (pro) B or whether A is against (con) B. A
verb might (directly) reveal the relation between

3We follow the SWRL notation to indicate variables by a
leading question mark.

# Inference Rule
i1 beneficiary(Greece) OWL def.
i2 pro(EU,Greece) r1
i3 con(minister,EU) r2
i4 disapprove(minister,survive) r3
i5 con(minister,Greece) r4
i6 con(EU,minister) r5

Table 7: Inferences

the participants within the same clause: if A helps
B, then A is pro B. If A criticizes B, then A is con
B (at least in a certain – the given – context, not
necessarily in a fundamental, irreconcilable way).
Provided, of course, the situation is factual and af-
firmative.

r1 aff(?s),posof(?s,?x),factual(?s),
posfor(?s,?y) -> pro(?x,?y)

Rule r1 states: An actor ?x (the posof role, in
general, any of-role) is pro ?y if in a single factual,
affirmative sentence ?s, ?y is the filler of the posfor
role (i2 from Table 7 ): pro(EU,Greece).

If a sentence ?s embeds a sentence ?s2, then
rules like the following are in charge:

r2 factual(?s),aff(?s),negcl(?s,?s2),
of_role(?s,?x),of_role(?s2,?y)

-> con(?x,?y)

According to r2, an affirmative and factual ma-
trix clause ?s that embeds an affirmative subclause
?s2 (the factuality of ?s2 is irrelevant) bearing a
negative effect (negcl) gives rise to a con rela-
tion between the of-role of the matrix clause and
the of-role of the subclause (see i3 from Table 7):
con(minister, EU).

More complicated scenarios arise in the case of
multiple embeddings. According to Table 2, “to
criticize” has a negcl role while “to help” has a
poscl role. If A criticizes that B helps C to D
(D=survive), then, obviously, A disapproves D.
That is, a negcl on a poscl gives disapprove, see
rule r3.

r3 aff(?s),factual(?s),negcl(?s,?s2),
aff(?s2),of_role(?s,?x),poscl(?s2,?s3)

-> disapprove(?x,?s3)

The matrix clause must be factual: if A (just)
might criticize that COMP, nothing can be inferred
about A’s (dis-)approval regarding COMP (and
COMP of COMP). Rule r3 triggers and produces
i4 from Table 7: disapprove(minister,survive).

The next rule describes how disapprove propa-
gates to a con relation (factuality is irrelevant).
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r4 aff(?s),posfor(?s,?y),disapproves(?x,?s)
-> con(?x,?y)

If someone disapproves an affirmative situation
that is positive (posfor) for someone, then he is
against this person. Rule r4 produces i5 from Ta-
ble 7: con(minister,Greece).

One could also think of rules like the following:
r5 pro(?x,?z),con(?y,?z) -> con(?x,?y)

If A is pro B and C is con B then we might be
allowed to guess that A is con C. In our example
it follows that EU is con minister, see i6 from Ta-
ble 7. Note that these transitively given pro and
con relations are only safe if they stem from the
same sentence. It is not true in general that I am
against someone who dislikes a person I like. If
(rule r5) A admires B while C finds B boring, A
and C are opponents, but only conditional on B,
so to speak. In general, pros and cons can only
deliver situation-specific attitudes.

Now that we have seen examples of the effect
projection (beneficiary(Greece)), the attitude pro-
jection (e.g. con(minister,EU)) let us end with an
example of the reader projection. If the reader is
skeptical about the EU (these days), i.e., the EU
is a NonSympathyEntity of his, then minister be-
comes a instance of MyProponent (via the def-
inition of MyProponent and the derived attitude
con(minister,EU)).

The author projection also can be plugged in
easily. Take the sentence “The minister criti-
cizes the ridiculous initiative”. We only have
to derive con(author,initiative) from the use of
“ridiculous” and we can exploit the full capac-
ity of our reasoning scheme, e.g. we could derive
pro(author,minister).

8 Empirical Evaluation

Our inference rules were tuned on the basis of
80 constructed development sentences (Dev80)
that concisely capture our modelled phenomena.
They combine verbs from our lexicon in sentences
that are comprised of subclause embeddings up to
three levels. Affirmative and negated use of these
verbs are combined with (non-)factuality at each
level of embedding. This was meant to base our
model on an increased generative complexity of
natural language – even if such sentences are rare
in real texts. Our goal was to model competence
and at same time make it applicable. The sample
sentence S from the last section is an example of
such a constructed sentence. For each sentence,

Relations A B Gold System
benefactor 2 2 4 5
beneficiary 10 5 7 16
victim 35 40 42 52
villain 4 5 6 11
con 68 50 68 67
pro 35 23 29 37
total 154 125 156 188

Table 8: Statistics for Test80: Annotators A and
B, the adjudicated gold standard G, and the system
output (setting I)

we manually instantiated the polarity frames, i.e.,
we identified the polarity frame and the fillers of
the grammatical roles. It was the tuning of the
rule component we were after, not the impact of
the preprocessing pipeline (extraction from the de-
pendency trees) on the overall performance. The
final performance of our system on Dev80 was:
precision 83.89% and recall 93.72%.

The final test corpus (Test80) contains 80 un-
seen sentences drawn from the German newspa-
per treebank TüBa-D/Z (Telljohann et al., 2009).
About 10% of its 95,000 sentences contain a verb
that is modelled in our lexicon. In about 5,000
sentences our extraction component triggers. 540
cases show subclause embedding. In 46 sentences
the verb of the matrix clause and the verb of the
subclause are in our lexicon, and 6 of them involve
negation. We included these cases into our test
set and added 34 randomly chosen affirmative and
negated sentences containing a single verb from
the lexicon. For these sentences, we evaluated two
different settings. In setting I, the treebank parses
were used, in setting II the output of the ParZu de-
pendency parser (Sennrich et al., 2013).

Table 8 shows the descriptive statistics for
Test80 (column system showing the results for set-
ting I)4. Two raters A and B independently anno-
tated all test sentences according to simple guide-
lines that treat the prediction of the inferred effects
and attitudes as a textual entailment task (Dagan
et al., 2013).5 After a reconciliation session only
two cases had to be adjudicated by a third rater

4We cannot evaluate MyProponent and MyOpponent
since these concepts depend on the individual preferences of
the annotators.

5The annotators have to formulate factual entailment can-
didates that they then accept or reject. Given our running
example sentence, they would typically create and check en-
tailment sentences such as “Therefore, it is the case that the
EU has a positive attitude towards Greece” for pro, or “There-
fore, it is the case that the EU acts in a positive manner” for
benefactor.
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in order to establish a gold standard G. The pair-
wise agreement between A and B is 43% (Cohen’s
κ = 0.19), between A and G 69% (κ = 0.56), B
and G 61% (κ = 0.44). κ between A and B is
low, but this is mostly due to the difficulty of spot-
ting candidate entities and relations in complex
nested sentences, and not due to different anno-
tation categories assigned to the same candidate.
Humans are selective annotators and focus on the
most striking attitudes more than on the more hid-
den ones. During reconciliation, missing annota-
tions of one annotator could be easily spotted and
adopted in view of the annotations of the other.

The overall performance of the system is
59.04% precision and 71.15% recall (setting I).
If we replace perfect parse trees with parser out-
put (setting II), precision is almost unaffected
(58.84%), while recall drops to 50.64%.

We have identified some systematic errors of
our system. Among others, it instantiates concepts
from the effect layer (beneficiary etc.) too often,
especially entities that are non-actors (e.g. “A crit-
icizes the proposal” gives victim(proposal)). The
gold standard only allows actors (person, company
etc.) to occupy these roles. A better classification
for actors would help in these cases.

A central claim of this paper is that factuality
is important for sentiment inferences since it li-
cences or suppresses reasoning. Given our test set
comprised of 80 sentences, 41 verb mentions were
classified as non-factual and thus were blocked
for certain inferences. If we switch off factuality
detection (i.e., every verb is factual), a precision
drop of 12.9% results (while recall increases only
slightly by 1.2%).

9 Comparison with Deng & Wiebe

Recently, Deng and Wiebe (2014) and Deng and
Wiebe (2015) have introduced an advanced con-
ceptual framework for inferring sentiment impli-
catures. Their work is most similar to our ap-
proach. Various model versions exist, the lat-
est one (Deng and Wiebe, 2015) also copes with
event-level sentiment inference, which brings it
even closer to our model. Probabilistic Soft Logic
is used for the specification of the rules and for
drawing inferences. The goal of the systems is to
detect entity pairs that are in a PosPair or NegPair
relation. This is similar to our pro/con relations.

First of all, factuality is not taken into account
in their framework, while we have shown that it is

crucial for certain inference steps. Although their
model is based on the idea of good/bad-for verbs,
they do not envisage to propagate (as we do) such
effects, i.e. determine whether these effects have
occurred or not (clearly, factuality is crucial here).
In contrast to our approach, their model is a proba-
bilistic one. However, it is obviously not the layer
of inference rules (the attitude projection in our
terms) which establishes the source of uncertainty,
it is the preprocessing where three existing senti-
ment systems and two SVM classifiers are used for
polarity detection (i.e. identifying targets, polarity
spans etc.). This obscures the fact that some infer-
ence rules might contribute to false predictions as
well. For instance there is a rule (3.10 from Ta-
ble 1, (Deng and Wiebe, 2015)) that more or less
states that I am against any action of someone I
do not like. Clearly, we hardly would be against
a good deed of an opponent of us. We believe,
though, that such over-generalized rules also ex-
ist in our model and that we should find a means
to focus on that kind of failure (not so much on
propagated errors from the preprocessing stages).

10 Conclusions

Our model strives to answer the following ques-
tions, given a text and the personal profile of a sin-
gle user: who benefits (or suffers) from the situa-
tions described, what does the text (implicitly) tell
us about the relationship of the actors involved,
which topics does an actor like or dislike and –
given all this – what does this imply for the user:
who are proponents or opponents of his or hers.

The basis or our model is a language-specific
verb polarity lexicon with polar effects on the
bearers of what we call the for-roles and the of-
roles of the verb. This and the predicate argument
structures of a sentence lead to an A-Box repre-
sentation of the sentence. OWL concepts and a set
of SWRL rules then derive what the text implies
about (the author’s view of) reality and what the
reader might make of it.
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Abstract

Conventional word sense induction (WSI)
methods usually represent each instance
with discrete linguistic features or co-
occurrence features, and train a model
for each polysemous word individually.
In this work, we propose to learn sense
embeddings for the WSI task. In the
training stage, our method induces sev-
eral sense centroids (embedding) for each
polysemous word. In the testing stage,
our method represents each instance as a
contextual vector, and induces its sense
by finding the nearest sense centroid in
the embedding space. The advantages
of our method are (1) distributed sense
vectors are taken as the knowledge rep-
resentations which are trained discrimi-
natively, and usually have better perfor-
mance than traditional count-based distri-
butional models, and (2) a general model
for the whole vocabulary is jointly trained
to induce sense centroids under the mutli-
task learning framework. Evaluated on
SemEval-2010 WSI dataset, our method
outperforms all participants and most of
the recent state-of-the-art methods. We
further verify the two advantages by com-
paring with carefully designed baselines.

1 Introduction

Word sense induction (WSI) is the task of auto-
matically finding sense clusters for polysemous
words. In contrast, word sense disambiguation
(WSD) assumes there exists an already-known
sense inventory, and the sense of a word type is
disambiguated according to the sense inventory.
Therefore, clustering methods are generally ap-
plied in WSI tasks, while classification methods

are utilized in WSD tasks. WSI has been success-
fully applied to many NLP tasks such as machine
translation (Xiong and Zhang, 2014), information
retrieval (Navigli and Crisafulli, 2010) and novel
sense detection (Lau et al., 2012).

However, existing methods usually represent
each instance with discrete hand-crafted features
(Bordag, 2006; Chen et al., 2009; Van de Cruys
and Apidianaki, 2011; Purandare and Pedersen,
2004), which are designed manually and require
linguistic knowledge. Most previous methods re-
quire learning a specific model for each polyse-
mous word, which limits their usability for down-
stream applications and loses the chance to jointly
learn senses for multiple words.

There is a great advance in recent distributed
semantics, such as word embedding (Mikolov et
al., 2013; Pennington et al., 2014) and sense em-
bedding (Reisinger and Mooney, 2010; Huang et
al., 2012; Jauhar et al., 2015; Rothe and Schütze,
2015; Chen et al., 2014; Tian et al., 2014).
Comparing with word embedding, sense embed-
ding methods learn distributed representations for
senses of a polysemous word, which is similar to
the sense centroid of WSI tasks.

In this work, we point out that the WSI task
and the sense embedding task are highly inter-
related, and propose to jointly learn sense cen-
troids (embeddings) of all polysemous words for
the WSI task. Concretely, our method induces
several sense centroids (embedding) for each pol-
ysemous word in training stage. In testing stage,
our method represents each instance as a contex-
tual vector, and induces its sense by finding the
nearest sense centroid in the embedding space.
Comparing with existing methods, our method has
two advantages: (1) distributed sense embeddings
are taken as the knowledge representations which
are trained discriminatively, and usually have bet-
ter performance than traditional count-based dis-
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tributional models (Baroni et al., 2014), and (2) a
general model for the whole vocabulary is jointly
trained to induce sense centroids under the mutli-
task learning framework (Caruana, 1997). Eval-
uated on SemEval-2010 WSI dataset, our method
outperforms all participants and most of the recent
state-of-the-art methods.

2 Methodology

2.1 Word Sense Induction

WSI is generally considered as an unsupervised
clustering task under the distributional hypothesis
(Harris, 1954) that the word meaning is reflected
by the set of contexts in which it appears. Existing
WSI methods can be roughly divided into feature-
based or Bayesian. Feature-based methods first
represent each instance as a context vector, then
utilize a clustering algorithm on the context vec-
tors to induce all the senses. Bayesian methods
(Brody and Lapata, 2009; Yao and Van Durme,
2011; Lau et al., 2012; Goyal and Hovy, 2014;
Wang et al., 2015), on the other hand, discover
senses based on topic models. They adopt either
the LDA (Blei et al., 2003) or HDP (Teh et al.,
2006) model by viewing each target word as a cor-
pus and the contexts as pseudo-documents, where
a context includes all words within a window cen-
tred by the target word. For sense induction, they
first extract pseudo-documents for the target word,
then train topic model, finally pick the most prob-
able topic for each test pseudo-document as the
sense.

All of the existing WSI methods have two im-
portant factors: 1) how to group similar instances
(clustering algorithm) and 2) how to represent
context (knowledge representation). For clus-
tering algorithms, feature-based methods use k-
means or graph-based clustering algorithms to as-
sign each instance to its nearest sense, whereas
Bayesian methods sample the sense from the prob-
ability distribution among all the senses for each
instance, which can be seen as soft clustering al-
gorithms. As for knowledge representation, ex-
isting WSI methods use the vector space model
(VSM) to represent each context. In feature-based
models, each instance is represented as a vector of
values, where a value can be the count of a fea-
ture or the co-occurrence between two words. In
Bayesian methods, the vectors are represented as
co-occurrences between documents and senses or
between senses and words. Overall existing meth-

ods separately train a specific VSM for each word.
No methods have shown distributional vectors can
keep knowledge for multiple words while showing
competitive performance.

2.2 Sense Embedding for WSI

As mentioned in Section 1, sense embedding
methods learn a distributed representation for each
sense of a polysemous word. There are two key
factors for sense embedding learning: (1) how to
decide the number of senses for each polysemous
word and (2) how to learn an embedding repre-
sentation for each sense. To decide the number of
senses in factor (1), one group of methods (Huang
et al., 2012; Neelakantan et al., 2014) set a fixed
number K of senses for each word, and each in-
stance is assigned to the most probable sense ac-
cording to Equation 1, where µ(wt, k) is the vector
for the k-th sense centroid of word w, and vc is the
representation vector of the instance.

st = arg max
k=1,..,K

sim(µ(wt, k), vc) (1)

Another group of methods (Li and Jurafsky,
2015) employs non-parametric algorithms to dy-
namically decide the number of senses for each
word, and each instance is assigned to a sense
following a probability distribution in Equation 2,
where St is the set of already generated senses for
wt, and γ is a constant probability for generating
a new sense for wt.

st ∼
{
p(k|µ(wt, k), vc) ∀ k ∈ St

γ for new sense
(2)

From the above discussions, we can obviously
notice that WSI task and sense embedding task
are inter-related. The two factors in sense em-
bedding learning can be aligned to the two fac-
tors of WSI task. Concretely, deciding the num-
ber of senses is the same problem as the clustering
problem in WSI task, and sense embedding is a
potential knowledge representation for WSI task.
Therefore, sense embedding methods are naturally
applicable to WSI.

In this work, we apply the sense embedding
learning methods for WSI tasks. Algorithm 1 lists
the flow of our method. The algorithm iterates sev-
eral times over a Corpus (Line 2-3). For each to-
ken wt, it calculates the context vector vc (Line
4) for an instance, and then gets the most possible
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Algorithm 1 Sense Embedding Learning for WSI

1: procedure TRAINING(Corpus C)
2: for iter in [1..I] do
3: for wt in C do
4: vc ← context vec(wt)
5: st ← sense label(wt, vc)
6: update(wt, st)
7: end for
8: end for
9: end procedure

sense label st for wt (Line 5). Finally, both the
sense embeddings for st and global word embed-
dings for all context words ofwt are updated (Line
6). We introduce our strategy for context vec in
the next section. For sense label function, a sense
label is obtained by either Equation 1 or Equation
2. For the update function, vectors are updated by
the Skip-gram method (same as Neelakantan et al.
(2014)) which tries to predict context words with
the current sense. In this algorithm, the senses of
all polysemous words are learned jointly on the
whole corpus, instead of training a single model
for each individual word as in the traditional WSI
methods. This is actually an instance of multi-task
learning, where WSI models for each target word
are trained together, and all of these models share
the same global word embeddings.

Comparing to the traditional methods for WSI
tasks, the advantages of our method include:
1) WSI models for all the polysemous words
are trained jointly under the multi-task learning
framework; 2) distributed sense embeddings are
taken as the knowledge representations which are
trained discriminatively, and usually have better
performance than traditional count-based distribu-
tional models (Baroni et al., 2014). To verify the
two statements, we carefully designed compara-
tive experiments described in the next section.

3 Experiment

3.1 Experimental Setup and baselines

We evaluate our methods on the test set of the
SemEval-2010 WSI task (Manandhar et al., 2010).
It contains 8,915 instances for 100 target words
(50 nouns and 50 verbs) which mostly come from
news domain. We choose the April 2010 snapshot
of Wikipedia (Shaoul and Westbury, 2010) as our
training set, as it is freely available and domain
general. It contains around 2 million documents

and 990 million tokens. We train and test our mod-
els and the baselines according to the above data
setting, and compare with reported performance
on the same test set from previous papers.

For our sense embedding method, we build two
systems: SE-WSI-fix which adopts Multi-Sense
Skip-gram (MSSG) model (Neelakantan et al.,
2014) and assigns 3 senses for each word type,
and SE-WSI-CRP (Li and Jurafsky, 2015) which
dynamically decides the number of senses using
a Chinese restaurant process. For SE-WSI-fix, we
learn sense embeddings for the top 6K frequent
words in the training set. For SE-WSI-CRP, we
first learn word embeddings with word2vec1, then
use them as pre-trained vectors to learn sense em-
beddings. All training is under default parame-
ter settings, and all word and sense embeddings
are fixed at 300 dimensions. For fair comparison,
we create SE-WSI-fix-cmp by training the MSSG
model on the training data of the SemEval-2010
WSI task with the same setting of SE-WSI-fix.

We also design baselines to verify the two ad-
vantages of our sense embedding methods. One
(CRP-PPMI) uses the same CRP algorithm as SE-
WSI-CRP, but with Positive PMI vectors as pre-
trained vectors. The other (WE-Kmeans) uses the
vectors learned by SE-WSI-fix, but separately clus-
ters all the context vectors into 3 groups for each
target word with kmeans. We compute a con-
text vector by averaging the vectors of all selected
words in the context2.

3.2 Comparing on SemEval-2010

We compare our methods with the following sys-
tems: (1) UoY (Korkontzelos and Manandhar,
2010) which is the best system in the SemEval-
2010 WSI competition; (2) NMFlib (Van de Cruys
and Apidianaki, 2011) which adopts non-negative
matrix factorization to factor a matrix and then
conducts word sense clustering on the test set; (3)
NB (Choe and Charniak, 2013) which adopts naive
Bayes with the generative story that a context is
generated by picking a sense and then all context
words given the sense; and (4) Spectral (Goyal and
Hovy, 2014) which applies spectral clustering on
a set of distributional context vectors.

Experimental results are shown in Table 1. Let
us see the results on supervised recall (80-20 SR)

1https://code.google.com/p/word2vec/
2A word is selected only if its length is greater than 3, not

the target word, or not in a self-constructed stoplist.
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System V-Measure(%) Paired F-score(%) 80-20 SR(%) FS #CI
All Noun Verb All Noun Verb All Noun Verb All

UoY (2010) 15.7 20.6 8.5 49.8 38.2 66.6 62.4 59.4 66.8 - 11.5
NMFlib (2011) 11.8 13.5 9.4 45.3 42.2 49.8 62.6 57.3 70.2 - 4.80
NB (2013) 18.0 23.7 9.9 52.9 52.5 53.5 65.4 62.6 69.5 - 3.42
Spectral (2014) 4.5 4.6 4.2 61.5 54.5 71.6 - - - 60.7 1.87
SE-WSI-fix-cmp 16.3 20.8 9.7 54.3 54.2 54.3 66.3 63.6 70.2 66.4 2.61
SE-WSI-fix 9.8 13.5 4.3 55.1 50.7 61.6 62.9 58.5 69.2 63.0 2.50
SE-WSI-CRP 5.7 7.4 3.2 55.3 49.4 63.8 61.2 56.3 67.9 61.3 2.09
CRP-PPMI 2.9 3.5 2.0 57.7 53.3 64.0 59.2 53.6 67.4 59.2 1.76
WE-Kmeans 4.6 5.0 4.1 51.2 46.5 57.6 58.6 53.3 66.4 58.6 2.54

Table 1: Result on SemEval-2010 WSI task. 80-20 SR is the supervised recall of 80-20 split supervised
evaluation. FS is the F-Score of 80-20 split supervised evaluation. #CI is the average number of clusters
(senses)

first, as it is the main indicator for the task. Over-
all, SE-WSI-fix-cmp, which jointly learns sense
embedding for 6K words, outperforms every com-
paring systems which learns for each single word.
This shows that sense embedding is suitable and
promising for the task of word sense induction.
Trained on out-of-domain data, SE-WSI-fix outper-
forms most of the systems, including the best sys-
tem in the shared task (UoY), and SE-WSI-CRP
works better than Spectral and all the baselines.
This also shows the effectiveness of the sense em-
bedding methods. Besides, SE-WSI-CRP is 1.7
points lower than SE-WSI-fix. We think the rea-
son is that SE-WSI-CRP induces fewer senses than
SE-WSI-fix (see the last column of Table 1). Since
both systems induce fewer senses than the golden
standard which is 3.85, inducing fewer senses
harms the performance. Finally, simple as it is,
NB shows a very good performance. However NB
can not benefit from large-scale data as its number
of parameters is small, and it uses EM algorithm
which is generally slow. Sense embedding meth-
ods have other advantages that they train a general
model while NB learns specific model for each tar-
get word.

As for the unsupervised evaluations, SE-WSI-
fix achieves a good V-Measure score (VM) with a
few induced senses. Pedersen (2010) points out
that bad models can increase VM by increasing
the number of clusters, but doing this will harm
performance on both Paired F-score (PF) and SR.
Even though UoY, NMFlib and NB show better
VM, they (especially UoY) induced more senses
than SE-WSI-fix. SE-WSI-fix has higher PF than
all others, and higher SR than UoY and NMFlib.

Trained on the official training data of SemEval-
2010 WSI task, SE-WSI-fix-cmp achieves the top
performance on both VM and PF, while it induces
a reasonable number of averaged senses. Compar-
atively SE-WSI-CRP has lower VM and induces
fewer senses than SE-WSI-fix. One possible reason
is that the “rich gets richer” nature of CRP makes
it conservative for making new senses. But its PF
and SR show that it is still a highly competitive
system.

To verify the advantages of our method, we first
compare SE-WSI-CRP with CRP-PPMI as their
only difference is the vectors for representing con-
texts. We can see that SE-WSI-CRP performs sig-
nificantly better than CRP-PPMI on both SR and
VM. CRP-PPMI has higher PF mainly because it
induces fewer number of senses. The above re-
sults prove that using sense embeddings have bet-
ter performance than using count-based distribu-
tional models. Besides, SE-WSI-fix is significantly
better than WE-Kmeans on every metric. As WE-
Kmeans and SE-WSI-fix learn sense centroids in
the same vectors space, while the latter performs
joint learning. Therefore, the joint learning is bet-
ter than learning separately.

4 Related Work

Kågebäck et al. (2015) proposed two methods
to utilize distributed representations for the WSI
task. The first method learned centroid vec-
tors by clustering all pre-computed context vec-
tors of each target word. The other method sim-
ply adopted MSSG (Neelakantan et al., 2014) and
changed context vector calculation from the aver-
age of all context word vectors to weighted aver-
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age. Our work has further contributions. First,
we clearly point out the two advantages of sense
embedding methods: 1) joint learning under the
mutli-task learning framework, 2) better knowl-
edge representation by discriminative training, and
verify them by experiments. In addition, we adopt
various sense embedding methods to show that
sense embedding methods are generally promis-
ing for WSI, not just one method is better than
other methods. Finally, we compare our methods
with recent state-of-the-art WSI methods on both
supervised and unsupervised metrics.

5 Conclusion

In this paper, we show that sense embedding is
a promising approach for WSI by adopting two
different sense embedding based systems on the
SemEval-2010 WSI task. Both systems show
highly competitive performance while they learn a
general model for thousands of words (not just the
tested polysemous words). we believe that the two
advantages of our method are: 1) joint learning
under the mutli-task learning framework, 2) better
knowledge representation by discriminative train-
ing, and verify them by experiments.
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Abstract

Recent models in distributional seman-
tics consider derivational patterns (e.g.,
use → use + f ul ) as the result of a
compositional process, where base term
and affix are combined. We exploit
such models for German particle verbs
(PVs), and focus on the task of learning
a mapping function between base verbs
and particle verbs. Our models apply
particle-verb motivated training-space
restrictions relying on nearest neighbors,
as well as recent advances from zero-
shot-learning. The models improve the
mapping between base terms and de-
rived terms for a new PV derivation
dataset, and also across existing deriva-
tion datasets for German and English.

1 Introduction

Lazaridou et al. (2013) were the first to apply
distributional semantic models (DSMs) to the
task of deriving the meaning of morphologically
complex words from their parts. They relied
on high-dimensional vector representations to
model the derived term (e.g., useful) as a result
of a compositional process that combines the
meanings of the base term (e.g., to use) and the
affix (e.g., ful). For evaluation, they compared
the predicted vector of the complex word with
the original, corpus-based vector.

More recently, Kisselew et al. (2015) put the
task of modeling derivation into the perspective
of zero-shot-learning: instead of using cosine
similarities they predicted the derived term by
learning a mapping function between the base
term and the derived term. Once the predicted

vector was computed, a nearest neighbor search
was applied to validate if the prediction cor-
responded to the derived term. In zero-shot-
learning the task is to predict novel values, i.e.,
values that were never seen in training. More
formally, zero-shot-learning trains a classifier f :
X → Y that predicts novel values for Y (Palatucci
et al., 2009). It is often applied across vector
spaces, such as different domains (Mikolov et al.,
2013; Lazaridou et al., 2015).

The experiments by Kisselew et al. (2015)
were performed over six derivational patterns
for German (cf. Table 1), including particle
verbs (PVs) with two different particle prefixes
(an and durch), which were particularly difficult
to predict. PVs such as anfangen (to start) are
compositions of a base verb (BV) such as fan-
gen (to catch) and a verb particle such as an.
Predicting PV meaning is challenging because
German PVs are highly productive (Springorum
et al., 2013b; Springorum et al., 2013a), and
the particles are notoriously ambiguous (Lech-
ler and Roßdeutscher, 2009; Haselbach, 2011;
Kliche, 2011; Springorum, 2011). Furthermore,
the particles often trigger meaning shifts when
they combine with base verbs (Springorum et al.,
2013b), so the resulting PVs represent frequent
cases of non-literal meaning.

In this paper, we focus on predicting the
meanings of German PV derivations. Our mod-
els provide two contributions to the research
field of predicting derivations: (i) We suggest
a novel idea of restricting the available train-
ing data, which has a positive impact on the
mapping quality. (ii) We integrate a correc-
tion method for popular nearest neighbors into
our models, so-called hubs (Radovanović et al.,
2010), to improve the prediction quality.
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POS Affix Example Inst.

adj/adj un- sagbar - unsagbar 80
adj/adj anti- religiös - antireligiös 80
noun/noun -in Bäcker - Bäckerin 80
noun/noun -chen Schiff - Schiffchen 80
verb/verb an- backen - anbacken 80
verb/verb durch- sehen - durchsehen 80

Table 1: German dataset (Kisselew et al., 2015).

POS Affix Example Inst.

verb/verb auf- nehmen - aufnehmen 171
verb/verb ab- setzen - absetzen 287
verb/verb mit- streiken - mitstreiken 216
verb/verb ein- laufen - einlaufen 185
verb/verb zu- drücken - zudrücken 50
verb/verb an- legen - anlegen 221
verb/verb aus- malen - ausmalen 280

Table 2: New German PV derivation dataset.

2 Prediction Experiments

As in Kisselew et al. (2015), we treat every deriva-
tion type as a specific learning problem: we take
a set of word pairs with a particular derivation
pattern (e.g., “-in”, Bäcker::Bäckerin), and divide
this set into training and test pairs by perform-
ing 10-fold cross-validation. For the test pairs,
we predict the vectors of the derived terms (e.g.,−−−−−−→
Bäckerin). The search space includes all cor-
pus words across parts-of-speech, except for the
base term. The performance is measured in
terms of recall-out-of-5 (McCarthy and Navigli,
2009), counting how often the correct derived
term is found among the five nearest neighbors
of the predicted vector.

2.1 Derivation Datasets

We created a new collection of German parti-
cle verb derivations1 relying on the same re-
source as Kisselew et al. (2015), the semi-
automatic derivational lexicon for German DE-
rivBase (Zeller et al., 2013). From DErivBase,
we induced all pairs of base verbs and parti-
cle verbs across seven different particles. Non-
existing verbs were manually filtered out. In to-
tal, our collection contains 1410 BV–PV combi-
nations across seven particles, cf. Table 2.

In addition, we apply our models to two ex-
isting collections for derivational patterns, the
German dataset from Kisselew et al. (2015),
comprising six derivational patterns with 80 in-

1The dataset is available from http://www.ims.
uni-stuttgart.de/data/pv-deriv-dataset/.

stances each (cf. Table 1), and the English
dataset from Lazaridou et al. (2013), comprising
18 derivational patterns (3 prefixes and 15 suf-
fixes) and 7449 instances (cf. Table 3).

POS Affix Example Inst.

verb/adj -able believe - believable 227
noun/adj -al doctor - doctoral 295
verb/noun -er repeat - repeater 874
noun/adj -ful use - useful 103
noun/adj -ic algorithm - algorithmic 330
verb/noun -ion erupt - eruption 687
noun/noun -ist drama - dramatist 294
adj/noun -ity accessible - accessibility 422
noun/verb -ize cannibal - cannibalize 155
noun/adj -less word - wordless 172
adj/adv -ly diagonal - diagonally 1,897
verb/noun -ment equip - equipment 215
adj/noun -ness empty - emptiness 652
noun/adj -ous religion - religious 207
noun/adj -y sport - sporty 454
adj/adj in- dispensable - indispensable 151
verb/verb re- write - rewrite 136
adj/adj un- familiar - unfamiliar 178

Table 3: English dataset (Lazaridou et al., 2013).

2.2 Word Embedding Vectors

We relied on the German and English COW web
corpora2 (Schäfer and Bildhauer, 2012) to obtain
vector representations. The corpora contain 20
billion words and 9 billion words, respectively.
We parsed the corpora using state-of-the-art
pipelines integrating the MarMoT tagger and the
MATE parser (Müller et al., 2013; Bohnet, 2010),
and induced window co-occurrences for all cor-
pus lemma–POS pairs and co-occurring nouns,
verbs and adjectives in a 5-lemma window. We
then created 400-dimensional word representa-
tions using the hyperwords toolkit (Levy et al.,
2015), with context distribution smoothing of
0.75 and positive point-wise mutual information
weighting together with singular value decom-
position. The resulting vector space models con-
tain approximately 460000 lemmas for German
and 240000 lemmas for English.

2.3 Prediction Methods

2.3.1 Baseline

A baseline method that simply guesses the de-
rived term has a chance of approx. 1

460000 for
German and 1

240000 for English to predict the cor-
rect term. We thus apply a more informed base-
line, the same as in Kisselew et al. (2015), and

2http://corporafromtheweb.org
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predict the derived term at exactly the same po-
sition as the base term.

2.3.2 Additive Method (AvgAdd)

AvgAdd is a re-implementation of the best
method in Kisselew et al. (2015):3 For each affix,
the method learns a difference vector by com-
puting the dimension-wise differences between
the vector representations of base term A and
derived term B . The method thus learns a cen-
troid~c for all relevant training pairs (N ) with the
same affix:

~c = 1

N

n∑
i=0

(Bi − Ai ) (1)

For each PV test instance with this affix, the
learned centroid vector is added dimension-
wise to the vector representation of the base
term to predict a position for the derived term.

2.3.3 Restricting the Training Space
(BestAdd)

Avg-Add learns a vector representation based on
the full available training data for each deriva-
tional pattern. In this paper, we suggest a
method BestAddk that restricts the training items
of a given base term to those BV–PV train-
ing instances that include the k nearest base
verbs (using k = 1,3,5) according to their co-
sine. The motivation for our adjusted method
relies on the observation that particles are very
ambiguous and thus differ in their meanings
across particle verbs. For example, the mean-
ings of ’an’ include a directed contact as in
sprechen::ansprechen (to speak/to speak to s.o.)
and in schreiben::anschreiben (to write/to write
to s.o.), and also a start of an action as in spie-
len::anspielen (to play/to start playing) and in
stimmen::anstimmen (to pitch/to start singing).
We assume that base verbs that are distribution-
ally similar also behave in a similar way when
combined with a specific particle, and that a
more restricted training set that is however spec-
ified for BV semantics outperforms a larger train-
ing set across wider BV meanings.

2.3.4 3CosMul

We also re-implemented 3CosMul (Levy and
Goldberg, 2014), a method that has been proven
successful in solving analogy tasks, such as man

3We also conducted experiments with the least-squares
error objective method LexFun but the results were clearly
inferior to the AvgAdd method.

(A) is to ki ng (B) as woman (C) is to queen (D).
3CosMul does not explicitly predict a position in
space but selects a target D in space that is close
to B and C but not close to A. We applied 3Cos-
Mul by always using the most similar training in-
stance (as for BestAdd with k = 1).

2.4 Local Scaling

All methods introduced in the previous section
perform a nearest neighbor search at the pre-
dicted position. We suggest to improve the pre-
diction quality at this stage by mitigating the
hubness problem (Dinu et al., 2015). Hubs
are objects in vector space that are likely to
appear disproportionately often among near-
est neighbors, without necessarily being seman-
tically related. Hubness has been shown an
intrinsic problem of high-dimensional spaces
(Tomasev, 2014). In order to reduce hub-
ness, three unsupervised methods to re-scale the
high-dimensional distances have been proposed
(Schnitzer et al., 2014): local scaling, global scal-
ing, and shared nearest neighbors. We focus on a
local scaling (LS) type of hubness-correcting dis-
tance measure, namely the non-iterative contex-
tual measure N I (Jégou et al., 2007):

N I (x, y) = dx yp
µx ·µy

(2)

N I relies on the average distance µ of x and y to
their k nearest neighbors. It increases the simi-
larity between x and y in cases where we observe
low average similarities between x, y and its k
nearest neighbors. Intuitively, if a word x is not
even close to its nearest neighbors but compa-
rably close to y then we increase the similarity
between x and y .

For 3CosMul, we adapt local scaling by scaling
over the neighborhood information for all four
parts (A, B, C and D) in the analogy:

3CosMul+LS (D) = 3CosMul(D)
4pµA ·µB ·µC ·µD

3 Results

3.1 BestAdd and Local Scaling

Table 4 presents macro-averaged recall-out-of-5
scores, giving equal weight to each derivation re-
gardless of the number of instances. Across the
three datasets, the default results (i.e., without
local scaling) obtained with our novel method
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Particle Verbs (DE) Kisselew (DE) Lazaridou (EN)
Method Default + NI15 Default +NI15 Default + NI15

Baseline 10.79% 16.08% 15.36%

AvgAdd 11.82% +1.28% 24.26% +3.14% 24.19% +2.95%

BestAdd1 10.22% +1.19% 33.91% +3.97% 27.32% +1.87%
BestAdd3 14.26% +2.24% 38.50% +4.17% 37.06% +1.40%
BestAdd5 14.44% +1.97% 38.07% +4.61% 38.49% +2.12%

3CosMul 10.06% -0.73% 33.91% + 1.04% 27.88% +0.90%

Table 4: Macro-averaged recall-out-of-5 across methods, with and without local scaling N I15.

● ●

●

●

●

●

●

5

10

15

20

3CosMul

3CosMul+NI15

AvgAdd

AvgAdd+NI15

Baseline
BestAdd1

BestAdd1+NI15

BestAdd3

BestAdd3+NI15

BestAdd5

BestAdd5+NI15R
ec

al
l−

ou
t−

of
−

5

Figure 1: Recall-out-of-5 results across methods, for the German PV derivation dataset.

BestAdd (with k = {3,5}) are significantly4 above
AvgAdd (p < 0.01), the previously best method
for the existing German and English datasets.
BestAdd with k = 1 and 3CosMul perform at a
similar level than AvgAdd, but for our new PV
derivation dataset do not even outperform the
baseline. Restricting the training process to a
small selection of nearest neighbors therefore
has a positive impact on the prediction quality.

Furthermore, local scaling relying on k = 15
nearest neighbors (N I15) improves the predic-
tion results in all but one cases. These improve-
ments are however not significant.

The results in Table 4 also demonstrate that
predicting particle verbs is the most challeng-
ing derivation task, as the results are significantly
lower than for the other two datasets. Figure 1
once more illustrates the recall-out-of-5 results
for our new PV dataset. In the following, we
zoom into dataset derivation types.

3.2 Improvement across Derivation Types
and Languages

Figures 2 to 4 break down the results from Table 4
across the German and English derivation types.

4Significance relies on χ2.

The blue bars show the BestAdd3 results, and
the green stacked bars represent the additional
gain using local scaling (NI15). The yellow points
correspond to baseline performance, and the
dotted black lines to the AvgAdd results.

We can see that BestAdd3 not only outper-
forms the previously best method AvgAdd on av-
erage but also for each derivation type. Also, lo-
cal scaling provides an additional positive im-
pact for all but one particle type in German, ab-,
and for all but three derivation types in English,
-able, -al, -less.

At the same time, we can see that the im-
pact of local scaling is different across deriva-
tion types. For example, looking into the data we
observe that mit PVs are often wrongly mapped
to nouns, and BestAdd and local scaling correct
this behavior: The nearest neighbors of the verb
erledigen (to manage sth.) with BestAdd3 are
Botengang (errand), Haushaltsarbeit (domestic
work), Hausmeisterarbeit (janitor work), and fur-
ther six compounds with the nominal head Ar-
beit (work). Additional local scaling predicts the
correct PV miterledigen (to manage sth. in addi-
tion) as second nearest neighbor.
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Figure 2: Performance gain across particle types.
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Figure 3: Performance gain for derivation types
in Kisselew et al. (2015).
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Figure 4: Performance gain for derivation types
in Lazaridou et al. (2013).

3.3 Recall-out-of-x across Particle Types

Figure 5 focuses on the particle types, but varies
the strength of the evaluation measure. Rely-
ing on BestAdd3 with local scaling NI15, we ap-
ply recall-out-of-x with x ∈ [1,10]. With one ex-
ception (zu), all particle types achieve a perfor-
mance of 15-23% for recall-out-of-5, so zu had a
negative impact on the average score in Table 4.
Looking at recall-out-of-10, the performances go
up to 20-30%. While PVs with the rather non-
ambiguous mit are again modeled best, also PVs
with strongly ambiguous particles (such as an
and auf ) are modeled well.
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Figure 5: Recall-out-of-[1,10] across particles.

4 Conclusion

We suggested two ways to improve the pre-
diction of derived terms for English and Ger-
man. Both (i) particle-verb motivated training-
space restrictions and (ii) local scaling to ad-
dress hubness in high-dimensional spaces had
a positive impact on the prediction quality of
derived terms across datasets. Particle-specific
explorations demonstrated the difficulty of this
derivation, and differences across particle types.
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Abstract

Distributional semantic models can pre-
dict many linguistic phenomena, including
word similarity, lexical ambiguity, and se-
mantic priming, or even to pass TOEFL
synonymy and analogy tests (Landauer
and Dumais, 1997; Griffiths et al., 2007;
Turney and Pantel, 2010). But what does it
take to create a competitive distributional
model? Levy et al. (2015) argue that the
key to success lies in hyperparameter tun-
ing rather than in the model’s architec-
ture. More hyperparameters trivially lead
to potential performance gains, but what
do they actually do to improve the mod-
els? Are individual hyperparameters’ con-
tributions independent of each other? Or
are only specific parameter combinations
beneficial? To answer these questions, we
perform a quantitative and qualitative eval-
uation of major hyperparameters as identi-
fied in previous research.

1 Introduction

In a rigorous evaluation, (Baroni et al., 2014)
showed that neural word embeddings such as skip-
gram have an edge over traditional count-based
models. However, as argued by Levy and Gold-
berg (2014), the difference is not as big as it ap-
pears, since skip-gram is implicitly factorizing a
word-context matrix whose cells are the pointwise
mutual information (PMI) of word context pairs
shifted by a global constant. Levy et al. (2015)
further suggest that the performance advantage of
neural network based models is largely due to hy-
perparameter optimization, and that the optimiza-
tion of count based models can result in similar
performance gains. In this paper we take this
claim as the starting point. We experiment with

three hyperparameters that have the greatest ef-
fect on model performance according to Levy et
al. (2015): subsampling, shifted PMI and context
distribution smoothing. To get a more detailed pic-
ture, we use a greater range of hyperparameter val-
ues than in previous work, comparing all hyperpa-
rameter value combinations, and perform a quali-
tative analysis of their effect.

2 Hyperparameters Explored

2.1 Context Distribution Smoothing (CDS)

Mikolov et al. (2013b) smoothed the original con-
texts distribution raising unigram frequencies to
the power of alpha. Levy and Goldberg (2015)
used this technique in conjunction with PMI.

PMI(w, c) = log
P̂ (w, c)

P̂ (w) · P̂α(c)

P̂α(c) =
#(c)α∑
c #(c)α

After CDS, either PPMI or Shifted PPMI may
be applied. We implemented CDS by raising every
count to the power of α, exploring several values
for α, from .25 to .95 to 1 (no smoothing).

2.2 Shifted PPMI

Levy and Goldberg introduced Shifted Positive
Pointwise Mutual Information (SPPMI) as an as-
sociation measure more efficient than PPMI. For
every word w and every context c, the SPPMI of
w is the higher value between 0 and its PMI value
minus the log of a constant k.

PPMI(w, c) = max(log
P (w, c)
P (w)P (c)

, 0)

SPPMIk(w, c) = max(PMI(w, c)− log k, 0)
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2.3 Subsampling
Subsampling was used by Mikolov et al. as a
means to remove frequent words that provide
less information than rare words (Mikolov et al.,
2013a). Each word in the corpus with frequency
above treshold t can be ignored with probability p,
computed for each word using its frequency f :

p = 1−
√
t

f

Following Mikolov et al., we used t = 10−5. In
word2vec, subsampling is applied before the cor-
pus is processed. Levy and Goldberg explored the
possibility of applying subsampling afterwards,
which does not affect the context window’s size,
but found no significant difference between the
two methods. In our experiments, we applied sub-
sampling before processing.

3 Evaluation Setup

3.1 Corpus
For maximum consistency with previous research,
we used the cooccurrence counts of the best count-
based configuration in Baroni et al. (2014), ex-
tracted from the concatenation of the web-crawled
ukWack corpus (Baroni et al., 2009), Wikipedia,
and the BNC, for a total of 2.8 billion tokens, using
a 2-word window and the 300K most frequent to-
kens as contexts. This corpus will be referred to as
WUB. For comparison with a smaller corpus, sim-
ilar to the one in Levy and Goldberg’s setup, we
also extracted cooccurrence data from Wikipedia
alone, leaving the rest of the configuration identi-
cal. This corpus will be referred to as Wiki.

3.2 Evaluation Materials
Three data sets were used to evaluate the mod-
els. The MEN data set contains 3000 word pairs
rated by human similarity judgements. Bruni et al.
(2014) report an accuracy of 78% on this data-set
using an approach that combines visual and tex-
tual features. The WordSim data set is a collec-
tion of word pairs associated with human judge-
ments of similarity or relatedness. The similarity
set contains 203 items (WS sim) and the related-
ness set contains 252 items (WS rel). Agirre et
al. achieved an accuracy of 77% on this data set
using a context window approach (Agirre et al.,
2009). The TOEFL data set includes 80 multiple-
choice synonym questions (Landauer and Dumais,

1997). For this data set, corpus-based approaches
have reached an accuracy of 92.50% (Rapp, 2003).

4 Results

4.1 Context Distribution Smoothing

Our results show that smoothing is largely inef-
fective when used in conjunction with PPMI. It
also becomes apparent that .95 is a better parame-
ter than .75 for smoothing purposes.

MEN WS rel WS sim toefl

WUB .25 .6128 .3740 .5814 .62
.50 .6592 .4419 .6283 .68
.70 .6938 .5113 .6708 .72
.75 .7008 .5249 .6788 .75
.80 .7069 .5393 .6866 .76
.85 .7119 .5517 .6950 .77
.90 .7162 .5625 .6998 .77
.95 .7197 .5730 .7043 .77
1.0 .7208 .5708 .7001 .76

Wiki .75 .7194 .4410 .6906 .76
.85 .7251 .4488 .7001 .76
.95 .7277 .4534 .7083 .77
1.0 .7224 .4489 .7158 .76

Table 1: Context Distribution Smoothing

4.2 Shifted PPMI

When using SPPMI, Levy and Goldberg (2014)
tested three values for k: 1, 5 and 15. On the MEN
data set, they report that the best k value was 5
(.721), while on the WordSim data set the best k
value was 15 (.687). In our experiments, where (in
contrast to Levy and Goldberg) all other hyperpa-
rameters are set to ‘vanilla’ values, the best k value
was 3 for all data sets.

4.3 Smoothing and Shifting Combined

The results in Table 3 show that Context Distri-
bution Smoothing is effective when used in con-
junction with Shifted PPMI. With CDS, 5 turns
out to be a better value than 3 for k. These results
are also consistent with the previous experiment:
a smoothing of .95 is in most cases better than .75.

4.4 Subsampling

Under the best shifting and smoothing configura-
tion, subsampling can improve the model’s perfor-
mance score by up to 9.2% (see Table 4). But in
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MEN WS rel WS sim toefl

WUB 1 .7208 .5708 .7001 .76
2 .7298 .5880 .7083 .75
3 .7314 .5891 .7113 .76
4 .7308 .5771 .7071 .76
5 .7291 .5651 .7034 .75
10 .7145 .5138 .6731 .72
15 .6961 .4707 .6464 .71

Wiki 1 .7224 .4489 .7158 .76
3 .7281 .4575 .7380 .77
4 .7269 .4553 .7376 .75
5 .7250 .4504 .7334 .76

Table 2: Shifted PPMI

the absence of shifting and smoothing, subsam-
pling does not produce a consistent performance
change, which ranges from −6.7% to +7%.

The nature of the task is also important here: on
WS rel, subsampling improves the model’s per-
formance by 9.2%. We assume that diversifying
contextual cues is more beneficial in a relatedness
task than in others, especially on a smaller corpus.

5 Qualitative Analysis

CDS and SPPMI increase model performance be-
cause they reduce statistical noise, which is illus-
trated in Table 5. It shows the top ten neighbours
of the word doughnut in the vanilla PPMI config-
uration vs. SPPMI with CDS, in which there are
more semantically related neighbours (in bold).

To visualize which dimensions of the vectors
are discarded when shifting and smoothing, we
randomly selected a thousand word vectors and
compared the number of dimensions with a pos-
itive value for each vector in the vanilla configu-
ration vs. log(5)cds(.95). For instance, the word
segmentation has 1105 positive dimensions in the
vanilla configuration, but only 577 in the latter.

For visual clarity, only vectors with 500 or less
contexts are shown in Figure 1.

This figure indicates that the process of shifting
and smoothing appears to be largely independent
from the number of contexts of a vector: a word
with a high number of positive contexts in the
vanilla configuration may very well end up with
zero positive contexts under SPPMI with CDS.

The independence of the number of positive
contexts under the vanilla configuration from the
probability of having at least one positive context

MEN WS rel WS sim toefl

WUB

log(1) cds(1.0) .7208 .5708 .7001 .76
log(3) cds(.75) .7319 .5969 .7146 .73
log(3) cds(.90) .7371 .6170 .7285 .76
log(3) cds(.95) .7379 .6201 .7315 .76
log(4) cds(.75) .7363 .6071 .7212 .75
log(4) cds(.90) .7398 .6222 .7351 .76
log(4) cds(.95) .7403 .6265 .7392 .77
log(5) cds(.75) .7387 .6115 .7281 .76
log(5) cds(.90) .7412 .6223 .7404 .77
log(5) cds(.95) .7414 .6257 .7434 .77

Wiki

log(1) cds(1.0) .7224 .4489 .7158 .76
log(5) cds(.75) .7424 .4787 .7378 .75
log(5) cds(.85) .7399 .4795 .7418 .75
log(5) cds(.95) .7362 .4806 .7443 .75

Table 3: CDS and Shifted PPMI

MEN WS rel WS sim toefl

WUB

log(1) cds(1.0) .7284 .5043 .6750 .75
log(5) cds(.95) .7577 .5539 .7505 .73

Wiki

log(1) cds(1.0) .7260 .5186 .6965 .72
log(5) cds(.95) .7661 .5729 .7446 .76

Table 4: CDS and SPPMI with subsampling

under SPPMI with CDS is confirmed by the Chi-
Square test (χ = 344.26, p = .9058).

We further analysed a sample of 1504 vectors
that lose all positive dimensions under SPPMI
with CDS. We annotated a portion of those vec-
tors, and found that the vast majority were numer-
ical expressions, such as dates, prices or measure-
ments, e.g. 1745, which may appear in many dif-
ferent contexts, but is unlikely to have a high num-
ber of occurrences with any of them. This explains
why its number of positive contexts drops to zero
when SPPMI and CDS are applied.

6 Count vs Predict and Corpus Size

We conducted the same experimenta-
tions on two corpora: the WUB corpus
(Wikipedia+ukWack+BNC) used by Baroni
et al., and the smaller Wiki corpus comparable
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log(1) cds(1.0) log(5) cds(.95)

doughnut 1.0 doughnut 1.0
lukeylad .467 donut .242

ricardo308 .388 doughnuts .213
katie8731 .376 donuts .203
holliejm .288 kreme .179
donut .200 lukeylad .167
lumic .187 krispy .149

notveryfast .183 :dance .115
adricsghost .178 bradys .105
doughnuts .178 holliejm .102

Table 5: Top 10 neighbours of doughnut. Semantically re-
lated neighbors are given in bold.
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Figure 1: Along the X axis, vectors are ordered by the as-
cending number of positive dimensions in the vanilla model.
The Y axis represents the number of positive dimensions in
two models.

to the one that Levy et al. employed. With these
two corpora, we found the same general pattern
of results, with the exception of the WordSim
relatedness task benefitting greatly from a larger
corpus and MEN favoring steeper smoothing (.75)
under the smaller corpus. This suggests that the
smoothing hyperparameter should be adjusted to
the corpus size and the task at hand.

For comparison, we give the results for a
word2vec model trained on the two corpora us-
ing the best configuration reported by Baroni et al.
(2014): CBOW, 10 negative samples, CDS, win-
dow 5, and 400 dimensions. We find that PPMI
is more efficient when using the Wikipedia corpus
alone, but when using the larger corpus the predict
model still outperforms all count models.

7 Conclusion

Our investigation showed that the interaction of
different hyperparameters matters more than the
implementation of any single one. Smoothing
only shows its potential when used in combina-

>0 >300 >750 >1000 >1500

8:23 1900s e4 1024 51
01-06-2005 7.45pm 8.4 1928. 1981.
ec3n 41. 331 1924. 17
5935 1646 1745 45,000 2500
$1.00 $25 1/3 630 1960s

Table 6: Sample of words with zero positive dimensions after
SPPMI with CDS

predict MEN WS rel WS sim toefl

WUB .80 .70 .80 .91
Wiki .7370 .4951 .7714 .83

best count MEN WS rel WS sim toefl

WUB .7577 .6265 .7505 .77
Wiki .7661 .5729 .7446 .77

Table 7: Performance of count vs. predict models as a func-
tion of corpus size

tion with shifting. Similarly, subsampling only
becomes interesting when shifting and smoothing
are applied. When it comes to parameter values,
we recommend using .95 as a smoothing hyperpa-
rameter and log(5) as a shifting hyperparameter.

Qualitatively speaking, the hyperparameters
help largely by reducing statistical noise in cooc-
currence data. SPPMI works by removing low
PMI values, which are likely to be noisy. CDS
effectively lowers PMI values for rare contexts,
which tend to be more noisy, allowing for a higher
threshold for SPPMI (log 5 vs. log 3) to be effec-
tive. Subsampling gives a greater weight to under-
exploited data from rare words at the expense of
frequent ones, but it amplifies the noise as well as
the signal, and should be combined with the other
noise-reducing hyperparameters to be useful.

In terms of corpus size, we’ve seen that similar
performance can be achieved with a smaller cor-
pus if the right hyperparameters are used. One ex-
ception is the WordSim relatedness task, in which
models require more data to achieve the same
level of performance, and benefit from subsam-
pling much more than in the similarity task.

While the best predictive model from Baroni et
al. trained on the WUB corpus still outperforms our
best count model on the same corpus, hyperparam-
eter tuning does significantly improve the perfor-
mance of count models and should be used when
a corpus is too small to build a predictive model.
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Abstract

In this paper, we aim to close the gap
from extensive, human-built semantic re-
sources and corpus-driven unsupervised
models. The particular resource explored
here is VerbNet, whose organizing princi-
ple is that semantics and syntax are linked.
To capture patterns of usage that can aug-
ment knowledge resources like VerbNet,
we expand a Dirichlet process mixture
model to predict a VerbNet class for each
sense of each verb, allowing us to incorpo-
rate annotated VerbNet data to guide the
clustering process. The resulting clusters
align more closely to hand-curated syn-
tactic/semantic groupings than any previ-
ous models, and can be adapted to new
domains since they require only corpus
counts.

1 Introduction

In this paper, we aim to close the gap from exten-
sive, human-built semantic resources and corpus-
driven unsupervised models. The work done by
linguists over years of effort has been validated by
the scientific community, and promises real trac-
tion on the fuzzy problem of deriving meaning
from words. However, lack of coverage and adapt-
ability currently limit the usefulness of this work.

The particular resource explored here is Verb-
Net (Kipper-Schuler, 2005), a semantic resource
built upon the foundation of verb classes by Levin
(1993). Levin’s verb classes are built on the hy-
pothesis that syntax and semantics are fundamen-
tally linked. The semantics of a verb affect the
allowable syntactic constructions involving that
verb, creating regularities in language to which
speakers are extremely sensitive. It follows that
grouping verbs by allowable syntactic realizations
leads from syntax to meaningful semantic group-
ings. This seed grew into VerbNet, a process

which involved dozens of linguists and a decade
of work, making careful decisions about the al-
lowable syntactic frames for various verb senses,
informed by text examples.

VerbNet is useful for semantic role labeling and
related tasks (Giuglea and Moschitti, 2006; Yi,
2007; Yi et al., 2007; Merlo and van der Plas,
2009; Kshirsagar et al., 2014), but its widespread
use is limited by coverage. Not all verbs have
a VerbNet class, and some polysemous verbs
have important senses unaccounted for. In addi-
tion, VerbNet is not easily adaptable to domain-
specific corpora, so these omissions may be more
prominent outside of the general-purpose corpora
and linguistic intuition used in its construction.
Its great strength is also its downfall: adding
new verbs, new senses, and new classes requires
trained linguists - at least, to preserve the integrity
of the resource.

According to Levin’s hypothesis, knowing the
set of allowable syntactic patterns for a verb sense
is sufficient to make meaningful semantic classifi-
cations. Large-scale corpora provide an extremely
comprehensive picture of the possible syntactic re-
alizations for any particular verb. With enough
data in the training set, even infrequent verbs have
sufficient data to support learning. Kawahara et
al. (2014) showed that, using a Dirichlet Process
Mixture Model (DPMM), a VerbNet-like cluster-
ing of verb senses can be built from counts of syn-
tactic features.

We develop a model to extend VerbNet, using
a large corpus with machine-annotated dependen-
cies. We build on prior work by adding partial su-
pervision from VerbNet, treating VerbNet classes
as additional latent variables. The resulting clus-
ters are more similar to the evaluation set, and
each cluster in the DPMM predicts its VerbNet
class distribution naturally. Because the technique
is data-driven, it is easily adaptable to domain-
specific corpora.
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Figure 1: The DPMM used in Kawahara et al.
(2014) for clustering verb senses. M is the num-
ber of verb senses, and N is the sum total of slot
counts for that verb sense.

2 Prior Work

Parisien and Stevenson (2011) and Kawahara et
al. (2014) showed distinct ways of applying the
Hierarchical Dirichlet Process (Teh et al., 2006)
to uncover the latent clusters from cluster exam-
ples. The latter used significantly larger corpora,
and explicitly separated verb sense induction from
the syntactic/semantic clustering, which allowed
more fine-grained control of each step.

In Kawahara et al. (2014), two identical
DPMM’s were used. The first clustered verb
instances into senses, and one such model was
trained for each verb. These verb-sense clusters
are available publicly, and are used unmodified
in this paper. The second DPMM clusters verb
senses into VerbNet-like clusters of verbs. The
result is a resource that, like Verbnet, inherently
captures the inherent polysemy of verbs. We fo-
cus our improvements on this second step, and try
to derive verb clusters that more closely align to
VerbNet.

2.1 Dirichlet Process Mixture Models

The DPMM used in Kawahara et al. (2014) is
shown in Figure 1. The clusters are drawn from a
Dirichlet Process with hyperparameter α and base
distribution G. The Dirichlet process prior cre-
ates a clustering effect described by the Chinese
Restaurant Process. Each cluster is chosen pro-
portionally to the number of elements it already

contains, i.e.

P (k|α,Ck(∗)) ∝
{
Ck(∗), if Ck(∗) > 0
α, if k = knew,

(1)

where Ck(∗) is the count of clustered items al-
ready in cluster k.

Each cluster k has an associated multinomial
distribution over vocabulary items (e.g. slot:token
pairs), φk, which is drawn from G, a Dirichlet dis-
tribution of the same size as the vocabulary, pa-
rameterized by a constant β. Because the Dirichlet
is the multinomial’s conjugate prior, we can actu-
ally integrate out φk analytically, given counts of
vocabulary items drawn from φk. For a particular
vocabulary item w, we compute

P (w|φk, β) =
Ck(w) + β

Ck(∗) + |V |β , (2)

where Ck(w) is the number of times w has been
drawn from φk, Ck(∗) =

∑
iCk(i), and |V | is the

size of the vocabulary.
When assigning a verb instance to a sense, a

single instance may have multiple syntactic argu-
ments w. Using Bayes’s law, we update each as-
signment iteratively using Gibbs sampling, using
equations (1) and (2), according to

P (k|α,Ck(∗), φk, β) ∝
P (k|α,Ck(∗))

∏
w

P (w|φk, β). (3)

β < 1 encourages the clusters to have a sparse
representation in the vocabulary space. α = 1 is a
typical choice, and encourages a small number of
clusters to be used.

2.2 Step-wise Verb Cluster Creation
By separating the verb sense induction and the
clustering of verb senses, the features can be opti-
mized for the distinct tasks. According to (Kawa-
hara et al., 2014), the best features for inducing
verb classes are joint slot:token pairs. For the verb
clustering task, slot features which ignore the lexi-
cal items were the most effective. This aligns with
Levin’s hypothesis of diathesis alternations - the
syntactic contexts are sufficient for the clustering.

In this paper, we re-create the second stage clus-
tering with the same features, but add supervision.
Supervised Topic Modeling (Mimno and McCal-
lum, 2008; Ramage et al., 2009) builds on the
Bayesian framework by adding, for each item, a
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prediction about a variable of interest, which is ob-
served at least some of the time. This encourages
the topics to be useful at predicting a supervised
signal, as well as coherent as topics. We do not
have explicit knowledge of VerbNet class for any
of the first-level DPMM’s verb senses, so our su-
pervision is informed only at the level of the verb.

3 Supervised DPMM

Adding supervision to the DPMM is fairly
straightforward: at each step, we sample both a
mixture component k and a VerbNet class y. For
this, we assign each cluster (mixture component) a
unique distribution ρ over VerbNet classes, drawn
from a fixed-size Dirichlet prior with parameter γ.
As before, this allows us to estimate the likelihood
of a VerbNet class y knowing only the counts of
assigned senses, Ck(y), for each y, as

P (y|ρk, γ) =
Ck(y) + γ

Ck(∗) + |S|γ , (4)

where |S| is the number of classes in the supervi-
sion.

The likelihood of choosing a class for a partic-
ular verb requires us to form an estimate of that
verb’s probability of joining a particular VerbNet
class. We initialize η from SemLink, as η(y) =
ω ∗ CSL

v (y) + δ, for fixed constants ω and δ, and
with CSL

v (y) as the count, in SemLink, of times
verb v was assigned to VerbNet class y. We then
draw a verb-specific distribution θ over VerbNet
classes, from a Dirichlet with parameters η, so that
η acts as pseudo-counts, steering θ to give high
weight to VerbNet classes aligned with SemLink
for each verb. We compute

P (y|θ, η) =
Cv(y) + η(y)
Cv(∗) +

∑
η
, (5)

where Cv(y) is the number of times verb v is as-
signed to VerbNet class y by our model.

We sample the VerbNet class for a verb sense
as a product of experts (Hinton, 2002), the θv

for the verb v, and ρk for the assigned cluster
k. This encourages alignment between the Verb-
Net classes observed in SemLink and the VerbNet
classes predicted by the clusters, and is computa-
tionally straightforward. We simply compute

P (y|ρk, γ, θv, η) ∝ P (y|ρk, γ)P (y|θv, η). (6)

Sampling a cluster for a verb sense now depends
on the VerbNet class y,

P (k|y, α, φk, β, ρk, γ,θv, η) ∝(
P (k|α,Ck(∗))×
P (y|ρk, γ, θv, η)×∏

w

P (w|φk, β)
)
.

(7)

We then update y based on Equation 6, and then
resample for the next batch.

The supervised process is depicted in Figure 2.
In brief, we know for each verb an η, a given by
counts from SemLink, which we use as a prior
for θ. We sample, in addition to the cluster label
k, a VerbNet class y, which depends on θ and ρ,
where ρ is the distribution over VerbNet classes in
cluster k. ρ is drawn from a Dirichlet distribution
paramaterized by γ < 1, encouraging each cluster
to have a sparse distribution over VerbNet classes.
Because y depends on both θ and ρ, the clusters
are encouraged to align with VerbNet classes.

α

G

kβ

wφ θ

y

ρ

γ

η

N∞

∞

M

Figure 2: The Supervised DPMM used in this
work for clustering verb senses. M is the num-
ber of verb senses, and N is the sum total of slot
counts for that verb sense. θ is initialized to reflect
the VerbNet class preferences for each verb, when
they are known.
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3.1 Modeling Choices

When incorporating supervision, the more direct
method of downstream sampling of the VerbNet
class may be preferred to using a prior. However,
the verb senses are generated through a DPMM,
and we do not have a gold-label assignment of
VerbNet classes to each sense. Instead, we esti-
mate, for each verb in VerbNet, a distribution θ
describing the likelihood a verb will participate in
a particular class, using counts from SemLink.

When sampling a cluster for a verb sense with
a verb in VerbNet, we sample y from a product of
experts. We cannot incorporate θ as a prior when
sampling y, because we have multiple verbs, with
distinct distributions θv1 , θv2 , . . ..

Because the product-of-experts is a discrete
probability distribution, it is easy to marginalize
out this variable when sampling k, using

P (k|α, φk, β, ρk, γ, θ) ∝∑
y

P (k|y, α, φk, β, ρk, γ, θv, η). (8)

Either way, once a cluster is selected, we should
update the ρ and θ. So, once a cluster is selected,
we still sample a discrete y. We compare perfor-
mance for sampling k with assigned y and with
marginalized y.

When incorporating supervision, we flatten
VerbNet, using only the top-level categories, sim-
plifying the selection process for y. In Kawahara
et al. (2014), slot features were most effective fea-
tures at producing a VerbNet-like structure; we
follow suit.

4 Results

For evaluation, we compare using the same dataset
and metrics as Kawahara et al. (2014). There, the
authors use the polysemous verb classes of Ko-
rhonen et al. (2003), a subset of frequent polyse-
mous verbs. This makes the test set a sort of mini-
VerbNet, suitable for evaluation. They also define
a normalized modified purity and normalized in-
verse purity for evaluation, explained below.

The standard purity of a hard clustering av-
erages, for each cluster’s majority gold standard
class, the percentage of clustered items of that
class. Because the clustering is polysemous, a typ-
ical automatically-induced cluster K will contain
only some senses of the verbs. We take this par-
tial membership into account when deciding the

cluster’s majority class. We define civ ∈ [0, 1] as
the proportion of instances of verb v grouped into
cluster Ki. We also treat induced clusters contain-
ing only one verb sense as errors, rather than treat-
ing them as clusters of perfect purity. Therefore,
the normalized modified purity (nmPU), with re-
spect to the gold standard clusters G, is,

nmPU =
1
N

∑
i s.t. |Ki|>1

max
j
δKi(Ki ∩Gj), (9)

where

δKi(Ki ∩Gj) =
∑

v∈Ki∩Gj

civ. (10)

This nmPU is analagous to clustering precision:
it measures, on average, how well the clustering
avoids matching items that should not be clus-
tered. We also define a recall analogue, the nor-
malized inverse purity (niPU), as,

niPU =
1
N

∑
j

max
i
δGj (Ki ∩Gj). (11)

This measures how well each gold standard cluster
is recovered. We report each metric, and the F1
score combining them, to compare the clustering
accuracy with respect to the gold standard G.

We use the clustering from Kawahara et al.
(2014) as a baseline for comparison. However,
for evaluation, the authors only clustered senses
of verbs in the evaluation set. Since we would
like to test the effectiveness of adding supervision,
we treat all verbs in the evaluation set as unsuper-
vised, with no initialization of θ. Therefore, to
compare apples-to-apples, we calculate the nPU,
niPU, and F1 of the Kawahara et al. (2014) full
clustering against the evaluation set. Our model
also computes the full clustering, but with super-
vision for known verbs (other than the evaluation
set).

Parameters were selected using a grid search,
and cross-validation. The results are summarized
in Table 1, comparing the unsupervised DPMM
baseline (DPMM) to the supervised DPMM
(SDPMM), and the supervised DPMM sampling
k with y marginalized out (mSDPMM).

5 Comparison of Produced Clusters

The supervised sampling scheme produces fewer
clusters than the unsupervised baseline. This is in
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Model Example Clusters

Gold push (0.20), pull (0.17)
give (1.0), lend (1.0), generate (0.33),
allow (0.25), pull (0.17), pour (0.17)

DPMM push (0.40), drag (0.27), pull (0.08) lend (0.30), give (0.13),

SDPMM drag (0.87), push (0.43), pull (0.42), give (0.82), pour (0.02), ship (0.002)pour (0.39), drop (0.31), force (0.09)

Table 2: Example clusters from the evaluation dataset (Gold), and along with the most-aligned clus-
ters from the unsupervised baseline (DPMM) and our semi-supervised clustering scheme (SDPMM).
Weights given in parentheses describe the total proportion of verb instances assigned to each cluster.

Model nmPU niPU F1 N

DPMM 55.72 60.33 57.93 522
SDPMM 51.00 75.71 60.95 122
mSDPMM 51.04 75.00 60.74 129

Table 1: Clustering accuracy on verbs in the Ko-
rhonen et al. (2003) dataset. N is the number of
clusters spanned by the evaluation set.

part because it produces fewer “singleton” clus-
ters, containing only one verb sense from the eval-
uation set. The SDPMM produces only 16% sin-
gleton clusters, compared with 34% of singleton
clusters from the unsupervised DPMM.

The supervised clusters also tend to cluster
more of the senses of each verb into the same clus-
ter. The predominant SDPMM cluster for a verb,
which has the highest percentage of a verb’s total
instances, tends to have 224% the number of in-
stances as the predominant unsupervised DPMM
cluster. This tendency does not prevent verbs be-
ing assigned multiple clusters, however. On av-
erage, the supervised clustering uses 30% fewer
clusters for each verb, a smaller reduction than the
70% overall drop in the number of clusters.

A few example clusters are presented in Table
2.

6 Conclusions and Future Directions

The supervision tends to encourage a smaller num-
ber of clusters, so the precision-like metric, nmPU,
is lower, but the recall-like metric, niPU, is much
higher. Marginalizing out the variable y when
sampling k does not make an appreciable differ-
ence to the F1 score. Swapping out the Dirichlet
process for a Pitman-Yor process may bring finer
control over the number of clusters.

We have expanded the work in Kawahara et al.
(2014) by explicitly modeling a VerbNet class for
each verb sense, drawn from a product of experts

based on the cluster and verb. This allowed us to
leverage data from SemLink with VerbNet annota-
tion, to produce a higher-quality clustering. It also
allows us to describe each cluster in terms of align-
ment to VerbNet classes. Both of these improve-
ments bring us closer to extending VerbNet’s use-
fulness, using only automated dependency parses
of corpora. We may speculate, and should test,
whether the improved verb clusters will prove use-
ful in end-to-end semantic tasks.
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Abstract

Recognizing lexical inferences between
pairs of terms is a common task in NLP
applications, which should typically be
performed within a given context. Such
context-sensitive inferences have to con-
sider both term meaning in context as
well as the fine-grained relation hold-
ing between the terms. Hence, to de-
velop suitable lexical inference methods,
we need datasets that are annotated with
fine-grained semantic relations in-context.
Since existing datasets either provide out-
of-context annotations or refer to coarse-
grained relations, we propose a method-
ology for adding context-sensitive anno-
tations. We demonstrate our methodol-
ogy by applying it to phrase pairs from
PPDB 2.0, creating a novel dataset of fine-
grained lexical inferences in-context and
showing its utility in developing context-
sensitive methods.

1 Introduction

Recognizing lexical inference is an essential com-
ponent in semantic tasks. In question answering,
for instance, identifying that broadcast and air
are synonymous enables answering the question
“When was ‘Friends’ first aired?” given the text
“‘Friends’ was first broadcast in 1994”. Semantic
relations such as synonymy (tall, high) and hyper-
nymy (cat, pet) are used to infer the meaning of
one term from another, in order to overcome lexi-
cal variability.

In semantic tasks, such terms appear within cor-
responding contexts, thus making two aspects nec-
essary in order to correctly apply inferences: First,
the meaning of each term should be considered
within its context (Szpektor et al., 2007; Pantel

et al., 2007), e.g., play entails compete in certain
contexts, but not in the context of playing the na-
tional anthem at a sports competition. Second, the
soundness of inferences within context is condi-
tioned on the fine-grained semantic relation that
holds between the terms, as studied within natural
logic (MacCartney and Manning, 2007). For in-
stance, in upward-monotone sentences a term en-
tails its hypernym (“my iPhone’s battery is low”
⇒ “my phone’s battery is low”), while in down-
ward monotone ones it entails its hyponym (“talk-
ing on the phone is prohibited”⇒ “talking on the
iPhone is prohibited”).

Accordingly, developing algorithms that prop-
erly apply lexical inferences in context requires
datasets in which inferences are annotated in-
context by fine-grained semantic relations. Yet,
such a dataset is not available (see 2.1). Most ex-
isting datasets provide out-of-context annotations,
while the few available in-context annotations re-
fer to coarse-grained relations, such as relatedness
or similarity.

In recent years, the PPDB paraphrase database
(Ganitkevitch et al., 2013) became a popular re-
source among semantic tasks, such as monolin-
gual alignment (Sultan et al., 2014) and recog-
nizing textual entailment (Noh et al., 2015). Re-
cently, Pavlick et al. (2015) classified each para-
phrase pair to the fine-grained semantic relation
that holds between the phrases, following natu-
ral logic (MacCartney and Manning, 2007). To
that end, a subset of PPDB paraphrase-pairs were
manually annotated, forming a fine-grained lexi-
cal inference dataset. Yet, annotations are given
out-of-context, limiting its utility.

In this paper, we aim to fill the current gap
in the inventory of lexical inference datasets, and
present a methodology for adding context to out-
of-context datasets. We apply our methodology on
a subset of phrase pairs from Pavlick et al. (2015),
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x y contexts out-of-context
relation

in-context
relation

1 piece strip

Roughly 1,500 gold and silver pieces were found
and the hoard contains roughly

5kgs of gold and 2.5kgs of silver.

A huge political storm has erupted around Australia
after labor leader Kevin Rudd was found to have gone to

a strip club during a taxpayer funded trip.

Equivalence Independent

2 competition race

Three countries withdrew from the competition:
Germany, Spain and Switzerland.

Morgan Tsvangirai, the leader of the Movement for
Democratic Change (MDC), Zimbabwe’s main opposition

party, has said that he will pull out of the race
to become the president of Zimbabwe.

Reverse
Entailment Equivalence

3 boy family

The birth of the boy, whose birth name is disputed
among different sources, is considered very

important in the entertainment world.

Bill will likely disrupt the Obama
family’s vacation to Martha’s Vineyard.

Forward
Entailment

Other-
related

4 jump walk

Amid wild scenes of joy on the pitch he jumped onto the
podium and lifted the trophy, the fourth of Italy’s history.

In a game about rescuing hostages a hero might walk
past Coca-Cola machine’s one week and Pepsi the next.

Other-
related Alternation

Table 1: Illustration of annotation shifts when context is given. [1] the sense of strip in the given context is different from the
one which is equivalent to piece. [2] the term race is judged out-of-context as more specific than competition, but is considered
equivalent to it in a particular context. [3] a meronymy relation is (often) considered out-of-context as entailment, while in a
given context this judgment doesn’t hold. [4] general relations may become more concrete when the context is given.

creating a novel dataset for fine-grained lexical in-
ference in-context. For each term-pair, we add a
pair of context sentences, and re-annotate these
term-pairs with respect to their contexts.1 We
show that almost half of the semantically-related
term-pairs become unrelated when the context is
specified. Furthermore, a generic out-of-context
relation may change within a given context (see
table 1). We further report baseline results that
demonstrate the utility of our dataset in develop-
ing fine-grained context-sensitive lexical inference
methods.

2 Background

2.1 Lexical Inference Datasets

Figure 1 lists prominent human-annotated datasets
used for developing lexical inference methods. In
these datasets, each entry consists of an (x, y)
term-pair, annotated to whether a certain semantic
relation holds between x and y. Each dataset ei-
ther specifies fine-grained semantic relations (see
2.2), or groups several semantic relations under a

1The dataset and annotation guidelines are available at:
http://u.cs.biu.ac.il/
˜nlp/resources/downloads/
context-sensitive-fine-grained-dataset.

single coarse-grained relation (e.g. lexical substi-
tution, similarity).

In some datasets, term-pairs are annotated to
whether the relation holds between them in some
(unspecified) contexts (out-of-context), while in
others, the annotation is given with respect to a
given context (in-context). In these datasets, each
entry consists of a term-pair, x and y, and con-
text, where some of the datasets provide a single
context in which x occurs while others provide a
separate context for each of x and y (correspond-
ing to the 1 context and 2 contexts columns in
Figure 1). The latter simulates a frequent need
in NLP applications, for example, a question an-
swering system recognizes that broadcast entails
air given the context of the question (“When was
‘Friends’ first aired?”) and that of the candidate
passage (“‘Friends’ was first broadcast in 1994”).

We observe that most lexical inference datasets
provide out-of-context annotations. The exist-
ing in-context datasets are annotated for coarse-
grained semantic relations, such as similarity or
relatedness, which may not be sufficiently infor-
mative.
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[1] WordSim-353 similarity
[2] SimLex-999

[4] Annotated-PPDB
[5] WordSim-353 relatedness

[6] MEN
[10] Kotlerman2010

[11] Turney2014
[12] Levy2014

[13] Shwartz2015

[7] TR9856
[8] SemEval 2007

[9] All-Words
[14] Zeichner2012

[3] SCWS

none 1 context 2 contexts
context

Figure 1: A map of prominent lexical inference datasets. Word similarity: [1] Zesch et al. (2008), [2] Hill et al. (2014), [3]
Huang et al. (2012), [4] Wieting et al. (2015). Term relatedness: [5] Zesch et al. (2008), [6] Bruni et al. (2014), [7] Levy et al.
(2015). Lexical substitution: [8] McCarthy and Navigli (2007), [9] Kremer et al. (2014), Lexical inference: [10] Kotlerman et
al. (2010), [11] Turney and Mohammad (2014), [12] Levy et al. (2014), [13] Shwartz et al. (2015), [14] Zeichner et al. (2012),
[15] Pavlick et al. (2015) (see 2.2), [16].

≡ Equivalence is the same as
@ Forward Entailment is more specific than
A Reverse Entailment is more general than
ˆ Negation is the exact opposite of
| Alternation is mutually exclusive with
∼ Other-Related is related in some other way to
# Independence is not related to

Table 2: Semantic relations in PPDB 2.0. Like Pavlick et al.,
we conflate negation and alternation into one relation.

2.2 PPDB with Semantic Relations

The PPDB paraphrase database (Ganitkevitch et
al., 2013) is a huge resource of automatically de-
rived paraphrases. In recent years, it has been used
for quite many semantic tasks, such as semantic
parsing (Wang et al., 2015), recognizing textual
entailment (Noh et al., 2015), and monolingual
alignment (Sultan et al., 2014).

Recently, as part of the PPDB 2.0 release,
Pavlick et al. (2015) re-annotated PPDB with fine-
grained semantic relations, following natural logic
(MacCartney and Manning, 2007) (see table 2).
This was done by first annotating a subset of
PPDB pharaphase-pairs that appeared in the SICK
dataset of textual entailment (Marelli et al., 2014).
Annotators were instructed to select the appro-
priate semantic relation that holds for each para-
phrase pair. These human annotations were later
used to train a classifier and predict the semantic
relation for all paraphrase pairs in PPDB. Consid-
ering the widespread usage of PPDB in applica-
tions, this extension may likely lead to applying
lexical inferences based on such fine-grained se-
mantic relations.

In this paper, we focus on human-annotated
datasets, and therefore find the above men-
tioned subset of human-annotated paraphrases
particularly relevant; we refer to this dataset as
PPDB-fine-human. This dataset, as well as the
PPDB 2.0 automatically created resource, are still
missing a key feature in lexical inference, since the
semantic relation for each paraphrase pair is spec-
ified out of context.

3 Dataset Construction Methodology

In this section, we present a methodology of
adding context to lexical inference datasets, that
we apply on PPDB-fine-human.

3.1 Selecting Phrase-Pairs

PPDB-fine-human is a quite large dataset (14k
pairs), albeit with some phrase-pairs that are less
useful for our purpose. We therefore applied the
following filtering and editing on the phrase pairs:

Relation Types We expected that phrase pairs
that were annotated out-of-context as independent
will remain independent in almost every context;
indeed, out of a sample of 100 such pairs that we
annotated within context, only 8% were annotated
with another semantic relation. As this was too
sparse to justify the cost of human annotations, we
chose to omit such phrase pairs.

Grammaticality-based Filtering Many
phrases in PPDB-fine-human are ungrammat-
ical, e.g. boy is. We consider such phrases less
useful for our purpose, as semantic applications
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usually apply lexical inferences on syntactically
coherent constituents. We therefore parse the
original SICK (Marelli et al., 2014) sentences
containing these phrases, and omit pairs in which
one of the phrases is not a constituent.

Filtering Trivial Pairs In order to avoid trivial
paraphrase pairs, we filter out inflections (Iraq,
Iraqi) and alternate spellings (center, centre), by
omitting pairs that share the same lemma, or those
that have Levenshtein distance ≤ 3. In addi-
tion, we omit pairs that have lexical overlaps
(a young lady, lady) and filter out pairs in which
one of the two phrases is just a stop word.

Removing Determiners The annotation seems
to be indifferent to the presence of a determiner,
e.g., the labelers annotated all of (kid, the boy),
(the boy, the kid), and (a kid, the boy) as reverse
entailment. To avoid repetitive pairs, and to get a
single “normalized” phrase, we remove preceding
determiners, e.g., yielding (kid, boy).

Finally, it is interesting to note that
PPDB-fine-human includes term-pairs in
which terms are of different grammatical cat-
egories. Our view is that such cross-category
term-pairs are often relevant for semantic infer-
ence (e.g. (bicycle, riding)) and therefore we
decided to stick to the PPDB setting, and kept
such pairs.

At the end of this filtering process we remained
with 1385 phrase pairs from which we sampled
375 phrase pairs for our dataset, preserving the rel-
ative frequency across relation types in PPDB.

3.2 Adding Context Sentences

We used Wikinews2 to extract context sentences.
We used the Wikinews dump from November
2015, converted the Wiki Markup to clean text us-
ing WikiExtractor3, and parsed the corpus using
spaCy.4

For each (x, y) phrase-pair, we randomly sam-
pled 10 sentence-pairs of the form (sx, sy), such
that sx contains x and sy contains y. In the
sampling process we require, for each of the two
terms, that its 10 sentences are taken from differ-
ent Wikinews articles, to obtain a broader range of
the term’s senses. This yields 10 tuples of the form

2https://en.wikinews.org/
3
https://github.com/attardi/wikiextractor

4http://spacy.io/

(x, y, sx, sy) for each phrase pair and 3750 tuples
in total.5

We split the dataset to 70% train, 25% test, and
5% validation sets. Each of the sets contains dif-
ferent term-pairs, to avoid overfitting for the most
common relation of a term-pair in the training set.

3.3 Annotation Task

Our annotation task, carried out on Amazon Me-
chanical Turk, followed that of Pavlick et al.
(2015). We used their guidelines, and altered them
only to consider the contexts. We instructed an-
notators to select the relation that holds between
the terms (x and y) while interpreting each term’s
meaning within its given context (sx and sy). To
ensure the quality of workers, we applied a quali-
fication test and required a US location, and a 99%
approval rate for at least 1,000 prior HITS. We as-
signed each annotation to 5 workers, and, follow-
ing Pavlick et al. (2015), selected the gold label
using the majority rule, breaking ties at random.
We note that for 91% of the examples, at least 3 of
the annotators agreed.6

The annotations yielded moderate levels of
agreement, with Fleiss’ Kappa κ = 0.51 (Lan-
dis and Koch, 1977). For a fair comparison, we
replicated the original out-of-context annotation
on a sample of 100 pairs from our dataset, yield-
ing agreement of κ = 0.46, while the in-context
agreement for these pairs was κ = 0.51. As ex-
pected, adding context improves the agreement,
by directing workers toward the same term senses
while revealing rare senses that some workers may
miss without context.7

4 Analysis

Figure 2 displays the confusion matrix of rela-
tion annotations in context compared to the out-
of-context annotations. Most prominently, while
the original relation holds in many of the contexts,
it is also common for term-pairs to become inde-
pendent. In some cases, the semantic relation is
changed (as in table 1).

5Our dataset is comparable in size to most of the datasets
in Figure 1. In particular, the SCWS dataset (Huang et al.,
2012), which is the most similar to ours, contains 2003 term-
pairs with context sentences.

6We also released an additional version of the dataset, in-
cluding only the agreeable 91%.

7The gap between the reported agreement in Pavlick et
al. (2015) (κ = 0.56) and our agreement for out-of-context
annotations (κ = 0.46) may be explained by our filtering
process, removing obvious and hence easily consensual pairs.
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≡ 60.54 6.9 0.38 0.38 9.58 22.22
@ 2.96 41.13 1.41 0 11.69 42.82
A 5.97 1.67 37.92 2.08 13.19 39.17
| 1.25 1.88 5.42 41.46 2.92 47.08
∼ 1.52 0.7 2.03 4.56 31.46 59.75

Figure 2: percentages of each relation annotation in-context,
for annotations out-of-context. The diagonal shows out-of-
context relations that hold in-context, and the last column
shows term-pairs that become independent, usually due to
sense-shifts. In all other cells, semantic relations are changed.
Recall that we didn’t annotate out-of-context independent
pairs.

4.1 Baseline Results
To demonstrate our dataset’s utility, we report sev-
eral baseline performances on our test set (ta-
ble 3). The first two are context-insensitive, as-
signing the same label to a term-pair in all its
contexts; the first assigns manual labels from
PPDB-fine-human, and the second assigns
PPDB 2.0 classifier predictions. We also trained
a context-sensitive logistic regression classifier on
our train set, using the available PPDB 2.0 fea-
tures, plus additional context-sensitive features.
To represent words as vectors, we used pretrained
GloVe embeddings of 300 dimensions, trained on
Wikipedia (Pennington et al., 2014), and added the
following features:

maxw∈sy~x · ~w (1)

maxw∈sx~y · ~w (2)

maxwx∈sx,wy∈sy ~wx · ~wy (3)

(1) and (2) measure similarities between a term
and its most similar term in the other term’s con-
text, and (3) measures the maximal word similar-
ity across the contexts.

This context-sensitive method, trained on our
dataset, notably outperforms context insensitive
baselines, thus illustrating the potential utility of
our dataset for developing fine-grained context-
sensitive lexical inference methods. Yet, the ab-
solute performance is still mediocre, emphasizing
the need to develop better such methods, using our
dataset or similar ones created by our methodol-
ogy.

5 Conclusion

In this paper, we presented a methodology for
adding context to context-insensitive lexical in-
ference datasets, and demonstrated it by cre-
ating such dataset over PPDB 2.0 fine-grained

precision recall F1

PPDB-fine-human 0.722 0.380 0.288
PPDB2 classifier 0.611 0.565 0.556

in-context classifier 0.677 0.685 0.670

Table 3: Baseline performance on the test set (mean over
all classes). (1) PPDB-fine-human manual annotations
(out-of-context). (2) PPDB 2.0 classifier predictions (out-of-
context). (3) our context-sensitive logistic regression classi-
fier. Like Pavlick et al., we conflate the forward entailment
and reverse entailment relations in all baselines.

paraphrase-pair annotations. We then demon-
strated that our dataset can indeed be used for
developing fine-grained context-sensitive lexical
inference methods, which outperform the corre-
sponding context-insensitive baselines.
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Abstract

The interpretation of adjective-noun pairs
plays a crucial role in tasks such as rec-
ognizing textual entailment. Formal se-
mantics often places adjectives into a
taxonomy which should dictate adjec-
tives’ entailment behavior when placed in
adjective-noun compounds. However, we
show experimentally that the behavior of
subsective adjectives (e.g. red) versus
non-subsective adjectives (e.g. fake) is not
as cut and dry as often assumed. For ex-
ample, inferences are not always symmet-
ric: while ID is generally considered to be
mutually exclusive with fake ID, fake ID is
considered to entail ID. We discuss the im-
plications of these findings for automated
natural language understanding.

1 Introduction

Most adjectives are subsective, meaning that an in-
stance of an adjective-noun phrase is an instance
of the noun: a red car is a car and a successful
senator is a senator. In contrast, adjective-noun
phrases involving non-subsective adjectives, such
as imaginary and former (Table 1), denote a set
that is disjoint from the denotation of the nouns
they modify: an imaginary car is not a car and
a former senator is not a senator. Understanding
whether or not adjectives are subsective is critical
in any task involving natural language inference.
For example, consider the below sentence pair
from the Recognizing Textual Entailment (RTE)
task (Giampiccolo et al., 2007):

1. (a) U.S. District Judge Leonie Brinkema
accepted would-be hijacker Zacarias
Moussaoui’s guilty pleas . . .

(b) Moussaoui participated in the Sept. 11
attacks.

Privative Non-Subsective (AN ∩ N = ∅)
anti- artificial counterfeit deputy
erstwhile ex- fabricated fake
false fictional fictitious former
hypothetical imaginary mock mythical
onetime past phony pseudo-
simulated spurious virtual would-be

Plain Non-Subsective (AN 6⊂ N and AN ∩ N 6= ∅)
alleged apparent arguable assumed
believed debatable disputed doubtful
dubious erroneous expected faulty
future historic impossible improbable
likely mistaken ostensible plausible
possible potential predicted presumed
probable proposed putative questionable
seeming so-called supposed suspicious
theoretical uncertain unlikely unsuccessful

Table 1: 60 non-subsective adjectives from Nayak
et al. (2014). Noun phrases involving non-
subsective adjectives are assumed not to entail the
head noun. E.g. would-be hijacker 6⇒ hijacker.
(See Section 2 for definition of privative vs. plain).

In this example, recognizing that 1(a) does not en-
tail 1(b) hinges on understanding that a would-be
hijacker is not a hijacker.

The observation that adjective-nouns (ANs) in-
volving non-subsective adjectives do not entail the
underlying nouns (Ns) has led to the generaliza-
tion that the deletion of non-subsective adjectives
tends to result in contradictory utterances: Mous-
saoui is a would-be hijacker entails that it is not
the case that Moussaoui is a hijacker. This gen-
eralization has prompted normative rules for the
treatment of such adjectives in various NLP tasks.
In information extraction, it is assumed that sys-
tems cannot extract useful rules from sentences
containing non-subsective modifiers (Angeli et al.,
2015), and in RTE, it is assumed that systems
should uniformly penalize insertions and deletions
of non-subsective adjectives (Amoia and Gardent,
2006).
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(e.g. fake)

Plain Non-subsective 
(e.g. alleged)
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Subsective 
(e.g. red)

Figure 1: Three main classes of adjectives. If their entailment behavior is consistent with their theoretical
definitions, we would expect our annotations (Section 3) to produce the insertion (blue) and deletion
(red) patterns shown by the bar graphs. Bars (left to right) represent CONTRADICTION, UNKNOWN, and
ENTAILMENT

While these generalizations are intuitive, there
is little experimental evidence to support them.
In this paper, we collect human judgements of
the validity of inferences following from the in-
sertion and deletion of various classes of adjec-
tives and analyze the results. Our findings suggest
that, in practice, most sentences involving non-
subsective ANs can be safely generalized to state-
ments about the N. That is, non-subsective adjec-
tives often behave like normal, subsective adjec-
tives. On further analysis, we reveal that, when
adjectives do behave non-subsectively, they often
exhibit asymmetric entailment behavior in which
insertion leads to contradictions (ID⇒ ¬ fake ID)
but deletion leads to entailments (fake ID ⇒ ID).
We present anecdotal evidence for how the en-
tailment associated with inserting/deleting a non-
subsective adjective depends on the salient prop-
erties of the noun phrase under discussion, rather
than on the adjective itself.

2 Background and Related Work

Classes of Adjectives. Adjectives are com-
monly classified taxonomically as either subsec-
tive or non-subsective (Kamp and Partee, 1995).
Subsective adjectives are adjectives which pick
out a subset of the set denoted by the unmodified
noun; that is, AN ⊂ N1. For non-subsective adjec-
tives, in contrast, the AN cannot be guaranteed to
be a subset of N. For example, clever is subsective,
and so a clever thief is always a thief. However,

1We use the notation N and AN to refer both the the nat-
ural language expression itself (e.g. red car) as well as its
denotation, e.g. {x|x is a red car}.

alleged is non-subsective, so there are many pos-
sible worlds in which an alleged thief is not in fact
a thief. Of course, there may also be many possi-
ble worlds in which the alleged thief is a thief, but
the word alleged, being non-subsective, does not
guarantee this to hold.

Non-subsective adjectives can be further di-
vided into two classes: privative and plain. Sets
denoted by privative ANs are completely disjoint
from the set denoted by the head N (AN ∩ N =
∅), and this mutual exclusivity is encoded in the
meaning of the A itself. For example, fake is con-
sidered to be a quintessential privative adjective
since, given the usual definition of fake, a fake ID
can not actually be an ID. For plain non-subsective
adjectives, there may be worlds in which the AN
is and N, and worlds in which the AN is not an N:
neither inference is guaranteed by the meaning of
the A. As mentioned above, alleged is quintessen-
tially plain non-subsective since, for example, an
alleged thief may or may not be an actual thief.
In short, we can summarize the classes of adjec-
tives in the following way: subsective adjectives
entail the nouns they modify, privative adjectives
contradict the nouns they modify, and plain non-
subsective adjectives are compatible with (but do
not entail) the nouns they modify. Figure 1 depicts
these distinctions.

While the hierarchical classification of adjec-
tives described above is widely accepted and often
applied in NLP tasks (Amoia and Gardent, 2006;
Amoia and Gardent, 2007; Boleda et al., 2012;
McCrae et al., 2014), it is not undisputed. Some
linguists take the position that in fact privative ad-
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jectives are simply another type of subsective ad-
jective (Partee, 2003; McNally and Boleda, 2004;
Abdullah and Frost, 2005; Partee, 2007). Advo-
cates of this theory argue that the denotation of
the noun should be expanded to include both the
properties captured by the privative adjectives as
well as those captured by the subsective adjec-
tives. This expanded denotation can explain the
acceptability of the sentence Is that gun real or
fake?, which is difficult to analyze if gun entails
¬fake gun. More recent theoretical work argues
that common nouns have a “dual semantic struc-
ture” and that non-subsective adjectives modify
part of this meaning (e.g. the functional features
of the noun) without modifying the extension of
the noun (Del Pinal, 2015). Such an analysis can
explain how we can understand a fake gun as hav-
ing many, but not all, of the properties of a gun.

Several other studies abandon the attempt to or-
ganize adjectives taxonomically, and instead focus
on the properties of the modified noun. Nayak
et al. (2014) categorize non-subsective adjectives
in terms of the proportion of properties that are
shared between the N and the AN and Puste-
jovsky (2013) focus on syntactic cues about ex-
actly which properties are shared. Bakhshandh
and Allen (2015) analyze adjectives by observing
that, e.g., red modifies color while tall modifies
size. In Section 5, we discuss the potential ben-
efits of pursuing these property-based analyses in
relation to our experimental findings.

Recognizing Textual Entailment. We analyze
adjectives within the context of the task of Rec-
ognizing Textual Entailment (RTE) (Dagan et al.,
2006). The RTE task is defined as: given two nat-
ural language utterances, a premise p and a hy-
pothesis h, would a typical human reading p likely
conclude that h is true? We consider the RTE task
as a three-way classification: ENTAILMENT, CON-
TRADICTION, or UNKNOWN (meaning p neither
entails nor contradicts h).

3 Experimental Design

Our goal is to analyze how non-subsective adjec-
tives effect the inferences that can be made about
natural language. We begin with the set of 60 non-
subsective adjectives identified by Nayak et al.
(2014), which we split into plain non-subsective
and privative adjectives (Table 1).2 We search

2The division of these 60 adjectives into privative/plain
is based on our own understanding of the literature, not on

through the Annotated Gigaword corpus (Napoles
et al., 2012) for occurrences of each adjective in
the list, restricting to cases in which the adjective
appears as an adjective modifier of (is in an amod
dependency relation with) a common noun (NN).
For each adjective, we choose 10 sentences such
that the adjective modifies a different noun in each.
As a control, we take a small sample 100 ANs cho-
sen randomly from our corpus. We expect these to
contain almost entirely subsective adjectives.

For each selected sentence s, we generate s′ by
deleting the non-subsective adjective from s. We
then construct two RTE problems, one in which
p = s and h = s′ (the deletion direction), and one
in which p = s′ and h = s (the insertion direc-
tion). For each RTE problem, we ask annotators
to indicate on a 5-point scale how likely it is that
p entails h, where a score of -2 indicates definite
contradiction and a score of 2 indicates definite en-
tailment. We use Amazon Mechanical Turk, re-
quiring annotators to pass a qualification test of
simple RTE problems before participating. We so-
licit 5 annotators per p/h pair, taking the majority
answer as truth. Workers show moderate agree-
ment on the 5-way classification (κ = 0.44).

Disclaimer. This design does not directly test
the taxonomic properties of non-subsective ANs.
Rather than asking “Is this instance of AN an in-
stance of N?” we ask “Is this statement that is true
of AN also true of N?” While these are not the
same question, theories based on the former ques-
tion often lead to overly-cautious approaches to
answering the latter question. For example, in in-
formation extraction, the assumption is often made
that sentences with non-subsective modifiers can-
not be used to extract facts about the head N (An-
geli et al., 2015). We focus on the latter question,
which is arguably more practically relevant for
NLP, and accept that this prevents us from com-
menting on the underlying taxonomic relations be-
tween AN and N.

4 Results

Expectations. Based on the theoretical adjective
classes described in Section 2, we expect that both
the insertion and the deletion of privative adjec-
tives from a sentence should result in judgments
of CONTRADICTION: i.e. it should be the case
that fake ID ⇒ ¬ ID and ID ⇒ ¬ fake ID. Sim-
ilarly, we expect plain non-subsective adjectives
Nayak et al. (2014).
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(a) Privative (b) Plain Non-Sub. (c) Subsective

Figure 2: Observed entailment judgements for insertion (blue) and deletion (red) of adjectives. Compare
to expected distributions in Figure 1.

to receive labels of UNKNOWN in both directions.
We expect the subsective adjectives to receive la-
bels of ENTAILMENT in the deletion direction (red
car ⇒ car) and labels of UNKNOWN in the inser-
tion direction (car 6⇒ red car). Figure 1 depicts
these expected distributions.

Observations. The observed entailment patterns
for insertion and deletion of non-subsective adjec-
tives are shown in Figure 2. Our control sample
of subsective adjectives (Figure 2c) largely pro-
duced the expected results, with 96% of deletions
producing ENTAILMENTs and 73% of insertions
producing UNKNOWNs.3 The entailment patterns
produced by the non-subsective adjectives, how-
ever, did not match our predictions. The plain non-
subsective adjectives (e.g. alleged) behave nearly
identically to how we expect regular, subsective
adjectives to behave (Figure 2b). That is, in 80%
of cases, deleting the plain non-subsective adjec-
tive was judged to produce ENTAILMENT, rather
than the expected UNKNOWN. The examples in
Table 2 shed some light onto why this is the case.
Often, the differences between N and AN are not
relevant to the main point of the utterance. For ex-
ample, while an expected surge in unemployment
is not a surge in unemployment, a policy that deals
with an expected surge deals with a surge.

The privative adjectives (e.g. fake) also fail
to match the predicted distribution. While in-
sertions often produce the expected CONTRADIC-
TIONs, deletions produce a surprising number of
ENTAILMENTs (Figure 2a). Such a pattern does
not fit into any of the adjective classes from Fig-
ure 1. While some ANs (e.g. counterfeit money)
behave in the prototypically privative way, others

3A full discussion of the 27% of insertions that deviated
from the expected behavior is given in Pavlick and Callison-
Burch (2016).

(1) Swiss officials on Friday said they’ve launched an
investigation into Urs Tinner’s alleged role.

(2) To deal with an expected surge in unemployment,
the plan includes a huge temporary jobs program.

(3) They kept it close for a half and had a theoretical
chance come the third quarter.

Table 2: Contrary to expectations, the deletion of
plain non-subsective adjectives often preserves the
(plausible) truth in a model. E.g. alleged role 6⇒
role, but investigation into alleged role⇒ investi-
gation into role.

(e.g. mythical beast) have the property in which
N⇒¬AN, but AN⇒N (Figure 3). Table 3 pro-
vides some telling examples of how this AN⇒N
inference, in the case of privative adjectives, often
depends less on the adjective itself, and more on
properties of the modified noun that are at issue in
the given context. For example, in Table 3 Exam-
ple 2(a), a mock debate probably contains enough
of the relevant properties (namely, arguments) that
it can entail debate, while in Example 2(b), a mock
execution lacks the single most important property
(the death of the executee) and so cannot entail ex-
ecution. (Note that, from Example 3(b), it appears
the jury is still out on whether leaps in artificial
intelligence entail leaps in intelligence...)

5 Discussion

The results presented suggest a few important pat-
terns for NLP systems. First, that while a non-
subsective AN might not be an instance of the N
(taxonomically speaking), statements that are true
of an AN are often true of the N as well. This is
relevant for IE and QA systems, and is likely to be-
come more important as NLP systems focus more
on “micro reading” tasks (Nakashole and Mitchell,
2014), where facts must be inferred from single
documents or sentences, rather than by exploiting
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(1a) ENTAIL. Flawed counterfeit software can corrupt the information entrusted to it.
(1b) CONTRA. Pharmacists in Algodones denied selling counterfeit medicine in their stores.
(2a) ENTAIL. He also took part in a mock debate Sunday.
(2b) CONTRA. Investigation leader said the prisoner had been subjected to a mock execution.
(3a) ENTAIL. The plants were grown under artificial light and the whole operation was computerised.
(3b) UNKNOWN Thrun predicted that leaps in artificial intelligence would lead to driverless cars on the roads by 2030.

Table 3: Entailment judgements for the deletion of various privative adjectives from a sentence. Whether
or not deletion results in CONTRADICTION depends on which properties of the noun are most relevant.

Figure 3: Entailments scores for insertion (blue)
and deletion (red) for various ANs. E.g. the bot-
tom line says that status ⇒¬ mythical status (in-
sertion produces CONTRADICTION), but mythical
status⇒ status (deletion produces ENTAILMENT).

the massive redundancy of the web. Second, the
asymmetric entailments associated with privative
adjectives suggests that the contradictions gener-
ated by privative adjectives may not be due to a
strict denotational contradiction, but rather based
on implicature: i.e. if an ID is in fact fake, the
speaker is obligated to say so, and thus, when ID
appears unmodified, it is fair to assume it is not a
fake ID. Testing this hypothesis is left for future
research. Finally, the examples in Tables 2 and 3
seem to favor a properties-oriented analysis of ad-
jective semantics, rather than the taxonomic anal-
ysis often used. Nayak et al. (2014)’s attempt to
characterize adjectives in terms of the number of
properties the AN shares with N is a step in the
right direction, but it seems that what is relevant
is not how many properties are shared, but rather
which properties are shared, and which properties
are at issue in the given context.

6 Conclusion

We present experimental results on textual infer-
ences involving non-subsective adjectives. We
show that, contrary to expectations, the deletion
of non-subsective adjectives from a sentence does
not necessarily result in non-entailment. Thus,
in applications such as information extraction, it
is often possible to extract true facts about the
N from sentences involving a non-subsective AN.
Our data suggests that inferences involving non-
subsective adjectives require more than strict rea-
soning about denotations, and that a treatment of
non-subsective adjectives based on the properties
of the AN, rather than its taxonomic relation to the
N, is likely to yield useful insights.
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Abstract

We investigate style accommodation in
online discussions, in particular its inter-
play with content agreement and disagree-
ment. Using a new model for measuring
style accommodation, we find that speak-
ers coordinate on style more noticeably if
they disagree than if they agree, especially
if they want to establish rapport and possi-
bly persuade their interlocutors.

1 Introduction

In interactive communication, speakers tend to
adapt their linguistic behaviour to one another at
several levels, including pitch, speech rate, and
the words and constructions they use. This phe-
nomenon has been studied from different perspec-
tives, most notably cognitive psychology and so-
ciology. For instance, the Interactive Alignment
Model (Pickering and Garrod, 2004) claims that
priming mechanisms, which are an inherent fea-
ture of humans’ cognitive architecture, lead to
interpersonal coordination during dialogue. In
contrast, Communication Accommodation Theory
(Shepard et al., 2001) focuses on the external fac-
tors influencing linguistic accommodation (e.g.,
the wish to build rapport) and argues that con-
verging on linguistic patterns reduces the social
distance between interlocutors, which results in
speakers being viewed more favourably.

Within the latter sociolinguistic view, a com-
mon methodology used to study linguistic accom-
modation is to focus on stylistic accommodation,
as reflected in the use of function words, such
as pronouns, quantifiers, and articles (Chung and
Pennebaker, 2007). Previous research has shown
that matching of function words signals relative
social status between speakers (Niederhoffer and
Pennebaker, 2002) and can be used to predict re-

lationship initiation and stability in speed dating
conversations (Ireland et al., 2011). Furthermore,
Danescu-Niculescu-Mizil et al. (2012) found that
speakers adapt their linguistic style more when
they talk to interlocutors who have higher social
status and Noble and Fernández (2015) showed
that this is also the case for interlocutors with a
more central position in a social network.

In this paper, we investigate style accommo-
dation in online discussions. Rather than look-
ing into status- or network-based notions of power
differences, we capitalise on the argumentative
character of such discussions to study how ar-
gumentative aspects such as agreement and dis-
agreement relate to style accommodation. In par-
ticular, we focus on the interplay between align-
ment of beliefs—interlocutors’ (dis)agreement on
what is said—and alignment of linguistic style—
interlocutors’ coordination or lack thereof on how
content is expressed. Our aim is to investigate the
following hypotheses:

H1: Speakers accommodate their linguistic style
more to that of their addressees’ if they agree
with them on content than if they disagree.

H2: Speakers who disagree on content coordinate
their linguistic style more towards addressees
they want to persuade than towards those they
want to distance themselves from.

Given evidence for the relationship between affil-
iation and mimicry (Lakin and Chartrand, 2003;
Scissors et al., 2008), H1 seems a sensible conjec-
ture. Hypothesis H2 is grounded on the assump-
tion that individuals who disagree with their in-
terlocutors may want to persuade them to change
their mind. This creates a certain power differ-
ence, with the persuader being in a more depen-
dent position. As shown by Danescu-Niculescu-
Mizil et al. (2012), such dependence can lead to
increased style matching.
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2 Data

For our investigation we use the Internet Argu-
ment Corpus (IAC) (Walker et al., 2012), which
contains a collection of online discussions scraped
from internet fora. About 10,000 Quote-Response
(Q-R) pairs have been annotated with scalar judg-
ments over a multitude of dimensions, including
level of agreement/disagreement (scale 5 to –5).
Although the corpus does not include an annota-
tion that directly indicates level of persuasiveness,
we approximate persuasion by making use of two
additional annotated dimensions: nice/nastiness
(scale 5 to –5) and sarcasm (scale 1 to –1). We as-
sume that responses that are perceived as nicer are
more likely to be persuasive than those perceived
as nasty. Similarly, we take sarcastic responses as
being more likely to signal a distancing attitude
than a persuasion goal.

Each Q-R pair has been judged by 5 to 7 an-
notators on Amazon Mechanical Turk and their
scores have been averaged for each dimension.
Walker et al. (2012) report relatively low inter-
annotator agreement (measured with Krippen-
dorf’s α): 0.62 for agreement/disagreement, 0.46
for nice/nastiness, and only 0.22 for sarcasm.1 We
therefore chose to leverage only a subset of the
corpus for which there is substantial agreement on
either side of the scales. For the nice/nasty and
agreement/disagreement judgments, we only con-
sider Q-R pairs with strong majorities, i.e., Q-R
pairs where all judgments except at most one are
either ≥ 0 or ≤ 0. For sarcasm, we only consider
Q-R pairs where there is at most one neutral judg-
ment (value 0) and at most one judgment opposite
to the majority.

In addition, to be able to assess the style of
individual authors, we restrict our analysis to Q-
R pairs with response authors who contribute re-
sponding posts in at least 10 different Q-R pairs.
The resulting dataset after applying all these con-
straints contains a total of 5,004 Q-R pairs, 14%
of which correspond to agreeing responses, 65%
to disagreeing responses, and 21% to neutral re-
sponses. This mirrors the distribution in the full,
unfiltered corpus: 13% agreeing, 67% disagree-
ing, and 20% neutral responses.

1According to Walker et al. (2012), these α scores were
computed using an ordinal scale (except for sarcasm) on a
dataset comprising both the set of Q-R pairs we take as start-
ing point here and data from an additional experiment re-
ferred to as P123 by the authors. See their paper for details.

3 Measuring Linguistic Accommodation

We measure linguistic style accommodation with
respect to 8 different functional markers (personal
pronouns, impersonal pronouns, articles, preposi-
tions, quantifiers, adverbs, conjunctions, and aux-
iliary verbs) using the lists made available by No-
ble and Fernández (2015).2 Our starting point
is the linguistic coordination measure proposed
by Danescu-Niculescu-Mizil et al. (2012), which
uses a subtractive conditional probability to cap-
ture the increase in the probability of using a
marker given that it has been used by the previous
conversation participant. In our notation:

Cm = p(Rm
i |Qm

j )− p(Rm
i ) [1]

Here p(Rm
i |Qm

j ) refers to the probability that a re-
sponseR by author i contains markerm given that
the quoted post by j also contains m. How much
coordination C there is in i’s responses to j corre-
sponds to the difference between this conditional
probability and the prior probability p(Rm

i ) for au-
thor i, i.e., the probability that any response by i
contains a linguistic marker of category m.

Given the sparsity of data in online discussion
fora with regards to repeated interactions between
the same individuals i and j, we compute a score
for each Q-R pair (rather than for the set of Q-R
pairs between specific authors i and j). Therefore,
the conditional probability in Equation [1] corre-
sponds to a variable that takes value 1 if both Q
and R contain m and 0 if only Q does (and is un-
defined if Q does not contain m). The prior again
corresponds to the proportion of responses by the
author of R that exhibit m in the entire dataset.

A problem with this measure (both in the origi-
nal formulation by Danescu-Niculescu-Mizil et al.
and our own with a boolean term) is that it does
not account for utterance length: clearly, a longer
response has more chances to contain a marker m
than a shorter response. Indeed length has been
observed to be an important confounding factor in
the computation of stylistic coordination (Gao et
al., 2015). We therefore proposed an extension of
the original measure to account for both aspects
independently: the presence of a marker in a post
(1 vs. 0) and its frequency given the post length.

In our model, alignment between Q and R
and the prior for the author of R with respect to

2These lists of markers are based on Linguistic Inquiry
and Word Count (LIWC) by Pennebaker et al. (2007).
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marker class m correspond to feature vectors ~a
and ~b, respectively, with a first feature indicating
marker presence and a second feature accounting
for marker frequency. Thus, for a given Q-R pair:

a1: presence of m in R given that Q contains m
a2: proportion of words in R that are m

Similarly, for a given author i, the prior includes
the following features:

b1: proportion of responses R by i containing m
b2: proportion of words by i that are m

After rescaling all features to range [0, 1], ~a and ~b
are scalarized by taking the dot product with a so-
called weight vector ~w, which determines the im-
portance of each feature (presence vs. frequency).
This linear scalarization is a standard technique in
multi-objective optimization (Roijers et al., 2013).
To determine the SAm score of a given Q-R pair
for a marker classm, as in the original measure we
finally take the difference between the alignment
observed in the Q-R pair and the prior encoding
the linguistic style of the responding author:

SAm = (~a · ~w)− (~b · ~w) [2]

An advantage of this measure is that it allows us
to explore the effects of using different weights
for different features, in our case presence vs. fre-
quency, but potentially other features (such as syn-
tactic alignment) as well. In the current setting,
if w2 = 0, we obtain the original measure where
only the presence of a marker is recorded, with-
out taking into account frequency and hence post
length. In contrast, if w1 = 0, only relative
marker frequency is considered and no importance
is given to the mere presence of a marker in a post.
If the two weights are above zero, both features
are taken into account.

4 Analysis and Results

For each Q-R pair in our dataset, we compute SAm

for each marker m, as well as the average style ac-
commodation over all markers, which we refer to
simply as SA. To test the hypotheses put forward
in the Introduction, we retrieve clearly agreeing Q-
R pairs (agreement annotation > 1, N= 468) and
clearly disagreeing Q-R pairs (agreement annota-
tion < −1, N= 2519). All our analyses are per-
formed on these subsets.

According to hypothesis H1, more style accom-
modation is expected to be present in agreeing re-
sponses. We find a significant difference in SAm
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Figure 1: Effect size (Cohen’s d) when comparing
SA in agreeing and disagreeing Q-R pairs with dif-
ferent feature weights; w1 (presence) in the x-axis.

for all markers between agreeing and disagreeing
Q-R pairs (Welch two sample t-test, p < 0.001;
effect size Cohen’s d between .22 and .37 for all
markers). Contrary to hypothesis H1, however,
in all cases the level of style accommodation is
higher in disagreeing responses than in agreeing
ones. Example (1) in Table 1 shows a typical Q-
R pair with high content agreement but low SA.
As illustrated by this example, strongly agreeing
responses often consist of short explicit expres-
sions of agreement, with less potential for stylis-
tic alignment. In contrast, disagreeing responses
tend to be longer (as already observed by conver-
sational analysts such as Pomerantz (1984)) and
have therefore more chances to include stylistic
markers matching the quoted post.

Indeed, although across the board disagreeing
responses exhibit more SA, the statistical signif-
icance of this difference decreases as we lower
the weight of the presence features (and thus give
more importance to frequency and post lenght).
Figure 1 shows the evolution of the effect size (Co-
hen’s d) with different values for w1. When only
frequency is taken into account (w1 = 0), the ef-
fect size is very low. However, as soon as w1

receives some weight (from w1 = 0.1 onwards),
a more significant difference can be observed for
disagreeing Q-R pairs (Welch two sample t-test,
p < 0.001, d > 0.2).3

We now concentrate on disagreeing Q-R pairs
to investigate our second hypothesis. According
to H2, disagreeing responses with a persuasive

3As suggested by one anonymous reviewer, we also per-
formed our analysis on a balanced dataset constructed by
under-sampling the category of disagreeing Q-R pairs. Our
findings also hold in this balanced setting.
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Figure 2: Correlation between SA and nice/nasti-
ness annotations in disagreeing Q-R pairs.

aim will show higher style accommodation. As
mentioned earlier, we use the nice/nastiness and
sarcasm annotations as a proxy for persuasion or
lack thereof. We observe a tendency towards posi-
tive correlation between style accommodation and
niceness: i.e., responses with higher SA tend to be
perceived as nicer. Nevertheless, the correlations
observed, although often significant (p < 0.05),
are extremely weak (Pearson’s r < 0.1). Inter-
estingly, however, in this case there is one type
of marker that stands out: accommodation on per-
sonal pronouns is negatively correlated with level
of niceness. This can be observed in Figure 2,
which plots SA for all markers separately for dif-
ferent feature weighting schemes. As can be seen,
the negative correlation for personal pronouns is
stronger the more weight we give to marker fre-
quency (lower values of w1 in the plot). This cor-
relation is significant (p < 0.05) for all values of
w2 higher than 0.1.

We next discard neutral values on the
nice/nastiness dimension and focus on Q-R
pairs that have clearly been annotated as nice
(score > 1) or nasty (score < −1). We find
significant differences for four marker types: aux-
iliary verbs, quantifiers, impersonal and personal
pronouns. Not surprisingly, given the correlations
observed above, the three former markers show
more SA in nice disagreeing responses, while SA
with respect to personal pronouns is higher in
nasty responses. Examples (2) and (3) in Table 1
illustrate this. Figure 3 shows the effect size
of these differences (Cohen’s d) for these four
marker types, for different feature weight values.
As clearly seen in the plot, personal pronouns
also contrast with the other markers on their
behaviour with different weighting schemes. The
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Figure 3: Effect size (Cohen’s d) when comparing
SA in disagreeing nice vs. nasty Q-R pairs with
different feature weights; w1 in the x-axis.

(1) Q: Micheal Moore tends to manipulate people, just
in a different way than the President or the media
does. . . not with fear, with knowledge and anger.
R: Well said. I agree 100%.

agreement= 5, nice/nasty= 5, SAavg= –.39 (~w=[0.5, 0.5])

(2) Q: And the problem is, if one of these assumption is
proven incorrect, then the whole theory collapses.
R: And one of these assumption has not been proven
incorrect.

agreement= –2, nice/nasty= 5 , SAquant = .31 (~w=[0.5, 0.5])

(3) Q: But he does have a point. . .
R: I see. Then you have none?

agreement= –1, nice/nasty= –2, SApers.pro=.24 (~w=[0.5, 0.5])

Table 1: Example Q-R pairs.

higher accommodation on personal pronouns (in
nasty responses) is much more pronounced when
marker frequency receives a high weight.

Finally, regarding sarcasm, we observe a ten-
dency for all markers to exhibit lower levels of
style accommodation in sarcastic disagreeing re-
sponses. This tendency is statistically significant
for three marker types: auxiliary verbs, quanti-
fiers, and impersonal pronouns (Welch two sample
t-test, p < 0.05 for w1 > 0.25). Accommodation
on personal pronouns does not appear to be related
to sarcasm. We remark, however, that these results
need to be taken with care since only 3% of all Q-
R pairs in the dataset (5% in disagreeing pairs) are
reliably annotated as sarcastic.

5 Conclusions

We have investigated style accommodation in on-
line discussions by means of a new model that
takes into account the presence of a marker in
both quoted text and response and the relative fre-
quency of that marker given the length of a post.
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Contrary to our first hypothesis, we found more
accommodation in disagreeing responses than in
agreeing ones. Thus, if speakers fully align on
content, there seems to be less need to also align
on style; in contrast, when there is a content dis-
agreement, speakers may want to maintain rapport
by exhibiting style accommodation. In support
of our second hypothesis, we observed more ac-
commodation in disagreeing responses that were
perceived as nice by annotators. In a discussion,
such responses are presumably more persuasive
than those perceived as nasty or sarcastic, where
style accommodation was lower.

We found pronounced differences for personal
pronouns: in the current dataset, accommodation
on personal pronouns signals distancing (nasty
perception). The fact that personal pronouns stand
out confirms previous findings showing that this
marker class can be a particularly powerful indi-
cator of social dynamics (Pennebaker, 2011).

Our analysis has shown that the relative weight
given to presence and frequency features can have
a substantial impact on the results obtained. We
hope that the model put forward will help to fur-
ther understand confounding factors in the compu-
tation of style accommodation. We leave a thor-
ough investigation of these issues to future work.
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Abstract

Segmenting text into semantically coher-
ent fragments improves readability of text
and facilitates tasks like text summariza-
tion and passage retrieval. In this pa-
per, we present a novel unsupervised al-
gorithm for linear text segmentation (TS)
that exploits word embeddings and a mea-
sure of semantic relatedness of short texts
to construct a semantic relatedness graph
of the document. Semantically coherent
segments are then derived from maximal
cliques of the relatedness graph. The al-
gorithm performs competitively on a stan-
dard synthetic dataset and outperforms the
best-performing method on a real-world
(i.e., non-artificial) dataset of political man-
ifestos.

1 Introduction

Despite the fact that in mainstream natural lan-
guage processing (NLP) and information retrieval
(IR) texts are modeled as bags of unordered words,
texts are sequences of semantically coherent seg-
ments, designed (often very thoughtfully) to ease
readability and understanding of the ideas con-
veyed by the authors. Although authors may explic-
itly define coherent segments (e.g., as paragraphs),
many texts, especially on the web, lack any explicit
segmentation.

Linear text segmentation aims to represent texts
as sequences of semantically coherent segments.
Besides improving readability and understandabil-
ity of texts for readers, automated text segmenta-
tion is beneficial for NLP and IR tasks such as text
summarization (Angheluta et al., 2002; Dias et al.,
2007) and passage retrieval (Huang et al., 2003;
Dias et al., 2007). Whereas early approaches to
unsupervised text segmentation measured the co-

herence of segments via raw term overlaps between
sentences (Hearst, 1997; Choi, 2000), more recent
methods (Misra et al., 2009; Riedl and Biemann,
2012) addressed the issue of sparsity of term-based
representations by replacing term-vectors with vec-
tors of latent topics.

A topical representation of text is, however,
merely a vague approximation of its meaning. Con-
sidering that the goal of TS is to identify seman-
tically coherent segments, we propose a TS algo-
rithm aiming to directly capture the semantic re-
latedness between segments, instead of approxi-
mating it via topical similarity. We employ word
embeddings (Mikolov et al., 2013) and a measure
of semantic relatedness of short texts (Šarić et al.,
2012) to construct a relatedness graph of the text in
which nodes denote sentences and edges are added
between semantically related sentences. We then
derive segments using the maximal cliques of such
similarity graphs.

The proposed algorithm displays competitive
performance on the artifically-generated bench-
mark TS dataset (Choi, 2000) and, more im-
portantly, outperforms the best-performing topic
modeling-based TS method on a real-world dataset
of political manifestos.

2 Related Work

Automated text segmentation received a lot of at-
tention in NLP and IR communities due to its use-
fulness for text summarization and text indexing.
Text segmentation can be performed in two differ-
ent ways, namely (1) with the goal of obtaining
linear segmentations (i.e. detecting the sequence
of different segments in a text) , or (2) in order
to obtain hierarchical segmentations (i.e. defining
a structure of subtopics between the detected seg-
ments). Like the majority of TS methods (Hearst,
1994; Brants et al., 2002; Misra et al., 2009; Riedl
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and Biemann, 2012), in this work we focus on lin-
ear segmentation of text, but there is also a solid
body of work on hierarchical TS, where each top-
level segment is further broken down (Yaari, 1997;
Eisenstein, 2009).

Hearst (1994) introduced TextTiling, one of the
first unsupervised algorithms for linear text seg-
mentation. She exploits the fact that words tend to
be repeated in coherent segments and measures the
similarity between paragraphs by comparing their
sparse term-vectors. Choi (2000) introduced the
probabilistic algorithm using matrix-based ranking
and clustering to determine similarities between
segments. Galley et al. (2003) combined content-
based information with acoustic cues in order to
detect discourse shifts whereas Utiyama and Isa-
hara (2001) and Fragkou et al. (2004) minimized
different segmentation cost functions with dynamic
programming.

The first segmentation approach based on topic
modeling (Brants et al., 2002) employed the proba-
bilistic latent semantic analysis (pLSA) to derive
latent representations of segments and determined
the segmentation based on similarities of segments’
latent vectors. More recent models (Misra et al.,
2009; Riedl and Biemann, 2012) employed the la-
tent Dirichlet allocation (LDA) (Blei et al., 2003)
to compute the latent topics and displayed supe-
rior performance to previous models on standard
synthetic datasets (Choi, 2000; Galley et al., 2003).
Misra et al. (2009) used dynamic programming
to find globally optimal segmentation over the set
of LDA-based segment representations, whereas
Riedl and Biemann (2012) introduced TopicTiling,
an LDA-driven extension of Hearst’s TextTiling al-
gorithm where segments are, represented as dense
vectors of dominant topics of terms they contain
(instead of as sparse term vectors). Riedl and Bie-
mann (2012) show that TopicTiling outperforms
at-that-time state-of-the-art methods for unsuper-
vised linear segmentation (Choi, 2000; Utiyama
and Isahara, 2001; Galley et al., 2003; Fragkou
et al., 2004; Misra et al., 2009) and that it is also
faster than other LDA-based methods (Misra et al.,
2009).

In the most closely related work to ours,
Malioutov and Barzilay (2006) proposed a graph-
based TS approach in which they first construct
the fully connected graph of sentences, with edges
weighted via the cosine similarity between bag-
of-words sentence vectors, and then run the mini-

mum normalized multiway cut algorithm to obtain
the segments. Similarly, Ferret (2007) builds the
similarity graph, only between words instead of
between sentences, using sparse co-occurrence vec-
tors as semantic representations for words. He then
identifies topics by clustering the word similarity
graph via the Shared Nearest Neighbor algorithm
(Ertöz et al., 2004). Unlike these works, we use the
dense semantic representations of words and sen-
tences (i.e., embeddings), which have been shown
to outperform sparse semantic vectors on a range
of NLP tasks. Also, instead of looking for mini-
mal cuts in the relatedness graph, we exploit the
maximal cliques of the relatedness graph between
sentences to obtain the topic segments.

3 Text Segmentation Algorithm

Our TS algorithm, dubbed GRAPHSEG, builds a
semantic relatedness graph in which nodes denote
sentences and edges are created for pairs of seman-
tically related sentences. We then determine the
coherent segments by finding maximal cliques of
the relatedness graph. The novelty of GRAPHSEG

is in the fact that it directly exploits the semantics
of text instead of approximating the meaning with
topicality.

3.1 Semantic Relatedness of Sentences

The measure of semantic relatedness between sen-
tences we use is an extension of a salient greedy
lemma alignment feature proposed in a supervised
model by Šarić et al. (2012). They greedily align
content words between sentences by the similar-
ity of their distributional vectors and then sum the
similarity scores of aligned word pairs. However,
such greedily obtained alignment is not necessarily
optimal. In contrast, we compute the optimal align-
ment by (1) creating a weighted complete bipartite
graph between the sets of content words of the two
sentences (i.e., each word from one sentence is con-
nected with a relatedness edge to all of the words
in the other sentence) and (2) running a bipartite
graph matching algorithm known as the Hungarian
method (Kuhn, 1955) that has the polynomial com-
plexity. The similarities of content words between
sentences (i.e., the weights of the bipartite graph)
are computed as the cosine of the angle between
their corresponding embedding vectors (Mikolov
et al., 2013).

Let A be the set of word pairs in the optimal
alignment between the content-word sets of the two
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sentences S1 and S2, i.e., A = {(w1, w2) | w1 ∈
S1 ∧ w2 ∈ S2}. We then compute the semantic
relatedness for two given sentences S1 and S2 as
follows:

sr(S1, S2) =
∑

(w1,w2)∈A

cos(v1, v2) ·min(ic(w1), ic(w2))

where vi is the embedding vector of the word wi

and ic(w) is the information content (IC) of the
word w, computed based on the relative frequency
of w in some large corpus C:

ic(w) = − log
freq(w) + 1

|C|+∑w′∈C freq(w′)
.

We utilize the IC weighting of embedding similar-
ity because we assume that matches between less
frequent words (e.g., guitar and ukulele) contribute
more to sentence relatedness than pairs of similar
but frequent words (e.g., do and make). We used
Google Books Ngrams (Michel et al., 2011) as a
large corpus C for estimating relative frequencies
of words in a language.

Because there will be more aligned pairs be-
tween longer sentences, the relatedness score will
be larger for longer sentences merely because of
their length (regardless of their actual similarity).
Thus, we normalize the sr(S1, S2) score first with
the length of S1 and then with the length S2 and
we finally average these two normalized scores:

rel(S1, S2) =
1
2
·
(

sr(S1, S2)
|S1| +

sr(S1, S2)
|S2|

)
.

3.2 Graph-Based Segmentation
All sentences in a text become nodes of the relat-
edness graph G. We then compute the semantic
similarity, as described in the previous subsection,
between all pairs of sentences in a given document.
For each pair of sentences for which the seman-
tic relatedness is above some treshold value τ we
add an edge between the corresponding nodes of
G. Next, we employ the Bron-Kerbosch algorithm
(Bron and Kerbosch, 1973) to compute the setQ of
all maximal cliques of G. We then create the initial
set of segments SG by merging adjacent sentences
found in at least one maximal clique Q ∈ Q of
graph G. Next, we merge the adjacent segments
sgi and sgi+1 for which there is at least one clique
Q ∈ Q containing at least one sentence from sgi

and one sentence from sgi+1. Finally, given the

Step Sets

Cliques Q {1, 2, 6}, {2, 4, 7}, {3, 4, 5}, {1, 8, 9}
Init. seg. {1, 2}, {3, 4, 5}, {6}, {7} {8, 9}
Merge seg. {1, 2, 3, 4, 5}, {6}, {7}, {8, 9}
Merge small {1, 2, 3, 4, 5}, {6, 7}, {8, 9}

Table 1: Creating segments from graph cliques
(n = 2). In the third step we merge segments
{1, 2, 3} and {4, 5} because the second clique
contains sentences 2 (from the left segment) and
4 (from the right segment). In the final step
we merge single sentence segments (assuming
segs({1, 2, 3, 4, 5}, {6}) < segs({6}, {7}) and
segs({7}, {8, 9}) < segs({6}, {7})).

minimal segment size n, we merge segments sgi

with less than n sentences with the semantically
more related of the two adjacent segments – sgi−1

or sgi+1. The relatedness between two adjacent
segments (sgr(sg i, sg i+1)) is computed as the aver-
age relatedness between their respective sentences:

sgr(SG1,SG2) =
1

|SG1||SG2|
∑

S1∈SG1
S2∈SG2

rel(S1, S2).

We exemplify the creation of segments from maxi-
mal cliques in Table 1. The complete segmentation
algorithm is fleshed out in Algorithm 1.1

4 Evaluation

In this section, we first introduce the two evaluation
datasets that we use one being the commonly used
synthetic dataset and the other a realistic dataset
of politi- cal manifestos. Following, we present
the experimental setting and finally describe and
discuss the results achieved by our GRAPHSEG

algorithm and how it compares to other TS models.

4.1 Datasets
Unsupervised methods for text segmentation have
most often been evaluated on synthetic datasets
with segments from different sources being con-
catenated in artificial documents (Choi, 2000; Gal-
ley et al., 2003). Segmenting such artificial texts is
easier than segmenting real-world documents. This
is why besides on the artificial Choi dataset we also
evaluate GRAPHSEG on a real-world dataset of po-
litical texts from the Manifesto Project,2,3 manually

1We make the GraphSeg tool freely available at the fol-
lowing address: https://gg42554@bitbucket.org/
gg42554/graphseg.git

2https://manifestoproject.wzb.eu
3We used the set of six documents manifestos – three

Republican and three Democrat manifestos from the 2004,
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Algorithm 1: Segment(text , τ , n)
G← (V ← ∅, E ← ∅)
S ← sentences(text)
SG ← ∅
// constructing the similarity graph
for each sentence Si ∈ S do
V ← V ∪ {Si}

for each pair (Si, Sj) | Si, Sj ∈ S do
if rel(Si, Sj) > τ do
E ← E ∪ ({Si}, {Sj})

// creating initial segments from cliques
Q ← cliques(G)
for each clique Q ∈ Q do

for each (Si, Sj), Si, Sj ∈ Q do
if j − i = 1 do

if sg(Si) = ∅ and sg(Sj) = ∅ do
SG ← SG ∪ {Si, Sj}

elif sg(Si) 6= ∅ and sg(Sj) = ∅ do
sg(Si)← sg(Si) ∪ {Sj}

elif sg(Si) = ∅ and sg(Sj) 6= ∅ do
sg(Sj)← sg(Sj) ∪ {Si}

// merging adjacent segments
for each segment sg i ∈ SG do

if ∃Q ∈ Q | (∃Sj , Sk ∈ Q |
Sj ∈ sgi ∧ Sk ∈ sgi+1) do

SG ← SG \ {sg i, sg i+1}
SG ← SG ∪ (sg i ∪ sg i+1)

// merging too small segments
for each segment sg i ∈ SG do

if |sg i| < n do
if sgr(sg i−1, sg i) > sgr(sg i, sg i+1) do

SG ← SG \ {sg i−1, sg i}
SG ← SG ∪ (sg i−1 ∪ sg i)

else do
SG ← SG \ {sg i, sg i+1}
SG ← SG ∪ (sg i ∪ sg i+1)

return SG

labeled by domain experts with segments of seven
different topics (e.g., economy and welfare, quality
of life, foreign affairs). The selected manifestos
contain between 1000 and 2500 sentences, with
segments ranging in length from 1 to 78 sentences,
which is in sharp contrast to the Choi dataset where
all segments are of similar size.

4.2 Experimental Setting

To allow for comparison with previous work, we
evaluate GRAPHSEG on four subsets of the Choi
dataset, differing in number of sentences the seg-

2008, and 2012 U.S. elections

ments contain. For the evaluation on the Choi
dataset, the GRAPHSEG algorithm made use of
the publicly available word embeddings built from
a Google News dataset.4

Both LDA-based models (Misra et al., 2009;
Riedl and Biemann, 2012) and GRAPHSEG rely
on corpus-derived word representations. Thus, we
evaluated on the Manifesto dataset both the domain-
adapted and domain-unadapted variants of these
methods. The domain-adapted variants of the mod-
els used the unlabeled domain corpus – a test set
of 466 unlabeled political manifestos – to train the
domain-specific word representations. This means
that we obtain (1) in-domain topics for the LDA-
based TopicTiling model of Riedl and Biemann
(2012) and (2) domain-specific embeddings for the
GRAPHSEG algorithm. On the Manifesto dataset
we also evaluate a baseline that randomly (50%
chance) starts a new segment at points m sentences
apart, withm being set to half of the average length
of gold segments.

We evaluate the performance using two stan-
dard TS evaluation metrics – Pk (Beeferman et al.,
1999) and WindowDiff (WD) (Pevzner and Hearst,
2002). Pk is the probability that two randomly
drawn sentences mutually k sentences apart are
classified incorrectly – either as belonging to the
same segment when they are in different gold seg-
ments or as being in different segments when they
are in the same gold segment. Following Riedl and
Biemann (2012), we set k to half of the document
length divided by the number of gold segments.
WindowDiff is a stricter version of Pk as, instead
of only checking if the randomly chosen sentences
are in the same predicted segment or not, it com-
pares the exact number of segments between the
sentences in the predicted segmentation with the
number of segments in between the same sentences
in the gold standard. Lower scores indicate better
performance for both these metrics.

The GRAPHSEG algorithm has two parameters:
(1) the sentence similarity treshold τ which is used
when creating edges of the sentence relatedness
graph and (2) the minimal segment size n, which
we utilize to merge adjacent segments that are too
small. In all experiments we use grid-search in a
folded cross-validation setting to jointly optimize
both parameters. In view of comparison with other
models, the parameter optimization is justified be-

4https://drive.google.com/file/d/
0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=
sharing

128



3-5 6-8 9-11 3-11

Method Pk WD Pk WD Pk WD Pk WD

Choi (2000) 12.0 – 9.0 – 9.0 – 12.0 –
Brants et al. (2002) 7.4 – 8.0 – 6.8 – 10.7 –
Fragkou et al. (2004) 5.5 – 3.0 – 1.3 – 7.0 –
Misra et al. (2009) 23.0 – 15.8 – 14.4 – 16.1 –
GRAPHSEG 5.6 8.7 7.2 9.4 6.6 9.6 7.2 9.0

Misra et al. (2009)* 2.2 – 2.3 – 4.1 – 2.3 –
Riedl and Biemann (2012)* 1.2 1.3 0.8 0.9 0.6 0.7 1.0 1.1

Table 2: Performance on different portions of the Choi dataset (*with domain-adapted topic model).

Method Pk WD

Random baseline 40.60 49.17
Riedl and Biemann (2012) 33.39 38.31
GRAPHSEG 28.09 34.04

Riedl and Biemann (2012)* 32.94 37.59
GRAPHSEG* 28.08 34.00

Table 3: Performance on the Manifesto dataset
(*domain-adapted variant).

cause other models, e.g., TopicTiling (Riedl and
Biemann, 2012), also have parameters (e.g., num-
ber of topics for the topic model) which are opti-
mized using cross-validation.

4.3 Results and Discussion

In Table 2 we report the performance of GRAPH-
SEG and prominent TS methods on the synthetic
Choi dataset. GRAPHSEG performs competitively,
outperforming all methods but (Fragkou et al.,
2004) and domain-adapted versions of LDA-based
models (Misra et al., 2009; Riedl and Biemann,
2012). However, the approach by (Fragkou et al.,
2004) uses the gold standard information – the aver-
age gold segment size – as input. On the other hand,
the LDA-based models adapt their topic models on
parts of the Choi dataset itself. Despite the fact that
they use different documents for training the topic
models from those used for evaluating segmenta-
tion quality, the evaluation is still tainted because
snippets from the original documents appear in
multiple artificial documents – some of which be-
long to the the training set and others to the test set,
as admitted by Riedl and Biemann (2012) and this
is why their reported performance on this dataset
is overestimated.

In Table 3 we report the results on the Man-
ifesto dataset. Results of both TopicTiling and
GRAPHSEG indicate that the realistic Manifesto
dataset is much more difficult to segment than the
artificial Choi dataset. The GRAPHSEG algorithm

significantly outperforms the TopicTiling method
(p < 0.05, Student’s t-test). In-domain training of
word representations, topics for TopicTiling and
word embeddings for GraphSeg, does not signifi-
cantly improve the performance for neither of the
two models. This result contrasts previous findings
(Misra et al., 2009; Riedl and Biemann, 2012) in
which the performance boost was credited to the in-
domain trained topics and supports our hypothesis
that the performance boost of the LDA-based meth-
ods’ with in-domain trained topics originates from
information leakage between different portions of
the synthetic Choi dataset.

5 Conclusion

In this work we presented GRAPHSEG, a novel
graph-based algorithm for unsupervised text seg-
mentation. GRAPHSEG employs word embeddings
and extends a measure of semantic relatedness to
construct a relatedness graph with edges estab-
lished between semantically related sentences. The
segmentation is then determined by the maximal
cliques of the relatedness graph and improved by
semantic comparison of adjacent segments.

GRAPHSEG displays competitive performance
compared to best-performing LDA-based methods
on a synthetic dataset. However, we identify and
discuss evaluation issues pertaining to LDA-based
TS on this dataset. We also performed an evaluation
on the real-world dataset of political manifestos
and showed that in a realistic setting GRAPHSEG

significantly outperforms the state-of-the-art LDA-
based TS model.
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Gaël Dias, Elsa Alves, and José Gabriel Pereira Lopes.
2007. Topic segmentation algorithms for text sum-
marization and passage retrieval: An exhaustive
evaluation. In AAAI, volume 7, pages 1334–1339.

Jacob Eisenstein. 2009. Hierarchical text segmenta-
tion from multi-scale lexical cohesion. In Proceed-
ings of HLT-NAACL, pages 353–361. Association
for Computational Linguistics.
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Abstract

We describe the implementation of a Word
Sense Disambiguation (WSD) tool in a
Dutch Text-to-Pictograph translation sys-
tem, which converts textual messages into
sequences of pictographic images. The
system is used in an online platform for
Augmentative and Alternative Communi-
cation (AAC). In the original translation
process, the appropriate sense of a word
was not disambiguated before converting
it into a pictograph. This often resulted
in incorrect translations. The implemen-
tation of a WSD tool provides a better
semantic understanding of the input mes-
sages.

1 Introduction

In today’s digital age, people with Intellectual Dis-
abilities (ID) often have trouble partaking in on-
line activities such as email, chat, and social net-
work websites. Not being able to access or use
information technology is a major form of social
exclusion. There is a dire need for digital commu-
nication interfaces that enable people with ID to
contact one another.

Vandeghinste et al. (2015) are developing a
Text-to-Pictograph and Pictograph-to-Text trans-
lation system for the WAI-NOT1 communication
platform. WAI-NOT is a Flemish non-profit or-
ganization that gives people with severe commu-
nication disabilities the opportunity to familiar-
ize themselves with the Internet. Their safe web-
site environment offers an email client that makes
use of the Dutch pictograph translation solutions.
The Text-to-Pictograph translation system (Van-
deghinste et al., 2015; Sevens et al., 2015a) au-

1http://www.wai-not.be/

tomatically augments written text with Beta2 or
Sclera3 pictographs and is primarily conceived
to improve the comprehension of textual content.
The Pictograph-to-Text translation system (Sevens
et al., 2015b) allows the user to insert a series of
Beta or Sclera pictographs, automatically translat-
ing this image sequence into natural language text
where possible. This facilitates the construction of
textual content.

The Text-to-Pictograph translation process did
not yet perform Word Sense Disambiguation
(WSD) to select the appropriate sense of a word
before converting it into a pictograph. Instead, the
most frequent sense of the word was chosen. This
sometimes resulted in incorrect pictograph trans-
lations (see Figure 1).

Figure 1: Example of Dutch-to-Sclera translation.
The word bloem means both flower and flour. The
most common sense is flower, which would be the
wrong choice within the context of baking. Note
that the pictograph language is a simplified lan-
guage. Function words and number information
are not represented.

We describe the implementation of a WSD tool
2The Beta set consists of more than 3,000 coloured pic-

tographs: https://www.betasymbols.com/
3Sclera pictographs are mainly black-and-white pic-

tographs. Over 13,000 pictographs are available and more
are added upon user request: http://www.sclera.be/
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in the Dutch Text-to-Pictograph translation sys-
tem. After a discussion of related work (section 2),
we present both the Text-to-Pictograph transla-
tion tool and the WSD tool (section 3). We then
proceed to describe the implementation procedure
(section 4). Our evaluations show that improve-
ments over the baseline in the Text-to-Pictograph
translation tool were made (section 5). Finally, we
conclude and describe future work (section 6).

2 Related work

There are not many works related to the task
of translating text for pictograph-supported com-
munication. Mihalcea and Leong (2008) describe
a system for the automatic construction of sim-
ple pictographic sentences. They also use Word-
Net (Miller, 1995) as a lexical resource, but
they do not use the WordNet relations between
concepts in the same manner as the Text-to-
Pictograph translation system does. Furthermore,
their system does not translate the entire message.
However, it should be noted that they make use
of WSD in a way that is very similar to the ap-
proach described below. The WSD tool also relies
on WordNet as a lexical database. Their system,
though, is focused on English and the effective-
ness of WSD within the context of a pictograph
translation system was not evaluated.

Quite similar to the Text-to-Pictograph trans-
lation system are SymWriter4 and Blissym-
bols (Hehner et al., 1983). These systems allow
users to insert arbitrary text, which is then semi-
automatically converted into pictographs. How-
ever, they do not provide automatic translation
aids based on linguistic knowledge to properly dis-
ambiguate lexical ambiguities, which can lead to
erroneous translation (Vandeghinste, 2012).

There is contradictory evidence that Natural
Language Processing tools and Information Re-
trieval tasks benefit from WSD. Within the field
of Machine Translation, Dagan and Itai (1994)
and Vickrey et al. (2005) show that proper incor-
poration of WSD leads to an increase in trans-
lation performance for automatic translation sys-
tems. On the other hand, Carpuat and Wu (2005)
argue that it is difficult, at the least, to use
standard WSD models to obtain significant im-
provements to statistical Machine Translation sys-
tems, even when supervised WSD models are
used. In later research, Carpuat and Wu (2007)

4http://www.widgit.com/products/symwriter/

and Chan et al. (2007) demonstrate that WSD can
improve machine translation by using probabilis-
tic methods that select the most likely transla-
tion phrase. Navigli (2009) underlines the general
agreement that WSD needs to show its relevance
in vivo. Full-fledged applications should be built
including WSD either as an integrated or a plug-
gable component. As such, we set out to imple-
ment WSD and evaluate its effects within the Text-
to-Pictograph translation system.

3 Description of the tools

The following sections describe the architecture
of the Text-to-Pictograph translation system (sec-
tion 3.1) and the WSD tool (section 3.2).

3.1 The Text-to-Pictograph translation
system

The Text-to-Pictograph translation system trans-
lates text into a series of Beta or Sclera pic-
tographs, cf. Vandeghinste et al. (2015) and Sev-
ens et al. (2015a).

The source text first undergoes shallow linguis-
tic processing, consisting of several sub-processes,
such as tokenization, part-of-speech tagging, and
lemmatization.

For each word in the source text, the system
then returns all possible WordNet synsets iden-
tifiers (identifiers of sets of synonymous words)
that are connected to that word. WordNets are
an essential component of the Text-to-Pictograph
translation system. For the Dutch system, Cor-
netto (Vossen et al., 2008; van der Vliet et al.,
2010) was used. The synsets are filtered, keep-
ing only those where the part-of-speech tag of the
synset matches the part-of-speech tag of the word.
Therefore, the semantic ambiguity of words across
different grammatical categories (such as the noun
kom ’bowl’ and the verb kom ’come’) has never
formed an obstacle.

The WordNet synsets are used to connect pic-
tographs to natural language text (see Figure 2).
This greatly improves the lexical coverage of the
system, as pictographs are connected to sets of
words that have the same meaning, instead of just
individual words. Additionally, if a synset is not
covered by a pictograph, the links between synsets
can be used to look for alternative pictographs
with a similar meaning (such as the dog pictograph
as a hyperonym for poodle). However, using pic-
tographs through synset propagation (making use
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of the WordNet relations) is controlled by penal-
ties for not using the proper concept.

Figure 2: The Dutch word blad is linked to three
different pictographs through its synsets.

Vandeghinste and Schuurman (2014) manually
linked 5710 Sclera pictographs and 2760 Beta pic-
tographs to synsets in Cornetto.

For every word in the sentence, the system
checks whether one or more pictographs can be
found for it. An A* algorithm5 calculates the op-
timal pictograph sequence for the source text.

During the optimal path calculation step, the
original system would sometimes be confronted
with an equally likely choice between two or more
pictographs, corresponding to different meanings
of the same word (see Figure 2). In that case,
the most commonly occurring sense according to
DutchSemCor (Vossen et al., 2010) was chosen.

3.2 The Word Sense Disambiguation tool

We used the Dutch WSD tool that was made avail-
able by Ruben Izquiero6 within the framework of
the DutchSemCor project (Vossen et al., 2010).

DutchSemCor delivered a one-million word
Dutch corpus that is fully sense-tagged with senses
and domain names from the Cornetto database.
It was constructed as a balanced-sense lexical
sample for the 3000 most frequent and polyse-
mous Dutch words, with about 100 examples for
each sense. Part of the corpus was built semi-
automatically and other parts manually. In the
first phase, 25 examples were collected for each
sense and manually tagged by annotators. The re-
mainder of the corpus was tagged by a supervised
WSD system, which was built using the manu-
ally tagged data from the first phase. The super-

5A pathfinding algorithm that uses a heuristic to search the
most likely paths first. Its input is the pictographically anno-
tated source message, together with the pictographs penalties,
depending on the number and kind of synset relations the sys-
tem had to go through to connect them to the words.

6https://github.com/cltl/svm wsd

vised system searched for the remaining 75 exam-
ples of the different senses to complete the cor-
pus. Low-confidence examples were validated by
annotators. In the last phase, even more examples
were added to represent the context variety and the
sense distribution as reflected in external corpora.

The resulting WSD system was built from the
final sense-annotated corpus. The feature set that
led to the best performance (81.62% token accu-
racy) contained words in a 1-token window around
the target word, in combination with a bag-of-
words representation of the context words. This
WSD system takes natural language text as input
and returns the confidence values of all senses ac-
cording to Support Vector Machines.7 Note that
senses correspond to Cornetto synsets in both the
Text-to-Pictograph translation tool and the WSD
system.

4 Implementation

During the pre-processing phase, we let the Text-
to-Pictograph translation system automatically as-
sign a number to every sentence and every word.
These numbers correspond to the sentences’ posi-
tion within the broader message and the words’
position within the sentences. The WSD tool’s
output is numbered in a similar way. This way,
if a particular input word appears multiple times
within a message, the number label allows us to
safely match that word with its correct WSD out-
put counterpart.

The WSD tool is implemented after the shal-
low linguistic analysis and synset retrieval steps.
The input to the WSD tool are the original sen-
tences. Instead of only outputting one winning
sense per word, we adapted the WSD tool to out-
put the scores of each possible sense of the tar-
get word. As mentioned above, in the Text-to-
Pictograph translation system, senses correspond
to synsets which are attached to the word objects
in the message. The WSD scores will now be
added as a new feature of these synsets.

Next, we adapt the A* path-finding algorithm to
include the WSD score in the penalty calculation
as a bonus: A high WSD score biases the selection
of the pictograph towards the winning sense. The
score is weighted by a trainable parameter to de-
termine the importance of WSD in relation to the

7For a more detailed explanation on how the WSD system
was built and tuned, we refer to Vossen et al. (2010).
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Condition BLEU NIST WER PER
Beta
No WSD 0.2572 5.0377 53.1435 45.5516
WSD 0.2721** 5.1976** 51.7200 43.7722
Sclera
No WSD 0.1370 3.8321 72.1379 63.8621
WSD 0.1461* 3.9273 71.1724 62.8966

Table 1: Evaluation. ∗p < 0.05,∗∗ p < 0.01

other system parameters.8

We have tuned these parameters through an au-
tomated procedure. The original tuning corpus
consists of 50 messages from the WAI-NOT cor-
pus, which were manually translated to Beta and
Sclera pictographs by Vandeghinste et al. (2015).
To the original tuning corpus, we added five more
hand-picked messages from the corpus that in-
cluded a polysemous word, that had at least two
pictographs linked to at least two of its synsets.
Biasing the tuning corpus like this was necessary,
since the original set had very few ambiguous
words.

We used the local hill climber algorithm as de-
scribed in Vandeghinste et al. (2015), which varies
the parameter values when running the Text-to-
Pictograph translation script. The BLEU met-
ric (Papineni et al., 2002) was used as an indica-
tor of relative improvement. In order to maximize
the BLEU score, we ran five trials of the local hill
climbing algorithm, until BLEU converged onto a
fixed score. Each trial was run with random ini-
tialization values, and varied the values between
certain boundaries. From these trials, we took the
best scoring parameter values.

5 Extrinsic evaluation

The evaluation set for the full Text-to-Pictograph
translation system consists of 50 other messages
from the WAI-NOT corpus, which were man-
ually translated to Beta and Sclera pictographs
by Vandeghinste et al. (2015).9 We run the sys-
tem with and without the WSD module. The sys-
tem without WSD takes the most frequent sense
for each word.10 The automatic evaluation mea-
sures used are BLEU, NIST, Word Error Rate

8See Vandeghinste et al. (2015) for an in-depth descrip-
tion of the other parameters.

9Creating a gold standard is difficult, as no parallel cor-
pora are available. Translating the messages into Beta and
Sclera pictographs is a meticulous and time-intensive pro-
cess. This explains why the dataset is small.

10It is important to note that these two systems use two
different sets of parameters for finding the optimal path as a
result of separate parameter tuning.

(WER) and Position-independent word Error Rate
(PER).11 We have added significance levels for
the BLEU and NIST scores, by comparing the
no WSD condition with the WSD condition. Sig-
nificance was calculated using bootstrap resam-
pling (Koehn, 2004).

The results are presented in Table 1.12 Sig-
nificant improvements were made for Beta and
Sclera (in the BLEU condition). The observation
that WSD does not more significantly improve
the evaluation results can be explained by the fact
that the evaluation set is small and does not con-
tain many polysemous words with multiple senses
which are linked to a pictograph in the evaluation
set. Only six examples were found.

For that reason, we selected another 20 sen-
tences from the WAI-NOT corpus that contain a
word that has at least two pictographs attached
to at least two of its synsets (belonging to the
same grammatical category) and manually calcu-
lated the precision of their pictograph translations,
focussing on the ambiguous words, before and af-
ter implementing the WSD tool. For Beta, choos-
ing the most frequent sense for each word led to
a correct translation for 14 out of 20 ambiguous
words, while the addition of the WSD tool gave
a correct translation for 18 out of 20 words. For
Sclera, we get 11 out of 20 correct translations for
the most frequent sense condition, and 17 out of 20
correct translations for the WSD condition. Look-
ing back at Figure 1, the system will now correctly
pick the flour pictograph instead of the flower pic-
tograph within the context of baking.

6 Conclusion and future plans

We set out to implement and evaluate the effect
of WSD on the Text-to-Pictograph translation sys-
tem for the Dutch language. Improvements over
the baseline system were made. We can affirm that
disambiguation works in most cases where senses
of ambiguous words are linked to pictographs in
the lexical database. The system with WSD is
now less likely to pick the wrong pictograph for
an ambiguous word, effectively improving picto-

11These metrics are used for measuring a Machine Transla-
tion output’s closeness to one or more reference translations.
We consider pictograph translation as a Machine Translation
problem.

12The gap between the results for Sclera and the results
for Beta is explained by Vandeghinste et al. (2015). The
Sclera pictograph set consists of a much larger amount of
pictographs than Beta, so several different paraphrasing ref-
erence translations are possible.

134



graphic communication for the end-users. Future
work consists of implementing other WSD algo-
rithms and enriching both the tuning corpus and
the evaluation corpus with more expert reference
translations of Dutch text into Beta and Sclera pic-
tographs.

English and Spanish versions of the Text-to-
Pictograph translation system are being devel-
oped.
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Abstract

In this paper, we propose methods to take
into account the disagreement between
crowd annotators as well as their skills
for weighting instances in learning algo-
rithms. The latter can thus better deal with
noise in the annotation and produce higher
accuracy. We created two passage rerank-
ing datasets: one with crowdsource plat-
form, and the second with an expert who
completely revised the crowd annotation.
Our experiments show that our weighting
approach reduces noise improving passage
reranking up to 1.47% and 1.85% on MRR
and P@1, respectively.

1 Introduction

One of the most important steps for building accu-
rate QA systems is the selection/reranking of an-
swer passage (AP) candidates typically provided
by a search engine. This task requires the auto-
matic learning of a ranking function, which pushes
the correct answer passages (i.e., containing the
answer to the question) higher in the list.

The accuracy of such function, among other,
also depends on the quality of the supervision pro-
vided in the training data. Traditionally, the lat-
ter is annotated by experts through a rather costly
procedure. Thus, sometimes, only noisy annota-
tions obtained via automatic labeling mechanisms
are available. For example, the Text REtrieval
Conference (TREC1) provides open-domain QA
datasets, e.g., for factoid QA. This data contains
a set of questions, the answer keywords and a set
of unannotated candidate APs. The labeling of the
latter can be automatically carried out by check-
ing if a given passage contains the correct answer
keyword or not. However, this method is prone to

1http://trec.nist.gov

generate passage labels, i.e., containing the answer
keyword but not supporting it. For instance, given
the following question, Q, from TREC 2002-03
QA, associated with the answer key Denmark:

Q: Where was Hans Christian Anderson born?

the candidate passage:

AP: Fairy Tales written by Hans Christian Ander-
sen was published in 1835-1873 in Denmark.

would be wrongly labeled as a correct passage
since it contains Denmark. Such passages can
be both misleading for training and unreliable
for evaluating the reranking model, thus requiring
manual annotation.

Since the expert work is costly, we can rely on
crowdsourcing platforms such as CrowdFlower2

for labeling data, faster and at lower cost (Snow
et al., 2008). This method has shown promising
results but it still produces noisy labels. Thus,
a solution consists in (i) using redundant anno-
tations from multiple annotators and (ii) resolv-
ing their disagreements with a majority voting ap-
proach (Sheng et al., 2008; Zhang et al., 2015).
However, the consensus mechanism can still pro-
duce annotation noise, which (i) depends on crowd
workers’ skill and the difficulty of the given task;
and (ii) can degrade the classifier accuracy.

In this paper, we study methods to take into ac-
count the disagreement among the crowd anno-
tators as well as their skills in the learning algo-
rithms. For this purpose, we design several in-
stance weighting strategies, which help the learn-
ing algorithm to deal with the noise of the training
examples, thus producing higher accuracy.

More in detail: firstly, we define some weight
factors that characterize crowd annotators’ skill,
namely: Prior Confidence, which indicates the
previous performance of the crowd worker re-

2http://www.crowdflower.com
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ported by the crowdsourcing platform; Task Con-
fidence, which is determined by the total num-
ber of annotations performed by the crowd worker
in the target task; and Consistency Confidence,
which quantify the agreements between the anno-
tator and the majority voting labels. We used these
parameters for building our weighting functions,
which aim at reducing the impact of the noisy an-
notations in learning algorithms.

Secondly, we build a passage reranking dataset
based on TREC 2002/2003 QA. We used Crowd-
flowers for carrying our an intial noisy annotation
and we had an expert to manually verify and cor-
rected incorrect labels. This is an important QA
resource that we will release to the research com-
munity. Additionally, the accuracy of our models,
e.g., classifiers and search engines, tested on such
gold standard data establish new baselines, useful
for future research in the field.

Finally, we conducted comparative experiments
on our QA dataset using our weighting strategies.
The results show that (i) our rerankers improve
on the IR baseline, i.e., BM25, by 17.47% and
19.22% in MRR and P@1, respectively; and (ii)
our weighting strategy improves the best reranker
(using no-weighting model) up to 1.47% and
1.85% on MRR and P@1, respectively.

2 Related Work

Crowdsourcing has been used in different domains
to collect annotations. Kilgarriff (1998) proposed
a model for generating golden standard datasets
for word-sense disambiguation. The work in
(Voorhees, 2000; Volkmer et al., 2007; Alonso and
Mizzaro, 2012) considers relevance judgments for
building IR systems. Works closer to this pa-
per proposed by Donmez et al. (2009), Qing et
al. (2014), Raykar et al. (2010), Whitehill et al.
(2009) and Sheng et al. (2008), targeted the qual-
ity of crowdsourced annotation and how to deal
with noisy labels via probabilistic models. Our ap-
proach is different as we do not improve the crowd
annotation, but design new weighing methods that
can help the learning algorithms to deal with noise.
Plank et al. (2014) also propose methods for taking
noise into account when training a classifier. How-
ever, they modify the loss function of a percep-
tron algorithms while we assign different weights
to the training instances.

Regarding QA and in particular answer sen-
tence/passage reranking there has been a large

body of work in the recent years, e.g., see (Radlin-
ski and Joachims, 2006; Jeon et al., 2005; Shen
and Lapata, 2007; Moschitti et al., 2007; Sur-
deanu et al., 2008; Wang et al., 2007; Heilman
and Smith, 2010; Wang and Manning, 2010; Yao
et al., 2013), but none of them was devoted to ex-
ploit annotation properties in their model.

3 Crowdsourced Dataset

Initially, we ran a crowdsourcing task on Crowd-
Flower micro-tasking platform and asked the
crowd workers to assign a relevant/not relevant an-
notation label to the given Q/AP pairs. The crowd
workers had to decide whether the given AP sup-
ports the raised question or not. We consider the
TREC corpora described in Section 5.1 and in par-
ticular the first 20 APs retrieved by BM25 search
engine for every question. We collect 5 judgments
for each AP. Additionally, we removed the max-
imum quota of annotations a crowd worker can
perform. We demonstrated that this (i) does not
affected the quality of the annotations in Section
5.1; and (ii) allows us to collect reliable statistics
about the crowd annotators since they can partici-
pate extensively to our annotation project. The in-
tuition behind the idea is: a crowd worker is more
reliable for a given task if (s)he annotates more
passages. Finally, we used control questions dis-
carding the annotation of crowd annotators provid-
ing incorrect answers.

Overall, we crowdsourced 527 questions of the
TREC 2002/2003 QA task and collected 52,700
judgments. The number of the participant workers
was 108 and the minimum and maximum number
of answer passages annotated by a single crowd
annotator were 21 and 1,050, respectively.

To obtain an accurate gold standard, we asked
an expert to revise the passages labeled by crowd
annotators when at least one disagreement was
present among the annotations. This super gold
standard is always and only used for testing our
models (not for training).

4 Weighting models for learning methods

We define weighing schema for each passage of
the training questions. More in detail, each ques-
tion q is associated with a sorted list of answer
passages. In turn, each passage p is associated
with a set of annotators {a1

p, a
2
p, ..., a

k
p}, where

ah
p is the annotator h, jh

p ∈ {+1,−1} is her/his
judgment, and k is the number of annotators per
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Figure 1: The impact of the C values on different models with (LPTC, L) and without (CA, RE) instance weighting.

passage. We defined a weighting function, f(·),
for scoring the passage p as:

f(p) = |
k∑

h=1

jh
pW (ah)|. (1)

The weighting function consists of a summa-
tion of two factors: (i) jh

p , which indicates the
judgment value the annotators, h, have provided
for the passage p; and (ii) W (u), which aims at
capturing the reliability of the crowd worker u,
using the product of three factors:

W (u) = P (u)T (u)C(u), (2)

where Prior Confidence, P (u), indicates the prior
trust confidence score of the crowd worker, u, pro-
vided by the crowdsourcing platform based on the
quality of the annotations (s)he has done in the
previous tasks. Task Confidence, T (u), indicates
the total number of annotations performed by the
crowd worker u in this task. The score is re-scaled
and normalized between (0,1) by considering the
maximum and minimum number of annotations
the workers have done in this task. Consistency
Confidence, C(u), indicates the total number of
annotation agreements between the annotator u
and the majority voting in this task. The score is
normalized and re-scaled between (0,1) as well.

We use Eq. 1 in the optimization function of
SVMs:

min
||~w||2

2
+ c

∑
i

ξ2i f(pi), (3)

where ~w is the model, c is the trade-off param-
eters, ξi is the slack variable associated with each
training example ~xi, pi is the passage related to the
example xi (i.e., associated with a constraint), and
f(pi) (Eq. 1) assigns a weight to such constraint.

5 Experiments

5.1 Experimental Setup

QA Corpora. In this paper, we used the ques-
tions from TREC 2002 and 2003 from the large
newswire corpus, AQUAINT. We created the
Q/AP pairs training BM25 on AQUAINT and re-
trieving candidate passages for each question.

Crowdsourcing Pilot Experiments. Before
running the main crowdsourcing task, we eval-
uated the effect of the initial configurations of
the platform on the quality of the collected an-
notation. We conducted two pilot crowdsourcing
experiments, which show that without quota
limitation, the collected sets of annotations have
both high level of agreement (0.769) calculated
with the Kappa statistic (Carletta, 1996).

Classifier Feature. We used the rich set of fea-
tures described in the state-of-the-art QA system
(Tymoshenko and Moschitti, 2015). Such fea-
tures are based on the similarity between question
and the passage text: N-gram overlap (e.g., word
lemmas, bi-gram, part-of-speech tags and etc.),
tree kernel similarity, relatedness between ques-
tion category and the related named entity types
extracted from the candidate answer, LDA simi-
larity between the topic distributions of question
and answer passage.

Reranking Model We used (i) a modified algo-
rithm of SVM-rank 3 using the Eq. 3 to train our
rerankers; (ii) the default cost-factor parameter;
and (iii) some other specific values to verify if our
results would be affected by different C values.

Baselines. We compared our results with three
different baselines, namely: BM25: we used Ter-
rier search engine4, which provides BM25 scor-

3http://svmlight.joachims.org
4http://terrier.org
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Model MRR MAP P@1
Baselines

BM25 41.75 ± 6.56 37.25 ± 4.52 25.57 ± 6.17
RE 57.41 ± 7.31 51.75 ± 6.27 41.38 ± 11.12
CA 57.75 ± 6.77 52.09 ± 5.68 42.94 ± 8.55

Our Weighting Results
L 58.73 ± 6.88 52.48 ± 6.00 44.12 ± 9.75
P 58.51 ± 5.63 52.07 ± 4.63 43.15 ± 7.32
LP 58.76 ± 6.52 52.60 ± 6.03 44.22 ± 8.72
TC 58.31 ± 5.44 52.09 ± 4.96 42.83 ± 7.69
LTC 58.85 ± 5.85 52.58 ±5.52 43.74 ± 8.50
LPTC 59.22 ± 6.30 52.63 ± 5.96 44.79 ± 8.82

Table 1: Results over 5 fold cross validation. Our Weight-
ing Results are all better than the Baselines with a statistical
significant test of 95%.

ing model to index the answer passages (Robert-
son and Walker, 1997). The APs are extracted
from AQUAINT text corpus and treated as doc-
uments. BM25 is used to retrieve 20 candidate
answers for each question and rank them by their
relevance scores. RE (regular expression): we
trained a classifier with the noisy annotations pro-
duced by labels automatically derived with RE ap-
plied to answer keys (no weighting strategy). CA
(crowd annotations): we train a classier with the
same configuration as RE but using majority vot-
ing as a source of supervision.

Evaluation Metrics We evaluated the perfor-
mance of the classifier with the mostly used met-
rics for QA tasks: the Mean Reciprocal Rank
(MRR), which computes the reciprocal of the rank
at which the first relevant passage is retrieved, Pre-
cision at rank 1 (P@1), which reports the percent-
age of question with the correct answer at rank 1,
and Mean Average Precision (MAP), which mea-
sures the average of precision of the correct pas-
sages appearing in the ranked AP list. All our re-
sults are computed with 5-folds cross validations,
thus the above metrics are averaged over 5 folds.

5.2 Weighting Experiments

In these experiments, we used the labels provided
by crowd annotators using majority voting for
training and testing our models. Most interest-
ingly, we also assign weights to the examples in
SVMs with the weighting schemes below:
- Labels Only (L), i.e., we set P (u) = T (u) =
C(u) = 1 in Eq. 2. This means that the instance
weight (Eq. 1) is just the sum of the labels jh

p .
- Prior Only (P): to study the impact of prior an-
notation skills, we set C(u) = T (u) = 1 in Eq. 2,
and we only use P (u) (crowdflower trust), i.e., we

do not account for the sign of annotations, jh
p .

- Labels & Prior (LP): the previous model but we
also used the sign of the label, jh

p .
- Task & Consistency (TC): we set P (u) = 1
such that Eq. 2 takes into account both annota-
tor skill parameters for the specific task, i.e., task
and consistency confidence, but only in the current
task and no sign of jh

p .
- L & TC (LTC): same as before but we also take
into account the sign of the annotator decision.
- LPTC: all parameters are used.

Table 1 shows the evaluation of the different
baselines and weighting schemes proposed in this
paper (using the default c parameter of SVMs).
We note that: firstly, the accuracy of BM25 is
lower than the one expressed by rerankers trained
on noisy labels (-15.66% in MRR, -14.5% in
MAP, -15.81 in P@1%).

Secondly, although there is some improvement
using crowd annotations for training5 compared to
the noisy training labels (RE), the improvement is
not significant (+0.34% in MRR, +0.34% in MAP,
+1.56% in P@1). This is due to three reasons:
(i) the crowdsourcing annotation suffers from a
certain level of noise as well (only 27,350 of the
answer passages, i.e., 51.80%, are labeled with
”crowd fully in agreement”), (ii) although the RE
labels may generate several false positives, these
are always a small percentage of the total instances
as the dataset is highly unbalanced (9,535 negative
vs. 1,005 positive examples); and (iii) RE do not
generate many false negatives as they are precise.

Thirdly, the table clearly shows the intuitive fact
that it is always better to take into account the sign
of the label given by the annotator, i.e., LP vs. L
and LTC vs. TC.

Next, when we apply our different weighting
schema, we observe that the noise introduced by
the crowd annotation can be significantly reduced
as the classifier improves by +1.47% in MRR,
+0.54% in MAP and +1.85% in P@1, e.g., when
using LTC & LPTC compared to CA, which does
not provide any weight to the reranker.

Finally, as the trade-off parameter, c, may alone
mitigate the noise problem, we compared our
models with the baselines according to several
value of the parameter. Fig. 1 plots the rank mea-
sures averaged over 5-folds: our weighting meth-
ods, especially LPTC (black curve), is constantly

5The test labels are always obtained with majority voting
and we removed questions that have no answer in the first 20
passages retrieved by BM25.
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better than the baseline, CA, (blue curve) in MRR
and P@1.

6 Conclusions

Our study shows that we can effectively exploit the
implicit information of crowd workers and apply it
to improve the QA task. We demonstrated that (i)
the best ranking performance is obtained when the
combination of different weighting parameters are
used; and (ii) the noise of annotations, present in
crowdsourcing data, can be reduced by consider-
ing weighting scores extracted from crowd worker
performance. In the future, we will explore bet-
ter weighting criteria to model the noise that is in-
duced by annotations of crowd workers.
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Abstract

Learning embeddings of words and
knowledge base elements is a promising
approach for open domain question
answering. Based on the remark that
relations and entities are distinct object
types lying in the same embedding
space, we analyze the benefit of adding
a regularizer favoring the embeddings
of entities to be orthogonal to those of
relations. The main motivation comes
from the observation that modifying the
embeddings using prior knowledge often
helps performance. The experiments show
that incorporating the regularizer yields
better results on a challenging question
answering benchmark.

1 Introduction

Having a system which is able to answer questions
based on a structured knowledge base is a chal-
lenging problem. The problem has been addressed
recently by researchers working on large knowl-
edge bases such as Reverb (Fader et al., 2011) and
Freebase (Bollacker et al., 2008). The creation
of question answering (QA) benchmarks for these
knowledge bases (KB) has a significant impact on
the domain, as shown by the number of QA sys-
tems recently proposed in the literature (Berant
and Liang, 2014; Berant et al., 2013; Bordes et
al., 2014a; Bordes et al., 2014b; Fader et al., 2013;
Fader et al., 2014; Yao and Van Durme, 2014; Yih
et al., 2014; Dong et al., 2015).

We identify two types of approaches for KB-
centric QA systems: parsing-based approaches
and information retrieval (IR) based approaches.
Parsing-based approaches (Yih et al., 2014; Be-
rant et al., 2013; Berant and Liang, 2014; Reddy
et al., 2014) answer factoid questions by learn-
ing a structured representation for the sentences,

called logical form. This logical form is then used
to query the knowledge base and retrieve the an-
swer. IR-based approaches try to identify the best
possible match between the knowledge base and
the question (Bordes et al., 2014a; Bordes et al.,
2014b; Yao and Van Durme, 2014; Dong et al.,
2015). In this work, we focus on the second ap-
proach, using embedding models, mainly because
it is robust to invalid syntax and can exploit infor-
mation of the answer.

We focus on the Wikianswers (Fader et al.,
2013) dataset constructed for Reverb. On Wikian-
swers, the underlying semantics is very simple
(just one single triple). However, the task remains
challenging due to the large variety of lexicaliza-
tions for the same semantics. We follow the ap-
proach of Bordes et .al (2014b) which learns the
embeddings of words and KB elements. They
model the semantics of natural language sentences
and KB triples as the sum of the embeddings of the
associated words and KB elements respectively.
Despite its simplicity, this model performs surpris-
ingly well in practice. Something even more in-
teresting (Bordes et al., 2014b) is that the system
can have a good performance even without using
a paraphrase corpus. This makes the system very
attractive in practice because in many specific do-
mains, we might have a KB but there may be no
paraphrase corpus as in Wikianswers.

In our work, we push the results further when
learning a QA system based only on the KB. Our
contribution is to introduce a new orthogonality
regularizer which distinguishes entities and rela-
tions. We also investigate the tradeoff captured by
the orthogonality constraints. With a synthetic ex-
ample, we show that if entities and relations are in-
dependent, orthogonal embeddings generate better
results. The orthogonality constraint in the con-
text of question answering is new, although it has
been successfully used in other contexts (Yao et
al., 2014). Like (Bordes et al., 2014b), we use al-
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most no linguistic features such as POS tagging,
parsing, etc.

2 The ReVerb Question Answering Task

The ReVerb question answering task was first in-
troduced in (Fader et al., 2013) as follows. Given a
large RDF KB and a natural language (NL) ques-
tion whose answer is given by a triple contained in
that KB, the task is to find a correct triple. For ex-
ample, a correct answer to the NL question “What
is the main language in Hong Kong ?” would
be the KB triple (cantonese.e, be-major-language-
in.r, hong-kong.e). RDF triples are assertions of
the form (e1, r, e2) where r is a binary relation
from some vocabulary R and e1, e2 are entities
from a vocabulary E.

The KB used is ReVerb1, a publicly available
set of 15 million extractions (Fader et al., 2011)
defined over a vocabulary of approximately 600K
relations and 3M entities. The test set used for
evaluation includes 698 questions extracted from
the website Wikianswers, many of which involve
paraphrases.

3 Related Work

Fader et al. (2013) present one of the first ap-
proaches for dealing with open domain question
answering. To map NL questions to KB queries,
they first induce a lexicon mapping NL expres-
sions to KB elements using manually defined pat-
terns, alignments and a paraphrase corpus. Using
this lexicon, multiple KB queries can be derived
from a NL question. These queries are then ranked
using a scoring function.

Bordes et al. (2014b) introduce a linguistically
leaner IR-based approach which identifies the KB
triple most similar to the input NL question. In
their approach, KB triples and NL questions are
represented as sums of embeddings of KB sym-
bols and words respectively. The similarity be-
tween a triple and a question is then simply the
dot product of their embeddings. Interestingly,
Bordes’ (2014b) system performs relatively well
(MAP score 0.34) on the Wikianswers dataset
even without using the paraphrase corpus. This
suggests that the embedding method successfully
captures the similarity between NL questions and
KB queries. Our work continues this direction by
further separating relations with entities.

1http://reverb.cs.washington.edu

The idea of distinguishing entities and relations
in question answering can also be found in (Yih
et al., 2014). However, they base their work by
supposing that we can cut the sentence into “en-
tity part” and “relation part” and then calculate the
matching score. Our model does not need this cut
and simply enforces the entity embeddings and re-
lation embeddings (on the KB side) to be different.

Orthogonality or near orthogonality is a prop-
erty which is desired in many embedding tech-
niques. In random indexing (Sahlgren, 2005), a
near orthogonality is ensured amongst the embed-
dings of different contexts. In (Zanzotto and
Dell’Arciprete, 2012), to approximate tree kernels
in a distributed way, different subtree feature em-
beddings are also constructed to be near orthogo-
nal.

Our work gives yet another motivation for or-
thogonal embeddings for the special case where
the semantics of a sentence is modeled as the sum
of its associated word embeddings. In this case,
orthogonal word embeddings help to model their
independence.

4 Embedding model

Word embeddings are generally learned (Deer-
wester et al., 1990; Mikolov et al., 2013; Le-
bret and Collobert, 2015; Faruqui et al., 2014)
such that words with similar context will naturally
share similar embeddings as measured for instance
by cosine similarity. The embeddings learned
in (Bordes et al., 2014b) also encode context in-
formation. They link the embedding of words with
the whole triple-answer in their scoring function.
By this means, the word embedding carries the in-
formation of the whole triple.

Our model further distinguishes entities and re-
lations. Noting that entities and relations may have
some independence (knowing that ‘a man eats’
doesn’t help to tell ‘which man’), the distinction
is done via orthogonality. We show in the toy ex-
ample that orthogonality helps to capture this in-
dependent structure of the data.

4.1 Scoring function

The model learns the embedding of each word and
KB element by trying to score the correct answers
highest. Mathematically, let q be the query, and
a be the answer-triple to align. Denote the total
number of words as Nw and the number of KB el-
ements as Nkb. Then denote by φ(q) ∈ {0, 1}Nw
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Algorithm 1 Training with orthogonality regular-
izer
1. Sample a positive training pair (qi, ai) from D.
2. Create a corrupted triple a′i
3. If S(qi, ai)− S(qi, a′i) < 0.1 :

make a stochastic gradient ascent on
S(qi, ai)− S(qi, a′i)− λ|E.R|
4. Normalize the embedding vector

the 1-hot representation indicating the presence or
absence of words in the query. Similarly we de-
note the sparse representation on the KB side as
ψ(a). Let M ∈ Rd×Nw be the embedding ma-
trix for words and K ∈ Rd×Nkb be the embedding
matrix for the elements in the KB. d is the low di-
mension chosen by the user.

The embedding of the sentence is then calcu-
lated as M φ(q) and similarly the embedding of
the answer-triple as K ψ(a). We can score the
matching of these embeddings:

S(q, a) = (M φ(q))>(K ψ(a))

which is the dot product between the embedding
of the sentence and the embedding of the triple.
The model is introduced in (Bordes et al., 2014b)
and we use the same scoring function. Note that
the model actually sums up each word embedding
to form the embedding of the sentence.

4.2 Inference
The inference procedure is straightforward. Given
a question q and a set of possible answer triples
noted A(q), the model predicts the answer by re-
turning the triple with the highest score:

a′ = argmaxa∈A(q)S(q, a)

4.3 Training
Originally in (Bordes et al., 2014b), given a ques-
tion to be answered, training is performed by im-
posing a margin-constraint between the correct an-
swer and negative ones. More precisely, note a′ a
negative answer to the question q (the correct an-
swer to q being a). Then for each question answer
pair, the system tries to maximize the following
function by performing a gradient ascent step:

min(ε, S(q, a)− S(q, a′))

with ε the margin set to 0.1. In addition, the norms
of columns in M and K are constrained to be in-
ferior to 1. The training is done in a stochastic

way by randomly selecting a question answer pair
at each step. For each gradient step, the step size
is calculated using Adagrad (Duchi et al., 2011).
The negative example is created by randomly re-
placing each element of (e1, r, e2) by another one
with probability 2/3.

4.4 Enforcing Orthogonal Embeddings

In this work, we are especially interested in the
additional assumptions we can make on the model
in order to cope with data sparsity. Indeed, when
the number of training data supporting the com-
putation of embeddings is small, embedding mod-
els are brittle and can lead to disappointing results.
We noticed that one important assumption that is
not discussed in the basic approach is that the em-
bedding space is the same for relations and enti-
ties. That approach has a tendency to learn similar
embeddings for entities and relations, even if they
have different meanings. Intuitively, we would
like to balance that tendency by a “prior knowl-
edge” preference towards choosing embeddings of
entities and relations which are orthogonal to each
other.

To justify this assumption, consider a simple
case where the underlying semantics is (e, r) as
in the sentence “John eats”. We will use the same
letter to indicate an entity or relation and their cor-
responding embeddings. In (Bordes et al., 2014b),
the embedding of the semantics is then calculated
as e + r for this very simple case. Now suppose
that ∀e′ 6= e, ||e − e′||2 ≥ ε (i.e John is differ-
ent from Mary with margin ε) and that the same
kind of constraints also holds for relations. How-
ever, even when these constraints are satisfied, it is
not guaranteed that ||e+ r− e′ − r′||2 ≥ ε, which
means that the model may still get confused on the
whole semantics even if each part is clear.

One obvious and linguistically plausible solu-
tion is to say that the entities and relations lie in
orthogonal spaces. Indeed, if relations and entities
are orthogonal (∀r, e (r ⊥ e)), then if two enti-
ties e, e′ and two relations r, r′ are distinct (i.e.,
||e− e′||2 ≥ ε and ||r − r′||2 ≥ ε ), it follows that
||e+ r− e′− r′||2 = ||e− e′||2 + |||r− r′||2 ≥ 2ε
by Pythagorean theorem. That is, two sentences
whose semantic representations involve two dis-
tinct entities and/or relations will have different
values.

In real problems, however, posing a hard or-
thogonality constraint largely reduces the model’s
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sentence Embedding This work

What is the argument on gun control ? (short-gun.e be-type-of.r gun.e) (giuliani.e support.r gun-control.e)

What year did minnesota become part of US ? (minnesota.e become-state-on.r may-11-1858.e) (minnesota.e be-part-of.r united-states.e)

What is the religious celebration of christians ? (christian.e be-all-about.r original-sin.e) (easter.e be-most-important-holiday.r christian.e)

What do cassava come from ? (cassava.e be-source-of.r security.e) (cassava.e be-grow-in.r africa.e)

Table 1: Some examples for which our system differs from ( (Bordes et al., 2014b)). Gold standard answer triples are marked

in bold.

expressive power2, so we decide to add it as a reg-
ularizer. More concretely, let the correct triple
be (e1, r, e2) and the negative one be (e′1, r′, e′2).
Consider that we are in a case not satisfying
the margin constraint, then we will try to maxi-
mize the following regularized function S(q, a)−
S(q, a′) − λ|E.R| with a gradient step. The
regularizer |E.R| = |e1.r| + |e2.r| + |e′1.r′| +
|e′2.r′| is minimized when all the entities and re-
lations live in orthogonal space. The regulariza-
tion parameter λ is chosen via an automatically
constructed development set for which we ran-
domly selected 1/2000 of all the triples in the
KB and generate associated questions. We dis-
card these triples from training and choose the λ
value based on the score on the development set.
The λ value is by this means set to 0.01 with λ in
{0.5,0.1,0.05,0.01,0.005,0.001}. Once the λ value
is chosen, we retrain the whole system.

5 Experimental results

5.1 Toy example

In this section, we illustrate the benefits of orthog-
onality via a toy example. We construct a KB con-
taining 50 entities (E) and 50 relations (R) then
generate all their cross products obtaining 2500
fact pairs. In consequence the entities and rela-
tions are independent.

For every ei ∈ E, we suppose that there is a sin-
gle word lexicalizing the entity noted “ei” . Sim-
ilarly, we note the lexicalization of rj “rj”. We
separate these 2500 pairs into training (2450) and
test (50). Notice that similarly to Wikianswers,
this toy dataset involves KB entities and relations
whose type is known a priori.

The training corpus is built using one simple
generation rule : (ei, rj)→ “ei rj” . Negative ex-
amples are created by replacing with probability
1/2 both entity and relation with another one. We

2Especially, if the embeddings are orthogonal between en-
tities and relations, the knowledge of a given entity can not
help to infer the relation and vice versa.

Model Accuracy (1) Accuracy (2)

Embedding 76% 54%

Ortho Embedding 90% 68%

Table 2: Results on toy example.

embed all the words and KB symbols in a space
of 20 dimensions. We compare the model (Bordes
et al., 2014b) with the model where we enforce E
and R (and also “E” and “R”) to be orthogonal.
This means that words or KB symbols in fact live
in an embedding space of dimension 10.

At test time, for a given sentence “ei rj”, a set
of (e, r) pairs is ranked and we compute the pro-
portion of cases where the first ranked pair is cor-
rect. Table 2 shows the results for both systems on
two configurations: a configuration (Accuracy(1))
where the number of pairs to be ranked is 1250
and another (Accuracy(2)) with 2500 pairs.3 In
both cases, imposing the orthogonality constraint
improves performance by a large margin.

5.2 Wikianswers

Wikianswers contains a set of possible triples for
each question and we re-rank these triples to re-
port our system’s performance. This is the “re-
ranking” setting used in (Bordes et al., 2014b).
Table 3 compares different systems in this setting.
The Embedding scores are taken from (Bordes et
al., 2014b) for which we have reimplemented and
confirmed the results.

Method Prec Recall F1 MAP

Embedding 0.60 0.60 0.60 0.34

This work 0.63 0.63 0.63 0.36

Table 3: Performance for re-ranking question answer pairs

of test set for different systems on Wikianswers

Table 3 shows that our technique improves the
performance also on the larger, non-synthetic,

3We make sure that the correct answer is included .
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dataset provided by Fader (2013) over the Bor-
des (2014b)’s method. In addition, Table 1 shows
some examples where the two systems differ and
where the orthogonality regularized embeddings
seem to better support the identification of simi-
lar relations. For instance, “is the argument on”
is mapped to support.r rather than be-type-of.r
and “is the religious celebration of” to be-most-
important-holiday.r rather then be-all-about.r.

6 Conclusion

This paper introduces an embedding model for
question answering with orthogonality regular-
izer. We show that orthogonality helps to capture
the differences between entities and relations and
that it helps improve performance on an existing
dataset.
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Abstract

In this paper, we explore the role of con-
stituent properties in English and Ger-
man noun-noun compounds (corpus fre-
quencies of the compounds and their con-
stituents; productivity and ambiguity of
the constituents; and semantic relations
between the constituents), when predict-
ing the degrees of compositionality of the
compounds within a vector space model.
The results demonstrate that the empirical
and semantic properties of the compounds
and the head nouns play a significant role.

1 Introduction

The past 20+ years have witnessed an enormous
amount of discussions on whether and how the
modifiers and the heads of noun-noun compounds
such as butterfly, snowball and teaspoon influence
the compositionality of the compounds, i.e., the
degree of transparency vs. opaqueness of the com-
pounds. The discussions took place mostly in psy-
cholinguistic research, typically relying on read-
ing time and priming experiments. For example,
Sandra (1990) demonstrated in three priming ex-
periments that both modifier and head constituents
were accessed in semantically transparent En-
glish noun-noun compounds (such as teaspoon),
but there were no effects for semantically opaque
compounds (such as buttercup), when primed ei-
ther on their modifier or head constituent. In con-
trast, Zwitserlood (1994) provided evidence that
the lexical processing system is sensitive to mor-
phological complexity independent of semantic
transparency. Libben and his colleagues (Libben
et al. (1997), Libben et al. (2003)) were the first
who systematically categorised noun-noun com-
pounds with nominal modifiers and heads into four
groups representing all possible combinations of

modifier and head transparency (T) vs. opaque-
ness (O) within a compound. Examples for these
categories were car-wash (TT), strawberry (OT),
jailbird (TO), and hogwash (OO). Libben et al.
confirmed Zwitserlood’s analyses that both se-
mantically transparent and semantically opaque
compounds show morphological constituency; in
addition, the semantic transparency of the head
constituent was found to play a significant role.

From a computational point of view, address-
ing the compositionality of noun compounds (and
multi-word expressions in more general) is a cru-
cial ingredient for lexicography and NLP appli-
cations, to know whether the expression should
be treated as a whole, or through its constituents,
and what the expression means. For example,
studies such as Cholakov and Kordoni (2014),
Weller et al. (2014), Cap et al. (2015), and Salehi
et al. (2015b) have integrated the prediction of
multi-word compositionality into statistical ma-
chine translation.

Computational approaches to automatically
predict the compositionality of noun compounds
have mostly been realised as vector space mod-
els, and can be subdivided into two subfields:
(i) approaches that aim to predict the meaning
of a compound by composite functions, relying
on the vectors of the constituents (e.g., Mitchell
and Lapata (2010), Coecke et al. (2011), Baroni
et al. (2014), and Hermann (2014)); and (ii) ap-
proaches that aim to predict the degree of compo-
sitionality of a compound, typically by comparing
the compound vectors with the constituent vec-
tors (e.g., Reddy et al. (2011), Salehi and Cook
(2013), Schulte im Walde et al. (2013), Salehi et
al. (2014; 2015a)). In line with subfield (ii),
this paper aims to distinguish the contributions
of modifier and head properties when predicting
the compositionality of English and German noun-
noun compounds in a vector space model.
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Up to date, computational research on noun
compounds has largely ignored the influence of
constituent properties on the prediction of compo-
sitionality. Individual pieces of research noticed
differences in the contributions of modifier and
head constituents towards the composite functions
predicting compositionality (Reddy et al., 2011;
Schulte im Walde et al., 2013), but so far the
roles of modifiers and heads have not been distin-
guished. We use a new gold standard of German
noun-noun compounds annotated with corpus fre-
quencies of the compounds and their constituents;
productivity and ambiguity of the constituents; and
semantic relations between the constituents; and
we extend three existing gold standards of German
and English noun-noun compounds (Ó Séaghdha,
2007; von der Heide and Borgwaldt, 2009; Reddy
et al., 2011) to include approximately the same
compound and constituent properties. Relying on
a standard vector space model of compositional-
ity, we then predict the degrees of compositional-
ity of the English and German noun-noun com-
pounds, and explore the influences of the com-
pound and constituent properties. Our empirical
computational analyses reveal that the empirical
and semantic properties of the compounds and the
head nouns play a significant role in determining
the compositionality of noun compounds.

2 Related Work

Regarding relevant psycholinguistic research on
the representation and processing of noun com-
pounds, Sandra (1990) hypothesised that an asso-
ciative prime should facilitate access and recog-
nition of a noun compound, if a compound con-
stituent is accessed during processing. His three
priming experiments revealed that in transparent
noun-noun compounds, both constituents are ac-
cessed, but he did not find priming effects for the
constituents in opaque noun-noun compounds.

Zwitserlood (1994) performed an immediate
partial repetition experiment and a priming exper-
iment to explore and to distinguish morpholog-
ical and semantic structures in noun-noun com-
pounds. On the one hand, she confirmed San-
dra’s results that there is no semantic facilitation of
any constituent in opaque compounds. In contrast,
she found evidence for morphological complex-
ity, independent of semantic transparency, and that
both transparent and also partially opaque com-
pounds (i.e., compounds with one transparent and

one opaque constituent) produce semantic prim-
ing of their constituents. For the heads of seman-
tically transparent compounds, a larger amount of
facilitation was found than for the modifiers. Dif-
ferences in the results by Sandra (1990) and Zwit-
serlood (1994) were supposedly due to different
definitions of partial opacity, and different prime–
target SOAs.

Libben and his colleagues (Libben et al. (1997),
Libben (1998), and Libben et al. (2003)) were the
first who systematically categorised noun-noun
compounds with nominal modifiers and heads
into four groups representing all possible com-
binations of a constituent’s transparency (T) vs.
opaqueness (O) within a compound: TT, OT, TO,
OO. Libben’s examples for these categories were
car-wash (TT), strawberry (OT), jailbird (TO),
and hogwash (OO). They confirmed Zwitserlood’s
analyses that both semantically transparent and se-
mantically opaque compounds show morphologi-
cal constituency, and also that the semantic trans-
parency of the head constituent was found to play
a significant role. Studies such as Jarema et al.
(1999) and Kehayia et al. (1999) to a large ex-
tent confirmed the insights by Libben and his col-
leagues for French, Bulgarian, Greek and Polish.

Regarding related computational work, promi-
nent approaches to model the meaning of a com-
pound or a phrase by a composite function include
Mitchell and Lapata (2010), Coecke et al. (2011),
Baroni et al. (2014), and Hermann (2014)). In this
area, researchers combine the vectors of the com-
pound/phrase constituents by mathematical func-
tions such that the resulting vector optimally rep-
resents the meaning of the compound/phrase. This
research is only marginally related to ours, since
we are interested in the degree of compositional-
ity of a compound, rather than its actual meaning.

Most closely related computational work in-
cludes distributional approaches that predict the
degree of compositionality of a compound regard-
ing a specific constituent, by comparing the com-
pound vector to the respective constituent vector.
Most importantly, Reddy et al. (2011) used a stan-
dard distributional model to predict the compo-
sitionality of compound-constituent pairs for 90
English compounds. They extended their predic-
tions by applying composite functions (see above).
In a similar vein, Schulte im Walde et al. (2013)
predicted the compositionality for 244 German
compounds. Salehi et al. (2014) defined a cross-
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lingual distributional model that used translations
into multiple languages and distributional simi-
larities in the respective languages, to predict the
compositionality for the two datasets from Reddy
et al. (2011) and Schulte im Walde et al. (2013).

3 Noun-Noun Compounds

Our focus of interest is on noun-noun compounds,
such as butterfly, snowball and teaspoon as well
as car park, zebra crossing and couch potato in
English, and Ahornblatt ‘maple leaf’, Feuerwerk
‘fireworks’, and Löwenzahn ‘dandelion’ in Ger-
man, where both the grammatical head (in English
and German, this is typically the rightmost con-
stituent) and the modifier are nouns. We are inter-
ested in the degrees of compositionality of noun-
noun compounds, i.e., the semantic relatedness be-
tween the meaning of a compound (e.g., snowball)
and the meanings of its constituents (e.g., snow
and ball). More specifically, this paper aims to
explore factors that have been found to influence
compound processing and representation, such as

• frequency-based factors, i.e., the frequencies
of the compounds and their constituents (van
Jaarsveld and Rattink, 1988; Janssen et al.,
2008);

• the productivity (morphological family size),
i.e., the number of compounds that share a
constituent (de Jong et al., 2002); and

• semantic variables as the relationship be-
tween compound modifier and head: a teapot
is a pot FOR tea; a snowball is a ball MADE
OF snow (Gagné and Spalding, 2009; Ji et
al., 2011).

In addition, we were interested in the effect of am-
biguity (of both the modifiers and the heads) re-
garding the compositionality of the compounds.

Our explorations required gold standards of
compounds that were annotated with all these
compound and constituent properties. Since most
previous work on computational predictions of
compositionality has been performed for English
and for German, we decided to re-use existing
datasets for both languages, which however re-
quired extensions to provide all properties we
wanted to take into account. We also created a
novel gold standard. In the following, we describe
the datasets.1

1The datasets are available from http://www.ims.
uni-stuttgart.de/data/ghost-nn/.

German Noun-Noun Compound Datasets As
basis for this work, we created a novel gold stan-
dard of German noun-noun compounds: GhOST-
NN (Schulte im Walde et al., 2016). The new
gold standard was built such that it includes a rep-
resentative choice of compounds and constituents
from various frequency ranges, various productiv-
ity ranges, with various numbers of senses, and
with various semantic relations. In the follow-
ing, we describe the creation process in some de-
tail, because the properties of the gold standard are
highly relevant for the distributional models.

Relying on the 11.7 billion words in the web
corpus DECOW14AX2 (Schäfer and Bildhauer,
2012; Schäfer, 2015), we extracted all words that
were identified as common nouns by the Tree Tag-
ger (Schmid, 1994) and analysed as noun com-
pounds with exactly two nominal constituents by
the morphological analyser SMOR (Faaß et al.,
2010). This set of 154,960 two-part noun-noun
compound candidates was enriched with empiri-
cal properties relevant for the gold standard:

• corpus frequencies of the compounds and the
constituents (i.e., modifiers and heads), rely-
ing on DECOW14AX;

• productivity of the constituents i.e., how
many compound types contained a specific
modifier/head constituent;

• number of senses of the compounds and the
constituents, relying on GermaNet (Hamp
and Feldweg, 1997; Kunze, 2000).

From the set of compound candidates we extracted
a random subset that was balanced3 for

• the productivity of the modifiers: we cal-
culated tertiles to identify modifiers with
low/mid/high productivity;

• the ambiguity of the heads: we distinguished
between heads with 1, 2 and >2 senses.

For each of the resulting nine categories (three
productivity ranges × three ambiguity ranges),
we randomly selected 20 noun-noun compounds

2http://corporafromtheweb.org/decow14/
3We wanted to extract a random subset that at the same

time was balanced across frequency, productivity and am-
biguity ranges of the compounds and their constituents, but
defining and combining several ranges for each of the three
criteria and for compounds as well as constituents would have
led to an explosion of factors to be taken into account, so we
focused on two main criteria instead.
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from our candidate set, disregarding compounds
with a corpus frequency < 2,000, and disregard-
ing compounds containing modifiers or heads with
a corpus-frequency< 100. We refer to this dataset
of 180 compounds balanced for modifier produc-
tivity and head ambiguity as GhOST-NN/S.

We also created a subset of 5 noun-noun com-
pounds for each of the 9 criteria combinations, by
randomly selecting 5 out of the 20 selected com-
pounds in each mode. This small, balanced sub-
set was then systematically extended by adding
all compounds from the original set of compound
candidates with either the same modifier or the
same head as any of the selected compounds. Tak-
ing Haarpracht as an example (the modifier is
Haar ’hair’, the head is Pracht ’glory’), we added
Haarwäsche, Haarkleid, Haarpflege, etc. as well
as Blütenpracht, Farbenpracht, etc.4 We refer to
this dataset of 868 compounds that destroyed the
coherent balance of criteria underlying our ran-
dom extraction, but instead ensured a variety of
compounds with either the same modifiers or the
same heads, as GhOST-NN/XL.

The two sets of compounds (GhOST-NN/S and
GhOST-NN/XL) were annotated with the seman-
tic relations between the modifiers and the heads,
and compositionality ratings. Regarding seman-
tic relations, we applied the relation set sug-
gested by Ó Séaghdha (2007), because (i) he
had evaluated his annotation relations and anno-
tation scheme, and (ii) his dataset had a similar
size as ours, so we could aim for comparing re-
sults across languages. Ó Séaghdha (2007) him-
self had relied on a set of nine semantic rela-
tions suggested by Levi (1978), and designed and
evaluated a set of relations that took over four
of Levi’s relations (BE, HAVE, IN, ABOUT)
and added two relations referring to event partici-
pants (ACTOR, INST(rument)) that replaced
the relations MAKE, CAUSE, FOR, FROM,
USE. An additional relation LEX refers to lexi-
calised compounds where no relation can be as-
signed. Three native speakers of German anno-
tated the compounds with these seven semantic
relations.5 Regarding compositionality ratings,
eight native speakers of German annotated all
868 gold-standard compounds with compound–

4The translations of the example compounds are hair
washing, hair dress, hair care, floral glory, and colour glory.

5In fact, the annotation was performed for a superset of
1,208 compounds, but we only took into account 868 com-
pounds with perfect agreement, i.e. IAA=1.

constituent compositionality ratings on a scale
from 1 (definitely semantically opaque) to 6 (def-
initely semantically transparent). Another five na-
tive speakers provided additional annotation for
our small core subset of 180 compounds on the
same scale. As final compositionality ratings, we
use the mean compound–constituent ratings across
the 13 annotators.

As alternative gold standard for German noun-
noun compounds, we used a dataset based on a
selection of noun compounds by von der Heide
and Borgwaldt (2009), that was previously used
in computational models predicting composition-
ality (Schulte im Walde et al., 2013; Salehi et al.,
2014). The dataset contains a subset of their com-
pounds including 244 two-part noun-noun com-
pounds, annotated by compositionality ratings on
a scale between 1 and 7. We enriched the existing
dataset with frequencies, and productivity and am-
biguity scores, also based on DECOW14AX and
GermaNet, to provide the same empirical infor-
mation as for the GhOST-NN datasets. We refer
to this alternative German dataset as VDHB.

English Noun-Noun Compound Datasets
Reddy et al. (2011) created a gold standard for
English noun-noun compounds. Assuming that
compounds whose constituents appeared either
as their hypernyms or in their definitions tend
to be compositional, they induced a candidate
compound set with various degrees of compound–
constituent relatedness from WordNet (Miller et
al., 1990; Fellbaum, 1998) and Wiktionary. A
random choice of 90 compounds that appeared
with a corpus frequency > 50 in the ukWaC
corpus (Baroni et al., 2009) constituted their
gold-standard dataset and was annotated by
compositionality ratings. Bell and Schäfer (2013)
annotated the compounds with semantic relations
using all of Levi’s original nine relation types:
CAUSE, HAVE, MAKE, USE, BE, IN,
FOR, FROM, ABOUT. We refer to this dataset
as REDDY.

Ó Séaghdha developed computational models
to predict the semantic relations between modi-
fiers and heads in English noun compounds (Ó
Séaghdha, 2008; Ó Séaghdha and Copestake,
2013; Ó Séaghdha and Korhonen, 2014). As
gold-standard basis for his models, he created a
dataset of compounds, and annotated the com-
pounds with semantic relations: He tagged and
parsed the written part of the British National Cor-
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Language Dataset #Compounds
Annotation

Frequency/Productivity Ambiguity Relations

DE
GhOST-NN/S 180 DECOW GermaNet Levi (7)
GhOST-NN/XL 868 DECOW GermaNet Levi (7)
VDHB 244 DECOW GermaNet –

EN
REDDY 90 ENCOW WordNet Levi (9)
OS 396 ENCOW WordNet Levi (6)

Table 1: Noun-noun compound datasets.

pus using RASP (Briscoe and Carroll, 2002), and
applied a simple heuristics to induce compound
candidates: He used all sequences of two or more
common nouns that were preceded or followed by
sentence boundaries or by words not representing
common nouns. Of these compound candidates,
a random selection of 2,000 instances was used
for relation annotation (Ó Séaghdha, 2007) and
classification experiments. The final gold standard
is a subset of these compounds, containing 1,443
noun-noun compounds. We refer to this dataset as
OS.

Both English compound datasets were enriched
with frequencies and productivities, based on the
ENCOW14AX6 containing 9.6 billion words. We
also added the number of senses of the con-
stituents to both datasets, using WordNet. And we
collected compositionality ratings for a random
choice of 396 compounds from the OS dataset
relying on eight experts, in the same way as the
GhOST-NN ratings were collected.

Resulting Noun-Noun Compound Datasets
Table 1 summarises the gold-standard datasets.
They are of different sizes, but their empirical and
semantic annotations have been aligned to a large
extent, using similar corpora, relying on WordNets
and similar semantic relation inventories based on
Levi (1978).

4 VSMs Predicting Compositionality

Vector space models (VSMs) and distributional in-
formation have been a steadily increasing, integral
part of lexical semantic research over the past 20
years (Turney and Pantel, 2010): They explore
the notion of “similarity” between a set of tar-
get objects, typically relying on the distributional
hypothesis (Harris, 1954; Firth, 1957) to deter-
mine co-occurrence features that best describe the
words, phrases, sentences, etc. of interest.

6http://corporafromtheweb.org/encow14/

In this paper, we use VSMs in order to model
compounds as well as constituents by distribu-
tional vectors, and we determine the semantic re-
latedness between the compounds and their mod-
ifier and head constituents by measuring the dis-
tance between the vectors. We assume that the
closer a compound vector and a constituent vec-
tor are to each other, the more compositional (i.e.,
the more transparent) the compound is, regard-
ing that constituent. Correspondingly, the more
distant a compound vector and a constituent vec-
tor are to each other, the less compositional (i.e.,
the more opaque) the compound is, regarding that
constituent.

Our main questions regarding the VSMs are
concerned with the influence of constituent prop-
erties on the prediction of compositionality. I.e.,
how do the corpus frequencies of the compounds
and their constituents, the productivity and the am-
biguity of the constituents, and the semantic rela-
tions between the constituents influence the qual-
ity of the predictions?

4.1 Vector Space Models (VSMs)

We created a standard vector space model for
all our compounds and constituents in the vari-
ous datasets, using co-occurrence frequencies of
nouns within a sentence-internal window of 20
words to the left and 20 words to the right of
the targets.7 The frequencies were induced from
the German and English COW corpora, and trans-
formed to local mutual information (LMI) values
(Evert, 2005).

Relying on the LMI vector space models, the
cosine determined the distributional similarity
between the compounds and their constituents,
which was in turn used to predict the degree

7In previous work, we systematically compared window-
based and syntax-based co-occurrence variants for predicting
compositionality (Schulte im Walde et al., 2013). The current
work adopted the best choice of co-occurrence dimensions.
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of compositionality between the compounds and
their constituents, assuming that the stronger the
distributional similarity (i.e., the cosine values),
the larger the degree of compositionality. The vec-
tor space predictions were evaluated against the
mean human ratings on the degree of composition-
ality, using the Spearman Rank-Order Correlation
Coefficient ρ (Siegel and Castellan, 1988).

4.2 Overall VSM Prediction Results

Table 2 presents the overall prediction results
across languages and datasets. The mod column
shows the ρ correlations for predicting only the
degree of compositionality of compound–modifier
pairs; the head column shows the ρ correlations
for predicting only the degree of compositional-
ity of compound–head pairs; and the both col-
umn shows the ρ correlations for predicting the
degree of compositionality of compound–modifier
and compound–head pairs at the same time.

Dataset mod head both

DE
GhOST-NN/S 0.48 0.57 0.46
GhOST-NN/XL 0.49 0.59 0.47
VDHB 0.65 0.60 0.61

EN REDDY 0.48 0.60 0.56
OS 0.46 0.39 0.35

Table 2: Overall prediction results (ρ).

The models for VDHB and REDDY represent
replications of similar models in Schulte im Walde
et al. (2013) and Reddy et al. (2011), respectively,
but using the much larger COW corpora.

Overall, the both prediction results on VDHB
are significantly8 better than all others but REDDY;
and the prediction results on OS compounds are
significantly worse than all others. We can also
compare within-dataset results: Regarding the two
GhOST-NN datasets and the REDDY dataset, the
VSM predictions for the compound–head pairs are
better than for the compound–modifier pairs. Re-
garding the VDHB and the OS datasets, the VSM
predictions for the compound–modifier pairs are
better than for the compound–head pairs. These
differences do not depend on the language (ac-
cording to our datasets), and are probably due to
properties of the specific gold standards that we
did not control. They are, however, also not the
main point of this paper.

8All significance tests in this paper were performed by
Fisher r-to-z transformation.

4.3 Influence of Compound Properties on
VSM Prediction Results

Figures 1 to 5 present the core results of this paper:
They explore the influence of compound and con-
stituent properties on predicting compositionality.
Since we wanted to optimise insight into the influ-
ence of the properties, we selected the 60 maxi-
mum instances and the 60 minimum instances for
each property.9 For example, to explore the in-
fluence of head frequency on the prediction qual-
ity, we selected the 60 most frequent and the 60
most infrequent compound heads from each gold-
standard resource, and calculated Spearman’s ρ
for each set of 60 compounds with these heads.

Figure 1 shows that the distributional model
predicts high-frequency compounds (red bars) bet-
ter than low-frequency compounds (blue bars),
across datasets. The differences are significant for
GhOST-NN/XL.

Figure 1: Effect of compound frequency.

Figure 2 shows that the distributional model
predicts compounds with low-frequency heads
better than compounds with high-frequency heads
(right panel), while there is no tendency regarding
the modifier frequencies (left panel). The differ-
ences regarding the head frequencies are signifi-
cant (p = 0.1) for both GhOST-NN datasets.

Figure 3 shows that the distributional model
also predicts compounds with low-productivity
heads better than compounds with high-
productivity heads (right panel), while there
is no tendency regarding the productivities of
modifiers (left panel). The prediction differences
regarding the head productivities are significant
for GhOST-NN/S (p < 0.05).

9For REDDY, we could only use 45 maximum/minimum
instances, since the dataset only contains 90 compounds.
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Figure 2: Effect of modifier/head frequency.

Figure 3: Effect of modifier/head productivity.

Figure 4: Effect of modifier/head ambiguity.
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Figure 4 shows that the distributional model
also predicts compounds with low-ambiguity
heads better than compounds with high-ambiguity
heads (right panel) –with one exception (GhOST-
NN/XL)– while there is no tendency regarding the
ambiguities of modifiers (left panel). The predic-
tion differences regarding the head ambiguities are
significant for GhOST-NN/XL (p < 0.01).

Figure 5 compares the predictions of the dis-
tributional model regarding the semantic rela-
tions between modifiers and heads, focusing on
GhOST-NN/XL. The numbers in brackets refer to
the number of compounds with the respective re-
lation. The plot reveals differences between pre-
dictions of compounds with different relations.

Figure 5: Effect of semantic relation.

Table 3 summarises those differences across
gold standards that are significant (where filled
cells refer to rows significantly outperforming
columns). Overall, the compositionality of
BE compounds is predicted significantly better
than the compositionality of HAVE compounds
(in REDDY), INST and ABOUT compounds (in
GhOST-NN) and ACTOR compounds (in GhOST-
NN and OS). The compositionality of ACTOR
compounds is predicted significantly worse than
the compositionality of BE, HAVE, IN and
INST compounds in both GhOST-NN and OS.

HAVE INST ABOUT ACTOR
BE REDDY GhOST GhOST GhOST, OS
HAVE OS GhOST, OS
IN GhOST, OS
INST GhOST, OS

Table 3: Significant differences: relations.

5 Discussion

While modifier frequency, productivity and am-
biguity did not show a consistent effect on the
predictions, head frequency, productivity and
ambiguity influenced the predictions such that
the prediction quality for compounds with low-
frequency, low-productivity and low-ambiguity
heads was better than for compounds with high-
frequency, high-productivity and high-ambiguity
heads. The differences were significant only for
our new GhOST-NN datasets. In addition, the
compound frequency also had an effect on the pre-
dictions, with high-frequency compounds receiv-
ing better prediction results than low-frequency
compounds. Finally, the quality of predictions
also differed for compound relation types, with
BE compounds predicted best, and ACTOR com-
pounds predicted worst. These differences were
ascertained mostly in the GhOST-NN and the OS
datasets. Our results raise two main questions:

(1) What does it mean if a distributional model
predicts a certain subset of compounds (with
specific properties) “better” or “worse” than
other subsets?

(2) What are the implications for (a) psycholin-
guistic and (b) computational models regard-
ing the compositionality of noun compounds?

Regarding question (1), there are two options
why a distributional model predicts a certain sub-
set of compounds better or worse than other sub-
sets. On the one hand, one of the underlying gold-
standard datasets could contain compounds whose
compositionality scores are easier to predict than
the compositionality scores of compounds in a
different dataset. On the other hand, even if
there were differences in individual dataset pairs,
this would not explain why we consistently find
modelling differences for head constituent proper-
ties (and compound properties) but not for modi-
fier constituent properties. We therefore conclude
that the effects of compound and head properties
are due to the compounds’ morphological con-
stituency, with specific emphasis on the influences
of the heads.

Looking at the individual effects of the com-
pound and head properties that influence the dis-
tributional predictions, we hypothesise that high-
frequent compounds are easier to predict because
they have a better corpus coverage (and less
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sparse data) than low-frequent compounds, and
that they contain many clearly transparent com-
pounds (such as Zitronensaft ‘lemon juice’), and
at the same time many clearly opaque compounds
(such as Eifersucht ‘jealousy’, where the literal
translations of the constituents are ‘eagerness’ and
‘addiction’). Concerning the decrease in predic-
tion quality for more frequent, more productive
and more ambiguous heads, we hypothesise that
all of these properties are indicators of ambiguity,
and the more ambiguous a word is, the more diffi-
cult it is to provide a unique distributional predic-
tion, as distributional co-occurrence in most cases
(including our current work) subsumes the con-
texts of all word senses within one vector. For ex-
ample, more than half of the compounds with the
most frequent and also with the most productive
heads have the head Spiel, which has six senses
in GermaNet and covers six relations (BE, IN,
INST, ABOUT, ACTOR, LEX).

Regarding question (2), the results of our distri-
butional predictions confirm psycholinguistic re-
search that identified morphological constituency
in noun-noun compounds: Our models clearly dis-
tinguish between properties of the whole com-
pounds, properties of the modifier constituents,
and properties of the head constituents. Further-
more, our models reveal the need to carefully bal-
ance the frequencies and semantic relations of tar-
get compounds, and to carefully balance the fre-
quencies, productivities and ambiguities of their
head constituents, in order to optimise experiment
interpretations, while a careful choice of empirical
modifier properties seems to play a minor role.

For computational models, our work provides
similar implications. We demonstrated the need to
carefully balance gold-standard datasets for multi-
word expressions according to the empirical and
semantic properties of the multi-word expressions
themselves, and also according to those of the con-
stituents. In the case of noun-noun compounds,
the properties of the nominal modifiers were of
minor importance, but regarding other multi-word
expressions, this might differ. If datasets are not
balanced for compound and constituent properties,
the qualities of model predictions are difficult to
interpret, because it is not clear whether biases in
empirical properties skewed the results. Our ad-
vice is strengthened by the fact that most signifi-
cant differences in prediction results were demon-
strated for our new gold standard, which includes

compounds across various frequency, productivity
and ambiguity ranges.

6 Conclusion

We explored the role of constituent properties
in English and German noun-noun compounds,
when predicting compositionality within a vec-
tor space model. The results demonstrated that
the empirical and semantic properties of the com-
pounds and the head nouns play a significant role.
Therefore, psycholinguistic experiments as well as
computational models are advised to carefully bal-
ance their selections of compound targets accord-
ing to compound and constituent properties.
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Abstract

One may express favor (or disfavor) to-
wards a target by using positive or neg-
ative language. Here for the first time
we present a dataset of tweets annotated
for whether the tweeter is in favor of or
against pre-chosen targets, as well as for
sentiment. These targets may or may
not be referred to in the tweets, and they
may or may not be the target of opin-
ion in the tweets. We develop a sim-
ple stance detection system that outper-
forms all 19 teams that participated in a re-
cent shared task competition on the same
dataset (SemEval-2016 Task #6). Addi-
tionally, access to both stance and senti-
ment annotations allows us to conduct sev-
eral experiments to tease out their interac-
tions. We show that while sentiment fea-
tures are useful for stance classification,
they alone are not sufficient. We also show
the impacts of various features on detect-
ing stance and sentiment, respectively.

1 Introduction

Stance detection is the task of automatically de-
termining from text whether the author of the text
is in favor of, against, or neutral towards a propo-
sition or target. The target may be a person, an
organization, a government policy, a movement,
a product, etc. For example, one can infer from
Barack Obama’s speeches that he is in favor of
stricter gun laws in the US. Similarly, people of-
ten express stance towards various target entities
through posts on online forums, blogs, Twitter,
Youtube, Instagram, etc.

Automatically detecting stance has widespread
applications in information retrieval, text summa-
rization, and textual entailment. Over the last

decade, there has been active research in model-
ing stance. However, most work focuses on con-
gressional debates (Thomas et al., 2006) or de-
bates in online forums (Somasundaran and Wiebe,
2009; Murakami and Raymond, 2010; Anand et
al., 2011; Walker et al., 2012; Hasan and Ng,
2013). Here we explore the task of detecting
stance in Twitter—a popular microblogging plat-
form where people often express stance implicitly
or explicitly.

The task we explore is formulated as follows:
given a tweet text and a target entity (person, orga-
nization, movement, policy, etc.), automatic natu-
ral language systems must determine whether the
tweeter is in favor of the given target, against the
given target, or whether neither inference is likely.
For example, consider the target–tweet pair:

Target: legalization of abortion (1)
Tweet: The pregnant are more than walking

incubators, and have rights!

Humans can deduce from the tweet that the
tweeter is likely in favor of the target.1

Note that lack of evidence for ‘favor’ or
‘against’, does not imply that the tweeter is neu-
tral towards the target. It may just mean that we
cannot deduce stance from the tweet. In fact, this
is a common phenomenon. On the other hand, the
number of tweets from which we can infer neu-
tral stance is expected to be small. An example is
shown below:

Target: Hillary Clinton (2)
Tweet: Hillary Clinton has some strengths

and some weaknesses.

Stance detection is related to, but different from,
sentiment analysis. Sentiment analysis tasks are

1Note that we use ‘tweet’ to refer to the text of the tweet
and not to its meta-information. In our annotation task, we
asked respondents to label for stance towards a given target
based on the tweet text alone. However, automatic systems
may benefit from exploiting tweet meta-information.
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formulated as determining whether a piece of text
is positive, negative, or neutral, or determining
from text the speaker’s opinion and the target of
the opinion (the entity towards which opinion is
expressed). However, in stance detection, systems
are to determine favorability towards a given (pre-
chosen) target of interest. The target of interest
may not be explicitly mentioned in the text and it
may not be the target of opinion in the text. For
example, consider the target–tweet pair below:

Target: Donald Trump (3)
Tweet: Jeb Bush is the only sane candidate in
this republican lineup.

The target of opinion in the tweet is Jeb Bush,
but the given target of interest is Donald Trump.
Nonetheless, we can infer that the tweeter is likely
to be unfavorable towards Donald Trump. Also
note that, in stance detection, the target can be ex-
pressed in different ways which impacts whether
the instance is labeled ‘favor’ or ‘against’. For ex-
ample, the target in example 1 could have been
phrased as ‘pro-life movement’, in which case the
correct label for that instance is ‘against’. Also,
the same stance (favor or against) towards a given
target can be deduced from positive tweets and
negative tweets. This interaction between sen-
timent and stance has not been adequately ad-
dressed in past work, and an important reason for
this is the lack of a dataset annotated for both
stance and sentiment.

Our contributions are as follows:
(1) We create the first tweets dataset labeled for
stance, target of opinion, and sentiment. More
than 4,000 tweets are annotated for whether one
can deduce favorable or unfavorable stance to-
wards one of five targets ‘Atheism’, ‘Climate
Change is a Real Concern’, ‘Feminist Movement’,
‘Hillary Clinton’, and ‘Legalization of Abortion’.
Each of these tweets is also annotated for whether
the target of opinion expressed in the tweet is the
same as the given target of interest. Finally, each
tweet is annotated for whether it conveys positive,
negative, or neutral sentiment.
(2) Partitions of this stance-annotated data were
used as training and test sets in the SemEval-
2016 shared task competition ‘Task #6: Detect-
ing Stance in Tweets’ (Mohammad et al., 2016b).
Participants were provided with 2,914 training in-
stances labeled for stance for the five targets. The
test data included 1,249 instances. The task re-
ceived submissions from 19 teams. The best per-

forming system obtained an overall average F-
score of 67.82. Their approach employed two re-
current neural network (RNN) classifiers: the first
was trained to predict task-relevant hashtags on
a very large unlabeled Twitter corpus. This net-
work was used to initialize a second RNN classi-
fier, which was trained with the provided training
data.

(3) We propose a stance detection system that
is much simpler than the SemEval-2016 Task #6
winning system (described above), and yet ob-
tains an even better F-score of 70.32 on the shared
task’s test set. We use a linear-kernel SVM classi-
fier that relies on features drawn from the train-
ing instances—such as word and character n-
grams—as well as those obtained using external
resources—such as sentiment features from lex-
icons and word-embedding features from addi-
tional unlabeled data.

(4) We conduct experiments to better understand
the interaction between stance and sentiment and
the factors influencing their interaction. We use
the gold labels to determine the extent to which
stance can be determined simply from sentiment.
We apply the stance detection system (mentioned
above in (3)), as a common text classification
framework, to determine both stance and senti-
ment. Results show that while sentiment features
are substantially useful for sentiment classifica-
tion, they are not as effective for stance classi-
fication. Word embeddings improve the perfor-
mance of both stance and sentiment classifiers.
Further, even though both stance and sentiment
detection are framed as three-way classification
tasks on a common dataset where the majority
class baselines are similar, automatic systems per-
form markedly better when detecting sentiment
than when detecting stance towards a given target.
Finally, we show that stance detection towards the
target of interest is particularly challenging when
the tweeter expresses opinion about an entity other
than the target of interest. In fact, the text classifi-
cation system performs close to majority baseline
for such instances.

All of the stance data, including annotations for
target of opinion and sentiment, are made freely
available through the shared task website and the
homepage for this Stance Project.2

2http://alt.qcri.org/semeval2016/task6/
www.saifmohammad.com/WebPages/StanceDataset.htm
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Target Example Example Example
Favor Hashtag Against Hashtag Ambiguous Hashtag

Atheism #NoMoreReligions #Godswill #atheism
Climate Change is Concern - #globalwarminghoax #climatechange
Feminist Movement #INeedFeminismBecaus #FeminismIsAwful #Feminism
Hillary Clinton #GOHILLARY #WhyIAmNotVotingForHillary #hillary2016
Legalization of Abortion #proChoice #prayToEndAbortion #PlannedParenthood

Table 1: Examples of stance-indicative and stance-ambiguous hashtags that were manually identified.

2 A Dataset for Stance from Tweets

The stance annotations we use are described in de-
tail in Mohammad et al. (2016a). We summarize
below how we compiled a set of tweets and tar-
gets for stance annotation, the questionnaire and
crowdsourcing setup used for stance annotation,
and an analysis of the stance annotations.

We first identified a list of target entities that
were commonly known in the United States
and also topics of debate: ‘Atheism’, ‘Climate
Change is a Real Concern”, ‘Feminist Movement’,
‘Hillary Clinton’, and ‘Legalization of Abortion’.
Next, we compiled a small list of hashtags, which
we will call query hashtags, that people use
when tweeting about the targets. We split these
hashtags into three categories: (1) favor hash-
tags: expected to occur in tweets expressing fa-
vorable stance towards the target (for example,
#Hillary4President), (2) against hashtags: ex-
pected to occur in tweets expressing opposition to
the target (for example, #HillNo), and (3) stance-
ambiguous hashtags: expected to occur in tweets
about the target, but are not explicitly indicative of
stance (for example, #Hillary2016). Table 1 lists
examples of hashtags used for each of the targets.

Next, we polled the Twitter API to collect
close to 2 million tweets containing these hash-
tags (query hashtags). We discarded retweets and
tweets with URLs. We kept only those tweets
where the query hashtags appeared at the end.
This reduced the number of tweets to about 1.7
million. We removed the query hashtags from the
tweets to exclude obvious cues for the classifica-
tion task. Since we only select tweets that have the
query hashtag at the end, removing them from the
tweet often still results in text that is understand-
able and grammatical.

Note that the presence of a stance-indicative
hashtag is not a guarantee that the tweet will have
the same stance.3 Further, removal of query hash-

3A tweet that has a seemingly favorable hashtag may in

tags may result in a tweet that no longer expresses
the same stance as with the query hashtag. Thus
we manually annotate the tweet–target pairs after
the pre-processing described above. For each tar-
get, we sampled an equal number of tweets per-
taining to the favor hashtags, the against hashtags,
and the stance-ambiguous hashtags. This helps in
obtaining a sufficient number of tweets pertain-
ing to each of the stance categories. Note that
removing the query hashtag can sometimes result
in tweets that do not explicitly mention the target.
Consider:

Target: Hillary Clinton (4)
Tweet: Benghazi must be answered for
#Jeb16

The query hashtags ‘#HillNo’ was removed from
the original tweet, leaving no mention of Hillary
Clinton. Yet there is sufficient evidence (through
references to Benghazi and #Jeb16) that the
tweeter is likely against Hillary Clinton. Further,
conceptual targets such as ‘legalization of abor-
tion’ (much more so than person-name targets)
have many instances where the target is not ex-
plicitly mentioned.

2.1 Stance Annotation

The core instructions given to annotators for
determining stance are shown below.4 Additional
descriptions within each option (not shown
here) make clear that stance can be expressed in
many different ways, for example by explicitly
supporting or opposing the target, by support-
ing an entity aligned with or opposed to the
target, by re-tweeting somebody else’s tweet,
etc. We also asked a second question pertain-
ing to whether the target of opinion expressed in
the tweet is the same as the given target of interest.

fact oppose the target; and this is not uncommon.
4The full set of instructions is made available on the

shared task website: http://alt.qcri.org/semeval2016/task6/.
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Target of Interest: [target entity]
Tweet: [tweet with query hashtag removed]

Q: From reading the tweet, which of the options below is
most likely to be true about the tweeter’s stance or outlook
towards the target:

1. We can infer from the tweet that the tweeter supports
the target

2. We can infer from the tweet that the tweeter is against
the target

3. We can infer from the tweet that the tweeter has a neu-
tral stance towards the target

4. There is no clue in the tweet to reveal the stance of the
tweeter towards the target (support/against/neutral)

Q2: From reading the tweet, which of the options below is
most likely to be true about the focus of opinion/sentiment in
the tweet:

1. The tweet explicitly expresses opinion/sentiment about
the target

2. The tweet expresses opinion/sentiment about some-
thing/someone other than the target

3. The tweet is not expressing opinion/sentiment

For each of the five selected targets, we randomly
sampled 1,000 tweets from the 1.7 million tweets
initially gathered from Twitter. Each of these
tweets was uploaded on CrowdFlower for annota-
tion as per the questionnaire shown above.5 Each
instance was annotated by at least eight annota-
tors. For each target, the data not annotated for
stance is used as the domain corpus—a set of unla-
beled tweets that can be used to obtain information
helpful to determine stance, such as relationships
between relevant entities.

2.2 Analysis of Stance Annotations

The number of instances that were marked as neu-
tral stance (option 3 in question 1) was less than
1%. Thus, we merged options 3 and 4 into one
‘neither in favor nor against’ option (‘neither’ for
short). The inter-annotator agreement was 73.1%
for question 1 (stance) and 66.2% for Question
2 (target of opinion).6 These statistics are for
the complete annotated dataset, which include in-
stances that were genuinely difficult to annotate
for stance (possibly because the tweets were too
ungrammatical or vague) and/or instances that re-
ceived poor annotations from the crowd workers
(possibly because the particular annotator did not
understand the tweet or its context). We selected
instances with agreement equal or greater than
60% (at least 5 out of 8 annotators must agree)

5http://www.crowdflower.com
6We report absolute agreements here.

on Question 1 (stance) to create a dataset for ma-
chine learning experiments.7 We will refer to this
dataset as the Stance Dataset. The inter-annotator
agreement on this Stance Dataset is 81.85% for
question 1 (stance) and 68.9% for Question 2 (tar-
get of opinion). The rest of the instances are kept
aside for future investigation. We partitioned the
Stance Dataset into training and test sets based
on the timestamps of the tweets. All annotated
tweets were ordered by their timestamps, and the
first 70% of the tweets formed the training set and
the last 30% formed the test set. Table 2 shows the
distribution of instances in the Stance Dataset.

Table 3 shows the distribution of responses to
Question 2 (whether opinion is expressed directly
about the given target). Observe that the percent-
age of ‘opinion towards other’ varies across differ-
ent targets from 27% to 46%. Table 4 shows the
distribution of instances by target of opinion for
the ‘favor’ and ‘against’ stance labels. Observe
that, as in Example 3, in a number of tweets from
which we can infer unfavorable stance towards a
target, the target of opinion is someone/something
other than the target (about 26.5%). Manual in-
spection of the data also revealed that in a num-
ber of instances, the target is not directly men-
tioned, and yet stance towards the target was de-
termined by the annotators. About 28% of the
‘Hillary Clinton’ instances and 67% of the ‘Legal-
ization of Abortion’ instances were found to be of
this kind—they did not mention ‘Hillary’ or ‘Clin-
ton’ and did not mention ‘abortion’, ‘pro-life’, and
‘pro-choice’, respectively (case insensitive; with
or without hashtag; with or without hyphen). Ex-
amples (1) and (4) shown earlier are instances of
this, and are taken from our dataset.

3 Labeling the Stance Set for Sentiment

A key research question is the extent to which sen-
timent is correlated with stance. To that end, we
annotated the same Stance Train and Test datasets
described above for sentiment in a separate anno-
tation project a few months later. We followed a
procedure for annotation on CrowdFlower similar
to that described above for stance, but now pro-
vided only the tweet (no target). We asked respon-
dents to label the tweets as either positive, neg-
ative, or neither. The ‘neither’ category includes

7The 60% threshold is somewhat arbitrary, but it seemed
appropriate in terms of balancing confidence in the majority
annotation and having to discard too many instances.
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% of instances in Train % of instances in Test
Target # total # train favor against neither # test favor against neither
Atheism 733 513 17.9 59.3 22.8 220 14.5 72.7 12.7
Climate Change is Concern 564 395 53.7 3.8 42.5 169 72.8 6.5 20.7
Feminist Movement 949 664 31.6 49.4 19.0 285 20.4 64.2 15.4
Hillary Clinton 984 689 17.1 57.0 25.8 295 15.3 58.3 26.4
Legalization of Abortion 933 653 18.5 54.4 27.1 280 16.4 67.5 16.1
Total 4163 2914 25.8 47.9 26.3 1249 23.1 51.8 25.1

Table 2: Distribution of instances in the Stance Train and Test sets for Question 1 (Stance).

Opinion towards
Target Target Other No one
Atheism 49.3 46.4 4.4
Climate Change is Concern 60.8 30.5 8.7
Feminist Movement 68.3 27.4 4.3
Hillary Clinton 60.3 35.1 4.6
Legalization of Abortion 63.7 31.0 5.4
Total 61.0 33.8 5.2

Table 3: Distribution of instances in the Stance
dataset for Question 2 (Target of Opinion).

Opinion towards
Stance Target Other No one
favor 94.2 5.1 0.7
against 72.8 26.5 0.7

Table 4: Distribution of target of opinion across
stance labels.

mixed and neutral sentiment.
The inter-annotator agreement on the sentiment

responses was 85.6%. Table 5 shows the distri-
bution of sentiment labels in the training and test
sets. Note that tweets corresponding to all targets,
except ‘Atheism’, are predominantly negative.

4 A Common Text Classification
Framework for Stance and Sentiment

Past work has shown that the most useful fea-
tures for sentiment analysis are word and character
n-grams and sentiment lexicons, whereas others
such as negation features, part-of-speech features,
and punctuation have a smaller impact (Wilson et
al., 2013; Mohammad et al., 2013; Kiritchenko et
al., 2014b; Rosenthal et al., 2015). More recently,
features drawn from word embeddings have been
shown to be effective in various text classification
tasks such as sentiment analysis (Tang et al., 2014)
and named entity recognition (Turian et al., 2010).
All of these features are expected to be useful in
stance classification as well. However, it is un-
clear which features will be more useful (and to
what extent) for detecting stance as opposed to
sentiment. Since we now have a dataset annotated
for both stance and sentiment, we create a com-

mon text classification system (machine learning
framework and features) and apply it to the Stance
Dataset for detecting both stance and sentiment.

There is one exception to the common machine
learning framework. The words and concepts used
in tweets corresponding to the three stance cat-
egories are not expected to generalize across the
targets. Thus, the stance system learns a separate
model from training data pertaining to each of the
targets.8 Positive and negative language tend to
have sufficient amount of commonality regardless
of topic of discussion, and hence sentiment analy-
sis systems traditionally learn a single model from
all of the training data (Liu, 2015; Kiritchenko et
al., 2014b; Rosenthal et al., 2015). Thus our senti-
ment experiments are also based on a single model
trained on all of the Stance Training set.9

Tweets are tokenized and part-of-speech tagged
with the CMU Twitter NLP tool (Gimpel et al.,
2011). We train a linear-kernel Support Vector
Machine (SVM) classifier on the Stance training
set. SVM is a state-of-the-art learning algorithm
proved to be effective on text categorization tasks
and robust on large feature spaces. The SVM pa-
rameters are tuned using 5-fold cross-validation on
Stance Training set. We used the implementation
provided in Scikit-learn Machine Learning library
(Pedregosa et al., 2011).

The features used in our text classification sys-
tem are described below:10

• n-grams: presence or absence of contigu-
ous sequences of 1, 2 and 3 tokens (word
n-grams); presence or absence of contiguous
sequences of 2, 3, 4, and 5 characters (char-
acter n-grams);

• word embeddings: the average of the word
vectors for words appearing in a given

8We built a stance system that learns a single model from
all training tweets, but its performance was worse.

9Training different models for each target did not yield
better results.

10Use of tweet meta-information is left for future work.
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% of instances in Train % of instances in Test
Target positive negative neither positive negative neither
Atheism 60.4 35.1 4.5 59.1 35.5 5.5
Climate Change is Concern 31.7 49.6 18.7 29.6 51.5 18.9
Feminist Movement 17.9 77.3 4.8 19.3 76.1 4.6
Hillary Clinton 32.1 64.0 3.9 25.8 70.2 4.1
Legalization of Abortion 28.8 66.2 5.1 20.4 72.1 7.5
Total 33.1 60.5 6.5 29.5 63.3 7.2

Table 5: Distribution of sentiment in the Stance Train and Test sets.

tweet.11 We derive 100-dimensional word
vectors using Word2Vec Skip-gram model
(Mikolov et al., 2013) trained over the Do-
main Corpus. (Recall that the Domain Cor-
pus is the large set of unlabeled tweets per-
taining to the five targets that were not man-
ually labeled for stance).

• sentiment features: features drawn from sen-
timent lexicons as suggested in (Kiritchenko
et al., 2014b). The lexicons used include
NRC Emotion Lexicon (Mohammad and
Turney, 2010), Hu and Liu Lexicon (Hu
and Liu, 2004), MPQA Subjectivity Lexicon
(Wilson et al., 2005), and NRC Hashtag Sen-
timent and Emoticon Lexicons (Kiritchenko
et al., 2014b).

Some other feature sets that we experimented
with, via cross-validation on the training set, in-
cluded word embeddings trained on a generic
Twitter corpus (not the domain corpus), the num-
ber of occurrences of each part-of-speech tag, the
number of repeated sequences of exclamation or
question marks, and the number of words with one
character repeated more than two times (for exam-
ple, yessss). However, they did not improve results
there, and so we did not include them for the test
set experiments.

We evaluate the learned models on the Stance
Test set. As the evaluation measure, we use the
average of the F1-scores (the harmonic mean of
precision and recall) for the two main classes:12

For stance classification:

Favg = Ffavor+Fagainst

2

For sentiment classification:

Favg = Fpositive+Fnegative

2

11Averaging is a commonly used vector combination
method, although other approaches can also be pursued.

12A similar metric was used in the past for sentiment
analysis—SemEval 2013 Task 2 (Wilson et al., 2013).

Note that Favg can be determined for all of the
test instances or for each target data separately.
We will refer to the Favg obtained through the
former method as F-micro-across-targets or F-
microT (for short). On the other hand, the Favg

obtained through the latter method, that is, by av-
eraging the Favg calculated for each target sep-
arately, will be called F-macro-across-targets or
F-macroT (for short). F-microT was used as
the bottom-line evaluation metric in the SemEval-
2016 shared task on stance detection. Note that
systems that perform relatively better on the more
frequent target classes will obtain higher F-microT
scores. On the other hand, to obtain a high F-
macroT score a system has to perform well on all
target classes.

5 Results of Automatic Systems

In the two subsections below, we present results
obtained by the classifiers described above on de-
tecting stance and sentiment, respectively, on the
Stance Test set. (Cross-validation experiments on
the Stance Training set produced similar results—
and are thus not shown.)

5.1 Results for Stance Classification

Table 6 shows the overall results obtained by the
automatic stance classifiers. Row i. shows results
obtained by a random classifier (a classifier that
randomly assigns a stance class to each instance),
and row ii. shows results obtained by the majority
classifier (a classifier that simply labels every
instance with the majority class per target).
Observe that F-microT for the majority class
baseline is noticeably high. This is mostly due to
the differences in the class distributions for the
five targets: for most of the targets the majority
of the instances are labeled as ‘against’ whereas
for target ‘Climate Change is a Real Concern’
most of the data are labeled as ‘favor’. Therefore,
the F-scores for the classes ‘favor’ and ‘against’
are more balanced over all targets than for just
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Classifier F-macroT F-microT
Benchmarks

i. random 32.30 34.61
ii. majority 40.09 65.22
iii. first in SemEval’16 Task #6 56.03 67.82
iv. oracle sentiment 53.10 57.20

Our Classifiers
a. n-grams 58.01 68.98
b. n-grams, embeddings 59.08 70.32
c. n-grams, sentiment lexicons 56.40 66.81
d. all three feature sets 59.21 69.84

Table 6: Stance Classification: Results obtained
by automatic systems.

one target. Row iii. shows results obtained by the
winning system (among nineteen participating
teams) in the SemEval-2016 shared task on this
data.

Results of an Oracle Sentiment Benchmark:
The Stance Dataset with labels for both stance and
sentiment allows us, for the first time, to conduct
an experiment to determine the extent to which
stance detection can be solved with sentiment
analysis alone. Specifically, we determine the per-
formance of an oracle system that assigns stance
as follows: For each target, select a sentiment-to-
stance assignment (mapping all positive instances
to ‘favor’ and all negative instances to ‘against’
OR mapping all positive instances to ‘against’ and
all negative instances to ‘favor’) that maximizes
the F-macroT score. We call this benchmark the
Oracle Sentiment Benchmark. This benchmark is
informative because it gives an upper bound of the
F-score one can expect when using a traditional
sentiment system for stance detection by simply
mapping sentiment labels to stance labels.

Row iv. in Table 6 shows the F-scores obtained
by the Oracle Sentiment Benchmark on the test
set. Observe that the F-macroT score is markedly
higher than the corresponding score for the
majority baseline, but yet much lower than 100%.
This shows that even though sentiment can play
a key role in detecting stance, sentiment alone is
not sufficient.

Results Obtained by Our Classifier:
Rows a., b., c., and d. show results obtained by
our SVM classifier using n-gram features alone,
n-grams and word embedding features, n-grams
and sentiment lexicon features, and n-grams, word
embeddings, and sentiment lexicon features (‘all
three feature sets’), respectively. The results in

row a. show the performance that can be achieved
on this test set using only the provided training
data and no external resources (such as lexicons
and extra labeled or unlabeled data). Observe
that the results obtained by our system surpass the
results obtained by the winning team in the Se-
mEval shared task (row iii.). Also note that while
the n-grams and word embeddings alone provide
the highest F-microT score, the sentiment lexi-
con features are beneficial if one is interested in
a higher F-macroT score. Table 7 shows F-scores
for tweets pertaining to each of the targets. Ob-
serve that the word embedding features are benefi-
cial for four out of five targets. The sentiment lex-
icon features bring additional improvements for
two targets, ‘Atheism’ and ‘Hillary Clinton’.

Recall that the Stance Dataset is also annotated
for whether opinion is expressed directly about
the target, about somebody/someone other than
the target, or no opinion is being expressed. Ta-
ble 8 shows stance detection F-scores obtained on
tweets that express opinion directly towards the
target and on tweets that express opinion towards
others. (The number of tweets for ‘no opinion
is being expressed’ is small, and thus not cov-
ered in this experiment.) Observe that the per-
formance of the classifier is considerably better
for tweets where opinion is expressed towards the
target, than otherwise. Detecting stance towards
a given target from tweets that express opinion
about some other entity has not been addressed
in our research community, and results in Table
8 show that it is particularly challenging. We hope
that this dataset will encourage more work to ad-
dress this gap in performance.

5.2 Results for Sentiment Classification

Table 9 shows results obtained by various auto-
matic classification systems on the sentiment la-
bels of the Stance Dataset. Observe that the scores
obtained by the majority class baseline for the
three-way sentiment classification is similar to the
majority class baseline for the three-way stance
classification. Nonetheless, the text classification
system obtains markedly higher scores on senti-
ment prediction than on predicting stance. Ob-
serve also that on this sentiment task (unlike the
stance task) the sentiment lexicon features are par-
ticularly useful (see row b.). Word embeddings
features provide improvements over n-grams (row
c.); however, adding them on top of n-grams and
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Atheism Climate Feminist Hillary Legalization
Classifier Concern Movement Clinton of Abortion F-macroT F-microT
Majority classifier 42.11 42.12 39.10 36.83 40.30 40.09 65.22
Our classifiers

a. n-grams 65.19 42.35 57.46 58.63 66.42 58.01 68.98
b. n-grams, embeddings 68.25 43.80 58.72 57.74 66.91 59.08 70.32
c. n-grams, sentiment lexicons 65.17 40.08 54.48 60.56 61.70 56.40 66.81
d. all three feature sets 69.19 42.35 56.11 61.74 66.70 59.21 69.84

Table 7: Stance Classification: F-scores obtained for each of the targets (the columns) when one or more
of the feature groups are added. Highest scores in each column is shown in bold.

F-macroT F-microT
Classifier Target Other Target Other
all three features 63.51 38.14 75.31 44.15

Table 8: Stance Classification: F-scores obtained
for tweets with opinion towards the target and
tweets with opinion towards another entity.

Classifier FPos FNeg F-microT
Majority classifier 44.22 78.35 61.28
Our classifiers

a. n-grams 64.78 81.75 73.27
b. n-grams, sentiment lex. 72.21 85.52 78.87
c. n-grams, embeddings 68.85 84.00 76.43
d. all three feature sets 71.90 85.21 78.56

Table 9: Sentiment Classification: Results ob-
tained by automatic systems.

Opinion towards
Classifier Target Other
all three feature sets 79.64 77.81

Table 10: Sentiment Classification: F-microT on
tweets with opinion towards the target and tweets
with opinion towards another entity.

sentiment features is not beneficial (row d.).
Table 10 shows the performance of the senti-

ment classifier on tweets that express opinion to-
wards the given target and those that express opin-
ion about another entity. Observe that the senti-
ment prediction performance (unlike stance pre-
diction performance) is similar on the two sets of
tweets. This shows that the two sets of tweets
are not qualitatively different in how they express
opinion. However, since one set expresses opin-
ion about an entity other than the target of interest,
detecting stance towards the target of interest from
them is notably more challenging.

6 Related Work

SemEval-2016 Task #6. The SemEval-2016 Task
‘Detecting Stance in Tweets’ received submissions
from 19 teams, wherein the highest classification

F-score obtained was 67.82. The best performing
systems used standard text classification features
such as those drawn from n-grams, word vectors,
and sentiment lexicons. Some teams drew addi-
tional gains from noisy stance-labeled data cre-
ated using distant supervision techniques. A large
number of teams used word embeddings and some
used deep neural networks such as RNNs and con-
volutional neural nets. Nonetheless, none of these
systems surpassed our results presented here.

Other Stance Detection Work. In work by
Somasundaran and Wiebe (2010), a lexicon for
detecting argument trigger expressions was cre-
ated and subsequently leveraged to identify ar-
guments. These extracted arguments, together
with sentiment expressions and their targets, were
employed in a supervised learner as features for
stance classification. Anand et al. (2011) deployed
a rule-based classifier with several features such
as unigrams, bigrams, punctuation marks, syntac-
tic dependencies and the dialogic structure of the
posts. Here, we did not explore dependency fea-
tures since dependency parsers are not as accu-
rate on tweets. Additionally, Anand et al. (2011)
showed that there is no significant difference in
performance between systems that use only un-
igrams and systems that also use other features
such as LIWC and opinion or POS generalized de-
pendencies in stance classification. Some of these
features were used by the teams participating in
the SemEval task over this dataset; however, their
systems’ performances were lower than the per-
formance showed by our stance detection system.
The dialogic relations of agreements and disagree-
ments between posts were exploited by Walker et
al. (2012). These relationships are not provided
for our Stance dataset.

Sobhani et al. (2015) extracted arguments used
in online news comments to leverage them as ex-
tra features for detecting stance. Faulkner (2014)
investigated the problem of detecting document-
level stance in student essays by making use of
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two sets of features that are supposed to repre-
sent stance-taking language. Deng and Wiebe
(2014) investigated the relationships and interac-
tions among entities and events explicitly men-
tioned in the text with the goal of improving senti-
ment classification. In stance classification, how-
ever, the predetermined target of interest may not
be mentioned in the text, or may not be the tar-
get of opinion in the text. Rajadesingan and Liu
(2014) determined stance at user level based on the
assumption that if several users retweet one pair
of tweets about a controversial topic, it is likely
that they support the same side of a debate. In
this work, we focus on detecting stance, as well as
possible, from a single tweet. Features that help
to this end will likely also be useful when there is
access to multiple tweets from the same tweeter.

Sentiment Analysis and Related Tasks. There
is a vast amount of work in sentiment analysis of
tweets, and we refer the reader to surveys (Pang
and Lee, 2008; Liu and Zhang, 2012; Moham-
mad, 2015) and proceedings of recent shared task
competitions (Wilson et al., 2013; Rosenthal et al.,
2015). Closely-related is the area of aspect based
sentiment analysis (ABSA), where the goal is to
determine sentiment towards aspects of a product
such as speed of processor and screen resolution
of a cell phone. We refer the reader to SemEval
proceedings for related work on ABSA (Pontiki
et al., 2015; Pontiki et al., 2014). Mohammad
et al. (2013) and Kiritchenko et al. (2014a) came
first in the SemEval-2013 Sentiment in Twitter
and SemEval-2014 ABSA shared tasks. We use
most of the features they proposed in our classi-
fier. There are other subtasks in opinion mining
related to stance classification, such as biased lan-
guage detection (Recasens et al., 2013; Yano et al.,
2010), perspective identification (Lin et al., 2006)
and user classification based on their views (Kato
et al., 2008). Perspective identification was de-
fined as the subjective evaluation of points of view
(Lin et al., 2006). None of the prior work has cre-
ated a dataset annotated for both stance and senti-
ment.

7 Conclusions and Future Work

We presented the first dataset of tweets annotated
for both stance towards given targets and senti-
ment. Partitions of the stance-annotated data cre-
ated as part of this project were used as train-
ing and test sets in the SemEval-2016 shared task

‘Task #6: Detecting Stance in Tweets’ that re-
ceived submissions from 19 teams. We proposed a
simple, but effective stance detection system that
obtained an F-score (70.32) higher than the one
obtained by the more complex, best-performing
system in the competition. We used a linear-kernel
SVM classifier that leveraged word and character
n-grams as well as sentiment features drawn from
available sentiment lexicons and word-embedding
features drawn from additional unlabeled data.

Finally, we conducted several experiments to
tease out the interactions between the stance and
sentiment. Notably, we showed that even though
sentiment features are useful for stance detection,
they alone are not sufficient. We also showed
that even though humans are capable of detecting
stance towards a given target from texts that ex-
press opinion towards a different target, automatic
systems perform poorly on such data.

The features we used are not new to the com-
munity and not specifically tailored for stance de-
tection. Nonetheless, they outperform those de-
veloped by the 19 teams that participated in the
SemEval-2016 shared task on this dataset. This
emphasizes the need for more research in explor-
ing novel techniques specifically suited for de-
tecting stance. Some avenues of future work in-
clude obtaining more sophisticated features such
as those derived from dependency parse trees and
automatically generated entity–entity relationship
knowledge bases. Knowing that entity X is an
adversary of entity Y can be useful in detecting
stance towards Y from tweets that express opin-
ion about X. One may also pursue more sophis-
ticated classifiers, for example, deep architectures
that jointly model stance, target of opinion, and
sentiment. We are also interested in develop-
ing stance detection systems that do not require
stance-labeled instances for the target of interest,
but instead, can learn from existing stance-labeled
instances for other targets in the same domain. We
also want to model the ways in which stance is
conveyed, and how the distribution of stance to-
wards a target changes over time.
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Abstract

We study the automatic detection of sug-
gestion expressing text among the opin-
ionated text. The examples of such sug-
gestions in online reviews would be, cus-
tomer suggestions about improvement in a
commercial entity, and advice to the fel-
low customers. We present a qualitative
and quantitative analysis of suggestions
present in the text samples obtained from
social media platforms. Suggestion min-
ing from social media is an emerging re-
search area, and thus problem definition
and datasets are still evolving; this work
also contributes towards the same. The
problem has been formulated as a sentence
classification task, and we compare the re-
sults of some popular supervised learning
approaches in this direction. We also eval-
uate different kinds of features with these
classifiers. The experiments indicate that
deep learning based approaches tend to be
promising for this task.

1 Introduction

Online text is becoming an increasingly popu-
lar source for acquiring public opinions towards
entities like persons, products, services, brands,
events, etc. The area of opinion mining focuses on
exploiting this abundance of opinions, by mainly
performing sentiment based summarisation of text
into positive, negative, and neutral categories, us-
ing sentiment analysis methods. In addition to the
online reviews and blogs, people are increasingly
resorting to social networks like Twitter, Facebook
etc. to instantly express their sentiments and opin-
ions about the products and services they might be
experiencing at a given time.

On a closer look, it is noticeable that opinion-
ated text also contains information other than sen-
timents. This can be validated from the presence
of large portions of neutral or objective or non-
relevant labelled text in state of the art sentiment
analysis datasets. One such information type is
suggestions. Table 1 shows the instances of sug-
gestions in sentiment analysis datasets which were
built on online reviews. These suggestions may or
may not carry positive or negative sentiments to-
wards the reviewed entity. In the recent past, sug-
gestions have gained the attention of the research
community, mainly for industrial research, which
led to the studies focussing on suggestion detec-
tion in reviews (Ramanand et al., 2010; Brun and
Hagege, 2013).

The setting up of dedicated suggestion collec-
tion forums by brand owners, shows the impor-
tance of suggestions for the stakeholders. There-
fore, it would be useful if suggestions can be au-
tomatically extracted from the large amount of al-
ready available opinions. In the cases of certain
entities where suggestion collection platforms 1

are already available and active, suggestion min-
ing can be used for summarisation of posts. Often,
people tend to provide the context in such posts,
which gets repetitive in the case of large number
of posts, suggestion mining methods can extract
the exact sentence in the post where a suggestion
is expressed.

This task has so far been presented as a bi-
nary classification of sentences, where the avail-
able opinionated text about a certain entity is split
into sentences and these sentences are then classi-
fied as suggestions or non-suggestions. The pre-
vious studies were carried out in a limited scope,
mainly for specific domains like reviews, focusing
on one use case at a time. The path to the leaf

1https://feedly.uservoice.com/forums/192636-
suggestions/category/64071-mobile
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Figure 1: Problem scopes in suggestion detection

nodes in Figure 1 summarises the scope of sug-
gestion mining studies so far. These studies de-
veloped datasets for individual tasks and domains,
and trained and evaluated classifier models on the
same datasets.

We analyse manually labelled datasets from dif-
ferent domains, including the existing datasets,
and the datasets prepared by us. The ratio of sug-
gestion and non-suggestion sentences vary across
domains, where the datasets from some domains
are too sparse for training statistical classifiers. We
also introduce two datasets which are relatively
richer in suggestions. In Table 1 we report sim-
ilar linguistic nature of suggestions across these
datasets, which presses for domain independent
approaches. Therefore, as a deviation from previ-
ous studies, this work investigates the generalisa-
tion of the problem of suggestion detection i.e. the
detection of all suggestions under the root node in
Figure 1.

In this work, we compare different methods
of suggestion mining using all available datasets.
These include manually crafted rules, Support
Vector Machines (SVM) with proposed linguis-
tic features, Long Short Term Memory (LSTM)
Neural Networks, and Convolutional Neural Net-
works (CNN). We also compare the results from
these approaches with the previous works whose
datasets are available. We also perform cross-
domain train test experiments. With most of
the datasets, Neural Networks (NNs) outperform
SVM with the proposed features. However, the
overall results for out of domain training remain
low. We also compare two different types of word
embeddings to be used with the NNs for this task.

2 Problem Definition and Scope

As stated previously, the task of suggestion de-
tection has been framed as binary classification of
sentences into suggestion (positive class) and non-
suggestion (negative class).
We previously provided a fine grained problem
definition (Negi and Buitelaar, 2015) in order to
prepare benchmark datasets and ensure consis-
tency in future task definitions. We identified three
parameters which define a suggestion in the con-
text of opinion mining: receiver of suggestion, tex-
tual unit of suggestion, and the type of suggestion
in terms of its explicit or implicit nature.

While the unit of suggestion still remains as
sentence in this work, and the type as explicit ex-
pression, we aim for the evaluation of different
classifier models for the detection of any sugges-
tion from any opinionated text. The motivation
lies in our observation that explicitly expressed
suggestions appear in similar linguistic forms irre-
spective of domain, target entity, and the intended
receiver (Table 1). Furthermore, datasets used by
the previous studies indicate that aiming the de-
tection of specific suggestions restricts the anno-
tations to suggestions of a specific type, which
in turn aggravates class imbalance problem in the
datasets (Table 2). It also renders these datasets
unsuitable for a generic suggestion detection task,
since the negative instances may also comprise of
suggestions, but not of the desired type.

3 Related Work

In the recent years, experiments have been per-
formed to automatically detect sentences which
contain suggestions. Targeted suggestions were
mainly the ones which suggest improvements in
a commercial entity. Therefore, online reviews
remains the main focus, however, there are a
limited number of works focussing on other
domains too.

Suggestions for product improvement: Studies
like Ramanand et al. (2010) and Brun et al.
(2013) employed manually crafted linguistic rules
to identify suggestions for product improvement.
The evaluation was performed on a small dataset
(∼60 reviews). Dong et al. (2013) performed
classification of given tweets about Microsoft
Windows’ phone as suggestions for improvement
or not. They compared SVM and Factorisation
Machines (FM) based classifiers. For features,

171



Source, En-
tity/Topic

Sentence Sentiment
Label

Intended
Receiver

Linguistic Proper-
ties

Reviews, Elec-
tronics

I would recommend doing the upgrade to be
sure you have the best chance at trouble free
operation.

Neutral Customer Subjunctive, Impera-
tive, lexical clue: rec-
ommend

Reviews, Elec-
tronics

My one recommendation to creative is to
get some marketing people to work on the
names of these things

Neutral Brand
owner

Imperative, lexical
clue: recommenda-
tion

Reviews, Hotels Be sure to specify a room at the back of the
hotel.

Neutral Customer Imperative

Reviews, Hotel The point is, don’t advertise the service if
there are caveats that go with it.

Negative Brand
Owner

Imperative

Tweets, Windows
Phone

Dear Microsoft, release a new zune with
your wp7 launch on the 11th. It would be
smart

Neutral Brand
owner

Imperative, subjunc-
tive

Discussion
thread, Travel

If you do book your own airfare, be sure you
don’t have problems if Insight has to cancel
the tour or reschedule it

Neutral Thread par-
ticipants

Conditional, impera-
tive

Tweets, open top-
ics

Again I’m reminded of some of the best ad-
vice I’ve ever received: thank you notes.
Always start with the thank you notes.

NA General
public

Imperative, Lexical
clue: advice

Suggestion fo-
rum, Software

Please provide consistency throughout the
entire Microsoft development ecosystem!

NA Brand
owner

Imperative, lexical
clue: please

Table 1: Examples of suggestions from different domains, about different entities and topics, and in-
tended for different receivers. Sentiment labels are the sentiment towards a reviewed entity, if any.

they used certain hash tags and mined frequently
appearing word based patterns from a separate
dataset of suggestions about Microsoft phones.
Suggestions for fellow customers: In one of our
previous works(Negi and Buitelaar, 2015), we
focussed on the detection of those suggestions in
reviews which are meant for the fellow customers.
An example of such suggestion in a hotel review
is, If you do end up here, be sure to specify a room
at the back of the hotel. We used SVM classifier
with a set of linguistically motivated features. We
also stressed upon the highly subjective nature of
suggestion labelling task, and thus performed a
study of a formal definition of suggestions in the
context of suggestion mining. We also formulated
annotation guidelines, and prepared a dataset for
the same.
Advice Mining from discussion threads: Wicak-
sono et al. (2013) detected advice containing
sentences from travel related discussion threads.
They compared sequential classifiers based on
Hidden Markov Model (HMM) and Conditional
Random Fields (CRF), considering each thread
as a sequence of sentences labelled as advice and
non-advice. They also some features which were
dependent on the position of a sentence in its
thread. This approach was therefore specific to the
domain of discussion threads. Their annotations
seem to consider implicit expressions of advice as
advice.

Text Classification using deep learning: Re-
cently NNs are being effectively used for text
classification tasks, like sentiment classification
and semantic categorisation. LSTM (Graves,
2012), and CNN (Kim, 2014a) are the two most
popular neural network architectures in this
regard.
Tweet classification using deep learning: To the
best of our knowledge, deep learning has only
been employed for sentiment based classification
of tweets. CNN (Severyn and Moschitti, 2015)
and LSTM (Wang et al., 2015) have demonstrated
good performance in this regard.

4 Datasets

The required datasets for this task are a set of
sentences obtained from opinionated texts, which
are labelled as suggestion and non-suggestion,
where suggestions are explicitly expressed.

Existing Datasets: Datasets from most of
the previous studies on suggestions for product
improvement are unavailable due to their indus-
trial ownership. The currently available datasets
are:
1) Twitter dataset about Windows phone: This
dataset comprises of tweets which are addressed
to Microsoft. The tweets which expressed sug-
gestions for product improvement are labelled
as suggestions (Dong et al., 2013). Due to the
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short nature of tweets, suggestion detection is
performed on the tweet level, rather than the sen-
tence level. The authors indicated that they have
labeled the explicit expressions of suggestions in
the dataset.
2) Electronics and hotel reviews: A review
dataset, where only those sentences which convey
suggestions to the fellow customers are consid-
ered as suggestions (Negi and Buitelaar, 2015).
3) Travel advice dataset: Obtained from travel re-
lated discussion forums. All the advice containing
sentences are tagged as advice (Wicaksono and
Myaeng, 2013). One problem with this dataset is
that the statements of facts (implicit suggestions)
are also tagged as advice, for example, The tem-
perature may reach upto 40 degrees in summer.

Introduced Datasets: In this work, we identify
additional sources for suggestion datasets, and
prepare labelled datasets with larger number of
explicitly expressed suggestions.
1) Suggestion forum: Posts from a customer
support platform2 which also hosts dedicated
suggestion forums for products. Though most of
the forums for commercial products are closed
access, we discovered two forums which are
openly accessible: Feedly mobile app3, and
Windows app studio4. We collected samples of
posts for these two products. Posts were then
split into sentences using the sentence splitter
from Stanford CoreNLP toolkit (Manning et al.,
2014). Two annotators were asked to label 1000
sentences, on which the inter-annotator agreement
(kappa) of 0.81 was obtained. Rest of the dataset
was annotated by only one annotator. Due to
the annotation costs, we limited the size of data
sample, however this dataset is easily extendible
due to the availability of much larger number of
posts on these forums.
2) We also prepared a tweet dataset where tweets
are a mixture of random topics, and not specific
to any given entity or topic. These tweets were
collected using the hashtags suggestion, advice,
recommendation, warning, which increased the
chance of appearance of suggestions in this
dataset. Due to the noisy nature of tweets, two
annotators performed annotation on all the tweets.

2https://www.uservoice.com/
3https://feedly.uservoice.com/forums/192636-

suggestions
4https://wpdev.uservoice.com/forums/110705-universal-

windows-platform

The inter-annotator agreement was calculated as
0.72. Only those tweets were retained for which
the annotators agreed on the label.
3) We also re-tagged the travel advice dataset
from Wicaksono et al. (2013) where only those
suggestions which were explicitly expressed were
retained as suggestions.

Table 2 details all the available datasets in-
cluding the ones we are introducing in this work.
The introduced datasets contain higher percentage
of suggestions. We therefore train models on the
introduced datasets, and evaluate them on the
existing datasets.

Dataset Suggestion Type Suggestions/
Total In-
stances

Existing Datasets
Electronics Re-
views, (Negi and
Buitelaar, 2015)

Only for customers,
explicitly expressed

324/3782

Hotel Reviews,
(Negi and Buite-
laar, 2015)

Only for customers,
explicitly expressed

448/7534

Tweets Microsoft
phone, (Dong et
al., 2013)

Only for brand
owners, explicitly
expressed

238/3000

Travel advice 1,
(Wicaksono and
Myaeng, 2013)

Any suggestion, ex-
plicitly or implic-
itly expressed

2192/5199

Introduced Datasets
Travel advice
2 (Re-labeled
Travel advice 1 )

Any suggestion, ex-
plicitly expressed

1314/5183

Suggestion fo-
rum5

Any suggestion, ex-
plicitly expressed

1428/5724

Tweets with
hashtags: sug-
gestion, advice,
recommendation,
warning

Any suggestion, ex-
plicitly expressed

1126/4099

Table 2: Available suggestion detection datasets

5 Automatic Detection of Suggestions

Some of the conventional text classification ap-
proaches have been previously studied for this
task, primarily, rules and SVM classifiers. Each
approach was only evaluated on the datasets pre-
pared within the individual works. We employ
these two approaches on all the available datasets
for all kinds of suggestion detection task. We then
perform a study of the employability of LSTM and
CNN for this kind of text classification task. We
evaluate all the statistical classifiers in both do-
main dependent and independent training. The re-
sults demonstrate that deep learning methods have
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an advantage over the conventional approaches for
this task.

5.1 Rule based classification
This approach uses a set of manually formulated
rules aggregated from the previous rule based ex-
periments (Ramanand et al., 2010; Goldberg et al.,
2009). These rules exclude the rules provided by
Brun et al. (2013), because of their dependency on
in-house (publicly unavailable) components from
Brun et al. (2013). Only those rules have been
used which do not depend on any domain specific
vocabulary. A given text is labeled as a suggestion,
if at least one of the rules is true.

1. Modal verbs (MD) followed by a base form
of verb (VB), followed by an adjective.

2. At-least one clause starts with a present tense
of verb (VB, VBZ, VBP). This is a naive
method for detecting imperative sentences.
Clauses are identified using the parse trees;
the sub-trees under S and SBAR are consid-
ered as clauses.

3. Presence of any of the suggestion key-
words/phrases suggest, recommend, hope-
fully, go for, request, it would be nice, adding,
should come with, should be able, could
come with, i need, we need, needs, would like
to, would love to.

4. Presence of templates for suggestions ex-
pressed in the form of wishes [would like
*(if), I wish, I hope, I want, hopefully, if
only, would be better if, *(should)*, would
that, can’t believe .*(didn’t).*, (don’t be-
lieve).*(didn’t), (do want), I can has].

The part of speech tagging and parsing is per-
formed using Stanford parser (Manning et al.,
2014). Table 3 shows the results of rule based
classification for the positive class i.e. sugges-
tion class. With the available datasets, detection
of negative instances is always significantly better
than the positive ones, due to class imbalance.

5.2 Statistical classifiers
SVM was used in almost all the related work either
as a proposed classifier with some feature en-
gineering, or for comparison with other classifiers.

Support Vector Machines: SVM classifiers
are popularly used for text classification in the re-
search community. We perform the evaluation of
a classifier using SVM with the standard n-gram

Dataset Prec. Rec. F1
Electronics
Reviews

0.229 0.660 0.340

Hotel Reviews 0.196 0.517 0.285
Travel discussion
2

0.312 0.378 0.342

Microsoft Tweets 0.207 0.756 0.325
New Tweets 0.200 0.398 0.266
Suggestion
Forum

0.461 0.879 0.605

Table 3: Results of Suggestion Detection using
rule based classifier. Reported metrics are only for
the suggestion class.

features (uni, bi-grams) and the features proposed
in our previous work (Negi and Buitelaar, 2015).
These features are sequential POS patterns for im-
perative mood, sentence sentiment score obtained
using SentiWordNet, and information about nsubj
dependency present in the sentence. We use
LibSVM6 implementation with the parameters
specified previously in Negi and Buitelaar (2015).
No oversampling is used, instead class weighting
is applied by using class weight ratio depending
upon the class distribution of the negative and
positive class respectively in the training dataset.

Deep Learning based classifiers: Recent
findings about the impressive performance of
deep learning based models for some of the
natural language processing tasks calls for similar
experiments in suggestion mining. We therefore
present the first set of deep learning based ex-
periments for the same. We experiment with two
kinds of neural network architectures: LSTM
and CNN. LSTM effectively captures sequential
information in text, while retaining the long term
dependencies. In a standard LSTM model for text
classification, text can be fed to the input layer as
a sequence of words, one word at a time. Figure 2
shows the architecture of LSTM neural networks
for binary text classification.
On the other hand, CNN is known to effectively
capture local co-relations of spatial or temporal
structures, therefore a general intuition is that
CNN might capture well the good n-gram features
at different positions in a sentence.

5.3 Features
Features for SVM: The feature evaluation of
(Negi and Buitelaar, 2015) indicated that POS
tags, certain keywords (lexical clues), POS

6https://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Figure 2: Architecture for using LSTM as a binary
text classifier

patterns for imperative mood, and certain de-
pendency information about the subject, can be
useful features for the detection of suggestions.
In the previous works, the feature types were
manually determined. We now aim to eliminate
the need of manual determination of feature
types. A recently popular approach of doing this
is to use neural networks with word embeddings
(Bengio et al., 2003) based feature vectors, in-
stead of using classic count-based feature vectors.

Word embeddings for Neural Networks:
In simpler terms, word embeddings are automat-
ically learnt vector representations for lexical
units. Baroni et al. (2014) compared the word
embeddings obtained through different methods,
by using them for different semantic tasks. Based
on those comparisons, we use a pre-trained COM-
POSES7 embeddings, which were developed by
Baroni et al. (2014). These embeddings/word
vectors are of size 400. For experiments on twitter
datasets, we used Glove (Pennington et al., 2014)
based word embeddings learnt on Twitter data8,
which comprises of 200 dimensions.
We additionally experiment with dependency
based word embeddings (Deps)9 (Levy and
Goldberg, 2014). These embeddings determine

7Best predict vectors on
http://clic.cimec.unitn.it/composes/semantic-vectors.html

8http://nlp.stanford.edu/projects/glove/
9Dependency-Based on

https://levyomer.wordpress.com/2014/04/25/dependency-
based-word-embeddings/

the context of a word on the basis of linguistic
dependencies, instead of window based context
used by COMPOSES. Therefore, Deps tends
to perform better in determining the functional
similarity between words, as compared to COM-
POSES.
Additional feature for NNs: For neural network
based classifiers, we also experimented with POS
tags as an additional feature with the pre-trained
word embeddings. This tends to decrease the
precision and increase the recall, but results in an
overall decrease of F-1 score in most of the runs.
Therefore, we do not report the results of these
experiments.

5.4 Configurations

NN Configuration: Considering the class imbal-
ance in the datasets, we employ oversampling of
the minority class (positive) to adjust the class
distribution of training data. While performing
cross validation, we perform oversampling on
training data for each fold separately after cross-
validating.
LSTM: For LSTM based classification, we use 2
hidden layers of 100 and 50 neurons respectively,
and 1 softmax output layer. We also utilize L2
regularization to counter overfitting. For LSTMs,
we use the softsign activation function.
CNN: We used a filter window of 2 with 40 feature
maps in CNN, thus giving 40 bigram based filters
(Kim, 2014b). A subsampling layer with max
pooling is used.

In-Domain and Cross-Domain Evaluation:
In the case of statistical classifiers, we perform
the experiments in two sets. The first set of
experiments (Table 4, 6) evaluate a classifier (and
feature types) for the cases where labeled data is
available for a specific domain, entity, or receiver
specific suggestions. In this case, evaluation is
performed using a 10 fold cross validation with
SVM and 5 fold with NN classifiers. The second
set of experiments evaluate the classifiers (and
feature types) for a generic suggestion detection
task, where the model can be trained on any
of the available datasets. These experiments
evaluate the classifier algorithms, as well as the
training datasets. In the case of twitter, training
is performed on twitter dataset, while evaluation
for this cross-domain setting is performed on the
Microsoft tweet dataset.

175



Data Precision Recall F1 score
SVM LSTM CNN SVM LSTM CNN SVM LSTM CNN

Hotel 0.580 0.576 0.505 0.512 0.717 0.703 0.543 0.639 0.578
Electronics 0.645 0.663 0.561 0.621 0.681 0.671 0.640 0.672 0.612
Travel advice 2 0.458 0.609 0.555 0.732 0.630 0.621 0.566 0.617 0.586
Microsoft Tweets 0.468 0.591 0.309 0.903 0.514 0.766 0.616 0.550 0.441
New tweets 0.693 0.619 0.590 0.580 0.674 0.752 0.632 0.645 0.661
Suggestion forum 0.661 0.738 0.665 0.760 0.716 0.772 0.712 0.727 0.713

Table 4: In-domain training: Performance of SVM (10 fold), LSTM, and CNN (5 fold) using cross val-
idation on the available datasets. The listed results are for the suggestion class only. SVM uses features
from Negi and Buitelaar (2015), and neural networks use pre-trained word embeddings (COMPOSES
for normal text and Twitter Glove for tweets).

Dataset Related work F1 type F1 (Related
Work)

SVM LSTM CNN

Travel Advice 1 (Wicaksono and
Myaeng, 2013)

Weighted F-1
score for both
classes

0.756 0.680 0.762 0.692

Microsoft tweets (Dong et al., 2013) F-1 score for
suggestions only

0.694 0.616 0.550 0.441

Table 5: Comparison of the performance of SVM (Negi and Buitelaar, 2015), LSTM and CNN with the
best results reported in two of the related works whose datasets are available. 5 fold cross validation was
used. The related works used different kinds of F1 scores.

Dataset LSTM CNN
COMP. Deps COMP. Deps

Hotel 0.638 0.607 0.578 0.550
Electronics 0.672 0.608 0.611 0.556
Travel advice 2 0.617 0.625 0.586 0.564
Sugg Forum 0.752 0.732 0.714 0.695

Table 6: F-1 score for the suggestion class, using
COMPOSES and Deps embeddings with LSTM
and CNN. 5 fold cross validation.

Pre-processing: We also compared experiments
on tweets with pre-processing, and without
pre-processing the tweets. The pre-processing
involved removing URLs and hashtags, and
normalisation of punctuation repetition. Pre-
processing tends to decrease the performance
in all the experiments. Therefore, none of the
experiments reported by us use pre-processing on
tweets.

6 Results and Discussions

Tables 4, 7 show the Precision, Recall and F-1
score for the suggestion class (positive class). In
general, rule based classifier shows a higher recall,
but very low precision, leading to very low F-1
scores as compared to statistical classifiers, where
LSTM emerges as a winner in majority of the
runs. Below we summarise different observations
from the results.

Embeddings: COMPOSES embeddings prove
to be a clear winner in our experiments. Deps
outperform COMPOSES in only 3 cases out of
all the experiments reported in Tables 6, 8. It
was observed that using Deps always resulted in
higher recall, however F-1 scores dropped due
to a simultaneous drop in precision. Also, Deps
embeddings tend to perform better with LSTM, as
compared to CNN.

Comparison with Related Work: Table 5
compares the results from those works whose
datasets are available. It shows that LSTM outper-
forms the best results from Wicaksono et al. by
a small margin, provided that they used features
which are only valid for dicussion threads, while
the LSTM uses generic features (embeddings).
The table also shows a comparison of other
approaches with the factorization machine based
approach adopted by Dong et al. (2013) for clas-
sifying Microsoft tweets, which provides a much
higher F-1 score. This can be attributed to the
use of fine tuning (oversampling, thresholding)
for the class imbalance problem. Dong et al. also
report results using FM and SVM which do not
use fine tuning; those results are in line with our
SVM and LSTM results. Additionally, they also
use hashtags and suggestion templates extracted
from an unavailable dataset of suggestions for
Microsoft phones.
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Train/Test Precision Recall F-1 score
SVM LSTM CNN SVM LSTM CNN SVM LSTM CNN

Sugg-Forum/Hotel 0.327 0.425 0.348 0.156 0.482 0.379 0.211 0.452 0.363
Sugg-Forum/Electronics 0.109 0.500 0.376 0.519 0.532 0.411 0.180 0.516 0.393
Sugg-Forum/Travel advice 0.386 0.52 0.395 0.212 0.235 0.531 0.273 0.323 0.453
Travel advice/Hotel 0.147 0.244 0.206 0.616 0.616 0.582 0.238 0.349 0.304
New Tweets/Microsoft Tweets 0.112 0.189 0.164 0.122 0.351 0.458 0.117 0.246 0.241

Table 7: Cross-domain evaluation: Performance of SVM, LSTM, CNN when trained on new sugges-
tion rich datasets and tested on the existing suggestion datasets. The listed results are for the positive
(suggestion) class only.

Train/Test LSTM CNN
COMP Deps COMP Deps

Sugg-
Forum/Hotel

0.450 0.38 0.363 0.367

Sugg-
Forum/Electronics

0.510 0.470 0.393 0.384

Sugg-
Forum/Travel
Advice

0.323 0.340 0.453 0.330

Travel ad-
vice/Hotel

0.316 0.349 0.304 0.292

Table 8: Evaluation of COMPOSES and Depen-
dency embeddings with LSTM and CNN in a cross
domain train-test setting.

SVM versus NNs: In most cases, the neural
network based classifiers outperformed SVM,
see tables 4, 7. Although SVM in combination
with feature engineering and parameter tuning,
proves to be a competent alternative, specially
with the more balanced new datasets. The newly
introduced datasets (suggestions about Feedly
app and Windows platform) produce better
results than the existing sparse datasets for the
in-domain evaluation, see table 4. This can be
again attributed to the better class representation
in this dataset.

Text type: The results of tweet datasets in
general show much lower classification accuracy
than the datasets of standard texts for cross
domain training, see table 7. In the case of in-
domain evaluation for the Microsoft tweet dataset,
SVM performs better than neural networks, and
vice versa in the case of the new tweet dataset, see
table 4.

7 Conclusion and Future Work

In this work, we presented an insight into the
problem of suggestion detection, which extracts
different kinds of suggestions from opinionated
text. We point to new sources of suggestion

rich datasets, and provide two additional datasets
which contain larger number of suggestions as
compared to the previous datasets. We compare
various approaches for suggestion detection, in-
cluding the ones used in the previous works, as
well as the deep learning approaches for sentence
classification which have not yet been applied to
this problem.
Since suggestions tend to exhibit similar linguistic
nature, irrespective of topics and intended receiver
of the suggestions, there is a scope of learning do-
main independent models for this task. Therefore,
we apply the discussed approaches both in a do-
main dependent, and domain independent setting,
in order to evaluate the domain independence of
the proposed models.
Neural networks in general performed better, in
both in-domain and cross-domain evaluation. The
initial results for domain independent training are
poor. In light of the findings from this work, do-
main transfer approaches would be an interesting
direction for future works in this problem.
The results also point out the challenges and com-
plexity of the task. Preparing datasets where sug-
gestions are labeled at a phrase or clause level
might reduce the complexities arising due to long
sentences.
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Abstract

The linguistic experiences of a person are
an important part of their individuality. In
this paper, we show that people can be
modelled as vectors in a semantic space,
using their personal interaction with spe-
cific language data. We also demonstrate
that these vectors can be taken as repre-
sentative of ‘the kind of person’ they are.
We build over 4000 speaker-dependent
subcorpora using logs of Wikipedia ed-
its, which are then used to build distri-
butional vectors that represent individual
speakers. We show that such ‘person vec-
tors’ are informative to others, and they
influence basic patterns of communication
like the choice of one’s interlocutor in
conversation. Tested on an information-
seeking scenario, where natural language
questions must be answered by addressing
the most relevant individuals in a commu-
nity, our system outperforms a standard in-
formation retrieval algorithm by a consid-
erable margin.

1 Introduction

Distributional Semantics (DS) (Turney and Pan-
tel, 2010; Clark, 2012; Erk, 2012) is an approach
to computational semantics which has historical
roots in the philosophical work of Wittgenstein,
and in particular in the claim that ‘meaning is
use’, i.e. words acquire a semantics which is a
function of the contexts in which they are used
(Wittgenstein, 1953). The technique has been used
in psycholinguistics to model various phenom-
ena, from priming to similarity judgements (Lund
and Burgess, 1996), and even aspects of lan-
guage acquisition (Landauer and Dumais, 1997;
Kwiatkowski et al., 2012). The general idea is that

an individual speaker develops the verbal side of
his or her conceptual apparatus from the linguistic
experiences he or she is exposed to, together with
the perceptual situations surrounding those expe-
riences.

One natural consequence of the distributional
claim is that meaning is both speaker-dependent
and community-bound. On the one hand, depend-
ing on who they are, speakers will be exposed
to different linguistic and perceptual experiences,
and by extension develop separate vocabularies
and conceptual representations. For instance, a
chef and a fisherman may have different represen-
tations of the word fish (Wierzbicka, 1984). On the
other hand, the vocabularies and conceptual rep-
resentations of individual people should be close
enough that they can successfully communicate:
this is ensured by the fact that many linguistic ut-
terances are shared amongst a community.

There is a counterpart to the claim that
‘language is speaker-dependent’: speakers are
language-dependent. That is, the type of person
someone is can be correlated with their linguis-
tic experience. For instance, the fact that fish and
boil are often seen in the linguistic environment
of an individual may indicate that this individual
has much to do with cooking (contrast with high
co-occurrences of fish and net). In some contexts,
linguistic data might even be the only source of in-
formation we have about a person: in an academic
context, we often infer from the papers a person
has written and cited which kind of expertise they
might have.

This paper offers a model of individuals based
on (a subset of) their linguistic experience. That is,
we model how, by being associated with particular
types of language data, people develop a unique-
ness representable as a vector in a semantic space.
Further, we evaluate those ‘person vectors’ along
one particular dimension: the type of knowledge
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we expect them to hold.
The rest of this paper is structured as follows.

We first give a short introduction to the topic
of modelling linguistic individuality (§2) and we
discuss how DS is a suitable tool to represent
the associated characteristics for a given person
(§3). We describe a model of individuals in a
community using ‘person vectors’ (§4). We then
highlight the challenges associated with evaluat-
ing such vectors, and propose a prediction task
which has for goal to identify someone with a par-
ticular expertise, given a certain information need
(§5, §6). Concretely, we model a community of
over 4000 individuals from their linguistic interac-
tion with Wikipedia (§7). We finally evaluate our
model on the suggested task and compare results
against a standard information retrieval algorithm.

2 Individuality and how it is seen

A speaker’s linguistic experience—what they
read, write, say and hear—is individual in all
the ways language can be described, from syn-
tax to pragmatics, including stylistics and regis-
ter. One area of work where linguistic individual-
ity has been extensively studied is author profiling
and identification (Zheng et al., 2006; Stamatatos,
2009). It has been shown, in particular, how sub-
tle syntactic and stylistic features (including meta-
linguistic features such as sentence length) can be
a unique signature of a person. This research, of-
ten conducted from the point of view of forensic
linguistics, has person identification as its main
goal and does not delve much into semantics, for
the simple reason that the previously mentioned
syntactic and structural clues often perform better
in evaluation (Baayen et al., 1996).

This paper questions in which way the seman-
tic aspects of someone’s linguistic experience con-
tributes to their individuality. One aspect that
comes to mind is variations in word usage (as
mentioned in the introduction). Unfortunately,
this aspect of the problem is also the most diffi-
cult to approach computationally, for sheer lack
of data: we highlight in §5 some of the reasons
why obtaining (enough) speaker-specific language
data remains a technical and privacy minefield.
Another aspect, which is perhaps more straight-
forwardly modellable, is the extent to which the
type of linguistic material someone is exposed to
broadly correlates with who they are. It is likely,
for instance, that the authors of this paper write

and read a lot about linguistics, and this correlates
with broad features of theirs, e.g. they are com-
putational linguists and are interested in language.
So, as particular stylistic features can predict who
a person is, a specific semantic experience might
give an insight into what kind of person they are.

In what follows, we describe how, by selecting a
public subset of a person’s linguistic environment,
we can build a representation of that person which
encapsulates and summarises a part of their indi-
viduality. The term ‘public subset’ is important
here, as the entire linguistic experience of an indi-
vidual is (at this point in time!) only accessible to
them, and the nature of the subset dictates which
aspect of the person we can model. For instance,
knowing what a particular academic colleague has
written, read and cited may let us model their work
expertise, while chatting with them at a barbecue
party might give us insight into their personal life.

We further contend that what we know about a
person conditions the type of interaction we have
with them: we are more likely to start a conver-
sation about linguistics with someone we see as a
linguist, and to talk about the bad behaviour of our
dog with a person we have primarily modelled as
a dog trainer. In other words, the model we have
of people helps us successfully communicate with
them.

3 Some fundamentals of DS

The basis of any DS system is a set of word mean-
ing representations (‘distributions’) built from
large corpora. In their simplest form,1 distribu-
tions are vectors in a so-called semantic space
where each dimension represents a term from the
overall system’s vocabulary. The value of a vec-
tor along a particular dimension expresses how
characteristic the dimension is for the word mod-
elled by the vector (as calculated using, e.g., Point-
wise Mutual Information). It will be found, typ-
ically, that the vector cat has high weight along
the dimension meow but low weight along poli-
tics. More complex architectures result in com-
pact representations with reduced dimensionality,
which can integrate a range of non-verbal informa-
tion such as visual and sound features (Feng and
Lapata, 2010; Kiela and Clark, 2015).

Word vectors have been linked to conceptual

1There are various possible ways to construct distribu-
tions, including predictive language models based on neural
networks (Mikolov et al., 2013).
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representations both theoretically (Erk, 2013) and
experimentally, for instance in psycholinguistic
and neurolinguistic work (Anderson et al., 2013;
Mitchell et al., 2008). The general idea is that a
distribution encapsulates information about what
kind of thing a particular concept might be. Re-
trieving such information in ways that can be ver-
balised is often done by looking at the ‘nearest
neighbours’ of a vector. Indeed, a natural con-
sequence of the DS architecture is that similar
words cluster in the same area of the semantic
space: it has been shown that the distance between
DS vectors correlates well with human similarity
judgements (Baroni et al., 2014b; Kiela and Clark,
2014). So we can find out what a cat is by inspect-
ing the subspace in which the vector cat lives, and
finding items such as animal, dog, pet, scratch etc.

In what follows, we use this feature of vector
spaces to give an interpretable model of an indi-
vidual, i.e., we can predict that a person might be
a linguist by knowing that their vector is the close
neighbour of, say, semantics, reference, model.

4 A DS model of a community

4.1 People in semantic spaces

Summing up what we have said so far, we follow
the claim that we can theoretically talk about the
linguistic experience of a speaker in distributional
terms. The words that a person has read, written,
spoken or heard, are a very individual signature
for that person. The sum of those words carries
important information about the type of concepts
someone may be familiar with, about their social
environment (indicated by the registers observed
in their linguistic experience) and, broadly speak-
ing, their interests.

We further posit that people’s individuality can
be modelled as vectors in a semantic space, in a
way that the concepts surrounding a person’s vec-
tor reflect their experience. For instance, a cook
might ‘live’ in a subspace inhabited by other cooks
and concepts related to cooking. In that sense, the
person can be seen as any other concept inhabiting
that space.

In order to compute such person vectors, we
expand on a well-known result of compositional
distributional semantics (CDS). CDS studies how
words combine to form phrases and sentences.
While various, more or less complex frameworks
have been proposed (Clark et al., 2008; Mitchell
and Lapata, 2010; Baroni et al., 2014a), it has re-

peatedly been found that simple addition of vec-
tors performs well in modelling the meaning of
larger constituents (i.e., we express the meaning
of black cat by simply summing the vectors for
black and cat). To some extent, it is also possible
to get the ‘gist’ of simple sentences by summing
their constituent words. The fundamental idea be-
hind simple addition is that, given a coherent set
of words (i.e. words which ‘belong together and
are close in the semantic space), their sum will ex-
press the general topic of those words by creating
a centroid vector sitting in their midst. This notion
of coherence is important: summing two vectors
that are far away from each other in the space will
result in a vector which is far from both the base
terms (this is one of the intuitions used in (Vec-
chi et al., 2011) to capture semantically anomalous
phrases).

We take this idea further by assuming that peo-
ple are on the whole coherent (see (Herbelot,
2015) for a similar argument about proper names):
their experiences reflect who they are. For in-
stance, by virtue of being a chef, or someone inter-
ested in cooking, someone will have many inter-
connected experiences related to food. In particu-
lar, a good part of their linguistic experiences will
involve talking, reading and writing about food.
It follows that we can represent a person by sum-
ming the vectors corresponding to the words they
have been exposed to. When aggregating the vo-
cabulary most salient for a chef, we would hope-
fully create a vector inhabiting the ‘food’ section
of the space. As we will see in §6, the model we
propose is slightly more complex, but the intuition
remains the same.

Note that, in spite of being ‘coherent’, peo-
ple are not one-sided, and a cook can also be a
bungee-jumper in their spare time. So depending
on the spread of data we have about a person, our
method is not completely immune to creating vec-
tors which sit a little too far away from the topics
they encapsulate. This is a limit of our approach
which could be solved by attributing a set of vec-
tors, rather than a single representation, to each
person. In this work, however, we do not consider
this option and assume that the model is still dis-
criminative enough to distinguish people.

4.2 From person vectors to interacting agents

In what sense are person vectors useful represen-
tations? We have said that, as any distribution in
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a semantic space, they give information about the
type of thing/person modelled by the vector. We
also mentioned in §2 that knowing who someone
is (just like knowing what something is) influences
our interaction with them. So we would like to
model in which ways our people representations
help us successfully communicate with them.

For the purpose of this paper, we choose an in-
formation retrieval task as our testbed, described
in §5. The task, which involves identifying a rel-
evant knowledge holder for a particular question,
requires us to embed our person vectors into sim-
ple agent-like entities, with a number of linguis-
tic, knowledge-processing and communicative ca-
pabilities. A general illustration of the structure
of each agent is shown in Fig. 1. An agent stores
(and dynamically updates) a) a person vector; b)
a memory which, for the purpose of our evalua-
tion (§5), is a store of linguistic experiences (some
data the person has read or written, e.g. informa-
tion on Venezuelan cocoa beans). The memory
acts as a knowledge base which can be queried, i.e.
relevant parts can be ‘remembered’ (e.g. the per-
son remember reading about some Valrhona co-
coa, with a spicy flavour). Further, the agent has
some awareness of others: it holds a model of
its community consisting of other people’s vectors
(e.g., the agent knows Bob, who is a chef, and Al-
ice, who is a linguist). When acted by a particular
communication need, the agent can direct its at-
tention to the appropriate people in its community
and engage with them.

5 Evaluating person vectors

5.1 The task

To evaluate our person vectors, we choose a task
which relies on having a correct representation of
the expertise of an individual.

Let’s imagine a person with a particular infor-
mation need, for instance, getting sightseeing tips
for a holiday destination. Let’s also say that we
are in a pre-Internet era, where information is typ-
ically sought from other actors in one’s real-world
community. The communication process associ-
ated with satisfying this information need takes
two steps: a) identifying the actors most likely to
hold relevant knowledge (perhaps a friend who has
done the trip before, or a local travel agent); b)
asking them to share relevant knowledge.

In the following, we replicate this situation us-
ing a set of agents, created as described in §4.

Figure 1: A person is exposed to a set of linguistic expe-
riences. Computationally, each experience is represented as
a vector in a memory store. The sum of those experiences
make up the individual’s ‘person vector’. The person also
has a model of their community in the form of other individ-
uals’ person vectors. In response to a particular communica-
tion need, the person can direct their attention to the relevant
actors in that community.

We assume that those agents are fully connected
and aware of each other, in a way that they can
direct specific questions to the individuals most
likely to answer them. Our evaluation procedure
tests whether, for a given information need, ex-
pressed in natural language by one agent (e.g.
What is Venezuelan chocolate like?), the commu-
nity is modelled in a way that an answer can be
successfully obtained (i.e. an agent with relevant
expertise has been found, and ‘remembers’ some
information that satisfies the querier’s need). Note
that we are not simulating any real communication
between agents, which would require that the in-
formation holder generates a natural language an-
swer to the question. Rather, the contacted agent
simply returns the information in its memory store
which seems most relevant to the query at hand.
We believe this is enough to confirm that the per-
son vector was useful in acquiring the information:
if the querying agent contacts the ‘wrong’ person,
the system has failed in successfully fulfulling the
information need.

5.2 Comparative evaluation
We note that the task we propose can be seen as
an information retrieval (IR) problem over a dis-
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tributed network: a query is matched to some rele-
vant knowledge unit, with all available knowledge
being split across a number of ‘peers’ (the indi-
viduals in our community). So in order to know
how well the system does at retrieving relevant in-
formation, we can use as benchmark standard IR
software.

We compare the performance of our system
with a classic, centralised IR algorithm, as im-
plemented in the Apache Lucene search engine.
Lucene is an open source library for implementing
(unstructured) document retrieval systems, which
has been employed in many full-text search en-
gine systems (for an overview of the library, see
(Bialecki et al., 2012)). We use the out-of-the-box
‘standard’ indexing solution provided by Lucene,2

which roughly implements a term-by-document
Vector Space Model, in which terms are lemma-
tised and associated to documents using their tf-idf
scores (Spärck-Jones, 1972) computed from the
input Wikipedia corpus of our evaluation. Simi-
larly, queries are parsed using Lucene’s standard
query parser and then searched and ranked by the
computed ‘default’ similarities.3

Our hypothesis is that, if our system can match
the performance of a well-known IR system, we
can also conclude that the person vectors were a
good summary of the information held by a par-
ticular agent.

5.3 Data challenges

Finding data to set up the evaluation of our sys-
tem is an extremely challenging task. It involves
finding a) personalised linguistic data which can
be split into coherent ‘linguistic experiences’; b)
realistic natural language queries; c) a gold stan-
dard matching queries and relevant experiences.
There is very little openly available data on peo-
ple’s personal linguistic experience. What is avail-
able comes mostly from the Web science and user
personalisation communities and such data is ei-
ther not annotated for IR evaluation purposes (e.g.
(von der Weth and Hauswirth, 2013)), or propri-
etary and not easily accessible or re-distributable
(e.g. (Collins-Thompson et al., 2011)). Con-
versely, standard IR datasets do not give any in-

2Ver. 5.4.1, obtained from http://apache.
lauf-forum.at/lucene/java/5.4.1.

3For an explanation of query matching and simi-
larity computation see http://lucene.apache.
org/core/5_4_1/core/org/apache/lucene/
search/similarities/Similarity.html.

formation about users’ personal experiences. We
attempt to solve this conundrum by using infor-
mation freely available on Wikipedia. We com-
bine a Wikipedia-based Question Answering (QA)
dataset with contributor logs from the online ency-
clopedia.

We use the freely available ‘WikiQA’ dataset of
(Yang et al., 2015).4 This dataset contains 3047
questions sampled from the Bing search engine’s
data. Each question is associated with a Wikipedia
page which received user clicks at query time. The
dataset is further annotated with the particular sen-
tence in the Wikipedia article which answers the
query – if it exists. Many pages that were cho-
sen by the Bing users do not actually hold the an-
swer to their questions, reducing the data to 1242
queries and the 1194 corresponding pages which
can be considered relevant for those queries (41%
of all questions). We use this subset for our ex-
periments, regarding each document in the dataset
as a ‘linguistic experience’, which can be stored in
the memory of the agent exposed to it.

To model individuals, we download a log of
Wikipedia contributions (March 2015). This log is
described as a ‘log events to all pages and users’.
We found that it does not, in fact, contain all pos-
sible edits (presumably because of storage issues).
Of the 1194 pages in our WikiQA subset, only
625 are logged. We record the usernames of all
contributors to those 625 documents, weeding out
contributors whose usernames contain the string
bot and have more than 10,000 edits (under the as-
sumption that those are, indeed, bots). Finally, for
each user, we download and clean all articles they
have contributed to.

In summary, we have a dataset which consists of
a) 662 WikiQA queries linked to 625 documents
relevant for those queries; b) a community of 4379
individuals/agents, with just over 1M documents
spread across the memories of all agents.

6 Implementation

Our community is modelled as a distributed net-
work of 4379 agents {a1, . . . , a4379}. Each agent
ak has two components: a) a personal profile com-
ponent, which fills the agent’s memory with in-
formation from the person’s linguistic experience
(i.e., documents she/he reads or edits) and cal-
culates the corresponding person vector; b) an
‘attention’ component which gets activated when

4http://aka.ms/WikiQA
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a communication need is felt. All agents share
a common semantic space S which gives back-
ground vectorial representations for words in the
system’s vocabulary. In our current implemen-
tation, S is given by the CBOW semantic space
of (Baroni et al., 2014b), a 400-dimension vec-
tor space of 300,000 items built using the neu-
ral network language model of (Mikolov et al.,
2013). This space shows high correlation with hu-
man similarity judgements (i.e., ρ = 0.80) over
the 3000 pairs of the MEN dataset (Bruni et al.,
2012). Note that using a standard space means the
we assume shared meaning presentations across
the community (i.e., at this stage, we don’t model
inter-speaker differences at the lexical item level).

Person vectors: A person vector is the nor-
malised sum of that person’s linguistic experi-
ences:

~p =
∑

1..k..n

~ek. (1)

As mentioned previously, in our current setup,
linguistic experiences correspond to documents.

Document/experience vectors: we posit that
the (rough) meaning of a document can be ex-
pressed as an additive function acting over (some
of) the words of that document. Specifically, we
sum the 10 words that are most characteristic for
the document. While this may seem to miss out on
much of the document’s content, it is important to
remember that the background DS representations
used in the summation are already rich in content:
the vector for Italy, for instance, will typically sit
next to Rome, country and pasta in the semantic
space. The summation roughly captures the doc-
ument’s content in a way equivalent to a human
describing a text as being about so and so.

We need to individually build document vectors
for potentially sparse individual profiles, without
necessitating access to the overall document col-
lection of the system (because ak is not necessar-
ily aware of am’s experiences). Thus, standard
measures such as tf-idf are not suitable to calcu-
late the importance of a word for a document. We
alleviate this issue by using a static list of word en-
tropies (calculated over the ukWaC 2 billion words
corpus, (Baroni et al., 2009)) and the following
weighting measure:

wt =
freq(t)

log(H(t) + 1)
, (2)

where freq(t) is the frequency of term t in the doc-
ument and H(t) is its entropy, as calculated over
a larger corpus. The representation of the docu-
ment is then the weighted sum of the 10 terms5

with highest importance for that text:

~e =
∑

t∈t1...t10

wt ∗ ~t. (3)

Note that both vectors ~t and ~e are normalised to
unit length.

For efficiency reasons, we compute weights
only over the first 20 lines of documents, also fol-
lowing the observation that the beginning of a doc-
ument is often more informative as to its topic than
the rest (Manning et al., 2008).

Attention: The ‘attention’ module directs the
agent to the person most relevant for its current in-
formation need. In this paper, it is operationalised
as cosine similarity between vectors. The module
takes a query q and translates it into a vector ~q by
summing the words in the query, as in Eq. 3. It
then goes through a 2-stage process: 1) find po-
tentially helpful people by calculating the cosine
distance between ~q and all person vectors ~p1... ~pn;
2) query themmost relevant people, who will cal-
culate the distance between ~q and all documents in
their memory, Dk = {d1...dt}. Receive the docu-
ments corresponding to the highest scores, ranked
in descending order.

7 Describing the community

7.1 Qualitative checks
As a sanity check, it is possible to inspect where
each experience/document vector sits in the se-
mantic space, by looking at its ‘nearest neigh-
bours’ (i.e., them words closest to it in the space).
We show below two documents with their nearest
neighbours, as output by our system:
Artificial_intelligence:
ai artificial intelligence intelligent
computational research researchers
computing cognitive computer

Anatoly_Karpov:
chess ussr moscow tournament ukraine
russia soviet russian champion opponent

We also consider whether each user inhabits a
seemingly coherent area of the semantic space.
The following shows a user profile, as output by
our system, which corresponds to a person with
an interest in American history:

5We experimented with a range of values, not reported
here for space reasons.
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# agents # docs
2939 1-100
944 100-500
226 500-1000
145 1000-2000
82 2000-5000
15 10000-200000

Table 1: Distribution of documents across peo-
ple. For example, 2939 agents contain 1–100 doc-
uments.

name = [...]
topics = confederate indians american
americans mexican mexico states army
soldiers navy
coherence = 0.452686176513
p_vector:0.004526 0.021659 [...] 0.029680

The profile includes a username and the 10 near-
est neighbours to the user’s pk vector (which give a
human-readable representation of the broad exper-
tise of the user), the corresponding coherence fig-
ure (see next section for information about coher-
ence) and the actual person vector for that agent.

7.2 Quantitative description
Distribution of documents across agents: An
investigation of the resulting community indicates
that the distribution of documents across people is
highly skewed: 12% of all agents only contain one
document, 31% contain less than 10 documents.
Table 1 shows the overall distribution.

Topic coherence: We compute the ‘topic coher-
ence’ of each person vector, that is, the extent to
which it focuses on related topics. We expect that
it will be easier to identify a document answer-
ing a query on e.g. baking if it is held by an
agent which contains a large proportion of other
cooking-related information. Following the intu-
ition of (Newman et al., 2010), we define the co-
herence of a set of documents d1, · · · , dn as the
mean of their pairwise similarities:

Coherence(d1...n) = mean{Sim(di, dj),
ij ∈ 1 . . . n, i < j}

(4)
where Sim is the cosine similarity between two
documents.

The mean coherence over the 4379 person vec-
tors is 0.40 with a variance of 0.06. The high vari-
ance is due to the number of agents containing one
document only (which have coherence 1.0). When
only considering the agents with at least two doc-
uments, the mean coherence is 0.32, with variance

# relevant docs # agents containing doc
176 1
169 2-4
100 5-9
64 10-19
45 20-49
49 50-99
19 100-199
3 200-399

Table 2: Redundancy of relevant documents
across people. For example, 176 documents are
found in one agent; 169 documents are found in
2–4 agents, etc.

0.01. So despite a high disparity in memory sizes,
the coherence is roughly stable. For reference, a
cosine similarity of 0.32 in our semantic space cor-
responds to a fair level of relatedness: for instance,
some words related to school at the 0.30 level are
studied, lessons, attend, district, church.

Information redundancy: we investigate the
redundancy of the created network with respect to
our documents of interest: given a document D
which answers one or more query in the dataset,
we ask how many memory stores contain D. This
information is given in Table 2. We observe that
176 documents are contained in only one agent out
of 4379. Overall, around 70% of the documents
that answer a query in the dataset are to be found in
less than 10 agents. So as far as our pages of inter-
est are concerned, the knowledge base of our com-
munity is minimally redundant, making the task
all the more challenging.

8 Evaluation

The WikiQA dataset gives us information about
the document dgold that was clicked on by users
after issuing a particular query q. This indicates
that dgold was relevant for q, but does not give us
information about which other documents might
have also be deemed relevant by the user. In this
respect, the dataset differs from fully annotated IR
collections like the TREC data (Harman, 1993).
In what follows, we report Mean Reciprocal Rank
(MRR), which takes into account that only one
document per query is considered relevant in our
dataset:

MRR =
∑
q∈Q

P (q), (5)

where Q is the set of all queries, and P (q) is the
precision of the system for query q. P (q) itself is
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Figure 2: MRR for Lucene and our system (best 5
person vectors).

given by:

P (q) =

{
1
rq

if rq < cutoff

0 otherwise
,

where rq is the rank at which the correct docu-
ment is returned for query q, and the cutoff is a
predefined number of considered results (e.g., top
20 documents).

The MRR scores for Lucene and our system are
shown in Fig. 2. The x-axis shows different cut-
off points (e.g., cut-off point 10 means that we are
only considering the top 10 documents returned
by the system). The graph gives results for the
case where the agent contacts the p = 5 people
potentially most relevant for the query. We also
tried m = {10, 20, 50} and found that end results
are fairly stable, despite the fact that the chance
of retrieving at least one ‘useful’ agent increases.
This is due to the fact that, as people are added
to the first phase of querying, confusion increases
(more documents are inspected) and the system is
more likely to return the correct page at a slightly
lower rank (e.g., as witnessed by the performance
of Lucene’s centralised indexing mechanism).

Our hypothesis was that matching the perfor-
mance of an IR algorithm would validate our
model as a useful representation of a community.
We find, in fact, that our method considerably
outperforms Lucene, reaching MRR = 0.31 for
m = 5 against MRR = 0.22. This is a very inter-
esting result, as it suggests that retaining the natu-
ral relationship between information and knowl-
edge holders increases the ability of the system
to retrieve it, and this, despite the intrinsic diffi-
culty of searching in a distributed setting. This is
especially promising, as the implementation pre-
sented here is given in its purest form, without
heavy pre-processing or parameter setting. Aside
from a short list of common stopwords, the agent

only uses simple linear algebra operations over
raw, non-lemmatised data.

MRR figures are not necessarily very intuitive,
so we inspect how many times an agent is found
who can answer the query (i.e. its memory store
contains the document that was marked as holding
the answer to the query in WikiQA). We find that
the system finds a helpful hand 39% of the time for
m = 5 and 52% atm = 50. These relatively mod-
est figures demonstrate the difficulty of our task
and dataset. We must however also acknowledge
that finding appropriate helpers amongst a com-
munity of 4000 individuals is highly non-trivial.

Overall, the system is very precise once a good
agent has been identified (i.e., it is likely to re-
turn the correct document in the first few results).
This is shown by the fact that the MRR only in-
creases slightly between cut-off point 1 and 20,
from 0.29 to 0.31 (compare with Lucene, which
achieves MRR = 0.02 at rank 1). This behaviour
can be explained by the fact that the agent over-
whelmingly prefers ‘small’ memory sizes: 78% of
the agents selected in the first phase of the query-
ing process contain less than 100 documents. This
is an important aspect which should guide further
modelling. We hypothesise that people with larger
memory stores are perhaps less attractive to the
querying agent because their profiles are less top-
ically defined (i.e., as the number of documents
browsed by a user increases, it is more likely that
they cover a wider range of topics). As pointed out
in §4, we suggest that our person representations
may need more structure, perhaps in the form of
several coherent ‘topic vectors’. It makes intuitive
sense to assume that a) the interests of a person
are not necessarily close to each other (e.g. some-
one may be a linguist and a hobby gardener); b)
when a person with an information need selects
‘who can help’ amongst their acquaintances, they
only consider the relevant aspects of an individ-
ual (e.g., the hobby gardener is a good match for
a query on gardening, irrespectively of their other
persona as a linguist).

Finally, we note that all figures reported here are
below their true value (including those pertaining
to Lucene). This is because we attempt to retrieve
the page labelled as containing the answer to the
query in the WikiQA dataset. Pages which are rel-
evant but not contained in WikiQA are incorrectly
given a score of 0. For instance, the query what
classes are considered humanities returns Outline
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of the humanities as the first answer, but the cho-
sen document in WikiQA is Humanities.

9 Conclusion

We have investigated the notion of ‘person vec-
tor’, built from a set of linguistic experiences as-
sociated with a real individual. These ‘person vec-
tors’ live in the same semantic space as concepts
and, as any semantic vector, give information
about the kind of entity they describe, i.e. what
kind of person someone is. We modelled a com-
munity of speakers from 1M ‘experiences’ (doc-
uments read or edited by Wikipedians), shared
across over 4000 individuals. We tested the repre-
sentations obtained for each individual by engag-
ing them into an information-seeking task neces-
sitating some understanding of the community for
successful communication. We showed that our
system outperforms a standard IR algorithm, as
implemented by the Lucene engine. We hope to
improve our modelling by constructing structured
sets of person vectors that explicitly distinguish
the various areas of expertise of an individual.

One limit of our approach is that we assumed
person vectors to be unique across the community,
i.e. that there is some kind of ground truth about
the representation of a person. This is of course
unrealistic, and the picture that Bob has of Alice
should be different from the picture that Kim has
of her, and again different from the picture that
Alice has of herself. Modelling these fine distinc-
tions, and finding an evaluation strategy for such
modelling, is reserved for future work.

A more in-depth analysis of our model would
also need to consider more sophisticated compo-
sition methods. We chose addition in this pa-
per for its ease of implementation and efficiency,
but other techniques are known to perform better
for representing sentences and documents (Le and
Mikolov, 2014)).

We believe that person vectors, aside from be-
ing interesting theoretical objects, are also useful
constructs for a range of application, especially in
the social media area. As a demonstration of this,
we have made our system available at https:
//github.com/PeARSearch in the form of a
distributed information retrieval engine. The code
for the specific experiments presented in this paper
is at https://github.com/PeARSearch/
PeARS-evaluation.
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Abstract

We introduce positive-only projection
(PoP), a new algorithm for constructing
semantic spaces and word embeddings.
The PoP method employs random projec-
tions. Hence, it is highly scalable and com-
putationally efficient. In contrast to pre-
vious methods that use random projec-
tion matrices R with the expected value
of 0 (i.e., E(R) = 0), the proposed
method uses R with E(R) > 0. We use
Kendall’s τb correlation to compute vector
similarities in the resulting non-Gaussian
spaces. Most importantly, since E(R) >
0, weighting methods such as positive
pointwise mutual information (PPMI) can
be applied to PoP-constructed spaces after
their construction for efficiently transfer-
ring PoP embeddings onto spaces that are
discriminative for semantic similarity as-
sessments. Our PoP-constructed models,
combined with PPMI, achieve an average
score of 0.75 in the MEN relatedness test,
which is comparable to results obtained by
state-of-the-art algorithms.

1 Introduction

The development of data-driven methods of nat-
ural language processing starts with an educated
guess, a distributional hypothesis: We assume
that some properties of linguistic entities can be
modelled by ‘some statistical’ observations in lan-
guage data. In the second step, this statistical in-
formation (which is determined by the hypothe-
sis) is collected and represented in a mathemati-
cal framework. In the third step, tools provided
by the chosen mathematical framework are used
to implement a similarity-based logic to iden-
tify linguistic structures, and/or to verify the pro-

posed hypothesis. Harris’s distributional hypothe-
sis (Harris, 1954) is a well-known example of step
one that states that meanings of words correlate
with the environment in which the words appear.
Vector space models and η-normed-based similar-
ity measures are notable examples of steps two
and three, respectively (i.e., word space models or
word embeddings).

However, as pointed out for instance by Ba-
roni et al. (2014), the count-based models resulting
from the steps two and three are not discrimina-
tive enough to achieve satisfactory results; instead,
predictive models are required. To this end, an ad-
ditional transformation step is often added. Tur-
ney and Pantel (2010) describe this extra step as
a combination of weighting and dimensionality re-
duction.1 This transformation from count-based to
predictive models can be implemented simply via
a collection of rules of thumb (such as frequency
threshold to filter out highly frequent and/or rare
context elements), and/or it can involve more so-
phisticated mathematical transformations, such as
converting raw counts to probabilities and using
matrix factorization techniques. Likewise, by ex-
ploiting the large amounts of computational power
available nowadays, this transformation can be
achieved via neural word embedding techniques
(Mikolov et al., 2013; Levy and Goldberg, 2014).

To a large extent, the need for such transfor-
mations arises from the heavy-tailed distributions
that we often find in statistical natural language
models (such as the Zipfian distribution of words
in contexts when building word spaces). Conse-
quently, count-based models are sparse and high-
dimensional and therefore both computationally
expensive to manipulate (due of the high dimen-
sionality of models) and nondiscriminatory (due to
the combination of the high-dimensionality of the

1Similar to topics of feature weighting, selection, and en-
gineering in statistical machine learning.
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models and the sparseness of observations—see
Minsky and Papert (1969, chap. 12)).2

On the one hand, although neural networks
are often the top performers for addressing this
problem, their usage is costly: they need to be
trained, which is often very time-consuming,3 and
their performance can vary from one task to an-
other depending on their objective function.4 On
the other hand, although methods based on ran-
dom projections efficiently address the problem
of reducing the dimensionality of vectors—such
as random indexing (RI) (Kanerva et al., 2000),
reflective random indexing (RRI), (Cohen et al.,
2010), ISA (Baroni et al., 2007) and random Man-
hattan indexing (RMI) (Zadeh and Handschuh,
2014)—in effect they retain distances between en-
tities in the original space.5 Moreover, since these
methods use asymptotic Gaussian or Cauchy ran-
dom projection matrices R with E(R) = 0, their
resulting vectors cannot be adjusted and trans-
formed using weighting techniques such as PPMI.
Consequently, these methods often do not out-
perform neural embeddings and combinations of
PPMI weighting of count-based models followed
by matrix factorization—such as the truncation of
weighted vectors using singular value decomposi-
tion (SVD).

To overcome these problems, we propose a
new method called positive-only projection (PoP).
PoP is an incremental semantic space construc-
tion method which employs random projections.
Hence, building models using PoP does not re-
quire training but simply generating random vec-
tors. However, in contrast to RI (and previous
methods), the PoP-constructed spaces can undergo
weighting transformations such as PPMI, after
their construction and at a reduced dimensional-
ity. This is due to the fact that PoP uses random
vectors that contain only positive integer values.
Because the PoP method employs random pro-
jections, models can be built incrementally and
efficiently. Since the vectors in PoP-constructed
models are small (i.e., with a dimensionality of a
few hundred), applying weighting methods such

2That is, the well known curse of dimensionality problem.
3Baroni et al. (2014) state that it took Ronan Collobert

two months to train a set of embeddings from a Wikipedia
dump. Even using GPU-accelerated computing, the required
computation and training time for inducing neural word em-
beddings is high.

4Ibid, see results reported in supplemental materials.
5For η-normed space that they are designed for, i.e., η = 2

for RI, RRI, and ISA and η = 1 for RMI.

as PPMI to these models is incredibly faster than
applying them to classical count-based models.
Combined with a suitable weighting method such
as PPMI, the PoP algorithm yields competitive
results concerning accuracy in semantic similar-
ity assessments, compared for instance to neural
net-based approaches and combinations of count-
based models with weighting and matrix factoriza-
tion. These results, however, are achieved without
the need for heavy computations. Thus, instead of
hours, models can be built in a matter of a few sec-
onds or minutes. Note that even without weighting
transformation, PoP-constructed models display a
better performance than RI on tasks of semantic
similarity assessments.

We describe the PoP method in § 2. In order to
evaluate our models, in § 3, we report the perfor-
mance of PoP in the MEN relatedness test. Finally,
§ 4 concludes with a discussion.

2 Method

2.1 Construction of PoP Models
A transformation of a count-based model to a pre-
dictive one can be expressed using a matrix nota-
tion such as:

Cp×n ×Tn×m = Pp×m. (1)

In Equation 1, C denotes the count-based model
consisting of p vectors and n context elements
(i.e., n dimensions). T is the transformation ma-
trix that maps the p n-dimensional vectors in C to
an m-dimensional space (often, but not necessar-
ily,m 6= n andm� n). Finally, P is the resulting
m-dimensional predictive model. Note that T can
be a composition of several transformations, e.g.,
a weighting transformation W followed by a pro-
jection onto a space of lower dimensionality R,
i.e., Tn×m = Wn×n ×Rn×m.

In the proposed PoP technique, the transforma-
tion Tn×m (for m � n, e.g., 100 ≤ m ≤ 7000)
is simply a randomly generated matrix. The el-
ements tij of Tn×m have the following distribu-
tion:

tij =

{
0 with probability 1− s
b 1

Uα c with probability s
, (2)

in which U is an independent uniform random
variable in (0, 1], and s is an extremely small num-
ber (e.g., s = 0.01) such that each row vector
of T has at least one element that is not 0 (i.e.,
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∑m
i=1 tji 6= 0 for each row vector tj ∈ T). For

α, we choose α = 0.5. Given Equations 1 and 2
and using the distributive property of multiplica-
tion over addition in matrices,6 the desired seman-
tic space (i.e., P in Equation 1) can be constructed
using the two-step procedure of incremental word
space construction (such as used in RI, RRI, and
RMI):

Step 1. Each context element is mapped to one
m-dimensional index vector ~r. ~r is randomly gen-
erated such that most elements in ~r are 0 and only
a few are positive integers (i.e., the elements of ~r
have the distribution given in Equation 2).

Step 2. Each target entity that is being analysed
in the model is represented by a context vector ~v
in which all the elements are initially set to 0. For
each encountered occurrence of this target entity
together with a context element (e.g., through a se-
quential scan of a corpus), we update ~v by adding
the index vector ~r of the context element to it.

This process results in a model built directly at
the reduced dimensionality m (i.e., P in Equa-
tion 1). The first step corresponds to the construc-
tion of the randomly generated transformation ma-
trix T: Each index vector is a row of the transfor-
mation matrix T. The second step is an implemen-
tation of the matrix multiplication in Equation 1
which is distributed over addition: Each context
vector is a row of P, which is computed in an iter-
ative process.

2.2 Measuring Similarity
Once P is constructed, if desirable, similarities be-
tween entities can be computed by their Kendall’s
τb (−1 ≤ τb ≤ 1) correlation (Kendall, 1938). To
compute τb, we adopt an implementation of the al-
gorithm proposed by Knight (1966), which has a
computational complexity of O(n log n).7

In order to compute τb, we need to define a num-
ber of values. Given vectors ~x and ~y of the same
dimension, we call a pair of observations (xj , yj)
and (xj+1, yj+1) in ~x and ~y concordant if (xj <
xj+1 ∧ yj < yj+1) ∨ (xj > xj+1 ∧ yj > yj+1).
The pair is called discordant if (xj < xj+1∧ yj >
yj+1) ∨ (xj > xj+1 ∧ yj < yj+1). Finally, the
pair is called tied if xj = xj+1 ∨ yj = yj+1. Note
that a tied pair is neither concordant nor discor-
dant. We define n1 and n2 as the number of pairs

6That is (A + B)×C = A×C + B×C.
7In our evaluation, we use the implementation of Knight’s

algorithm in the Apache Commons Mathematics Library.

with tied values in ~x and ~y, respectively. We use
nc and nd to denote the number of concordant and
discordant pairs, respectively. If m is the dimen-
sion of the two vectors, then n0 is defined as the
total number of observation pairs: n0 = m(m−1)

2 .
Given these definitions, Kendall’s τb is given by

τb =
nc − nd√

(n0 − n1)(n0 − n2)
.

The choice of τb can be motivated by generalis-
ing the role that cosine plays for computing sim-
ilarities between vectors that are derived from a
standard Gaussian random projection. In random
projections with R of (asymptotic) N (0, 1) dis-
tribution, despite the common interpretation of the
cosine similarity as the angle between two vectors,
cosine can be seen as a measure of the product-
moment correlation coefficient between the two
vectors. Since R and thus the obtained projected
spaces have zero expectation, Pearson’s correla-
tion and the cosine measure have the same defi-
nition in these spaces (see also Jones and Furnas
(1987) for a similar claim and on the relationships
between correlation and the inner product and co-
sine). Subsequently, one can propose that in Gaus-
sian random projections, Pearson’s correlation is
used to compute similarities between vectors.

However, the use of projections proposed in this
paper (i.e., T with a distribution set in Equation 2)
will result in vectors that have a non-Gaussian
distribution. In this case, τb becomes a reason-
able candidate for measuring similarities (i.e., cor-
relations between vectors) since it is a nonpara-
metric correlation coefficient measure that does
not assume a Gaussian distribution (see Chen and
Popovich (2002)) of projected spaces. However,
we do not exclude the use of other similarity mea-
sures and may employ them in future work. In
particular, we envisage additional transformations
of PoP-constructed spaces to induce vectors with
Gaussian distributions (see for instance the log-
based PPMI transformation used in the next sec-
tion). If a transformation to a Gaussian-like distri-
bution is performed, then it is expected that the use
of Pearson’s correlation, which works under the
assumption of Gaussian distribution, yields better
results than Kendall’s correlation (as confirmed by
our experiments).

2.3 Some Delineation of the PoP Method
The PoP method is a randomized algorithm. In
this class of algorithms, at the expense of a tolera-
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ble loss in accuracy of the outcome of the com-
putations (of course, with a certain acceptable
amount of probability) and by the help of ran-
dom decisions, the computational complexity of
algorithms for solving a problem is reduced (see,
e.g., Karp (1991), for an introduction to random-
ized algorithms).8 For instance, using Gaussian-
based sparse random projections in RI, the com-
putation of eigenvectors (often of the complexity
of O(n2 logm)) is replaced by a much simpler
process of random matrix construction (of an es-
timated complexity of O(n))—see Bingham and
Mannila (2001). In return, randomized algorithms
such as the PoP and RI methods give different re-
sults even for the same input.

Assume the difference between the optimum re-
sult and the result from a randomized algorithm
is given by δ (i.e., the error caused by replacing
deterministic decisions with random ones). Much
research in theoretical computer science and ap-
plied statistics focuses on specifying bounds for δ,
which is often expressed as a function of the prob-
ability ε of encountered errors. For instance, δ and
ε in Gaussian random projections are often derived
from the lemma proposed by Johnson and Linden-
strauss (1984) and its variations. Similar studies
for random projections in `1-normed spaces and
deep neural networks are Indyk (2000) and Arora
et al. (2014), respectively.

At this moment, unfortunately, we are not able
to provide a detailed mathematical account for
specifying δ and ε for the results obtained by the
PoP method (nor are we able to pinpoint a theo-
retical discussion about PoP’s underlying random
projection). Instead, we rely on the outcome of our
simulations and the performance of the method in
an NLP task. Note that this is not an unusual sit-
uation. For instance, Kanerva et al. (2000) pro-
posed RI with no mathematical justification. In
fact, it was only a few years later that Li et al.
(2006) proposed mathematical lemmas for justify-
ing very sparse Gaussian random projections such
as RI (QasemiZadeh, 2015). At any rate, projec-
tions onto manifolds is a vibrant research both in
theoretical computer science and in mathematical
statistics. Our research will benefit from this in the
near future. If δ refers to the amount of distortion
in pairwise `2 norm correlation measures in a PoP
space,9 it can be shown that δ and its variance σ2

δ

8Such as many classic search algorithms that are proposed
for solving NP-complete problems in artificial intelligence.

9As opposed to pairwise correlations in the original high-

are functions of the dimension m of the projected
space, that is: σ2

δ ≈ 1
m , based on similar mathe-

matical principles proposed by Kaski (1998) (and
of Hecht-Nielsen (1994)) for the random mapping.

Our empirical research and observations on
language data show that projections using the
PoP method exhibit similar behavioural patterns
as other sparse random projections in α-normed
spaces. The dimensionm of random index vectors
can be seen as the capacity of the method to mem-
orize and distinguish entities. Form up to a certain
number (100 ≤ m ≤ 6000) in our experiments, as
was expected, a PoP-constructed model for a large
m shows a better performance and smaller δ than
a model for a small m. Since observations in se-
mantic spaces have a very-long-tailed distribution,
choosing different values of non-zero elements for
index vectors does not effect the performance (as
mentioned, in most cases 1, 2 or 3 non-zero ele-
ments are sufficient). Furthermore, changes in the
adopted distribution of tij only slightly affect the
performance of the method.

In the next section, using empirical investiga-
tions we show the advantages of the PoP model
and support the claims from this section.

3 Evaluation & Empirical Investigations

3.1 Comparing PoP and RI

For evaluation purposes, we use the MEN re-
latedness test set (Bruni et al., 2014) and the
UKWaC corpus (Baroni et al., 2009). The dataset
consists of 3000 pairs of words (from 751 dis-
tinct tagged lemmas). Similar to other ‘related-
ness tests’, Spearman’s rank correlation ρ score
from the comparison of human-based ranking and
system-induced rankings is the figure of merit. We
use these resources for evaluation since they are
in public domain, both the dataset and corpus are
large, and they have been used for evaluating sev-
eral word space models—for example, see Levy
et al. (2015), Tsvetkov et al. (2015), Baroni et al.
(2014), Kiela and Clark (2014). In this section,
unless otherwise stated, we use cosine for similar-
ity measurements.

Figure 1 shows the performance of the simple
count-based word space model for lemmatized-
context-windows that extend symmetrically
around lemmas from MEN.10 As expected, up to

dimensional space.
10We use the tokenized preprocessed UKWaC. However,

except for using part-of-speech tags for locating lemmas
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a certain context-window size, the performance
using count-based methods increases with an
extension of the window.11 For context-windows
larger than 25+25 the performance gradually
declines. More importantly, in all cases, we have
ρ < 0.50.

We performed the same experiments using the
RI technique. For each context window size, we
performed 10 runs of the RI model construction.
Figure 1 reports for each context-window size the
average of the observed performances for the 10
RI models. In this experiment, we used index
vectors of dimensionality 1000 containing 4 non-
zero elements. As shown in Figure 1, the aver-
age performance of the RI is almost identical to
the performance of the count-based model. This
is an expected result since RI’s objective is to re-
tain Euclidean distances between vectors (thus co-
sine) but in spaces of lowered dimensionality. In
this sense, RI is successful and achieves its goal
of lowering the dimensionality while keeping Eu-
clidean distances between vectors. However, us-
ing RI+cosine does not yield any improvements in
the similarity assessment task.

We then performed similar experiments using
PoP-constructed models, with the same context
window sizes and the same dimensions as in the
RI experiments, averaging again over 10 runs for
each context window size. The performance is
also reported in Figure 1. For the PoP method,
however, instead of using the cosine measure we
use Kendall’s τb for measuring similarities. The
PoP-constructed models converge faster than RI
and count-based methods and for smaller context-
windows they outperform the count-based and RI
methods with a large margin. However, as the
sizes of the windows grow, performances of these
methods become more similar (but PoP still out-
performs the others). In any case, the performance
of PoP remains above 0.50 (i.e., ρ > 0.50). Note
that in RI-constructed models, using Kendall’s τb
also yield better performance than using cosine.

3.2 PPMI Transformation of PoP Vectors

Although PoP outperforms RI and count-based
models, compared to the state-of-the-art methods,

listed in MEN, we do not use any additional information or
processes (i.e., no frequency cut-off for context selection, no
syntactic information, etc.).

11After all, in models for relatedness tests, relationships of
topical nature play a more important role than other relation-
ships such as synonymy.
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Figure 1: Performance of the classic count-based
a-word-per-dimension model vs. RI vs. Pop in the
MEN relatedness test. Note that count-based and
RI models show almost an identical performance
in this task.

its performance is still not satisfying. Transfor-
mations based on association measures such as
PPMI have been proposed to improve the discrim-
inatory power of context vectors and thus the per-
formance of models in semantic similarity assess-
ment tasks (see Church and Hanks (1990), Turney
(2001), Turney (2008), and Levy et al. (2015)).
For a given set of vectors, pointwise mutual infor-
mation (PMI) is interpreted as a measure of infor-
mation overlap between vectors. As put by Bouma
(2009), PMI is a mathematical tool for measuring
how much the actual probability of a particular
co-occurrence (e.g., two words in a word space)
deviate from the expected probability of their in-
dividual occurrences (e.g., the probability of oc-
currences of each word in a words space) under
the assumption of independence (i.e., the occur-
rence of one word does not affect the occurrences
of other words).

In Figure 2, we show the performance of PMI-
transformed spaces. Count-based PMI+Cosine
models outperform other techniques including the
introduced PoP method. The performance of
PMI models can be further enhanced by their
normalization, often discarding negative values12

and using PPMI. Also, SVD truncation of PPMI-
weighted spaces can improve the performance
slightly (see the above mentioned references)
requiring, however, expensive computations of
eigenvectors.13 For a p × n matrix with elements
vxy, 1 ≤ x ≤ p and 1 ≤ y ≤ n, we compute the

12See Bouma (2009) for a mathematical delineation. Juraf-
sky and Martin (2015) also provide an intuitive description.

13In our experiments, applying SVD truncation to models
results in negligible improvements between 0.01 and 0.001.
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Figure 2: Performances of (P)PMI-transformed
models for various sizes of context-windows.
From context size 4+4, the performance re-
mains almost intact (0.72 for PMI and 0.75 for
PPMI). We also report the average performance
for PoP-constructed models constructed at the
dimensionality m = 1000 and s = 0.002.
PoP+PPMI+Pearson exhibits a performance sim-
ilar as dense PPMI-weighted models, however,
much faster and using far less amount of computa-
tional resources. Note that reported PoP+PMI per-
formances can be enhanced by using m > 1000.

PPMI weight for a component vxy as follows:

ppmi(vxy) = max(0, log
vxy×

∑p
i=1

∑n
j=1 vij∑p

i=1 viy×
∑n
j=1 vxj

). (3)

The most important benefit of the PoP method
is that PoP-constructed models, in contrast to pre-
viously suggested random projection-based mod-
els, can be still weighted using PPMI (or any other
weighting techniques applicable to the original
count-based models). In an RI-constructed model,
the sum of values of row and column vectors of the
model are always 0 (i.e.,

∑p
i=1 viy and

∑n
j=1 vxj

in Equation 3 are always 0). As mentioned ear-
lier, this is due to the fact that a random projec-
tion matrix in RI has an asymptotic standard Gaus-
sian distribution (i.e., transformation matrix R has
E(R) = 0). As a result, PPMI weights for the RI-
induced vector elements are undefined. In contrast
to RI, the sum of values of vector elements in the
PoP-constructed models is always greater than 0
(because the transformation is carried out by a pro-
jection matrix R of E(R) > 0). Also, depending
on the structure of data in the underlying count-
based model, by choosing a suitably large value of
s, it can be guaranteed that the sum of column vec-
tors is always a non-zero value. Hence, vectors in
PoP models can undergo the PPMI transformation
defined in Equation 3. Moreover, the PPMI trans-

formation in PoP models is much faster, compared
to the one performed on count-based models, due
to the low dimensionality of vectors in the PoP-
constructed model. Therefore, the PoP method
makes it possible to benefit both from the high ef-
ficiency of randomized techniques as well as from
the high accuracy of PPMI transformation in se-
mantic similarity tasks.

If we put aside the information-theoretic inter-
pretation of PPMI weighting (i.e., distilling sta-
tistical information that matters), the logarithmic
transformation of probabilities in the PPMI def-
inition plays the role of a power transformation
process for converting long-tailed distributions in
the original high-dimensional count-based models
to Gaussian-like distributions in the transformed
models. From a statistical perspective, any varia-
tion of PMI transformation can be seen as an at-
tempt to stabilize the variance of vector coordi-
nates and therefore to make the observations more
similar/fit to Gaussian distribution (a practice with
a long history in research, particularly in the bio-
logical and psychological sciences).

To exemplify this phenomenon, in Figure 3, we
show histograms of the distributions of the as-
signed weights to the vector that represents the
lemmatized form of the verb ‘abandon’ in vari-
ous models. As shown, the raw collected fre-
quencies in the original high-dimensional count-
based model have a long tail distribution (see Fig-
ure 3a). Applying the log transformation to this
vector yields a vector of weights with a Gaus-
sian distribution (Figure 3b). Weights in the
RI-constructed vector (Figure 3c) have a perfect
Gaussian distribution but with an expected value
of 0 (i.e., N (0, 1)). The PoP method, however,
largely preserves the long tail distribution of coor-
dinates from the original space (Figure 3d), which
in turn can be weighted using PPMI and thereby
transformed into a Gaussian-like distribution.

Given that models after the PPMI transforma-
tion have bell-shaped Gaussian distributions, we
expect that a correlation measure such as Pear-
son’s r, which takes advantage of the prior knowl-
edge about the distribution of data, outperforms
the non-parametric Kendall’s τb for computing
similarities in PPMI-transformed spaces.14 This
is indeed the case (see Figure 2).

14Note that using correlation measures such as Pearson’s r
and Kendall’s τb in count-based model may excel measures
such as cosine. However, their application is limited due to
the high-dimensionality of count-based methods.
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Figure 3: A histogram of the distribution of frequencies of weights (i.e., the value of the coordinates) in
various models built from 1+1 context-windows for the lemmatized form of the verb ‘abandon’ in the
UKWaC corpus.

3.3 PoP’s Parameters, its Random Behavior
and Performance

As discussed in § 2.3, PoP is a randomized al-
gorithm and its performance is influenced by a
number of parameters. In this section, we study
the PoP method’s behavior by reporting its perfor-
mance in the MEN relatedness test under different
parameter settings. To keep evaluations and re-
ports to a manageable size, we focus on models
built using context-windows of size 4+4.

Figure 4 shows the method’s performance when
the dimensionm of the projected index vectors in-
creases. In these experiments, index vectors are
built using 4 non-zero elements; thus, as m in-
creases, s in Equation 2 decreases. For each m,
100 ≤ m ≤ 5000, the models are built 10 times
and the average as well as the maximum and the
minimum observed performances in these exper-
iments are reported. For PPMI transformed PoP
spaces, with increasing dimensions, the perfor-
mance boosts and, furthermore, the variance in
performance (i.e., the shaded areas)15 gets smaller.

However, for the count-based PoP method with-
out PPMI transformation (shown by the dash-
dotted lines) and with the number of non-zero ele-
ments fixed to 4, increasingm over 2000 decreases
the performance. This is unexpected since an in-
crease in dimensionality is usually assumed to en-
tail an increase in performance. This behavior,
however, can be the result of using a very small
s; simply put, the number of non-zero elements
are not sufficient to build projected spaces with
adequate distribution. To investigate this matter,
we study the performance of the method with the
dimension m fixed to 3000 but with index vec-

15Evidently, the probability of worst and best perfor-
mances can be inferred from the reported average results.
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Figure 4: Changes in PoP’s performance when
the dimensionality of models increases. The av-
erage performance in each set-up is shown by the
marked lines. The margins around these lines
show the minimum and maximum performance
observed in 10 independent executions.

tors built using different numbers of non-zero ele-
ments, i.e., different values of s.

Figure 5 shows the observed performances. For
PPMI-weighted spaces, increasing the number of
non-zero elements clearly deteriorates the perfor-
mance. For unweighted PoP models, an increase
in s up to the limit that does not result in non-
orthogonal index vectors enhances performances.
As shown in Figure 6, when the dimensionality
of the index vectors is fixed and s increases, the
chances of having non-orthogonal vectors in index
vectors are boosted. Hence, the chance of distor-
tions in similarities increases. These distortions
can enhance the result if they are controlled (e.g.,
using a training procedure such as the one used
in neural net embedding). However, when left to
chance, they can often lower the performance. Ev-
idently, this is an oversimplified justification: in
fact, s plays the role of a switch that controls the
resemblance between the distribution of data in
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Figure 5: Changes in PoP’s performances when
the dimensionality of models are fixed to m =
3000 and the number of non-zero elements in in-
dex vectors (i.e., s) increases. The average perfor-
mances in each set-up are shown by marked lines.
The margins around these lines show the minimum
and maximum performance observed in 10 inde-
pendent executions.

the original space and the projected/transformed
spaces. It seems that the sparsity of vectors in
the original matrix plays a role in finding the
optimal value for s. If PoP-constructed models
are used directly (together with τb) for comput-
ing similarities, then we propose 0.002 < s. If
PoP-constructed models are subject to an addi-
tional weighting process for stabilizing vector dis-
tributions into Gaussian-like distributions such as
PPMI, we propose using only 1 or 2 non-zero ele-
ments.

Last but not least, we confirm that by care-
fully selecting context elements (i.e., removing
stop words and using lower and upper bound fre-
quency cut-offs for context selection) and fine tun-
ing PoP+PPMI+Pearson (i.e., increasing the di-
mension of models and scaling PMI weights as
in Levy et al. (2015)) we achieve an even higher
score in the MEN test (i.e., an average of 0.78 with
the max of 0.787). Moreover, although improve-
ments from applying SVD truncation are negligi-
ble, we can employ it for reducing the dimension-
ality of PoP vectors (e.g., from 6000 to 200).

4 Conclusion

We introduced a new technique called PoP for the
incremental construction of semantic spaces. PoP
can be seen as a dimensionality reduction method,
which is based on a newly devised random pro-
jection matrix that contains only positive integer
values. The major benefit of PoP is that it trans-
fers vectors onto spaces of lower dimensionality
without changing their distribution to a Gaussian
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Figure 6: The proportion of non-orthogonal pairs
of index vectors (P 6⊥) obtained in a simulation for
various dimensionality and number of non-zero el-
ements. The left figure shows the changes of P6⊥
for a fixed number of index vectors n = 104 when
the number of non-zero elements increases. The
right figure shows P6⊥ when the number of non-
zero elements is fixed to 8 but the number of index
vectors n increases. As shown, P 6⊥ is determined
by the number of non-zero elements and the di-
mensionality of index vectors and independently
of n.

shape with zero expectation. The obtained trans-
formed spaces using PoP can, therefore, be manip-
ulated similarly to the original high-dimensional
spaces, only much faster and consequently requir-
ing a considerably lower amount of computational
resources.

PPMI weighting can be easily applied to
PoP-constructed models. In our experiments, we
observe that PoP+PPMI+Pearson can be used
to build models that achieve a high perfor-
mance in semantic relatedness tests. More con-
cretely, for index vector dimensions m ≥ 3000,
PoP+PPMI+Pearson achieves an average score of
0.75 in the MEN relatedness test, which is compa-
rable to many neural embedding techniques (e.g.,
see scores reported in Chen and de Melo (2015)
and Tsvetkov et al. (2015)). However, in contrast
to these approaches, PoP+PPMI+Pearson achieves
this competitive performance without the need for
time-consuming training of neural nets. Moreover,
the processes involved are all done on vectors of
low dimensionality. Hence, the PoP method can
dramatically enhance the performance in tasks in-
volving distributional analysis of natural language.
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Abstract

Users combine attributes and types to
describe and classify entities into cate-
gories. These categories are fundamen-
tal for organising knowledge in a decen-
tralised way acting as tags and predi-
cates. When searching for entities, ca-
tegories frequently describes the search
query. Considering that users do not
know in which terms the categories are ex-
pressed, they might query the same con-
cept by a paraphrase. While some ca-
tegories are composed of simple expres-
sions (e.g. Presidents of Ireland), oth-
ers have more complex compositional pat-
terns (e.g. French Senators Of The Second
Empire). This work proposes a hybrid se-
mantic model based on syntactic analysis,
distributional semantics and named entity
recognition to recognise paraphrases of
entity categories. Our results show that the
proposed model outperformed the com-
parative baseline, in terms of recall and
mean reciprocal rank, thus being suitable
for addressing the vocabulary gap between
user queries and entity categories.

1 Introduction

A significant part of search queries on the web tar-
get entities (e.g. people, places or events) (Pound
et al., 2010). In this context, users frequently use
the characteristics of the target entity to describe
the search query. For example, to find Barack
Obama, it is reasonable that a user types the query
Current President of United States.

The combination of attributes and types of an
entity in a grammatically correct fashion defines
an entity category, which groups a set of entities
that share common characteristics. Examples of

entity categories are French Female Artistic Gym-
nasts, Presidents of Ireland and French Senators
Of The Second Empire. Considering that users do
not know in which terms the categories are ex-
pressed, they might query the same concept by a
paraphrase, i.e. using synonyms and different syn-
tactic structures.

The following text excerpt from Wikipedia
shows an example where Embraer S.A is defined
as Brazilian aerospace conglomerate:

“Embraer S.A. is a Brazilian aerospace
conglomerate that produces commer-
cial, military, executive and agricultural
aircraft and provides aeronautical ser-
vices. It is headquartered in São José
dos Campos, São Paulo State.”1

The flexibility and richness of natural language
allow describing Brazilian aerospace conglom-
erate both as Brazilian Planemaker2 or as Aircraft
manufacturers of Brazil3.

In addition to their occurrence in texts, en-
tity categories are also available in the form of
structured data. The Yago project (Suchanek et
al., 2007) shares unary properties associating hun-
dreds of thousands of descriptive categories ma-
nually created by the Wikipedia community to
DBpedia entities (Auer et al., 2007). Thus, a
mechanism to recognise paraphrases can make a
shortcut between a natural language expression
and a set of entities. Table 1 shows a list of en-
tity categories and associated paraphrases.

This paper focuses on the recognition of
paraphrases of entity categories, which is de-
signed as an information retrieval task. To

1Extracted from https://en.wikipedia.org/
wiki/Embraer

2In Brazilian Planemaker Unveils Its Biggest Military Jet
Yet published by Business Insider.

3The Wikipedia category Aircraft manufacturers of
Brazil.
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Original Paraphrased
Prehistoric Canines Ancestral Wolves
Soviet Pop Music Groups Popular Musical Bands in the USSR
American Architectural Styles Fashions of American Building Design
Defunct Companies of Finland Bankrupt Finnish Businesses

Table 1: Examples of paraphrases.

deal with this problem, we propose an ap-
proach which combines syntactic analysis, dis-
tributional semantics and named entity recogni-
tion. To support reproducibility and comparabil-
ity, we provide the test collection and the source
code related to this work at http://bit.ly/
cat-test-collection and http://bit.
ly/linse-code.

2 Understanding the Structure of an
Entity Category

An entity category names and classifies a set of en-
tities. It is composed of a central concept, called
core, and its specialisations. For example, the en-
tity category 2008 Film Festivals embraces fes-
tivals, which defines the category’s core. More
specifically, this category covers those festivals
that are related to films and occurred in 2008. In
its turn, Populated Coastal Places in South Africa
embraces places (the core) that are populated, in
the coast (coastal) and within South Africa. While
festivals and places act as cores, all other terms
work as specialisations, defining characteristics
such as temporality (specialisations of time), lo-
calization (specialisations of place) and other gen-
eral characteristics. These three types of terms are
respectively classified as temporal named entity,
spatial named entity, and general specialisation.

By analysing a large set of entity categories
generated in a decentralised setting, Freitas et al.
(2014) described them according to a group of re-
curring features: contains verbs, contains tempo-
ral references, contains named entities, contains
conjunctions, contains disjunctions and contains
operators. These features suggest a syntactic pat-
tern that can be described as a combination of
simple relations based on the lexical categories of
their constituent terms (Freitas et al., 2014). In
this manner, we apply a list of parsing rules to de-
termine the graph structure/hierarchy according to
Table 2, which defines the core-oriented segmen-
tation model.

During the parsing process, categories are ana-

POS Pattern Core-side
[VB, IN] left

[NN, VBG] left
[IN] left
[”,”] left

[POS] right
[CC] left

Table 2: Rules to construct the graph of an entity
category.

Populated Coastal Places

is specialized by Populated

South Africa

Places

in

Populated Coastal Places in South Africa

Coastal
Coastal Places

is specialized
 by

Figure 1: Graph of Populated Coastal Places in
South Africa.

lysed from left to right. Once a pattern is iden-
tified, the core-side attribute specifies the side
where the core is located. Both parts are then
recursively analysed, where the opposite part is
treated as specialisation(s). The order of the rules
determines their precedence. To simplify the rule
list, some tags are normalised, e.g. POS-tag TO
is converted to IN and NNPS is converted to NNP.
When no pattern is identified, the last term in the
resulting chunk is admitted as the core and all oth-
ers as specialisations, if any.

Figure 1 shows the graph generated by the core-
oriented segmentation method for the entity cat-
egory Populated Coastal Places in South Africa.
The graph root (places) represents the core.
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3 Semantic Approximation &
Compositionality

From a finite set of words, it is possible to express
unlimited utterances and ideas. This property is
credited to the principle of semantic composition-
ality (Baroni et al., 2014a).

Distributional semantics is based on the hypoth-
esis that words co-occurring in similar contexts
tend to have similar meaning (Harris, 1954; Tur-
ney and Pantel, 2010). Distributional semantics
supports the automatic construction of semantic
models from large-scale unstructured corpora, us-
ing vector space models to represent the meaning
of a word. The process to construct distributional
models ranges from statistical methods to models
based on machine learning (Dumais et al., 1988;
Mikolov et al., 2013; Jeffrey Pennington, 2014).

Distributional semantics allows measuring the
semantic compositionality by combining an ap-
propriate word representation and a suitable
method to semantically compose them. Its mean-
ing representation supports the construction of
more comprehensive semantic models which have
semantic approximation at its centre. We compute
the semantic similarity and relatedness between
two terms using vector operations in the vector
space.

4 Compositional-Distributional Model

This work proposes a hybrid model that combines
the core-oriented segmentation model with seman-
tic approximation based on distributional seman-
tics to provide a semantic search approach for en-
tity categories. This approach segments the en-
tity categories and stores their constituent parts ac-
cording to their type in a graph-based data model.

The graph data model has a signature Σ =
(C,Z,R, S,E), where C, Z, R and S represent
the sets of cores, general specialisations, tempo-
ral specialisations and spatial specialisations re-
spectively. E contains sets of edges, where each
set represents a graph. The elements in C and
Z are natural language terms indexed in distribu-
tional semantics spaces. The elements in R are
closed integer intervals representing the tempo-
ral expressions in years. The elements in S are
sets of equivalent terms referring to a geographic
place and its demonyms. The proposed graph data
model is inspired by the τ -Space (Freitas et al.,
2011), which represents graph knowledge in a dis-
tributional space.

Distributional semantics spaces represent terms
by distributional vectors. The distributional vec-
tors are generated from a large external corpus
to capture the semantic relation in a broader sce-
nario. It allows that even when dealing with a
small dataset, the semantic representation is not
limited to that context. The distributional space
allows searching by measuring the geometric dis-
tances or vector angles between the query term and
the indexed terms.

Temporal and spatial specialisations do not use
the same representation strategy. In the case of
spatial named entities, our tests have shown poor
performance when using general-purpose distribu-
tional semantics models to compare them. The
problem resides in the fact that places and de-
monyms have a high relatedness with common
nouns. For example, in one distributional model4,
American has a higher relatedness with war than
with Texas. To avoid this kind of misinterpreta-
tion, spatial expressions are compared using their
names, acronyms, and demonyms.

Because of the numerical and ordered nature of
temporal references, temporal specialisations are
represented as year intervals. By this represen-
tation, two expressions of time are compared by
computing the interval intersection. We consider
them as semantically related if the intersection is
not empty.

4.1 Constructing the Knowledge
Representation Model

The first step is to build the data model based on
the target set of entity categories. For each entity
category in the set, the segmentation model pre-
sented in Section 2 generates a graph representa-
tion G = (V,E). The set of vertices (V ) is the
union of the core term ~c, the set of general special-
isations (Z

′
), the set of temporal specialisations

(R
′
) and the set of spatial specialisations (S

′
), i.e.

V = {c′}∪Z ′∪R′∪S′
. Any of these three sets of

specialisations can eventually be empty. The pro-
cess of building the data space from a target set
of entity categories T is described in Algorithm 1.
In line 6, the category t is decomposed by the
core-oriented segmentation model. Each term is
indexed in their respective index according to their
type: the core (~c) in the core space (C) and the spe-
cialisations in the general specialisation space (Z),

4Distributional models used in the context of this work are
presented in Section 5.
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temporal space (R) and spatial space (S).
Spatial specialisations are identified by the

longest string matching method comparing against
a dictionary which contains the name, acronym
and demonym of places. Temporal expressions are
converted to an interval of years. Terms that are
considered neither spatial nor temporal specialisa-
tions fall into the general specialisation case.

Algorithm 1 Construction
1: input : T : target set of entity categories.
2: output : Σ : a filled graph data model.
3:

4: C ← ∅, Z ← ∅, R← ∅, S ← ∅, E ← ∅
5: for t ∈ T do
6: ~c, Z

′
, R

′
, S

′
, E

′ ← graphOf(t)
7: C ← ⋃{~c}
8: Z ← ⋃

Z
′

9: R← ⋃
R

′

10: S ← ⋃
S

′

11: E ← ⋃{flat(E′
)}

12: return Σ

To illustrate visually, Figure 2 depicts a dia-
gram where the entity categories 2000s Film Festi-
vals and Populated Coastal Places in South Africa
are represented within the model. The cores festi-
vals and places are stored in the core distributional
space (C: geometric representation). The first cat-
egory has two specialisations: the time interval
2000-2009, indexed in the temporal space (R: in-
terval representation); and film, indexed in the gen-
eral specialisation space (Z: also geometric repre-
sentation). Next, the second category has three
specialisations: the spatial named entity South
Africa, indexed in the spatial index (S: expanded
index); and the general specialisations coastal and
populated, indexed in (Z). Dashed lines connect-
ing the cores to their specialisations represent the
flattened edges of the graphs, i.e. all speciali-
sations are connected directly to their respective
core.

4.2 Searching as Semantic Interpretation

Algorithm 2 describes the interpretation process
that receives the query and the graph data model Σ
as inputs. Queries are paraphrases that follow the
same syntactic pattern of entity categories. The
process starts by generating the graph of the input
query (line 4). Considering the graph structure,
each vertice becomes a sub-query to be submit-

ted to their respective specific index (representa-
tion space).

The core defines the first sub-query. It needs
to be semantically aligned to relevant cores in Σ.
In line 5, distSearch(~c, C) searches for cores se-
mantically related to the query core ~c. In addition
to the simple searching of terms and synonyms,
the vector cosine defines how related ~c is to the
cores present in C. Given a threshold η, distri-
butional search returns K = {(~k, h)|~k ∈ C, h =
cosine(~k,~c), h > η}. The semantic relatedness
threshold η determines the minimum distance or
angle between the query core and the target cores
that makes them semantically relevant. In the con-
text of this work, η is defined dynamically accord-
ing to the result set. Let X be the descending-
order set of returned cosine scores, (η = xn|xn ∈
X,xn+1 ∈ X,xn/2 > xn+1). The distributional
search returns a set of pairs (~k, h) where~k is a core
term and h is the normalised cosine(~k,~c). Entity
categories containing relevant cores are select for
the next search step (lines 6, 7).

The next step deals with the specialisations.
Spatial and temporal named entities found in
the query are searched in their respective sub-
sets, identifying equivalent spatial representations
(lines 11-13) and comparing the time intervals
(lines 14-20). Temporal expressions out-of-range
are penalised by a negative score (line 20). The
pairing of general specialisations (lines 22-24) fol-
lows the same principle of the core search. When
there are two or more general specialisations, the
method maximiseMatching aims to avoid that
two terms from one side match to the same term
on the other side, selecting the pairs that maximise
the final score.

The final score is determined by the composi-
tion of all scores proportionally to the number of
terms in the categories according to the expres-
sions in the lines 26-29.

In the example of Figure 2, 2008 Movie Cele-
brations is the query which is segmented in cele-
bration (core), movie (general specialisation) and
2008 (temporal interval). The core term celebra-
tions feeds a sub-query in the distributional core
space. The alignment is defined by computing
a distributional semantic relatedness function be-
tween celebrations and all cores in the core space
and by filtering out all the elements which are be-
low the semantic relatedness threshold η.

Navigating over the graph structure, the query
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place demonym

South Africa South African

... ...
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Core Space
(Distributional Semantics Index)

festivals
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...

...
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Specialisation Space 
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film

populated
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S
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α
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α

QUERY: 2008 Movie Celebrations

2008

Figure 2: Depiction of the structured distributional vector space model.

terms representing specialisations are searched in
the subspaces according to their type. In the given
query example, movie is semantically aligned in
the general specialisation space applying the same
approach described in the core space. In its turn,
the intersection is calculated for the temporal spe-
cialisation 2008 in the temporal space.

5 Evaluation

The evaluation focuses on comparing the
compositional-distributional model to baseline
approaches and assessing the performance of
different distributional semantic models in com-
bination with our representation model. The
evaluation scenarios are designed to measure the
individual contribution of each component.

5.1 Setup

The evaluation has three comparative baselines:
Bag-of-words search: Target entity categories are
indexed in a state-of-the-art information retrieval
system treating each category as a separate docu-
ment. Additionally, the document is enriched by
synonyms obtained from WorNet (Miller, 1995).
Lucene5 4.10.1 is the information retrieval system
used in the experiment.
Pure core-oriented segmentation: The core-
oriented segmentation model incorporated by this
work is applied in an isolated fashion, i.e. without
the distributional component but making use of

5http://lucene.apache.org/

simple string matching, WordNet expansion and
temporal and spatial named entity indices.
Sum-algebraic-based method: Entity categories
are compared by an algebraic operation that sums
up component vectors using the resulting vectors
to calculate the cosine similarity. This method re-
sults in many scenarios, one for each distributional
model.

Five different models are analysed in this work:
Latent Semantic Analysis (Dumais et al., 1988):
LSA is a distributional semantic space that ex-
tracts statistical relations between words in narrow
context windows. It is characterised for executing
a costly operation to reduce the space dimension-
ality.
Random Indexing (RI) (Sahlgren, 2005): Ran-
dom Indexing was proposed to avoid the dimen-
sional reduction. It dynamically accumulates con-
text vectors based on the occurrence of words in
contexts to generate the semantic space.
Explicit Semantic Analysis (Gabrilovich and
Markovitch, 2007): ESA uses entire documents as
contexts. It was created under the assumption of
concept hypothesis6 which states that a portion of
information such as an article or document is as-
sociated with a particular concept, and the space
model could take advantage of this information.
Continuous Skip-gram Model (W2V) (Mikolov
et al., 2013): Skip-gram is a vector space model
created by deep learning techniques focused on lo-

6Studies contest the existence of this hypothesis (Gottron
et al., 2011).
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Algorithm 2 Semantic Interpretation Process

1: input : query and Σ = (C,Z,R, S,E)
2: output : Z : related categories and their score.
3:

4: ~c, Zq, Rq, Sq, Eq ← graphOf(query)
5: U ← distSearch(~c, C)
6: for (~k, h) ∈ K do
7: D ← selectGraphsByCore(~k,E)
8: for all D′ ∈ D do
9: ~k, Zc, Rc, Sc, Ec ← D

′

10: a← 0
11: for sc ∈ Sc do
12: if ∃s ∈ Sq | sc ≡ s then
13: a← a+ 1
14: b← 0
15: for rc ∈ Rc do
16: if ∃r ∈ Rq | rc ≡ r then
17: b← b+ 1
18: else
19: if Rq 6= ∅ then
20: b← b− 0.5
21: X ← ∅
22: for ~oc ∈ Oc do
23: J ← distSearch(~oc, Oq)
24: X.append(J)
25: Y ← maximiseMatching(X)
26: nq ←| Eq |
27: nc ←| Ec | +1
28: u← h+ a+ b+ (

∑n
x=1 yx|yx ∈ Y )

29: u← u ∗ (nq/nc)
30: U.append(D

′
, u)

31: return sort(U)

cal context windows.
Global Vectors (GloVe) (Jeffrey Pennington,
2014): GloVe aims to conciliate the statistical co-
occurrence knowledge present in the whole corpus
with the local pattern analysis (proposed by the
skip-gram model) applying a hybrid approach of
conditional probability and machine learning tech-
niques.

DINFRA (Barzegar et al., 2015), a SaaS distri-
butional infrastructure, provided the distributional
vectors. We generated all five ditributional models
using the English Wikipedia 2014 dump as a ref-
erence corpus, stemming by the Porter algorithm
(Porter, 1997) and removing stopwords. For LSA,
RI and ESA, we used the SSpace Package (Jur-
gens and Stevens, 2010), while W2V and GloVe
were generated by the code shared by the respec-

tive authors. All models used the default parame-
ters defined in each implementation.

5.2 Test Collection
The test collection is composed of a knowledge
base of more than 350,000 entity categories ob-
tained from the complete set of Wikipedia 2014
categories, but removing those containing non-
ASCII characters. Each category has between one
to three paraphrases.

The creation of the queries was guided by seed
target categories. The use of seed entity categories
was deliberately decided to ensure the presence of
one paraphrase equivalence for each query.

Queries were generated by asking a group
of English-speaking volunteers to paraphrase the
subset of 105 categories. They were instructed to
describe the same meaning using different words
and, if possible, different syntactic structures. Af-
ter that, we applied a curation process conducted
by two researchers to validate the paraphrase’s
equivalence intuitively. In the end, we admitted
a set of 233 paraphrased pairs.

To create various degrees of difficulty in the top-
ics, we balanced the test collection with categories
varying in size (two to ten terms), in the occur-
rence of places and demonyms references, in the
presence of temporal expressions and, in the oc-
currence of noun phrase components (verbs, ad-
jectives, adverbs).

Test collection files are available at http://
bit.ly/cat-test-collection.

5.3 Results and Discussion
We evaluate our approach in three scenarios. The
first considers the TOP-10 list of each execution.
The second considers the TOP-20 list and the third
the TOP-50.

For each query in the test collection, we cal-
culate the recall and mean reciprocal ranking, to-
gether with their aggregate measures (Table 3).
Figure 3 provides a visual representation of the
recall scores. In the experiment, we assumed
that only one category corresponded to the cor-
rect answer. This assumption makes precision a
redundant indicator since it can be derived from
recall (precision = recall/range|range ∈
{10, 20, 50}).

The evaluation shows that distributional seman-
tic models address part of the semantic match-
ing tasks since distributional approaches outper-
form simple stemming string search and WordNet-
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Approaches Recall MRR
Top 10 Top 20 Top 50 Top 10 Top 20 Top 50

Lucene 0.0904 0.1040 0.1357 0.0410 0.0420 0.0429
Core-Oriented Segmentation 0.0985 0.1126 0.1361 0.0613 0.0623 0.0630
Sum-algebraic-based method - - - - - -

with LSA 0.1126 0.1621 0.2117 0.0595 0.0631 0.0645
with RI 0.0630 0.0945 0.1216 0.0348 0.0371 0.0379
with ESA 0.0540 0.0900 0.1486 0.0271 0.0296 0.0312
with W2V 0.2657 0.3333 0.3963 0.1356 0.1403 0.1422
with GloVe 0.2702 0.3558 0.4324 0.1417 0.1476 0.1501

Our proposed method - - - - - -
with LSA 0.3545 0.4000 0.4590 0.1981 0.2013 0.2033
with RI 0.3073 0.3743 0.4078 0.1768 0.1813 0.1823
with ESA 0.2818 0.3182 0.4000 0.1822 0.1846 0.1872
with W2V 0.3727 0.4364 0.4909 0.2448 0.2491 0.2510
with GloVe 0.3727 0.4090 0.4500 0.2274 0.2300 0.2314

Table 3: Results for recall and mean reciprocal rank (MRR).

based query expansion. By applying either
sum-algebraic-based method and our proposed
method, most of the distributional models present
significant performance improvement in compar-
ison to non-distributional methods. It is also im-
portant to stress that Word2Vec and GloVe consis-
tently deliver better results for the test collection.
Apart the controversies about predictive-based and
count-based distributional models (Baroni et al.,
2014b; Lebret and Collobert, 2015; Levy and
Goldberg, 2014), in the context of this work, these
results suggest that predictive-based distributional
models outperform count-based methods (despite
the proximity of LSA results).

Regarding the compositional method, the re-
sults of the core-oriented strategy combined with
the named entity recognition exceeded all results
delivered by the sum-algebraic-based method
when comparing the same distributional model.
The performance increases not only in the recall,
which represents more entity categories retrieved
but also in the mean reciprocal rank, reflecting that
the target categories are better positioned in the
list. Our proposed method succeed in almost 50%
of the test collection when considered the Top-50
scenario.

Sales et al. (2015) shows a prototype demon-
stration of this work.

5.4 Analysing Unsuccessful Cases

The most significant limitation is the restriction
of comparing words one-by-one, assuming that

each word in a paraphrase is semantically equiv-
alent to only one word in the target categories and
vice-versa. For example, the pair (Swedish Met-
allurgists, Metal Workers from Sweden) is ranked
at #1173 when using W2V. It occurs because
metallurgists and workers have low relatedness
(0.0031). Comparing the relatedness of metallur-
gists to metal workers would have a higher score.

Concerning named entities, we observed three
relevant issues. Our approach uses a simple
longest string matching method to identify places.
Categories containing terms such as Turkey are
always considered a spatial named entity. In
the pair (American Turkey Breeds and Chicken
Breeds Originating in the US) the terms turkey
and chicken would not be semantically compared,
since Turkey is always considered a spatial named
entity. Secondly, when searching for Water Parks
in the USA, all parks at Texas, Tennessee or Penn-
sylvania are also relevant for the user. Our model
does not contain this hierarchical information to
provide a geographic match. Finally, expressions
such as WWI and USSR should be identified as the
paraphrasing of Wold War I and the Soviet Union
or even other variations, what is not available in
our model.

6 Related Work

Balog and Neumayer (2012) propose the hier-
archical target type identification problem which
aims to identify the most specific type grounded
in a given ontology that covers all entities sought
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Figure 3: Chart of recall values grouped by different approaches.

by a query. Yao et al. (2013) propose an entity
type prediction considering the universal schema.
In this work, a predictor is expected to label a
given entity with types. This schema is composed
of all types from diverse available ontologies. To
identify types from texts, they compose named en-
tity recognition with dependency parsing. These
works focus on identifying the ontological types
that are sought by the query.

Regarding entity similarity, Moreau et al.
(2008) propose a method to calculate entity si-
milarity based on Soft-TFIDF. Liu and Birnbaum
(2007) propose a method based on the Open Di-
rectory Project (ODP) to capture category names
in all pages where the named entity appears to gen-
erate a vector space. Liu et al. (2008) describe a
method that uses the set of URLs in which enti-
ties are present to measure similarity. The differ-
ence to these works is that they focus on compar-
ing named entities, not based on their description,
but based on non-linguistic attributes.

Other related topics are paraphrasing and text
entailment. Androutsopoulos and Malakasiotis
(2010) present an extension overview of datasets
and approaches applied in these fields. Papers in
this context deal with the paraphrasing of com-
plete sentences (formed of subject and predicate)
which cannot benefit from the core-oriented seg-
mentation model. The different format of their
target datasets inhibits a direct comparison, while
their lack of association with entities does not cre-
ate the required bridge between unstructured and
structured data.

This work distinguishes mainly from existing
approaches by proposing a novel compositional

method grounded in syntactic analysis to com-
bine distributional vectors and by using distribu-
tional semantics models generated from external
resources. The target knowledge base (the dataset
of categories) is not part of the data used to pro-
duce the distributional models. This isolation sup-
ports a more comprehensive semantic matching.

7 Conclusion

This work proposes a compositional-distributional
model to recognise paraphrases of entity cate-
gories. Distributional semantics in combination
with the proposed compositional model supports
a search strategy with robust semantic approxima-
tion capabilities, largely outperforming string and
WordNet-based approaches in recall and mean re-
ciprocal rank. The proposed compositional strat-
egy also outperforms the tradional vector-sum
method.

This work also provides additional evidence to
reinforce (i) the suitability of distributional mod-
els to cross the semantic gap (Freitas et al., 2012;
Aletras and Stevenson, 2015; Agirre et al., 2009;
Freitas et al., 2015) and (ii) suggest that prediction
methods generate better semantic vectors when
compared to count-based approaches. Consider-
ing the controversies about the comparisons be-
tween predictive-based and count-based distribu-
tional models (Baroni et al., 2014b; Lebret and
Collobert, 2015; Levy and Goldberg, 2014), this
evidence is restricted to the distributional models
involved in the experiment and cannot be gener-
alised. In the context of our work, we conjecture
that the better performance is credited to the fact
that our problem comprises much more paradig-
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matic than syntagmatic relations.
Additionally, the use of distributional semantic

models provides a better base for transporting the
solution to multi-lingual scenarios, since it does
not depend on manually constructed resources.

Future work will focus on the investigation of
specialised named entity distributional methods in
the context of the semantic search problem.
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Abstract

Givenness (Schwarzschild, 1999) is one of
the central notions in the formal pragmatic
literature discussing the organization of dis-
course. In this paper, we explore where
distributional semantics can help address
the gap between the linguistic insights into
the formal pragmatic notion of Givenness
and its implementation in computational
linguistics.

As experimental testbed, we focus on short
answer assessment, in which the goal is to
assess whether a student response correctly
answers the provided reading comprehen-
sion question or not. Current approaches
only implement a very basic, surface-based
perspective on Givenness: A word of the
answer that appears as such in the question
counts as GIVEN.

We show that an approach approximating
Givenness using distributional semantics
to check whether a word in a sentence is
similar enough to a word in the context to
count as GIVEN is more successful quanti-
tatively and supports interesting qualitative
insights into the data and the limitations
of a basic distributional semantic approach
identifying Givenness at the lexical level.

1 Introduction

Givenness is one of the central notions in the formal
pragmatic literature discussing the organization of
discourse. The distinction between given and new
material in an utterance dates back at least to Hal-
liday (1967) where given is defined as “anaphori-
cally recoverable” and the notion is used to predict
patterns of prosodic prominence. Schwarzschild
(1999) proposes to define Givenness in terms of

the entailment of the existential f-closure between
previously mentioned material and the GIVEN ex-
pression, hereby also capturing the occurrence of
synonyms and hyponyms as given.

On the theoretical linguistic side, a foundational
question is whether an approach to Information
Structure should be grounded in terms of a Given-
New or a Focus-Background dichotomy, or whether
the two are best seen as complementing each other.
Computational linguistic research on short answer
assessment points in the direction of both perspec-
tives providing performance gains (Ziai and Meur-
ers, 2014). On the empirical side, the characteristic
problem of obtaining high inter-annotator agree-
ment in focus annotation (Ritz et al., 2008; Cal-
houn et al., 2010) can be overcome through an
incremental annotation process making reference
to questions as part of an explicit task context (Ziai
and Meurers, 2014; De Kuthy et al., 2016).

In short answer assessment approaches determin-
ing whether a student response correctly answers
a provided reading comprehension question, the
practical value of excluding material that is men-
tioned in the question from evaluating the content
of the answer has been clearly established (Meurers
et al., 2011; Mohler et al., 2011). Yet these com-
putational linguistic approaches only implement a
very basic, completely surface-based perspective
on Givenness: A word of the answer that appears
as such in the question counts as GIVEN.

Such a surface-based approach to Givenness fails
to capture that the semantic notion of Givenness

i) may be transported by semantically similar
words,

ii) entailment rather than identity is at stake, and

iii) so-called bridging cases seem to involve se-
mantically related rather than semantically
similar words.
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Computational linguistic approaches to classify-
ing Givenness (Hempelmann et al., 2005; Nissim,
2006; Rahman and Ng, 2011; Cahill and Riester,
2012) have concentrated on the information sta-
tus of noun phrases, without taking into account
other syntactic elements. Furthermore, they do not
explicitly make use of similarity and relatedness
between lexical units as we propose in this paper.
Our approach thus explores a new avenue in com-
putationally determining Givenness.

Theoretical linguistic proposals spelling out
Givenness are based on formal semantic for-
malisms and notions such as logical entailment,
type shifting, and existential f-closure, which do
not readily lend themselves to extending the com-
putational linguistic approaches. As already al-
luded to by the choice of words “semantically simi-
lar” and “semantically related” above, in this paper
we want to explore whether distributional seman-
tics can help address the gap between the linguis-
tic insights into Givenness and the computational
linguistic realizations. In place of surface-based
Givenness checks, as a first step in this direction we
developed an approach integrating distributional se-
mantics to check whether a word in a sentence is
similar enough to a word in the context to count as
GIVEN.

In section 2, we provide the background on
Schwarzschild’s notion of Givenness and conceptu-
ally explore what a distributional semantic perspec-
tive may offer. Section 3 then introduces the appli-
cation domain of content assessment as our experi-
mental sandbox and the CoMiC system (Meurers
et al., 2011) we extended. The distributional model
for German used in extending the baseline system
is built in section 4. In section 5 we then turn to
the experiments we conducted using the system
extended with the distributional Givenness com-
ponent and provide quantitative results. Section 6
then presents the qualitative perspective, discussing
examples to probe into the connection between the
theoretical linguistic notion of Givenness and its
distributional semantic approximation, and where it
fails. Finally, section 7 concludes with a summary
of the approach and its contribution.

2 Linking Givenness and the
distributional semantic perspective

Before turning to the computational realization and
a quantitative and qualitative evaluation of the idea,
let us consider which classes of data are handled

by the theoretical linguistic approach to Givenness
and where an approximation of Givenness using
distributional semantics can contribute.

Let us first define Givenness according to
Schwarzschild (1999, p. 151): an utterance U
counts as GIVEN iff it has a salient antecedent A
and either i) A and U co-refer or ii) A entails the
Existential F-Closure of U . In turn, the Existential
F-Closure of U is defined as “the result of replacing
F-marked phrases in U with variables and existen-
tially closing the result, modulo existential type
shifting” (Schwarzschild, 1999, p. 150).

Schwarzschild uses Givenness to predict where
in an utterance the prosodic prominence falls. Con-
sider the question-answer pair in (1), example (12)
of Schwarzschild (1999).

(1) John drove Mary’s red convertible. What did
he drive before that?
A: He drove her BLUE convertible.

Here the prominence does not fall on convertible
as the rightmost expression answering the question,
as generally is the case in English, but instead on
the adjective blue because the convertible is GIVEN

and thus is de-accented according to Schwarzschild.
With respect to our goal of automatically identify-
ing Givenness, such cases involving identical lexi-
cal material that is repeated (here: convertible) are
trivial for a surface-based or distributional semantic
approach.

A more interesting case of Givenness involves
semantically similar words such as synonyms and
hypernyms, as exemplified by violin and string
instrument in (2), mentioned as example (7) by
Büring (2007).

(2) (I’d like to learn the violin,) because I LIKE

string instruments.

The existence of a violin entails the existence of
a string instrument, so string instrument is GIVEN

and deaccented under Schwarzschild’s approach.
Such examples are beyond a simple surface-based
approach to the identification of Givenness and mo-
tivate the perspective pursued in this paper: investi-
gating whether a distributional semantic approach
to semantic similarity can be used to capture them.

Before tackling these core cases, let us complete
the empirical overview of the landscape of cases
that the Givenness notion is expected to handle. A
relevant phenomenon in this context is bridging.
It can be exemplified using (3), which is example
(29) of Schwarzschild (1999).
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(3) a. John got the job.
b. I KNOW. They WANTed a New Yorker.

The part of the formal definitions that is intended
to capture the deaccenting of New Yorker in a con-
text where John is known to be from that city sim-
ply refers to salience (Schwarzschild, 1999: “An
utterance U counts as GIVEN iff it has a salient
antecedent A . . . ”), which Schwarzschild readily
admits is not actually modeled: “Exactly which
propositions count as in the background for these
purposes remains to be worked out”. While beyond
the scope of our experiments, approaches comput-
ing semantic similarity in more local contexts, such
as Dinu and Lapata (2010), may be able to provide
an avenue for handling such narrowly contextual-
ized notions of common ground in the evolving,
dynamic discourse.

A more straightforward case arises when such
bridging examples involve semantic relatedness
between expressions that are richly represented in
corpora. For example, the fact that Giuliani was the
mayor of New York and thus can be identified as
semantically related to New Yorker in (4) is within
reach of a distributional semantic approach.

(4) a. Giuliani got the job.
b. I KNOW. They WANTed a New Yorker.

When exactly such bridging based on semanti-
cally related material results in GIVEN material and
its deaccenting, as far as we are aware, has not been
systematically researched and would be relevant to
explore in the future.

An interesting case related to bridging that adds
a further challenge for any Givenness approach is
exemplified by (5), originating as example (4) in
Büring (2007). The challenge arises from the fact
that it does not seem to involve an apparent se-
mantic relation such as entailment – yet the accent
falling on strangle can only be explained if butcher
is GIVEN, i.e., entailed by the context.

(5) a. Did you see Dr. Cremer to get your root
canal?

b. (Don’t remind me.) I’d like to STRANgle
the butcher.

The linguistic approaches to Givenness do not
formally tackle this since the lexical semantic spec-
ification and contextual disambiguation of butcher
as a particular (undesirable type of) dentist is be-
yond their scope. The fact that butcher counts as

GIVEN is not readily captured by a general distri-
butional semantic approach either since it is de-
pendent on the specific context and the top-down
selection of the meaning of butcher as referring to
people who brutally go about their job. Distribu-
tional semantic approaches distinguishing specific
word senses (Iacobacci et al., 2015) could be appli-
cable for extending the core approach worked out
in this paper to cover such cases.

Overall, at the conceptual level, a realization of
Givenness in terms of distributional semantics can
be seen as nicely complementing the theoretical
linguistic approach in terms of the division of labor
of formal and distributional factors.

3 Content Assessment: Baseline System
and Gold Standard Data

To be able to test the idea we conceptually moti-
vated above, we chose short answer assessment as
our experimental testbed. The content assessment
of reading comprehension exercises is an authen-
tic task including a rich, language-based context.
This makes it an interesting real-life challenge for
research into the applicability of formal pragmatic
concepts such as Givenness. Provided a text and
a question, the content assessment task is to de-
termine whether a particular response actually an-
swers the question or not.

In such a setting, the question typically intro-
duces some linguistic material about which addi-
tional information is required. The material intro-
duced is usually not the information required in a
felicitous answer. For example, in a question such
as ‘Where was Mozart born?’, we are looking for
a location. Consequently, in an answer such as
‘Mozart was born in Salzburg’, we can disregard
the words ‘Mozart’, ‘was’ and ‘born’ on account
of their previous mention, leaving only the relevant
information ‘in Salzburg’.

Short answer assessment is thus a natural testbed
since the practical value of excluding material that
is mentioned in the question from evaluating the
content of the answer has been clearly established
(Meurers et al., 2011; Mohler et al., 2011) – yet
these approaches only integrated a basic surface-
based perspective on Givenness. The CoMiC sys-
tem (Meurers et al., 2011) is freely available, so
we used it as baseline approach and proceeded to
replaced its surface-based Givenness filter with our
distributional semantic approach to Givenness.
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3.1 Baseline system

CoMiC is an alignment-based Content Assessment
system which assesses student answers by analyz-
ing the quantity and quality of alignment links it
finds between the student and the target answer. For
content assessment, it extracts several numeric fea-
tures based on the number and kind of alignments
found between non-GIVEN answer parts. The only
change we made to the baseline setup is to replace
the TiMBL (Daelemans et al., 2007) implementa-
tion of k-nearest-neighbors with the WEKA pack-
age (Hall et al., 2009), setting k to 5 following the
positive results of Rudzewitz (2016).

The CoMiC system we use as baseline for our
research employs a surface-based Givenness filter,
only aligning tokens not found in the question. The
surface-based Givenness filter thus ensures that
parts of the answer already occurring in the ques-
tion are not counted (or could be fed into separate
features so that the machine learner making the
final assessment can take their discourse status into
account).

3.2 Gold-standard content assessment corpus

The data we used for training and testing our ex-
tension of the CoMiC system are taken from the
CREG corpus (Ott et al., 2012), a task-based cor-
pus consisting of answers to reading comprehen-
sion questions written by American learners of
German at the university level. It was collected
at Kansas University (KU) and The Ohio State Uni-
versity (OSU). The overall corpus includes 164
reading texts, 1,517 reading comprehension ques-
tions, 2,057 target answers provided by the teach-
ers, and 36,335 learner answers.

The CREG-5K subset used for the present ex-
periments is an extended version of CREG-1032
(Meurers et al., 2011), selected using the same
criteria after the overall, four year corpus collec-
tion effort was completed. The criteria include
balancedness (same number of correct and incor-
rect answers), a minimum answer length of four
tokens, and a language course level at the interme-
diate level or above.

4 Creating a distributional model

To model Givenness as distributional similarity, we
need an appropriate word vector model. As there
is no such model readily available for German, we
trained one ourselves.

As empirical basis, we used the DeWAC corpus

(Baroni et al., 2009) since it is a large corpus that is
freely available and it is already lemmatized, both
of which have been argued to be desirable for word
vector models. Further preprocessing consisted
of excluding numbers and other undesired words
such as foreign language material and words the
POS tagger had labelled as non-words. The whole
corpus was converted to lowercase to get rid of
unwanted distinctions between multiple possible
capitalizations.

To select an implementation for our purpose,
we compared two of the major word vector toolk-
its currently available, word2vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014). While
word2vec is a prediction-based approach that opti-
mizes the probability of a word occurring in a cer-
tain context, GloVe is a counting approach based
on co-occurrences of words.

We compared the two on the lexical substitution
task designed for GermEval 2015 (Miller et al.,
2015). The task can be seen as related to recogniz-
ing Givenness: deciding what a good substitute for
a word in context is requires similar mechanisms
to deciding whether the meaning of a word is al-
ready present in previous utterances. For GloVe,
we used the models trained by Dima (2015), which
were also trained on a large German web corpus
and were shown to perform well. However, re-
sults on the lexical substitution task put both of
word2vec’s training approaches, continuous bag-
of-words (CBOW) and skip-gram, ahead of GloVe
using the models previously mentioned, so we con-
tinued with word2vec.

Finally, to select the optimal training algorithm
for word2vec for our purpose, we again used the
GermEval task as a benchmark. We explored both
CBOW and skip-gram with negative sampling and
hierarchical softmax, yielding four combinations.
Among these, CBOW with hierarchical softmax
significantly outperformed all other combinations,
so we chose it as our training algorithm.

The German model we obtained has a vocabulary
of 1,825,306 words and uses 400 dimensions for
each, the latter being inspired by Iacobacci et al.
(2015).

5 Experiment and Quantitative Results

Now that we have a baseline content assessment
system (section 3) and a distributional model for
German (section 4) in place, we have all the com-
ponents to quantitatively and qualitatively evaluate
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the idea to model Givenness through semantic sim-
ilarity measures. To do so, we simply replaced
the surface-based Givenness filter of the base-
line CoMiC system with a distributional-semantics
based Givenness filter based on the model de-
scribed in the previous section. For this we must
make concrete, how exactly distributional-semantic
distances are used to determine the words in an an-
swer counting as GIVEN.

The parameters to be estimated relate to two dif-
ferent ways one can determine semantic relatedness
using word vectors for two words w1 and w2:

I. Calculate cosine similarity of w1 and w2 and
require it to be at least equal to a threshold t.

II. Calculate n nearest words to w1 and check
whether w2 is among them.

For the first method, one needs to estimate the
threshold t, while for the second method one needs
to determine how many neighbors to calculate (n).
We explored both methods. For the threshold pa-
rameter t, we experimented with values from 0.1 to
0.9 in increments of 0.1. For the number of nearest
neighbors n, we used a space from 2 to 20 with
increments of 2.

To cleanly separate our test data from the data
used for training and parameter estimation, we ran-
domly sampled approximately 20% of the CREG-
5K data set and set it aside as the final test set. The
remaining 80% was used as training set. All param-
eter estimation was done before running the final
system on the test set and using only the training
data.

Table 1 shows the results in terms of classifica-
tion accuracy for 10-fold cross-validation on the
training data. The table includes the performance
of the system without a Givenness filter as well
as with the basic surface-based approach. Train-
ing and testing was done separately for the two

KU OSU
# answers 1466 2670
Without Givenness 75.4% 76.7%
Surface Givenness 82.4% 83.0%
Best threshold t 0.3 0.5
Accuracy using t 82.7% 83.6%
Best n nearest-words 20 10
Accuracy using n 83.2% 83.6%

Table 1: Content Assessment results on training set

sub-corpora of CREG-5K corresponding to the uni-
versities where they were collected, KU and OSU.

First, the results confirm that an alignment-based
content assessment system such as CoMiC greatly
benefits from a Givenness filter, as demonstrated
by the big gap in performance between the no-
Givenness and surface-Givenness conditions. Sec-
ond, both the threshold method and the nearest-
words method outperform the surface baseline, if
only by a small margin.

Turning to the actual testing, we wanted to
find out whether the improvements found for the
distributional-semantic Givenness filters carry over
to the untouched test set. We trained the classifier
on the full training set and used the best parameters
from the training set. The results thus obtained are
summarized in Table 2.

KU OSU
# answers 348 654
No Givenness 74.7% 74.2%
Surface Givenness 80.7% 81.2%
Accuracy using t 81.0% 81.8%
Accuracy using n 81.9% 81.0%

Table 2: Content Assessment results on test set

We can see that results on the test set are gen-
erally lower, but the general picture for the test
set is the same as what we found for the 10-fold
CV on the training data: Surface-based-Givenness
easily outperforms the system not employing a
Givenness filter, and at least one of the systems
employing a distributional semantic Givenness
filter (marginally) outperforms the surface-based
method.

Interestingly, the two data sets seem to differ in
terms of which relatedness method works best for
recognizing Givenness: while the threshold method
works better for OSU, the n-nearest-words method
is the optimal choice for the KU data set. This may
be due to the fact that the OSU data set is generally
more diverse in terms of lexical variation and thus
presents more opportunities for false positives, i.e.,
words that are somewhat related but should not be
counted as given. Such cases are better filtered out
using a global threshold. The KU data set, on the
other hand, contains less variation and hence prof-
its from the more local n-nearest-words method,
which always returns a list of candidates for any
known word in the vocabulary, no matter whether
the candidates are globally very similar or not.
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6 Qualitative Discussion

While the quantitative results provide a useful ball-
park measure of how well a Givenness filter based
on distributional semantics performs and that it can
improve the content assessment of reading com-
prehension questions, the relatively small and het-
erogeneous nature of the data set for a complex
task such as the content assessment of reading com-
prehension means that such quantitative results by
themselves are best interpreted cautiously. For the
conceptual side of our proposal, it is more inter-
esting to see whether semantic similarity can ad-
equately capture the different types of Givenness
that we discussed in section 2.

6.1 Successfully identifying Givenness
through distributional semantics

To illustrate how exactly the Givenness filter in the
CoMiC system ensures that only the material that
is not already present in the question is aligned for
assessing the similarity of a student and a target
answer, let us start by taking a look at a simple ex-
ample from CREG where the answers repeat lexical
material from the question, as shown Figure 1.

Q: Wer
who

war
was

an
at

der
the

Tür
door

?

Identifying
Givenness

TA: Drei
three

Soldaten
soldiers

waren
were

an
at

der
the

Tür.
door

Alignment for
Assessment

SA: Drei
three

Soldaten
soldiers

waren
were

an
at

der
the

Tür.
door

Figure 1: Simple Givenness alignment

The dotted arrows show which words in the ques-
tion trigger Givenness marking of which items in
the target and the student answer. The solid arrows
illustrate the actual alignments between words in
the target and the student answer used in the con-
tent assessment.

The Givenness filter ensures that the words
waren (was), an (at), der (the), and Tür (door)
of the student (SA) and the target (TA) answers
are marked as GIVEN with respect to the question
and are thus not aligned in order to calculate the

similarity of the two answers.
A type of Givenness that a surface-based Given-

ness filter cannot handle, but that is captured by our
distributional similarity approach, occurs in exam-
ples where parts of the question are picked up by
semantically similar words in the target and student
answer. This is illustrated by Figure 2.

The verbs glaubte (believed) and meinte
(thought) are semantically close enough to the verb
verstand (understood) in the question for them to
be identified as GIVEN. They consequently can be
excluded from the content assessment of the stu-
dent answer (SA) in relation to the target answer
(TA).

The core idea to use semantic similarity as iden-
tified by distributional semantics to identify the
words which are GIVEN in a context thus nicely
captures real cases in authentic data.

6.2 Overidentifying Givenness

At the same time, there are two aspects of distribu-
tional semantics that can also lead to overidentifi-
cation of Givenness.

Entailment is not symmetric, but semantic sim-
ilarity and relatedness are The first difficulty
arises from the fact that semantic similarity and
semantic relatedness are symmetric, whereas the
entailment relation used to define Givenness is
not. As a result, our distributional semantic model
wrongly identifies a word as GIVEN that is more
specific than, i.e., a hyponym of the word in the
context as illustrated in Figure 3.

The entire NP praktische Erfahrung im Control-
ling eines Finanzservice-Unternehmens (practical
experience in controlling of a financial service com-
pany) consists of new material in both the target
answer and the student answer and should thus be
aligned for the content assessment of the student
answer. But since Finanzservice-Unternehmen (fi-
nancial service company) is semantically similar
to the noun Firma (company) occurring in the ques-
tion, it is marked as GIVEN under the current set-
ting of our distributional similarity approach and
incorrectly excluded from the content assessment.

Under the notion of Givenness as defined by
Schwarzschild, Finanzservice-Unternehmen (finan-
cial service company) would not count as GIVEN,
since the mentioning of company in the prior dis-
course does not entail the existence of a financial
service company.
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Q: Wie
how

verstand
understood

Julchen
Julchen

die
the

Silbergeschichte?
silver story

Identifying Givenness

TA: Sie
she

glaubte
believed

, irgendjemand
someone

war
had

gekommen
come

und
and

hatte
had

den
the

Puppenwagen
doll’s pram

gebracht.
brought

[...]

Alignment
for Assessment

SA: Julchen
Julchen

meinte
thought

, dass
that

irgendjemand
someone

hatte
had

den
the

Puppenwagen
doll’s pram

gebracht
brought

, [...]

Figure 2: CREG example illustrating Semantic similarity

Q: Welche
which

Qualifikationen
qualifications

sind
are

der
for the

Firma
company

wichtig
important

?

Identifying Givenness

TA: Praktische
practical

Erfahrung
experience

im
in

Controlling
controlling

eines
of a

Finanzservice-Unternehmens
financial service company

Alignment for Assessment

SA: Ein
a

Mann
man

musste
had to

praktische
practical

Erfahrung
experience

im
in

Controlling
controlling

eines
of a

Finanzservice-Unternehmens
financial service company

haben.
have

Figure 3: CREG example illustrating entailment in wrong direction

Q: Von
by

wem
whom

wird
is

der
the

Vorstand
managm. board

gewählt?
elected

Identifying Givenness

TA: Der
the

Vorstand
board

wird
is

vom
by

Aufsichtsrat
superv. board

gewählt
elected

Alignment for Assessment

SA: Der
the

Vorstand
m. board

wird
is

vom
by

Aufsichtsrat
superv. board

gewählt
elected

Figure 4: CREG example illustrating Semantic Relatedness
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Q: Ist
is

die
the

Wohnung
flat

in
in

einem
a

Neubau
new building

oder
or

einem
an

Altbau?
old building

Identifying Givenness

TA: Die
The

Wohnung
flat

ist
is

in
in

einem
a

Neubau.
new building

Alignment for Assessment

SA: Die
The

Wohnung
flat

ist
is

in
in

einem
a

Neubau.
new building

Figure 5: CREG example illustrating overidentification by Givenness filter

Semantic relatedness is not semantic similarity
Second, it is difficult for distributional semantic ap-
proaches to distinguish semantic similarity from se-
mantic relatedness (cf., e.g., Kolb, 2009). In the dis-
cussion of bridging in section 2 we saw that cases
such as (4) could arguably benefit from the use of
semantic relatedness to identify Givenness. Yet,
allowing all semantic related material to count as
GIVEN clearly overestimates what counts as GIVEN

and can therefore be deaccented. As a result, our
approach wrongly identifies some semantic related-
ness cases as Givenness. Consider the semantically
related words Vorstand (management board) and
Aufsichtsrat (supervisory board) in the example
shown in Figure 4.

The Givenness filter ensures that the lexical ma-
terial der (the), Vorstand (management board),
wird (is), gewählt (elected) that is repeated in the
answers is marked as GIVEN and thus excluded
from the content assessment. But under the current
setting of our distributional similarity approach,
the noun Aufsichtsrat (supervisory board) that is
semantically related to the noun Vorstand (advisory
board) is also marked as GIVEN and thus excluded
from the content assessment. As a consequence
all material in the answers is excluded from the
alignment and the CoMiC system fails to classify
the student answer as a correct answer. A general
solution to this kind of misidentification seems to
be beyond the scope of an analysis based on the
word level – an issue which also turns out to be a
problem in another, systematic set of cases, which
we turn to next.

Comparing lexical units not enough The
Givenness filter under both approaches, surface-
based Givenness as well as distributional similarity,

sometimes also overidentifies Givenness because
the analysis is based on lexical units rather than
entailment between sentence meanings. Recall that
the way this filter works is to exclude tokens from
alignment which are GIVEN in the question. But
what if the lexical material required by the question
is actually explicitly spelled out as an option by
the question itself? This actually happens system-
atically for alternative questions, where one has
to pick one out of an explicitly given set of alter-
natives. Consider the example in Figure 5, where
target and student answer happen to be identical
(and for visual transparency only the arcs between
question and target answer are shown, not also the
identical arcs that link the question and the student
answer).

The question asks whether the apartment is in
a new or in an old building. Both alternatives are
GIVEN in the question, however only one is correct,
namely that the apartment is in a new building. The
student correctly picked that alternative, but the
Givenness filter excludes all material from align-
ment for content assessment. Hence, classification
fails to mark this as a correct answer. As a simple
fix, one could integrate an automatic identification
of question types and switch off the Givenness filter
for alternative questions. More interesting would
be an approach that explores when material pro-
vided by the question constitutes alternatives in the
sense of focus alternatives (Krifka, 2007), from
which a selection in the answer should be counted
as informative. This essentially would replace the
Givenness filter with an approach zooming in to the
material in Focus in the answer in the context of
the question. At the same time, realizing this idea
would require development of an approach auto-
matically identifying Focus, an alternative avenue
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to pursue in future research.

7 Conclusion

The paper investigated how the formal pragmatic
notion of Givenness can be approximated using cur-
rent computational linguistic methods, and whether
this can capture a number of distinct conceptual
subcases. We tested the idea in a real-life compu-
tational linguistic task with an established external
evaluation criterion, content assessment of learner
answers to reading comprehension questions.

In place of a surface-based Givenness filter as
employed in previous content assessment work, we
developed an approach based on distributional se-
mantics to check whether a word in an answer is
similar enough to a word in the question to count
as GIVEN. The quantitative evaluation confirms the
importance of a Givenness filter for content assess-
ment and improved content assessment accuracy
for the distributional approach. We experimented
with absolute cosine similarity thresholds and with
calculating the nearest n words for a candidate
word and found that which of the two works better
potentially depends on data set characteristics such
as lexical diversity.

In the qualitative evaluation, we confirmed that
the approximation of Givenness through semantic
similarity does indeed capture a number of con-
ceptual cases that a pure surface-based Givenness
approach cannot handle, such as bridging-cases in-
volving semantically related words – though this
can also lead to over-identification. In future re-
search, integrating more context-sensitive notions
of semantic similarity, such as proposed by Dinu
and Lapata (2010), may provide a handle on a more
narrowly contextualized notion of Givenness in the
common ground of discourse participants.
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Abstract

A difficult task when generating text from
knowledge bases (KB) consists in finding
appropriate lexicalisations for KB sym-
bols. We present an approach for lexicalis-
ing knowledge base relations and apply it
to DBPedia data. Our model learns low-
dimensional embeddings of words and
RDF resources and uses these represen-
tations to score RDF properties against
candidate lexicalisations. Training our
model using (i) pairs of RDF triples and
automatically generated verbalisations of
these triples and (ii) pairs of paraphrases
extracted from various resources, yields
competitive results on DBPedia data.

1 Introduction

In recent years, work on the Semantic Web has led
to the publication of large scale datasets in the so-
called Linked Data framework such as for instance
DBPedia or Yago. However, as shown in (Rec-
tor et al., 2004), the basic standards (e.g., RDF,
OWL) established by the Semantic Web commu-
nity for representing data and ontologies are diffi-
cult for human beings to use and understand. With
the development of the semantic web and the rapid
increase of Linked Data, there is consequently a
growing need in the semantic web community for
technologies that give humans easy access to the
machine-oriented Web of data.

Because it maps data to text, Natural Language
Generation (NLG) provides a natural means for
presenting this data in an organized, coherent and
accessible way. It can be used to display the
content of linked data or of knowledge bases to
lay users; to generate explanations, descriptions
and summaries from DBPedia or from knowledge
bases; to guide the user in formulating knowledge

base queries; and to provide ways for cultural her-
itage institutions such as museums and libraries to
present information about their holdings in multi-
ple textual forms.

In this paper, we focus on an important sub-
task of generation from RDF data namely lexical-
isation of RDF properties. Given a property, our
goal is to map this property to a set of possible
lexicalisations. For instance, given the property
HASWONPRIZE, our goal is to automatically in-
fer lexicalisations such as was honored with and
received.

Our approach is based on learning low-
dimensional vector embeddings of words and of
KB triples so that representations of triples and
their corresponding lexicalisations end up being
similar in the embedding space. Using these em-
beddings, we can then assess the similarity be-
tween a property and a set of candidate lexicali-
sations by simply applying the dot product to their
vector embeddings.

One difficulty when lexicalising RDF proper-
ties is that, while in some cases, there is a direct
and simple relation between the name of a prop-
erty and its verbalisation (e.g., BIRTHDATE / “was
born on”), in other cases, the relation is either in-
direct (e.g., ROUTEEND / “finishes at”) or opaque
(e.g., CREW1UP / “is the commander of”).

To account for these two possibilities, we there-
fore explore two main ways of creating candi-
date lexicalisations based on either lexical- or
on extensional-relatedness. Given some input
property p, lexically-related candidate lexicalisa-
tions for p are phrases containing synonyms or
derivationally related words of the tokens mak-
ing up the name of the input property. In con-
trast, extensionally-related candidate lexicalisa-
tions are phrases containing named entities which
are in its extension. For instance, given the
property CREW1UP, if the pair of entities (STS-
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130, GEORGE D. ZAMK) is in its extension (i.e.,
there exists an RDF triple of the form 〈 STS-
130, CREW1UP, GEORGE D. ZAMK 〉), all sen-
tences mentioning STS-130, GEORGE D. ZAMK

or both will be retrieved and exploited to build
the set of candidate lexicalisations for CREW1UP.
Figure 1 shows some example L- and E-candidate
lexicalisations phrases.

In summary, the key contribution made in this
paper is a novel method for lexicalising RDF prop-
erties which differs from previous work in two
ways. First, while lexical and extensional relat-
edness have been used before for lexicalising RDF
properties (Walter et al., 2013), ours is the first lex-
icalisation approach which jointly considers both
sources of information. Second, while previous
approaches have used discrete representations and
similarity metrics based on Wordnet, our method
exploits continuous representations of both words
and KB symbols that are learned and optimised for
the lexicalisation task.

2 Related Work

We situate our work with respect to previous work
on ontology lexicons but also to research on rela-
tion extraction (extracting verbalisations of knowl-
edge base relations) and to embeddings-based ap-
proaches.

Ontology Lexicons (Trevisan, 2010) proposes a
simple lexicalisation approach which exploits the
tokens included in a property name to build can-
didate lexicalisations. In brief, this approach con-
sists in tokenizing and part-of-speech tagging rela-
tion names with a customized tokenizer and part-
of-speech (PoS) tagger. A set of hand-defined
mappings is then used to map PoS sequences to
lexicalisations. For instance, given the property
name HASADRESS, this approach will produce the
candidate lexicalisation “the address of S is O”
where S and O are place-holders for the lexicali-
sations of the subject and object entity in the input
RDF triple.

(Walter et al., 2013; Walter et al., 2014a; Wal-
ter et al., 2014b) describes an approach for in-
ducing a lexicon mapping DBPedia properties to
possible lexicalisations. The approach combines
a label-based and a pattern-based method. The
label-based method extracts lexicalisations from
property names using additional information (e.g.,
synonyms) from external resources. The pattern-
based method extract lexicalisations from a text

corpus by retrieving sentences containing entities
that are related by a DBPedia property and gen-
eralising over the dependency paths that connect
them using hand-written patterns and frequency
counts.

While these approaches can be effective, (Tre-
visan, 2010)’s approach fails to account for
“opaque” property names (i.e., property such as
CREW1UP whose lexicalisation is not directly de-
ducible from the tokens making up that property
name) and the pattern-based approach of (Walter
et al., 2013), because it relies on frequency counts
rather than lexical relatedness, allows for lexical-
isations that may be semantically unrelated to the
input property. In contrast, we learn continuous
representations of both KB properties and words
and exploit these to rank candidate lexicalisations
which are either lexically- or extensionally-related
to the properties to be lexicalised. In this way, we
consider both types of property names while sys-
tematically checking for semantic relatedness.

Relation Extraction Earlier Information Ex-
traction (IE) systems learned an extractor for each
target relation from labelled training examples
(Riloff, 1996; Soderland, 1999). For instance,
(Riloff, 1996) first extract relation mention pat-
terns from the corpus then rank these based on the
number of time a relation pattern occurs in a text
labelled with the target relation.

More recent work on Open IE has focused on
building large scale knowledge bases such as Re-
verb by extracting arbitrary relations from text
(Wu and Weld, 2010; Fader et al., 2011; Mohamed
et al., 2011; Nakashole et al., 2012).

While relation extraction can be viewed as the
mirror task of relation lexicalisation, there are im-
portant differences. Our lexicalisation task differs
from domain specific IE in that it is unsupervised
(we do not have access to annotated data). It also
differs from open IE in that the set of properties
to be lexicalised is predefined whereas, by defi-
nition, in open IE, the set of relations to be ex-
tracted is unrestricted. That is, while we aim to
find the possible lexicalisations of a given set of
relations (here DBPedia properties), open IE seeks
to extract an unrestricted set of relations from text.
Nevertheless, (Nakashole et al., 2012) includes a
clustering phase which permits grouping relation
clusters with a predefined set of properties such
as, in particular, DBPedia properties. In Section 6,
we therefore compare our results with the lexical-
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Property CROSSES

L-Candidate lexicalisation “Old Blenheim Bridge spans Schoharie Creek”

Property CREW1UP

RDF Triple 〈 STS-130, CREW1UP, GEORGE D. ZAMKA 〉
E-Candidate lexicalisation “Zamka served as the commander of mission STS-130”

Figure 1: Example L- and E-candidate lexicalisation phrases.

isations output by (Nakashole et al., 2012)’s ap-
proach.

Embedding-based Approaches The model we
propose is inspired by (Bordes et al., 2014). In
(Bordes et al., 2014), low dimensional embed-
ding of words and KB symbols are learned so that
representations of questions and their correspond-
ing answers end up being similar in the embed-
ding space. The embeddings are learned using au-
tomatically generated questions from KB triples
and a dataset of questions marked as paraphrases
(WikiAnswers, (Fader et al., 2011)). We adapt
this model to the lexicalisation task by generat-
ing noisy lexicalisations of KB triples using a sim-
ple generation approach and by exploiting differ-
ent paraphrase resources (c.f. Section3). Our ap-
proach further differs from (Bordes et al., 2014)
in that we combine this embedding based frame-
work with a pre-selection of candidate lexicali-
sations which reflects knowledge about the prop-
erty extension and the property name. As men-
tioned in Section 1, E-related candidate lexical-
isation phrases are sentences mentioning subject
and/or object of the property being considered for
lexicalisation while L-related candidate lexicalisa-
tion phrases are phrases containing synonyms or
derivationally related words of the token making
up the name of that property. In this way, we pro-
vide a joint modelling of the impact of lexical and
extensional similarity on lexicalisation.

3 Approach

Given a KB property p, our task is to find a set
of possible lexicalisations Lp for p. For instance,
given the property HASWONPRIZE, our goal is
to automatically infer lexicalisations such as was
honoured with and received.

3.1 Lexicalisation Algorithm

Our lexicalisation algorithm is composed of the
following steps:

Embeddings Using distant supervision, we
learn embeddings of words and KB symbols such
that the representations of KB triples, of sentences
artificially generated from these triples and of their
paraphrases are similar in the embedding space.

Candidate Lexicalisations Using WordNet and
the extension of RDF properties (i.e., the set of
pairs of entities related by that property), we build
sets of candidate lexicalisation phrases. “Subject
Relation Object” phrases are extracted from the
set of candidate sentences using Reverb (Etzioni
et al., 2011). Reverb is a tool for Open IE which
extracts relation mentions from text based on fre-
quency counts and regular expression filters.

Ranking Using the dot product on embedding
based representations of triples and candidate lex-
icalisation phrases, we rank candidate lexicalisa-
tions of properties.

Extractions We apply some normalisation rules
on the relation mention of the ranked lexicalisa-
tions to eliminate “duplicates”. These rules con-
sist in a small set of basic patterns to detect and
remove adverbs, adjectives, determiners, etc. For
instance, given the following relation mentions al-

ways led by, is also led by and is currently led by only
one version will be extracted that is led by. From
the top ranked lexicalisation phrases according to
some threshold (e.g. top 10), we extract the lexi-
calisation set Lp for property p. Lexicalisations in
Lp are relation mentions from the ranked lexicali-
sation phrases.

3.2 Learning Words and KB symbols
Embeddings

Similar to the work of (Bordes et al., 2014), we use
distant supervision and multitask training to learn
embeddings of words and KB symbols.

Training Set Generation We train on two
datasets, one aligning KB triples with automati-
cally generated verbalisations of these triples and
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the other, aligning paraphrases. The first dataset
(T ) is used to learn a similarity function between
KB symbols and words, the second (P) to account
for the many ways in which a given property may
be verbalised.

Triples and Sentences (T ) We build a training
corpus of KB triples and Natural Language sen-
tences by combining the pattern based lexicalisa-
tion approach of (Trevisan, 2010) (c.f. Section 2)
with a simple grammar based generation step. We
apply this approach to map KB property names
to syntactic constructions and then use a simple
grammar to generate sentences from KB triples.
For instance, the triple in (1a) will yield the sen-
tences in (1b-g):

(1) a. 〈 DUMBARTON BRIDGE, LOCATEDINAREA,

MENLO PARK CALIFORNIA 〉
b. “The Dumbarton Bridge should be lo-

cated in menlo park california.”
c. “It should be located in menlo park cali-

fornia.”
d. “Dumbarton Bridge located in menlo park

california.”
e. “Dumbarton Bridge which should be lo-

cated in menlo park california.”
f. “Menlo Park California in which dumbar-

ton bridge is located.”
g. “The Dumbarton Bridge should be lo-

cated in menlo park california.”

On average, each property is associated with
5.9 sentences. Given a training pair (t, s) such that
t = (sk, pk, ok), we generate negative examples
by corrupting the triple i.e., by producing pairs
of the form (t′, s) such that t′ = (sk, p

′
k, ok) and

(sk, ok) /∈ p′k.

Paraphrases (P). To learn embeddings and
a similarity function that takes into account the
various ways in which a property can be lex-
icalised, we supplement our training data with
pairs of paraphrases contained in the PPDB para-
phrase database, in the WikiAnswers dataset and
in DBPedia (DBPP). Positive examples (pi, pj)
are taken from these datasets and negative ex-
amples are produced by creating corrupted pairs
(pi, pl) such that pi is not in the paraphrase dataset
of pl and vice versa.

The PPDB database was extracted from
bilingual parallel corpora following (Bannard

and Callison-Burch, 2005)'s bilingual pivoting
method1. PPDB comes pre-packaged in 6 sizes:
S to XXXL. The smaller packages contain only
better-scoring, high-precision paraphrases, while
the larger ones aim for high coverage. Addition-
ally PPDB is broken down into lexical paraphrases
(i.e. one word to one word), phrasal paraphrases
(i.e. multi-word phrases), as well as syntactic
paraphrases which contain non-terminals. We use
PPDB version 2.0 M size lexical and phrasal sets
which contain overall 3525057 paraphrase pairs.
We choose to use medium size sets to incorporate
some variability while still favouring higher qual-
ity paraphrases. As for the type of paraphrases, we
took only the lexical and phrasal ones given that
our goal is geared to acquiring alternative lexical-
isations in terms of wording rather than syntactic
variation.

Wikianswers is a corpus of 18M question-
paraphrase pairs collected by (Fader et al., 2013),
with 2.4M distinct questions in the corpus. Be-
cause these pairs have been labelled collabora-
tively, the data is highly noisy ((Fader et al., 2013)
estimated that only 55% of the pairs were actual
paraphrases).

Finally, the BDPP dataset consists of (entity,
class) pairs extracted from the DBPedia ontology.
They provide a bridge between the entity names
appearing in the DBPedia triples and the more
generic common nouns which may be used in text.

Using the resources and tools just described,
we create a triple/sentence corpus T consisting of
317853 triple/sentence pairs obtained from 53384
KB triples of 149 relations. The paraphrase corpus
P contains 3525057 (PPDB), 220998 (WikiAn-
swers) and 54489 (DBPP) paraphrase pairs. Fig-
ure 2 shows some positive and negative training
examples drawn from the T and P datasets.

Training Using a training corpus created as de-
scribed in the previous section, we learn a similar-
ity function S between triples and candidate lexi-
calisations which is defined as:

St/s(t, s) = f(t)>.g(s) (1)

with
f(t) = K>.φ(t) (2)

and
g(s) = W>.ψ(s) (3)

1Briefly, the intuition underlying the bilingual pivoting
method is that expressions sharing the same translation into a
target language are paraphrases.
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T
(t, s) (〈 ARISTOTLE, INFLUENCED, CHRISTIAN PHILOSOPHY 〉 , “Christian philosophy who is influenced by Aristotle.”)
(t′, s) (〈 ARISTOTLE, COMPUTINGMEDIA, CHRISTIAN PHILOSOPHY 〉 , “Christian philosophy who is influenced by Aristotle.”)

P (PPDB)

(pi, pj) (“collaborate”, “cooperate”)
(pi, pl) (“collaborate”, “improving”)
(pi, pj) (“is important to emphasize that”, “is notable that”)
(pi, pl) (“is important to emphasize that”, “are using”)

P (Wikianswers)

(pi, pj) (“much coca cola be buy per year”, “much do a consumer pay for coca cola”)
(pi, pl) (“much coca cola be buy per year”, “information on neem plant”)

P (DBPP)

(pi, pj) (“Amsterdam”, “Place”)
(pi, pl) (“Amsterdam”, “Novels first published in serial form”)

Figure 2: Examples of positive examples present in the T and P training datasets with their correspond-
ing corrupted negative counterpart.

K ∈ Rnk×d and W ∈ Rnw×d are the embed-
ding matrices for KB symbols and for words re-
spectively with nk, the number of distinct sym-
bols in the knowledge base and nw, the number
of distinct word forms in the text corpus. Further-
more, φ(t) and ψ(s) are binary vectors indicating
whether a KB symbol/word is present or absent in
t/s. Thus, f(t) and g(s) are the embeddings of
t and s and St/s scores their similarity by taking
their dot product.

To learn word embeddings which capture the
similarity between a triple and a set of paraphrases
(rather than just the similarity between a triple
and artificially synthesised sentences), we multi-
task the training of our model with the task of
paraphrase detection. That is, the weights of the
W matrix for words are learnt with the training
of the triple/sentence similarity function St/s and
the training of a similarity function Sp for para-
phrases which uses the same embedding matrixW
for words and is trained on P , the paraphrase cor-
pus. The phrase similarity function Sp between
two natural language phrases pi and pj is defined
as follows:

Sp(pi, pj) = f(pi)>.f(pj) (4)

Similarly to (Bordes et al., 2014), we train our
model using a margin-based ranking loss func-
tion so that scores of positive examples should be
larger than those of negative examples by a margin
of 1. That is, for St/s, we minimize:

∀i, j, ∀[1− Ss/t(ti, si) + Ss/t(tj , si)] (5)

where (ti, si) is a positive triple/sentence exam-
ple and (tj , si) a negative one. Similarly, when
training on paraphrase data, the ranking loss func-
tion to minimise is:

∀i, j, l,∀[1− Sp(pi, pj) + Sp(pi, pl)] (6)

where (pi, pj) is a positive example from the
paraphrase corpus P and (pi, pl) a negative one.

4 Implementation

The model is implemented in Python using the
Keras(Chollet, 2015) library with Theano back-
end.

We initialise theW matrix with pre-trained vec-
tors which already provide a rich representation
for words. We use the publicly available GloVe
(Pennington et al., 2014) vectors2 of length 100.
These vectors were trained on 6 billions words
from Wikipedia and the English Gigaword. We
set the dimension d of the K and W matrices to
100. For K we use uniform initialisation.

The size of the vocabulary for theW matrix, the
nw dimension, is 130970 words. This is consider-
ing all words appearing in the T and P sets. The
size of the K matrix, the nk dimension, is 43797
counting both KB entities and relations.

The training for both similarity functions St/s

and Sp is performed with Stochastic Gradient De-
scent. The learning rate is set to 0.1 and the num-
ber of epochs to 5. Training run approximately 15
hours3.

2http://nlp.stanford.edu/projects/
glove/

3A first phase run on a machine with 1 CPU Intel Xeon
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5 Experiments

DBPedia4 is a crowd-sourced knowledge based
extracted from Wikipedia and available on the
Web in RDF format. Available as Linked Dataon
the web, the DBPedia knowledge base defines
Linked Data URIs for millions of concepts. It has
become a de facto central hub of the web of data
and is heavily used by systems that employ struc-
tured data for applications such as web-based in-
formation retrieval or search engines.

Like many other large knowledge bases (e.g.,
Freebase or Yago) available on the web, DBPe-
dia lacks lexical information stating how DBPe-
dia properties should be lexicalised. We apply our
lexicalisation model to DBPedia object properties.
We construct candidate lexicalisation sets in the
following way.

Candidate Lexicalisations As mentioned in
Section 1, we consider two main ways of building
sets of candidate lexicalisations for a given
property p.

E-LEXp : Let WKPp be the set of sentences
extracted from Wikipedia which contain at least
one mention of two entities that are related in DB-
Pedia by the property p. WKPp was built using the
pre-processing tools5 of the MATOLL framework
(Walter et al., 2013; Walter et al., 2014b). Then
E-LEXp is the corpus of candidate lexicalisations
extracted from WKPp using Reverb.

L-LEXp : Given WKP the corpus of Wikipedia
sentences, L-LEXp is the corpus of relation
mentions extracted from WKP using Reverb and
filtered to contain only mentions which include
words that are lexically related to the tokens
making up the property name. Lexically related
words include all synonyms and all derivationally
related words listed in Wordnet for a given token.

6 Evaluation and Results

We compare the output of our lexicalisation
method with the following resources and ap-
proaches.

X3440, 4 cores/CPU, 16GB RAM and a second phase on a
machine with 2 CPUs Intel Xeon L5420, 4 cores/CPU, 16GB
RAM.

4http://wiki.dbpedia.org/
5https://github.com/ag-sc/matoll

TEAM, COUNTRY, ORDER, DEATHPLACE,
OCCUPATION, KINGDOM, NATIONALITY,
BATTLE, HOMETOWN, AWARD, PREDECESSOR,
PUBLISHER, DISTRIBUTOR, OWNER, RECORDEDIN,
ALBUM, PRODUCT, PARENT, AFFILIATION,
EDUCATION, ROUTEEND, ORIGIN, NEARESTCITY,
ARCHITECT, COMPOSER, MOUNTAINRANGE,
FOUNDEDBY, INFLUENCED, GARRISON, LEADER,
PROGRAMMINGLANGUAGE

Table 1: Set of DBPedia object properties used in
the evaluation.

DBlexipediae: a lexicon6 automatically inferred
from Wikipedia using the method described in
(Walter et al., 2013; Walter et al., 2014a; Wal-
ter et al., 2014b) (c.f. section 2). Lexical entries
are inferred using either the extension of the prop-
erties (by retrieving sentences containing entities
that are related by a DBPedia property and gen-
eralising over the dependency paths that connect
them.) or synonyms of the words contained in the
property name.
PATTY: a lexicon automatically inferred from
web data using relation extraction and clustering
(c.f. (Nakashole et al., 2012)).
QUELO: a lexicon automatically derived using
the method described in (Trevisan, 2010) (c.f.
section 2). Lexical entries are derived by first,
tokenizing and pos tagging property names
and second, mapping the resulting pos-tagged
sequences to pre-defined mention patterns.

For the quantitative evaluation, we use the lex-
icon developed manually for DBPedia properties
by (McCrae et al., 2011) as a gold standard7. We
test on a held-out set of 30 properties8 chosen from
DBPedia and which were present in the gold stan-
dard lexicon, in the other systems we compare
with and in the available E-Lexp corpus. Table 1
lists the set of properties.

We compute precision (Correct/Found), recall

6For this evaluation we use the version available for
download at http://dblexipedia.org/download
and we use only the English lexical entries.

7This lexicon is available at https://github.com/
ag-sc/lemon.dbpedia

8The selection of these properties was based, on one
hand, on the frequency with a third of the selected prop-
erties appearing more than 80000 times in DBPedia, a
third appearing less than 20000 times and a third ap-
pearing between 20000 and 80000 times (min. is 5936
for PROGRAMMINGLANGUAGE and max. is 1825970 for
TEAM). On the other hand, we include properties with dif-
ferent name/label patterns imposing differences in verbali-
sation difficulty, e.g. compound nouns as ROUTEEND or
PROGRAMMINGLANGUAGE.
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(Correct/GOLD) and F1 measure of each of the
above resources. Recall is the proportion of (prop-
erty, lexicalisation) pairs present in GOLD which
are present in the resource being evaluated, pre-
cision the proportion in a resource which is also
present in GOLD and F1 is the harmonic mean of
precision and recall9.

In our setup though, precision (and therefore
F1) values are artificially decreased because the
reference lexicon is small (2.4 lexicalisations in
average per property) and often fails to include all
possible lexicalisations. The number of correct
lexicalisations can therefore be under-estimated
while the number of found lexicalisations is usu-
ally larger than the number of gold lexicalisations
and therefore much larger than the number of cor-
rect (= GOLD ∩ Found) lexicalisations.

We report results using different sets of lexi-
calisation candidates (L-LEX, E-LEX, their union
and their intersection) and different thresholds or
methods for selecting the final set of lexicalisa-
tions. These include: retrieving the n-best lexi-
calisations (k=10) versus using an adaptive thresh-
old which varies depending on the size of the set
of candidate lexicalisations and on the distribu-
tions of its ranking scores. We tried taking all
lexicalisations over the median (median), over the
mid-range ((min+max)/2) or in the third quartile
(Q3). We also tested an alternative ranking tech-
nique where the score of each lexicalisation is the
product of its similarity score (dot product of the
embedding vectors representing the property and
the lexicalisation) with the frequency of this par-
ticular lexicalisation in the set of candidate lex-
icalisations10. We rerank the lexicalisations us-
ing these new scores and consider only the lexi-
calisations in the third quartile of the distribution
(FreqQ3). Further if this results in having either
less than 7 or more than 25 lexicalisations, we ig-
nore the Q3 constraint and take the 7 and 25 best
respectively (FreqQ3Limit(7,25)).

Table 3 summarises the results.

9To determine whether a given property lexicalisation is
correct, i.e. present in the GOLD, we use “soft” compari-
son rather than strict string matching. This consists in check-
ing whether the stemmed gold lexicalisation is contained in
a given candidate lexicalisation. For instance, the candidate
“main occupation of” and gold “occupation of” are consid-
ered as a match.

10In the set of candidate lexicalisations, the same lexicali-
sation may occur with minor variations. We compute the fre-
quency of a given lexicalisation by removing adjectives and
adverbs and counting the number of repeated occurrences af-
ter removing these.

Recall In terms of recall, our results generally
outperform QUELO, PATTY and DBlexipediae.

The low recall score of QUELO shows that sim-
ply using patterns based on the property name
does not suffice to find appropriate property lex-
icalisations. This is true in particular of properties
such as ROUTEEND where the correct lexicalisa-
tion is difficult to guess from the property name.

DBlexipediae at k=10 scores lower (0.29)
than the corresponding version of our approach
union(k=10), R:0.38). Interestingly, for our ap-
proach, better recall values are consistently ob-
tained using L-LEX suggesting that many of the
verbalisations found in GOLD can be extracted
from text that is unrelated to the extension of DB-
Pedia properties. This is a nice feature as this per-
mits avoiding the data sparsity issue which arises
when a DBPedia property has either a restricted
extension or a small set WKPp of candidate lex-
icalisations. Indeed, we found that out of a set
of 149 DBPedia properties, the MATOLL corpus
did not provide any sentences for 19 of them. In
such cases, an approach based only on extension-
ally related sentences of the property would have
zero recall. This is in line with the results of (Wal-
ter et al., 2013; Walter et al., 2014a) who observe
that such an approach yields a recall of 0.35 whilst
combining it with a lexically based approach (us-
ing synonyms of the tokens occurring in the prop-
erty name) permits increasing recall to 0.5.

Finally, although PATTY has a comparatively
high recall value (0.59), its precision is very low
(0.0015) and versions of our approach with com-
parable precision (e.g., E-LEX(All)) have a much
higher recall (R: 0.80).

Precision As shown in Table 3, the retrieval ap-
proach which gives the best results in terms of
both precision and F1 is in fact to take the 10-best.
Together with the much lower precision achieved
by the random baselines (Random*k=10), this re-
sult suggests that the similarity function learned
by our model appropriately captures the similarity
between DBPedia properties and their lexicalisa-
tions.

Unsurprisingly, QUELO has the highest preci-
sion as it only guesses lexicalisation based on the
tokens making up the property name. For instance,
for noun property names like OWNER it pro-
duces the following two lexicalisations: “owner”
and “owner of”; for verb based property names
like RECORDEDIN it produces the lexicalisation
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System/goldLemonDBPPatterns Avg.NB Recall Precision F1
L-LEX(k=10) 9.9 0.3611 0.0875 0.1409
L-LEX(median) 343 0.7500 0.0052 0.0104
L-LEX((min+max)/2) 216 0.6250 0.0069 0.0137
L-LEX(Q3) 104 0.5000 0.0115 0.0225
L-LEX(FreqQ3) 104 0.5139 0.0118 0.0231
L-LEX(FreqQ3Limit(7,25)) 218 0.4583 0.0505 0.0909
L-LEX(All) 687.4 0.8194 0.0029 0.0057
E-LEX(k=10) 10 0.3333 0.0800 0.1290
E-LEX(median) 778.2 0.7222 0.0022 0.0044
E-LEX((min+max)/2) 301.8 0.6806 0.0054 0.0107
E-LEX(Q3) 251 0.6250 0.0059 0.0118
E-LEX(FreqQ3) 251 0.6250 0.0059 0.0118
E-LEX(FreqQ3Limit(7,25)) 23.3 0.5000 0.0514 0.0933
E-LEX(All) 1557 0.8056 0.0012 0.0025
union(k=10) 10 0.3889 0.0933 0.1505
union(median) 543 0.8194 0.0036 0.0072
union((min+max)/2) 47.7 0.6389 0.0320 0.0610
union(Q3) 86.7 0.5972 0.0165 0.0320
union(FreqQ3) 85.8 0.6667 0.0185 0.0361
union(FreqQ3Limit(7,25)) 10.8 0.4861 0.1080 0.1768
union(All) 2162.5 0.9444 0.0010 0.0021
intersec(k=10) 0.4 0.0556 0.3636 0.0964
intersec(median) 35.27 0.4444 0.0305 0.0571
intersec((min+max)/2) 14.8 0.3333 0.0547 0.0939
intersec(Q3) 8.6 0.2639 0.0748 0.1166
intersec(FreqQ3) 12.3 0.2917 0.0575 0.0961
intersec(FreqQ3Limit(7,25)) 2.2 0.2500 0.2813 0.2647
intersec(All) 81.9 0.5417 0.0159 0.0309
L-LEXRandom(k=10) 9.9 0.2083 0.0505 0.0813
E-LEXRandom(k=10) 10 0.0833 0.0200 0.0323
QUELO 2.13 0.2917 0.3281 0.3088
DBlexipediae(k=10) 5.4 0.2500 0.1104 0.1532
PATTY 936 0.5694 0.0015 0.0029

Figure 3: Micro-averaged Precision, Recall and F1 with respect to GOLD. The column Avg.NB indicates
the averaged number of candidate lexicalisations for each system.

PROGRAMMINGLANGUAGE written in, uses, include, based on, supports, is a part of, pro-
gramming language for (4/1)

AFFILIATION member of, associated with, affiliated with, affiliated to, affili-
ate of, accredited by, tied to, founded in, president of, associate
member of (4/1)

COUNTRY village in, part of, one of, located in, commune in, town in, born
in, refer to, county in, country in, city in (2/1)

MOUNTAINRANGE mountain in, located in, include, range from, mountain of,
mountain range in, part of, lies in, reach, peak in, find in, high-
est mountain in (8/1)

DISTRIBUTOR sell, appear in, allocate to, air on, release, make, star in, appear
on (2/2)

LEADER lead to, leader of, led by, is a leader in, visit, become, lead, lead
producer of, president of, elected leader of, left (6/3)

Figure 4: Example Lexicalisations output by our System (Union.FreqQ3Limit7-25). Gold items are in
italics. Items in bold indicates a correct lexicalisation absent from the gold. The number N/G in bracket
indicates the number N of lexicalisations produced by our system that are not in the gold standard and
the number G of items in the gold standard.
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“recorded in”. On these two properties, QUELO
perfectly coincides with the entries defined in
GOLD. This explains the high F1 obtained by
QUELO. However, as argued in the previous sec-
tion, QUELO’s approach fails to account for cases
where the relation name is indirect or opaque.
Moreover, it does not support the generation
of alternative lexicalisations. For the property
EDUCATION, the gold standard defines the the lex-
ical entries “attend”, “go to” and “study at” which
QUELO fails to produce.

DBlexipediae has a precision score (0.11) com-
parable to the corresponding version of our ap-
proach (union(k=10), P:0.09) and PATTY has a
very low precision (P:0.0015). A manual exami-
nation of the data shows that the relation extraction
approach fails to find a sufficiently large number
of distinct property lexicalisations. The lexicali-
sations found often contain many near repetitions
(e.g., “has graduated from, graduated from, gradu-
ates”) but few distinct paraphrases (e.g., “graduate
from, study at”).

To better assess, the precision of our sys-
tem we therefore manually examined the results
of our system and annotated all outputs lexi-
calisations which were correct but not in the
gold. Based on this updated gold, precision for
union.FreqQ3Limit7-25 is in fact, 0.289.

Example Output Table 4 shows some example
output of our system (for union.FreqQ3Limit7-
25)11. These examples show that our system cor-
rectly predicts additional lexicalisations that are
absent from GOLD.

They also show that our approach can
produce both L- and E-related lexicalisa-
tions. Thus for instance, for the property
PROGRAMMINGLANGUAGE, our model produces
the lexicalisation “programming language for”
which is clearly an L-lexicalisation that can
be directly derived from the property name.
However, it also derives more context-sensitive
E-lexicalisations such as “written in”, “uses” and
“based on” which are not lexically related to the
property name but can be found by considering
E-related candidate lexicalisations i.e., sentences
such as “FastTacker Digit was written in Pas-
cal” which contain entities that are arguments
of the PROGRAMMINGLANGUAGE property.

11The complete set of extractions is available at
http://www.loria.fr/˜perezlla/content/
sw_resources/union.FreqQ3Limit.txt .

Similarly, the COUNTRY property whose gold
lexicalisation is “located in” (the RDF triple
〈 Sakhalin Oblast, country, Russia 〉 can be
verbalised as “ Sakhalin Oblast is located in
Russia”), is correctly assigned the lexicalisations
“located in” and “part of”. Interestingly, our
approach also yield more specific lexicalisations
such as “is a village/commune/town/county in”
which may also be correct lexicalisations given
the appropriate subject. For instance, “is a town
in” is a correct lexicalisation of the COUNTRY

property given the triple 〈 Paris, country, France 〉.

7 Conclusion

We use an embeddings based framework for iden-
tifying plausible lexicalisations of KB properties.
While embeddings have been much used in do-
mains such as question answering, semantic pars-
ing and relation extraction, they have not been
used so far for the lexicalisation task. Conversely,
existing approaches to lexicalisation which ex-
ploits the similarity between property name and
candidate lexicalisations do so on the basis of dis-
crete representations such as WordNet Synsets. In
contrast, we learn embeddings of words and KB
symbols using distant supervision. We show that,
when applied to DBPedia object properties, our
approach yields competitive results with these dis-
crete approaches.

As future work, we plan to conduct a larger
scale evaluation. This will include the application
of the approach to datatype properties and test on
a larger set of properties.

The scoring function used by our approach is
based on a bag-of-words representation of natural
language phrases. We have observed that tuples
and candidate lexicalisation phrases like 〈 AMERI-

CAN FILM INSTITUTE, LOCATION, CALIFORNIA 〉 and “A new city
was built on a nearby location” are scored high as
they share some highly related words. We plan to
explore whether a more complex representation of
natural language phrases could remedy this short-
coming.
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