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Abstract
SemEval 2016 Task 12 addresses temporal
reasoning in the clinical domain. In this paper,
we present our participation for relation ex-
traction based on gold standard entities (sub-
tasks DR and CR). We used a supervised
approach comparing plain lexical features to
word embeddings for temporal relation identi-
fication, and obtained above-median scores.

1 Introduction

SemEval 2016 Task 12 offers 6 subtasks address-
ing temporal reasoning in the clinical domain using
the THYME corpus (Styler IV et al., 2014). This
corpus provides annotated clinical and pathological
notes from colon cancer patients. The first group
of subtasks concerns the identification of time and
event expressions within raw text. The second group
of subtasks deals with the identification of tempo-
ral relations. The latter consists of two subtasks. In
the Document Creation Time Relation subtask (DR),
participants are challenged to identify relations be-
tween the events and the document creation time.
For the Container Relation subtask (CR), partici-
pants have to identity container relations between
entities. Participants may submit either a complete
system extracting entities and relations or focus on
either the entity extraction or relation extraction (us-
ing the gold standard entities provided by the orga-
nizers). More details about the task and the defini-
tion of each subtask can be found in Bethard et al.
(2016).

In this paper, we present our submission for the
CR and DR subtasks based on gold-standard entities
(phase 2). Our global approach, which is illustrated
in Figure 1, tackles the identification of temporal
relations as a set of supervised classification tasks.
We submitted two runs, one using plain lexical fea-
tures and one using word embeddings computed on a
large clinical corpus. We obtained scores well above
the median scores in both subtasks.

The remainder of this paper is organized as fol-
lows. Section 2 presents our system for the DR sub-
task while Section 3 describes our system for the CR
subtask. Section 4 gives an overview of the system
implementation. Finally, Section 5 presents our re-
sults.

2 Document Creation Time Relation (DR)
Subtask

We treated the subtask as a supervised classification
problem where each EVENT entity was classified
into four categories (Before, Before-Overlap, Over-
lap, After).

We extracted lexical, contextual and structural
features from the texts. Regarding the lexical fea-
tures of EVENT entities, we took their surface forms,
their gold standard attributes (type, modality, de-
gree and polarity), their lemma(s)1, as well as their
Part-Of-Speech (POS) and Coarse Part-Of-Speech
(CPOS) tags. We also extracted the semantic types

1The span of an EVENT entity can overlap with several to-
kens.
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Figure 1: Overview of the processing chain

and semantic groups of the medical entities that
have been detected by Metamap (Aronson and Lang,
2010) and that share a span overlap with the EVENT
entities.

Concerning the contextual features, we extracted
the gold standard entities that were present in the
right and left contexts2 within the sentence. We
added the corresponding lemmas, surface forms,
types, POS and CPOS tags, as well as the corre-
sponding semantic groups and semantic types. We
also added the lemmas of the tokens occurring in
both left and right contexts. At the section level, we
added entities occurring before and after the EVENT
entity within the section. We used the same set of
features as the one we used for the intra-sentence
context: surface forms, lemmas, types, POS and
CPOS tags, semantic types and semantic groups. We

2There is no size restriction on the contexts

also added the gold standard attributes of these enti-
ties.

Regarding the structural features, we used the po-
sition of the sentence within the section and the po-
sition of the section within the document. We added
the number of tokens and entities occurring before
and after the EVENT entity within the section, and
the number of entities figuring before and after the
EVENT entity at the document level.

3 Container Relation (CR) Subtask

3.1 Principles

Similarly to the DR subtask, we treated the CR sub-
task as a supervised classification problem and more
particularly, as a binary classification task applied to
pairs of EVENT and/or TIME entities in documents.
However, considering all possible pairs of such en-
tities for building the training set without any scope
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restriction would lead to unbalanced training exam-
ples where the negative examples largely outnumber
the positive examples. Hence, some choices have
been made to reduce the number of training exam-
ples.

The analysis of the training corpus shows that a
large majority – around 76% – of the CONTAINS
relations are intra-sentence relations, which means
that the problem of their scope actually occur for
one quarter only. The remaining relations, called
inter-sentence relations, spread over at least two sen-
tences. Given this context, we have built two sep-
arate classifiers, the first one for the intra-sentence
relations, the second one for the inter-sentence re-
lations. This distinction has two main advantages:
first, it reduces drastically the number of negative
examples, which produces better results as we ob-
served on our development set; second, the intra-
sentence classifier can benefit from a larger and
richer set of features coming from sentence-level lin-
guistic analyzers.

Concerning the inter-sentence relations, consider-
ing all pairs of EVENT and/or TIME entities would
still give us a very large amount of negative exam-
ples. We first observed that all of them were con-
tained within sections (no relation overlaps section
boundaries). Within the scope of a section, we fur-
ther noticed that inter-sentence relations within a 3-
sentence window covered approximately 89% over
all existing relations. A wider window would bring
too much noise while giving us a very small bump
on coverage. Table 1 shows the number of covered
relations according to the size of the window, ex-
pressed in the number of sentences. The first line
corresponds to the intra-sentence level (window=1).

To further reduce the number of candidates for
both inter- and intra-sentence classifiers, we trans-
formed the 2-category problem (contains vs. no-
relation) into a 3-category classification problem
(contains, is-contained or no-relation). Instead of
considering all permutations of events within a sen-
tence or a sentence-window, we considered all pairs
of events from left to right, changing when neces-
sary the contains relations into is-contained rela-
tions. This strategy allowed us to divide by a fac-
tor of two the number of candidates. We obtained
111,349 pairs for the intra-sentence classifier and
311,284 pairs for the inter-sentence classifier.

win.a nb. of rel.b totalc

1 13,304 13,304 (76.30%)
2 1,463 14,767 (84.69%)
3 752 15,519 (89.00%)
4 497 16,016 (91.85%)
5 364 16,380 (93.94%)
6 151 16,531 (94.80%)

a Sentence window
b Number of CONTAINS relations
c Cumulative count of CONTAINS relations

Table 1: CONTAINS relations according to

sentence window size. Window of size 1 cor-

responds to the intra-sentence level.

Some entities are more likely to be containers. By
example, SECTIONTIME and TIMEX entities are,
by nature, potential containers. This is also the case
for some medical events. For instance, a surgical op-
eration may contain other events such as bleeding or
suturing. It will not be the same with the two latter
in most cases. Following this observation, we have
built a model to classify entities as being a potential
container or not. As we will show in Section 5, this
classifier obtain a high accuracy. We used its out-
put as feature for our intra- and inter-sentence clas-
sifiers.

Finally, we developed a rule-based module to cap-
ture specific CONTAINS relations. There are some
strong regularities in the handling of laboratory re-
sults where the first SECTIONTIME contains all the
results, which are expressed with EVENT entities
(see an example in Figure 1). The module we have
built aims at capturing these inter-sentential regular-
ities with the use of rules.

To summarize, our system is composed of four
modules:

1. Container detection module: entities are clas-
sified according to whether or not they are the
source of one or more CONTAINS relations;

2. Intra-sentence relation module: combina-
tions of entities within sentences are consid-
ered (relations contains, is-contained or no-
relation);

3. Inter-sentence relation module: combina-
tions of entities within a 3-sentence window are
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considered. We use the same relation classes as
those used for intra-sentence relations;

4. List detection module: specific laboratory re-
sults written as lists are handled via manual
rules.

3.2 Feature Extraction

For the container classifier, we used the form and
the type of the considered entity, as well as its
gold standard attributes. We extracted the semantic
types and semantic groups of the entities that have
been detected by Metamap and that share an over-
lap with the considered entity. We also extracted
its lemma(s), POS and CPOS tags. Concerning the
contextual features, we extracted the entities that are
present in both left and right contexts within the sen-
tence boundaries. Similarly to the DR subtask, we
used entity forms, types, semantic groups and se-
mantic types, POS and CPOS tags and lemmas. We
also added the tokens from both left and right con-
texts. We used the corresponding lemmas, POS and
CPOS tags. Finally, we added the number of entities
within the sentence and the number of entities before
and after the considered entity within the sentence.

For the intra-sentence classifier, we extracted the
forms, semantic types and semantic groups, and the
gold standard attributes of the two considered en-
tities. We added their lemmas and their POS and
CPOS tags. We added the number of tokens occur-
ring between the two entities. We also extracted the
entities occurring between the two considered enti-
ties. We used their entity types, gold standard at-
tributes, semantic groups and semantic types. We
added the number of entities that have been clas-
sified as containers by our container classification
model and the number of entities that appear be-
tween the pair of entities. Finally, we added the syn-
tactic paths3 between the two entities (from left to
right). We also added the results of our contain clas-
sification model for the two considered entities.

For the inter-sentence classifier, we used similar
features. We extracted the forms, types, gold stan-
dard attributes and semantic groups and semantic
types of the two considered entities. We also ex-
tracted features from the results of the intra-sentence

3Several paths are considered when the entities spread over
more that one token.

classifier. We specified whether the considered en-
tities are intra-sentence containers or are contained
by other entities at the intra-sentence level. We also
extracted entities that are positioned between the
two considered entities. We used entity types, gold-
standard attributes, semantic groups and semantic
types. We also added a feature specifying if these
entities are containers at the intra-sentence level and
the number of entities between the considered pair
of entities. Finally we added the positions, at the
section level, of the sentences in which the consid-
ered events are embedded.

4 System Implementation

4.1 Strategies

We implemented two strategies to represent the lex-
ical features in both the DR and CR subtasks. In the
first one, we used the plain forms of the different lex-
ical attributes we mentioned (Strategy 1). In the sec-
ond strategy, we substituted the lemmas and forms
with word embeddings (Strategy 2). These em-
beddings have been computed on the Mimic 2 cor-
pus (Saeed et al., 2011) using the word2vec tool with
a CBOW model4 (Mikolov et al., 2013). We used the
mean of the vectors for multi-word units. Lexical
contexts are thus represented by 200-dimensional
vectors. When several contexts are considered e.g.
right and left, several vectors are used.

4.2 Algorithm Selection

A grid search strategy was applied to select the most
appropriate machine learning algorithm and its pa-
rameters. For Strategy 1, three algorithms were con-
sidered in our search: Random Forests, Linear Sup-
port Vector Machine (liblinear) and Support Vector
Machine with a RBF kernel (libsvm). For Strat-
egy 2, we only considered the Linear Support Vector
Machine for the CR task and Random Forests for the
DR task.

In both cases, 5-fold cross-validation was used to
choose the algorithm and its parameters. We also
implemented statistical feature selection as part of
the grid search for Strategy 1 reducing progressively
the number of attributes, using ANOVA F-test.

4Parameters used during computation: min-count: 5; vector
size: 200; window: 20; number of word classes: 1000; fre-
quency threshold: 1e-3.
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Run Classifier Algorithm Parameters % feat.a

1c

CONTAINER SVM (RBF) C=10, gamma=0.01 60
INTRA SVM (RBF) C=10, gamma=0.01 60
INTER SVM (RBF) C=1000, gamma=0.01 100
DCT SVM (Linear) C=1, tolb=0.0001, normalization=l2, loss function=hinge 100

2d

CONTAINER LinearSVM C=1, tol=0.01, normalization=l2, loss function=hinge 100
INTRA SVM (Linear) C=1, tol=0.01, normalization=l2, loss function=squared hinge 100
INTER SVM (Linear) C=1000, tol=0.01, normalization=l2, loss function=hinge 100
DCT Random Forests max features=auto, criterion=entropy, estimators=100 100

a Percentage of feature space kept for final submission (using ANOVA F-test)
b Tolerance for stopping criteria
c Using plain text features
d Using word embeddings

Table 2: Machine learning algorithms and parameters used for the final submission

The machine learning algorithms used for the fi-
nal submission are presented in Table 2 together
with their parameters and the percentage of the fea-
ture space kept after statistical feature selection. We
used the Scikit-learn machine learning library (Pe-
dregosa et al., 2011) for both implementing our clas-
sification models and performing statistical feature
selection.

4.3 Corpus Preprocessing

We applied a four-step preprocessing on the
440 texts that were provided for the subtasks. First,
we used NLTK (Loper and Bird, 2002) to segment
the texts into sentences with the Punkt Sentence
Tokenizer pre-trained model for English provided
within the framework.

The second step consisted of parsing the result-
ing sentences. For this task, we used the BLLIP
Reranking Parser (Charniak and Johnson, 2005) and
a pre-trained biomedical parsing model (McClosky,
2010).

In the third step, we lemmatized the corpus us-
ing BioLemmatizer (Liu et al., 2012), a tool built for
processing the biomedical literature. We used the
Part-Of-Speech tags from the previous step as pa-
rameters for the lemmatization.

The last step consisted in using Metamap (Aron-
son and Lang, 2010) to detect biomedical events and
linking them, after disambiguation, to their related
UMLS® (Unified Medical Language System) con-
cept. We chose to keep biomedical entities that had a

span overlapping with at least one entity of the gold
standard.

5 Results and Discussion

In Table 3, we present the cross-validation accura-
cies of our DCT and Container models over the de-
velopment corpus. For DCT, we obtain high per-
formance with Strategy 1, which is based on plain
lexical features. Strategy 2, which exploits words
embeddings, gives lower performance. Concerning
the Container model, we obtain high performance
with both strategies.

Model plain text word embeddings

DCT 0.873 0.778
CONTAINER 0.917 0.924

Table 3: DCT and CONTAINER model accuracies

We submitted two runs with our system, one for
each strategy. The results for both subtasks are pre-
sented in Tables 4 and 5.

Concerning the DR subtask, we obtained above-
median scores (median score: 0.724) for both runs.
The second run, which relies on word embeddings
to represent the lexical features of the EVENT enti-
ties, achieves better performance. These results are
consistent with what was expected during the cross-
validation process using the development set. The
fact that the second strategy achieves the best per-
formance is however in contradiction with the scores
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obtained during cross-validation, where Strategy 1
performed best.

In the CR subtask, we obtained above-median
F1 for the first run and median scores for the sec-
ond run (median score: 0.449). Using plain lexi-
cal features gives us a more balanced system than
using word embeddings. With a F1 of 0.538, our
system achieves performance close to the best sys-
tem (0.573), thus validating our modeling choices.
These results are consistent with those we obtained
when testing against the development part of the cor-
pus. The reasons for the decrease in recall when
using the second strategy are however unclear and
need further investigation.

Run refa predb corrc P R F1

1d 18,990 18,989 14,603 0.769 0.769 0.769
2e 18,990 18,989 15,317 0.807 0.807 0.807

a Number of gold standard relations
b Number of predicted relations
c Number of correct predictions
d Using plain text features
e Using word embeddings

Table 4: DR subtask - Evaluation script output

Run refa predb corrc P R F1

1d 5,894 3,755 2,642
2,570

0.704 0.436 0.538

2e 5,894 2,544 1,911
1,889

0.751 0.320 0.449
a Number of gold standard relations
b Number of predicted relations
c Number of correct relations (without and with temporal clo-
sure)
d Using plain text features
e Using word embeddings

Table 5: CR subtask - Evaluation script output
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