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Abstract
In this paper we present our system de-
veloped for the SemEval 2016 Task 2 -
Interpretable Semantic Textual Similarity
along with the results obtained for our sub-
mitted runs. Our system participated in
the subtasks predicting chunk similarity
alignments for gold chunks as well as for
predicted chunks. The Inspire system ex-
tends the basic ideas from last years par-
ticipant NeRoSim, however we realize the
rules in logic programming and obtain the
result with an Answer Set Solver. To pre-
pare the input for the logic program, we
use the PunktTokenizer, Word2Vec, and
WordNet APIs of NLTK, and the POS-
and NER-taggers from Stanford CoreNLP.
For chunking we use a joint POS-tagger
and dependency parser and based on that
determine chunks with an Answer Set Pro-
gram. Our system ranked third place over-
all and first place in the Headlines gold
chunk subtask.

1 Introduction
Semantic Textual Similarity (STS), refers to the
degree of semantic equivalence between a pair of
texts. This helps in explaining how some texts
are related or unrelated. In Interpretable STS
(iSTS) systems, further explanation is provided
as to why the two texts are related or unre-
lated. Finding these detailed explanations helps
in gathering a meaningful representation of their
similarities.
The competition at SemEval 2016 was run on

three different datasets: Headlines, Images and

Student-Answers. Each dataset included two
files containing pairs of sentences and two files
containing pairs of gold-chunked sentences. Ei-
ther the gold chunks provided by the organizers
or chunks obtained from the given texts would
be used as input to the system. The expected
outputs of the system are m:n chunk-chunk
alignments, corresponding similarity scores be-
tween 0 (unrelated) and 5(equivalent), and a
label indicating the type of semantic relation.
Possible semantic relations are EQUI (seman-
tically equal), OPPO (opposite), SPE1/SPE2
(chunk 1/2 is more specific than chunk 2/1),
SIMI (similar but none of the relations above),
REL (related but none of the relations above),
and NOALI (not aligned, e.g., punctuation).
All relations shall be considered in the given
context. For details see the companion pa-
per (Agirre et al., 2016).
Similarity alignment in the Inspire system is

based on ideas of previous year’s NeRoSim (Ban-
jade et al., 2015) entry, however we reimple-
mented the system and realize the rule engine
in Answer Set Programming (ASP) (Lifschitz,
2008; Brewka et al., 2011) which gives us flex-
ibility for reordering rules or applying them in
parallel. To account for differences in datasets
we detect the type of input with a Naive Bayes
classifier and use different parameter sets for
each of the datasets.
Chunking in the Inspire system is based

on a joint POS-tagger and dependency parser
(Bohnet et al., 2013) and an ASP program that
determines chunk boundaries.
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In Section 2 we give preliminaries of ASP,
Section 3 describes how we represented seman-
tic alignment in ASP, in Section 5 we explain
parameter sets used for different datasets, Sec-
tion 4 briefly outlines our chunking approach,
and we give evaluation results in Section 6.

2 Answer Set Programming (ASP)
Answer Set Programming (ASP) (Lifschitz,
2008; Brewka et al., 2011) is a logic program-
ming paradigm based on rules of the form:

a← b1, . . . , bm, not bm+1, . . . , not bn

where a, bi are atoms from a first-order lan-
guage, a is the head and b1, . . . , not bn is the
body of the rule, and not is negation as fail-
ure. Variables start with capital letters, facts
(rules without body condition) are written as
‘a.’ instead of ‘a← ’. Intuitively a is true if all
positive body atoms are true and no negative
body atom is true. ASP is declarative, i.e., the
order of rules and the order of body atoms in
rules does not matter (different from Prolog), a
popular usage pattern of ASP is to create three
program modules called Generate, Define, and
Test, which (i) generate a space of potential so-
lutions, (ii) define auxiliary concepts, and (iii)
eliminate invalid solutions using constraints, re-
spectively. ASP allows encoding of nondeter-
ministic polynomial time (NP)-hard problems,
solver tools usually first instantiate the given
program and then find solutions of the variable-
free theory using adapted Satisfiability (SAT)
solvers. Apart from normal atoms and rules,
ASP supports aggregates and other construc-
tions, for details we refer to the ASP-Core-2
standard (Calimeri et al., 2012). In this work
we use the ASP solvers Gringo and Clasp (Geb-
ser et al., 2011) as a Python library.

3 Alignment based on ASP
For each sentence pair, we align chunks in the
following architecture:
• Chunked input sentence pairs are prepro-
cessed (POS, NER, Word2Vec, WordNet)
and represented as a set of ASP facts (3.1).
• A generic set of rules represents how align-
ments can be defined and changed (3.2).

• We represent alignments based on the de-
scription of the NeRoSim engine (3.3).
• We evaluate the above components in an
ASP solver, obtaining answers sets contain-
ing a representation of alignments. From
this we create the system output file (3.4).

3.1 Preprocessing
In this step we create facts that represent the in-
put, including lemmatization via NLTK (Bird,
2006), POS- and NER-tagging from Stanford
CoreNLP (Manning et al., 2014), lookups in
WordNet (Miller, 1995), and similarity values
obtained using Word2Vec (Mikolov et al., 2013).
We explain the input representation of the fol-

lowing sentence pair:

[ A tan puppy ] [ being petted ] [ . ]
[ A tan puppy ] [ being held and petted ] [ . ]

We first represent sentences, chunks, and
words in chunks with POS-tags, NER-tags, and
lowercase versions of words as follows:

sentence(1 ).
chunk(sc(1 , 0 )).
chunk(sc(1 , 1 )).
chunk(sc(1 , 2 )).
mword(cw(sc(1 , 0 ), 1 ), ”A”, ”a”, ”DT”, ”O”).
mword(cw(sc(1 , 0 ), 2 ), ”tan”,

”tan”, ”NN ”, ”O”).
mword(cw(sc(1 , 0 ), 3 ), ”puppy”,

”puppy”, ”NN ”, ”O”).
· · ·
sentence(2 ).
chunk(sc(2 , 0 )).
· · ·

Intuitively a sentence ID is an integer, a chunk
ID is a composite sc(sentenceID, chunkIdx), and
a word ID is a composite cw(chunkID, wordIdx).
We detect punctuation, cardinal num-

bers, and dates/times using regular expres-
sions and represent this as facts punct(·),
cardinalnumber(·), and datetime(·), resp., e.g.,

punct(cw(sc(1 , 2 ), 0 )).
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We lookup synonyms, hypernyms, and anto-
nyms in WordNet and add the respective facts.

synonym(”a”, ”a”).
synonym(”a”, ”vitamin a”).
synonym(”tan”, ”burn”).
hypernym(”puppy”, ”dog”).
hypernym(”puppy”, ”domestic_dog”).
hypernym(”puppy”, ”canis_familiaris”).
· · ·

We use distributional similarity with the
Word2Vec tool (Mikolov et al., 2013) trained
on the One Billion Word1 benchmark (Chelba
et al., 2014) with SkipGram context representa-
tion, window size 10, vector dimension 200, and
pruning below frequency 50. Word-word simi-
larity sim(v, w) is computed using cosine simi-
larity from scikit-learn (Pedregosa et al., 2011),
between vectors of words v and w. We compute
chunk-chunk similarity as

best(1 , 2 ) + best(2 , 1 )
2 min(n1, n2) , where (1)

best(x, y) =
nx∑

i = 1

nymax
j = 1

sim(wx
i , wy

j )

with nx the number of words in chunk x and wx
b

the word of index b in chunk x. This is based
on (Banjade et al., 2015, Section 2.2.2).
We represent chunk-chunk similarity as atoms

chunksimilarity(chunk1Id, chunk2Id, S). In our
example this creates, e.g., the following facts.

chunksimilarity(sc(1 , 0 ), sc(2 , 0 ), 101 ).
chunksimilarity(sc(1 , 0 ), sc(2 , 1 ), 22 ).
chunksimilarity(sc(1 , 0 ), sc(2 , 2 ), 2 ).
chunksimilarity(sc(1 , 1 ), sc(2 , 0 ), 34 ).
· · ·

Note that similarity can be above 100 due to
dividing by the shorter chunk length.

3.2 Rule Engine
To make POS, NER, word, and lowercase words
more accessible, we project them to new facts

1http://www.statmt.org/lm-benchmark/

with the following rules

word(Id, W )←mword(Id, W ,_,_,_).
lword(Id, L)←mword(Id,_, L,_,_).

pos(Id, P)←mword(Id,_,_, P,_).
ner(Id, N )←mword(Id,_,_,_, N ).

where the arguments of mword are word ID,
word, lowercase word, POS and NER tag.
Variables of the form ‘_’ are anonymous, in-

tuitively these values are projected away before
applying the rule.
We interpret POS and NER tags, and mark

nouns, verbs, contentwords, proper nouns, car-
dinal numbers and locations based on tags from
the Penn Treebank (Marcus et al., 1993).

noun(Id)← pos(Id, ”NNS”).
noun(Id)← pos(Id, ”NNP”).
verb(Id)← pos(Id, ”VB”).
verb(Id)← pos(Id, ”VBD”).

· · ·
location(Id)←ner(Id, ”LOCATION ”).

We ensure symmetry of chunk similarity, syn-
onyms and antonyms, and transitivity of the
synonym relation.

chunksimilarity(C2 , C1 , S)←
chunksimilarity(C1, C2, S).

synonym(W , W ′)← synonym(W ′, W ).
antonym(W , W ′)← antonym(W ′, W ).

synonym(W1 , W3 )← synonym(W1 , W2 ),
synonym(W2 , W3 ).

We define pairs of chunks that can be matched
together with their sentence indices. This is use-
ful because this way we can define conditions on
potential alignments without specifying the di-
rection of alignment (1 to 2 vs. 2 to 1).

chpair(S1 , S2 , sc(S1 , C1 ), sc(S2 , C2 ))←
chunk(sc(S1 , C1 )), chunk(sc(S2 , C2 )), S1 6=S2 .

We represent alignments as follows:
(i) alignment happens in steps that have an

order defined by atoms nextStep(S , S ′)
which indicates that S happens before S′,

1111



(ii) a chunk can be aligned to one or more
chunks only within one step, afterwards
alignment cannot be changed,

(iii) program modules can define atoms of form
chalign(C1 , R, Sc, C2 , St) which indicates
that chunks C1 and C2 should be aligned
with label R (e.g., "EQUI") and score Sc
(e.g., 5) in step St.

Defining an alignment is possible if the chunks
are not yet aligned, it marks both involved
chunks as aligned, and they stay aligned.

aligned(C , S ′)← not aligned(C , S),
chalign(C,_,_,_, S), nextStep(S, S′).

aligned(C , S ′)← not aligned(C , S),
chalign(_,_,_, C, S), nextStep(S, S′).

aligned(C , S ′)← aligned(C , S), nextStep(S , S ′).

Final alignments (that are interpreted by
Python) are represented using predicate final,
these atoms include raw chunk similarity (for
experimenting with other ways to define the sim-
ilarity score). Moreover only steps that are used
(in nextStep(·, ·)) are included.

usedStep(S)← nextStep(S ,_).
usedStep(S ′)← nextStep(_, S ′).
final(C1 , Rel, Score, C2 , S , Simi)←

chalign(C1 , Rel, Score, C2 , S),
not aligned(C1 , S), not aligned(C2 , S),
usedStep(S), chunksimilarity(C1 , C2 , Simi).

This system gives us flexibility for configuring
the usage and application of the order of rules
by defining nextStep accordingly (see Section 5).

3.3 NeRoSim Rules
All that remains is to realize the NeRoSim rules,
labeled with individual steps, and add them to
the program.
In the following we give an example of how we

realize NeRoSim’s condition C1 (one chunk has
a conjunction and other does not).

cond1 (C1 , C2 )← chpair(_,_, C1 , C2 ),
#count{W1 : conjunction(cw(C1 , W1 ))}= 0,

#count{W2 : conjunction(cw(C2 , W2 ))}≥ 1.

Intuitively, the #count aggregates become true
if the appropriate number of atoms in the set
becomes true.
As a second example, our adaptation of

rule SP1 for SPE1/SPE2 alignments defines
sp1 (C1, C2) if cond1 holds between C2 and C1
and if C1 contains all content words of C2. Note
that contentword_subset(A, B) is defined sepa-
rately for chunks A, B if B contains all content
words of A.

sp1 (C1 , C2 )← chpair(_,_, C1 , C2 ),
cond1 (C2 , C1 ), contentword_subset(C2, C1).

We use sp1 in our stepwise alignment engine by
defining chalign with SPE1 and SPE2 according
to which sentence is more specific.

chalign(C1 , ”SPE1 ”, 4 , C2 , sp1 )←
chpair(1 , 2 , C1 , C2 ), sp1 (C1 , C2 ).

chalign(C1 , ”SPE2 ”, 4 , C2 , sp1 )←
chpair(1 , 2 , C1 , C2 ), sp1 (C2 , C1 ).

For reasons of space we are unable to list all
NeRoSim rules and their ASP realization. For
the description of rules NOALIC, EQUI(1–5),
OPPO, SPE1/2(1–3), SIMI(1–5), REL, we refer
to (Banjade et al., 2015).
The full ASP code is publicly available.2

3.4 Interpretation of Answer Sets
After the evaluation of the above rules with
the facts that describe the input sentences (Sec-
tion 3.1) the solver returns a set of answer sets
(in our case a single answer set). This answer
set contains all true atoms and we are interested
only in the final predicates.

word(cw(sc(1 , 1 ), 4 ), ”being”).
word(cw(sc(1 , 1 ), 5 ), ”petted”).
word(cw(sc(2 , 1 ), 4 ), ”being”).
word(cw(sc(2 , 1 ), 5 ), ”held”).
word(cw(sc(2 , 1 ), 6 ), ”and”).
· · ·
final(sc(1 , 0 ), ”EQUI ”, 5 , sc(2 , 0 ), equi1 , 101 ).

2https://bitbucket.org/snippets/knowlp/yrjqr
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final(sc(1 , 1 ), ”SPE2 ”, 4 , sc(2 , 1 ), sp1 , 106 ).

From these predicates we create the required
output which is a single continous line of the
following form:
4 5 6 <==> 4 5 6 7 // SPE2 // 4 //

being petted <==> being held and petted

4 Chunking based on ASP

For this subtrack, the system has to identify
chunks and align them. The Inspire system real-
izes chunking as a preprocessing step: sentences
are tokenized and processed by a joint POS-
tagger and parser (Bohnet et al., 2013). Tokens,
POS-tags, and dependency relations are repre-
sented as ASP facts and processed by a program
that roughly encodes the following:
• chunks extend to child tokens until another
chunk starts, and
• chunks start at (i) prepositions, except
‘of’ in ‘in front of’; (ii) determiners, un-
less after a preposition; (iii) punctuations
(where they immediately end); (iv) ad-
verbs; (v) nodes in an appositive relation;
and (vi) nodes having a subject.

These rules were created manually to obtain
a result close to (Abney, 1991).

5 Experiments and Parameters

Our system does not require training, so we
tested and optimized it on the training data for
Headlines (H), Images (I), and Student-Answers
(S) datasets. As a criteria for accuracy the com-
petition used the F1 score based on alignments
(A), alignments and alignment type (AT), align-
ments and alignment score (AS), and full con-
sideration of alignment, type, and score (ATS).
Our optimization experiments showed us,

that there are significant differences in anno-
tations between datasets. In particular S con-
tains spelling mistakes, verbs are often singleton
chunks in H, and ‘to’ and ‘’s’ often start a new
chunk in H, while they are annotated as part of
the previous chunk in I and S.
Therefore we decided to configure our system

differently for each dataset, based on a Multi-
nomial Naive Bayes Classifier trained on input

unigrams and bigrams implemented using scikit-
learn (Pedregosa et al., 2011). F1-score obtained
on training data with 10-fold cross-validation
was 0.99.
Our dataset configuration is as follows: we ex-

clude stopwords from the calculation of similar-
ity (1) for datasets H and I by using the NLTK
corpus of stopwords; we remove non-singleton
punctuation for dataset S; and we add rules to
handle verb types (VBP, VBZ) as punctuation
and ‘’s’ as a preposition in chunking.
We optimized parameters for 3 runs according

to different criteria.
Run 1 is optimized for the full label (ATS).
We used our implementation of NeRoSim rules
in the same order, except SI4, SI5, and RE1,
which we excluded. In ASP this is configured
by defining facts for nextStep(s, s′) where

(s, s′)∈{(noalic, equi1), (equi1, equi2),
(equi2, equi3), (equi3, equi4), (equi4, equi5),

(equi5, oppo), (oppo, sp1), (sp1, sp2), (sp2, sp3),
(sp3, simi1), (simi1, simi2), (simi2, simi3),

(simi3, result)}.

Run 2 is optimized for prediction of alignment
(A), this is done by using all NeRoSim rules in
their original order: we define nextStep(s, s′) for

(s, s′)∈{(noalic, equi1), (equi1, equi2),
(equi2, equi3), (equi3, equi4), (equi4, equi5),

(equi5, oppo), (oppo, sp1), (sp1, sp2).(sp2, sp3),
(sp3, simi1), (simi1, simi2), (simi2, simi3),
(simi3, simi4), (simi4, simi5), (simi5, rel1),

(rel1, result)}.

In addition, for dataset S we perform automated
spelling correction using Enchant.3

Run 3 is based the observation, that the scorer
tool does not severely punish overlapping align-
ments in the F1-score of A. Hence we allow
SIMI4, SIMI5, and REL1 to be applied simul-
taneously by defining nextStep(s, s′) for

(s, s′)∈{(noalic, equi1), (equi1, equi2),
3http://www.abisource.com/projects/enchant/
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(equi2, equi3), (equi3, equi4), (equi4, equi5),
(equi5, oppo), (oppo, sp1), (sp1, sp2), (sp2, sp3),

(sp3, simi1), (simi1, simi2), (simi2, simi3),
(simi3, simi4), (simi3, simi5), (simi3, rel1),

(simi4, result), (simi5, result), (rel1, result)}.

Accordingly, we expected Run 1 to perform
best with respect to the ATS (and AT) metric,
Run 2 to perform best with respect to A (and
AS) metrics, and Run 3 to sometimes perform
above other runs. These expectations were con-
firmed by the results shown in the next section.

6 Results and Conclusion

The results of the competition, obtained with
the above parameter sets, are shown in Table 1.
The Inspire system made use of a rule-based

approach using Answer Set Programming for de-
termining chunk boundaries (based on a repre-
sentation obtained from a dependency parser)
and for aligning chunks and assigning alignment
type and score (based on a representation ob-
tained from POS, NER, and distributed simi-
larity tagging). In team ranking, our system is
among the top three systems for Headlines and
Images datasets, and in overall ranking (both for
system and gold chunks). In terms of runs (each
team could submit three runs), our system ob-
tains first and second place for Headlines with
gold standard chunks. For Student-Answers
dataset our system performs worst. The config-
uration of Run 1 performs best in all categories.
In future work we want to represent semantic

knowledge in ASP externals (Eiter et al., 2015),
and use ASP guesses, constraints, and optimiza-
tion as outlined in (Lierler and Schüller, 2013).
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