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Abstract

We present in this paper a system for measur-
ing Semantic Text Similarity (STS) in English.
We introduce three novel techniques: the use
of Types, methods of linking phrases, and the
use of a Surprise Factor to generate 8,370 sim-
ilarity measures, which we then combine us-
ing Support Vector and Kernel Ridge Regres-
sion. Our system out performs the State of the
Art in SemEval 2015, and our best performing
run achieved a score of .7094 on the 2016 test
set as a whole, and over 0.8 on the majority
of the datasets. Additionally, the use of Sur-
prise, Types and phrase linking is not limited
to STS and can be used across various Natural
Language Processing tasks, while our method
of combining scores provides a flexible way
of combining variously generated Similarity
Scores.

1 Introduction and Motivation

The goal of Semantic Text Similarity (STS) is to find
the degree of overlap in the meaning of two pieces of
text. This ranges from text fragments that are exact
semantic equivalents, to others that have no semantic
relation. STS has a wide variety of applications, in-
cluding text summarisation (Aliguliyev, 2009), ma-
chine translation (Kauchak and Barzilay, 2006), and
search optimisation (Sriram et al., 2010).

The STS task, which has been set by the SemEval
conference for the past number of years (Agirre et
al., 2014; Agirre et al., 2015), requires that submit-
ted systems assign a score between 0 (the sentences
are on different topics) and 5 (the sentences mean

exactly the same thing) that reflects how similar two
sentences are.

Most systems that tackled SemEval’s STS task in
previous years have involved three main approaches:
The first is text alignment, based on the content
words’ meaning (Sultan et al., 2015; Sultan et al.,
2014b). The second represents text as vectors,
which are used to find the similarity score using a
vector similarity metric (such as cosine). Third, ma-
chine learning approaches are used to compute mul-
tiple lexical, semantic, and syntactic features to clas-
sify each sentence pair’s similarity.

We make use of both text alignments and vec-
tor representations, while limiting comparisons to
words of the same Type (Section 4.1), a novel con-
cept we introduce in addition to methods of phrase
linking (Section 4.2) and establishing common noun
importance (Section 4.3). These, combined with
several different weight combinations we pick for
each word Type, provide us with 8,370 semantic
relation measures (Section 5). The overall algo-
rithm for generating the several similarity measures
is presented in Algorithm 1. We choose a subset
of these measures using methods detailed in Sec-
tion 6.1, combine them with a limited set of fea-
tures and use Support Vector Regression and Ker-
nel Ridge Regression to generate a Similarity Score
(Section 6.2).

Our approach also handles definitions separately
from arbitrary sentences, as we observed that their
structure is significantly different. Since the test data
provided this year did not contain a definition data
set, this paper focuses on our generic approach, with
definition similarity discussed briefly in Section 7.
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2 Preprocessing

Due to the varied nature of the input presented we
perform various data cleaning operations. We start
by expansion of common contractions (e.g. “isn’t”)
and informal contractions (e.g. “howz”, “couldve”).
We then perform a spell check and hyphen removal,
which are conditional, in the sense that a word is
not modified unless the modified form appears in the
other sentence. All remaining hyphens are replaced
by spaces, a method different from those that previ-
ously handled hyphens (Han et al., 2013).

We also perform case correction, as has been done
previously (Hänig et al., 2015), since we observe
several instances wherein sentence capitalisation is
not suitable for parsing (e.g. headlines and forums).

3 Similarity Measures

We use two measures, which are boosted based on
different parameters described in Section 4.

3.1 Alignments
The first measure makes use of the aligner developed
by Sultan et al. (2014a), which was used to achieve
State of the Art results in 2014 and 2015 (Sultan et
al., 2014b; Sultan et al., 2015).

Our use of the aligner disregards sequences thus
making use of the aligner more as a synonym
finder, with the additional power of the Paraphrase
Database (PPDB) (Ganitkevitch et al., 2013).

3.2 Word Embeddings
Word embeddings provide a method of mapping
words or phrases to vectors, whose cosine distance
represents semantic similarity. They have proved to
be powerful in many NLP tasks, and have been used
by top ranking systems at SemEval STS (Sultan et
al., 2015; Hänig et al., 2015). We use word2vec1,
with the model trained by Google on the Google
News dataset, through its Python interface Gensim2.

We make use of word2vec in two distinct ways.
The first is by extracting the mean of the vector rep-
resentation of each word in a Type and finding its
cosine similarity between the two sentences. The
second is by adding the word2vec similarity scores
of words not aligned within the same Type. We also

1https://code.google.com/p/word2vec/
2https://radimrehurek.com/gensim/models/word2vec.html

provide the option of disregarding word pairs that
have a score of less than 0.3, a method similar to
that by Hänig et al. (2015).

4 Boosting Similarity

In this section, we detail the variations used to gen-
erate different similarity measures. These variations
are not used simultaneously, but are instead com-
bined as described in Algorithm 1 (Section 5), which
iterates through all possible variations to generate a
different similarity score associated with each com-
bination.

4.1 Type Specific Comparison

Given a sentence pair, we calculate their similarity
based only on how similar corresponding Parts-of-
Speech (POS) are, a method previous systems have
made use of, either implicitly (Kashyap et al., 2014;
Sultan et al., 2015) or explicitly (Hänig et al., 2015).

We extend this idea by defining what we call word
Types, which further subdivide each POS. A Type
represents an abstract concept that several words can
share. Consider the sentence pair “A man is sitting
on a stool”, “A boy is sitting on a chair”. Although
the words “man”, “boy”, “stool” and “chair” are all
nouns, an effective strategy for comparing these sen-
tences would be to compare the first two and the
last two words independently, before then adding
up their similarity. To achieve this we categorise
words into different Types, which are then compared
across sentences. In this case, such a categorisation
might place the first two into the Type “Person” and
the others into the category “Artifact”. This prob-
lem could very easily extend to the problem of Word
Sense Disambiguation, which we avoid by use of a
heuristic.

We calculate the Type of a noun by the use of
WordNet (Miller, 1995) hypernyms: W1 is consid-
ered a hypernym of W2 if ∀e ∈ W2, e is an in-
stance of W1. We recursively find hypernyms until
we reach a manually selected set of concepts (such
as food.n.02). We manually combine sets of such
concepts to define a Type. As a concrete exam-
ple, we combine the WordNet concepts “communi-
cation.n.02”, “food.n.02” and other similar concepts
into the Type “thing r1”. As a single word can be
part of several Types, based on the particular sense

681



of the word, we pick the most frequently occurring
Type for each word.3

4.2 Phrase Linking
Consider sentences with the the phrases “Prime
Minister” and “Prime Number”. Although the word
“Prime” is present in both sentences, the context in
which it is being used makes this irrelevant. In this
particular case, the semantic similarity of the sen-
tences is dependent on the head of the phrase that
the word “Prime” is contained in (i.e. “Minister”
and “Number”). This is also the case with phrases
that contain adjectives and adverbs.

We address this by finding phrases that consist of
adjectives, adverbs and nouns, and varying the im-
portance of the semantic similarity between words
that are not the head of that phrase. The similar-
ity of each word, that is part of such a phrase, but
not the head of the phrase, is additionally weighted
in three different ways: The first assigns a zero or
one weight based on whether or not the head of
the phrase is aligned, the second provides a weight
based on the number of words, following this word,
that are aligned in the phrase and the third simply
ignores the phrase structure.

4.3 Noun Importance
Consider the following sentence pairs with relations
assigned by human annotators: “A boy is playing
a guitar.”, “A man is playing a guitar.”, rel: 3.2; and
“A man is cutting up a potato.”, “A man is cutting up
carrots.”, rel: 2.4. Although both pairs of sentences
differ by exactly one noun, the first pair was consid-
ered to be more closely associated than the second.
We associate this to what we call the “Surprise” and
assign a value to this, which we call the “Surprise
Factor”.

Surprise is based on the work by Dunning (1993),
who observed that the assumption of normality of
data is invalid as “simple word counts made on a
moderate-sized corpus show that words that have a
frequency of less than one in 50,000 words make
up about 20-30% of typical English language news-
wire reports. This ‘rare’ quarter of English includes
many of the content-bearing words . . . ”

3The termination concepts, corresponding Types, definitions
for non-noun types, and Weights are provided online at:
www.harishmadabushi.com/SemEval2016/Appendix.pdf

We define the Surprise Factor of a noun or phrase
to be proportional to the number of Web Search Hits
for that phrase or term, while inversely proportional
to the Search Hits in the case of proper nouns. In-
tuitively this makes sense, as words that are more
common will generate less Surprise, carry less in-
formation, and will also be more widely used on the
Internet.

We incorporate this idea of Surprise by adding the
option of additionally weighting nouns by the total
number of Web Search Hits or Results4. We define,
Hi to be the the number of Web Search Hits for the
noun i, HT the total number of hits for all nouns
HT =

∑N
i=0Hi, Ni the fraction of the Search Hits

that noun i captures Ni = Hn
HT , and NT the nor-

malised total of all nouns (C) in a given sentence
NT =

∑C
i=0Ni. We define the Surprise of word i

in terms of the above in Equation 1.

Si =
Ni

NT
(1)

5 System Overview

Algorithm 1 provides an overview of the system
we use to generate the various Similarity Scores,
We call each combination that generates a score
a “Method”. We use thirty weights for Types3,
while providing the option of dividing the scores by
the number of WordNet Synsets (UseSSToWeight),
which captures any dilution due to a word’s different
senses. We also scale word2vec scores by different
values. This gives us a total of 8,370 “Methods”.

In calculating the similarity score, we capture the
fraction of each Type that is aligned and scale it by
the weight of that Type. This is captured in Equa-
tion 2 where scoret represents the Similarity Score
assigned to Type t by either of the measures detailed
in Section 3, countt represents the number of words
of Type t in both sentences, wt the weight of Type t
in the current iteration, and T is the total number of
Types.

5× (

∑T
t=0 scoret × wt × 2
∑T

t=0 countt × wt

) (2)

4We use the Bing Web Search API:
http://www.bing.com/toolbox/bingsearchapi
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Data: Sentence Pairs
Result: List of Similarity Scores
Initialise list of similarity scores “SimScores” to empty list;
for w in Type-Weights do

for n in NounHandleMethod do
for av in Adjective-AdverbHandleMethod do

for UseSearchHits in [True,False] do
if UseSearchHits == True then

Calculate Similarity Score (SS) using
Alignments;

Append SS to SimScores;
Continue;

for UseSSToWeight in [True, False] do
Calculate Similarity Score (SS) using

Alignments;
Append SS to SimScores;

for UseWeightCutOff in [True,False] do
for VectorCombineMethod in

[UseAlignments, UseMeanVector] do
for ScaleVortorSimBy in [ 6, 5, 4, 3, 2,

1, “log” ] do
Calculate Similarity Score (SS)

using Word Embeddings;
Append SS to SimScores;

Return SimScores (the list of similarity scores);

Algorithm 1: Calculating Semantic Similarity Scores

6 Combining Similarity Scores

As described above, we use variations to generate
thousands of Similarity Scores, each of which we
call a “Method”. Each Method’s performance varies
depending on the input. In this section, we detail
the process for combining these Methods, which is
performed using either Support Vector Regression
(SVR) or Kernel Ridge Regression (KRR).

6.1 Picking a Subset of Methods

We first select a subset of the Methods, which are
then passed on to either the SVR or KRR model. To
do this, each of our Methods is ranked using three
metrics with respect to the training set: The first is
by use of the Pearson Correlation (a criterion we call
“Method”), the second is by the sum of the absolute
error between Similarity Scores (a criterion we call
“Error”). The third metric aggregates the the rank-
ings from the two criterion described above, and we
call this criterion “Combine”. We select the top 50
methods using one of the three selection criterion.

6.2 Generating Similarity Scores

In addition to using scores from the chosen Methods,
we add the following features to some of our submit-
ted runs: a) a binary value to represent whether each
of the sentences were case corrected, b) the length
of each of the sentences, c) the number of contin-

uous aligned or unaligned sequences, d) the maxi-
mum and minimum lengths of continuous aligned or
unaligned sequences, and e) a binary value to repre-
sent alignments that are non-sequential.

It should be noted that the specific Methods we
choose for use in the SVR or KRR will depend on
the training data picked. We found, by testing our
system using several different combinations of train-
ing data, that the best results were achieved when
our system was trained on the headlines data from
the years 2015, 2014 and 2013. The method selec-
tion criterion, regression model and parameters used
for each of the runs submitted are detailed in Table 1.
Although some of the settings are very similar (e.g.
run2), we noticed that these minor changes trans-
lated to significant differences in performance.

Run Headlines Other Datasets

Run1

Model: KRR Model: SVR
Features: False Features: False

Train: Headlines Train: Headlines
Picked: Combine Picked: Combine
Kernel: Poly C: 100
Alpha: 50 Epsilon: 0.05

Gamma: 9e-05

Run2

Model: SVR Model: SVR
Features True Features: True

Train: Headlines Train: Headlines
Picked: Method Picked: Method

C: 100 C: 100
Epsilon: 0.01 Epsilon: 0.05
Gamma: 9e-05 Gamma: 9e-06

Run3

Model: SVR Model: SVR
Features True Features: True

Train: Headlines Train: Headlines
Picked: Method Picked: Combine

C: 100 C: 100
Epsilon: 0.01 Epsilon: 0.01
Gamma: 9e-05 Gamma: 9e-06

Table 1: Parameters and models used for each run. The row

Features represents if features were used, Train represents the

training data used, and Picked represents the selection criterion

(Method, Error or Combine).

7 Finding Similarities between Definitions

In order to find similarities between definitions, we
first identify the word that a definition is defining.
We achieve this by use of OneLook’s reverse dictio-
nary search5, which returns a number of candidate

5http://www.onelook.com/reverse-dictionary.shtml
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words for a given definition. For each definition, the
similarity of the top 10 candidates is then computed
using Word2Vec and five similarity metrics provided
by WordNet: Path distance, Leacock-Chodorow, Wu
and Palmer, Jiang-Conrath and Lin. The final score
is scaled between 0 and 5 and averaged across the
10 candidates returned by OneLook.

We found this method of calculating similarities
between definitions to be very good at telling if two
definitions refer to the same word, but not ideally
suited for measuring how similar they are. As a
consequence, we found that results were clustered
around 0 and 5. The system produced a Pearson
correlation of 0.69 on the SemEval 2014 definitions
data set.

8 Results and Analysis

Dataset Best Run1 Run2 Run3
Mean .77807 .70940 .70168 .70911
postediting .86690 .81272 .80835 .81333
ques-ques .74705 .56040 .47904 .56451
headlines .82749 .81894 .82352 .81894
plagiarism .84138 .82066 .82406 .81958
ans-ans .69235 .52460 .55217 .52028

Table 2: Performance on the 2016 STS Test Set

We list the performance of our system in Table 2.
Our system’s poor performance on the ans-ans and
ques-ques datasets can be attributed to our choice of
training data, which, although well suited for previ-
ous years, was not well suited for these datasets.

However, our system produces State of the Art re-
sults on the 2015 Test Sets. A breakdown of each of
the run’s performance against the 2015 STS data set
is provided in Table 3. We note that the results we
have reported for previous State of Art for individ-
ual data sources are not the results from just the win-
ning system but the State of Art across all Systems
for that data source. Our system also achieves com-
parable results (0.7793) to that presented by Sul-
tan et al. (2015) (0.779) on the 2014 STS dataset.
The weighted mean reported by us does not include
definitions as we decided to consider them indepen-
dently.

Table 4 provides a comparison of our system
against the previous State of the Art for the STS
2014 data set. The overall State of Art across all
data sets was reported by Sultan et al. (2015) based

Source
St. of
Art

Run1 Run2 Run3

Mean 0.8015 0.8086 0.8147 0.8130
ans-std 0.7879 0.7919 0.7965 0.7953
ans-for 0.739 0.7184 0.7137 0.7090
belief 0.7717 0.7703 0.7811 0.7752
headlines 0.8417 0.8508 0.8532 0.8532
images 0.8713 0.8448 0.8617 0.8615

Table 3: Performance on the 2015 STS Test Set.

Source
St. of
Art

Run1 Run2 Run3

Mean 0.779 0.7714 0.7793 0.7790
de-forum 0.504 0.5435 0.5630 0.5636
de-news 0.785 0.7718 0.7774 0.7756
headlines 0.765 0.8082 0.8055 0.8055
images 0.834 0.8340 0.8492 0.8496
OnWN 0.875 – – –
tweet-n 0.792 0.7551 0.7569 0.7573

Table 4: Performance on the 2014 STS Test Set.

on their 2015 System.

9 Conclusion and Future Work

In this paper we have described the system we used
for participation in the SemEval STS Monolingual
Task which made use of Types, Phrase Linking, and
a method of establishing common noun importance.

In the future, we intend to experiment with in-
cluding features for each of the Methods during the
training phase, other kinds of phrases, and different
Type definitions. We also intend to use the STS data
for learning the weights of different Types for use in
other NLP applications.

We believe that Types have significant poten-
tial and intend to explore them in greater detail.
Our immediate objectives will be in better defining
types, re-categorising common noun Types based
on clearer instructions to manual annotators, includ-
ing finer definitions of Types for proper nouns using
named entity recognition, and exploring methods of
defining Types for verbs, adverbs and adjectives. We
also intend to explore the use of Types in Question
Classification and Question Answering.
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