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Abstract 

For the purposes of SemEval-2015 Task-18 

on the semantic dependency parsing we com-

bined the best-performing closed track ap-

proach from the SemEval-2014 competition 

with state-of-the-art techniques for FrameNet 

semantic parsing. In the closed track our sys-

tem ranked third for the semantic graph accu-

racy and first for exact labeled match of 

complete semantic graphs. These results can 

be attributed to the high accuracy of the C6.0 

rule-based sense labeler adapted from the 

FrameNet parser. To handle large SemEval 

training data the C6.0 algorithm was extended 

to provide multi-class classification and to use 

fast greedy search without significant accura-

cy loss compared to exhaustive search. A 

method for improved FrameNet parsing using 

semantic graphs is proposed. 

1 Introduction 

The trend of natural language processing in recent 

years is shifting towards multilingual natural lan-

guage understanding based on full-text shallow 

semantic parsing (e.g., Banarescu et al., 2013). De-

spite various formalisms proposed, these ap-

proaches are characterized by direct extraction of a 

bi-lexical semantic graph rather than a bi-lexical 

dependency tree from the surface form of the sen-

tence.  

Following the best practice for semantic parsing 

established already by the SemEval-2014 Task 8 

(Oepen et al., 2014) we modified the best-

performing closed-track system there (Du et al., 

2014) by removing some less essential components 

while adding a new component of our own. The 

newly added component is the C6.0 rule-based 

classifier (Barzdins et al., 2014) used both for 

graph parsing and for sense labeling. Sense label-

ing is a novelty of SemEval-2015 Task 18 and was 

not present in the previous year competition. Se-

mantic frame is comprised of a complete predica-

tion combined with the sense identifier of its 

predicate as shown in Figure 1. Semantic frames 

are similar to FrameNet (Fillmore et al., 2003) 

frames, except that FrameNet argument labels are 

sense-specific – this mismatch can be resolved by 

feeding the semantic graph (instead of dependency 

tree) through the regular FrameNet parser. 
 

 
Figure 1. Semantic frame from the PSD corpus. 

 

We participated only in the closed track. Despite 

ranking third for the semantic graph accuracy, our 

system ranked first for exact labeled match of 

complete semantic graphs, and close second for 

semantic frame accuracy. 

2 Baseline Architecture 

For semantic graph parsing we started by imple-

menting a straight-forward baseline architecture 

described on the SemEval-2015 Task-18 evalua-

tion page by the task organizers. The baseline ar-

chitecture consists of two components: reduction 
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of the SDP graphs to trees and training the Mate-

tools dependency parser (Bohnet, 2010) to produce 

such trees from the unparsed text. Instead of a de-

structive reduction of the SDP graphs to trees, we 

implemented a fully reversible depth-first trans-

formation from the last year best-performing sys-

tem (Du et al., 2014). This simple approach 

immediately produced competitive graph parsing 

results (Table 1) in line with the best-performing 

systems from the last year.  
 

 in domain out of domain 

LP  LR LF LP LR LF 

en.dm 87.34 87.05 87.19 79.95 79.42 79.68 

en.pas 90.47 90.03 90.25 85.98 85.48 85.73 

en.psd 72.81 71.05 71.92 70.34 67.55 68.92 

cs.psd 74.44 71.56 72.97 60.19 57.43 58.78 

cz.pas 82.15 81.74 81.94 - - - 

 

Table 1. Baseline architecture labeled scores.  

 

For sense labeling in en.dm and en.psd representa-

tions (a new task not present in the previous 

SemEval-2014 competition) we reused a technique 

from prior work on FrameNet labeling (Barzdins et 

al., 2014) based on C6.0 classifier
1
. For this task 

the C6.0 classifier was modified (see Section 3) to 

directly produce the multi-class output. By using as 

the features values from the form, lemma, POS 

columns for the previous, current, and next word, 

this approach gave good results on the develop-

ment set: 93.86% accuracy for en.psd representa-

tion and 94.50% accuracy for en.dm 

representation. We did not try to improve it any 

further and the same baseline approach was used 

also for producing senses in the final submitted 

parses.  

In the submitted parses we carried out the graph 

parsing and sense labeling completely inde-

pendently, naively combining both annotations 

afterwards. Later experiments have shown that us-

ing graph parsing results as additional features for 

sense labeling would improve sense accuracy by 

approximately 0.2%. 

3 Sense Labeling with C6.0 Rules 

C6.0 rule-based classification algorithm (Barzdins 

et al., 2014) was inspired by the popular C4.5 deci-

sion-tree classification algorithm (Quinlan, 1993) 

                                                           
1 Available at http://c60.ailab.lv 

and has been used in the state-of-the-art FrameNet 

parser.  

To accommodate the large training data sets 

provided in SemEval competition we extended the 

original C6.0 algorithm with support for the multi-

class classification and with the fast greedy search 

as a replacement for the exhaustive search in the 

original C6.0 version.  

Given k training examples of the form: 

 

(a11, a12, a13, … a1n, class1) 

(a21, a22, a23, … a2n, class2) 

… 

(ak1, ak2, ak3, … akn, classk) 

 

where features aij and classi are arbitrary character 

strings, C6.0 classifier builds a list of rules (illus-

trated in Figure 2) for predicting the class of un-

seen examples. The left side of the rule is a pattern 

where any feature position may contain a specific 

character string to be matched or an unspecified 

value denoted by “_”.  

 
 lemma POS  Predicted 

sense 
p n Laplace 

ratio 

if( the, DT )then q:i-h-h 227 0 0.996 

if( _, CD )then card:i-i-c 147 9 0.937 

if( _, DT )then q:i-h-h 336 31 0.913 

if( trade, _ )then n_of:x-i 13 1 0.875 

 
Figure 2. Classification rules generated by C6.0. Rule 

quality is estimated by the Laplace ratio based on posi-

tive p and negative n matching training examples.  

 

The greedy search algorithm for building a mul-

ti-class classifier can be described as follows. 

Training data is converted to a pool of classifier 

training examples. Each training example is con-

sidered positive for the class it belongs to, and 

negative for any other class. A candidate rule is 

matched against all positive and negative training 

examples relative to its class. The count of 

matched positive and negative training examples 

allows to calculate rule’s Laplace ratio 

(p+1)/(p+n+2), where p is the number of matching 

positive training examples and n is the number of 

matching negative training examples. The rules 

with higher Laplace ratio are better. 

For each training example a set of rules correct-

ly classifying this training example is generated by 

incrementally adding to the left side of the rule 

feature values from this training example. Fast 

greedy search one-by-one adds the features in such 
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order that the resulting rule has the highest possible 

Laplace ratio in every feature adding iteration. This 

is contrary to the original C6.0 exhaustive search 

strategy which tried all feature relaxation combina-

tions instead. The greedy approach eliminates ex-

ponential complexity of C6.0 with respect to 

feature count and when tested, yielded as good re-

sults as the exhaustive search on SemEval data. 

All generated rules (regardless of the class they 

predict) are sorted by the highest Laplace ratio. 

The resulting list of rules is a multi-class classifier 

which can be considered consisting of multiple 

binary classifiers (individual rules). For unseen 

examples the class is assigned by the matching rule 

with the highest Laplace ratio.  

Fig. 2 shows some classification rules for pre-

dicting the sense column value in en.dm training 

dataset from two features. The actual production 

classifier for sense labeling uses more features 

(listed in Section 2) and generates several thousand 

rules. 

4 Semantic Graph Parsing  

We tried three approaches described below to im-

prove the graph parsing results above the baseline. 

4.1 Peking and MateTools Graph Parser 

The primary approach chosen for semantic graph 

parsing is to implement a fully reversible transfor-

mation between the semantic graph and a tree rep-

resentation that encodes the extra information in 

edge labels. It allows training a dependency parser 

(Bohnet, 2010) on the labeled tree data, and using it 

to parse text to structures that can be converted 

back to a semantic graph. 

For reversible graph to tree transformation we 

have implemented the depth-first search transfor-

mation and the auxiliary label system used by last 

year’s best-performing Peking system (Du et al, 

2014). The auxiliary labels encode: 

 A separator to indicate multiple original 

edges encoded in this label; 

 Ancestor-number indicating that in the 

original graph, an edge with this label is 

drawn from the dependent to the n-th an-

cestor instead of the direct parent of this 

tree edge; 

 A reverse-edge symbol to indicate edges 

that have reversed direction compared to 

the original graph. 

For the multi-root sentences that appear in some of 

the datasets, we choose the first root (according to 

word order in sentence) as the main tree root, and 

iteratively link all the other sentence fragments to 

the nearest node in the accumulated tree according 

to the number of words between them; in case of 

ties preferring the leftmost node. When creating 

the transformed tree, we also used special labels to 

distinguish the secondary root nodes of other 

fragments, so that the transformation is reversible 

for graphs with multiple root nodes. 

After parsing, a tree may contain labels that are 

invalid according to the principles of this transfor-

mation – i.e., a reference to the grandparent of a 

node that does not have one. In this case, we draw 

an edge with the appropriate label to the closest 

possible node. 

In this approach the cyclic graph structures are 

transformed to the different tree branch topologies 

depending on the traversal order. Traversal order 

thus affects the likelihood of the parser to correctly 

reconstruct these cyclic graph structures. To im-

prove cyclic graph structure reconstruction we de-

veloped multiple parser variations for ensemble 

voting based on the following traversal orders for 

each node: 

 Linear distance of linked words, starting 

with the closest words and preferring the 

left node in case of ties; 

 Frequency of the edge labels, prioritizing 

the most frequent labels; 

In addition, we also applied the same transfor-

mations for sentences with reversed word order to 

provide further variation. The resulting parsers 

have comparable accuracy, but produce different 

mistakes, making them useful for ensemble voting. 

Simple ensemble voting improves graph parsing 

accuracy over the baseline (Table 2).  

 
 in domain out of domain 

LP  LR LF LP LR LF 

en.dm 88.63 87.12 87.87 81.75 79.61 80.67 

en.pas 91.46 90.01 90.73 87.55 85.71 86.62 

en.psd 75.25 71.29 73.22 73.28 67.52 70.28 

cs.psd 78.66 71.73 75.04 64.27 57.72 60.82 

cz.pas 83.10 81.85 82.47 - - - 

 

Table 2. Ensemble method labeled scores.  
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4.2 C6.0 Rule Based Graph Parser 

We also applied our C6.0 rule-based classifier (de-

scribed in Section 3) for semantic graph parsing 

through exact dependency phrase matching. Due to 

low recall rate it provided only a tiny positive 

boost to the final ensemble voting result (Table 4) 

despite the high precision of the rules method (Ta-

ble 3). Here we considered only edges of length up 

to 4 and C6.0 rules with Laplace ratio above 90%. 

Due to low recall we signaled “abstain” vote for 

the edges not covered by these rules.  

 
 in domain out of domain 

LP  LR LF LP LR LF 

en.dm 92.80 33.47 49.20 91.84 19.78 32.56 

en.pas 92.94 35.53 51.40 92.58 28.07 43.08 

en.psd 88.34 18.76 30.94 86.70 11.34 20.05 

cs.psd 95.29 16.70 28.42 80.46 8.13 14.77 

cz.pas 90.97 22.91 36.60 - - - 

 

Table 3. Labeled scores for the rules method. 

4.3 Other parsing approaches 

Experiments with transition based parsers (Malt-

Parser/MaltOptimizer) showed approximately 2% 

lower accuracy than Mate-tools on the same trans-

formed tree data. This is consistent with findings 

made by others during the earlier SemEval-2014 

Task-8. We chose not to use those parsers for the 

final submission.  

5 Final Results 

We submitted two runs but report results only for  

run-1, because run-2 was discovered to include a 

corrupted Mate-tools dataset. 

Our final semantic graph and semantic frames 

parsing results are shown in Tables 4 and 5. Se-

mantic frames results measure overall sense label-

ing and graph parsing accuracy, which is the 

novelty of this year SemEval task. 
 

 in domain out of domain 

LP  LR LF LP LR LF 

en.dm 88.57 87.24 87.90 81.69 79.72 80.69 

en.pas 91.50 90.02 90.75 87.56 85.72 86.63 

en.psd 75.25 71.52 73.34 73.23 67.71 70.37 

cs.psd 78.66 71.84 75.10 64.29 57.83 60.89 

cz.pas 83.12 81.84 82.47 - - - 

 

Table 4. Labeled scores for the submitted result. 

 

 in domain out of domain 

FP  FR FF FP FR FF 

en.dm 58.45 57.79 58.12 42.62 41.17 41.88 

en.psd 52.48 52.59 52.54 40.60 40.93 40.76 

 

Table 5. Semantic frame scores for the submitted result. 

 

Table 6 shows ranking of averaged SemEval scor-

ing metrics for the best runs of the systems partici-

pating in the closed task. Although we ranked third 

for the semantic graph (labeled dependencies) met-

ric, our system ranked close second for semantic 

frame accuracy, and first for labeled exact match 

of the complete semantic dependency graphs. The-

se results suggest that the C6.0 rule accuracy for 

sense labeling and for exact match semantic graph 

parsing was able to compensate for slightly lower 

overall graph parsing accuracy. 
 

System LF LM PF SF FF 

Peking 80.51 21.14 62.64 69.45 48.70 

Lisbon 80.42 20.05 63.59 -- -- 

Riga 78.68 21.84 61.29 73.76 48.33 

Minsk 78.18 15.04 56.40 79.40 47.32 

 

Table 6. Ranking of scores averaged over all available 

datasets for the best runs of the systems in the closed 

track: labeled dependencies (LF), labeled exact match of 

the complete semantic dependency graphs (LM), com-

plete predications (PF), sense identification (SF), se-

mantic-frames (FF).  

6 Conclusions 

Variations of Peking depth-first reversible graph-

to-tree conversion algorithm in combination with 

state-of-the-art dependency parser is still a compet-

itive graph parsing approach.  

C6.0 rule-based classifier provides competitive 

sense labeling accuracy and some improvement 

also for graph parsing accuracy. 

An ensemble method with “abstain” voting op-

tion for joining outputs of various graph parsing 

approaches boosts the results by ironing out the 

weaknesses of individual parsers. Required compu-

tational resources are the main limitation here. 
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