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Abstract

Medical texts are filled with mentions of dis-
eases, disorders, and other clinical conditions,
with many different surface forms relating to
the same condition. We describe MINERAL, a
system for extraction and normalization of dis-
ease mentions in clinical text, with which we
participated in the Task 14 of SemEval 2015
evaluation campaign. MINERAL relies on a
conditional random fields-based model with a
rich set of features for mention detection, and
a semantic textual similarity measure for entity
linking. MINERAL reaches joint extraction
and linking performance of 75.9% relaxed F1-
score (strict score of 72.7%) and ranks fourth
among 16 participating teams.

1 Introduction

Clinical narratives contain numerous mentions of
diseases and disorders. Recognizing these mentions
in text and normalizing the different superficial forms
of a disorder to the same canonical form could enable
new types of analyses that would be beneficial for
both medical professionals and patients.

Detection and normalization of various concepts
such as named entities (McCallum and Li, 2003; Kr-
ishnan and Manning, 2006) or events (Bethard, 2013;
Glavaš and Šnajder, 2014) has long been in the focus
of the NLP community. Disorder mentions in clini-
cal text, however, have some peculiarities not typical
for traditional information extraction tasks such as
discontinuity or distributivity of a single token to
multiple disorder mentions. For example, the snippet

“Patient’s extremities were turned in and
clinched together as a consequence of. . . ”

contains two mentions of medical conditions, “ex-
tremities turned in” and “extremities clinched to-
gether”, which share the token “extremities”, with
the latter mention being discontinuous.

In this paper we present the MINERAL (Medi-
cal INformation ExtRAction and Linking) system
for recognizing and normalizing mentions of clinical
conditions, with which we participated in Task 14
of SemEval 2015 evaluation campaign. The system
recognizes disorder mentions via the supervised con-
ditional random fields (CRF) model with a rich set of
lexical, gazetteer-based, and informativeness-based
features. We apply a set of post-processing rules to
construct disorder mentions from token-level anno-
tations which follow the BEGIN-INSIDE-OUTSIDE

scheme. We utilize a measure of semantic textual
similarity to link recognized disorder mentions to
entries in the SNOMED-CT medical database. Our
approach is resource light in the sense that, except for
SNOMED-CT which is necessary for normalization,
it does not rely on medical NLP resources.

We ranked fourth (relaxed evaluation setting)
among 16 teams in the official evaluation, with 3%
lower performance than the best-performing system.
Such a result suggests that coupling sequence la-
belling for mention recognition with an STS measure
for concept normalization poses a viable solution for
entity recognition in the clinical domain. We make
the MINERAL system freely available.1

1http://takelab.fer.hr/mineral
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2 Clinical Information Extraction

Clinical concept extraction is an essential task in
medical natural language processing. While early
approaches heavily relied on domain-specific vocab-
ularies (Friedman et al., 1994; Aronson, 2001; Zeng
et al., 2006), more recent efforts leverage the human-
annotated corpora to develop machine learning mod-
els for the extraction of medical concepts (Tang et al.,
2013; Uzuner et al., 2010). The rise in the number
of data-driven efforts in the medical domain was par-
ticularly motivated by the shared tasks such as i2b2
challenges (Uzuner et al., 2010) and ShARe/CLEF
eHealth Evaluation Lab (Suominen et al., 2013).

The first subtask of the SemEval Task 14, in which
we participated, was essentially the same as the first
task in the ShARe/CLEF eHealth campaign. We did
not participate in the second subtask on extracting
arguments of disorder mentions. The best performing
system of the ShARe/CLEF eHealth task on disor-
der extraction and normalization (Tang et al., 2013)
employed CRF and structured SVM models for men-
tion extraction and the traditional vector-space model
from information retrieval (Salton et al., 1975) for
disorder normalization.

Similar to (Tang et al., 2013), we employ the CRF
model for extraction of disorder mentions, but we
leverage recent findings in word vector representa-
tions (Mikolov et al., 2013) for feature computation.
We make use of the state-of-the-art measure of se-
mantic similarity of short texts (Šarić et al., 2012) for
concept normalization.

3 MINERAL

MINERAL consists of two subsystems: one for ex-
tracting disorder mentions and the other for normal-
izing extracted mentions by assigning them a Con-
cept Unique Identifier (CUI) from the SNOMED-CT
database (Stearns et al., 2001).

3.1 Disorder Mention Extraction

At the core of the extraction subsystem is the
CRF model with lexical, gazetteer-based, and
informativeness-based features. We decided to use
the BEGIN-INSIDE-OUTSIDE annotation scheme for
the CRF model, although this scheme does not ac-
count for token-sharing disorder mentions. Thus,
we apply a set of postprocessing rules to derive dis-

order mentions from token-level outputs produced
by the CRF model and to handle most frequent
cases of token-sharing mentions (e.g., “abdomen non-
disturbed and non-distended”).

3.1.1 Features
We feed the CRF model with a rich set of features

that can be divided into (1) token-based features, (2)
gazetteer-based features, and (3) information content-
based features. All of the features are templated on
the symmetric window of size two, i.e., computed
for two preceding tokens, current token, and two
subsequent tokens.

Token-based features (TK). Token-based fea-
tures group all features which can be computed just
from the token at hand. These include the surface
form, lemma, stem, POS-tag, and shape (encoding of
the capitalization of the word, e.g., “UL” for “Atrial”)
of the word. We also encode the first and the last char-
acter bigram and trigram of the word as features.

Gazetter-based features (GZ). Features in this
group rely on comparison of tokens in text with en-
tries in the SNOMED-CT database and with disease
annoations on the training set. For each token we
compute: the maximum similarity with any of the
words (1) starting a SNOMED-CT entry, (2) inside
a SNOMED-CT entry, and (3) ending a SNOMED-
CT entry. We compute the same three features only
considering gold annotations in the training set as
gazetteer entries. We compute the semantic similarity
between two words as the cosine between their cor-
responding word embedding vectors. We trained the
embedding vectors with the word2vec tool (Mikolov
et al., 2013) on the large unlabeled corpus of clini-
cal texts (with over 400K documents) provided by
the task organizers. We also counted the number of
gazetteer entries that start with, contain, and end with
the token at hand.

Information content-based features (IC). These
features compute the informativeness of ngrams
within the clinical domain and compare it their gen-
eral informativeness. We use information content
as a measure of the informativeness of the word w
within a corpus C:

ic(w) = − log
freq(w) + 1∑

w′∈C freq(w′) + 1
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where freq(w) is the frequency of the word w in
corpus C. We compute three different information
content-based features. First, we compute the infor-
mation content of the word within a large corpus of
clinical narratives. Secondly, we compute the ratio
of the information content of the word computed on
the clinical corpus and the information content of the
same word computed on a large general corpus. We
used Google Books ngrams (Michel et al., 2011) as
the general corpus. The rationale here is that the clin-
ical concepts such as diseases and disorders will have
a higher relative frequency and, consequently, lower
information content in the clinical corpus than in the
general corpus. Finally, the third feature we com-
pute is the mutual information of the bigrams in the
clinical corpus, which we define via the information
content:

mi(w1, w2) =
ic(w1w2)

ic(w1) · ic(w2)

where ic(w1w2) is the information content of the bi-
gramw1w2. Mutual information score indicates pairs
of words that often appear together (e.g., “atrial di-
latation”). For each word wi we compute the mutual
information of the bigrams it constitues with the pre-
vious word (i.e., wi−1wi) and the subsequent word
(i.e., wiwi+1).

3.1.2 Postprocessing
The only reasonable postprocessing strategy with

the B-I-O scheme is to join each INSIDE token with
the closest preceding BEGIN token. However, this
strategy requires rule-based fixes for common situa-
tions in which two disorder mentions share a token.
We designed postprocessing rules by observing the
most frequent mistakes our CRF model made on the
development set provided by the organizers. This led
to three particular fixes: (1) mentions of abdomen
condition typically correspond to two disorder men-
tions sharing the token “abdomen” (e.g., processing

“abdomen non-tender and non-distended” results with
two disorder mentions – “abdomen non-tender” and

“abdomen non-distended”); (2) mentions of allergies
typically share the token “allergies” (e.g., process-
ing “Allergies: Roxicet / Penicillins / Aspirin” pro-
duces three mentions – “Allergies Roxicet”, “Aller-
gies Penicillins”, and “Allergies Aspirin”); and (3)
the CRF model rather frequently fails to recognize

the type of the hepatitis. We associate the type of the
hepatitis (e.g., “B”) found in the proximity of the
token “hepatitis” when CRF fails to do so.

3.2 Mention Normalization
The normalization subsystem assigns a CUI to each
extracted disorder mention by comparing the seman-
tic similarity of the mention with the SNOMED-CT
entries. Given that SNOMED-CT has over 650K
entries, it is infeasible to compute the similarity
of the disorder mentions with all database entries.
Therefore, we first filtered out only the entries which
contain at least one lemma from the extracted men-
tion. E.g., for the mention “melena due to gastroin-
testinal haemorrhage” we would consider only the
SNOMED-CT entries containing either “melena”,

“gastrointestinal”, or “haemorrhage”.
We compute the similarity as the modified variant

of the greedy weighted alignment overlap (GWAO)
measure from (Šarić et al., 2012). To compute this
score, we iteratively pair the words – one from ex-
tracted mention and the other from the database entry
– according to their semantic similarity. In each iter-
ation we greedily select the pair of words with the
largest semantic similarity, and remove these words
from their corresponding text snippets. The similarity
between words is computed as the cosine between
their embedding vectors obtained with word2vec
(Mikolov et al., 2013) on the large unlabeled corpus
of clinical narratives. Let P (m, s) be the set of word
pairs obtained through the alignment between the
extracted mention m and the SNOMED-CT entry s
and let vec(w) be the embedding vector of the word
w. The GWAO score is then computed as follows:

gwao(m, s) =
∑

(wm,ws)
∈P (m,s)

α · cos (vec(wm), vec(ws))

where α is the larger of the information contents
of the two words, α = max (ic(wm), ic(ws)). The
gwao(m, s) score is normalized with the sum of in-
formation contents of words from m and s, respec-
tively, and the harmonic mean of the two normalized
scores is the final similarity score. We assign to
the extracted mention the CUI of the most similar
SNOMED-CT entry, assuming the similarity is above
some treshold λ (otherwise, the label “CUI-less” is
assigned to the mention). The optimal value of λ is
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Strict Relaxed

Model P R F1 P R F1

TK 75.6 65.6 70.2 90.0 80.4 84.9
TK + GZ 75.1 66.1 70.3 89.6 80.9 85.0
TK + IC 76.4 66.3 71.0 90.2 80.4 85.1
All feat. 76.3 66.9 71.3 90.1 81.1 85.4

All + PPR 77.4 69.1 73.0 90.1 82.2 86.0

Table 1: Model selection results.

determined by maximizing the CUI prediction accu-
racy on the training and development set. A useful
add-on to the normalization step is the memorization
of CUIs for all disorder mentions observed in the
training set. In other words, a memorized mention
observed in the test set will be assigned the CUI it
had in the training set.

4 Evaluation

Participants were provided with a training set consist-
ing of 298 clinical documents and a development set
with 133 documents. We used the training and devel-
opment set to optimize the model (features, postpro-
cessing rules, and the similarity treshold λ). A test
set of 100 clinical documents was used for official
evaluation.

4.1 Model Optimization

We trained the CRF model with different combina-
tions of feature groups (TK, GZ, and IC) and eval-
uated the performance of these models on the de-
velopment set. We also evaluated the contribution
of the postprocessing rules (PPR) on the develop-
ment set. The extraction performance of the differ-
ent models is shown in Table 4.1. The model using
only token-based features alone (model TK) achieves
solid performance. Information content-based fea-
tures (model TK + IC) seem to have a more positive
impact on the performance than the gazetteer-based
features (model TK + GZ). Still, the model with all
features displays the best performance. Applying
postprocessing rules further boosts the performance
on the development set, which is expected, because
the rules were designed precisely to fix the most fre-
quent errors on that dataset. We submitted the model
All + PPR for official evaluation. We also optimized

Strict Relaxed

Team P R F1 P R F1

ezDI 78.3 73.2 75.7 81.5 76.1 78.7
ULisboa 77.9 70.5 74.0 80.6 72.9 76.5
UTH-CCB 77.8 69.6 73.5 79.7 71.4 75.3
UWM 77.3 69.9 73.4 80.9 73.1 76.8
TakeLab 76.1 69.6 72.7 79.4 72.7 75.9
Bioinf.-UA 69.0 73.6 71.2 71.9 76.6 74.2

Table 2: Official SemEval Task 14 (subtask 1) evaluation.

the similarity treshold λ to maximize the normaliza-
tion accuracy on the development set, selecting the
optimal value of λ = 0.83.

4.2 Official Results

A subset of the official ranking on the test set is
shown in Table 4.2. MINERAL ranks fourth among
16 teams in relaxed evaluation and fifth in strict eval-
uation, with only 3% lower F1 performance than the
best performing system.

Like most other systems, MINERAL displays
higher precision than recall. This would suggest a
non-negligible amount of obdurate disorder mentions
which appear rarely in clinical documents and which
are not semantically similar with more frequent dis-
orders.

5 Conclusion

We described MINERAL, a system for extraction
and normalization of disorder mentions in clinical
text, with which we participated in Task 14 of Se-
mEval 2015. At the core of the mention extraction
approach is the CRF model built on B-I-O annota-
tion scheme and a rich set of lexical, gazetteer-based,
and informativeness-based features. We link the dis-
ease mentions to the SNOMED-CT entries using a
measure of semantic textual similarity of short texts.

MINERAL achieved performance of almost 76%
F1 (relaxed evaluation setting), ranking us fourth
out of 16 teams participating in the task, with 3%
lower performance than the best-performing team.
Such a result suggests that a resource light approach
with sequence labeling (with semantic features) for
mention extraction and STS measures for concept
normalization offers competitive performance in the
clinical domain.
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