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Abstract

Recently, there has been renewed interest in
semantic dependency parsing, among which
one of the paradigms focuses on parsing di-
rected acyclic graphs (DAGs). Considera-
tion of the decoding problem in natural lan-
guage semantic dependency parsing as find-
ing a maximum spanning DAG of a weighted
directed graph carries many complexities. In
particular, the computational complexity (and
approximability) of the problem has not been
addressed in the literature to date. This pa-
per helps to fill this gap, showing that this
general problem is APX-hard, and is NP-hard
even under the planar restriction, in the graph-
theoretic sense. On the other hand, we show
that under the restriction of projectivity, the
problem has a straightforward O(n3) algo-
rithm. We also give some empirical evidence
of the algorithmic importance of these graph
restrictions, on data from the SemEval 2014
task 8 on Broad Coverage Semantic Depen-
dency Parsing.

1 Introduction

Consideration of the decoding problem in natural
language semantic dependency parsing as finding
a maximum spanning DAG of a weighted directed
graph carries many complexities that have not been
addressed in the literature to date. Amongst these
are the problem’s computational complexity (and its
approximability). The decoding problem for seman-
tic dependency parsing was first introduced as the
maximum spanning directed acyclic graph problem
(MSDAG) by McDonald and Pereira (2006), where

it is stated to be NP-hard.1 The MSDAG problem
asks for the highest weighted spanning sub-DAG of
an input weighted digraph.

In this paper, we explain the APX-hardness of
MSDAG, by relating it to the almost identical min-
imum weighted feedback arc set and maximum
weighted acyclic subgraph problems. The proof
of MSDAG’s APX-hardness seems to discourage
its use for decoding in semantic dependency pars-
ing. However, unlike in syntactic dependency (tree)
parse decoding, where projective decoding given
by Eisner (1996)’s algorithm has a slightly higher
computational complexity (O(n3)) than the non-
projective (Tarjan) maximum spanning tree algo-
rithm (O(n2)) (Tarjan, 1977; Chu and Liu, 1965;
Edmonds, 1967; McDonald et al., 2005), finding the
maximum spanning projective dependency DAG is
tractable and can be found in time O(n3), contrary
to its APX-hard non-projective counterpart.

Projective MSDAG has been referred to in the
semantic dependency parsing literature as “planar
MSDAG”, which is an unfortunate mismatch with
long-established graph theoretical terminology, that
we need in this paper. As we discuss below, the
planar MSDAG problem is in fact NP-hard, where
“planar” is used in the graph theoretical sense. We
generalise the definition of projectivity from tree
models of syntax theory, which forbids crossing
edges, to digraphs.

The projectivity restriction itself has not been lin-
guistically motivated to date. However, an efficient

1McDonald and Pereira (2006) provide a reference to
(Heckerman et al., 1995) for this fact. This fact is actually indi-
rectly shown much earlier, as we discuss in Section 4.
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exact algorithm for this restriction would pose a
starting point for various relaxations of the definition
(also known as mild non-projectivity) that reflect lin-
guistic description of the data, as has been done for
the Eisner algorithm (in for example (Bodirsky et
al., 2005; Gómez-Rodrı́guez et al., 2011; Pitler et
al., 2012; Pitler et al., 2013; Satta and Kuhlmann,
2013)). This projectivity restriction has been inher-
ent in transition-based approaches to semantic de-
pendency parsing (for example, in (Sagae and Tsujii,
2008; Titov et al., 2009)), without any study of the
complexity nor proof of the power of the automaton
models in recognising all projective DAGs. So, in
terms of computational efficiency, we provide the-
oretical justification for the already used restriction
of projectivity in DAG parsing, exhibiting a dynamic
programming algorithm for this task, which runs in
polynomial time.

Previous automaton approaches to DAG parsing
can roughly be separated into two camps: one simi-
lar to (Sagae and Tsujii, 2008), which assumes pro-
jectivity of graphs in the data and parses without car-
rying out any transformation to relax the constraint
of projectivity, and another similar to (Titov et al.,
2009), which attempts (online) to find a re-ordering
of the words in the sentence such that the resulting
graph is projective. The latter approach assumes,
as we will explain, precisely outerplanarity of the
graphs, which, it turns out, is also NP-hard (Cf.
§2 and §7). With respect to the data that we con-
sider here, it turns out that the assumption of graph
outerplanarity is well represented (almost all graphs
among three data sets being outerplanar), whereas
the percentage of projective graphs differs greatly
from one dataset to another (from 57% to 84%, Cf.
Section 5).

The projective MSDAG algorithm presented here
is a first-order decoding algorithm, and empirical re-
search on semantic parsing seems to have already
gone beyond this (for example, in (Martins and
Almeida, 2014)); moreover, first-order decoding us-
ing MSDAG in general seems not to be appropri-
ate (Schluter, 2014), though the empirical work pre-
sented by Martins and Almeida (2014) on digraph
decoding using a second order model suggests the
relevance of higher-order DAG decoding in seman-
tic dependency parsing. Manufacturing higher-order
parsing algorithms in the sense of (McDonald and

Satta, 2007; Carreras, 2007) from the tree decoding
literature, based on the algorithm presented here is
straightforward. And we believe that it is these lat-
ter algorithms, rather, that would provide the basis
for empirical studies based on the generally theoret-
ical research presented here.

2 Preliminaries

A graph is called planar if it can be drawn in the
plane with no crossing edges. Each maximal region
of the plane surrounded by edges of the planar graph
drawn in the plane is called a face. There is one
outer or unbounded face and some number of in-
ner or bounded faces. If a connected planar graph
can be written in the plane so that all vertices are on
the outer face, then we call the graph outerplanar.
A connected component of a graph is a maximal
subgraph in which any two vertices are connected
to each other by a path. A digraph is a directed
graph (where edges have an orientation). A DAG
is a digraph without any directed cycles. Consider
the underlying undirected graph H of a digraph G.
A weakly connected component of G is a maximal
sub-digraph whose underlying undirected graph is a
connected component of H .

Notation. We put [i, j] := {i, i+ 1, . . . , j − 1, j},
for i ≤ j, and [i] := [1, i].

In this paper, edge weights can be positive or neg-
ative and not zero, unless otherwise stated.

Hardness of approximability. APX is the class of
all NP optimisation problems that can be solved in
polynomial time with approximation ratio bounded
by some constant. A problem is APX-hard if there
is a PTAS-reduction from every problem in APX
to that problem.2 In this paper, we use a simpler
type of PTAS-reduction called an L-reduction (lin-
ear reduction), which intuitively is a mapping be-
tween problems so that (approximate) solutions dif-
fer only by some constant factor. Any L-reduction is
also a PTAS-reduction (but not vice versa).

Definition 1. An L-reduction from problem A to
problem B with respective cost functions cA and

2A discussion of PTAS-reductions is out of the scope of this
paper. The definition of a PTAS-reduction can be found, for
example, in (Wegener, 2005).
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cB consists of a pair of polynomial-time computable
functions f and g such that:

• if x ∈ A then f(x) ∈ B,

• if y is a solution to f(x), then g(y) is a solution
to x,

• there exists a positive constant α such that the
optimal solution for f(x) ∈ B (optB(f(x))) is
bounded by a factor α of the optimal solution
for x ∈ A (optA(x)), and

optB(f(x)) ≤ α · optA(x)

• there exists a positive constant β bounding dif-
ferences between solutions and optimal solu-
tions

|optA(x)−cA(g(y))| ≤ β·|optB(f(x))−cB(y)|.

3 Generalising projectivity to DAGs

In statistical natural language syntactic or semantic
dependency parsing decoding problems, the input is
a sequence of n words, W = 〈w1, . . . , wn〉, called
the sentence and a further set of weighted asymmet-
ric binary relations (directed edges) between these
words (nodes). The task is to output a most likely
connected and spanning digraph over those words,
where the formal expressivity of the structure is de-
fined with respect to the linguistic theory in ques-
tion.

The order of words in the sentence is essential
for the description of important restrictions of trees
and DAGs for natural language. We therefore in-
clude the order in the sentence digraph structure, so
GW = (V,E,≤W ) is a dependency digraph for the
sentence W , where V is the set of words tokens, E
is the set of directed binary relations between words,
and ≤W describes the order of the words in the sen-
tence W (≤W is the sentential order). For the re-
mainder of this paper, when we talk about depen-
dency digraphs (or dependency DAGs or dependency
trees) the nodes of the underlying digraphs are asso-
ciated with some fixed total order. Also we use the
terms “word” and “node” synonymously in this con-
text.

In linguistic terms, if (wi, wj) is an edge, then we
say thatwi is a head ofwj and thatwj is a dependent

of wi. We can also write the edge (wi, wj) as wi →
wj . wi

∗−→ wj is the reflexive transitive closure of
the dependency relation.

A dependency tree then is just a connected de-
pendency digraph in which every node has a unique
head, except for a special node called the root, which
has no head.

An interesting property yielding good coverage
of some natural languages (for example, English) is
that resulting dependency trees should be projective.

Definition 2. A dependency tree T = (V,E,≤W

) is projective if for all edges (wi, wj) ∈ E,
for all intervening words, wk such that k ∈
[min{i, j},max{i, j}], we have wi

∗−→ wk.

It turns out that the edges of a projective depen-
dency tree can be written above the sentence (i.e.,
words written on a line segment in sentential order)
without any crossing edges. This notion of avoiding
crossing edges in “desirable” spanning DAGs has
been considered in recent natural language parsing
research, however the projectivity of edges as given
in Definition 3 for dependency trees is no longer a
sufficient condition to ensure this property in DAGs.
As such, NLP researchers have adopted the unfortu-
nate term “planar”. Rather than assign a new mean-
ing to the term planar, we generalise the definition
of projectivity using the notion of crossing edges so
that it applies to dependency digraphs, adopting this
definition for the remainder of the paper. We then
provide the correct restriction of planar digraphs that
projective digraphs correspond to.

Definition 3. For a dependency digraph GW =
(V,E,≤W ), an edge (wi, wj) or (wj , wi), with i ≤
j is projective if and only if for all words wk such
that i < k < j, there are no edges (wl, wk) or
(wk, wl) such that l < i or l > j.
GW is projective if and only if all its edges are pro-
jective.

Since the definition of projectivity excludes cross-
ing edges when nodes are laid out on a line segment
(sentential order), we see that the underlying digraph
of a projective digraph is outerplanar. Moreover, it
is easy to prove that for any planar digraph with all
nodes on its outer face, we can choose a first node
and define an ordering ≤W on the nodes by follow-
ing the order of nodes (in a fixed direction) along an
outer face, skipping repeats, until the original node
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is met (recalling that one can find this outer face in
linear time). So, there is a correspondence between
the sets of projective digraphs and outerplanar di-
graphs.

Proposition 4. For the projective digraph GW =
(V,E,≤W ), (V,E) is an outerplanar digraph.
Also, every outerplanar digraph corresponds to
some projective digraph with a sentential ordering
defined by node traversal in a fixed direction along
its outer face.

On the other hand, given an outerplanar graph and
some random sentential order, we of course do not
necessarily have a projective digraph. In particu-
lar, an outerplanar drawing in the plane of a digraph
does not necessarily have the specific desired order
of vertices on its outer face. So, for example, finding
the outerplanar MSDAG and the projective MSDAG
are two different problems.

4 APX-hardness of MSDAG and its dual

In this section we give L-reductions from the APX-
hard problems maximum weighted directed acyclic
subgraph and its dual minimum weighted feedback
set to MSDAG and its dual.

Minimum weighted feedback arc set. The dual
problem of the MSDAG problem is almost identi-
cal with that of finding a minimum weighted feed-
back arc set. Given a directed graph, G = (V,E),
a feedback arc set (FAS) is a subset S of G’s
edges whose removal leaves a DAG (i.e., such that
(V,E(G)\E(S)) is a DAG). A minimum feedback
arc set (MFAS) is the smallest among all possible
feedback arc sets and a minimum weighted feedback
arc set (MWFAS) is a feedback arc set of minimum
weight. We call an MWFAS whose removal leaves a
connected DAG a nice MWFAS. Finding a nice MW-
FAS is the dual of the MSDAG problem.

Already, the decision version of the FAS problem,
which asks whether there is a feedback arc set of
size k was listed as one of Karp’s original 21 NP-
complete problems (Karp, 1972), which shows the
NP-hardness of the optimisation version. In fact,
this optimisation problem is also shown to be APX-
hard (Kann, 1992). The best approximation algo-
rithm in the literature to date for this problem has an
approximation guarantee of O(log n log logn) and

the solution is NP-hard to approximate to within any
factor smaller than 10

√
5 − 21 ≈ 1.36 (Even et al.,

1998).
An L-reduction from MWFAS to MSDAG for a

weighted directed digraph G goes as follows. We
first show that if the G has no edge cut consist-
ing only of edges of negative weights, then the nice
MWFAS is simply the MWFAS. Let D∗ be an MS-
DAG for G. We show that the nice MWFAS F :=
E(G) − E(D∗) must also form an MWFAS. Sup-
pose otherwise, then there is some other F ′ of lower
weight and such that D′ := (V (G), E(G) − F ′) is
acyclic. So D′ is disconnected and has at least two
weakly connected components; we suppose without
loss of generality that it has precisely two weakly
connected components, C1 and C2. But then there
must not be any positive weighted edge e in E(G)
between C1 and C2; otherwise we could remove
that edge from F ′ to achieve an MWFAS of lower
weight, since C1 ∪ C2 ∪ {e} is still acyclic.

Now suppose that there is some edge cut con-
sisting solely of edges of negative weight in G and
therefore in D∗. Without loss of generality, we can
suppose that there is only one such edge cut. Clearly,
D∗ contains at most one edge from this edge cut,
the rest of them being in the nice MWFAS. An MW-
FAS would contain every negative weighted edge.
So, the difference between a nice MWFAS and an
MWFAS is just this one edge, for G. In particu-
lar, we have given an L-reduction from MWFAS to
nice MWFAS, where the optimal solution for MW-
FAS is just the nice MWFAS with negative weighted
edges removed (so both α and β from Definition 1
are equals to 1).

This shows the APX-hardness of the dual of the
MSDAG problem, nice MWFAS.

Maximum weighted directed acyclic subgraph.
An almost identical problem to MSDAG is the max-
imum weighted directed acyclic subgraph problem
(MWDAS), which aims to find the (not necessar-
ily spanning) DAG of highest weight. The decision
version of the maximum directed acyclic subgraph
problem (MDAS) problem which asks whether there
is a directed acyclic subgraph on k edges can be
solved by the decision version of the FAS prob-
lem, with m − k as the parameter (where m is the
number of edges in the input graph), and hence has
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long been shown to be NP-complete (Karp, 1972).
By the same token, the optimisation problem has
been shown to be APX-hard (Kann, 1992). The
best approximation algorithm in the literature to date
for this problem has an approximation guarantee of
1
2 + Ω

(
1√

dmax

)
where dmax is the maximum vertex

degree for the graph (Berger and Shor, 1997). More-
over, the solution is Unique Games-hard to approxi-
mate to within any factor smaller than 1/2, which is
a tight bound (Guruswami et al., 2008).

Again, if there are no edge cuts in the graph con-
sisting only of negative weighted edges, then the
MSDAG and MWDAS solutions are identical. Oth-
erwise, the MWDAS is just the MSDAG without its
negative weighted edges, by the discussion above L-
reducing MWFAS to nice MWFAS.

We have therefore shown the following fact.

Theorem 5. MSDAG and its dual, nice MWFAS, are
APX-hard.

5 Planarity, outerplanarity and
projectivity of DAGs in English data

APX-hardness of the MSDAG problem not only
means that the problem is essentially infeasible, but
also that it theoretically cannot be very well approxi-
mated. However, with some structural assumptions,
such as the planarity, outerplanarity or projectivity
of the objective DAGS, either approximation algo-
rithms with a good approximation guarantee or even
feasible algorithms might be achievable. The au-
thors are not aware of any specific theoretical lin-
guistic evidence for the planarity or outerplanarity
of semantic dependency DAGs. However, we con-
sider the three datasets from SemEval 2014 task
8 on Broad Coverage Semantic Dependency Pars-
ing (Oepen et al., 2014), referred to as PAS, DM
and PCEDT, following the packing conversion into
DAGs described in (Schluter et al., 2014), without
the actual label packing or edge removal heuristic,
finding that almost all DAGs are outerplanar (and
therefore also planar). Moreover, the datasets con-
sist of a majority of projective DAGs, with those
graphs that are not projective having proportion-
ally on average a large projective subgraph (respec-
tively 0.555, 0.580,and 0.605 for the PAS, DM, and
PCEDT datasets). This large projective proportion
suggests future avenues for algorithms for mildly

projective DAGs, based on the projective algorithm
presented in this paper.

PAS DM PCEDT
% projective 58.461 56.840 84.192
% outerplanar 97.796 99.160 95.390
% planar 99.997 100 99.904

Table 1: Percentage of projective, planar, and outerplanar
DAGs in the data.

6 The NP-hardness of finding a planar or
outerplanar MSDAG

By a similar discussion to that in Section 4 on
the relationship between MWDAS and MSDAG,
finding the both the maximum weighted planar or
outerplanar spanning DAG of a directed weighted
graph can simply be shown to be NP-hard, where
“planar” (and “outerplanar”) is used in the graph-
theoretical sense (Garey and Johnson, 1979). To our
knowledge, approximability of finding a maximum
weighted planar or outerplanar acyclic directed sub-
graph is still an open problem. The NP-hardness of
finding a maximum weighted outerplanar spanning
DAG is somewhat discouraging. But the next sec-
tion provides a polynomial algorithm if there is a re-
striction on the the order of nodes on the outer face
of the output (which is just projective MSDAG).

7 Finding a projective MSDAG or digraph
in O(n3) time

We now turn our attention to the projective MS-
DAG problem, which can be solved efficiently. Our
algorithm employs bottom-up dynamic program-
ming across spans of words, where a span con-
sists of a segment of words of the input sentence
W = 〈w1, w2, . . . , wn〉 along with any attributed
edges, similarly to the CKY-algorithm for context-
free language parsing (Cocke, 1969; Kasami, 1965;
Younger, 1967) and projective maximum spanning
tree algorithms (Eisner, 1996), though the proof of
correctness is slightly more complex. Following
this, we explain how to simplify the algorithm to the
task of finding the maximum weighted spanning di-
graph of digraph within the same time complexity.

Let GW = (V,E,≤W ) be a weighted de-
pendency digraph over the input sentence W =
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〈w1, w2, . . . , wn〉 and we suppose without loss of
generality that |E| = n(n− 1). An (i, j)-span (with
i ≤ j) for S is the subsequence of consecutive words
wi, wi+1, . . . , wj−1, wj . We construct an algorithm
proj-MSDAG (Algorithm 1) which takesGW as in-
put and outputs a highest weighted projective span-
ning dependency DAG for GW : a projective MS-
DAG for GW . For simplicity, instead of GW , we
just write G.

We call a directed path from node i to node j, an
i − j path. The algorithm constructs the upper tri-
angular square matrix A = {ai,j} (i, j ∈ [n]), from
left to right and from the diagonal upwards, where
component ai,j contains at most three different re-
strictions of optimal projective spanning DAGs for
the (i, j) span along with their associated weights:

1. ai,j .G1 is a projective MSDAG of the spanning
subgraph G[i, j], and ai,j .w1 is its weight

2. ai,j .G2 is a maximum projective spanning
DAG for which there is no i − j path, and
ai,j .w2 is its weight, and

3. ai,j .G3 is a maximum projective spanning
DAG for which there is no j − i path, and
ai,j .w3 is its weight.

The solution to the problem is then a1,n.G1. The
motivation for distinguishing between these three
types of graphs is to allow restricted combinations
of them which ensure that no cycles are introduced.

We claim that these three restrictions on projec-
tive MSDAGs for the span (i, j) can be constructed
from those of shorter spans within (i, j) using the
three following operations, (A1), (A2), and (A3)
(Lemma 6).

(A1) Concatenate sub-DAGs Hai,k
and Hak,j

from
among the graphs in the cells ai,k and ak,j re-
spectively (i < k < j), creating the graph

({wi, . . . , wj}, E(Hai,k
) ∪ E(Hak,j

)),

(A2) Concatenate a single edge e ∈ {(i, j), (j, i)}
with the sub-DAGs Hai,k

and Hak,j
from

among the graphs in the cells ai,k and ak,j re-
spectively (i < k < j), creating the graph

({wi, . . . , wj}, {e} ∪ E(Hai,k
) ∪ E(Hak,j

)),

(A3) Connect two sub-DAGsHai,k
andHak+1,j

from
among the graphs in the cells ai,k and ak+1,j

respectively (i ≤ k < j) with a single edge
e ∈ {(i, j), (j, i)}, creating the graph

({wi, . . . , wj}, {e} ∪E(Hai,k
)∪E(Hak+1,j

)).

Lemma 6. The projective DAGs ai,j .G1, ai,j .G2,
and ai,j .G3 can be de-constructed, by reversing a
single operation (A1), (A2) or (A3), to obtain two
sub-DAGs D1 and D2 which span their vertices and
where either

• D1 is on vertices {wi, . . . , wk} and D2 is on
vertices {wk, . . . , wj}, for i < k < j, or

• D1 is on vertices {wi, . . . , wk} and D2 is on
vertices {wk+1, . . . , wj}, for i ≤ k < j.

Furthermore, for p ∈ [2] and 1 ≤ a < b ≤ n, let
G[a, b] be the spanning subgraph of G on the ver-
tices {wa, wa+1, . . . , wb−1, wb}, let Dp be a DAG
on the vertices wa, wa+1, . . . , wb−1, wb.

1. Dp is a projective MSDAG for G[a, b], or

2. Dp is the a highest projective spanning DAG
with no a− b path for G[a, b], or

3. Dp is the a highest projective spanning DAG
with no b− a path for G[a, b].

Proof. We separate the proof into two parts: Part
1 for the graph ai,j .G1 and Part 2 for the graphs
ai,j .G2, and ai,j .G3.
Part 1. Let us denote ai,j .G1 by D for ease in nota-
tion. We denote by ED(u) the set of edges in E(D)
having u for some endpoint. Consider the word wi.
By D’s connectivity, ED(wi) is non-empty. Let e
be the edge in ED(wi) of longest span, and sup-
pose without loss of generality in edge direction that
e = (wi, wk) for some k ∈ {i+ 1, . . . , j}.

There are two cases to consider. Either k < j in
which case we can reverse (A1) (Case 1), or k = j
in which case we can reverse (A2) or (A3) (Case 2).

Consider first Case 1, where k < j. By D’s
projectivity and the fact that e has the longest span
in ED(w1), there are no edges with one endpoint
among wi, . . . , wk−1 and the other endpoint among
wk+1, . . . , wj . So we can partition D into two
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sub-DAGs D[i, k], which is a spanning subgraph
over the nodes wi, . . . , wk and D[k, j], which is
a spanning subgraph over the nodes wk, . . . , wj .
BothD[i, k] andD[k, j] are projective MSDAGs for
G[i, k] and G[k, j] respectively, otherwise we can
construct a projective MSDAG D′ for G of higher
weight than D, by taking the respective projective
MSDAGs to form D′.

Otherwise, we have Case 2, with k = j. Note that
there must not be anywj−wi path inD (for acyclic-
ity). We remove the edge (wi, wj) fromD, the result
of which is either connected or disconnected.

If D − {(wi, wj)} is connected, it must be the
maximum spanning DAG for G not containing any
wj − wi path. In the same manner as for the case
where k < j, we can partition D − {(wi, wj)}
into two sub-DAGsD[i, k], which is a spanning sub-
DAG over the nodes wi, . . . , wk and D[k, j], which
is a spanning sub-DAG over the nodes wk, . . . , wj ,
where either D[i, k] does not have a k − i path or
D[k, j] does not have a j − k path. Clearly D[i, k]
and D[k, j] are the maximum weighted projective
spanning DAGs with this property for G[i, k] and
G[k, j] respectively. This is the reversal of (A2).

Otherwise D − {(wi, wj)} is disconnected into
two weakly connected components D[i, k] and
D[k + 1, j], with k ∈ [j − 1], such that D[i, k] is
a projective MSDAG for G[i, k] and D[k + 1, j] is
a projective MSDAG for G[k + 1, j] (which is the
reversal of (A3)).
Part 2. We prove, without loss of generality, the
result for the graph ai,j .G3, the proof for the graph
ai,j .G2 being symmetric. The proof follows almost
exactly the one in Part 1, so we simply indicate the
differences here. Again, for ease in notation, we de-
note ai,j .G2 by D, and carry out the same partition
of D as in Part 1.

The difference for Case 1 is that either the result-
ing D[i, k] must be a maximum weighted projec-
tive spanning DAG for G[i, k] with no k − i path,
or D[k, j] must be a maximum weighted projective
spanning DAG for G[k, j] with no j − k path.

Case 2 is precisely the same if the result of remov-
ing the edge (wi, wj) is disconnected. If the result
is connected, then the difference is that D[i, k] must
be a maximum projective weighted spanning DAG
for G[i, k] with no k − i path, or D[k, j] must be
a maximum weighted projective spanning DAG for

G[k, j] with no j − k path.

Algorithm 1 uses the operations (A1), (A2) and
(A3) to fill the matrix A. In Figure 1, we define
three different subroutines corresponding to each of
these operations, which take the matrix A, the span,
and the forbidden direction for the edge of the span,
if there is one (and the empty set otherwise). Clearly
each of these runs in O(n) time.

We observe that Lines 9 through 14 in Algo-
rithm 1 dominate the time complexity, takingO(n3).
Lemma 7 shows that Algorithm 1 fills the table cells
with the correct projective MSDAG restrictions.

Lemma 7. For i ≤ j, Algorithm 1 fills matrix entry
ai,j with:

1. a projective MSDAG for G[i, j],

2. a projective MSDAG for G[i, j] with no i − j
path, and

3. a projective MSDAG for G[i, j] with no j − i
path.

Proof. The proof is by induction on the span size.
For the table cells ai,i for i ∈ [n], we have ai,i.G1 =
ai,i.G2 = ai,i.G3 = ({wi}, ∅); the graphs are all
single nodes. For our base case, ai,i+1, i ∈ [n − 1],
we construct the cell contents as follows:

1. ai,i+1.G1 is the highest weighted edge among
(wi, wi+1) and (wi+1, wi).

2. ai,i+1.G2 is (wi, wi+1) if this edge is in G.

3. ai,i+1.G3 is (wi+1, wi) if this edge is in G.

This is Lines 1 through 8 in Algorithm 1.
Suppose now that the entries ai,k and ak,j con-

tain the appropriate graphs G1, G2 and G3, for
i < k < j. For each k (i < k < j), Lines
9 through 14 in Algorithm 1 construct the three
graphs, ai,j .G1(k), ai,j .G2(k), and ai,j .G3(k), as
follows, which is possible according to Lemma 6:

1. ai,j .G1(k) is a highest weighted projective de-
pendency DAG for G[i, j] that can be con-
structed from the graphs stored in ai,k and ak,j .

2. ai,j .G2(k) is a highest weighted projective de-
pendency DAG for G[i, j] that can be con-
structed from the graphs stored in ai,k, ai,k+1

and ak,j , which avoids an i− j path.
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A1(G,A, i, j, ∅) = arg max
{H|H=({wi,...,wj},E(ai,k.G1)∪E(ak,j .G1)), i<k<j}

w(H)

A1(G,A, i, j,→) = arg max
{H|H=({wi,...,wj},E(ai,k.G2)∪E(ak,j .G1)), i<k<j}
∪{H|H=({wi,...,wj},E(ai,k.G1)∪E(ak,j .G2)), i<k<j}

w(H)

A1(G,A, i, j,←) = arg max
{H|H=({wi,...,wj},E(ai,k.G3)∪E(ak,j .G1)), i<k<j}
∪{H|H=({wi,...,wj},E(ai,k.G1)∪E(ak,j .G3)), i<k<j}

w(H)

A2(G,A, i, j, ∅) = arg max
{H|H=({wi,...,wj}, {(wi,wj)}∪E(ai,k.G1)∪E(ak,j .G1)), i<k<j}

w(H)

A2(G,A, i, j,→) = arg max
{H|H=({wi,...,wj}, {(wj ,wi)}∪E(ai,k.G2)∪E(ak,j .G1)), i<k<j}
∪{H|H=({wi,...,wj}, {(wj ,wi)}∪E(ai,k.G1)∪E(ak,j .G2)), i<k<j}

w(H)

A2(G,A, i, j,←) = arg max
{H|H=({wi,...,wj}, {(wi,wj)}∪E(ai,k.G3)∪E(ak,j .G1)), i<k<j}
∪{H|H=({wi,...,wj}, {(wi,wj)}∪E(ai,k.G1)∪E(ak,j .G3)), i<k<j}

w(H)

A3(G,A, i, j, ∅) = arg max
{H|H=({wi,...,wj}, {(wi,wj)}∪E(ai,k.G1)∪E(ak+1,j .G1)), i≤k<j}

w(H)

A3(G,A, i, j,→) = arg max
{H|H=({wi,...,wj}, {(wj ,wi)}∪E(ai,k.G2)∪E(ak+1,j .G1)), i≤k<j}
∪{H|H=({wi,...,wj}, {(wj ,wi)}∪E(ai,k.G1)∪E(ak+1,j .G2)), i≤k<j}

w(H)

A3(G,A, i, j,←) = arg max
{H|H=({wi,...,wj}, {(wi,wj)}∪E(ai,k.G3)∪E(ak+1,j .G1)), i≤k<j}
∪{H|H=({wi,...,wj}, {(wi,wj)}∪E(ai,k.G1)∪E(ak+1,j .G3)), i≤k<j}

w(H)

Figure 1: Subroutines corresponding to the operations (A1), (A2), and (A3) as used by Algorithm 1.

Algorithm 1 proj-MSDAG(G)
1: for i← 1, . . . , n do
2: ai,i.G1 ← ai,i.G2 ← ai,i.G3 = ({i}, ∅)
3: if i < n then
4: ai,i+1.G1 ← ({wi, wi+1}, {arg maxe∈{(wi,wi+1),(wi+1,wi)}w(e)})
5: ai,i+1.G2 ← ({wi, wi+1}, {(wi+1, wi)})
6: ai,i+1.G3 ← ({wi, wi+1}, {(wi, wi+1)})
7: end if
8: end for
9: for i← 1, . . . , n do

10: for j ← i− 1, . . . , 1 do
11: ai,j .G1 ← arg maxH∈{A1(G,A,i,j,∅),A2(G,A,i,j,∅),A3(G,A,i,j,∅)}w(H)
12: ai,j .G2 ← arg maxH∈{A1(G,A,i,j,→),A2(G,A,i,j,→),A3(G,A,i,j,→)}w(H)
13: ai,j .G3 ← arg maxH∈{A1(G,A,i,j,←),A2(G,A,i,j,←),A3(G,A,i,j,←)}w(H)
14: end for
15: end for
16: return a1,n.G1

3. ai,j .G3(k) is a highest weighted projective de-
pendency DAG for G[i, j] that can be con-

structed from the graphs stored in ai,k, ai,k+1

and ak,j , which avoids an j − i path.
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With Lemmata 6 and 7, the proof of correctness
of the following theorem is complete.

Theorem 8. There is an algorithm for finding a
projective MSDAG of a weighted digraph in O(n3)
time, where n is the number of word tokens of the
input sentence.

The proof of Theorem 8 can be simplified to adapt
it to that of projective digraphs. We simply substi-
tute the word “DAG” by “digraph”, and disregard all
graphs in table entries avoiding certain paths, since
cycles are permitted: in the entry ai,j , we need only
construct and record the graph ai,j .G1. We have thus
also shown the following fact.

Theorem 9. There is an algorithm for finding a pro-
jective maximum weighted spanning digraph of a
weighted digraph inO(n3) time, where n is the num-
ber of word tokens of the input sentence.

8 Concluding Remarks

Understanding the complexity of the problem of
finding a maximum spanning DAG as well as im-
portant restrictions provides a basis for both theo-
retical and empirical studies using restrictions or re-
laxations of the DAG parsing paradigm. We have
provided the first direct discussion of this problem’s
complexity, showing that the problem is APX-hard
as well as the first algorithm for the projective MS-
DAG problem proven to be exact and polynomial
time. Additionally, we briefly discussed the com-
plexity of finding a planar and outerplanar MSDAG,
the approximability of which remains open.
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