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?SEM 2014: Joint Conference on Lexical and Computational Semantics

Building on the success of the previous editions of the Joint Conference on Lexical and Computational
Semantics (?SEM) in Montreal 2012 and Atlanta 2013, ?SEM provides a forum of exchange for the
growing number of NLP researchers working on different aspects of semantic processing, which have
been scattered over a large array of small workshops and conferences. The 2014 edition of ?SEM takes
place in Dublin on August 23 and 24 and is collocated with SemEval and COLING. On this occasion,
?SEM and SemEval chose to coordinate their programs by featuring a joint invited talk.

In this way, ?SEM aims to bring together the ACL SIGLEX and ACL SIGSEM communities that in
present their top-tier research in computational semantics on this occasion. As in the previous editions
of ?SEM, the acceptance rate was very competitive. We accepted 22 papers (14 long and 8 short
papers) for publication at the conference, out of 49 long and 25 short paper submissions (resulting in
an overall acceptance rate of 29.7%). This is on par with some of the most competitive conferences in
computational linguistics. The papers cover a wide range of topics including formal and distributional
semantics, lexical semantics, discourse semantics, as well as application-oriented themes. We are
confident these various contributions will set the stage for an inspiring conference.

The ?SEM 2014 schedule consists of oral presentations for long papers and a poster session for short
papers. Next to the accepted papers the ?SEM 2014 programme features the following highlights:

Day One, August 23th:

• In the morning, a joint ?SEM SemEval keynote address by Mark Steedman;

• In the afternoon, the poster session.

Day Two, August 24th:

• In the morning, a keynote address by Timothy Baldwin;

• Finally, at the end of the day, a ceremony for the ?SEM Best Paper Award.

As always, ?SEM 2014 would not have been possible without the considerable efforts of our area chairs
and an impressive assortment of reviewers, drawn from the ranks of SIGLEX and SIGSEM, and the
computational semantics community at large.

We hope you will enjoy ?SEM 2014, and look forward to engaging with all of you,

Johan Bos, University of Groningen, General Chair
Anette Frank, Heidelberg University, Program Co-Chair
Roberto Navigli, Sapienza University of Rome, Program Co-Chair
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Abstract

We present two Twitter datasets annotated
with coarse-grained word senses (super-
senses), as well as a series of experiments
with three learning scenarios for super-
sense tagging: weakly supervised learn-
ing, as well as unsupervised and super-
vised domain adaptation. We show that
(a) off-the-shelf tools perform poorly on
Twitter, (b) models augmented with em-
beddings learned from Twitter data per-
form much better, and (c) errors can be
reduced using type-constrained inference
with distant supervision from WordNet.

1 Introduction

Supersense tagging (SST, Ciaramita and Altun,
2006) is the task of assigning high-level ontolog-
ical classes to open-class words (here, nouns and
verbs). It is thus a coarse-grained word sense dis-
ambiguation task. The labels are based on the lexi-
cographer file names for Princeton WordNet (Fell-
baum, 1998). They include 15 senses for verbs
and 26 for nouns (see Table 1). While WordNet
also provides catch-all supersenses for adjectives
and adverbs, these are grammatically, not seman-
tically motivated, and do not provide any higher-
level abstraction (recently, however, Tsvetkov et
al. (2014) proposed a semantic taxonomy for ad-
jectives). They will not be considered in this paper.

Coarse-grained categories such as supersenses
are useful for downstream tasks such as question-
answering (QA) and open relation extraction (RE).
SST is different from NER in that it has a larger set
of labels and in the absence of strong orthographic
cues (capitalization, quotation marks, etc.). More-
over, supersenses can be applied to any of the lex-
ical parts of speech and not only proper names.
Also, while high-coverage gazetteers can be found
for named entity recognition, the lexical resources
available for SST are very limited in coverage.

Twitter is a popular micro-blogging service,
which, among other things, is used for knowledge
sharing among friends and peers. Twitter posts
(tweets) announce local events, say talks or con-
certs, present facts about pop stars or program-
ming languages, or simply express the opinions of
the author on some subject matter.

Supersense tagging is relevant for Twitter, be-
cause it can aid e.g. QA and open RE. If someone
posts a message saying that some LaTeX module
now supports “drawing trees”, it is important to
know whether the post is about drawing natural
objects such as oaks or pines, or about drawing
tree-shaped data representations.

This paper is, to the best of our knowledge, the
first work to address the problem of SST for Twit-
ter. While there exist corpora of newswire and
literary texts that are annotated with supersenses,
e.g., SEMCOR (Miller et al., 1994), no data is
available for microblogs or related domains. This
paper introduces two new data sets.

Furthermore, most, if not all, of previous work
on SST has relied on gold standard part-of-speech
(POS) tags as input. However, in a domain such
as Twitter, which has proven to be challenging
for POS tagging (Foster et al., 2011; Ritter et
al., 2011), results obtained under the assumption
of available perfect POS information are almost
meaningless for any real-life application.

In this paper, we instead use predicted POS tags
and investigate experimental settings in which one
or more of the following resources are available to
us:
• a large corpus of unlabeled Twitter data;
• Princeton WordNet (Fellbaum, 1998);
• SEMCOR (Miller et al., 1994); and
• a small corpus of Twitter data annotated with

supersenses.
We approach SST of Twitter using various de-

grees of supervision for both learning and domain
adaptation (here, from newswire to Twitter). In
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weakly supervised learning, only unlabeled data
and the lexical resource WordNet are available to
us. While the quality of lexical resources varies,
this is the scenario for most languages. We present
an approach to weakly supervised SST based on
type-constrained EM-trained second-order HMMs
(HMM2s) with continuous word representations.

In contrast, when using supervised learning, we
can distinguish between two degrees of supervi-
sion for domain adaptation. For some languages,
e.g., Basque, English, Swedish, sense-annotated
resources exist, but these corpora are all limited
to newswire or similar domains. In such lan-
guages, unsupervised domain adaptation (DA)
techniques can be used to exploit these resources.
The setting does not presume labeled data from
the target domain. We use discriminative mod-
els for unsupervised domain adaptation, training
on SEMCOR and testing on Twitter.

Finally, we annotated data sets for Twitter, mak-
ing supervised domain adaptation (SU) exper-
iments possible. For supervised domain adapta-
tion, we use the annotated training data sets from
both the newswire and the Twitter domain, as well
as WordNet.

For both unsupervised domain adaptation and
supervised domain adaptation, we use structured
perceptron (Collins, 2002), i.e., a discriminative
HMM model, and search-based structured predic-
tion (SEARN) (Daume et al., 2009). We aug-
ment both the EM-trained HMM2, discrimina-
tive HMMs and SEARN with type constraints and
continuous word representations. We also exper-
imented with conditional random fields (Lafferty
et al., 2001), but obtained worse or similar results
than with the other models.

Contributions In this paper, we present two
Twitter data sets with manually annotated su-
persenses, as well as a series of experiments
with these data sets. These experiments cover
existing approaches to related tasks, as well as
some new methods. In particular, we present
type-constrained extensions of discriminative
HMMs and SEARN sequence models with con-
tinuous word representations that perform well.
We show that when no in-domain labeled data
is available, type constraints improve model
performance considerably. Our best models
achieve a weighted average F1 score of 57.1 over
nouns and verbs on our main evaluation data
set, i.e., a 20% error reduction over the most

frequent sense baseline. The two annotated Twit-
ter data sets are publicly released for download
at https://github.com/coastalcph/
supersense-data-twitter.

n.Tops n.object v.cognition
n.act n.person v.communication
n.animal n.phenomenon v.competition
n.artifact n.plant v.consumption
n.attribute n.possession v.contact
n.body n.process v.creation
n.cognition n.quantity v.emotion
n.communication n.relation v.motion
n.event n.shape v.perception
n.feeling n.state v.possession
n.food n.substance v.social
n.group n.time v.stative
n.location v.body v.weather
n.motive v.change

Table 1: The 41 noun and verb supersenses in
WordNet

2 More or less supervised models

This sections covers the varying degree of super-
vision of our systems as well as the usage of type
constraints as distant supervision.

2.1 Distant supervision

Distant supervision in these experiments was im-
plemented by only allowing a system to predict
a certain supersense for a given word if that su-
persense had either been observed in the training
data, or, for unobserved words, if the sense was
the most frequent sense in WordNet. If the word
did not appear in the training data nor in WordNet,
no filtering was applied. We refer to the distant-
supervision strategy as type constraints.

Distant supervision was implemented differ-
ently in SEARN and the HMM model. SEARN

decomposes sequential labelling into a series of
binary classifications. To constrain the labels we
simply pick the top-scoring sense for each token
from the allowed set. Structured perceptron uses
Viterbi decoding. Here we set the emission prob-
abilities for disallowed senses to negative infinity
and decode as usual.

2.2 Weakly supervised HMMs

The HMM2 model is a second-order hidden
Markov model (Mari et al., 1997; Thede and
Harper, 1999) using logistic regression to estimate
emission probabilities. In addition we constrain

2



w1

t1 t2
P(t2|t1)

P(w1|t1)

t3

w2 w3

Figure 1: HMM2 with continuous word represen-
tations

the inference space of the HMM2 tagger using
type-level tag constraints derived from WordNet,
leading to roughly the model proposed by Li et
al. (2012), who used Wiktionary as a (part-of-
speech) tag dictionary. The basic feature model
of Li et al. (2012) is augmented with continuous
word representation features as shown in Figure 1,
and our logistic regression model thus works over
a combination of discrete and continuous variables
when estimating emission probabilities. We do 50
passes over the data as in Li et al. (2012).

We introduce two simplifications for the HMM2
model. First, we only use the most frequent senses
(k = 1) in WordNet as type constraints. The
most frequent senses seem to better direct the EM
search for a local optimum, and we see dramatic
drops in performance on held-out data when we
include more senses for the words covered by
WordNet. Second, motivated by computational
concerns, we only train and test on sequences of
(predicted) nouns and verbs, leaving out all other
word classes. Our supervised models performed
slightly worse on shortened sequences, and it is an
open question whether the HMM2 models would
perform better if we could train them on full sen-
tences.

2.3 Structured perceptron and SEARN

We use two approaches to supervised sequen-
tial labeling, structured perceptron (Collins, 2002)
and search-based structured prediction (SEARN)
(Daume et al., 2009). The structured perceptron
is a in-house reimplementation of Ciaramita and
Altun (2006).1 SEARN performed slightly better
than structured perceptron, so we use it as our in-
house baseline in the experiments below. In this
section, we briefly explain the two approaches.

1https://github.com/coastalcph/
rungsted

2.3.1 Structured perceptron (HMM)
Structured perceptron learning was introduced in
Collins (2002) and is an extension of the online
perceptron learning algorithm (Rosenblatt, 1958)
with averaging (Freund and Schapire, 1999) to
structured learning problems such as sequence la-
beling.

In structured perceptron for sequential labeling,
where we learn a function from sequences of data
points x1 . . . xn to sequences of labels y1 . . . yn,
we begin with a random weight vector w0 initial-
ized to all zeros. This weight vector is used to
assign weights to transitions between labels, i.e.,
the discriminative counterpart of P (yi+1 | yi), and
emissions of tokens given labels, i.e., the counter-
part of P (xi | yi). We use Viterbi decoding to de-
rive a best path ŷ through the correspondingm×n
lattice (with m the number of labels). Let the fea-
ture mapping Φ(x,y) be a function from a pair
of sequences 〈x,y〉 to all the features that fired
to make y the best path through the lattice for x.
Now the structured update for a sequence of data
points is simply α(Φ(x,y)−Φ(x, ŷ)), i.e., a fixed
positive update of features that fired to produce the
correct sequence of labels, and a fixed negative up-
date of features that fired to produce the best path
under the model. Note that if y = ŷ, no features
are updated.

2.3.2 SEARN

SEARN is a way of decomposing structured pre-
diction problems into search and history-based
classification. In sequential labeling, we decom-
pose the sequence of m tokens into m classifica-
tion problems, conditioning our labeling of the ith
token on the history of i − 1 previous decisions.
The cost of a mislabeling at training time is de-
fined by a cost function over output structures. We
use Hamming loss rather than F1 as our cost func-
tion, and we then use stochastic gradient descent
with quantile loss as a our cost-sensitive learning
algorithm. We use a publicly available implemen-
tation.2

3 Experiments

We experiment with weakly supervised learning,
unsupervised domain adaptation, as well as su-
pervised domain adaptation, i.e., where our mod-
els are induced from hand-annotated newswire
and Twitter data. Note that in all our experiments,

2http://hunch.net/˜vw/
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we use predicted POS tags as input to the system,
in order to produce a realistic estimate of SST per-
formance.

3.1 Data

Our experiments rely on combinations of available
resources and newly annotated Twitter data sets
made publicly available with this paper.

3.1.1 Available resources
Princeton WordNet (Fellbaum, 1998) is the main
resource for SST. The lexicographer file names
provide the label alphabet of the task, and the tax-
onomy defined therein is used not only in the base-
lines, but also as a feature in the discriminative
models. We use the WordNet 3.0 distribution.

SEMCOR (Miller et al., 1994) is a sense-
annotated corpus composed of 80% newswire and
20% literary text, using the sense inventory from
WordNet. SEMCOR comprises 23k distinct lem-
mas in 234k instances. We use the texts which
have full annotations, leaving aside the verb-only
texts (see Section 6).

We use a distributional semantic model in order
to incorporate distributional information as fea-
tures in our system. In particular, we use the
neural-network based models from (Mikolov et
al., 2013), also referred as word embeddings. This
model makes use of skip-grams (n-grams that do
not need to be consecutive) within a word window
to calculate continuous-valued vector representa-
tions from a recurrent neural network. These dis-
tributional models have been able to outperform
state of the art in the SemEval-2012 Task 2 (Mea-
suring degrees of relational similarity). We calcu-
late the embeddings from an in-house corpus of
57m English tweets using a window size 5 and
yielding vectors of 100 dimensions.

We also use the first 20k tweets of the 57m
tweets to train our HMM2 models.

3.1.2 Annotation
While an annotated newswire corpus and a high-
quality lexical resource already enable us to train,
we also need at least a small sample of anno-
tated tweets data to evaluate SST for Twitter. Fur-
thermore, if we want to experiment with super-
vised SST, we also need sufficient annotated Twit-
ter data to learn the distribution of sense tags.

This paper presents two data sets: (a) super-
sense annotations for the POS+NER-annotated
data set described in Ritter et al. (2011), which we

use for training, development and evaluation, us-
ing the splits proposed in Derczynski et al. (2013),
and (b) supersense annotations for a sample of 200
tweets, which we use for additional, out-of-sample
evaluation. We call these data sets RITTER-
{TRAIN,DEV,EVAL} and IN-HOUSE-EVAL, re-
spectively. The IN-HOUSE-EVAL dataset was
downloaded in 2013 and is a sample of tweets that
contain links to external homepages but are other-
wise unbiased. It was previously used (with part-
of-speech annotation) in (Plank et al., 2014). Both
data sets are made publicly available with this pa-
per.

Supersenses are annotated with in spans defined
by the BIO (Begin-Inside-Other) notation. To ob-
tain the Twitter data sets, we carried out an an-
notation task. We first pre-annotated all data sets
with WordNet’s most frequent senses. If the word
was not in WordNet and a noun, we assigned it the
sense n.person. All other words were labeled O.

Chains of nouns were altered to give every ele-
ment the sense of the head noun, and the BI tags
adjusted, i.e.:

Empire/B-n.loc State/B-n.loc Building/B-n.artifact

was changed to

Empire/B-n.artifact State/I-n.artifact Building/I-
n.artifact

For the RITTER data, three paid student an-
notators worked on different subsets of the pre-
annotated data. They were asked to correct mis-
takes in both the BIO notation and the assigned
supersenses. They were free to chose from the full
label set, regardless of the pre-annotation. While
the three annotators worked on separate parts, they
overlapped on a small part of RITTER-TRAIN (841
tokens). On this subset, we computed agreement
scores and annotation difficulties. The average
raw agreement was 0.86 and Cohen’s κ 0.77. The
majority of tokens received the O label by all an-
notators; this happended in 515 out of 841 cases.
Excluding these instances to evaluate the perfor-
mance on the more difficult content words, raw
agreement dropped to 0.69 and Cohen’s κ to 0.69.

The IN-HOUSE-EVAL data set was annotated
by two different annotators, namely two of the au-
thors of this article. Again, for efficiency reasons
they worked on different subsets of the data, with
an overlapping portion. Their average raw agree-
ment was 0.65 and their Cohen’s κ 0.62. For this
data set, we also compute F1, defined as usual as
the harmonic mean of recall and precision. To
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compute this, we set one of the annotators as gold
data and the other as predicted data. However,
since F1 is symmetrical, the order does not mat-
ter. The annotation F1 gives us another estimate
of annotation difficulty. We present the figures in
Table 3.

3.2 Baselines
For most word sense disambiguation studies, pre-
dicting the most frequent sense (MFS) of a word
has been proven to be a strong baseline. Follow-
ing this, our MFS baseline simply predicts the su-
persense of the most frequent WordNet sense for
a tuple of a word and a part of speech. We use
the part of speech predicted by the LAPOS tagger
(Tsuruoka et al., 2011). Any word not in Word-
Net is labeled as noun.person, which is the most
frequent sense overall in the training data. After
tagging, we run a script to correct the BI tag pre-
fixes, as described above for the annotation ask.

We also compare to the performance of exist-
ing SST systems. In particular we use Sense-
Learner (Mihalcea and Csomai, 2005) as a base-
line, which produces estimates of the WordNet
sense for each word. For these predictions, we
retrieve the corresponding supersense. Finally,
we use a publicly available reimplementation of
Ciaramita and Altun (2006) by Michael Heilman,
which reaches comparable performance on gold-
tagged SEMCOR.3

3.3 Model parameters
We use the feature model of Paaß and Reichartz
(2009) in all our models, except the weakly su-
pervised models. For the structured perceptron we
set the number of passes over the training data on
the held-out development data. The weakly super-
vised models use the default setting proposed in
Li et al. (2012). We have used the standard online
setup for SEARN, which only takes one pass over
the data.

The type of embedding is the same in all our
experiments. For a given word the embedding fea-
ture is a 100 dimensional vector, which combines
the embedding of the word with the embedding of
adjacent words. The feature combination fe for a
word wt is calculated as:

fe(wt) =
1
2

(e(wt−1) + e(wt+1))− 2e(wt),

3http://www.ark.cs.cmu.edu/mheilman/
questions/SupersenseTagger-10-01-12.tar.
gz

where the factor of two is chosen heurestically to
give more weight to the current word.

We also set a parameter k on development data
for using the k-most frequent senses inWordNet
as type constraints. Our supervised models are
trained on SEMCOR+RITTER-TRAIN or simply
RITTER-TRAIN, depending on what gave us the
best performance on the held-out data.

4 Results

The results are presented in Table 2. We dis-
tinguish between three settings with various de-
grees of supervision: weakly supervised, which
uses no domain annotated information, but solely
relies on embeddings trained on unlabeled Twit-
ter data; unsupervised domain adaptation (DA),
which uses SemCor for supervised training; and
supervised domain adaptation (SU), which uses
annotated Twitter data in addition to the SemCor
data for training.

In each of the two domain adaptation settings,
SEARN and HMM are evaluated with type con-
straints as distant supervision, and without for
comparison. SEARN without embeddings or dis-
tant supervision serves as an in-house baseline.

In Table 3 we present the WordNet token cov-
erage of predicted nouns and verbs in the devel-
opment and evaluation data, as well as the inter-
annotator agreement F1 scores.

All the results presented in Table 2 are
(weighted averaged) F1 measures obtained on pre-
dicted POS tags. Note that these results are con-
siderably lower than results on supersense tagging
newswire (up to 80 F1) that assume gold standard
POS tags (Ciaramita and Altun, 2006; Paaß and
Reichartz, 2009).

The re-implementation of the state-of-the-art
system improves slightly upon the most frequent
sense baseline. SenseLearner does not seem to
capture the relevant information and does not
reach baseline performance. In other words, there
is no off-the-shelf tool for supersense tagging of
Twitter that does much better than assigning the
most frequent sense to predicted nouns and verbs.

Our weakly supervised model performs worse
than the most frequent sense baseline. This is a
negative result. It is, however, well-known from
the word sense disambiguation literature that the
MFS is a very strong baseline. Moreover, the EM
learning problem is hard because of the large la-
bel set and weak distributional evidence for super-
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RITTER IN-HOUSE
DEV EVAL EVAL

Wordnet noun-verb
token coverage 83.72 70.22 41.18
Inter-annotator
agreement (F1) 81.01 69.15 61.57

Table 3: Properties of dataset.

senses.
The unsupervised domain adaptation and fully

supervised systems perform considerably better
than this baseline across the board. In the unsuper-
vised domain adaptation setup, we see huge im-
provements from using type constraints as distant
supervision. In the supervised setup, we only see
significant improvements adding type constraints
for the structured perceptron (HMM), but not for
search-based structured prediction (SEARN).

For all the data sets, there is still a gap between
model performance and human inter-annotator
agreement levels (see Table 3), leaving some room
for improvements. We hope that the release of the
data sets will help further research into this.

4.1 Coarse-grained evaluation
We also experimented with the more coarse-
grained classes proposed by Yuret and Yatbaz
(2010). Here our best model obtained an F1 score
for mental concepts (nouns) of 72.3%, and 62.6%
for physical concepts, on RITTER-DEV. The over-
all F1 score for verbs is 85.6%. The overall F1 is
75.5%. Note that this result is not directly com-
parable to the figure (72.9%) reported in Yuret
and Yatbaz (2010), since they use different data
sets, exclude verbs and make different assump-
tions, e.g., relying on gold POS tags.

5 Error analysis

We have seen that inter-annotator agreements on
supersense annotation are reliable at above .60
but far from perfect. The Hinton diagram in Ta-
ble 2 presents the confusion matrix between our
annotators on IN-HOUSE-EVAL.

Errors in the prediction primarily stem from
two sources: out-of-vocabulary words and incor-
rect POS tags. Figure 3 shows the distribution of
senses over the words that were not contained in
either the training data, WordNet, or the Twitter
data used to learn the embeddings. The distribu-
tion follows a power law, with the most frequent
sense being noun.person, followed by noun.group,

and noun.artifact. The first two are related to NER
categories, namely PER and ORG, and can be ex-
pected, since Twitter users frequently talk about
new actors, musicians, and bands. Nouns of com-
munication are largely related to films, but also in-
clude Twitter, Facebook, and other forms of social
media. Note that verbs occur only towards the tail
end of the distribution, i.e., there are very few un-
known verbs, even in Twitter.

Overall, our models perform best on labels with
low lexical variability, such as quantities, states
and times for nouns, as well as consumption, pos-
session and stative for verbs. This is unsurprising,
since these classes have lower out-of-vocabulary
rates.

With regards to the differences between source
(SEMCOR) and target (Twitter) domains, we ob-
serve that the distribution of supersenses is al-
ways headed by the same noun categories like
noun.person or noun.group, but the frequency of
out-of-vocabulary stative verbs plummets in the
target domain, as some semantic types are more
closed class than others. There are for instance
fewer possibilities for creating new time units
(noun.time) or stative verbs like be than people or
company names (noun.person or noun.group, re-
spectively).

The weakly supervised model HMM2 has
higher precision (57% on RITTER-DEV) than re-
call (48.7%), which means that it often predicts
words to not belong to a semantic class. This
suggests an alternative strategy, which is to train
a model on sequences of purely non-O instances.
This would force the model to only predict O on
words that do not appear in the reduced sequences.

One important source of error seems to be un-
reliable part-of-speech tagging. In particular we
predict the wrong POS for 20-35% of the verbs
across the data sets, and for 4-6.5% of the nouns.
In the SEMCOR data, for comparability, we have
wrongly predicted tags for 6-8% of the anno-
tated tokens. Nevertheless, the error propaga-
tion of wrongly predicted nouns and verbs is par-
tially compensated by our systems, since they are
trained on imperfect input, and thus it becomes
possible for the systems to predict a noun super-
sense for a verb and viceversa. In our data we have
found e.g. that the noun Thanksgiving was incor-
rectly tagged as a verb, but its supersense was cor-
rectly predicted to be noun.time, and that the verb
guess had been mistagged as noun but the system
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Resources Results

Token-level Type-level RITTER IN-HOUSE

SemCor Twitter Embeddings Type constraints DEV EVAL EVAL

General baselines

MFS - - - + 47.54 44.98 38.65
SENSELEARNER + - - - 14.61 26.24 22.81
HEILMAN + - - - 48.96 45.03 39.65

Weakly supervised systems

HMM2 - - - + 47.09 42.12 26.99

Unsupervised domain adaptation systems (DA)

SEARN (Baseline) + - - - 48.31 42.34 34.30
SEARN + - + - 52.45 48.30 40.22
SEARN + - + + 56.59 50.89 40.50
HMM + - + - 52.40 47.90 40.51
HMM + - + + 57.14 50.98 41.84

Supervised domain adaptation systems (SU)

SEARN (Baseline) + + - - 58.30 52.12 36.86
SEARN + + + - 63.05 57.09 42.37
SEARN + + + + 62.72 57.14 42.42
HMM + + + - 57.20 49.26 39.88
HMM + + + + 60.66 51.40 41.60

Table 2: Weighted F1 average over 41 supersenses.
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Figure 2: Inter-annotator confusion matrix on TWITTER-EVAL.
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still predicted the correct verb.cognition as super-
sense.

6 Related Work

There has been relatively little previous work on
supersense tagging, and to the best of our knowl-
edge, all of it has been limited to English newswire
and literature (SEMCOR and SENSEVAL).

The task of supersense tagging was first intro-
duced by Ciaramita and Altun (2006), who used
a structured perceptron trained and evaluated on
SEMCOR via 5-fold cross validation. Their eval-
uation included a held-out development set on
each fold that was used to estimate the number of
epochs. They used additional training data con-
taining only verbs. More importantly, they relied
on gold standard POS tags. Their overall F1 score
on SEMCOR was 77.1. Reichartz and Paaß (Re-
ichartz and Paaß, 2008; Paaß and Reichartz, 2009)
extended this work, using a CRF model as well
as LDA topic features. They report an F1 score
of 80.2, again relying on gold standard POS fea-
tures. Our implementation follows their setup and
feature model, but we rely on predicted POS fea-
tures, not gold standard features.

Supersenses provide information similar to
higher-level distributional clusters, but more in-
terpretable, and have thus been used as high-
level features in various tasks, such as preposi-
tion sense disambiguation, noun compound inter-
pretation, and metaphor detection (Ye and Bald-
win, 2007; Tratz and Hovy, 2010; Tsvetkov et al.,
2013). Princeton WordNet only provides a fully
developed taxonomy of supersenses for verbs and
nouns, but Tsvetkov et al. (2014) have recently
proposed an extension of the taxonomy to cover
adjectives. Outside of English, supersenses have
been annotated for Arabic Wikipedia articles by
Schneider et al. (2012).

In addition, a few researchers have tried to
solve coarse-grained word sense disambiguation
problems that are very similar to supersense tag-
ging. Kohomban and Lee (2005) and Kohom-
ban and Lee (2007) also propose to use lexicogra-
pher file identifers from Princeton WordNet senses
(supersenses) and, in addition, discuss how to re-
trieve fine-grained senses from those predictions.
They evaluate their model on all-words data from
SENSEEVAL-2 and SENSEEVAL-3. They use a
classification approach rather than structured pre-
diction.

Yuret and Yatbaz (2010) present a weakly unsu-
pervised approach to this problem, still evaluating
on SENSEVAL-2 and SENSEVAL-3. They focus
only on nouns, relying on gold part-of-speech, but
also experiment with a coarse-grained mapping,
using only three high level classes.

For Twitter, we are aware of little previous work
on word sense disambiguation. Gella et al. (2014)
present lexical sample word sense disambiguation
annotation of 20 target nouns on Twitter, but no
experimental results with this data. There has also
been related work on disambiguation to Wikipedia
for Twitter (Cassidy et al., 2012).

In sum, existing work on supersense tagging
and coarse-grained word sense disambiguation for
English has to the best of our knowledge all fo-
cused on newswire and literature. Moreover, they
all rely on gold standard POS information, making
previous performance estimates rather optimistic.

7 Conclusion

In this paper, we present two Twitter data sets with
manually annotated supersenses, as well as a se-
ries of experiments with these data sets. The data
is publicly available for download.

In this article we have provided, to the best
of our knowledge, the first supersense tagger for
Twitter. We have shown that off-the-shelf tools
perform poorly on Twitter, and we offer two
strategies—namely distant supervision and the us-
age of embeddings as features—that can be com-
bined to improve SST for Twitter.

We propose that distant supervision imple-
mented as type constraints during decoding is a
viable method to limit the mispredictions of su-
persenses by our systems, thereby enforcing pre-
dicted senses that a word has in WordNet. This ap-
proach compensates for the size limitations of the
training data and mitigates the out-of-vocabulary
effect, but is still subject to the coverage of Word-
Net; which is far from perfect for words coming
from high-variability sources such as Twitter.

Using distributional semantics as features in
form of word embeddings also improves the pre-
diction of supersenses, because it provides seman-
tic information for words, regardless of whether
they have been observed the training data. This
method does not require a hand-created knowl-
edge base like WordNet, and is a promising tech-
nique for domain adaptation of supersense tag-
ging.
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Abstract

Research in emotion analysis of text sug-
gest that emotion lexicon based features
are superior to corpus based n-gram fea-
tures. However the static nature of the
general purpose emotion lexicons make
them less suited to social media analysis,
where the need to adopt to changes in vo-
cabulary usage and context is crucial. In
this paper we propose a set of methods to
extract a word-emotion lexicon automati-
cally from an emotion labelled corpus of
tweets. Our results confirm that the fea-
tures derived from these lexicons outper-
form the standard Bag-of-words features
when applied to an emotion classification
task. Furthermore, a comparative analysis
with both manually crafted lexicons and
a state-of-the-art lexicon generated using
Point-Wise Mutual Information, show that
the lexicons generated from the proposed
methods lead to significantly better classi-
fication performance.

1 Introduction

Emotion mining or affect sensing is the compu-
tational study of natural language expressions in
order to quantify their associations with different
emotions (e.g. anger, fear, joy, sadness and sur-
prise). It has a number of applications for the in-
dustry, commerce and government organisations,
but uptake has arguably been slow. This in part is
due to the challenges involved with modelling sub-
jectivity and complexity of the emotive content.
However, use of qualitative metrics to capture
emotive strength and extraction of features from
these metrics has in recent years shown promise
(Shaikh, 2009). A general-purpose emotion lexi-
con (GPEL) is a commonly used resource that al-
lows qualitative assessment of a piece of emotive

text. Given a word and an emotion, the lexicon
provides a score to quantify the strength of emo-
tion expressed by that word. Such lexicons are
carefully crafted and are utilised by both super-
vised and unsupervised algorithms to directly ag-
gregate an overall emotion score or indirectly de-
rive features for emotion classification tasks (Mo-
hammad, 2012a), (Mohammad, 2012b).

Socio-linguistics suggest that social media is a
popular means for people to converse with individ-
uals, groups and the world in general (Boyd et al.,
2010). These conversations often involve usage of
non-standard natural language expressions which
consistently evolve. Twitter and Facebook were
credited for providing momentum for the 2011
Arab Spring and Occupy Wall street movements
(Ray, 2011),(Skinner, 2011). Therefore efforts to
model social conversations would provide valu-
able insights into how people influence each other
through emotional expressions. Emotion analysis
in such domains calls for automated discovery of
lexicons. This is so since learnt lexicons can in-
tuitively capture the evolving nature of vocabulary
in such domains better than GPELs.

In this work we show how an emotion la-
belled corpus can be leveraged to generate a word-
emotion lexicon automatically. Key to this is the
availability of a labelled corpus which may be ob-
tained using a distance-supervised approach to la-
belling (Wang et al., 2012). In this paper we pro-
pose three lexicon generation methods and evalu-
ate the quality of these by deploying them in an
emotion classification task. We show through our
experiments that the word-emotion lexicon gener-
ated using the proposed methods in this paper sig-
nificantly outperforms GPELs such as WordnetAf-
fect, NRC word-emotion association lexicon and a
leaxicon learnt using Point-wise Mutual Informa-
tion (PMI). Additionally, our lexicons also outper-
form the traditional Bag-of-Words representation.

The rest of the paper is organised as follows: In
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Section 2 we present the related work. In Section
3 we outline the problem. In Section 4 we for-
mulate the different methods proposed to generate
the word-emotion lexicons. In Section 5 we dis-
cuss experimental results followed by conclusions
and future work in Section 6.

2 Related Work

Computational emotion analysis, draws from cog-
nitive and physiology studies to establish the key
emotion categories; and NLP and text mining re-
search to establish features designed to represent
emotive content. Emotion analysis has been ap-
plied in a variety of domains: fairy tales (Fran-
cisco and Gervas, 2006; Alm et al., 2005);
blogs (Mihalcea and Liu, 2006; Neviarouskaya et
al., 2010), novels (John et al., 2006), chat mes-
sages (E.Holzman and William M, 2003; Ma et
al., 2005; Mohammad and Yang, 2011) and emo-
tional events on social media content(Kim et al.,
2009). Comparative studies on emotive word dis-
tributions on micro-blogs and personal content
(e.g. love letters, suicide notes) have shown that
emotions such as disgust are expressed well in
tweets. Further, expression of emotion in tweets
and love letters have been shown to have similari-
ties(K. Roberts and Harabagiu, 2012).

Emotion classification frameworks provide in-
sights into human emotion expressions (Ekman,
1992; Plutchik, 1980; Parrott, 2001). The emo-
tions proposed by (Ekman, 1992) are popular in
emotion classification tasks (Mohammad, 2012b;
Aman and Szpakowicz, 2008). Recently there has
also been interest in extending this basic emo-
tion framework to model more complex emotions
(such as politeness, rudeness, deception, depres-
sion, vigour and confusion) (Pearl and Steyvers,
2010; Bollen et al., 2009). A common theme
across these approaches involves the selection
of emotion-rich features and learning of relevant
weights to capture emotion strength (Mohammad,
2012a; Qadir and Riloff, 2013).

Usefulness of a lexicon: Lexicons such as
Wordnet Affect (Strapparava and Valitutti, 2004)
and NRC (Saif M. Mohammad, 2013)) are
very valuable resources from which emotion
features can be derived for text representation.
These are manually crafted and typically con-
tain emotion-rich formal vocabulary. Hybrid ap-
proaches that combine features derived from these
static lexicons with n-grams have resulted in bet-

ter performance than either alone (Mohammad,
2012b),(Aman and Szpakowicz, 2008). However
the informal and dynamic nature of social me-
dia content makes it harder to adopt these lexi-
cons for emotion analysis. An alternative strategy
is to derive features from a dynamic (i.e., learnt)
lexicon. Here association metrics such as Point-
wise Mutual Information (PMI) can be used to
model emotion polarity between a word and emo-
tion labelled content (Mohammad, 2012a). Such
approaches will be used as baselines to compare
against our proposed lexicon generation strategies.
There are other lexicon generation methods pro-
posed by Rao .et. al (Yanghui Rao and Chen,
2013) and Yang .et. al (Yang et al., 2007). We do
not consider these in our comparative evaluation
since these methods require rated emotion labels
and emoticon classes respectively.

Lexicon generation, relies on the availability of
a labelled corpus from which the word-emotion
distributions can be discovered. For this pur-
pose we exploit a distance-supervised approach
where indirect cues are used to unearth implicit
(or distant) labels that are contained in the cor-
pus (Alec Go and Huang, 2009). We adopt
the approach as in (Wang et al., 2012) to cor-
pus labelling where social media content, and in
particular Twitter content is sampled for a pre-
defined set of hashtag cues (P. Shaver, 1987) .
Here each set of cues represent a given emotion
class. Distant-supervision is particularly suited to
Twitter-like platforms because people use hash-
tags to extensively convey or emphasis the emo-
tion behind their tweets (e.g., That was my best
weekend ever.#happy!! #satisfied!). Also given
that tweets are length restricted (140 characters),
modelling the emotional orientation of words in
a Tweet is easier compared to longer documents
that are likely to capture complex and mixed emo-
tions. This simplicity and access to sample data
has made Twitter one of the most popular domains
for emotion analysis research (Wang et al., 2012;
Qadir and Riloff, 2013).

3 Problem Definition

We now outline the problem formally. We start
with a set of documents D = {d1, d2, . . . , dn}
where each document di has an associated label
Cdi

indicating the emotion class to which di be-
longs. We consider the case where the documents
are tweets. For example, a tweet di nice sunday

13



#awesome may have a label joy indicating that the
tweet belongs to the joy emotion class. We also as-
sume that the labels Cdi

come from a pre-defined
set of six emotion classes anger, fear, joy, sad, sur-
prise, love. Since our techniques are generic and
do not depend on the number of emotion classes,
we will denote the emotion classes as {Cj}Nj=1.
Let there be K words extracted from the training
documents, denoted as {wi}Ki=1. Our task is to de-
rive a lexiconLex that quantifies the emotional va-
lence of words (from the tweets in D) to emotion
classes. In particular, the lexicon may be thought
of as a 2d-associative array where Lex[w][c] indi-
cates the emotional valence of the word w to the
emotion class c. When there is no ambiguity, we
will use Lex(i, j) to refer to the emotional valence
of word wi to the emotion class Cj . We will quan-
tify the goodness of the lexicons that are generated
using various methods by measuring their perfor-
mance in an emotion classification task.

4 Lexicon Generation Methods

We now outline the various methods for lexicon
generation. We first start off with a simple tech-
nique for learning lexicons based on just term fre-
quencies (which we will later use as a baseline
technique), followed by more sophisticated meth-
ods that are based on conceptual models on how
tweets are generated.

4.1 Term Frequency based Lexicon
A simple way to measure the emotional valence of
the word wi to the emotion class Cj is to compute
the probability of occurrence of wi in a tweet la-
belled as Cj , normalized by its probability across
all classes. This leads to:

Lex(i, j) =
p(wi|Cj)∑N

k=1 p(wi|Ck)
(1)

where the conditional probability is simply
computed using term frequencies.

p(wi|Cj) =
freq(wi, Cj)
freq(Cj)

(2)

where freq(wi, Cj) is the number of times
wi occurs in documents labeled with class Cj .
freq(Cj) is the total number of documents in Cj .

4.2 Iterative methods for Lexicon Generation
The formulation in the previous section generates
a word-emotion matrix L by observing the term

frequencies within a class. However term frequen-
cies alone do not capture the term-class associa-
tions, because not all frequently occurring terms
exhibit the characteristics of a class. For exam-
ple, a term sunday that occurs in a tweet nice sun-
day #awesome labelled joy is evidently not indica-
tive of the class joy; however, the frequency based
computation increments the weight of sunday wrt
the class joy by virtue of this occurrence. In the
following sections, we propose generative models
that seek to remedy such problems of the simple
term frequency based lexicon.

4.2.1 Generative models for Documents
As discussed above, though a document is labelled
with an emotion class, not all terms relate strongly
to the labelled emotion. Some documents may
have terms conveying a different emotion than
what the document is labelled with, since the la-
bel is chosen based on the most prominent emo-
tion in the tweet. Additionally, some words could
be emotion-neutral (e.g., sunday in our example
tweet) and could be conveying non-emotional in-
formation. We now describe two generative mod-
els that account for such considerations, and then
outline methods to learn lexicons based on them.

Mixture of Classes Model: Let LCk
be the

unigram language model (Liu and Croft, 2005)
that expresses the lexical character for the emotion
class Ck; though microblogs are short text frag-
ments, language modeling approaches have been
shown to be effective in similarity assesment be-
tween them (Deepak and Chakraborti, 2012). We
model a document di to be generated from across
the emotion class language models:

1. For each word wj in document di,

(a) Lookup the unit vector [λ(1)
dij
, . . . , λ

(N)
dij

];
This unit vector defines a probability
distribution over the language models.

(b) Choose a language model L from
among the K LMs, in accordance with
the vector

(c) Samplewj in accordance with the multi-
nomial distribution L

If di is labelled with the emotion class Cdi
, it is

likely that the value of λ(n)
dij

is high for words in di

since it is likely that majority of the words are sam-
pled from the LCdi

language model. The posterior
probability in accordance with this model can then
be intuitively formulated as:
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P (di, Cdi
|θ) =

∏
wj∈di

N∑
x=1

λ
(x)
dij
× LCx(wj) (3)

where θ is the parameters {LCj}Nj=1, λ and Cdi

is the class label for document di.
Class and Neutral Model: We now introduce

another model where the words in a document are
assumed to be sampled from either the language
model of the corresponding (i.e., labelled) emo-
tion class or from the neutral language model, LC .
Thus, the generative model for a document di la-
belled with emotion classCdi

would be as follows:

1. For each word wj in document di,

(a) Lookup the weight µdij
; this parameter

determines the mix of the labelled emo-
tion class and the neutral class, for wj in
di

(b) Choose LCk
with a probability of µdij

,
and LC with a probability of 1.0− µdij

(c) Samplewj in accordance with the multi-
nomial distribution of the chosen lan-
guage model

The posterior probability in accordance with
this model can be intuitively formulated as :

P (di, Cdi
|θ) =

∏
wj∈di

µdij
× LCdi

(wj)

+ (1− µdij
)× LC(wj)

(4)

where θ is the parameters {LCj}Nj=1, LC , µ .
Equation 3 models a document to exhibit char-

acteristics of many classes with different levels
of magnitude. Equation 4 models a document to
be a composition of terms that characterise one
class and other general terms; a similar formula-
tion where a document is modeled using a mix of
two models has been shown to be useful in charac-
terizing problem-solution documents (Deepak et
al., 2012; Deepak and Visweswariah, 2014). The
central idea of the expectation maximization (EM)
algorithm is to maximize the probability of the
data, given the language models {LCj}Nj=1 and
LC . The term weights are estimated from the lan-
guage models (E-step) and the language models
are re-estimated (M-step) using the term weights
from the E-step. Thus the maximum likelihood
estimation process in EM alternates between the
E-step and the M-step. In the following sections

we detail the EM process for the two generative
models separately. We compare and contrast the
two variants of the EM algorithm in Table 1.

4.2.2 EM with Mixture of Classes Model
We will use a matrix based representation for the
language model and the lexicon, to simplify the il-
lustration of the EM steps. Under the matrix nota-
tion, L(p) denotes theK×N matrix at the pth iter-
ation where the ith column is the language model
corresponding to the ith class, i.e., LCi . The pth E-
step estimates the various λdij

vectors for all doc-
uments based on the language models in L(p−1),
whereas the M-step re-learns the language models
based on the λ values from the E-step. The steps
are detailed as follows:

E-Step: The λ
(n)
dij

is simply estimated to the
fractional support for the jth word in the ith docu-
ment (denoted as wij) from the nth class language
model:

λ
(n)
dij

=
L

(p−1)
Cn

(wij)∑
x L

(p−1)
Cx

(wij)
(5)

M-Step: As mentioned before in Table 1 this
step learns the language models from the λ esti-
mates of the previous step. As an example, if a
wordw is estimated to have come from the joy lan-
guage model with a weight (i.e., λ) 0.5, it would
contribute 0.5 as its count to the joy language
model. Thus, every occurrence of a word is split
across language models using their corresponding
λ estimates:

L
(p)
Cn

[w] =

∑
i

∑
j I(wij = w)× λ(n)

dij∑
i

∑
j λ

(n)
dij

(6)

where the indicator function I(wij = w) evalu-
ates to 1 if wij = w is satisfied and 0 otherwise.

After any M-Step, the lexicon can be obtained
by normalizing the L(p) language models so that
the weights for each word adds up to 1.0. i.e.,

Lex(p)(i, j) =
L

(p)
Cj

[wi]∑K
x=1 L

(p)
Cx

[wi]
(7)

In the above equation, the suffix (i, j) refers to
the ith word in the jth class, confirming to our 2d-
array representation of the language models.
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Table 1: EM Algorithm variants
States EM with mixture of classes model EM with class and neutral model
INPUT Training data T Training data T
OUTPUT Word-Emotion Lexicon Word-Emotion Lexicon
Initialisation Learn the initial language models

{LCj}Nj=1

Learn the initial language models
{LCj}Nj=1 and LC

Convergence While not converged or #Iterations
< δ, a threshold

While not converged or #Iterations
< δ, a threshold

E-step Estimate the λdij
s based on the

current estimate of {LCj}Nj=1 (Sec
4.2.2)

Estimate µdij
based on the current

estimate of {LCj}Nj=1 and LC (Sec
4.2.3)

M-step Estimate the language models
{LCj}Nj=1 using λdij

s (Sec 4.2.2)
Estimate the language models
{LCj}Nj=1 and LC using µdij

(Sec
4.2.3)

Lexicon Induction Induce a word-emotion lexicon
from {LCj}Nj=1 (Sec 4.2.2)

Induce a word-emotion lexicon
from {LCj}Nj=1 and LC (Sec 4.2.3)

4.2.3 EM with Class and Neutral Model

The main difference in this case, when compared
to the previous is that we need to estimate a neutral
language model LC in addition to the class spe-
cific models. We also have fewer parameters to
learn since the µdij

is a single value rather than a
vector of N values as in the previous case.

E-Step: µdij
is estimated to the relative weight

of the wordwij from across the language model of
the corresponding class, and the neutral model:

µdij
=

L
(p−1)
Cdi

(wij)

L
(p−1)
Cdi

(wij) + L
(p−1)
C (wij)

(8)

Where Cdi
denotes the class corresponding to

the label of the document di.
M-Step: In a slight contrast from the M-Step

for the earlier case as shown in Table 1, a word
estimated to have a weight (i.e., µ value) of 0.2
would contribute 20% of its count to the cor-
responding class’ language model, while the re-
maining would go to the neutral language model
LC . Since the class-specific and neutral language
models are estimated differently, we have two sep-
arate equations:

L
(p)
Cn

[w] =

∑
i,label(di)=Cn

∑
j I(wij = w)× µdij∑

i,label(di)=Cn

∑
j µdij

(9)

L
(p)
C [w] =

∑
i

∑
j I(wij = w)× (1.0− µdij

)∑
i

∑
j(1.0− µdij

)
(10)

where label(di) = Cn As is obvious, the class-
specific language models are contributed to by
the documents labelled with the class whereas the
neutral language model has contributions from all
documents. The normalization to achieve the lexi-
con is exactly the same as in the mixture of classes
case, and hence, is omitted here.

4.2.4 EM Initialization
In the case of iterative approaches like EM, the ini-
tialization is often considered crucial. In our case,
we initialize the unigram class language models
by simply aggregating the scores of the words in
tweets labelled with the respective class. Thus, the
joy language model would be the initialized to be
the maximum likelihood model to explain the doc-
uments labelled joy. In the case of the class and
neutral generative model, we additionally build
the neutral language model by aggregating counts
across all the documents in the corpus (regardless
of what their emotion label is).

5 Experiments

In this section we detail our experimental evalu-
ation. We begin with the details about the Twit-
ter data used in our experiments. We then dis-
cuss how we created the folds for a cross valida-
tion experiment. Thereafter we detail the classifi-
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cation task used to evaluate the word-emotion lex-
icon. Finally we discuss the performance of our
proposed methods for lexicon generation in com-
parison with other manually crafted lexicons, PMI
based method for lexicon generation and the stan-
dard BoW in an emotion classification task.

5.1 Twitter Dataset

The data set used in our experiments was a corpus
of emotion labelled tweets harnessed by (Wang et
al., 2012). The data set was available in the form
of tweet ID’s and the corresponding emotion la-
bel. The emotion labels comprised namely : anger,
fear, joy, sadness, surprise, love and thankfulness.
We used the Twitter search API1 to obtain the
tweets by searching with the corresponding tweet
ID. After that we decided to consider only tweets
that belong to the primary set of emotions defined
by Parrott (Parrott, 2001). The emotion classes in
our case included anger, fear, joy, sadness, sur-
prise and love. We had a collection of 0.28 mil-
lion tweets which we used to carry out a 10 fold
cross-validation experiment.

We decided to generate the folds manually,in
order to compare the performance of the differ-
ent algorithms used in our experiments. We split
the collection of 0.28 million tweets into 10 equal
size sets to generate 10 folds with different train-
ing and test sets in each fold. Also all the folds in
our experiments were obtained by stratified sam-
pling, ensuring that we had documents represent-
ing all the classes in both the training and test sets.
We used the training data in each fold to generate
the word-emotion lexicon and measured the per-
formance of it on the test data in an emotion clas-
sification task. Table 2 shows the average distri-
bution of the different classes namely: anger, fear,
joy, sadness, surprise and love over the 10 folds.
Observe that emotions such as joy and sadness had
a very high number of representative documents
. Emotions such as anger,love and fear were the
next most represented emotions. The emotion sur-
prise had very few representative documents com-
pared to that of the other emotions.

5.2 Evaluating the word-emotion lexicon

We adopted an emotion classification task in order
to evaluate the quality of the word-emotion lexi-
con generated using the proposed methods. Also
research in emotion analysis of text suggest that

1https://dev.twitter.com/docs/using-search

Table 2: Average distribution of emotions across
the folds

Emotion Training Test
Anger 58410 6496
Fear 13692 1548
Joy 74108 8235
Sadness 63711 7069
Surprise 2533 282
Love 31127 3464
Total 243855 27095

lexicon based features were effective compared to
that of n-gram features in an emotion classifica-
tion of text (Aman and Szpakowicz, 2008; Mo-
hammad, 2012a). Therefore we decided to use the
lexicon to derive features for text representation.
We followed a similar procedure as in (Moham-
mad, 2012a) to define integer valued features for
text representation. We define one feature for each
emotion to capture the number of words in a train-
ing/test document that are associated with the cor-
responding emotion. The feature vector for a train-
ing/test document was constructed using the word-
emotion lexicon. Given a training/test document
d we construct the corresponding feature vector
d

′
=< count(e1), count(e2), . . . , count(em)) >

of length m (in our case m is 6), wherein
count(ei) represents the number of words in d that
exhibit emotion ei. count(ei) is computed as:

count(ei) =
∑
w∈d

I( max
j=1,...,m

Lex(w, j) = Ci)

(11)
where I(. . .) is the indicator function as used

previously. For example if a document has 1 joy
word, 2 love words and 1 surprise word the feature
vector for the document would be (0, 0, 1, 0, 1, 2).
We used the different lexicon generation methods
discussed in sections 4.1, 4.2.2 and 4.2.3 to con-
struct the feature vectors for the documents. In the
case of the lexicon generated as in section 4.2.3
the max in equation 11 is computed over m + 1
columns. We also used the lexicon generation
method proposed in (Mohammad, 2012a) to con-
struct the feature vectors. PMI was used in (Mo-
hammad, 2012a) to generate a word-emotion lexi-
con which is as follows :

Lex(i, j) = log
freq(wi, Cj) ∗ freq(¬Cj)
freq(Cj) ∗ freq(wi,¬Cj)

(12)
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where freq(wi, Cj) is the number of times n-
gram wi occurs in a document labelled with emo-
tion Cj , freq(wi,¬Cj) is the number of times n-
gram wi occurs in a document not labelled with
emotion Cj . freq(Cj) and freq(¬Cj) are the
number of documents labelled with emotion Cj

and ¬Cj respectively.
Apart from the aforementioned automatically

generated lexicons we also used manually crafted
lexicons such as WordNet Affect (Strapparava and
Valitutti, 2004) and the NRC word-emotion as-
sociation lexicon (Saif M. Mohammad, 2013) to
construct the feature vectors for the documents.
Unlike the automatic lexicons, the general purpose
lexicons do not offer numerical scores. There-
fore we looked for presence/absence of words in
the lexicons to obtain the feature vectors. Fur-
thermore we also represented documents in the
standard BoW representation. We performed fea-
ture selection using the metric Chisquare2, to se-
lect the top 500 features to represent documents.
Since tweets are very short we incorporated a bi-
nary representation for BoW instead of term fre-
quency. For classification we used a multiclass
SVM classifier 3 and all the experiments were con-
ducted using the data mining software Weka2. We
used standard metrics such as Precision, Recall
and F-measure to compare the performance of the
different algorithms. In the following section we
analyse the experimental results for TF-lex (Sec
4.1), EMallclass-lex (Sec 4.2.2), EMclass-corpus-
lex (Sec 4.2.3), PMI-lex (Mohammad, 2012a),
WNA-lex (Strapparava and Valitutti, 2004), NRC-
lex (Saif M. Mohammad, 2013) and BoW in an
emotion classification task. Also in the case of
EM based methods we experimented with differ-
ent threshold limits δ shown in Table 1. We report
the results only w.r.t δ = 1 due to space limitations.

5.3 Results and Analysis

Table 3 shows the F-scores obtained for differ-
ent methods for each emotion. Observe that the
F-score for each emotion shown in Table 3 for a
method is the average F-score obtained over the
10 test sets (one per fold). We carried a two tail
paired t-test4 between the baselines and our pro-
posed methods to measure statistical significance
for performance on the test set in each fold. From

2 http://www.cs.waikato.ac.nz/ml/weka/
3http://www.csie.ntu.edu.tw/ cjlin/liblinear/
4http://office.microsoft.com/en-gb/excel-help/ttest-

HP005209325.aspx

the t-test we observed that our proposed methods
are statistically significant over the baselines with
a confidence of 95% (i.e with p value 0.05). Also
note that the best results obtained for an emotion
are highlighted in bold. It is evident from the re-
sults that the manually crafted lexicons Wornd-
net Affect and the NRC word-emotion association
lexicon are significantly outperformed by all the
automatically generated lexicons for all emotions.
Also the BoW model significantly outperforms the
manually crafted lexicons suggesting that these
lexicons are not sufficiently effective for emotion
mining in a domain like Twitter.

When compared with BoW the PMI-lex pro-
posed by (Mohammad, 2012a) achieves a 2% gain
w.r.t emotion love, a 0.6% gain w.r.t emotion joy
and 1.28% gain w.r.t emotion sadness. However
in the case of emotions such as fear and sur-
prise BoW achieves significant gains of 11.17%
and 20.96% respectively. The results suggest that
the PMI-lex was able to leverage the availability
of adequate training examples to learn the pat-
terns about emotions such as anger, joy, sadness
and love. However given that not all emotions are
widely expressed a lexicon generation method that
relies heavily on abundant training data could be
ineffective to mine less represented emotions.

Now we analyse the results obtained for the lex-
icons generated from our proposed methods and
compare them with BoW and PMI-lex. From
the results obtained for our methods in Table 3
it suggests that our methods achieve the best F-
scores for 4 emotions namely anger, fear, sad-
ness and love out of the 6 emotions. In par-
ticular the EM-class-corpus-lex method obtains
the best F-score for 3 emotions namely anger,
sadness and love. When compared with BoW
and PMI-lex, EM-class-corpus-lex obtains a gain
of 0.85% and 0.93% respectively w.r.t emotion
anger, 1.85% and 0.57% respectively w.r.t emo-
tion sadness, 18.67% and 16.88% respectively
w.r.t emotion love. Our method TF-lex achieves a
gain of 5.47% and 16.64% respectively over BoW
and PMI-lex w.r.t emotion fear. Furthermore w.r.t
emotion surprise all our proposed methods outper-
form PMI-lex. However BoW still obtains the best
F-score for emotion surprise.

When we compared the results between our
own methods EM-class-corpus-lex obtains the
best F-scores for emotions anger, joy, sadness and
love. We expected that modelling a document
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Table 3: Emotion classification results
Method Average F-Score

Anger Fear Joy Sadness Surprise Love
Baselines
WNA-lex 25.82% 6.61% 12.94% 8.76% 0.76% 2.67%
NRC-lex 21.37% 3.97% 16.04% 8.87% 1.54% 7.22%
Bow 56.5% 13.56% 63.34% 50.57% 21.65% 20.52%
PMI-lex 56.42% 2.39% 63.4% 50.57% 0.69% 22.31%
Our Learnt Lexicons
TF-lex 55.85% 19.03% 62.01% 50.54% 11.29% 37.69%
EMallclass-lex 56.64% 14.53% 61.89% 50.48% 12.33% 38.13%
EMclass-corpus-lex 57.35% 16.1% 62.74% 51.14% 12.05% 39.19%

to exhibit more than one emotion (EM-allclass-
lex) would better distinguish the class boundaries.
However given that tweets are very short it was
observed that modelling a document as a mixture
of emotion terms and general terms (EM-class-
corpus-lex) yielded better results. However we ex-
pect EM-allclass-lex to be more effective in other
domains such as blogs, discussion forums wherein
the text size is larger compared to tweets.

Table 4 summarizes the overall F-scores ob-
tained for the different methods. Note that the
F-scores shown in Table 4 are the average over-
all F-scores over the 10 test sets. Again we con-
ducted a two tail paired t-test4 between the base-
lines and our proposed methods to measure the
performance gains. It was observed that all our
proposed methods are statistically significant over
the baselines with a confidence of 95% (i.e with
p value 0.05). In Table 4 we italicize all our best
performing methods and highlight in bold the best
among them. From the results it is evident that our
proposed methods obtain significantly better F-
scores over all the baselines with EM-class-corpus
achieving the best F-score with a gain of 3.21%,
2.9%, 39.03% and 38.7% over PMI-lex, BoW,
WNA-lex and NRC-lex respectively. Our findings
reconfirm previous findings in the literature that
emotion lexicon based features improve over cor-
pus based n-gram features in a emotion classifica-
tion task. Also our findings suggest that domain
specific automatic lexicons are significantly better
over manually crafted lexicons.

6 Conclusions and Future Work

We proposed a set of methods to automatically ex-
tract a word-emotion lexicon from an emotion la-
belled corpus. Thereafter we used the lexicons to

Table 4: Overall F-scores
Method Avg Overall F-

score
Baselines
WNA-lex 13.17%
NRC-lex 13.50%
Bow 49.30%
PMI-lex 48.99%
Our automatic lexicons
TF-lex 51.45%
EMallclass-lex 51.38%
EMclass-corpus-lex 52.20%

derive features for text representation and showed
that lexicon based features significantly outper-
form the standard BoW features in the emotion
classification of tweets. Furthermore our lexicons
achieve significant improvements over the general
purpose lexicons and the PMI based automatic
lexicon in the classification experiments. In fu-
ture we intend to leverage the lexicons to design
different text representations and also test them
on emotional content from other domains. Auto-
matically generating human-interpretable models
(e.g., (Balachandran et al., 2012)) to accompany
emotion classifier decisions is another interesting
direction for future work.
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Abstract

This study explores the potential of us-
ing deep semantic features to improve bi-
nary sentiment classification of paragraph-
length movie reviews from the IMBD
website. Using a Naive Bayes classifier as
a baseline, we show that features extracted
from Minimal Recursion Semantics repre-
sentations in conjunction with back-off re-
placement of sentiment terms is effective
in obtaining moderate increases in accu-
racy over the baseline’s n-gram features.
Although our results are mixed, our most
successful feature combination achieves
an accuracy of 89.09%, which represents
an increase of 0.76% over the baseline per-
formance and a 6.48% reduction in error.

1 Introduction

Text-based sentiment analysis offers valuable in-
sight into the opinions of large communities of re-
viewers, commenters and customers. In their sur-
vey of the field, Pang and Lee (2008) highlight the
importance of sentiment analysis across a range
of industries, including review aggregation web-
sites, business intelligence, and reputation man-
agement. Detection and classification of sentiment
can improve downstream performance in applica-
tions sensitive to user opinions, such as question-
answering, automatic product recommendations,
and social network analysis (ibid., p. 12).

While previous research in sentiment analysis
has investigated the extraction of features from
syntactic dependency trees, semantic representa-
tions appear to be underused as a resource for
modeling opinion in text. Indeed, to our knowl-
edge, there has been no research using seman-
tic dependencies created by a precision grammar
for sentiment analysis. The goal of the present
research is to address this gap by augmenting a

baseline classifier with features based on Min-
imal Resursion Semantics (MRS; Copestake et
al., 2005), a formal semantic representation pro-
vided by the English Resource Grammar (ERG;
Flickinger, 2000). An MRS is a connected graph
in which semantic entities may be linked directly
through shared arguments or indirectly through
handle or qeq constraints, which denote equal-
ity modulo quantifier insertion (Copestake et al.,
2005). This schema allows for underspecification
of quantifier scope.

Using Narayanan et al.’s (2013) Naive Bayes
sentiment classifier as a baseline, we test the effec-
tiveness of eight feature types derived from MRS.
Our feature pipeline crawls various links in the
MRS representations of sentences in our corpus
of paragraph-length movie reviews and outputs
simple, human-readable features based on various
types of semantic relationships. This improved
system achieves modest increases in binary senti-
ment classification accuracy for several of the fea-
ture combinations tested.1

In the following sections, we summarize previ-
ous research in MRS feature extraction and senti-
ment classification, describe the baseline system
and our modifications to it, and outline our ap-
proach to parsing our data, constructing features,
and integrating them into the existing system. Fi-
nally, we report our findings, examine in more
detail where our improved system succeeded and
failed in relation to the baseline, and suggest av-
enues for further research in sentiment analysis
with MRS-based features.

2 Context and Related Work

Current approaches to sentiment analysis tasks
typically use supervised machine learning meth-

1Because this task consists of binary classification on an
evenly split dataset and every test document is assigned a
class, simple accuracy is the most appropriate measure of per-
formance.
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ods with bag-of-words features as a baseline, and
for classification of longer documents like the ones
in our dataset, such features remain a powerful
tool of analysis. Wang and Manning (2012) com-
pare the performance of several machine learning
algorithms using uni- and bigram features from a
variety of common sentiment datasets, including
the IMDB set used in this project. They report that
that SVM classifiers generally perform better sen-
timent classification on paragraph-length reviews,
while Native Bayes classifiers produce better re-
sults for “snippets,” or short phrases (ibid., p. 91).
For our dataset, they obtain the highest accuracies
using a hybrid approach, SVM with Naive Bayes
features, which results in 91.22% accuracy (ibid.,
p. 93). This appears to be the best test result to
date on this dataset. Although we use a Naive
Bayes classifier in our project, alternative machine
learning algorithms are a promising topic of fur-
ther future investigation (see §6).

Two existing areas of research have direct rele-
vance to this project: MRS feature extraction, and
sentiment analysis using features based on deep
linguistic representations of data. In their work on
machine translation, Oepen et al. (2007) define a
type of MRS triple based on elementary dependen-
cies, a simplified “variable-free” representation of
predicate-argument relations in MRS (p. 5). Fu-
jita et al. (2007) and Pozen (2013) develop simi-
lar features for HPSG parse selection, and Pozen
experiments with replacing segments of predicate
values in triple features with WordNet sense, POS,
and lemma information (2013, p. 32).

While there has not yet been any research on us-
ing MRS features in sentiment analysis, there has
been work on extracting features from deep repre-
sentations of data for sentiment analysis. In work-
ing with deep representations such as MRSes or
dependency parses, there are myriad sub-graphs
that can be used as features. However these fea-
tures are often quite sparse and do not general-
ize well. Joshi & Rose (2009) improve perfor-
mance of a sentiment classifier by incorporating
triples consisting of words and grammatical rela-
tions extracted from dependency parses. To in-
crease the generalizability of these triples, they
perform back-off by replacing words with part-of-
speech tags. Similarly, Arora et al. (2010) extract
features from dependency parses by using senti-
ment back-off to identify potentially meaningful
portions of the dependency graph. Given this suc-

cess combining back-off with sub-graph features,
we design several feature types following a similar
methodology.

2.1 The IMBD Dataset
We use a dataset of 50,000 movie reviews crawled
from the IMDB website, originally developed by
Maas et al. (2011). The dataset is split equally
between training and test sets. Both training and
test sets contain equal numbers of positive and
negative reviews, which are defined according to
the number of stars assigned by the author on
the IMBD website: one to four stars for nega-
tive reviews, and seven to ten stars for positive
reivews. The reviews vary in length but gener-
ally contain between five and fifteen sentences.
The Natural Language ToolKit’s (NLTK; Loper
and Bird, 2002) sentence tokenizer distinguishes
616,995 sentences in the dataset.

Unlike previous research over this dataset, we
divide the 25,000 reviews of the test set into two
development sets and a final test set. As such,
our results are not directly comparable to those of
Wang & Manning (2012).

2.2 The Baseline System
The system we use as a baseline, created by
Narayanan et al. (2013), implements several small
but innovative improvements to a simple Naive
Bayes classifier. In the training phase, the base-
line performs simple scope of negation annota-
tion on the surface string tokens. Any word con-
taining the characters not, n’t or no triggers a
“negated” state, in which all following n-grams are
prepended with not . This continues until either
a punctuation delimiter (?.,!:;) or another negation
trigger is encountered.

During training, when an n-gram feature is read
into the classifier, it is counted toward P (f |c), and
the same feature with not prepended is counted
toward P (f |ĉ), where c is the document class
and ĉ is the opposite class. Singleton features
are then pruned away. Finally, the system runs a
set of feature-filtering trials, in which the pruned
features are ranked by mutual information score.
These trials start at a base threshold of 100,000
features, and the number of features is increased
stepwise in increments of 50,000. The feature set
that produces the highest accuracy in trials over a
development data set is then retained and used to
classify the test data. Table 1 shows the ten most
informative features, ranked by mutual informa-
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Top N-Grams

1. worst 6. awful

2. bad 7. great

3. not the worst 8. waste

4. the worst 9. excellent

5. not worst 10. not not even

Table 1: Top MI-ranked baseline n-gram Features.

tion score, out of the 12.1 million n-gram features
generated by our baseline.

Before modifying the baseline system’s code,
we reproduced their reported accuracy figure of
88.80% over the entire 25,000 review test set.
However, it appears the baseline system used the
test data as development data. In order to address
this, we split the data as into development sets as
described above. When we ran the baseline sys-
tem over our final test set, we obtained accuracies
of 88.34% pre-feature filtering and 88.29% post-
feature filtering; our division of the original test
set into development and test sets accounts for this
discrepancy.

3 Methodology

Our approach to this task consisted of three gen-
eral stages: obtaining MRSes for the dataset,
implementing a feature pipeline to process the
MRSes, and integrating the new features into the
classifier. In this section we will describe each of
these processes in turn.

3.1 Parsing with the ERG

Because most of the reviews in our data set ap-
pear to be written in Standard English, we per-
form minimal pre-processing before parsing the
dataset with the ERG. We use NLTK’s sentence
tokenization function in our pipeline, along with
their HTML-cleaning function to remove some
stray HTML-style tags we encountered in the data.

To obtain MRS parses of the data, we use
ACE version 0.9.17, an “efficient processor
for DELPH-IN HPSG grammars.”2 ACE’s sim-
ple command line interface allows the parsing
pipeline to output MRS data in a single line to
a separate directory of MRS data files. We used
the 1212 ERG grammar image3 and specified root

2Available at http://sweaglesw.org/linguistics/ace/. Ac-
cessed January 15, 2014.

3Available at http://www.delph-in.net/erg/. Accessed Jan-

conditions that would allow for parses of the infor-
mal and fragmented sentences sometimes found
in our dataset: namely, the root informal,
root frag and root inffrag ERG root
nodes.

Parsing with these conditions resulted in
81.11% coverage over the entire dataset. After
manual inspection of sentences that failed to parse,
we found that irregularities in spelling and punc-
tuation accounted for the majority of these failures
and further cleaning of the data would yield higher
coverage.

3.2 Feature Design
Our main focus in feature design is capturing rel-
evant semantic relationships between sentiment
terms that extend beyond the trigram boundary.
Our entry point into the MRS is the elementary
predication (EP), and our pipeline algorithm ex-
plores the three main EP components: arguments
and associated variables, label, and predicate sym-
bol. We also use the set of handle constraints in
crawling the links between EPs.

We use two main categories of crawled MRS
features: Predicate-Relation-Predicate (PRP)
triples, a term borrowed from (Pozen, 2013), and
Shared-Label (SL) features. Our feature template
consists of eight feature subtypes, including plain
EP symbols (type 1), five PRP features (types 2
through 6) and two SL features (types 7 and 8).
Table 2 gives examples of each type, along with
the unpruned counts of distinct features gathered
from our training data. The examples for types
1 through 6 are taken from the abridged MRS
example in Figure 1. Note that an & character
separates predicate and argument components in
the feature strings. The type 7 and 8 examples
are taken from MRS of sentences featuring the
phrases successfully explores and didn’t flow well,
respectively.

In our feature extraction pipeline, we use Good-
man’s pyDelphin4 tool, a Python module that al-
lows for easy manipulation and querying of MRS
constituents. This tool allows our pipeline to
quickly process the ERG output files, obtain argu-
ment and handle constraint information, and out-
put the features for each MRS into a feature file to
be read by our classifier. If the grammar has not
returned an analysis for a particular sentence, the

uary 15, 2014.
4Available at https://github.com/goodmami/pydelphin.

Accessed January 20, 2014.
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There is nothing redeeming about this trash.
[LTOP: h0

INDEX:e2 [e SF:prop TENSE:pres MOOD:indicative PROG:- PERF:-]

<[ be v there rel<6:8> LBL:h1 ARG0:e2 ARG1:x4] [thing rel<9:16> LBL:h5 ARG0:x4] [ no q rel<9:16>

LBL:h6 ARG0:x4 RSTR:h7 BODY:h8] [" redeem v for rel"<17:26> LBL:h5 ARG0:e9 ARG1:x4 ARG2:x10]

[" about x deg rel"<27:32> LBL:h11 ARG0:e12 ARG1:u13] [ this q dem rel<33:37> LBL:h11 ARG0:x10 RSTR:h14

BODY:h15] [" trash n 1 rel"<38:44> LBL:h16 ARG0:x10]>

HCONS: <h0 qeq h1 h7 qeq h5 h14 qeq h16>]

Figure 1: Sample abridged MRS, with mood, tense, and other morphosemantic features removed. Each
EP is enclosed in square brackets, bold type denotes predicate values.

Type Description Example Count

1 Pred value no q rel 4,505,389
2 PRP: all no q rel&RSTR&" redeem v for rel" 10,255,021
3 PRP: string preds only " redeem v for rel"&ARG2&" trash n 1 rel" 941,831
4 PRP: first pred back-off " POS v rel"&ARG2&" trash n 1 rel" 635,047
5 PRP: seond pred back-off " redeem v for rel"&ARG2&" NEG n rel" 621,929
6 PRP: double back-off " POS v rel"&ARG2&" NEG n rel" 20,962
7 SL: handle not a neg rel arg " successful a 1 rel"&" explore v 1 rel" 589,887
8 SL: handle a neg rel arg neg rel&" flow v 1 rel"&" well a 1 rel" 43,427

Table 2: Sample features (Note: Types 1 - 6 are taken from the MRS in Figure 1)

pipeline simply does not output any features for
that sentence.

3.2.1 MRS Crawling

In their revisiting of the 2012 SEM scope of nega-
tion shared task, Packard et al. (2014) improve on
the previous best performance using a relatively
simple set of MRS crawling techniques. We make
use of two of these techniques, “argument crawl-
ing” and “label crawling” in extracting our PRP
and SL features (ibid., p. 3). Both include select-
ing an “active EP” and adding to its scope all EPs
that conform to certain specifications. Argument
crawling selects all EPs whose distinguished vari-
able or label is an argument of the active EP, while
label crawling adds EPs that share a label with the
active EP (ibid., p. 3).

Our features are constructed in a similar fash-
ion; for every EP in an MRS, the pipeline se-
lects all EPs linked to the current EP and con-
structs features from this group of “in-scope”
EPs. PRP and SL features are obtained through
one “layer” of argument and label crawling, re-
spectively. After observing a number of noisy
and uninformative features in our preliminary
feature vectors, we excluded a small number

of EPs from being considered as the “active
EP” in our pipeline algorithm: udef q rel,
proper q rel, named rel, pron rel, and
pronoun q rel. More information about what
exactly these EPs represent can be found in Copes-
take et al. (2005).

3.2.2 PRP Features

These feature types are a version of the depen-
dency triple features used in Oepen et al. (2007)
and Fujita et al. (2007). We define the linking re-
lation as one in which the value of any argument of
the first EP matches the distinguished variable or
label of the second EP. For handle variables, we
count any targets of a qeq constraint headed by
that variable as equivalent. We use the same set of
EP arguments as Pozen (2013) to link predicates
in our PRP features: ARG, ARG1-N, L-INDEX,
R-INDEX, L-HANDL, R-HANDL, and RESTR (p.
31).

We also use a set of negative and positive word
lists from the social media domain, developed by
Hu and Liu (2004), for back-off replacement in
PRP features. Our pipeline algorithm attempts
back-off replacement for all EPs in all PRP triples.
If the surface string portion of the predicate value
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Pre-Feature Post-Feature
Feature Types Filtering Filtering

baseline (n-grams only) 88.337 88.289
1 88.289 88.517
2 87.857 87.809
3 88.589 88.757
4 88.673 88.757
5 88.709 88.817
6 88.337 88.301
7 88.193 88.205
8 88.361 88.265

Table 3: Individual MRS feature trial results

matches any of the entries in the lexicon, the
pipeline produces a back-off predicate value by re-
placing that portion with NEG or POS and strip-
ping the sense category marker. These replace-
ments appear in various positions in feature types
4, 5, and 6 (see Table 2).

3.2.3 SL Features
To further explore the relationships in the MRS,
we include this second feature category in our fea-
ture template, which links together EPs that share
a handle variable. We limit SL features to groups
of EPs linked by a handle variable that is also an
argument of another EP, or the target of a qeq con-
straint of such a variable. Our pipeline is therefore
able to extract both PRP and SL features in a sin-
gle pass through the arguments of each EP. Feature
type 7 consists of shared-label groupings of two
or more EPs, where the handle is not the ARG1
of a neg rel EP. Type 8 includes groups of one
or more EPs where the handle is a neg rel ar-
gument, with neg rel prepended to the feature
string.

Features of type 7 tend to capture relationships
between modifiers, such as adverbs and adjectives,
and modified entities. Features of type 8 were
intended to provide some negation information,
though our goals of more fully analyzing scope
of negation in our dataset remain unrealized at
this point. We reasoned that the lemmatization of
string predicate values might provide some useful
back-off for the semantic entities involved in nega-
tion and modification.

4 Evaluation

To test our MRS features, we adapted our base-
line to treat them much like the n-gram features.

Pre-Feature Post-Feature
Feature Types Filtering Filtering

baseline (n-grams only) 88.337 88.289
n-grams with back-off 87.293 87.503
MRS only (all types) 88.253 87.977
n-grams, 4, 5 88.709 88.781
n-grams, 3, 4, 5, 7, 8 88.961 88.853
n-grams, 1, 4, 5 88.637 88.865
n-grams, 3, 4, 5 8 88.853 88.961
n-grams, 3, 4, 5, 7 88.889 88.973
n-grams, 1, 3, 4, 5 88.793 89.021
n-grams, 3, 4, 5 88.865 89.093

Table 4: Combination feature results

As with n-grams, each MRS feature is counted to-
ward the probability of the class of its source doc-
ument, and a negated version of that feature, with
not prepended, is counted toward the opposite
class. We ran our feature filtering trials using the
first development set, then obtained preliminary
accuracy figures from our second development set.
We began with each feature type in isolation and
used these results to inform later experiments us-
ing combinations of feature types. The numbers
reported here are the results over the final, held-
out test set.

Our final test accuracies indicate that three fea-
ture types produce the best gains in accuracy:
back-off PRPs with first- and second-predicate re-
placement (types 4 and 5), and PRPs with string
predicates only (type 3). Table 3 displays isolated
feature test results, while Table 4 ranks the top
seven feature combinations in ascending order by
post-feature filtering accuracies. The bolded fea-
ture types show that all of the best combination
runs include one or more of the top three features
mentioned above. Notable also are the accura-
cies for MRS-based features alone, which fall very
close to the baseline. The best accuracies for pre-
and post-feature filtering tests appear in bold.

The highest accuracy, achieved by running a
feature-filtered combination of the baseline’s n-
gram features and feature types 3, 4, and 5, re-
sulted in a 0.80% increase over the baseline per-
formance with feature filtering, and a 0.76% in-
crease in the best baseline accuracy overall (ob-
tained without feature filtering). The experimental
best run successfully categorizes 63 more of the
8333 test documents than the baseline best run.
Although these gains are small, they account for
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a 6.48% reduction in error.

Most Informative MRS Features

not " NEG a rel"&ARG1& the q rel

" NEG a rel"&ARG1& the q rel

" POS a rel"&ARG1& the q rel

not " POS a rel"&ARG1& the q rel

" POS a rel"&ARG1& a q rel

not " POS a rel"&ARG1& a q rel

not " NEG a rel"&ARG1&" movie n of rel"

" NEG a rel"&ARG1&" movie n of rel"

a q rel&RSTR&" POS a rel"

not a q rel&RSTR&" POS a rel"

not " NEG a rel"&ARG1&udef q rel

" NEG a rel"&ARG1&udef q rel

superl rel&ARG1&" POS a rel"

not superl rel&ARG1&" POS a rel"

and c rel&LHNDL&" POS a rel"

Table 5: Most informative MRS features

5 Discussion

5.1 The Most Successful Experiments

The test accuracies indicate that our back-off re-
placement method, in combination with the simple
predicate-argument relationships captured in PRP
triples, is the most successful aspect of feature de-
sign in this project. However, as our error analysis
indicates, back-off is the likely source of many of
our system’s errors (see §5.2). Table 5 lists the 15
most informative MRS features from our best run
based on mutual information score, all of which
are of feature type 4 or 5. Note that the not
prepended to some features is a function of way
our classifier reads in binary features (as described
in §2.2), not an indication of grammatical nega-
tion. The success of these partial back-off fea-
tures confirms our intuition that the semantic rela-
tionships between sentiment-laden terms and other
entities in the sentence offer a reliable indicator
of author sentiment. When we performed back-
off replacement directly on the surface strings
and ran our classifier with n-grams only, we ob-
tained accuracies of 87.29% pre-feature filtering
and 87.50% post-feature filtering, a small decrease
from the baseline performance (see Table 4). This
lends additional support to the idea that the com-
bination of sentiment back-off and semantic de-
pendencies is significant. These results also fit
with the findings of of Joshi and Rose (2009), who

determined that back-off triple features provide
“more generalizable and useful patterns” in sen-
timent data than lexical dependency features alone
(p. 316).

Despite these promising results, we found that
the separate EP values (type 1), PRP triples with-
out replacement (type 2), PRPs with double re-
placement (type 6) and SL features (types 7 and
8) have very little effect on accuracy by them-
selves. For type 1, we suspect that EP values alone
don’t contribute enough information beyond ba-
sic n-gram features. We had hypothesized that the
lemmatization in these values might provide some
helpful back-off. However, this effect is likely
drowned out by the lack of any scope of negation
handling in the MRS features.

We attribute the failure of the SL features to the
fact that they often capture EPs originating in ad-
jacent tokens in the surface string, which does not
improve on the n-gram features. Lastly, we be-
lieve the relative sparsity of double back-off fea-
tures was the primary reason they did not produce
meaningful results.

These results also call into question the use-
fulness of the feature filtering trials in our base-
line. By design, these trials produce performance
increases on the dataset on which they are run.
However, filtering produces small and inconsistent
gains for the final held-out test set.

Error Types

Misleading back-off 31
Plot summary / Noise 20
Obscure Words / Data Sparsity 7
Data Error 3
Nonsensical Review 3
Reason Unsure 40

Table 6: Error types from top MRS experiment

5.2 Error Analysis

We manually inspected the 104 reviews from the
final test set that were correctly classified by the
best run of the baseline system but incorrectly
classified by the best run of our improved sys-
tem. This set contains 50 false negatives, and 54
false positives. We classified them according to
five subjective categories: misleading back-off, in
which many of the sentiment terms have a polarity
opposite to the overall review; excess plot sum-
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Incorrectly classified Correctly classified
N

eg
at

iv
e

do
cs "_POS_a__rel"&ARG1&_the_q_rel "_NEG_n__rel"&ARG0&udef_q_rel

"_POS_a__rel"&ARG1&_a_q_rel "_NEG_a__rel"&ARG1&_the_q_rel

"_POS_a__rel"&ARG1&udef_q_rel "_NEG_a__rel"&ARG1&udef_q_rel

"_NEG_n__rel"&ARG0&udef_q_rel "_POS_a__rel"&ARG1&_a_q_rel

_a_q_rel&RSTR&"_POS_a__rel" _the_q_rel&RSTR&"_NEG_n__rel"

Po
si

tiv
e

do
cs "_NEG_n__rel"&ARG0&udef_q_rel "_POS_a__rel"&ARG1&_a_q_rel

"_NEG_v__rel"&ARG1&pronoun_q_rel "_POS_a__rel"&ARG1&_the_q_rel

"_NEG_v__rel"&ARG1&pron_rel _a_q_rel&RSTR&"_POS_a__rel"

"_NEG_a__rel"&ARG1&udef_q_rel "_NEG_n__rel"&ARG0&udef_q_rel

"_NEG_a__rel"&ARG1&_the_q_rel "_POS_a__rel"&ARG1&udef_q_rel

Table 7: Most frequent features in test data by polarity and classification result

mary or off-topic language; use of obscure words
not likely to occur frequently in the data; miscat-
egorization in the dataset; and confusing or non-
sensical language. The counts for these categories
appear in Table 6.

The prevalence of errors in the first category
is revealing, and relates to certain subcategories
of review that confound our sentiment back-off
features. For horror films in particular, words
that would generally convey negative sentiment
(creepy, horrible, gruesome) are instead used pos-
itively. This presents an obvious problem for senti-
ment back-off, which relies on the assumption that
words are generally used with the same intent.

To explore this further, we collected counts of
the most frequent features in these 104 reviews,
and compared them to feature counts for correctly
classified documents of the same class. The stark
contrast between the back-off polarities of the fea-
tures extracted and the polarity of the documents
suggests that these feature types are overgener-
alizing and misleading the classifier (see Table
7). While the course-grained polarity of sentiment
terms is often a good indicator of overall review
polarity, our system has difficulty with cases in
which many sentiment terms do not align with the
review sentiment. Our back-off PRP features do
not include scope of negation handling, so even if
these terms are negated, our classifier in its current
form is unable to take advantage of that informa-
tion.

Further manual observation of the feature vec-
tors from these documents suggests that the senti-
ment lexicon contains elements that are not suited
to the movie review domain; plot, for example is

classified as a negative term. These results point
to the need for a more domain-specific sentiment
lexicon, and perhaps additional features that look
at the combination of sentiment terms present in a
review. LDA models could provide some guidance
in capturing and analyzing co-occurring groups of
sentiment terms.

6 Conclusions and Future Work

Our attempt to improve binary sentiment classifi-
cation with MRS-based features is motivated by a
desire to move beyond shallow approaches and ex-
plore the potential for features based on semantic
dependencies. Our preliminary results are promis-
ing, if modest, and point to back-off replacement
as a useful tool in combination with the relation-
ships captured by predicate triples.

There are a number of potential areas for im-
provement and further development of our ap-
proach. In light of Wang and Manning’s (2012) re-
sults using an SVM classifier on the same dataset,
one obvious direction would be to experiment with
this and other machine learning algorithms. Addi-
tionally, the ability to account for negation in the
MRS features types as in Packard et al. (2014)
would likely mitigate some of the errors caused
by the back-off PRP features

Another possibility for expansion would be the
development of features using larger feature sub-
graphs. Because of concerns about runtime and
data sparsity, we crawl only one level of the MRS
and examine a limited set of relationships. The
success of Socher et al.’s (2013) Recursive Neural
Tensor Network suggest that with enough data, it
is possible to capture the complex compositional
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effects of various sub-components. Given their
success with syntactic dependencies, and the re-
search presented here, we believe semantic de-
pendencies will be a fruitful avenue for future re-
search in sentiment analysis. This project has been
an exciting first step into uncharted territory, and
suggests the potential to further exploit the MRS
in sentiment analysis applications. Nonetheless,
the performance gains we were able to observe
demonstrate the power of using semantic repre-
sentations produced by a linguistically motivated,
broad-coverage parser as an information source
in a semantically sensitive task such as sentiment
analysis.
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Abstract

In this paper, we investigate the differ-
ence between word and sense similarity
measures and present means to convert
a state-of-the-art word similarity measure
into a sense similarity measure. In or-
der to evaluate the new measure, we cre-
ate a special sense similarity dataset and
re-rate an existing word similarity dataset
using two different sense inventories from
WordNet and Wikipedia. We discover
that word-level measures were not able
to differentiate between different senses
of one word, while sense-level measures
actually increase correlation when shift-
ing to sense similarities. Sense-level sim-
ilarity measures improve when evaluated
with a re-rated sense-aware gold standard,
while correlation with word-level similar-
ity measures decreases.

1 Introduction

Measuring similarity between words is a very im-
portant task within NLP with applications in tasks
such as word sense disambiguation, information
retrieval, and question answering. However, most
of the existing approaches compute similarity on
the word-level instead of the sense-level. Conse-
quently, most evaluation datasets have so far been
annotated on the word level, which is problem-
atic as annotators might not know some infrequent
senses and are influenced by the more probable
senses. In this paper, we provide evidence that this
process heavily influences the annotation process.
For example, when people are presented the word
pair jaguar - gamepad only few people know that

Jaguar

Gamepad Zoo

.0070.0016

.0000

Figure 1: Similarity between words.

jaguar is also the name of an Atari game console.1

People rather know the more common senses of
jaguar, i.e. the car brand or the animal. Thus, the
word pair receives a low similarity score, while
computational measures are not so easily fooled
by popular senses. It is thus likely that existing
evaluation datasets give a wrong picture of the true
performance of similarity measures.

Thus, in this paper we investigate whether sim-
ilarity should be measured on the sense level. We
analyze state-of-the-art methods and describe how
the word-based Explicit Semantic Analysis (ESA)
measure (Gabrilovich and Markovitch, 2007) can
be transformed into a sense-level measure. We
create a sense similarity dataset, where senses are
clearly defined and evaluate similarity measures
with this novel dataset. We also re-annotate an ex-
isting word-level dataset on the sense level in order
to study the impact of sense-level computation of
similarity.

2 Word-level vs. Sense-level Similarity

Existing measures either compute similarity (i) on
the word level or (ii) on the sense level. Similarity
on the word level may cover any possible sense of
the word, where on the sense level only the actual
sense is considered. We use Wikipedia Link Mea-

1If you knew that it is a certain sign that you are getting
old.
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Atari Jaguar Jaguar (animal)

Gamepad Zoo

.0000.0321 .0341.0000

.0000

Figure 2: Similarity between senses.

sure (Milne, 2007) and Lin (Lin, 1998) as exam-
ples of sense-level similarity measures2 and ESA
as the prototypical word-level measure.3

The Lin measure is a widely used graph-based
similarity measure from a family of similar ap-
proaches (Budanitsky and Hirst, 2006; Seco et al.,
2004; Banerjee and Pedersen, 2002; Resnik, 1999;
Jiang and Conrath, 1997; Grefenstette, 1992). It
computes the similarity between two senses based
on the information content (IC) of the lowest com-
mon subsumer (lcs) and both senses (see For-
mula 1).

simlin =
2 IC(lcs)

IC(sense1) + IC(sense2)
(1)

Another type of sense-level similarity measure
is based on Wikipedia that can also be considered a
sense inventory, similar to WordNet. Milne (2007)
uses the link structure obtained from articles to
count the number of shared incoming links of ar-
ticles. Milne and Witten (2008) give a more effi-
cient variation for computing similarity (see For-
mula 2) based on the number of links for each ar-
ticle, shared links |A ∩B| and the total number of
articles in Wikipedia|W |.

simLM =
log max(|A| ,|B|)− log|A ∩B|

log|W | − log min(|A| ,|B|) (2)

All sense-level similarity measures can be con-
verted into a word similarity measure by comput-
ing the maximum similarity between all possible
sense pairs. Formula 3 shows the heuristic, with
Sn being the possible senses for word n, simw the
word similarity, and sims the sense similarity.

simw(w1, w2) = max
s1∈S1,s2∈S2

sims(s1, s2) (3)

Explicit Semantic Analysis (ESA) (Gabrilovich
and Markovitch, 2007) is a widely used word-level

2We selected these measures because they are intuitive but
still among the best performing measures.

3Hassan and Mihalcea (2011) classify these measures as
corpus-based and knowledge-based.

similarity measure based on Wikipedia as a back-
ground document collection. ESA constructs a n-
dimensional space, where n is the number of arti-
cles in Wikipedia. A word is transformed in a vec-
tor with the length n. Values of the vector are de-
termined by the term frequency in the correspond-
ing dimension, i.e. in a certain Wikipedia article.
The similarity of two words is then computed as
the inner product (usually the cosine) of the two
word vectors.

We now show how ESA can be adapted success-
fully to work on the sense-level, too.

2.1 DESA: Disambiguated ESA

In the standard definintion, ESA computes the
term frequency based on the number of times a
term—usually a word—appears in a document. In
order to make it work on the sense level, we will
need a large sense-disambiguated corpus. Such
a corpus could be obtained by performing word
sense disambiguating (Agirre and Edmonds, 2006;
Navigli, 2009) on all words. However, as this
is an error-prone task and we are more inter-
ested to showcase the overall principle, we rely on
Wikipedia as an already manually disambiguated
corpus. Wikipedia is a highly linked resource and
articles can be considered as senses.4 We ex-
tract all links from all articles, with the link tar-
get as the term. This approach is not restricted
to Wikipedia, but can be applied to any resource
containing connections between articles, such as
Wiktionary (Meyer and Gurevych, 2012b). An-
other reason to select Wikipedia as a corpus is that
it will allow us to directly compare similarity val-
ues with the Wikipedia Link Measure as described
above.

After this more high-level introduction, we now
focus on the mathematical foundation of ESA and
disambiguated ESA (called ESA on senses). ESA
and ESA on senses count the frequency of each
term (or sense) in each document. Table 1 shows
the corresponding term-document matrix for the
example in Figure 1. The term Jaguar appears in
all shown documents, but the term Zoo appears in
the articles Dublin Zoo and Wildlife Park.5 A man-
ual analysis shows that Jaguar appears with differ-
ent senses in the articles D-pad6 and Dublin Zoo.

4Wikipedia also contains pages with a list of possible
senses called disambiguation pages, which we filter.

5In total it appears in 30 articles but we shown only few
example articles.

6A D-pad is a directional pad for playing computer games.
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Articles Terms
Jaguar Gamepad Zoo

# articles 3,496 30 7,553

Dublin Zoo 1 0 25
Wildlife Park 1 0 3

D-pad 1 0 0
Gamepad 4 1 0

... ... ... ...

Table 1: Term-document-matrix for frequencies in
a corpus if words are used as terms

Articles Terms
Atari Gamepad Jaguar ZooJaguar (animal)

# articles 156 86 578 925

Dublin Zoo 0 0 2 1
Wildlife Park 0 0 1 1

D-pad 1 1 0 0
Gamepad 1 0 0 0

... ... ... ... ...

Table 2: Term-document-matrix for frequencies in
a corpus if senses are used as terms

By comparing the vectors without any modifi-
cation, we see that the word pairs Jaguar—Zoo
and Jaguar—Gamepad have vector entries for the
same document, thus leading to a non-zero simi-
larity. Vectors for the terms Gamepad and Zoo do
not share any documents, thus leading to a simi-
larity of zero.

Shifting from words to senses changes term fre-
quencies in the term-document-matrix in Table 2.
The word Jaguar is split in the senses Atari Jaguar
and Jaguar (animal). Overall, the term-document-
matrix for the sense-based similarity shows lower
frequencies, usually zero or one because in most
cases one article does not link to another article or
exactly once. Both senses of Jaguar do not appear
in the same document, hence, their vectors are or-
thogonal. The vector for the term Gamepad dif-
fers from the vector for the same term in Table 1.
This is due to two effects: (i) There is no link from
the article Gamepad to itself, but the term is men-
tioned in the article and (ii) there exists a link from
the article D-pad to Gamepad, but using another
term.

The term-document-matrices in Table 1 and 2
show unmodified frequencies of the terms. When
comparing two vectors, both are normalized in a
prior step. Values can be normalized by the inverse
logarithm of their document frequency. Term fre-
quencies can also be normalized by weighting

them with the inverse frequency of links pointing
to an article (document or articles with many links
pointing to them receive lower weights as docu-
ments with only few incoming links.) We normal-
ize vector values with the inverse logarithm of ar-
ticle frequencies.

Besides comparing two vectors by measuring
the angle between them (cosine), we also experi-
ment with a language model variant. In the lan-
guage model variant we calculate for both vec-
tors the ratio of links they both share. The fi-
nal similarity value is the average for both vec-
tors. This is somewhat similar to the approach of
Wikipedia Link Measure by Milne (2007). Both
rely on Wikipedia links and are based on frequen-
cies of these links. We show that—although, ESA
and Link Measure seem to be very different—they
both share a general idea and are identical with a
certain configuration.

2.2 Relation to the Wikipedia Link Measure

Link Measure counts the number of incoming
links to both articles and the number of shared
links. In the originally presented formula by Milne
(2007) the similarity is the cosine of vectors for
incoming or outgoing links from both articles. In-
coming links are also shown in term-document-
matrices in Table 1 and 2, thus providing the same
vector information. In Milne (2007), vector values
are weighted by the frequency of each link normal-
ized by the logarithmic inverse frequency of links
pointing to the target. This is one of the earlier de-
scribed normalization approaches. Thus, we argue
that the Wikipedia Link Measure is a special case
of our more general ESA on senses approach.

3 Annotation Study I: Rating Sense
Similarity

We argue that human judgment of similarity be-
tween words is influenced by the most probable
sense. We create a dataset with ambiguous terms
and ask annotators to rank the similarity of senses
and evaluate similarity measures with the novel
dataset.

3.1 Constructing an Ambiguous Dataset

In this section, we discuss how an evaluation
dataset should be constructed in order to correctly
asses the similarity of two senses. Typically, eval-
uation datasets for word similarity are constructed
by letting annotators rate the similarity between
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both words without specifying any senses for these
words. It is common understanding that anno-
tators judge the similarity of the combination of
senses with the highest similarity.

We investigate this hypothesis by constructing
a new dataset consisting of 105 ambiguous word
pairs. Word pairs are constructed by adding one
word with two clearly distinct senses and a second
word, which has a high similarity to only one of
the senses. We first ask two annotators7 to rate the
word pairs on a scale from 0 (not similar at all) to 4
(almost identical). In the second round, we ask the
same annotators to rate 277 sense8 pairs for these
word pairs using the same scale.

The final dataset thus consists of two levels:
(i) word similarity ratings and (ii) sense similarity
ratings. The gold ratings are the averaged ratings
of both annotators, resulting in an agreement9 of
.510 (Spearman: .598) for word ratings and .792
(Spearman: .806) for sense ratings.

Table 3 shows ratings of both annotators for two
word pairs and ratings for all sense combinations.
In the given example, the word bass has the senses
of the fish, the instrument, and the sound. Anno-
tators compare the words and senses to the words
Fish and Horn, which appear only in one sense
(most frequent sense) in the dataset.

The annotators’ rankings contradict the assump-
tion that the word similarity equals the similar-
ity of the highest sense. Instead, the highest
sense similarity rating is higher than the word
similarity rating. This may be caused—among
others—by two effects: (i) the correct sense is not
known or not recalled, or (ii) the annotators (un-
consciously) adjust their ratings to the probabil-
ity of the sense. Although, the annotation manual
stated that Wikipedia (the source of the senses)
could be used to get informed about senses and
that any sense for the words can be selected, we
see both effects in the annotators’ ratings. Both
annotators rated the similarity between Bass and
Fish as very low (1 and 2). However, when asked
to rate the similarity between the sense Bass (Fish)
and Fish, both annotators rated the similarity as
high (4). Accordingly, for the word pair Bass and

7Annotators are near-native speakers of English and have
university degrees in cultural anthropology and computer sci-
ence.

8The sense of a word is given in parentheses but annota-
tors have access to Wikipedia to get information about those
senses.

9We report agreement as Krippendorf α with a quadratic
weight function.

Horn, word similarity is low (1) while the highest
sense frequency is medium to high (3 and 4).

3.2 Results & Discussion
We evaluated similarity measures with the previ-
ously created new dataset. Table 4 shows corre-
lations of similarity measures with human ratings.
We divide the table into measures computing sim-
ilarity on word level and on sense level. ESA
works entirely on a word level, Lin (WordNet)
uses WordNet as a sense inventory, which means
that senses differ across sense inventories.10 ESA
on senses and Wikipedia Link Measure (WLM)
compute similarity on a sense-level, however, sim-
ilarity on a word-level is computed by taking the
maximum similarity of all possible sense pairs.

Results in Table 4 show that word-level mea-
sures return the same rating independent from the
sense being used, thus, they perform good when
evaluated on a word-level, but perform poorly
on a sense-level. For the word pair Jaguar—
Zoo, there exist two sense pairs Atari Jaguar—
Zoo and Jaguar (animal)—Zoo. Word-level mea-
sures return the same similarity, thus leading to
a very low correlation. This was expected, as
only sense-based similarity measures can discrim-
inate between different senses of the same word.
Somewhat surprisingly, sense-level measures per-
form also well on a word-level, but their per-
formance increases strongly on sense-level. Our
novel measure ESA on senses provides the best
results. This is expected as the ambiguous dataset
contains many infrequently used senses, which an-
notators are not aware of.

Our analysis shows that the algorithm for com-
paring two vectors (i.e. cosine and language
model) only influences results for ESA on senses
when computed on a word-level. Correlation for
Wikipedia Link Measure (WLM) differs depend-
ing on whether the overlap of incoming or outgo-
ing links are computed. WLM on word-level using
incoming links performs better, while the differ-
ence on sense-level evaluation is only marginal.
Results show that an evaluation on the level of
words and senses may influence performance of
measures strongly.

3.3 Pair-wise Evaluation
In a second experiment, we evaluate how well
sense-based measures can decide, which one of

10Although, there exists sense alignment resources, we did
not use any alignment.
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Annotator 1 Annotator 2
Word 1 Word 2 Sense 1 Sense 2 Words Senses Words Senses

Bass Fish
Bass (Fish)

Fish (Animal) 1
4

1
4

Bass (Instrument) 1 1
Bass (Sound) 1 1

Bass Horn
Bass (Fish)

Horn (Instrument) 2
1

1
1

Bass (Instrument) 3 4
Bass (Sound) 3 3

Table 3: Examples of ratings for two word pairs and all sense combinations with the highest ratings
marked bold

Word-level Sense-level
measure Spearman Pearson Spearman Pearson

Word measures ESA .456 .239 -.001 .017
Lin (WordNet) .298 .275 .038 .016

Sense measures
ESA on senses (Cosine) .292 .272 .642 .348
ESA on senses (Lang. Mod.) .185 .256 .642 .482
WLM (out) .190 .193 .537 .372
WLM (in) .287 .279 .535 .395

Table 4: Correlation of similarity measures with a human gold standard of ambiguous word pairs.

two sense pairs for one word pair have a higher
similarity. We thus create for every word pair all
possible sense pairs11 and count cases where one
measure correctly decides, which is the sense pair
with a higher similarity.

Table 5 shows evaluation results based on a
minimal difference between two sense pairs. We
removed all sense pairs with a lower difference
of their gold similarity. Column #pairs gives the
number of remaining sense pairs. If a measure
classifies two sense pairs wrongly, it may either
be because it rated the sense pairs with an equal
similarity or because it reversed the order.

Results show that accuracy increases with in-
creasing minimum difference between sense pairs.
Figure 3 emphasizes this finding. Overall, accu-
racy for this task is high (between .70 and .83),
which shows that all the measures can discrim-
inate sense pairs. WLM (out) performs best for
most cases with a difference in accuracy of up to
.06.

When comparing these results to results from
Table 4, we see that correlation does not imply
accurate discrimination of sense pairs. Although,
ESA on senses has the highest correlation to hu-
man ratings, it is outperformed by WLM (out) on
the task of discriminating two sense pairs. We see
that results are not stable across both evaluation

11For one word pair with two senses for one word, there are
two possible sense pairs. Three senses result in three sense
pairs.
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Figure 3: Accuracy distribution depending on
minimum difference of similarity ratings

scenarios, however, ESA on senses achieves the
highest correlation and performs similar to WLM
(out) when comparing sense pairs pair-wise.

4 Annotation Study II: Re-rating of
RG65

We performed a second evaluation study where we
asked three human annotators12 to rate the similar-
ity of word-level pairs in the dataset by Rubenstein
and Goodenough (1965). We hypothesize that
measures working on the sense-level should have a
disadvantage on word-level annotated datasets due
to the effects described above that influence anno-
tators towards frequent senses. In our annotation

12As before, all three annotators are near-native speakers of
English and have a university degree in physics, engineering,
and computer science.
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Min. Wrong
diff. #pairs measure Correct Reverse Values equal Accuracy

0.5 420 ESA on senses 296 44 80 .70
WLM (in) 296 62 62 .70
WLM (out) 310 76 34 .74

1.0 390 ESA on senses 286 38 66 .73
WLM (in) 282 52 56 .72
WLM (out) 294 64 32 .75

1.5 360 ESA on senses 264 34 62 .73
WLM (in) 260 48 52 .72
WLM (out) 280 54 26 .78

2.0 308 ESA on senses 232 28 48 .75
WLM (in) 226 36 46 .73
WLM (out) 244 46 18 .79

2.5 280 ESA on senses 216 22 42 .77
WLM (in) 206 32 42 .74
WLM (out) 224 38 18 .80

3.0 174 ESA on senses 134 10 30 .77
WLM (in) 128 20 26 .74
WLM (out) 136 22 16 .78

3.50 68 ESA on senses 56 4 8 .82
WLM (in) 50 6 12 .74
WLM (out) 52 6 10 .76

4.0 12 ESA on senses 10 2 0 .83
WLM (in) 10 2 0 .83
WLM (out) 10 2 0 .83

Table 5: Pair-wise comparison of measures: Results for ESA on senses (language model) and ESA on
senses (cosine) do not differ

studies, our aim is to minimize the effect of sense
weights.

In previous annotation studies, human annota-
tors could take sense weights into account when
judging the similarity of word pairs. Addition-
ally, some senses might not be known by anno-
tators and, thus receive a lower rating. We min-
imize these effects by asking annotators to select
the best sense for a word based on a short summary
of the corresponding sense. To mimic this pro-
cess, we created an annotation tool (see Figure 4),
for which an annotator first selects senses for both
words, which have the highest similarity. Then the
annotator ranks the similarity of these sense pairs
based on the complete sense definition.

A single word without any context cannot be
disambiguated properly. However, when word
pairs are given, annotators first select senses based
on the second word, e.g. if the word pair is Jaguar
and Zoo, an annotator will select the wild animal
for Jaguar. After disambiguating, an annotator
assigns a similarity score based on both selected
senses. To facilitate this process, a definition of
each possible sense is shown.

As in the previous experiment, similarity is an-

notated on a five-point-scale from 0 to 4. Al-
though, we ask annotators to select senses for
word pairs, we retrieve only one similarity rating
for each word pair, which is the sense combination
with the highest similarity.

No sense inventory To compare our results with
the original dataset from Rubenstein and Goode-
nough (1965), we asked annotators to rate similar-
ity of word pairs without any given sense reposi-
tory, i.e. comparing words directly. The annota-
tors reached an agreement of .73. The resulting
gold standard has a high correlation with the orig-
inal dataset (.923 Spearman and .938 Pearson).
This is in line with our expectations and previous
work that similarity ratings are stable across time
(Bär et al., 2011).

Wikipedia sense inventory We now use the full
functionality of our annotation tool and ask an-
notators to first, select senses for each word and
second, rate the similarity. Possible senses and
definitions for these senses are extracted from
Wikipedia.13 The same three annotators reached

13We use the English Wikipedia version from June 15th,
2010.
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Figure 4: User interface for annotation studies: The example shows the word pair glass—tumbler with
no senses selected. The interface shows WordNet definitons of possible senses in the text field below the
sense selection. The highest similarity is selected as sense 4496872 for tumbler is a drinking glass.

an agreement of .66. The correlation to the orig-
inal dataset is lower than for the re-rating (.881
Spearman, .896 Pearson). This effect is due
to many entities in Wikipedia, which annotators
would typically not know. Two annotators rated
the word pair graveyard—madhouse with a rather
high similarity because both are names of music
bands (still no very high similarity because one is
a rock and the other a jazz band).

WordNet sense inventory Similar to the previ-
ous experiment, we list possible senses for each
word from a sense inventory. In this experiment,
we use WordNet senses, thus, not using any named
entity. The annotators reached an agreement of .73
and the resulting gold standard has a high correla-
tion with the original dataset (.917 Spearman and
.928 Pearson).

Figure 5 shows average annotator ratings in
comparison to similarity judgments in the origi-
nal dataset. All re-rating studies follow the general
tendency of having higher annotator judgments for
similar pairs. However, there is a strong fluctua-
tion in the mid-similarity area (1 to 3). This is due
to fewer word pairs with such a similarity.

4.1 Results & Discussion

We evaluate the similarity measures using Spear-
man and Pearson correlation with human similar-
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Figure 5: Correlation curve of rerating studies

ity judgments. We calculate correlations to four
human judgments: (i) from the original dataset
(Orig.), (ii) from our re-rating study (Rerat.), (iii)
from our study with senses from Wikipedia (WP),
and (iv) with senses from WordNet (WN). Ta-
ble 6 shows results for all described similarity
measures.

ESA14 achieves a Spearman correlation of .751
and a slightly higher correlation (.765) on our
re-rating gold standard. Correlation then drops
when compared to gold standards with senses
from Wikipedia and WordNet. This is expected
as the gold standard becomes more sense-aware.

Lin is based on senses in WordNet but still out-
14ESA is used with normalized text frequencies, a constant

document frequency, and a cosine comparison of vectors.
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Spearman Pearson
measure Orig. Rerat. WP WN Orig. Rerat. WP WN

ESA .751 .765 .704 .705 .647 .694 .678 .625
Lin .815 .768 .705 .775 .873 .840 .798 .846
ESA on senses (lang. mod.) .733 .765 .782 .751 .703 .739 .739 .695
ESA on senses (cosine) .775 .810 .826 .795 .694 .712 .736 .699
WLM (in) .716 .745 .754 .733 .708 .712 .740 .707
WLM (out) .583 .607 .652 .599 .548 .583 .613 .568

Table 6: Correlation of similarity measures with a human gold standard on the word pairs by Rubenstein
and Goodenough (1965). Best results for each gold standard are marked bold.

performs all other measures on the original gold
standard. Correlation reaches a high value for
the gold standard based on WordNet, as the same
sense inventory for human annotations and mea-
sure is applied. Values for Pearson correlation em-
phasizes this effect: Lin reaches the maximum of
.846 on the WordNet-based gold standard.

Correspondingly, the similarity measures ESA
on senses and WLM reach their maximum on
the Wikipedia-based gold standard. As for the
ambiguous dataset in Section 3 ESA on senses
outperforms both WLM variants. Cosine vector
comparison again outperforms the language model
variant for Spearman correlation but impairs it in
terms of Pearson correlation. As before WLM (in)
outperforms WLM (out) across all datasets and
both correlation metrics.

Is word similarity sense-dependent? In gen-
eral, sense-level similarity measures improve
when evaluated with a sense-aware gold standard,
while correlation with word-level similarity mea-
sures decreases. A further manual analysis shows
that sense-level measures perform good when rat-
ing very similar word pairs. This is very useful for
applications such as information retrieval where a
user is only interested in very similar documents.

Our evaluation thus shows that word similar-
ity should not be considered without considering
the effect of the used sense inventory. The same
annotators rate word pairs differently if they can
specify senses explicitly (as seen in Table 3). Cor-
respondingly, results for similarity measures de-
pend on which senses can be selected. Wikipedia
contains many entities, e.g. music bands or ac-
tors, while WordNet contains fine-grained senses
for things (e.g. narrow senses of glass as shown in
Figure 4). Using the same sense inventory as the
one, which has been used in the annotation pro-

cess, leads to a higher correlation.

5 Related Work

The work by Schwartz and Gomez (2011) is the
closest to our approach in terms of sense anno-
tated datasets. They compare several sense-level
similarity measures based on the WordNet taxon-
omy on sense-annotated datasets. For their ex-
periments, annotators were asked to select senses
for every word pair in three similarity datasets.
Annotators were not asked to re-rate the similar-
ity of the word pairs, or the sense pairs, respec-
tively. Instead, similarity judgments from the orig-
inal datasets are used. Possible senses are given by
WordNet and the authors report an inter-annotator
agreement of .93 for the RG dataset.

The authors then compare Spearman correlation
between human judgments and judgments from
WordNet-based similarity measures. They focus
on differences between similarity measures using
the sense annotations and the maximum value for
all possible senses. The authors do not report im-
provements across all measures and datasets. Of
ten measures and three datasets, using sense an-
notations, improved results in nine cases. In 16
cases, results are higher when using the maxi-
mum similarity across all possible senses. In five
cases, both measures yielded an equal correlation.
The authors do not report any overall tendency
of results. However, these experiments show that
switching from words to senses has an effect on
the performance of similarity measures.

The work by Hassan and Mihalcea (2011) is
the closest to our approach in terms of similarity
measures. They introduce Salient Semantic Anal-
ysis (SAS), which is a sense-level measure based
on links and disambiguated senses in Wikipedia
articles. They create a word-sense-matrix and
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compute similarity with a modified cosine met-
ric. However, they apply additional normaliza-
tion factors to optimize for the evaluation metrics
which makes a direct comparison of word-level
and sense-level variants difficult.

Meyer and Gurevych (2012a) analyze verb sim-
ilarity with a corpus from Yang and Powers
(2006) based on the work by Zesch et al. (2008).
They apply variations of the similarity measure
ESA by Gabrilovich and Markovitch (2007) us-
ing Wikipedia, Wiktionary, and WordNet. Meyer
and Gurevych (2012a) report improvements us-
ing a disambiguated version of Wiktionary. Links
in Wiktionary articles are disambiguated and thus
transform the resource to a sense-based resource.
In contrast to our work, they focus on the simi-
larity of verbs (in comparison to nouns in this pa-
per) and it applies disambiguation to improve the
underlying resource, while we switch the level,
which is processed by the measure to senses.

Shirakawa et al. (2013) apply ESA for compu-
tation of similarities between short texts. Texts
are extended with Wikipedia articles, which is one
step to a disambiguation of the input text. They
report an improvement of the sense-extended ESA
approach over the original version of ESA. In con-
trast to our work, the text itself is not changed and
similarity is computed on the level of texts.

6 Summary and Future Work

In this work, we investigated word-level and
sense-level similarity measures and investigated
their strengths and shortcomings. We evaluated
how correlations of similarity measures with a
gold standard depend on the sense inventory used
by the annotators.

We compared the similarity measures ESA
(corpus-based), Lin (WordNet), and Wikipedia
Link Measure (Wikipedia), and a sense-enabled
version of ESA and evaluated them with a dataset
containing ambiguous terms. Word-level mea-
sures were not able to differentiate between dif-
ferent senses of one word, while sense-level mea-
sures could even increase correlation when shift-
ing to sense similarities. Sense-level measures ob-
tained accuracies between .70 and .83 when decid-
ing which of two sense pairs has a higher similar-
ity.

We performed re-rating studies with three an-
notators based on the dataset by Rubenstein and
Goodenough (1965). Annotators were asked to

first annotate senses from Wikipedia and Word-
Net for word pairs and then judge their similar-
ity based on the selected senses. We evaluated
with these new human gold standards and found
that correlation heavily depends on the resource
used by the similarity measure and sense reposi-
tory a human annotator selected. Sense-level sim-
ilarity measures improve when evaluated with a
sense-aware gold standard, while correlation with
word-level similarity measures decreases. Using
the same sense inventory as the one, which has
been used in the annotation process, leads to a
higher correlation. This has implications for cre-
ating word similarity datasets and evaluating sim-
ilarity measures using different sense inventories.

In future work we would like to analyze how
we can improve sense-level similarity measures by
disambiguating a large document collection and
thus retrieving more accurate frequency values.
This might reduce the sparsity of term-document-
matrices for ESA on senses. We plan to use
word sense disambiguation components as a pre-
processing step to evaluate whether sense simi-
larity measures improve results for text similarity.
Additionally, we plan to use sense alignments be-
tween WordNet and Wikipedia to enrich the term-
document matrix with additional links based on
semantic relations.

The datasets, annotation guidelines, and our ex-
perimental framework are publicly available in or-
der to foster future research for computing sense
similarity.15
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Abstract

We introduce an iterative approach to
subgraph-based Word Sense Disambigua-
tion (WSD). Inspired by the Sudoku puz-
zle, it significantly improves the precision
and recall of disambiguation. We describe
how conventional subgraph-based WSD
treats the two steps of (1) subgraph con-
struction and (2) disambiguation via graph
centrality measures as ordered and atomic.
Consequently, researchers tend to focus on
improving either of these two steps indi-
vidually, overlooking the fact that these
steps can complement each other if they
are allowed to interact in an iterative man-
ner. We tested our iterative approach
against the conventional approach for a
range of well-known graph centrality mea-
sures and subgraph types, at the sentence
and document level. The results demon-
strated that an average performing WSD
system which embraces the iterative ap-
proach, can easily compete with state-of-
the-art. This alone warrants further inves-
tigation.

1 Introduction

Explicit WSD is a two-step process of analysing a
word’s contextual use then deducing its intended
sense. When Kilgarriff (1998) established SEN-
SEVAL, the collaborative framework and forum to
evaluate WSD, unsupervised systems performed
poorly in comparison to their supervised counter-
parts (Palmer et al., 2001; Snyder and Palmer,
2004). A review of the literature shows there

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence de-
tails: http://creativecommons.org/licenses/
by/4.0/

has been a healthy rivalry between the two, in
which proponents of unsupervised WSD have long
sought to vindicate its potential since two decades
ago (Yarowsky, 1995) to even more recent times
(Ponzetto and Navigli, 2010).

As Pedersen (2007) rightly states, supervised
systems are bound by their training data, and
therefore are limited in portability and flexibility
in the face of new domains, changing applications,
or different languages. This knowledge acquisi-
tion bottleneck, coined by Gale et al. (1992), can
be alleviated by unsupervised systems that exploit
the portability and flexibility of Lexical Knowl-
edge Bases (LKBs). As of 2007, SENSEVAL be-
came SEMEVAL, offering a more diverse range of
semantic tasks. Unsupervised knowledge-based
WSD has since had its performance evaluated in
terms of granularity (Navigli et al., 2007), domain
(Agirre et al., 2010), and cross/multi-linguality
(Lefever and Hoste, 2010; Lefever and Hoste,
2013; Navigli et al., 2013). Results from these
tasks have demonstrated unsupervised systems are
now a competitive and robust alternative to super-
vised systems, especially given the ever changing
task-orientated settings WSD is evaluated in.

One such class of unsupervised knowledge-
based WSD systems that we seek to improve
in this paper constructs semantic subgraphs from
LKBs, and then runs graph-based centrality mea-
sures such as PageRank (Brin and Page, 1998)
over them to finally select the senses (as nodes)
ranked as the most relevant. This class is known
as subgraph-based WSD, characterised over the
last decade by performing the two key steps of (1)
subgraph construction and (2) disambiguation via
graph centrality measures, in an ordered atomic
sequence. We refer to this characteristic as the
conventional approach to subgraph-based WSD.
We propose an iterative approach to subgraph-
based WSD that allows for interaction between
the two major steps in an incremental manner
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and demonstrate its effectiveness across a range
of graph-based centrality measures and subgraph
construction methods at the sentence and docu-
ment levels of disambiguation.

2 The Conventional Subgraph Approach

The conventional approach to subgraph WSD
firstly benefits from some preprocessing, in which
words in a sequenceW , are mapped to their lem-
matisations1 in a set L, such that (w1, ..., wm) 7→
{`1, ..., `m}. This facilitates better lexical align-
ment with the LKB to be exploited. Let this LKB
be a large semantic graph G = (S, E), such that
S is a set of vertices representing all known word
senses, and E be a set of edges defining seman-
tic relationships that exist between senses. Now
given we wish to disambiguate `i ∈ L, let R(`i)
be a function that Retrieves from G, all the senses,
{si,1, si,2, ..., si,k}, that `i could refer to, noting
that i is an anchor to the original word wi.

2.1 Step 1: Subgraph Construction

For unsupervised subgraph-based WSD, the key
publications that have advanced the field broadly
construct subgraph, GL, as either a union of sub-
tree paths, shortest paths, or local edges2. First
we initialise GL, by setting SL :=

⋃n
i=1R(`i) and

EL := ∅. Next we add edges to EL, depending on
the desired subgraph type, by adding either the:

(a) Subtree paths of up to length L, via a Depth-
First Search (DFS) of G. In brief, for each
sense sa ∈ SL, if a new sense sb ∈ SL,
i.e. sb 6= sa, is encountered along a path
Pa→b = {{sa, s}, ..., {s′, sb}} with path-
length |Pa→b| ≤ L, then add Pa→b to GL.
[cf. Navigli and Velardi (2005), Navigli and
Lapata (2007), or Navigli and Lapata (2010)]

(b) Shortest paths, via a Breadth-First Search
(BFS) of G. In brief, for each sense pair
sa, sb ∈ SL, find the shortest path Pa→b =
{{sa, s}, ..., {s′, sb}}; if such a path Pa→b ex-
ists and (optionally) |Pa→b| ≤ L, then add
Pa→b to GL [cf. Agirre and Soroa (2008),
Agirre and Soroa (2009), or Gutiérrez et al.
(2013)]

1For a detailed explanation of the processes leading up to
lemmatisation (and beyond), see Navigli (2009, p12)

2‘Local’ describes the local context, typically this is the 2
or 3 words either side of a word, see Yarowsky (1993)

(c) Local edges up to a local distance D. In brief,
for each sense pair sa, sb ∈ SL, if the distance
in the text |b − a| between the corresponding
words wa and wb satisfies |b − a| ≤ D, then
add edge {sa, sb} to GL (preferably with edge-
weights). [cf. Mihalcea (2005) or Sinha and
Mihalcea (2007)] (Note that this subgraph is a
hybrid, because only its vertices belong to G)

In practice, subgraph edges may be directed,
weighted, collapsed, or filtered. However to keep
the distinctions between subgraph types simple,
we do not include this in our formalisation.

2.2 Step 2: Disambiguation

To disambiguate each lemma `i ∈ L, its cor-
responding senses, R(`i) = {si,1, si,2, ..., si,k},
are scored by a graph-based centrality measure φ,
over subgraph GL, to estimate the most appropri-
ate sense, ŝi,∗ = arg maxsi,j∈R(`i) φ(si,j). The
estimated sense ŝi,∗ is then assigned to word wi.

2.3 Algorithm for Conventional Approach

With both steps formalised, we can now illus-
trate the conventional subgraph approach in Algo-
rithm 1. Let L be taken as input, and let the disam-
biguation resultsD = {ŝ1,∗, ..., ŝm,∗} be produced
as output to assign toW = (w1, ..., wm).

Algorithm 1: Conventional Approach
Input: L
Output: D
D ← ∅;
GL ← ConstructSubGraph (L);
foreach `i ∈ L do

ŝi,∗ ← arg maxsi,j∈R(`i) φ(si,j);
put ŝi,∗ in D;

To begin with, D is initialised as an empty set
and ConstructSubGraph(L) constructs one
of the three subgraphs described in section 2.1.
Next for each `i ∈ L, by running a graph based
centrality measure φ over GL, the most appropriate
sense ŝi,∗ is estimated, and placed in set D. Effec-
tively, L is a context window based on document
or sentence size, therefore this algorithm is run
for each context window division. Note that Al-
gorithm 1 would require a little extra complexity
to handle local edge subgraphs, due to its context
window needing to satisfy L = {`i−D, ..., `i+D}.
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Figure 1: Iterative Solving of Sudoku Grids

3 The Iterative Subgraph Approach

3.1 What is Iterative WSD?

The key observation to make about the conven-
tional approach in Algorithm 1, is for input L,
constructing subgraph GL and performing disam-
biguation are two ordered atomic steps. Notice
that there is no iteration between them, because
the first step of subgraph construction is never re-
visited for each L. For the conventional process
to be iterative, then for `a, `b ∈ L a previous dis-
ambiguation of `a, would need to influence a con-
secutive disambiguation of `b, through an iterative
re-construction of GL between each disambigua-
tion. This key difference illustrated by Figure 2, is
the level of iterative WSD we aspire to.

L GL φ Dconstruct disambiguate assign

(a) Conventional Approach

L GL φ Dconstruct

disambiguate

assign

reconstruct

(b) Interactively Iterative Approach

Figure 2: The Key Difference In Approach

It is important to note, the term iterative can al-
ready be found in WSD literature, therefore we
take the opportunity here to make a distinction.
Firstly, a graph based centrality measure φ may
be iterative, such as PageRank (Brin and Page,
1998) or Hyperlink-Induced Topic Search (HITS)
(Kleinberg, 1999). In the experiments by Mihal-
cea (2005) in which PageRank was run over local
edge subgraphs (as described in 2.1 (c)), it is easy
to perceive the WSD process itself as iterative.

Iteration can again be taken further, as observed
with Personalised PageRank in which Agirre and
Soroa (2009) apply the idea of biasing values in
the random surfing vector, v, (see (Haveliwala,
2003)). For their run labelled “Ppr_w2w”, in or-
der to avoid senses anchored to the same lemma
assisting each other’s φ score, the random surfing
vector v is iteratively updated as `i changes, to en-
sure context senses sa,j ∈ v such that a 6= i are
the only senses that receive probability mass.

L GL φ Dconstruct disambiguate

update

assign

Figure 3: Atomically Iterative Approach

In summary, iteration in the literature either de-
scribes φ as being iterative or being iteratively ad-
justed, both of which are contained in the disam-
biguation step alone as shown in Figure 3. This is
iteration at the atomic level and should not be con-
flated with the interactive level of iteration that we
propose as seen in Figure 2 (b).

3.2 Iteratively Solving a Sudoku Grid

In Figures 1 (a), (b), and (c), we observe the solv-
ing of a Sudoku puzzle, in which the numbers
from 1 to 9 must be assigned only once to each
column, row, and 3x3 square. Each time a number
is assigned and the Sudoku grid is updated, this
is an iteration. For example, in the south west
square of grid (a) (i.e. Figure 1 (a)) unknown
cells can be assigned {1, 4, 7, 8}. Given that 1
has already been assigned to the 7th row and the
1st and 2nd columns, this singles it down to one
cell it can be assigned to. The iteration of grid
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Figure 4: Iterative Disambiguating of Subgraphs

(a), now makes possible the iteration of grid (b) to
eliminate the number 8 as the only possibility for
its assigned cell. This iterative process continues
until we reach the completed puzzle in grid (c).
Therefore in WSD terminology, with each cell we
disambiguate, a new grid is constructed, in which
knowledge is passed on to each consecutive itera-
tion.

Continuing with this line of thought, each un-
solved cell is ambiguous, with a degree of pol-
ysemy ρ, such that ρmax ≤ 9. Again, the ini-
tial Sudoku grid has pre-solved cells, of which are
monosemous. This brings us to another key ob-
servation. Typically in Sudoku, it is necessary to
solve the least polysemous cells first, before you
can solve the more polysemous cells with a cer-
tainty. As the conventional approach exhibits no
Sudoku-like iteration, cells are solved without re-
gard to the ρ value of the cell, or any interactive
exploitation of previously solved cells.

3.3 Iteratively Constructing a Subgraph

In our ‘Sudoku style’ approach, we propose dis-
ambiguating each `i in order of increasing poly-
semy ρ, iteratively reconstructing subgraph GL to
reflect 1) previous disambiguations and 2) the ρ
value of lemmas being disambiguated in the cur-
rent iteration. This is illustrated in Figures 4 (a),
(b), and (c) above.

Let m-labelled vertices describe monosemous
lemmas. In graph (a) (i.e. Figure 4) we observe
two bi-semous lemmas, a and b, in which our ar-
bitrary graph-based centrality measure φ has se-
lected the second sense of a (i.e. a2) and the first
sense of b (i.e. b1) to be placed in D. For the next
iteration, you will notice the alternative senses for
a and b are removed from GL for the disambigua-
tion of tri-semous lemma c. The second sense of

lemma cmanages to be selected by φwith the help
of the previous disambiguation of lemma a. This
interactive and iterative process continues until we
reach the most polysemous lemma, which in our
example is d with ρmax = 4 in graph (c).

3.4 Algorithm for Iterative Approach
We can formally describe what is happening in
Figure 4 with Algorithm 2. Effectively, this is a
recreation of Algorithm 1, which highlights the
differences in the conventional and iterative ap-
proach.

Algorithm 2: Iterative Approach
Input: L
Output: D
D ← GetMonosemous (L);
A ← ∅;
for ρ← 2 to ρmax do
A ← AddPolysemous (L, ρ);
GL ← ConstructSubGraph (A,D);
foreach `i ∈ A do

ŝi,∗ ← arg maxsi,j∈S(`i) φ(si,j);
if ŝi,∗ exists then

remove `i from A;
put ŝi,∗ in D;

Firstly, as it reads GetMonosemous(L)
places all the senses of the monosemous lemmas
into the set of disambiguated lemmas D. This is
the equivalent of copying out an unsolved Sudoku
grid onto a piece of paper and adding in all the
initial hint numbers. Next the set A which holds
all ambiguous lemmas of polysemy ≤ ρ is ini-
tialised as an empty set. Now we are ready to
iterate through values of ρ, beginning from the
first iteration, by adding all bi-semous lemmas to
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Awith the function AddPolysemous(L, ρ), no-
tice ρ places a restriction on the degree of poly-
semy a lemma `i ∈ L can have before being added
to A.

We are now ready to create the first subgraph GL
with function ConstructSubGraph(A,D).
This previously used function in Algorithm 1, is
now modified to take the ambiguous lemmas of
polysemy ≤ ρ in set A and previously disam-
biguated lemma senses in set D. The resulting
graph has a limited degree of polysemy and is con-
structed based on previous disambiguations.

From this point on the given graph centrality
measure φ is run over GL. For the lemmas that
are disambiguated, they are removed from A and
the selected sense is added toD. For those lemmas
that are not (i.e. ŝi,∗ does not exist3) they remain in
A to be involved in reattempted disambiguations
in consecutive iterations. As more lemmas are dis-
ambiguated, it is more likely that previously diffi-
cult to disambiguate lemmas become much easier
to solve, just like at the end of a Sudoku puzzle it
gets easier as you get closer to completing it.

4 Evaluations

In our evaluations we set out to understand a num-
ber of aspects. The first evaluation is a proof of
concept, to understand whether an iterative ap-
proach to subgraph WSD can in fact achieve better
performance than the conventional approach. The
second set of experiments seeks to understand how
the iterative approach works and the performance
benefits and penalties of implementing the itera-
tive approach. Finally the third experiment is an
elementary attempt at optimising the iterative ap-
proach to defeat the MFS baseline.

4.1 LKB & Dataset

For an evaluation, we have chosen the multi-
lingual LKB known as BabelNet (Navigli and
Ponzetto, 2012a). It weaves together several other
LKBs, most notably WordNet (Fellbaum, 1998)
and Wikipedia. It also can be easily accessed with
the BabelNet API, of which we have built our code
base around. All experiments are conducted on
the most recent SemEval WSD dataset, of which
is the SemEval 2013 Task 12 Multilingual WSD
(English) data set.

3This can happen if `i does not map to any senses, or
alternatively all the senses that are mapped to are filtered out
of the subgraph before disambiguation (explained later).

4.2 Graph Centrality Measures Evaluated
To demonstrate the effectiveness of our iterative
approach, we selected a range of WSD graph-
based centrality measures often experimented with
in the literature. Firstly φ does not need to be a
complicated measure, this is demonstrated by the
success of ranking senses by their number of in-
coming and outgoing edges. Even though it is very
simple, it performs surprisingly well against others
for both In-Degree (Navigli and Lapata, 2007) and
Out-Degree (Navigli and Ponzetto, 2012a)

Next we employ graph centrality measures
that are primarily used to disambiguate the se-
mantic web, such as PageRank (Brin and Page,
1998), HITS Kleinberg (1999), and a personalised
PageRank (Haveliwala, 2003); which have since
been applied to WSD by Mihalcea (2005), Navigli
and Lapata (2007), and Agirre and Soroa (2009)
respectively. We also include Betweeness Central-
ity (Freeman, 1979) which is taken from the anal-
ysis of social networks.

These methods are well known and applied
across many disciplines, therefore we will leave it
to the reader to follow up on the specifics of these
graph centrality measures. However we do ex-
plicitly define our last measure, Sum Inverse Path
Length (Navigli and Ponzetto, 2012a; Navigli and
Ponzetto, 2012b) in Equation (1) which was de-
signed with WSD in mind, thus is less well known.

φ(s) =
∑

p∈Ps→c

1
e|p|−1

(1)

This measure scores a sense by summing up the
scores of all paths that connect to other senses in
GL (i.e. senses that are not intermediate nodes, but
have a mapping back to a lemma in the context
window L). In the words of Navigli and Ponzetto
(2012a), Ps→c is the set of paths connecting s
to other senses of context words, with |p| as the
number of edges in the path p and each path is
scored with the exponential inverse decay of the
path length.

4.3 Experiment 1: Proof of Concept
4.3.1 Experiment 1: Setup
For this experiment we simply set out to see how
the iterative approach performed compared to the
conventional approach in a range of experimental
conditions. Directed and unweighted subgraphs
were used, namely subtree paths and shortest paths
subgraphs with L = 2. To address the issue of
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GL φ Conventional Doc Iterative Doc Improvement
P R F P R F ∆P ∆R ∆F

Su
bT

re
e

Pa
th

s
In-Degree 61.70 55.51 58.44 65.39 63.74 64.55 +3.69 +8.23 +6.11
Out-Degree 54.23 48.78 51.36 57.70 56.23 56.96 +3.47 +7.45 +5.60
Betweenness Centrality 59.29 53.34 56.15 63.43 61.82 62.61 +4.14 +8.48 +6.46
Sum Inverse Path Length 56.58 50.90 53.59 58.86 57.37 58.11 +2.28 +6.47 +4.52
HITS(hub) 54.69 49.20 51.80 59.71 58.20 58.95 +5.02 +9.00 +7.15
HITS(authority) 57.45 51.68 54.41 61.62 60.06 60.83 +4.17 +8.38 +6.42
PageRank 60.09 54.06 56.91 64.07 62.44 63.24 +3.98 +8.38 +6.33

Sh
or

te
st

Pa
th

s

In-Degree 63.06 56.08 59.36 65.36 63.06 64.19 +2.30 +6.98 +4.83
Out-Degree 57.07 50.75 53.72 61.14 58.90 60.01 +4.07 +8.15 +6.29
Betweenness Centrality 60.33 53.65 56.79 65.52 63.22 64.35 +5.19 +9.57 +7.56
Sum Inverse Path Length 57.53 51.16 54.16 61.19 58.98 60.06 +3.66 +7.82 +5.90
HITS(hub) 57.48 51.11 54.11 62.14 59.96 61.03 +4.66 +8.85 +6.92
HITS(authority) 60.91 54.16 57.34 63.54 61.30 62.40 +2.63 +7.14 +5.06
PageRank 61.14 54.37 57.55 65.25 62.96 64.09 +4.11 +8.59 +6.54

Table 1: Improvements of using the Iterative Approach at the Document Level

GL φ Conventional Sent Iterative Sent Improvement
P R F P R F ∆P ∆R ∆F

Su
bT

re
e

Pa
th

s

In-Degree 60.83 50.70 55.30 61.80 56.23 58.88 +0.97 +5.53 +3.58
Out-Degree 56.18 46.82 51.07 59.64 54.11 56.74 +3.46 +7.29 +5.67
Betweenness Centrality 59.40 49.51 54.01 61.66 56.08 58.74 +2.26 +6.57 +4.73
Sum Inverse Path Length 56.68 47.23 51.52 59.45 54.00 56.60 +2.77 +6.77 +5.08
HITS(hub) 55.49 46.25 50.45 59.51 54.06 56.65 +4.02 +7.81 +6.20
HITS(authority) 56.80 47.34 51.64 60.30 54.84 57.44 +3.50 +7.50 +5.80
PageRank 59.71 49.77 54.29 60.56 55.04 57.67 +0.85 +5.27 +3.38

Sh
or

te
st

Pa
th

s

In-Degree 58.13 32.75 41.89 63.79 42.11 50.73 +5.66 +9.36 +8.84
Out-Degree 54.64 30.78 39.38 61.79 40.66 49.05 +7.15 +9.88 +9.67
Betweenness Centrality 57.94 32.64 41.76 64.11 42.32 50.98 +6.17 +9.68 +9.22
Sum Inverse Path Length 55.65 31.35 40.11 62.39 41.02 49.50 +6.74 +9.67 +9.39
HITS(hub) 56.11 31.61 40.44 62.74 41.28 49.80 +6.63 +9.67 +9.36
HITS(authority) 55.74 31.40 40.17 62.74 41.28 49.80 +7.00 +9.88 +9.36
PageRank 57.58 32.44 41.50 63.82 42.16 50.78 +6.24 +9.72 +9.28

Table 2: Improvements of using the Iterative Approach at the Sentence Level

senses anchored to the same lemma assisting each
other’s φ score (as discussed in Section 3.1), the
SENSE_SHIFTS filter that is provided by the Ba-
belNet API was also applied. This filter removes
any path Pa→b such that sa, sb ∈ R(`i). Disam-
biguation was attempted at the document and sen-
tence level, making use of the eight well-known
graph centrality measures listed in section 4.2. For
this experiment no means of optimisation were ap-
plied. Therefore Personalised PageRank was not
used, and traditional PageRank took on a uniform
random surfing vector. Default values of 0.85 and
30 for damping factor and maximum iterations
were set respectively.

4.3.2 Experiment 1: Observations
First and foremost, it is clear from Table 1 and 2
that the iterative approach outperforms the con-
ventional approach, regardless of the subgraph

used, level of disambiguation, or the graph central-
ity measure employed. Since no graph centrality
measure or subgraph were optimised, let this ex-
periment prove that the iterative approach has the
potential to improve any WSD system that imple-
ments it.

At the document level for both subgraphs the F-
Scores were very close to the Most Frequent Sense
(MFS) baseline for this task of 66.50. It is noto-
riously hard to beat and only one team (Gutiérrez
et al., 2013) managed to beat it for this task. For
all subtree subgraphs, we observe that In-Degree is
clearly the best choice of centrality measure, while
HITS (hub) enjoys the most improvement. We
also observe that applying the iterative approach
to Betweenness Centrality on shortest paths is a
great combination at both the document and sen-
tence level, most probably due to the measure be-
ing based on shortest paths. Furthermore it is
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worth noting, the results at the sentence level for
all graph centrality measures on shortest path sub-
graphs are quite poor, but highly improved, this
is likely to our restriction of L = 2 causing the
subgraphs to be much sparser and broken up into
many components.

We also provide here an example from the data
set in which the incorrect disambiguation of the
lemma cup via the conventional approach was
corrected by the iterative approach. This example
is the seventh sentence in the eleventh document
(d011.s007). Each word’s degree of polysemy
is denoted in square brackets.

“Spanish [1]football players playing in the All-Star
[4]League and in powerful [12]clubs of the [2]Premier
League of [9]England are during the [5]year very ac-
tive in [4]league and local [8]cup [7]competitions and
there are high-level [25]shocks in the [10]European
Cups and [2]European Champions League.”

The potential graph constructed from this sen-
tence is illustrated in Figure 5 as a shortest paths
subgraph. The darker edges portray the subgraph
iteratively constructed up to a polysemy ρ ≤ 8
(in order to disambiguate cup), whereas the lighter
edges portray the greater subgraph constructed if
the conventional approach is employed. Note that
although the lemma cup has eight senses, only
three are shown due to the application of the previ-
ously mentioned SENSE_SHIFTS filter. The re-
maining five senses of cup were filtered out since
they were not able to link to a sense up to L = 2
hops away that is anchored to an alterative lemma.

• cup#1 - A small open container usually used for
drinking; usually has a handle.

• cup#7 - The hole (or metal container in the hole)
on a golf green.

• cup#8 - A large metal vessel with two handles that
is awarded as a trophy to the winner of a competi-
tion.

Given the context, the eighth sense of cup is the
correct sense, the type we know as a trophy. For
the conventional approach, if φ is a centrality mea-
sure of Out-Degree then the eighth sense of cup is
easily chosen by having one extra outgoing edge
than the other two senses for cup. Yet if φ is a cen-
trality measure of In-Degree or Betweenness Cen-
trality, all three senses of cup now have the same
score, zero. Therefore in our results the first sense
is chosen which is incorrect. On the other hand, if

[8]cup#1

handle#1

[12]golf_club#2

[4]league#2

association#1

[12]club#2

[7]contest#1

tournament#1

[4]league#1

[12]baseball_club#1

baseball_league#1

[9]England#1

Australia#1

[5]year#1

[8]cup#7

golf#1

[8]cup#8

monopoly#1

[7]competition#1

match#2

sport#1

[7]competition#3

Figure 5: Conventional vs Iterative Subgraph

the subgraph was constructed iteratively with dis-
ambiguation results providing feedback to consec-
utive constructions, this could have been avoided.
The shortest paths cup#1→handle#1→golf_club#2
and cup#7→golf#1→golf_club#2 only exist because
the sense golf_club#2 (anchored to the more poly-
semous lemma club) is present, if it was not then
the SENSE_SHIFTS filter would have removed
these alternative senses. This demonstrates that if
the senses of more polysemous lemmas are intro-
duced into the subgraph too soon, they can inter-
fere rather than help with disambiguation.

Secondly with each disambiguation at lower
levels of polysemy, a more stable context is con-
structed to perform the disambiguation of much
more polysemous lemmas later. Therefore in Fig-
ure 5 an iteratively constructed subgraph with cup
already disambiguated, would mean the other two
senses of cup would no longer be present. This en-
sures that club#2 (the correct answer) would have
a much stronger chance of being selected than
golf_club#2, which would have only one incoming
edge from handle#1. Note the conventional ap-
proach would lend golf_club#2 one extra incoming
edge than club#2 has, which could be problematic
if φ is a centrality measure of In-Degree.
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Figure 6: For each of the 13 documents, performance (F-Score) is plotted against time to disambiguate,
for GL = Shortest Paths. The squares (PageRank) and circles (Betweenness Centrality) plot the conven-
tional approach. The arrows show the effect caused by applying the iterative approach, with the arrow
head marking its F-Score and time to disambiguate.

4.4 Experiment 2: Performance

4.4.1 Experiment 2: Setup

An obvious caveat of the iterative approach is that
it requires the construction of several subgraphs
as ρ increases, which of course will require extra
computation and time which is a penalty for the
improved precision and recall. We decided to in-
vestigate the extent to which this happens. We se-
lected Betweenness Centrality and PageRank from
Experiment 1, in which both use shortest path sub-
graphs at the document level. This is because a)
they acquired good results at the document level
and b) with only 13 documents there are less data
points on the plots making it easier to read as op-
posed to the hundreds of sentences.

4.4.2 Experiment 2: Observations

Firstly from Figures 6(a) and (b) we see that
there is a substantial improvement in F-Score
for almost all documents, except for two for φ =
Betweenness Centrality and one for φ = PageR-
ank. With some exceptions, for most documents
the increased amount of time to disambiguate is
not unreasonable. For this experiment, applying
the iterative approach to Betweenness Centrality
resulted in a mean 231% increase in processing
time, from 3.54 to 11.73 seconds to acquire a
mean F-Score improvement of +8.85. Again for
PageRank, a mean increase of 343% in processing
time, from 1.95 to 8.64 seconds to acquire a
F-Score improvement of +7.16 was observed.

We wanted to investigate why in some cases, the
iterative approach can produce poorer results than
the conventional approach. We looked at aspects
of the subgraphs such as order, size, density, and
number of components. Eventually we came to
the conclusion that, just like in a Sudoku puzzle, if
there are not enough hints to start with, the possi-
bility of finishing the puzzle becomes slim.

Therefore we suspected that if there were not
enough monosemous lemmas, to construct the ini-
tial GL, then the effectiveness of the iterative ap-
proach could be negated. It turns out, as observed
in Figures 7(a) and (b) on the following page that
this does effect the outcome. On the horizontal
axis, document monosemy represents the percent-
age of lemmas in a document, not counting dupli-
cates, that are monosemous. The vertical axis on
the other hand represents the difference in F-Score
between the conventional and iterative approach.
Through a simple linear regression of the scatter
plot, we observe an increased effectiveness of the
iterative approach. This observation is important,
because a WSD system may decide on which ap-
proach to use based on a document’s monosemy.

With m representing document monosemy, and
∆F representing the change in F-Score induced
by the iterative approach, the slopes observed in
Figures 7(a) and (b) are denoted by Equations (2)
and (3) respectively.

∆F = 0.53m− 0.11 (2)

∆F = 0.60m− 3.07 (3)
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Figure 7: Both PageRank (squares) and Betweenness Centrality (circles) are plotted. Each data plot
represents the change in F-Score when the iterative approach replaces the conventional approach with
respect to the monosemy of the document.

4.5 Experiment 3: A Little Optimisation

Briefly, we made an effort into optimising the iter-
ative approach with subtree subgraphs, and com-
pared these results with systems from SemEval
2013 Task 12 (Navigli et al., 2013) in Table 3.

Team System P R F

UMCC-DLSI Run-2+ 68.50 68.50 68.50
UMCC-DLSI Run-3+ 68.00 68.00 68.00
UMCC-DLSI Run-1+ 67.70 67.70 67.70
SUDOKU It-PPR[M]+ 67.41 67.30 67.36

MACHINE MFS 66.50 66.50 66.50
SUDOKU It-PPR[M] 67.20 65.49 66.33
SUDOKU It-PR[U] 64.07 62.44 63.24
SUDOKU It-PD 63.58 61.47 62.51
DAEBAK! PD+ 60.50 60.40 60.40
GETALP BN-1+ 58.30 58.30 58.30
SUDOKU PR[U] 60.09 54.06 56.91
GETALP BN-2+ 56.80 56.80 56.80

Table 3: Comparison to SemEval 2013 Task 12

Firstly, we were able to marginally improve our
original result as team DAEBAK! (Manion and
Sainudiin, 2013), by applying the iterative ap-
proach to our Peripheral Diversity centrality mea-
sure (It-PD). Next we tried Personalised PageRank
(It-PPR[M]) with a surfing vector biased towards
only Monosemous senses. We also included reg-
ular PageRank (It-/PR[U]) with a Uniform surfing
vector as a reference point. It-PPR[M] almost de-
feated the MFS baseline of 66.50, but lacked re-
call. To rectify this, the MFS baseline was used as
a back-off strategy (It-PPR[M]+)4, which then led

4Note that plus+ implies the use of a back-off strategy.

to us beating the MFS baseline. As for the other
teams, GETALP (Schwab et al., 2013) made use
of an Ant Colony algorithm, while UMCC-DLSI
(Gutiérrez et al., 2013) also made use of PPR,
except they based the surfing vector on SemCor
(Miller et al., 1993) sense frequencies, set L = 5
for shortest paths subgraphs, and disambiguated
using resources external to BabelNet. Since their
implementation of PPR beats ours, it would be
interesting to see how effective the iterative ap-
proach could be on their results.

5 Conclusion & Future Work

In this paper we have shown that the iterative ap-
proach can substantially improve the results of
regular subgraph-based WSD, even to the point
of defeating the MFS baseline without doing any-
thing complicated. This is regardless of the sub-
graph, graph centrality measure, or level of disam-
biguation. This research can still be extended fur-
ther, and we encourage other researchers to rethink
their own approaches to unsupervised knowledge-
based WSD, particularly in regards to the interac-
tion of subgraphs and centrality measures.

Resources

Codebase and resources are at first author’s home-
page: http://www.stevemanion.com.
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Abstract

Explicit Semantic Analysis (ESA) is an ap-
proach to calculate the semantic relatedness
between two words or natural language texts
with the help of concepts grounded in human
cognition. ESA usage has received much at-
tention in the field of natural language pro-
cessing, information retrieval and text analy-
sis, however, performance of the approach de-
pends on several parameters that are included
in the model, and also on the text data type
used for evaluation. In this paper, we investi-
gate the behavior of using different number of
Wikipedia articles in building ESA model, for
calculating the semantic relatedness for differ-
ent types of text pairs: word-word, phrase-
phrase and document-document. With our
findings, we further propose an approach to
improve the ESA semantic relatedness scores
for words by enriching the words with their
explicit context such as synonyms, glosses and
Wikipedia definitions.

1 Introduction

Explicit Semantic Analysis (ESA) is a distributional
semantic model (Harris, 1954) that computes the
relatedness scores between natural language texts
by using high dimensional vectors. ESA builds
the high dimensional vectors by using the explicit
concepts defined in human cognition. Gabrilovich
and Markovitch (2007) introduced the ESA model
in which Wikipedia and Open Directory Project1

was used to obtain the explicit concepts. ESA con-
siders every Wikipedia article as a unique explicit

1http://www.dmoz.org

topic. It also assumes that the articles are topically
orthogonal. However, recent work (Gottron et
al., 2011) has shown that by using the documents
from Reuters corpus instead of Wikipedia articles
can also achieve comparable results. ESA model
includes various parameters (Sorg and Cimiano,
2010) that play important roles on its performance.
Therefore, the model requires further investigation
in order to better tune the parameters.

ESA model has been adapted very quickly in
different fields related to text analysis, due to the
simplicity of its implementation and the availability
of Wikipedia corpus. Gabrilovich and Markovitch
(2007) evaluated the ESA against word relatedness
dataset WN353 (Finkelstein et al., 2001) and doc-
ument relatedness dataset Lee50 (Lee et al., 2005)
by using all the articles from Wikipedia snapshot of
11 Nov, 2005. However, the results reported using
different implementations (Polajnar et al., 2013)
(Hassan and Mihalcea, 2011) of ESA on same
datasets (WN353 and Lee50) vary a lot, due the
specificity of ESA implementation. For instance,
Hassan and Mihalcea (2011) found a significant
difference between the scores obtained from their
own implementation and the scores reported in the
original article (Gabrilovich and Markovitch, 2007).

In this paper, first, we investigate the behavior
of ESA model in calculating the semantic related-
ness for different types of text pairs: word-word,
phrase-phrase and document-document by using
different number of Wikipedia articles for building
the model. Second, we propose an approach
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for context enrichment of words to improve the
performance of ESA on word relatedness task.

2 Background

The ESA model can be described as a method of
obtaining the relatedness score between two texts by
quantifying the distance between two high dimen-
sional vectors. Every explicit concept represents a
dimension of the ESA vector, and the associativity
weight of a given word with the explicit concept
can be taken as magnitude of the corresponding
dimension. For instance, there is a word t, ESA
builds a vector v, where v =

∑N
i=0 ai ∗ ci and ci is

ith concept from the explicit concept space, and ai
is the associativity weight of word t with the concept
ci. Here, N represents the total number of concepts.
In our implementation, we build ESA model by
using Wikipedia articles as explicit concepts, and
take the TFIDF weights as associativity strength.
Similarly, ESA builds the vector for natural lan-
guage text by considering it as a bag of words. Let
T = {t1, t2, t3...tn}, where T is a natural language
text that has n words. ESA generates the vector
V, where V =

∑
tkεT

vk and v =
∑N

i=0 ai ∗ ci. vk
represents the ESA vector of a individual words as
explained above. The relatedness score between two
natural language texts is calculated by computing
cosine product of their corresponding ESA vectors.

In recent years, some extensions (Polajnar et
al., 2013) (Hassan and Mihalcea, 2011) (Scholl et
al., 2010) have been proposed to improve the ESA
performance, however, they have not discussed the
consistency in the performance of ESA. Polajnar
et al. (2013) used only 10,000 Wikipedia articles
as the concept space, and got significantly different
results on the previously evaluated datasets. Hassan
and Mihalcea (2011) have not discussed the ESA
implementation in detail but obtained significantly
different scores. Although, these proposed exten-
sions got different baseline ESA scores but they
improve the relatedness scores with their additions.
Polajnar et al. (2013) used the concept-concept
correlation to improve the ESA model. Hassan and
Mihalcea (2011) proposed a model similar to ESA,
which builds the high dimensional vector of salient
concepts rather than explicit concepts. Gortton et

al. (2011) investigated the ESA performance for
document relatedness and showed that ESA scores
are not tightly dependent on the explicit concept
spaces.

Minimum unique Total number of
words (K) articles (N)

100 438379
300 110900
500 46035
700 23608
900 13718

1100 8322
1300 5241
1500 3329
1700 2126
1900 1368

Table 1: The total number of retrieved articles for differ-
ent values of K

3 Investigation of ESA model

Although Gortton et al. (2011) has shown that ESA
performance on document pairs does not get af-
fected by using different number of Wikipedia ar-
ticles, we further examine it for word-word and
phrase-phrase pairs. We use three different datasets
WN353, SemEvalOnWN (Agirre et al., 2012) and
Lee50. WN353 contains 353 word pairs, SemEval-
OnWN consists of 750 short phrase/sentence pairs,
and Lee50 is a collection of 50 document pairs.
All these datasets contain relatedness scores given
by human annotators. We evaluate ESA model
on these three datasets against different number of
Wikipedia articles. In order to select different num-
ber of Wikipedia articles, we sort them according to
the total number of unique words appearing in each
article. We select N articles, where N is total num-
ber of articles which have at least K unique words.
Table 1 shows the total number of retrieved articles
for different values of K. We build 20 different ESA
models with the different values of N retrieved by
varying K from 100 to 2000 with an interval of 100.
Figure 1 illustrates Spearman’s rank correlation of
all the three types of text pairs on Y-axis while X-
axis shows the different values of N which are taken
to build the model. It shows that ESA model gener-
ates very consistent results for phrase pairs similar
to the one reported in (Aggarwal et al., 2012), how-
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Figure 1: ESA performance on different types of text
pairs by varying the total number of articles

ever, the correlation scores decreases monotonously
in the case of word pairs as the number of articles
goes down. In the case of document pairs, ESA pro-
duces similar results until the value of N is chosen
according to K = 1000, but after that, it decreases
quickly because the number of articles becomes too
low for making a good enough ESA model. All this
indicates that word-word relatedness scores have a
strong impact of changing the N in comparison of
document-document or phrase-phrase text pairs. An
explanation to this is that the size of the ESA vec-
tor for a word solely depends upon the popularity
of the given word, however, in the case of text, the
vector size depends on the popularity summation of
all the words appearing in the given text. It suggests
that the word relatedness problem can be reduced to
short text relatedness by adding some related con-
text with the given word. Therefore, to improve
the ESA performance for word relatedness, we pro-
pose an approach for context enrichment of words.
We perform context enrichment by concatenating re-
lated context with the given word and use this con-
text to build the ESA vector, which transforms the
word relatedness problem to phrase relatedness.

4 Context Enrichment

Context enrichment is performed by concatenating
the context defining text to the given word before
building the ESA vector. Therefore, instead of build-
ing the ESA vector of a word, the vector is built for
the short text that is obtained after concatenating the
related context. This is similar to classical query ex-
pansion task (Aggarwal and Buitelaar, 2012; Pan-
tel and Fuxman, 2011), where related concepts are
concatenated with a query to improve the informa-
tion retrieval performance. We propose three differ-
ent methods to obtain related context: 1) WordNet-
based Context Enrichment 2) Wikipedia-based Con-
text Enrichment, and 3) WikiDefinition-based Con-
text Enrichment.

4.1 WordNet-based Context Enrichment

WordNet-based context enrichment uses the Word-
Net synonyms to obtain the context, and concate-
nates them into the given word to build the ESA vec-
tor. However, WordNet may contain more than one
synset for a word, where each synset represents a
different semantic sense. Therefore, we obtain more
than one contexts for a given word, by concatenat-
ing the different synsets. Further, we calculate ESA
score of every context of a given word against all the
contexts of the other word which is being compared,
and consider the highest score as the final related-
ness score. For instance, there is a given word pair
“train and car”, car has 8 different synsets that build
8 different contexts, and train has 6 different synsets
that build 6 different contexts. We calculate the ESA
score of these 8 contexts of car to the 6 contexts of
train, and finally select the highest obtained score
from all of the 24 calculated scores.

4.2 Wikipedia-based Context Enrichment

In this method, the context is defined by the word
usage in Wikipedia articles. We retrieve top 5
Wikipedia articles by querying the articles’ content,
and concatenate the short abstracts of the retrieved
articles to the given word to build the ESA vector.
Short abstract is the first two sentences of Wikipedia
article and has a maximum limit of 500 characters.
In order to retrieve the top 5 articles from Wikipedia
for a given word, we build an index of all Wikipedia
articles and use TF-IDF scores. We further explain
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our implementation in Section 5.1.

4.3 WikiDefinition-based Context Enrichment

This method uses the definition of a given word from
Wikipedia. To obtain a definition from Wikipedia,
we first try to find a Wikipedia article on the given
word by matching the Wikipedia title. As definition,
we take the short abstract of the Wikipedia article.
For instance, for a given word “train”, we take the
Wikipedia article with the title “Train”2. If there is
no such Wikipedia article, then we use the previous
method “Wikipedia-based Context Enrichment” to
get the context defining text for the given word. In
contrary to the previous method for defining context,
here we first try to get a more precise context as it
comes from the Wikipedia article on that word only.
After obtaining the definition, we concatenate it to
the given word to build the ESA vector. At the time
of experimentation, we were able to find 339 words
appearing as Wikipedia articles out of 437 unique
words in the WN353 dataset.

Figure 2: Effect of different types of context enrichments
on WN353 gold standard

2http://en.wikipedia.org/wiki/Train

5 Experiment

5.1 ESA implementation

In this section, we describe the implementation of
ESA and the parameters used to build the model.
We build an index over all Wikipedia articles from
the pre-processed Wikipedia dump from November
11, 2005 (Gabrilovich, 2006). We use Lucene3 to
build the index and retrieve the articles using TF-
IDF scores. As described in section 3, we build 20
different indices with different values of total num-
ber of articles (N).

5.2 Results and Discussion

To evaluate the effect of the aforementioned
approaches for context enrichment, we compare
the results obtained by them against the results
generated by ESA model as a baseline. We cal-
culated the scores on WN353 word pairs dataset
by using ESA, WordNet-based Context Enrich-
ment (ESA CEWN), Wikipedia-based Context
Enrichment (ESA CEWiki) and WikiDefition-based
Context Enrichment (ESA CEWikiDef). Further,
we examine the performance of context enrichment
approaches by reducing the total number of articles
taken to build the model. Figure 2 shows that the
proposed methods of context enrichment signifi-
cantly improve over the ESA scores for different
values of N.

Table 2 reports the results obtained by using
different context enrichments and ESA model.
It shows Spearman’s rank correlation on four
different values of N. All the proposed con-
text enrichment methods improve over the ESA
baseline scores. Context enrichments based on
Wikipedia outperforms the other methods, and
ESA CEWikiDef significantly improves over the
ESA baseline. Moreover, given a very less number
of Wikipedia articles used for building the model,
ESA CEWikiDef obtains a correlation score which
is considerably higher than the one obtained by
ESA baseline. ESA CEWN and ESA CEWiki can
include some unrelated context as they do not care
about the semantic sense of the given word, for
instance, for a given word “car”, ESA CEWiki

3https://lucene.apache.org/
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K Total articles (N) ESA ESA CEWN ESA CEWiki ESA CEWikiDef
100 438,379 0.711 0.692 0.724 0.741
200 221,572 0.721 0.707 0.726 0.743
500 46,035 0.673 0.670 0.679 0.698

1000 10,647 0.563 0.593 0.598 0.614

Table 2: Spearman rank correlation scores on WN353 gold standard

includes the context about the word ”car” at surface
level rather than at the semantic level. However,
ESA CEWikiDef only includes the definition if it
does not refer to more than one semantic sense,
therefore, ESA CEWikiDef outperforms all other
types of context enrichment.
We achieved best results in all the cases by tak-
ing all the articles which has a minimum of 200
unique words (K=200). This indicates that further
increasing the value of K considerably decreases
the value of N, consequently, it harms the overall
distributional knowledge of the language, which is
the core of ESA model. However, decreasing the
value of K introduces very small Wikipedia articles
or stubs, which do not provide enough content on a
subject.

6 Conclusion

In this paper, we investigated the ESA performance
for three different types of text pairs: word-word,
phrase-phrase and document-document. We showed
that ESA scores varies significantly for word re-
latedness measure with the change in the number
(N) and length (≈K which is the number of unique
words) of the Wikipedia articles used for building
the model. Further, we proposed context enrichment
approaches for improving word relatedness compu-
tation by ESA. To this end, we presented three dif-
ferent approaches: 1) WordNet-based, 2) Wikipedia-
based, and 3) WikiDefinition-based, and we real-
ized that concatenating the context defining text im-
proves the ESA performance for word relatedness
task.
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Abstract

We describe a method of encoding cooc-
currence information in a three-way tensor
from which HAL-style word space mod-
els can be derived. We use these models to
identify semantic relations in a specialized
corpus. Results suggest that the tensor-
based methods we propose are more ro-
bust than the basic HAL model in some
respects.

1 Introduction

Word space models such as LSA (Landauer and
Dumais, 1997) and HAL (Lund et al., 1995) have
been shown to identify semantic relations from
corpus data quite effectively. However, the per-
formance of such models depends on the parame-
ters used to construct the word space. In the case
of HAL, parameters such as the size of the con-
text window can have a significant impact on the
ability of the model to identify semantic relations
and on the types of relations (e.g. paradigmatic or
syntagmatic) captured.

In this paper, we describe a method of encoding
cooccurrence information which employs a three-
way tensor instead of a matrix. Because the ten-
sor explicitly encodes the distance between a tar-
get word and the context words that co-occur with
it, it allows us to extract matrices corresponding to
HAL models with different context windows with-
out repeatedly processing the whole corpus, but it
also allows us to experiment with different kinds
of word spaces. We describe one method whereby
features are selected in different slices of the ten-
sor corresponding to different distances between
the target and context words, and another which
uses SVD for dimensionality reduction. Models

This work is licensed under a Creative Commons Attribution
4.0 International Licence. Page numbers and proceedings
footer are added by the organisers. Licence details: http:
//creativecommons.org/licenses/by/4.0/

are evaluated and compared on reference data ex-
tracted from a specialized dictionary of the envi-
ronment domain, as our target application is the
identification of lexico-semantic relations in spe-
cialized corpora. Preliminary results suggest the
tensor-based methods are more robust than the ba-
sic HAL model in some respects.

2 Related Work

The tensor encoding method we describe is based
on the Hyperspace Analogue to Language, or
HAL, model (Lund et al., 1995; Lund and
Burgess, 1996), which has been shown to be par-
ticularly effective at modeling paradigmatic rela-
tions such as synonymy. In the HAL model, word
order is taken into account insofar as the word vec-
tors it produces contain information about both the
cooccurrents that precede a word and those that
follow it. In recent years, there have been several
proposals that aim to add word order information
to models that rely mainly on word context infor-
mation (Jones and Mewhort, 2007; Sahlgren et al.,
2008), including models based on multi-way ten-
sors. Symonds et al. (2011) proposed an efficient
tensor encoding method which builds on unstruc-
tured word space models (i.e. models based on
simple cooccurrence rather than syntactic struc-
ture) by adding order information. The method we
describe differs in that it explicitly encodes the dis-
tance between a target word and its cooccurrents.

Multi-way tensors have been used to construct
different kinds of word space models in recent
years. Turney (2007) used a word-word-pattern
tensor to model semantic similarity, Van de Cruys
(2009) used a tensor containing corpus-derived
subject-verb-object triples to model selectional
preferences, and Baroni and Lenci (2010) pro-
posed a general, tensor-based framework for struc-
tured word space models. The tensor encoding
method we describe differs in that it is based on
an unstructured word space model, HAL.
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3 HAL

The HAL model employs a sliding context win-
dow to compute a word-word cooccurrence ma-
trix, which we will note A, in which value aij is
based on the number of times context word wj ap-
pears within the context window of target word wi.
Thus, words that share cooccurrents will be closer
in word space. If equal weight is given to all con-
text words in the window, regardless of distance,
we call the context window rectangular. In the
original HAL model, the values added to A are
inversely proportional to the distance between the
target word and context word in a given context.
In this case, the context window is triangular.

In the HAL model, the cooccurrence matrix is
computed by considering only the context words
that occur before the target word. Once the ma-
trix has been computed, row vector ai: contains
cooccurrence information about words preceding
wi, and column vector a:i contains information
about those that follow it. The row vector and
column vector of each target word are concate-
nated, such that the resulting word vectors con-
tain information about both left-cooccurrents and
right-cooccurrents. We call this type of context
window directional, following (Sahlgren, 2006),
as opposed to a symetric context window, in which
cooccurrence counts in the left and right contexts
are summed. In our experiment, we only use one
type of context window (directional and rectangu-
lar), but models corresponding to different types
of context windows can be derived from the cooc-
currence tensor we describe in section 4.

Once the values in A have been computed, they
can be weighted using schemes such as TF-ITF
(Lavelli et al., 2004) and Positive Pointwise Mu-
tual Information (PPMI), which we use here as
it has been shown to be particularly effective by
Bullinaria and Levy (2007). Finally, a distance or
similarity measure is used to compare word vec-
tors. Lund and Burgess (1996) use Minkowski
distances. We will use the cosine similarity, as
did Schütze (1992) in a model similar to HAL and
which directly influenced its development.

4 The Cooccurrence Tensor

In the following description of the cooccurrence
tensor, we follow the notational guidelines of
(Kolda, 2006), as in (Turney, 2007; Baroni and

Lenci, 2010). Let W be the vocabulary1, which
we index by i to refer to a target word and by j for
context words. Furthermore, let P , indexed by k,
be a set of positions, relative to a target word wi,
in which a context word wj can co-occur with wi.
In other words, this is the signed distance between
wj and wi, in number of words. For instance, in
the sentence “a dog bit the mailman”, we would
say that “dog” co-occurs with “bit” in position−1.
If we only consider the words directly adjacent to
a target word, then P = {−1, +1}. If the tensor
encoding method is used to generate HAL-style
cooccurrence matrices corresponding to different
context windows, then P would include all posi-
tions in the largest window under consideration.

In a cooccurrence matrix A, aij contains the
frequency at which word wj co-occurs with word
wi in a fixed context window. Rather than comput-
ing matrices using fixed-size context windows, we
can construct a cooccurrence tensor X, a labeled
three-way tensor in which values xijk indicate the
frequency at which word wj co-occurs with word
wi in position pk. Table 1 illustrates a cooccur-
rence tensor for the sentence “dogs bite mailmen”
using a context window of 1 (P = {−1, +1}), in
the form of a nested table.

In tensor X, xi:k denotes the row vector of wi

at position pk, x:jk denotes the column vector of
word wj at position pk and xij: denotes the tube
vector indicating the frequency at which wj co-
occurs with wi in each of the positions in P .

HAL-style cooccurrence matrices correspond-
ing to different context windows can be extracted
from the tensor by summing and concatenating
various slices of the tensor. A frontal slice X::k

represents a I × J cooccurrence matrix for po-
sition pk. A cooccurrence matrix corresponding
to a symetric context window of size n can be
extracted by summing the slices X::k for pk ∈
{−n,−n + 1, . . . , n}. For a directional window,
we first sum the slices for pk ∈ {−n, . . . ,−1},
then sum the slices for pk ∈ {1, . . . , n}, then con-
catenate the 2 resulting matrices horizontally.

Thus, summing and concatenating slices allows
us to extract HAL-style cooccurrence matrices. A
different kind of model can also be obtained by
concatenating slices of the tensor. For instance, if
we concatenate X::k for pk ∈ {−2,−1, +1, +2}
horizontally, we obtain a matrix containing a vec-

1We assume that the target and context words are the same
set, but this need not be the case.
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j=1:dog j=2:bite j=3:mailman
k=1:−1 k=2:+1 k=1:−1 k=2:+1 k=1:−1 k=2:+1

i=1:dog 0 0 0 1 0 0
i=2:bite 1 0 0 0 0 1
i=3:mailman 0 0 1 0 0 0

Table 1: A 3× 3× 2 cooccurrence tensor.

tor of length 4J (instead of the 2J-length vectors
of the HAL model) for each target word, which
encodes cooccurrence information about 4 specific
positions relative to that word. We will refer to this
method as the tensor slicing method. Note that if
P = {−1, 1} the resulting matrix is identical to a
HAL model with context size 1

As the size of the resulting vectors is KJ , this
method can result in very high-dimensional word
vectors. In the original HAL model, Lund et
al. (1995) reduced the dimensionality of the vec-
tors through feature selection, by keeping only the
features that have the highest variance. Schütze
(1992), on the other hand, used truncated SVD for
this purpose. Both techniques can be used with the
tensor slicing method. In our experiment, SVD
was applied to the matrices obtained by concate-
nating tensor slices horizontally2. As for feature
selection, a fixed number of features (those with
the highest variance) were selected from each slice
of the tensor, and these reduced slices were then
concatenated.

It must be acknowledged that this tensor encod-
ing method is not efficient in terms of memory.
However, this was not a major issue in our exper-
imental setting, as the size of the vocabulary was
small (5K words), and we limited the number of
positions in P to 10. Also, a sparse tensor was
used to reduce memory consumption.

5 Experiment

5.1 Corpus and Preprocessing

In this experiment, we used the PANACEA En-
vironment English monolingual corpus, which is

2We also tried concatenating slices vertically (thus ob-
taining a matrix where rows correspond to <target word,
position> tuples and columns correspond to context words)
before applying SVD, then concatenating all row vectors cor-
responding to the same target word, but we will not report
the results here for lack of space. Concatenating slices hor-
izontally performed better and seems more intuitive, and the
size of the resulting vectors is not dependent on the number
of positions in P .

freely distributed by ELDA for research purposes3

(Catalog Reference ELRA-W0063). This corpus
contains 28071 documents (∼50 million tokens)
dealing with different aspects of the environment
domain, harvested from web sites using a focused
crawler. The corpus was converted from XML to
raw text, various string normalization operations
were then applied, and the corpus was lemmatized
using TreeTagger (Schmid, 1994). The vocabu-
lary (W ) was selected based on word frequency:
we used the 5000 most frequent words in the cor-
pus, excluding stop words and strings containing
non-alphabetic characters. During computation of
the cooccurrence tensor, OOV words were ignored
(rather than deleted), and the context window was
allowed to span sentence boundaries.

5.2 Evaluation Data

Models were evaluated using reference data ex-
tracted from DiCoEnviro4, a specialized dictio-
nary of the environment. This dictionary de-
scribes the meaning and behaviour of terms of
the environment domain as well as the lexico-
semantic relations between these terms. Of the
various relations encoded in the dictionary, we
focused on a subset of three paradigmatic rela-
tions: near-synonyms (terms that have similar
meanings), antonyms (opposite meanings), and
hyponyms (kinds of). 446 pairs containing a head-
word and a related term were extracted from the
dictionary. We then filtered out the pairs that con-
tained at least one OOV term, and were left with
374 pairs containing two paradigmatically-related,
single-word terms. About two thirds (246) of these
examples were used for parameter selection, and
the rest were set aside for a final comparison of
the highest-scoring models.

3http://catalog.elra.info/product_
info.php?products_id=1184

4http://olst.ling.umontreal.ca/
cgi-bin/dicoenviro/search_enviro.cgi
(under construction).
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5.3 Automatic Evaluation
Each model was automatically evaluated on the
reference data as follows. For each <headword,
related term> pair in the training set, we computed
the cosine similarity between the headword and
all other words in the vocabulary, then observed
the rank of the related term in the sorted list of
neighbours. The score used to compare models
is recall at k (R@k), which is the percentage of
cases where the related term is among the k near-
est neighbours of the headword. It should be noted
that a score of 100% is not always possible in this
setting (depending on the value of k), as some
headwords have more than 1 related term in the
reference data. Nonetheless, since most (∼70%)
have 1 or 2 related terms, R@k for some small
value of k (we use k = 10) should be a good indica-
tor of accuracy. A measure that explicitly accounts
for the fact that different terms have different num-
bers of related terms (e.g. R-precision) would be a
good alternative.

5.4 Models Tested
We compared HAL and the tensor slicing
method using either feature selection or SVD5,
as explained in section 4. We will refer to
each of these models as HALSEL, TNSRSEL,
HALSVD and TNSRSVD. Context sizes ranged
from 1 to 5 words. For feature selection,
the number of features could take values in
{1000, 2000, . . . , 10000}, 10000 being the max-
imum number of features in a HAL model us-
ing a vocabulary of 5000 words. In the case
of TNSRSEL, to determine the number of fea-
tures selected per slice, we took each value in
{1000, 2000, . . . , 10000}, divided it by K (the
number of positions in P ), and rounded down.
This way, once the slices are concatenated, the
total number of features is equal to (or slightly
less than) that of one of the HALSEL mod-
els, allowing for a straightforward comparison.
When SVD was used instead of feature selection,
the number of components could take values in
{100, 200, ..., 1000}. In all cases, word vectors
were weighted using PPMI and normalized6.

5We used the SVD implementation (ARPACK solver)
provided in the scikit-learn toolkit (Pedregosa et al., 2011).

6For HALSEL and TNSRSEL, we apply PPMI weighting
after feature selection. In the case of TNSRSEL, we wanted
to avoid weighting each slice of the tensor separately. We
decided to apply weighting after feature selection in the case
of HALSEL as well in order to enable a more straightforward
comparison. We should also note that, in our experiments

absorb extreme precipitation
emit severe rainfall
sequester intense snowfall
convert harsh temperature
produce catastrophic rain
accumulate unusual evaporation
store seasonal runoff
radiate mild moisture
consume cold snow
remove dramatic weather
reflect increase deposition

Table 2: 10 nearest neighbours of 3 environmental
terms using the HALSEL model.

6 Results

Table 2 illustrates the kinds of relations identified
by the basic HALSEL model. It shows the 10 near-
est neighbours of the verb absorb, the adjective
extreme and the noun precipitation. If we com-
pare these results with the paradigmatic relations
encoded in DiCoEnviro, we see that, in the case
of absorb, 3 of its neighbours are encoded in the
dictionary, and all 3 are antonyms or terms having
opposite meanings: emit, radiate, and reflect. As
for extreme, the top 2 neighbours are both encoded
in the dictionary as near-synonyms. Finally, rain
and snow are both encoded as kinds of precipita-
tion. Most of the other neighbours shown here are
also paradigmatically related to the query terms.
Thus, HAL seems quite capable of identifying the
three types of paradigmatic relations we hoped to
identify.

Table 3 shows the best R@10 achieved by each
model on the training set, which was used to tune
the context size and number of features or compo-
nents, and their scores on the test set, which was
only used to compare the best models. In the case
of HALSEL, the best model has a context window
size of 1 and uses 9K out of 10K available features.
As for TNSRSEL, the best model had a context size
of 2 (P = {−2,−1, +1, +2}) and 10000 features
(2500 per slice). It performed only slightly better
on the training set, however it beat the HAL model
with a wider margin on the test set.

using HAL, PPMI weighting performed better when applied
after feature selection, especially for low numbers of features.
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Figure 1: HAL vs. tensor slicing method using SVD for dimensionality reduction. R@10 is plotted
against number of components. Models are identical when context size is 1. (a) HALSVD (b) TNSRSVD

Model Train Test
HALSEL 60.57 57.03
TNSRSEL 60.98 60.94
HALSVD 59.76 56.25
TNSRSVD 60.57 60.16

Table 3: R@10 (%) of best models.

The best HALSVD model used a 1-word window
and 1000 components, whereas the best TNSRSVD
model had a context size of 2 and 800 components.
Again, the tensor-based model slightly edged out
the HAL model on the training set, but performed
considerably better on the test set.

Further analysis of the results indeed suggests
that the tensor slicing method is more robust in
some respects than the basic HAL model. Fig-
ure 1 compares the performance of HALSVD and
TNSRSVD on the training set, taking into account
context size and number of components. It shows
that the HAL model is quite sensitive to context
size, narrower context performing better in this
task. The tensor-based method reduces this gap in
performance between context sizes, the gain being
greater for larger context sizes. Furthermore, us-
ing the tensor-based method with a slightly wider
context (2) raises R@10 for most values of the
number of components. Results obtained with
HALSEL and TNSRSEL follow the same trend, the
tensor-based method being more robust with re-
spect to context size. For lack of space, we only
show the plot comparing HALSVD and TNSRSVD.

7 Concluding Remarks

The work presented in this paper is still in its ex-
ploratory phase. The tensor slicing method we
described has only been evaluated on one corpus
and one set of reference data. Experiments would
need to be carried out on common word space
evaluation tasks in order to compare its perfor-
mance to that of HAL and other word space mod-
els. However, our results suggest that the tensor-
based methods are more robust than the basic HAL
model to a certain extent, and can improve accu-
racy. This could prove especially useful in settings
where no reference data are available for parame-
ter tuning.

Various possibilities offered by the cooccur-
rence tensor remain to be explored, such as
weighting the number of features selected per
slice using some function of the distance between
words, extracting matrices from the tensor by ap-
plying various functions to the tube vectors corre-
sponding to each word pair, and applying weight-
ing functions that have been generalized to higher-
order tensors (Van de Cruys, 2011) or tensor de-
composition methods such as those described in
(Turney, 2007).
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Abstract

We consider the task of automatically es-
timating the value of human actions. We
cast the problem as a supervised learning-
to-rank problem between pairs of action
descriptions. We present a large, novel
data set for this task which consists of
challenges from the I Will If You Will
Earth Hour challenge. We show that an
SVM ranking model with simple linguistic
features can accurately predict the relative
value of actions.

1 Introduction

The question on how humans conceptualize value
is of great interest to researchers in various fields,
including linguistics (Jackendoff, 2006). The link
between value and language arises from the fact
that we cannot directly observe value due to its ab-
stract nature and instead often study language ex-
pressions that describe actions which have some
value attached to them. This creates an interesting
link between the semantics of the words that de-
scribe the actions and the underlying moral value
of the actions.

Jackendoff (2006) describes value as an “inter-
nal accounting system” for ethical decision pro-
cesses that exhibits both valence (good or bad)
and magnitude (better or worse). Most interest-
ingly, value is governed by a “peculiar logic” that
provides constraints on which actions are deemed
morally acceptable and which are not. In par-
ticular, the principal of reciprocity states that the
valence and magnitude of reciprocal actions (ac-
tions that are done “in return” for something else)
should match, i.e., positive valued actions should

This work is licenced under a Creative Commons Attribution
4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http:
//creativecommons.org/licenses/by/4.0/

match with positive valued reciprocal actions (re-
actions) of similar magnitude, and conversely neg-
atively valued actions should match with nega-
tive valued reciprocal actions (reactions) of similar
magnitude.

In this paper, we consider the task of automati-
cally estimating the value of actions. We present a
simple and effective method for learning the value
of actions from ranked pairs of textual action de-
scriptions based on a statistical learning-to-rank
approach. Our experiments are based on a novel
data set that we create from challenges submit-
ted to the I Will if You Will Earth Hour challenge
where participants pledge to do something daring
or challenging if other people commit to sustain-
able actions for the planet. Our method achieves
a surprisingly high accuracy of up to 94.72% in a
10-fold cross-validation experiment. The results
show that the value of actions can accurately be
estimated by machine learning methods based on
lexical descriptions of the actions.

The main contribution of this paper is that we
show how the semantics of value in language can
accurately be learned from empirical data using a
learning-to-rank approach. Our work shows an in-
teresting link between empirical research on se-
mantics in natural language processing and the
concept of value.

2 The Logic of Value

Our approach is based on the concept of value
as presented by Jackendoff (2006) who describes
value as an abstract property that is attributed to
objects, persons, and actions. He further describes
logical inference rules that humans use to deter-
mine which actions are deemed morally accept-
able and which are not. The most important in-
ference rule for our work is the principal of recip-
rocation, things that are done “in return” for some
other action (Fiengo and Lasnik, 1973). In En-
glish, this relation is often expressed by the prepo-

63



sition for, as shown by the following example sen-
tences (Jackendoff, 2006).

1. Susan praised Sam for behaving nicely.
2. Fred cooked Lois dinner for fixing his com-

puter.
3. Susan insulted Sam for behaving badly.
4. Lois slashed Fred’s tires for insulting her.

The first two examples describe actions with pos-
itive value, while the last two examples describe
actions with negative value. We expect that the
valence values of reciprocal actions match: posi-
tively valued actions demand a positively valued
action in return, while negatively valued actions
trigger negatively valued responses. If we switch
the example sentences and match positive actions
with negative actions, we get sentences that sound
counter-intuitive or perhaps comical (we prefix
counter-intuitive sentences with a hash character
’#’).

1. #Susan insulted Sam for behaving nicely.
2. #Lois slashed Fred’s tires for fixing her com-

puter.

Similarly, we expect that the magnitudes of value
between reciprocal actions match. Sentences
where the magnitude of the value of the response
action does not match the magnitude of the initial
action seem odd or socially inappropriate (over-
acting/underacting).

1. #Fred cooked Lois dinner for saying hello to
him.

2. #Fred cooked Lois dinner for rescuing all his
relatives from certain death.

3. #Fred slashed Lois’s tires for eating too little
at dinner.

4. #Fred slashed Lois’s tires for murdering his
entire family.

We observe that reciprocal actions typically match
each other in valence and magnitude. Coming
back to our initial goal of learning the value of
actions, this gives us a method for comparing the
value of actions that were done in return to the
same initial action.

3 I Will If You Will challenge

The I Will If You Will (IWIYW) challenge1 is part
of the World Wildlife Fund’s Earth Hour campaign

1www.earthhour.org/i-will-if-you-will

I will quit smoking if you will start recycling.
(500 people)
I will adopt a panda if you will start recycling.
(1000 people)
I will dance gangnam style if you will plant
a tree. (100 people)
I will dye my hair red if you will upload an
IWIYW challenge. (500 people)
I will learn Java if you will upload an IWIYW
challenge. (10,000 people)

Table 1: Examples of I Will If You Will chal-
lenges.

which has the goal to increase awareness of sus-
tainability issues. In this challenge, participants
make a pledge to do something daring or challeng-
ing if a certain number of people commit to sus-
tainable actions for the planet. The challenges are
created by ordinary people on the Earth Hour cam-
paign website. Each challenge takes the form of a
simple school yard dare: I will do X, if you will do
Y, where X is typically some daring or challenging
task that the challenge creator commits to do if a
sufficient number of people commit to do action
Y which is some sustainable action for the planet.
Together with the textual description, each chal-
lenge includes the number of people that need to
commit to doing Y in order for the challenge cre-
ator to perform X. Examples of the challenges are
shown in Table 1.

It is important to note that during the challenge
creation on the IWIYW website, the X challenge
is a free text input field that allows the author to
come up with creative and interesting challenges.
The sustainable actions Y and the number of peo-
ple that need to commit to it are usually chosen
from a fixed list of choices. As a result, there is
a large number of different X actions and a com-
parably smaller number of Y actions. The col-
lected challenges provide a unique data set that al-
lows us to quantitatively measure the value of each
promised task by the number of people that need
to fulfill the sustainable action.

4 Method

In this section, we present our approach for esti-
mating the value of actions. Our approach casts
the problem as a supervised learning-to-rank prob-
lem between pairs of actions. Given, a textual de-
scription of an action a, we want to estimate its
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value magnitude v. We represent the action a via a
set of features that are extracted from the descrip-
tion of the action. We use a linear model that com-
bines the features into a single scalar value for the
value v

v = wTxa, (1)

where xa is the feature vector for action descrip-
tion a and w is a learned weight vector. The goal
is to learn a suitable weight vector w that approxi-
mates the true relationship between textual expres-
sions of actions and their magnitude of value.

Instead of estimating the value directly, we take
an alternative approach and consider the task of
learning the relative ranking of pairs of actions.
We follow the pairwise approach to ranking (Her-
brich et al., 1999; Cao et al., 2007) that reduces
ranking to a binary classification problem. Rank-
ing the values v1 and v2 of two actions a1 and a2 is
equivalent to determining the sign of the dot prod-
uct between the weight vector w and the difference
between the feature vectors xa1 and xa2 .

v1 > v2 ⇔ wTxa1 > wTxa2

⇔ wTxa1 − wTxa2 > 0

⇔ wT (xa1 − xa2) > 0 (2)

For each ranking pair of actions, we create two
complimentary classification instances: (xa1 −
xa2 , l1) and (xa2 − xa1 , l2), where the labels are
l1 = +1, l2 = −1 if the first challenge has higher
value than the second challenge and l1 = −1, l2 =
+1 otherwise. We can train a standard linear clas-
sifier on the generated training instances to learn
the weight vector w.

In the case of the IWIYW data, there is no ex-
plicit ranking between actions. However, we are
able to create ranking pairs for the IWIYW data
in the following way. As we have seen, there is
only a small set of different You Will challenges
that are reciprocal actions for a diverse set of I
Will challenges. Thus, many I Will challenges will
end up having the same You Will challenge. We
can use the You Will challenges as a pivot to ef-
fectively “join” the I Will challenges. The number
of required people to perform Y induces a natu-
ral ordering between the values of the I Will ac-
tions where a higher number of required partici-
pants means that the I Will task has higher value.

For example, for the challenges displayed in Ta-
ble 1, we can use the common You Will challenges

to create the following ranked challenge pairs.

I will quit smoking < I will adopt a panda

I will dye my hair red < I will learn Java (3)

According to the examples, adopting a panda has
higher value than quitting smoking and learning
Java has higher value than dying ones hair red.
The third challenge does not share a common You
Will challenge with any other challenge and there-
fore no ranking pairs can be formed with it.

As the IWIYW challenges are created online in
a non-controlled environment, we have to expect
that there is some noise in the automatically cre-
ated ranked challenges. However, a robust learn-
ing algorithm has to be able to handle a certain
amount of noise. We note that our method is not
limited to the IWIYW data set but can be applied
to any data set of actions where relative rankings
are provided or can be induced.

4.1 Features
The choice of appropriate feature representations
is crucial to the success of any machine learning
method. We start by parsing each I Will If You
Will challenge with a constituency parser. Be-
cause each challenge has the same I Will If You
Will structure, it is easy to identify the subtrees that
correspond to the I Will and You Will parts of the
challenge. An example parse tree of a challenge
is shown in Figure 1. The yield of the You Will
subtree serves as a pivot to join different I Will
challenges. To represent the I Will action a as a
feature vector xa, we extract the following lexical
and syntax features from the I Will subtree of the
sentence.

• Verb: We extract the verb of the I Will clause
as a feature. To identify the verb, we pick
the left-most verb of the I Will subtree based
on its part-of-speech (POS) tag. We extract
the lowercased word token as a feature. For
example, for the sentence in Figure 1, the
verb feature is verb=quit. If the verb is
negated (the left sibling of the I Will sub-
tree spans exactly the word not), we add the
postfix NOT to the verb feature, for example
verb=quit NOT.

• Object: We take the right sibling of the I
will verb as the object of the action. If the
right sibling is a particle with constituent la-
bel PRT, e.g., travel around the UK on bike,
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Figure 1: Parse tree of a I Will If You Will challenge. The subtrees governing the I Will and You Will part
of the sentence are marked.

we skip the particle and take the next sib-
ling as the object. If the object is a prepo-
sitional phrase with constituent tag PP, e.g.,
go without electricity for a month, we take
the second child of the prepositional phrase
as the object phrase. We then extract two fea-
tures to represent the object. First, we extract
the lowercased head word of the object as a
feature. Second, we extract the concatena-
tion of all the words in the yield of the object
node as a single feature to capture the com-
plete argument for longer objects. In our ex-
ample sentence, the object head feature and
the complete object feature are identical: ob-
ject head=smoking and object=smoking.

• Unigram: We take all lowercased words that
are not stopwords in the I Will part of the
sentence as binary features. In our example
sentence, the unigram features unigr quit and
unigr smoking would be active.

• Bigram: We take all lowercased bigrams in
the I Will part of the sentence as binary fea-
tures. We do not remove stopwords for bi-
gram features. In our example sentence, the
bigram features bigr quit smoking would be
active.

We note that our method is not restricted to these
feature templates. More sophisticated features,
like tree kernels (Collins and Duffy, 2002) or se-

mantic role labeling (Palmer et al., 2010), can be
imagined.

5 Experiments

We evaluate our approach using standard 10-fold
cross-validation and report macro-average accu-
racy scores for each of the feature sets. The classi-
fier in all our experiments is a linear SVM imple-
mented in SVM-light (Joachims, 2006).

5.1 Data

We obtained a snapshot of 18,290 challenges cre-
ated during the 2013 IWIYW challenge. The snap-
shot was taken in mid May 2013, just 1.5 weeks
before the 2013 Earth Hour event day. We per-
form the following pre-processing. We normal-
ize the text to proper UTF-8 encoding and remove
challenges where the complete sentence contained
less than 7 tokens. These challenges were usually
empty or incomplete. We filter the challenges us-
ing the langid.py tool (Lui and Baldwin, 2012)
and only keep English challenges. We normal-
ized the casing of the sentences by first lower-
casing all texts and then re-casing each sentence
with a simple re-casing model that replaces a word
with its most frequent casing form. The re-casing
model is trained on the Brown corpus (Ku and
Francis, 1967). We tokenize the sentences with
the Penn Treebank tokenizer. We parse the sen-
tences with the Stanford parser (Klein and Man-
ning, 2003a; Klein and Manning, 2003b) to ob-
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Features Accuracy
random 0.5000
verb 0.6241
unigrams 0.8481
unigrams + verb 0.8573
object 0.8904
verb + object 0.9115
bigrams 0.9251
unigrams + bigrams 0.9343
unigrams + bigrams + verb 0.9361
unigrams + bigrams + verb + object 0.9472

Table 2: Results of 10-fold cross-validation exper-
iments.

tain a constituency parse tree for each challenge.
After pre-processing, we are left with 5,499 chal-
lenges (4,982 unique), with 4,474 unique I Will
challenges and 70 unique You Will challenges.

We create binary classifications examples be-
tween pairs of actions as described in Section 4.
As we create all possible combinations between I
Will challenges with common You Will challenges,
the number of ranking pairs for training is large.
In our case, we ended up with over 840,000 classi-
fication instances. We note that not every I Will ac-
tion is guaranteed to be included in the final set of
ranking pairs as challenges with a unique You Will
part that is not found in any other challenge cannot
be joined and are effectively ignored. However,
this is not a problem for our experiments. The bi-
nary classification instances are used to train and
test a ranking model for estimating the value of
actions as described in the last section.

5.2 Results

The results of our cross-validation experiments are
shown in Table 2.

The random baseline for all experiments is 50%.
Just using the verb of the I Will action as a fea-
ture improves over the random baseline to 62.41%.
Using a unigram bag-of-words representation of
the actions achieves a very respectable score of
84.81%. When we combine unigrams with the
verb feature, we achieve 85.73%. One of the most
surprising results of our experiments is that the
object of the action alone is a very effective fea-
ture, achieving 89.04%. When combined with the
verb feature, the object feature achieves 91.15%
which shows that the verb and object carry most
of the relevant information that the model requires

to gauge the value of actions. Using bigrams as
features, seems to catch this information just as ac-
curately, achieving 92.51% accuracy. The score is
further improved by combining the different fea-
ture sets. The best result of 94.72% is obtained
by combining all the features: unigrams, bigrams,
verb, and object. In summary, these results show
that our method is able to accurately predict the
relative value of actions using simple linguistic
features, which is the main contribution of this
work.

6 Related Work

The concept of value and reciprocity has been
extensively studied in the social sciences (Ger-
gen and Greenberg, 1980), anthropology (Sahlins,
1972), economics (Fehr and Gächter, 2000), and
philosophy (Becker, 1990). In linguistics, value
has been studied by Jackendoff (2006). His work
forms the starting point of our approach.

In natural language processing, there has been
very little work on the concept of value. Paul et al.
(2009) and Girju and Paul (2011) address the prob-
lem of semi-automatically mining patterns that en-
code reciprocal relationships using pronoun tem-
plates. Their work focuses on mining patterns of
reciprocity while our work uses expressions of re-
ciprocal actions to learn the value of actions.

None of the above works tries to estimate the
value of actions, as we do in this work. In fact, we
are not aware of any other work that tries to esti-
mate the value of actions from lexical expressions
of value.

7 Conclusion

We have presented a simple and effective method
for learning the value of actions from reciprocal
sentences. We show that our SVM-based ranking
model with simple linguistic features is able to ac-
curately rank pairs of actions from the I Will If
You Will Earth Hour challenge, achieving an ac-
curacy of up to 94.72%.
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Abstract

Human language allows us to express the
same meaning in various ways. Recogniz-
ing that the meaning of one text can be in-
ferred from the meaning of another can be
of help in many natural language process-
ing applications. One such application is
the categorization of emails. In this paper,
we describe the analysis of a real-world
dataset of manually categorized customer
emails written in the German language.
We investigate the nature of textual infer-
ence in this data, laying the ground for de-
veloping an inference-based email catego-
rization system. This is the first analysis
of this kind on German data. We compare
our results to previous analyses on English
data and present major differences.

1 Introduction

A typical situation in customer support is that
many customers send requests describing the same
issue. Recognizing that two different customer
emails refer to the same problem can help save
resources, but can turn out to be a difficult task.
Customer requests are usually written in the form
of unstructured natural language text, i.e., when
automatically processing them, we are faced with
the issue of variability: Different speakers of a lan-
guage express the same meanings using different
linguistic forms. There are, in fact, cases where
two sentences expressing the same meaning do not
share a single word:

1. “Bild und Ton sind asynchron.” [Picture and
sound are asynchronous.]

2. “Die Tonspur stimmt nicht mit dem Film
überein.” [The audio track does not match the
video.]

Detecting the semantic equivalence of sentences
1 and 2 requires several textual inference steps: At
the lexical level, it requires mapping the word pic-
ture to video and sound to audio track. At the
level of compositional semantics, it requires de-
tecting the equivalence of the expressions A and B
are asynchronous and A does not match B.

In this paper, we describe our analysis of a large
set of manually categorized customer emails, lay-
ing the ground for developing an email catego-
rization system based on textual inference. In
our analysis, we compared each email text to the
description of its associated category in order to
investigate the nature of the inference steps in-
volved. In particular, our analysis aims to give an-
swers to the following questions: What text repre-
sentation is appropriate for the email categoriza-
tion task? What kind of inference steps are in-
volved and how are they distributed in real-world
data? Answering these questions will not only
help us decide, which existing tools and resources
to integrate in an inference-based email catego-
rization system, but also, which non-existing tools
may be needed in addition.

2 Related Work

The task of email categorization has been ad-
dressed by numerous people in the last decade.
In the customer support domain, work to be men-
tioned includes Eichler (2005), Wicke (2010), and
Eichler et al. (2012).

Approaching the task using textual inference re-
lates to two tasks, for which active research is go-
ing on: Semantic Textual Similarity, which mea-
sures the degree of semantic equivalence (Agirre
et al., 2012) of two texts, and Recognizing Textual
Entailment (RTE), which is defined as recogniz-
ing, given a hypothesis H and a text T, whether the
meaning of H can be inferred from (is entailed in)
T (Dagan et al., 2005). The task of email catego-
rization can be viewed as an RTE task, where T
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refers to the email text and H refers to the cate-
gory description. The goal then is to find out if the
email text entails the category description, and if
so, assign it to the respective category.

In connection with RTE, several groups have
analyzed existing datasets in order to investigate
the nature of textual inference. Bar-Haim (2010)
introduces two levels of entailment, lexical and
lexical-syntactic, and analyzes the contribution of
each level and of individual inference mechanisms
within each level over a sample from the first RTE
Challenge test set (Dagan et al., 2005). He con-
cludes that the main contributors are paraphrases
and syntactic transformations.

Volokh and Neumann (2011) analyzed a subset
of the RTE-7 (Bentivogli et al., 2011) development
data to measure the complexity of the task. They
divide the T/H pairs into three different classes,
depending on the type of knowledge required to
solve the problem: In class A, the relevant infor-
mation is expressed with the same words in both
T and H. In class B, the words used in T are
synonyms to those used in H. In class C, recog-
nizing entailment between H and T requires the
use of logical inference and/or world knowledge.
They conclude that for two thirds of the data a
good word-level analysis is enough, whereas the
remainder of the data contains diverse phenomena
calling for a more sophisticated approach.

A detailed analysis of the linguistic phenomena
involved in semantic inferences in the T-H pairs of
the RTE-5 dataset was presented by (Cabrio and
Magnini, 2013).

As the approaches described above, our anal-
ysis aims at measuring the contribution of infer-
ence mechanisms at different representation lev-
els. However, we focus on a different type of text
(customer request as compared to news) and a dif-
ferent language (German as compared to English).
We thus expect our results to differ from the ones
obtained in previous work.

3 Setup

3.1 Dataset

We analyzed a dataset consisting of a set of emails
and a set of categories associated to these emails.
The emails contain customer requests sent to the
support center of a multimedia software company,
and mainly concern the products offered by this
company. Each email was manually assigned to
one or more matching categories by a customer

support agent (a domain expert). These categories,
predefined by the data provider, represent previ-
ously identified problems reported by customers.
All emails and category descriptions are written in
German. As is common for this type of data, many
emails contain spelling mistakes, grammatical er-
rors or abbreviations, which make automatic text
processing difficult. An anonymized1 version of
the dataset is available online2. Our data analysis
was done on the original dataset. The data exam-
ples we use in the following, however, are taken
from the anonymized dataset.

In our analysis, we manually compared the
email texts to the descriptions of their associated
categories in order to investigate the nature of the
inference steps involved. In order to reduce the
complexity of the task, we based our analysis on
the subset of categories, for which the category
text described a single problem (a single H, speak-
ing in RTE terms). We also removed emails for
which we were not able to relate the category de-
scription to the email text. However, we kept
emails associated to several categories and ana-
lyzed all of the assignments. The reduced dataset
we used for our analysis consists of 369 emails as-
sociated to 25 categories. The email lengths vary
between 2 and 1246 tokens. Category descriptions
usually consist of a single sentence or a phrase.

3.2 Task definition

The task of automatically assigning emails to
matching categories can be viewed as an RTE task,
where T refers to the email text and H refers to the
category description. The goal then is to find out if
the email text entails the category description, and
if so, assign it to the respective category.

For the analysis of inference steps involved, we
distinguish between two levels of inference: lexi-
cal semantics and compositional semantics. At the
lexical level, we distinguish two different types of
text representation: First, the bag-of-tokens repre-
sentation, where both the email text and the cate-
gory description are represented as the set of con-
tent word tokens contained in the respective text.

1The anonymization step was performed to eliminate ref-
erences to the data provider and anonymize personal data
about the customers. During this step, the data was trans-
ferred into a different product domain (online auction sales).
However, the anonymized version is very similar to the orig-
inal one in terms of language style (including spelling errors,
anglicisms, abbreviations, and special characters).

2http://www.excitement-project.eu/attachments/
article/97/omq_public_email_data.zip
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Second, the bag-of-terms representation, where a
“term” can consist of one or more content tokens
occurring consecutively. At this level, following
Bar Haim (2010), we assume that entailment holds
between T (the email) and H (the category descrip-
tion) if every token (term) in H can be matched by
a corresponding entailing token (term) in T.

At the level of compositional semantics, we rep-
resent each text as the set of complex expressions
(combinations of terms linked syntactically and
semantically) contained in it. At this level, we
assume that entailment holds between T and H if
every term in H is part of at least one complex ex-
pression that can be matched by a corresponding
entailing expression in T.

The data analysis was carried out by two people
separately (one of them an author of this paper),
who analyzed each assignment of an email E to
a category C based on predefined analysis guide-
lines. For each of the text representation types de-
scribed above, the task of the annotators was to
find, for each expression in the description of C, a
semantically equivalent or entailing expression in
E.3 If such an expression was found, all involved
inference steps were to be noted down in an anno-
tation table. The predefined list of possible infer-
ence steps is explained in detail in the following.

4 Inference steps

4.1 Lexical semantics level

For each of the three different types of represen-
tation (token, term, complex expression), we dis-
tinguish various inference steps. At the lexical
level, we distinguish among spelling, inflection,
derivation, composition, lexical semantics at the
token level and lexical semantics at the term level.
This distinction was made based on the assump-
tion that for each of these steps a different NLP
tool or resource is required (e.g., a lemmatizer for
inflection, a compound splitter for composition,
a lexical-semantic net for lexical semantics). We
also distinguish between token and term level lexi-
cal semantics, as, for term-level lexical semantics,
we assume that a tool for detecting multi-token
terms would be required.

3A preanalysis of the data revealed that in some cases,
the entailment direction seemed to be flipped: Expressions
in the category description entailed expressions in the email
text, e.g. “Video” (video) → “Film” (film). In our analysis,
we counted these as positive cases if the context suggested
that both expressions were used to express the same idea. We
consider this an interesting issue to be further investigated.

4.2 Compositional semantics level

At the level of compositional semantics, we con-
sider inference steps involving complex expres-
sions.4 These steps go beyond the lexical level
and would require the usage of at least a syntac-
tic parser for detecting word dependencies and a
tool for recognizing entailment between two com-
plex expressions. At this level, we also record the
frequency of three particular phenomena: parti-
cle verbs, negation, and light verb constructions,
which we considered worth addressing separately.

Particle verbs are important when processing
German because, unlike in English, they can oc-
cur both as one token or two, dependending on the
syntactic construction, in which they are embed-
ded (e.g., “aufnehmen” and “nehme [...] auf” [(to)
record]. Recognizing the scope of negation can be
required in cases where negation is expressed im-
plicitly in one of the sentences, e.g., “A und B sind
nicht synchron” [A and B are not synchronous]
vs. “Es kommt zu Versetzung zwischen A und
B” [There is a misaligment between A and B]. By
light verbs we refer to verbs with little semantic
content of their own, forming a linguistic unit with
a noun or prepositional phrase, for which a single
verb with a similar meaning exists, e.g., “Meldung
kommt” [message appears] vs. “melden” [notify].

For example, for the text pair “Das Brennen
bricht ab mit der Meldung X” [Burning breaks
with message X] and “Beim Brennen kommt die
Fehlermeldung X” [When burning, error message
X appears], the word “Meldung” [message] was
recorded as inference at the token level because
it can be derived from “Fehlermeldung” [error
message] using decomposition. The verb “bricht
ab” [break] was considered inference at the level
of compositional semantics because there is no
lexical-semantic relation to the verb “kommt” [ap-
pears]. The verb can thus only be matched by con-
sidering the complete expression.

4.3 Possible effects on precision

The focus of the analysis described so far was
on ways to improve recall in an email catego-
rization system: We count the inference steps re-
quired to increase the amount of mappable infor-
mation (similar to query expansion in informa-
tion retrieval). However, the figures do not show
the impact of these mappings on precision, i.e.,

4Additional lexical inference steps required at this level
are not recorded.
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whether an inference step we take would nega-
tively affect the precision of the system. Taking
a more precision-oriented view at the problem, we
also counted the number of cases for which a more
complex representation could be “helpful” (albeit
not necessary). For example, inferring the negated
expression “Programm kann die DVD nicht ab-
spielen” [Program cannot play the DVD] from
“Programm kann die DVD nicht laden”’ [Program
does not load the DVD] is possible at the lexical
level, assuming that “abspielen” [(to) play] entails
“laden” [(to) load]. However, knowing that both
verbal expressions are negated is expected to be
beneficial to precision, in order to avoid wrongly
inferring a negated from a non-negated expression.

5 Results

5.1 Interannotator agreement
Our analysis was done by two people separately,
which allowed us to measure the reliability of the
annotation for the different inference steps. The
kappa coefficient (Cohen, 1960) for spelling, in-
flection, derivation and composition ranged be-
tween 0.46 and 0.67, i.e., moderate to substan-
tial agreement according to the scale proposed by
Landis and Koch (1977). For lexical semantics,
the value is only fair (0.38). An analysis showed
that the identification of a lexical semantic rela-
tion is often not straightforward, and may require
a good knowledge of the domain. For example,
the verbs “aufrufen” [call] and “importieren” [im-
port], which would usually not be considered to
be semantically related, may in fact be used to de-
scribe the same action in the computer domain, re-
ferring to files. Also for the more complex infer-
ence steps, we measured only fair agreement, due
to the number of positive and negative cases being
very skewed. For the “helpful” cases, the values
ranged between 0.73 and 0.79 (substantial agree-
ment).

5.2 Distribution of inference steps
Table 1 summarizes the distribution of inference
steps identified in our data for each text represen-
tation type, ordered by their frequency of occur-
rence.5 For multi-token terms, particle verbs, and
negation, the number of “helpful” cases is given in
brackets.

Our results show that the most important infer-
ence step at the lexical level is lexical semantics.

5Based on the steps agreed on after a consolidation phase.

At the lexical level, we found 157 different word
mappings. Only 26 of them correspond to a re-
lation in GermaNet (Hamp and Feldweg, 1997),
version 7.0. 48 of the involved words had no Ger-
maNet entry at all, due to the word being an an-
glicism (e.g., “Error” instead of “Fehler”), a non-
lexicalized compound (e.g., “Bildschirmbereich”
[screen area]) or a highly domain- or application-
specific word (for only 37.5% of the words miss-
ing in GermaNet, we found an entry in Wikipedia).
In 72 cases, both words had a GermaNet entry,
but no relation existed, usually because the rela-
tion was too domain-specific.

For more than 30% of the words (as compared
to 10.1% in Bar-Haim’s (2010) analysis on En-
glish), a morphological transformation is required,
which can be explained by the high complexity of
German morphology as compared to the morphol-
ogy of English. Spelling mistakes or differences,
which are not considered in other analyses, are
also found in a considerable number of words, the
reason being that customer emails are less well-
formed than, for example, news texts.

The significance of multi-token terms was sur-
prisingly high for German, where word combina-
tions are usually expressed in the form of com-
pounds (i.e., a single token). In our data, multi-
token terms were usually compounds consisting
of at least one anglicism (e.g., “USB Anschluss”
[USB port]). This suggests that texts written in
a domain language with a high proportion of En-
glish loan words may be more difficult to process
than general language texts, as multi-token terms
have to be recognized.

At the level of compositional semantics, it
should be noted that, in many cases, recogniz-
ing the entailment relation between two expres-
sions requires world or domain knowledge. Sev-
eral of the mappings involved particle verbs or
light verbs. Detecting negation scope is expected
to be important in a precision-oriented system.

5.3 Comparing text representations

We also had a look at the amount of information
left unmapped at each level. For the lexical level,
we determined for how many of the content tokens
(terms) occurring in the category descriptions, no
matching expression was found in the associated
emails. For the level of compositional semantics,
we looked at each term left unmapped at the lexi-
cal level and tried to map a complex expression in
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Type of inference Data example Total (Share)
Lexical semantics
(Token)

“Anfang” [start]→ “Beginn” [beginning] 310 (20.2%)

Inflection “startet” [starts]→ “starten” [start] 206 (13.4%)
Derivation “Import” [import]→ “importieren” [(to) import] 164 (10.7%)
Composition “Fehlermeldung” [error message]→ “Meldung” [message] 158 (10.3%)
Spelling “Dateine”→ “Dateien” [files] 47 (3.1%)

Lexical semantics
(Term)

“MPEG Datei“ [MPEG file]→ “Video” [video]
60 (4.1%)

[+124 (8.6%)]

Particle verbs “spielt [...] ab” [play]→ “abspielen” [play]
26 (1.8%)

[+34 (2.4%)]
Light verbs “Meldung kommt” [message appears]→ “melden” [notify] 17 (1.2%)

Negation
“Brennergerät kann nicht gefunden werden” [Burning device cannot be found]
→ “Es wird kein Brenner gefunden” [No burner is found ]

8 (0.6%)
[+121 (8.4%)]

Other complex
expressions

“Das Brennen bricht ab mit der Meldung X” [Burning breaks with message X]
→ “Beim Brennen kommt die Fehlermeldung X” [Burning yields error message X ]

83 (5.7%)

Table 1: Distribution of inference steps in the dataset.

which the term occurred. If for none of these ex-
pressions a matching expression was found in the
email, the term was counted as non-mappable at
this level.

Representation Non-mappable Share
Tokens 428 / 1538 27.8%
Terms 365 /1446 25.2%
Complex expressions 229 / 1446 15.8%

The above table shows that the majority of
the required inference relates to the lexical level.
Choosing a representation that allows us to map
more complex expressions, increases the amount
of mappable terms by almost 10%. However, even
with this more complex representation, a consider-
able amount of terms (15.8%) cannot be mapped
at all because the email text does not contain all
information specified in the category description.

6 Conclusions

In our analysis, we examined the inference steps
required to determine that the text of a category de-
scription can be inferred from the text of a particu-
lar email associated to this category. We identified
major inference phenomena and determined their
distribution in a German real-world dataset. Our
analysis supports previous results for English data
in that a large portion of the required inference re-
lates to the lexical level. Choosing a representa-
tion that allows us to map more complex expres-
sions significantly increases the amount of map-
pable expressions, but some expressions simply

cannot be mapped because the categorization was
done relying on partial information in the email.

Our results extend previous results by investi-
gating inference steps specific to the German lan-
guage (such as morphology, composition, and par-
ticle verbs). Some outcomes are unexpected for
the German language, such as the high share of
multi-token terms. Our analysis also stresses the
importance of inference steps relying on domain-
specific resources, i.e., for this type of data, the
development of tools and resources to support in-
ference in highly specialized domains is crucial.

We are currently using the results of our anal-
ysis to build an email categorization system that
integrates linguistic resources and tools to expand
the linguistic expressions in an incoming email
with entailed expressions. This will allow us to
measure the performance of such a system, in par-
ticular with respect to the effect on precision.
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Abstract

Sentence Connectivity is a textual charac-
teristic that may be incorporated intelli-
gently for the selection of sentences of a
well meaning summary. However, the ex-
isting summarization methods do not uti-
lize its potential fully. The present pa-
per introduces a novel method for single-
document text summarization. It poses
the text summarization task as an opti-
mization problem, and attempts to solve
it using Weighted Minimum Vertex Cover
(WMVC), a graph-based algorithm. Tex-
tual entailment, an established indicator of
semantic relationships between text units,
is used to measure sentence connectivity
and construct the graph on which WMVC
operates. Experiments on a standard sum-
marization dataset show that the suggested
algorithm outperforms related methods.

1 Introduction

In the present age of digital revolution with pro-
liferating numbers of internet-connected devices,
we are facing an exponential rise in the volume
of available information. Users are constantly fac-
ing the problem of deciding what to read and what
to skip. Text summarization provides a practical
solution to this problem, causing a resurgence in
research in this field.

Given a topic of interest, a standard search of-
ten yields a large number of documents. Many of
them are not of the user’s interest. Rather than go-
ing through the entire result-set, the reader may
read a gist of a document, produced via summa-
rization tools, and then decide whether to fully
read the document or not, thus saving a substan-
tial amount of time. According to Jones (2007),
a summary can be defined as “a reductive trans-
formation of source text to summary text through

content reduction by selection and/or generaliza-
tion on what is important in the source”. Summa-
rization based on content reduction by selection is
referred to as extraction (identifying and includ-
ing the important sentences in the final summary),
whereas a summary involving content reduction
by generalization is called abstraction (reproduc-
ing the most informative content in a new way).

The present paper focuses on extraction-based
single-document summarization. We formulate
the task as a graph-based optimization problem,
where vertices represent the sentences and edges
the connections between sentences. Textual en-
tailment (Giampiccolo et al., 2007) is employed to
estimate the degree of connectivity between sen-
tences, and subsequently to assign a weight to each
vertex of the graph. Then, the Weighted Mini-
mum Vertex Cover, a classical graph algorithm,
is used to find the minimal set of vertices (that is
– sentences) that forms a cover. The idea is that
such cover of well-connected vertices would cor-
respond to a cover of the salient content of the doc-
ument.

The rest of the paper is organized as follows: In
Section 2, we discuss related work and describe
the WMVC algorithm. In Section 3, we propose
a novel summarization method, and in Section 4,
experiments and results are presented. Finally, in
Section 5, we conclude and outline future research
directions.

2 Background

Extractive text summarization is the task of iden-
tifying those text segments which provide impor-
tant information about the gist of the document
– the salient units of the text. In (Marcu, 2008),
salient units are determined as the ones that con-
tain frequently-used words, contain words that are
within titles and headings, are located at the begin-
ning or at the end of sections, contain key phrases
and are the most highly connected to other parts
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of the text. In this work we focus on the last of
the above criteria, connectivity, to find highly con-
nected sentences in a document. Such sentences
often contain information that is found in other
sentences, and are therefore natural candidates to
be included in the summary.

2.1 Related Work

The connectivity between sentences has been pre-
viously exploited for extraction-based summariza-
tion. Salton et al. (1997) generate intra-document
links between passages of a document using auto-
matic hypertext link generation algorithms. Mani
and Bloedorn (1997) use the number of shared
words, phrases and co-references to measure con-
nectedness among sentences. In (Barzilay and El-
hadad, 1999), lexical chains are constructed based
on words relatedness.

Textual entailment (TE) was exploited recently
for text summarization in order to find the highly
connected sentences in the document. Textual en-
tailment is an asymmetric relation between two
text fragments specifying whether one fragment
can be inferred from the other. Tatar et al. (2008)
have proposed a method called Logic Text Tiling
(LTT), which uses TE for sentence scoring that
is equal to the number of entailed sentences and
to form text segments comprising of highly con-
nected sentences. Another method called Ana-
log Textual Entailment and Spectral Clustering
(ATESC), suggested in (Gupta et al., 2012), also
uses TE for sentence scoring, using analog scores.

We use a graph-based algorithm to produce the
summary. Graph-based ranking algorithms have
been employed for text summarization in the past,
with similar representation to ours. Vertices rep-
resent text units (words, phrases or sentences) and
an edge between two vertices represent any kind
of relationship between two text units. Scores are
assigned to the vertices using some relevant crite-
ria to select the vertices with the highest scores.
In (Mihalcea and Tarau, 2004), content overlap
between sentences is used to add edges between
two vertices and Page Rank (Page et al., 1999) is
used for scoring the vertices. Erkan and Radev
(2004) use inter-sentence cosine similarity based
on word overlap and tf-idf weighting to identify
relations between sentences. In our paper, we use
TE to compute connectivity between nodes of the
graph and apply the weighted minimum vertex
cover (WMVC) algorithm on the graph to select

the sentences for the summary.

2.2 Weighted MVC
WMVC is a combinatorial optimization problem
listed within the classical NP-complete problems
(Garey and Johnson, 1979; Cormen et al., 2001).
Over the years, it has caught the attention of many
researchers, due to its NP-completeness, and also
because its formulation complies with many real
world problems.

Weighted Minimum Vertex Cover Given a
weighted graph G = (V,E,w), such that w is
a positive weight (cost) function on the vertices,
w : V → R, a weighted minimum vertex cover of
G is a subset of the vertices, C ⊆ V such that for
every edge (u, v) ∈ E either u ∈ C or v ∈ C
(or both), and the total sum of the weights is min-
imized.

C = argminC′
∑

v∈ C′
w(v) (1)

3 Weighted MVC for text summarization

We formulate the text summarization task as a
WMVC problem. The input document to be sum-
marized is represented as a weighted graph G =
(V,E,w), where each of v ∈ V corresponds to a
sentence in the document; an edge (u, v) ∈ E ex-
ists if either u entails v or v entails u with a value
at least as high as an empirically-set threshold. A
weight w is then assigned to each sentence based
on (negated) TE values (see Section 3.2 for further
details). WMVC returns a cover C which is a sub-
set of the sentences with a minimum total weight,
corresponding to the best connected sentences in
the document. The cover is our output – the sum-
mary of the input document.

Our proposed method, shown in Figure 1, con-
sists of the following main steps.

1. Intra-sentence textual entailment score com-
putation

2. Entailment-based connectivity scoring
3. Entailment connectivity graph construction
4. Application of WMVC to the graph

We elaborate on each of these steps in the fol-
lowing sections.

3.1 Computing entailment scores
Given a document d for which summary is to be
generated, we represent d as an array of sentences
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Id Sentence
S1 A representative of the African National Congress said Saturday the South African government may release black nationalist leader Nelson Mandela

as early as Tuesday.
S2 “There are very strong rumors in South Africa today that on Nov. 15 Nelson Mandela will be released,” said Yusef Saloojee, chief representative in

Canada for the ANC, which is fighting to end white-minority rule in South Africa.
S3 Mandela the 70-year-old leader of the ANC jailed 27 years ago, was sentenced to life in prison for conspiring to overthrow the South African

government.
S4 He was transferred from prison to a hospital in August for treatment of tuberculosis.
S5 Since then, it has been widely rumoured Mandela will be released by Christmas in a move to win strong international support for the South African

government.
S6 “It will be a victory for the people of South Africa and indeed a victory for the whole of Africa,” Saloojee told an audience at the University of

Toronto.
S7 A South African government source last week indicated recent rumours of Mandela’s impending release were orchestrated by members of the

anti-apartheid movement to pressure the government into taking some action.
S8 And a prominent anti-apartheid activist in South Africa said there has been “no indication (Mandela) would pe released today or in the near future.”
S9 Apartheid is South Africa’s policy of racial separation.

Summary “There are very strong rumors in South Africa today that on Nov.15 Nelson Mandela will pe released,” said Yusef Saloojee, chief representative
in Canada for the ANC, which is fighting to end white-minority rule in South Africa. He was transferred from prison to a hospital in August for
treatment of tuberculosis. A South African government source last week indicated recent rumours of Mandela’s impending release were orchestrated
by members of the anti-apartheid movement to pressure the government into taking some action. Apartheid is South Africa’s policy of racial
separation.

Table 1: The sentence array of article AP881113-0007 of cluster do106 in the DUC’02 dataset.

Figure 1: Outline of the proposed method.

D1×N . An example article is shown in Table 1.
We use this article to demonstrate the steps of our
algorithm.

Then, we compute a TE score between every
possible pair of sentences in D using a textual en-
tailment tool. TE scores for all the pairs are stored
in a sentence entailment matrix, SEN×N . An en-
try SE[i, j] in the matrix represents the extent by
which sentence i entails sentence j. The sentence
entailment matrix produced for our example doc-
ument is shown in Table 2.

S1 S2 S3 S4 S5 S6 S7 S8 S9

S1 - 0 0 0.04 0 0 0.001 0.02 0.02
S2 0.02 - 0.01 0.04 0.06 0.01 0 0.01 0.04
S3 0 0 - 0.09 0 0 0 0 0.04
S4 0 0 0 - 0 0 0 0 0.01
S5 0 0 0 0.04 - 0 0.01 0.01 0.04
S6 0 0 0 0.04 0 - 0 0 0.02
S7 0 0 0 0.04 0.06 0 - 0.02 0.27
S8 0 0 0 0.04 0 0 0.01 - 0.02
S9 0 0 0 0.04 0 0 0 0 -

Table 2: The sentence entailment matrix of the ex-
ample article.

Id ConnScore Id ConnScore
S1 0.08 S6 0.06
S2 0.19 S7 0.39
S3 0.13 S8 0.07
S4 0.01 S9 0.04
S5 0.1

Table 3: Connectivity Scores of the sentences of
article AP881113-0007.

3.2 Connectivity scores

Our assumption is that entailment between sen-
tences indicates connectivity, that – as mentioned
above – is an indicator of sentence salience. More
specifically, salience of a sentence is determined
by the degree by which it entails other sentences
in the document. We thus use the sentence entail-
ment matrix to compute a connectivity score for
each sentence by summing the entailment scores
of the sentence with respect to the rest of the sen-
tences in the document, and denote this sum as
ConnScore. Formally, ConnScore for sentence
i is computed as follows.

ConnScore[i] =
∑
i 6= j

SE [i, j] (2)

Applying it to each sentence in the document,
we obtain the ConnScore1×N vector. The sen-
tence connectivity scores corresponding to Table 2
are shown in Table 3.

3.3 Entailment connectivity graph
construction

The more a sentence is connected, the higher its
connectivity score. To adapt the scores to the
WMVC algorithm, that searches for a minimal so-
lution, we convert the scores into positive weights
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in inverted order:

w[i] = −ConnScore[i] + Z (3)

w[i] is the score that is assigned to the vertex of
sentence i; Z is a large constant, meant to keep
the scores positive. In this paper, Z has been as-
signed value = 100. Now, the better a sentence is
connected, the lower its weight.

Given the weights, we construct an undi-
rected weighted entailment connectivity graph,
G(V,E,w), for the document d. V consists of
vertices for the document’s sentences, and E are
edges that correspond to the entailment relations
between the sentences. w is the weight explained
above. We create an edge between two vertices as
explained below. Suppose that Si and Sj are two
sentences in d, with entailment scores SE[i, j] and
SE[j, i] between them. We set a threshold τ for
the entailment scores as the mean of all entailment
values in the matrix SE. We add an edge (i, j) to
G if SE[i, j] > τ OR SE[j, i] > τ , i.e. if at least
one of them is as high as the threshold.

Figure 2 shows the connectivity graph con-
structed for the example in Table 1.

Figure 2: The Entailment connectivity graph of the
considered example with associated Score of each
node shown.

3.4 Applying WMVC
Finally, we apply the weighted minimum vertex
cover algorithm to find the minimal vertex cover,
which would be the document’s summary. We
use integer linear programming (ILP) for find-
ing a minimum cover. This algorithm is a 2-
approximation for the problem, meaning it is an
efficient (polynomial-time) algorithm, guaranteed
to find a solution that is no more than 2 times big-
ger than the optimal solution.1 The algorithm’s

1We have used an implementation of ILP for WMVC in
MATLAB, grMinVerCover.

input is G = (V,E,w), a weighted graph where
each vertex vi ∈ V (1 ≤ i ≤ n) has weight wi. Its
output is a minimal vertex cover C of G, contain-
ing a subset of the vertices V . We then list these
sentences as our summary, according to their orig-
inal order in the document.

After applying WMVC to the graph in Fig-
ure 2, the cover C returned by the algorithm is
{S2, S4, S7, S9} (highlighted in Figure 2).

Whenever a summary is required, a word-limit
on the summary is specified. We find the threshold
which results with a cover that matches the word
limit through binary search.

4 Experiments and results

4.1 Experimental settings
We have conducted experiments on the single-
document summarization task of the DUC 2002
dataset2, using a random sample that contains 60
news articles picked from each of the 60 clus-
ters available in the dataset. The target sum-
mary length limit has been set to 100 words. We
used version 2.1.1 of BIUTEE (Stern and Da-
gan, 2012), a transformation-based TE system to
compute textual entailment score between pairs of
sentences.3 BIUTEE was trained with 600 text-
hypothesis pairs of the RTE-5 dataset (Bentivogli
et al., 2009).

4.1.1 Baselines
We have compared our method’s performance
with the following re-implemented methods:

1. Sentence selection with tf-idf: In this base-
line, sentences are ranked based on the sum
of the tf-idf scores of all the words except
stopwords they contain, where idf figures are
computed from the dataset of 60 documents.
Top ranking sentences are added to the sum-
mary one by one, until the word limit is
reached.

2. LTT: (see Section 2)

3. ATESC : (see Section 2)

4.1.2 Evaluation metrics
We have evaluated the method’s performance us-
ing ROUGE (Lin, 2004). ROUGE measures the

2http://www-nlpir.nist.gov/projects/
duc/data/2002_data.html

3Available at: http://www.cs.biu.ac.il/
˜nlp/downloads/biutee.
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Method P (%) R (%) F1 (%)
TF-IDF 13.3 17.6 15.1

LTT 39.9 34.6 37.1
ATESC 37.7 32.5 34.9
WMVC 39.8 38.8 39.2

Table 4: ROUGE-1 results.

Method P (%) R (%) F1 (%)
TF-IDF 7.4 9.6 8.4

LTT 18.4 15.2 16.6
ATESC 16.3 11.7 13.6
WMVC 16.7 16.8 16.8

Table 5: ROUGE-2 results.

quality of an automatically-generated summary by
comparing it to a “gold-standard”, typically a hu-
man generated summary. ROUGE-n measures n-
gram precision and recall of a candidate summary
with respect to a set of reference summaries. We
compare the system-generated summary with two
reference summaries for each article in the dataset,
and show the results for ROUGE-1, ROUGE-2 and
ROUGE-SU4 that allows skips within n-grams.
These metrics were shown to perform well for
single document text summarization, especially
for short summaries. Specifically, Lin and Hovy
(2003) showed that ROUGE-1 achieves high cor-
relation with human judgments.4

4.2 Results

The results for ROUGE-1, ROUGE-2 and
ROUGE-SU4 are shown in Tables 4, 5 and 6, re-
spectively. For each, we show the precision (P),
recall (R) and F1 scores. Boldface marks the high-
est score in each table. As shown in the tables,
our method achieves the best score for each of the
three metrics.

4.3 Analysis

The entailment connectivity graph generated con-
veys information about the connectivity of sen-
tences in the document, an important parameter
for indicating the salience of a sentences.

The purpose of the WMVC is therefore to find
a subset of the sentences that are well-connected
and cover all the content of all the sentences. Note
that merely selecting the sentences on the basis
of a greedy approach, that picks the those sen-
tences with the highest connectivity score, does
not ensure that all edges of the graph are cov-

4See (Lin, 2004) for formal definitions of these metrics.

Method P (%) R (%) F1 (%)
TF-IDF 2.2 4.2 2.9

LTT 16 11.8 13.6
ATESC 15.5 11.1 12.9
WMVC 14.1 14.2 14.2

Table 6: ROUGE-SU4 results.

ered, i.e. it does not ensure that all the infor-
mation is covered in the summary. In Figure 3,
we illustrate the difference between WMVC (left)
and a greedy algorithm (right) over our example
document. The vertices selected by each algo-
rithm are highlighted. The selected set by WMVC,
{S2, S4, S7, S9}, covers all the edges in the graph.
In contrast, using the greedy algorithm, the subset
of vertices selected on the basis of highest scores
is {S2, S3, S7, S8}. There, several edges are not
covered (e.g. (S1 → S9)).

It is therefore much more in sync with the sum-
marization goal of finding a subset of sentences
that conveys the important information of the doc-
ument in a compressed manner.

S1 

S2 

S4 

S6 

S7 S9 

S5 

S3 

S8 

Weighted  
Minimum Vertex Cover    

Greedy   
vertex  selection   

S1 

S2 

S4 

S6 

S7 S9 

S5 

S3 

S8 

Figure 3: Minimum Vertex Cover vs. Greedy se-
lection of sentences.

5 Conclusions and future work

The paper presents a novel method for single-
document extractive summarization. We formu-
late the summarization task as an optimization
problem and employ the weighted minimum ver-
tex cover algorithm on a graph based on textual en-
tailment relations between sentences. Our method
has outperformed previous methods that employed
TE for summarization as well as a frequency-
based baseline. For future work, we wish to ap-
ply our algorithm on smaller segments of the sen-
tences, using partial textual entailment Levy et al.
(2013), where we may obtain more reliable en-
tailment measurements, and to apply the same ap-
proach for multi-document summarization.
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Abstract

The aim of this paper is to discuss difficul-
ties involved in adopting an existing sys-
tem of semantic roles in a grammar engi-
neering task. Two typical repertoires of se-
mantic roles are considered, namely, Verb-
Net and Sowa’s system. We report on ex-
periments showing the low inter-annotator
agreement when using such systems and
suggest that, at least in case of languages
with rich morphosyntax, an approximation
of semantic roles derived from syntactic
(grammatical functions) and morphosyn-
tactic (grammatical cases) features of ar-
guments may actually be beneficial for ap-
plications such as textual entailment.

1 Introduction

The modern notion of semantic – or thematic –
roles stems from the lexical semantic work of
Gruber 1965 (his thematic relations) and Fillmore
1968 (so-called deep cases), and was popularised
by Jackendoff 1972, but traces of this concept may
already be found in the notion of kāraka in the
writings of the Sanskrit grammarian Pān. ini (4th
century BC); see, e.g., Dowty 1991 for a histori-
cal introduction. Fillmore’s deep cases are Agen-
tive, Dative, Instrumental, Factive, Locative, Ob-
jective, as well as Benefactive, Time and Comi-
tative, but many other sets of semantic roles may
be found in the literature; for example, Dalrym-
ple 2001, p. 206, cites – after Bresnan and Kan-
erva 1989 – the following ranked list of thematic
roles: Agent, Benefactive, Recipient/Experiencer,
Instrument, Theme/Patient, Locative.

In Natural Language Processing (NLP),
one of the most popular repertoires of se-
mantic roles is that of VerbNet (Kipper et al.
2000; http://verbs.colorado.edu/
~mpalmer/projects/verbnet.html),

a valence lexicon of English based on Levin’s
(1993) classification of verbs according to the
diathesis phenomena they exhibit. The VerbNet
webpage states that it contains 3769 lemmata
divided into 5257 senses. There are 30 semantic
roles used in VerbNet 3.2,1 including such stan-
dard roles as Agent, Beneficiary and Instrument,
but also more specialised roles such as Asset (for
quantities), Material (for stuff things are made
of) or Pivot (a theme more central to an event
than the theme expressed by another argument).
This resource is widely used in NLP, and it was
one of the main lexical resources behind the
Unified Lexicon of English (Crouch and King,
2005), a part of an LFG-based semantic parser
(Crouch and King, 2006) employed in tasks such
as question answering (Bobrow et al., 2007a) and
textual entailment (Bobrow et al., 2007b).

Another system of semantic roles considered
here is that developed by Sowa (2000; http:
//www.jfsowa.com/krbook/) for the pur-
pose of knowledge representation in artificial in-
telligence. There are 18 thematic roles proposed in
Sowa 2000, p. 508, including standard roles such
as Agent, Recipient and Instrument, but also 4
temporal and 4 spatial roles. Unlike in case of
VerbNet, there is no corpus or dictionary showing
numerous examples of the acutal use of such roles
– just a few examples are given (on pp. 506–510).
On the other hand, principles of assigning the-
matic roles to arguments may be formulated as a
decision tree, which should make the process of
semantic role labelling more efficient.

But why should we care about semantic roles at
all? From the NLP perspective, the main reason is
that they are useful in tasks approximating reason-
ing, such as textual entailment. Take the follow-

1Table 2 on the VerbNet webpage lists 21 roles, of which
Actor is not actually used; the 10 roles which are used but not
listed there are Goal, Initial_Location (apart from Location),
Pivot, Reflexive, Result, Trajectory and Value, as well as Co-
Agent, Co-Patient and Co-Theme.
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ing two Polish sentences, with their naïve meaning
representations in (1a)–(2a):

(1) Anonim
anonymous

napisał
wrote

artykuł
paper

na
for

*SEM.
*SEM

‘An anonymous person wrote a paper for
*SEM.’
a. ∃a∃p article(a) ∧ person(p) ∧

anonymous(p) ∧ write(p, a, starsem)
b. ∃e∃a∃p article(a) ∧ person(p) ∧

anonymous(p) ∧ write(e) ∧
agent(e, p) ∧ patient(e, a) ∧
destination(e, starsem)

(2) Anonim
anonymous

napisał
wrote

artykuł.
paper

‘An anonymous person wrote a paper.’
a. ∃a∃p article(a) ∧ person(p) ∧

anonymous(p) ∧ write(p, a)
b. ∃e∃a∃p article(a) ∧ person(p) ∧

anonymous(p) ∧ write(e) ∧
agent(e, p) ∧ patient(e, a)

While it is clear that (2) follows from (1), this
inference is not obvious in (1a)–(2a); making such
an inference would require an additional mean-
ing postulate relating the two write predicates of
different arities. In contrast, when dependents
of the predicate are represented via separate se-
mantic roles, as in the neo-Davidsonian (1b)–(2b)
(cf. Parsons 1990), the inference from (1b) to (2b)
is straightforward and follows from general in-
ference rules of first-order logic; nothing special
needs to be said about the writing events.

Also, building on examples from Bobrow
et al. 2007b, p. 20, once we know that flies is a
possible hyponym of travels, we may infer Ed
travels to Boston from Ed flies to Boston. Given
representations employing semantic roles, e.g.,
∃efly(e)∧agent(e, ed)∧destination(e, boston)
and ∃e travel(e) ∧ agent(e, ed) ∧
destination(e, boston), all that is needed to
make this inference is a general inference schema
saying that, if P is a hypernym of Q, then
∀eQ(e) → P (e). A more complicated set of
inference schemata would be necessary if the
neo-Davidsonian approach involving semantic
roles were not adopted.

2 Problems with standard repertoires of
semantic roles

As noted by Bobrow et al. 2007b, p. 20, standard
VerbNet semantic roles may in some cases make

inference more difficult. For example, in Ed trav-
els to Boston, VerbNet identifies Ed as a Theme,
while in Ed flies to Boston – as an Agent. The so-
lution adopted there was to use “a backoff strategy
where fewer role names are used (by projecting
down role names to the smaller set)”.

In order to verify the usefulness of well-known
repertoires of semantic roles, we performed a us-
ability study of the two sets of semantic roles de-
scribed above. The aim of this study was to es-
timate how difficult it would be to create a cor-
pus of sentences with verbs’ arguments annotated
with such semantic roles. For this purpose, 37
verbs were selected more or less at random and
843 instances of arguments of these verbs (in 393
sentences, but only one verb was considered in
each sentence) were identified in a corpus. In two
experiments, the same 7 human annotators were
asked to label these arguments with VerbNet and
with Sowa’s semantic roles.

In both cases interannotator agreement (IAA)
was below our expectations, given the fact that
VerbNet comes with short descriptions of seman-
tic roles and a corpus of illustrative examples, and
that Sowa’s classification could be (and was for
this experiment) formalised as a decision tree. For
VerbNet roles, Fleiss’s κ (called Fleiss’s Multi-
π in Artstein and Poesio 2008, as it is actually
a generalisation of Scott’s π rather than Cohen’s
κ) is equal to 0.617, and for Sowa’s system it
is a little higher, 0.648. According to the com-
mon wisdom (reflected in Wikipedia’s entry for
“Fleiss’ kappa”), values between 0.41 and 0.60 re-
flect moderate agreement and between 0.61 and
0.80 – substantial agreement. Hence, the current
results could be interpreted as moderately sub-
stantial agreement. However, Artstein and Poesio
2008, p. 591, question this received wisdom and
state that “only values above 0.8 ensured an anno-
tation of reasonable quality”.

This opinion is confirmed by the more detailed
analysis of the distribution of (dis)agreement pro-
vided in Tab. 1. The top table gives the number
of arguments for which the most commonly as-
signed Sowa’s role was assigned by n annotators
(n ranges from 2 to 7; not from 1, as there were no
arguments that would be assigned 7 different roles
by the 7 annotators) and the most commonly as-
signed VerbNet role was assigned bym annotators
(m also ranges from 2 to 7). For example, the cell
in the row labelled 7 and in the column labelled

82



V e r b N e t
2 3 4 5 6 7

2 6 8 3 0 0 0 17
S 3 8 39 39 17 25 3 131
o 4 2 26 49 37 20 5 139
w 5 4 11 48 45 11 15 134
a 6 1 9 18 16 35 20 99

7 0 3 11 47 52 210 323
21 96 168 162 143 253 843

V e r b N e t
2 3 4 5 6 7

2 0.71% 0.95% 0.36% 0.00% 0.00% 0.00% 2.02%
S 3 0.95% 4.63% 4.63% 2.02% 2.97% 0.36% 15.54%
o 4 0.24% 3.08% 5.81% 4.39% 2.37% 0.59% 16.49%
w 5 0.47% 1.30% 5.69% 5.34% 1.30% 1.78% 15.90%
a 6 0.12% 1.07% 2.14% 1.90% 4.15% 2.37% 11.74%

7 0.00% 0.36% 1.30% 5.58% 6.17% 24.91% 38.32%
2.49% 11.39% 19.93% 19.22% 16.96% 30.01% 100.00%

Table 1: Interannotator agreement rate for VerbNet and Sowa role systems; the top table gives numbers
of arguments, the bottom table gives normalised percentages

6 contains the information that 52 arguments were
such that all annotators agreed on Sowa’s role and
6 agreed on a VerbNet role. The final row and
the final column contain the usual marginals; e.g.,
out of 843 arguments, in case of Sowa’s system
253 arguments were annotated unanimously, and
in case of VerbNet roles – 323 arguments. The
lower table gives the same information normalised
to percentages. Note that for a significant percent
of examples (almost 18% in case of Sowa’s sys-
tem and almost 14% in case of VerbNet) there is
no majority decision and that the concentration of
examples around the diagonal means that the lack
of consensus is largely independent of the choice
of the role system.

Some of the most difficult cases were discussed
with annotators and the conclusion reached was
that there are two main reasons for the low IAA:
numerous cases where more than one role seems
to be suitable for a given argument and cases
where there is no suitable role at all. (In fact, as
in case of LECZYĆ ‘treat, cure’ discussed below, it
is sometimes difficult to distinguish these two rea-
sons: more than one role seems suitable because
none is clearly right.)

The first situation is caused by the fact that a
distinction between the roles is often highly sub-
jective; for example, when a doctor is treating a

girl, is (s)he causing a structural change? The an-
swer to this question determines the distinction be-
tween Patient and Theme in Sowa’s system. It
could be “no” when the doctor only prescribes
some medicines, but it could be “yes” when (s)he
operates her. Furthermore, some emphasis is put
on volitionality in Sowa’s system: the initiatior of
an action can be either Agent or Effector, depend-
ing on whether (s)he causes the action voluntarily
or not – something that is often difficult to decide
even when a context of a sentence is given.

On the other hand, the Agent role is extended
in VerbNet to ‘internally controlled subjects such
as forces and machines’, but it is easy to confuse
this role with Theme. For example, in The horse
jumped over the fence, the horse is – somewhat
counterintuitively – marked as Theme, as it must
bear the same role as in Tom jumped the horse over
the fence, where the Agent role is already taken by
Tom. Other commonly confused pairs are Stim-
ulus and Theme, Topic and Theme, and Patient
and Theme. Moreover, there are cases where more
than one role genuinely (not as a result of con-
fusion) matches a given argument. For example,
in the Polish sentence Ona ładuje się w foremkę,
którą ktoś jej podsunął ‘She squeezes/loads her-
self into a/the mould that somebody offered her’,
the argument w foremkę ‘into mould’ can be rea-
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sonably marked as both: a spatial Destination and
a functional Result.

The other common reason for interannotator
disagreement is the lack of a suitable role. For ex-
ample, returning to the sentence A doctor is treat-
ing a girl, it seems that neither of the two systems
has an obvious role for the person being cured
(hence the impression of potential suitability of a
number of roles). In Polish sentences involving the
verb LECZYĆ ‘treat, cure’, the object of treatment
was variously marked as Agent, Beneficiary, Pa-
tient or Source when using VerbNet roles, and as
Agent, Beneficiary, Experiencer, Patient, Recipi-
ent or Result when using Sowa’s system. Thus,
in Zwierzę jest leczone z tych chorób ‘An animal
is treated for these diseases’, in the VerbNet ex-
periment the animal was marked as Beneficiary
(by 3 annotators), as Patient (×3) and as Source
(×1), and in the Sowa experiment – as Benefi-
ciary (×2), as Patient (×2), as Recipient (×2) and
as Result (×1). Similarly, for Mąż leczył się na
serce, lit. ‘Husband treated himself for his heart’,
the husband was annotated as Agent (×2), Benefi-
ciary (×2), Patient (×2) and Source (×1) when us-
ing VerbNet roles and as Agent (×1), Beneficiary
(×2), Experiencer (×1), Patient (×2) and Recipi-
ent (×1) when using Sowa’s roles.

Another major problem with the attempt to use
these sets of semantic roles was a high percentage
of verb occurrences with multiple arguments as-
signed the same semantic role. In case of Sowa’s
system 4.36% of sentences had this problem on
the average (the raw numbers for the 7 annotators
are: 2, 5, 8, 9, 17, 31, 34 out of 347 sentences with
no coordination of unlikes in argument positions;2

note the surprisingly large deviation) and in case
of VerbNet – 2.47% sentences were so affected (7,
7, 7, 8, 9, 10, 12).

On the basis of these experiments, as well as
various remarks in the literature (see, e.g., the ref-
erence to Bobrow et al. 2007b at the beginning
of this section), we conclude that semantic role
systems such as VerbNet or Sowa’s are perhaps
not really well-suited for the grammar engineer-
ing task – and certainly not worth the time, effort

2In case of arguments realised as a coordination of un-
likes, e.g., a nominal phrase and a sentential clause, anno-
tators routinely assigned distinct semantic roles to different
conjuncts, so that one argument received a number of differ-
ent roles (from the same annotator) and, consequently, there
were many more duplicates in the remaining 393−347 = 46
sentences than in the 347 sentences free from coordination of
unlikes considered here.

and money needed to construct reasonably-sized
corpora annotated with them – and that other ap-
proaches must be explored.

3 Syntactic approximation of semantic
roles

In Jaworski and Przepiórkowski 2014 we propose
to define ‘semantic roles’ on the basis of mor-
phosyntactic information, including morpholog-
ical cases, following the Slavic linguistic tradi-
tion stemming from the work of Roman Jakob-
son (see, e.g., Jakobson 1971a,b). In particular,
since the broader context of the work reported here
is the development of a syntactico-semantic LFG
(Lexical-Functional Grammar; Bresnan 2001;
Dalrymple 2001) parser for Polish, we build on
the usual LFG approach of obtaining semantic
representations on the basis of f-structures, i.e.,
non-tree-configurational syntactic representations
(as opposed to more surfacy tree-configurational
c-structures) containing information about predi-
cates, grammatical functions and morphosyntac-
tic features; this so-called description-by-analysis
(DBA) approach has been adopted for German
(Frank and Erk, 2004; Frank and Semecký, 2004;
Frank, 2004), English (Crouch and King, 2006)
and Japanese (Umemoto, 2006).

In the usual DBA approach, semantic roles are
added to the resulting representations on the ba-
sis of semantic dictionaries external to LFG gram-
mars (Frank and Semecký, 2004; Frank, 2004;
Crouch and King, 2005, 2006). When such
FrameNet- or VerbNet-like dictionaries are not
available, grammatical function names (subject,
object, etc.) are used instead of semantic roles
(Umemoto, 2006). Unfortunately, this latter ap-
proach is detrimental for tasks such as textual en-
tailment, as LFG grammatical functions represent
the surface relations, so, e.g., a passivised (deep)
object bears the grammatical function of (surface)
subject. Other diathesis phenomena also result in
different grammatical functions assigned to argu-
ments standing in the same semantic relation to the
verb, e.g., the recipient of the verb GIVE will nor-
mally be assigned a different grammatical function
depending on whether it is realised as an NP (as in
John gave Mary a book) or as a PP (John gave a
book to Mary).

Although currently no reasonably-sized dictio-
naries of Polish containing semantic role informa-
tion are available, we do not resort to grammatical
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functions as names of semantic roles, but rather
guess approximations of semantic roles on the ba-
sis of grammatical functions and morphosyntac-
tic features. For example, subjects of active verbs
are marked as R0 (the ‘semantic role’ approxi-
mating the Agent), but subjects of passsive verbs,
as well as objects of active verbs, are marked as
R1 (roughly, the Undergoer, i.e., Patient, Theme
or Product).3 Apart from grammatical functions
and the voice value of the verb, also morphosyn-
tactic features of arguments are taken into ac-
count, especially, for PP arguments, the preposi-
tion lemma and the grammatical case it governs.
So, for example, both the OBJ-TH (dative NP) ar-
guments and certain OBL (PP) arguments, e.g.,
those headed by the preposition DLA ‘for’, are
translated into the R2 ‘semantic role’, which ap-
proximates the Beneficiary and Recipient seman-
tic roles. This results in the same semantic repre-
sentations of Papkin upolował dla Klary krokodyla
‘Papkin.NOM hunted a crocodile.ACC for Klara’,
lit. ‘Papkin hunted for Klara crocodile’, and Pap-
kin upolował Klarze krokodyla, lit. ‘Papkin.NOM

hunted Klara.DAT crocodile.ACC’.

The advantage of this morphosyntax-based ap-
proach is that it is fully deterministic (only one
‘semantic role’ may be assigned to a given argu-
ment) and that it ensures high uniqueness of any
‘semantic role’ in the set of arguments of any verb
(only 6 of the 347 sentences considered above, i.e.,
1.73%, have the same ‘semantic role’ asigned to a
couple of arguments, compared with 2.47% and
4.36% in the experiments described in this paper;
see Jaworski and Przepiórkowski 2014 for addi-
tional data). The disadvantage is that sometimes
wrong decisions are made; for example, OBL ar-
guments of type Z[inst] ‘with’ may have one of
at least three meanings: Perlative (R7), Thematic
(R1) and Co-agentive (R0); in fact, the sentence
Zrób z nim porządek, lit. ‘do with him order’, is
ambiguous between the last two and may mean ei-
ther ‘Deal with him’ (R1) or ‘Clean up with him’
(R0). However, the procedure will always assign
only one of these ‘roles’ to such Z[inst] arguments
(currently R7).

3We use symbols such as R0 or R1 instead of more mean-
ingful names in order to constantly remind ourselves that we
are dealing with approximations of true semantic roles; this
also explains scare quotes in the term ‘semantic role’ when
used in this approximative sense.

4 Conclusions

When developing a semantic parser, it makes
sense to aim at neo-Davidsonian representations
with semantic roles relating arguments to events,
as such representations facilitate textual entail-
ment and similar tasks. In this paper we reported
on experiments which show that the practical us-
ability of two popular repertoires of semantic roles
in grammar engineering is limited: as the IAA
is low, systems trained on corpora annotated with
such semantic roles are bound to be inconsistent,
limiting the usefulness of resulting semantic rep-
resentations in such tasks. In case of a language
that does not have a resouce such as VerbNet, the
question arises then whether it makes sense to in-
vest considerable time and effort into creating it.

In this and the accompanying paper Jaworski
and Przepiórkowski 2014 we suggest an answer in
the negative and propose to approximate seman-
tic roles on the basis of syntactic and morphosyn-
tactic information. Admittedly, this proposal is
currently rather programmatic, as it is supported
only with anectodal evidence. It seems plausible
that the usefulness of resulting representations for
textual entailment should be comparable to – or
maybe even better than – that of semantic rep-
resentations produced by semantic role labellers
trained on rather inconsistently annotated data, but
this should be quantified by further experiments.4

If this hypothesis turns out to be true, however,
the method we propose has the clear advantage of
being overwhelmingly cheaper: instead of many
person-years of building a resource such as Verb-
Net (and then training a role labeller, etc.), a cou-
ple of days of a skilled researcher are required to
define and test reasonable translations from (mor-
pho)syntax to ‘semantic roles’.
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Abstract

This paper describes a series of French se-
mantic role labelling experiments which
show that a small set of manually anno-
tated training data is superior to a much
larger set containing semantic role labels
which have been projected from a source
language via word alignment. Using uni-
versal part-of-speech tags and dependen-
cies makes little difference over the orig-
inal fine-grained tagset and dependency
scheme. Moreover, there seems to be no
improvement gained from projecting se-
mantic roles between direct translations
than between indirect translations.

1 Introduction

Semantic role labelling (SRL) (Gildea and Juraf-
sky, 2002) is the task of identifying the predicates
in a sentence, their semantic arguments and the
roles these arguments take. The last decade has
seen considerable attention paid to statistical SRL,
thanks to the existence of two major hand-crafted
resources for English, namely, FrameNet (Baker
et al., 1998) and PropBank (Palmer et al., 2005).
Apart from English, only a few languages have
SRL resources and these resources tend to be of
limited size compared to the English datasets.

French is one of those languages which suffer
from a scarcity of hand-crafted SRL resources.
The only available gold-standard resource is a
small set of 1000 sentences taken from Europarl
(Koehn, 2005) and manually annotated with Prop-
bank verb predicates (van der Plas et al., 2010b).
This dataset is then used by van der Plas et al.
(2011) to evaluate their approach to projecting the
SRLs of English sentences to their translations

This work is licensed under a Creative Commons Attribution
4.0 International Licence. Page numbers and proceedings
footer are added by the organisers. Licence details: http:
//creativecommons.org/licenses/by/4.0/

in French. They additionally build a large, “ar-
tificial” or automatically labelled dataset of ap-
proximately 1M Europarl sentences by projecting
the SRLs from English sentences to their French
translations and use it for training an SRL system.

We build on the work of van der Plas et al.
(2010b) by answering the following questions: 1)
How much artificial data is needed to train an
SRL system? 2) Is it better to use direct trans-
lations than indirect translations, i.e. is it better
to use for projection a source-target pair where
the source represents the original sentence and the
target represents its direct translation as opposed
to a source-target pair where the source and tar-
get are both translations of an original sentence
in a third language? 3) Is it better to use coarse-
grained syntactic information (in the form of uni-
versal part-of-speech tags and universal syntactic
dependencies) than to use fine-grained syntactic
information? We find that SRL performance lev-
els off after only 5K training sentences obtained
via projection and that direct translations are no
more useful than indirect translations. We also
find that it makes very little difference to French
SRL performance whether we use universal part-
of-speech tags and syntactic dependencies or more
fine-grained tags and dependencies.

The surprising result that SRL performance lev-
els off after just 5K training sentences leads us
to directly compare the small hand-crafted set of
1K sentences to the larger artificial training set.
We use 5-fold cross-validation on the small dataset
and find that the SRL performance is substantially
higher (>10 F1 in identification and classification)
when the hand-crafted annotations are used.

2 Related Work

There has been relatively few works in French
SRL. Lorenzo and Cerisara (2012) propose a clus-
tering approach for verb predicate and argument
labelling (but not identification). They choose
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VerbNet style roles (Schuler, 2006) and manu-
ally annotate sentences with them for evaluation,
achieving an F1 of 78.5.

Gardent and Cerisara (2010) propose a method
for semi-automatically annotating the French de-
pendency treebank (Candito et al., 2010) with
Propbank core roles (no adjuncts). They first
manually augment TreeLex (Kupść and Abeillé,
2008), a syntactic lexicon of French, with seman-
tic roles of syntactic arguments of verbs (i.e. verb
subcategorization). They then project this anno-
tation to verb instances in the dependency trees.
They evaluate their approach by performing error
analysis on a small sample and suggest directions
for improvement. The annotation work is however
at its preliminary stage and no data is published.

As mentioned earlier, van der Plas et al. (2011)
use word alignments to project the SRLs of the
English side of EuroParl to its French side result-
ing in a large artificial dataset. This idea is based
on the Direct Semantic Transfer hypothesis which
assumes that a semantic relationship between two
words in a sentence can be transferred to any
two words in the translation which are aligned to
these source-side words. Evaluation on their 1K
manually-annotated dataset shows that a syntactic-
semantic dependency parser trained on this artifi-
cial data set performs significantly better than di-
rectly projecting the labelling from its English side
– a promising result because, in a real-world sce-
nario, the English translations of the French data
to be annotated do not necessarily exist.

Padó and Lapata (2009) also make use of word
alignments to project SRLs from English to Ger-
man. The word alignments are used to compute
the semantic similarity between syntactic con-
stituents. In order to determine the extent of se-
mantic correspondence between English and Ger-
man, they manually annotate a set of parallel sen-
tences and find that about 72% of the frames and
92% of the argument roles exist in both sides, ig-
noring their lexical correspondence.

3 Datasets, SRL System and Evaluation

We use the two datasets described in (van der Plas
et al., 2011) and the delivery report of the Clas-
sic project (van der Plas et al., 2010a). These
are the gold standard set of 1K sentences which
was annotated by manually identifying each verb
predicate, finding its equivalent English frameset
in PropBank and identifying and labelling its ar-

guments based on the description of the frame-
set (henceforth known as Classic1K), and the syn-
thetic dataset consisting of more than 980K sen-
tences (henceforth known as Classic980K), which
was created by word aligning an English-French
parallel corpus (Europarl) using GIZA++ (Och
and Ney, 2003) and projecting the French SRLs
from the English SRLs via the word alignments.
The joint syntactic-semantic parser described in
(Titov et al., 2009) was used to produce the En-
glish SRLs and the dependency parses of the
French side were produced using the ISBN parser
described in (Titov and Henderson, 2007).

We use LTH (Björkelund et al., 2009), a
dependency-based SRL system, in all of our ex-
periments. This system was among the best-
performing systems in the CoNLL 2009 shared
task (Hajič et al., 2009) and is straightforward to
use. It comes with a set of features tuned for each
shared task language (English, German, Japanese,
Spanish, Catalan, Czech, Chinese). We compared
the performance of the English and Spanish fea-
ture sets on French and chose the former due to its
higher performance (by 1 F1 point).

To evaluate SRL performance, we use the
CoNLL 2009 shared task scoring script1, which
assumes a semantic dependency between the argu-
ment and predicate and the predicate and a dummy
root node and then calculates the precision (P), re-
call (R) and F1 of identification of these dependen-
cies and classification (labelling) of them.

4 Experiments

4.1 Learning Curve
The ultimate goal of SRL projection is to build a
training set which partially compensates for the
lack of hand-crafted resources. van der Plas et
al. (2011) report encouraging results showing that
training on their projected data is beneficial over
directly obtaining the annotation via projection
which is not always possible. Although the quality
of such automatically-generated training data may
not be comparable to the manual one, the possi-
bility of building much bigger data sets may pro-
vide some advantages. Our first experiment inves-
tigates the extent to which the size of the synthetic
training set can improve performance.

We randomly select 100K sentences from Clas-
sic980K, shuffle them and split them into 20 sub-

1https://ufal.mff.cuni.cz/
conll2009-st/eval09.pl
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Figure 1: Learning curve with 100K training data
of projected annotations
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Figure 2: Learning curve with 100K training data
of projected annotations on only direct translations

sets of 5K sentences. We then split the first 5K into
10 sets of 500 sentences. We train SRL models
on the resulting 29 subsets using LTH. The per-
formance of the models evaluated on Classic1K
is presented in Fig. 1. Surprisingly, the best F1

(58.7) is achieved by only 4K sentences, and af-
ter that the recall (and consequently F1) tends to
drop though precision shows a positive trend, sug-
gesting that the additional sentences bring little in-
formation. The large gap between precision and
recall is also interesting, showing that the projec-
tions do not have wide semantic role coverage.2

4.2 Direct Translations

Each sentence in Europarl was written in one of
the official languages of the European Parliament
and translated to all of the other languages. There-
fore both sides of a parallel sentence pair can be in-
direct translations of each other. van der Plas et al.
(2011) suggest that translation divergence may af-

2Note that our results are not directly comparable with
(van der Plas et al., 2011) because they split Classic1K into
development and test sets, while we use the whole set for
testing. We do not have access to their split.

fect automatic projection of semantic roles. They
therefore select for their experiments only those
276K sentences from the 980K which are direct
translations between English and French. Moti-
vated by this idea, we replicate the learning curve
in Fig. 1 with another set of 100K sentences ran-
domly selected from only the direct translations.
The curve is shown in Fig. 2. There is no no-
ticeable difference between this and the graph in
Fig. 1, suggesting that the projections obtained via
direct translations are not of higher quality.

4.3 Impact of Syntactic Annotation

Being a dependency-based semantic role labeller,
LTH employs a large set of features based on syn-
tactic dependency structure. This inspires us to
compare the impact of different types of syntactic
annotations on the performance of this system.

Based on the observations from the previous
sections, we choose two different sizes of training
sets. The first set contains the first 5K sentences
from the original 100K, as we saw that more than
this amount tends to diminish performance. The
second set contains the first 50K from the original
100K, the purpose of which is to check if changing
the parses affects the usefulness of adding more
data. We will call these data sets Classic5K and
Classic50K respectively.

Petrov et al. (2012) create a set of 12 univer-
sal part-of-speech (POS) tags which should in the-
ory be applicable to any natural language. It is
interesting to know whether these POS tags are
more useful for SRL than the original set of the 29
more fine-grained POS tags used in French Tree-
bank which we have used so far. To this end, we
convert the original POS tags of the data to uni-
versal POS tags and retrain and evaluate the SRL
models. The results are given in the second row of
Table 1 (OrgDep+UniPOS). The first row of the
table (Original) shows the performance using
the original annotation. Even though the scores
increase in most cases – due mostly to a rise in
recall – the changes are small. It is worth noting
that identification seems to benefit more from the
universal POS tags.

Similar to universal POS tags, McDonald et al.
(2013) introduce a set of 40 universal dependency
types which generalize over the dependency struc-
ture specific to several languages. For French, they
provide a new treebank, called uni-dep-tb,
manually annotating 16,422 sentences from vari-
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5K 50K

Identification Classification Identification Classification
P R F1 P R F1 P R F1 P R F1

Original 85.95 59.64 70.42 71.34 49.50 58.45 86.67 58.07 69.54 72.44 48.54 58.13
OrgDep+UniPOS 86.71 60.46 71.24 71.11 49.58 58.43 86.82 58.71 70.05 72.30 48.90 58.34
StdUniDep+UniPOS 86.14 59.76 70.57 70.60 48.98 57.84 86.38 58.90 70.04 71.61 48.83 58.07
CHUniDep+UniPOS 85.98 59.21 70.13 70.66 48.66 57.63 86.47 58.26 69.61 71.74 48.34 57.76

Table 1: SRL performance using different syntactic parses with Classic 5K and 50K training sets

ous domains. We now explore the utility of this
new dependency scheme in SRL.

The French universal dependency treebank
comes in two versions, the first using the stan-
dard dependency structure based on basic Stanford
dependencies (de Marneffe and Manning, 2008)
where content words are the heads except in cop-
ula and adposition constructions, and the second
which treats content words as the heads for all
constructions without exemption. We use both
schemes in order to verify their effect on SRL.

In order to obtain universal dependencies for
our data, we train parsing models with Malt-
Parser (Nivre et al., 2006) using the entire
uni-dep-tb.3 We then parse our data us-
ing these MaltParser models. The input POS
tags to the parser are the universal POS tags
used in OrgDep+UniPOS. We train and evalu-
ate new SRL models on these data. The results
are shown in the third and fourth rows of Table
1. StdUniDept+UniPOS is the setting using
standard dependencies and CHUDep+UPOS using
content-head dependencies.

According to the third and fourth rows in Table
1, content-head dependencies are slightly less use-
ful than standard dependencies. The general ef-
fect of universal dependencies can be compared to
those of original ones by comparing these results
to OrgDep+UniPOS - the use of universal de-
pendencies appears to have only a modest (nega-
tive) effect. However, we must be careful of draw-
ing too many conclusions because in addition to
the difference in dependency schemes, the training
data used to train the parsers as well as the parsers
themselves are different.

Overall, we observe that the universal annota-
tions can be reliably used when the fine-grained
annotation is not available. This can be especially

3Based on our preliminary experiments on the pars-
ing performance, we use LIBSVM as learning algorithm,
nivreeager as parsing algorithm for the standard depen-
dency models and stackproj for the content-head ones.

Identification Classification
P R F1 P R F1

1K 83.76 83.00 83.37 68.40 67.78 68.09
5K 85.94 59.62 70.39 71.30 49.47 58.40
1K+5K 85.74 66.53 74.92 71.48 55.46 62.46
SelfT 83.82 83.66 83.73 67.91 67.79 67.85

Table 2: Average scores of 5-fold cross-validation
with Classic 1K (1K), 5K (5K), 1K plus 5K
(1K+5K) and self-training with 1K seed and 5K
unlabeled data (SelfT)

useful for languages which lack such resources
and require techniques such as cross-lingual trans-
fer to replace them.

4.4 Quality vs. Quantity

In Section 4.1, we saw that adding more data an-
notated through projection did not elevate SRL
performance. In other words, the same perfor-
mance was achieved using only a small amount
of data. This is contrary to the motivation for cre-
ating synthetic training data, especially when the
hand-annotated data already exist, albeit in a small
size. In this section, we compare the performance
of SRL models trained using manually-annotated
data with SRL models trained using 5K of artifi-
cial or synthetic training data. We use the original
syntactic annotations for both datasets.

To this end, we carry out a 5-fold cross-
validation on Classic1K. We then evaluate the
Classic5K model, on each of the 5 test sets gen-
erated in the cross-validation. The average scores
of the two evaluation setups are compared. The
results are shown in Table 2.

While the 5K model achieves higher precision,
its recall is far lower resulting in dramatically
lower F1. This high precision and low recall is due
to the low confidence of the model trained on pro-
jected data suggesting that a considerable amount
of information is not transferred during the projec-
tion. This issue can be attributed to the fact that the
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Classic projection uses intersection of alignments
in the two translation directions, which is the most
restrictive setting and leaves many source predi-
cates and arguments unaligned.

We next add the Classic5K projected data to
the manually annotated training data in each fold
of another cross-validation setting and evaluate
the resulting models on the same test sets. The
results are reported in the third row of the Ta-
ble 2 (1K+5K). As can be seen, the low qual-
ity of the projected data significantly degrades the
performance compared to when only manually-
annotated data are used for training.

Finally, based on the observation that the qual-
ity of labelling using manually annotated data is
higher than using the automatically projected data,
we replicate 1K+5K with the 5K data labelled us-
ing the model trained on the training subset of 1K
at each cross-validation fold. In other words, we
perform a one-round self-training with this model.
The performance of the resulting model evaluated
in the same cross-validation setting is given in the
last row of Table 2 (SelfT).

As expected, the labelling obtained by mod-
els trained on manual annotation are more useful
than the projected ones when used for training new
models. It is worth noting that, unlike with the
1K+5K setting, the balance between precision and
recall follows that of the 1K model. In addition,
some of the scores are the highest among all re-
sults, although the differences are not significant.

4.5 How little is too little?

In the previous section we saw that using a manu-
ally annotated dataset with as few as 800 sentences
resulted in significantly better SRL performance
than using projected annotation with as many as
5K sentences. This unfortunately indicates the
need for human labour in creating such resources.
It is interesting however to know the lower bound
of this requirement. To this end, we reverse our
cross-validation setting and train on 200 and test
on 800 sentences. We then compare to the 5K
models evaluated on the same 800 sentence sets
at each fold. The results are presented in Table 3.
Even with only 200 manually annotated sentences,
the performance is considerably higher than with
5K sentences of projected annotations. However,
as one might expect, compared to when 800 sen-
tences are used for training, this small model per-
forms significantly worse.

Identification Classification
P R F1 P R F1

1K 82.34 79.61 80.95 64.14 62.01 63.06
5K 85.95 59.64 70.42 71.34 49.50 58.45

Table 3: Average scores of 5-fold cross-validation
with Classic 1K (1K) and 5K (5K) using 200 sen-
tences for training and 800 for testing at each fold

5 Conclusion

We have explored the projection-based approach
to SRL by carrying out experiments with a large
set of French semantic role labels which have been
automatically transferred from English. We have
found that increasing the number of these artificial
projections that are used in training an SRL sys-
tem does not improve performance as might have
been expected when creating such a resource. In-
stead it is better to train directly on what little gold
standard data is available, even if this dataset con-
tains only 200 sentences. We suspect that the dis-
appointing performance of the projected dataset
originates in the restrictive way the word align-
ments have been extracted. Only those alignments
that are in the intersection of the English-French
and French-English word alignment sets are re-
tained resulting in low SRL recall. Recent prelim-
inary experiments show that less restrictive align-
ment extraction strategies including extracting the
union of the two sets or source-to-target align-
ments lead to a better recall and consequently F1

both when used for direct projection to the test
data or for creating the training data and then ap-
plying the resulting model to the test data.

We have compared the use of universal POS
tags and dependency labels to the original, more
fine-grained sets and shown that there is only a
little difference. However, it remains to be seen
whether this finding holds for other languages or
whether it will still hold for French when SRL per-
formance can be improved. It might also be in-
teresting to explore the combination of universal
dependencies with fine-grained POS tags.
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Abstract

The field of compositional distributional
semantics has proposed very interesting
and reliable models for accounting the
distributional meaning of simple phrases.
These models however tend to disregard
the syntactic structures when they are ap-
plied to larger sentences. In this paper we
propose the chunk-based smoothed tree
kernels (CSTKs) as a way to exploit the
syntactic structures as well as the reliabil-
ity of these compositional models for sim-
ple phrases. We experiment with the rec-
ognizing textual entailment datasets. Our
experiments show that our CSTKs per-
form better than basic compositional dis-
tributional semantic models (CDSMs) re-
cursively applied at the sentence level, and
also better than syntactic tree kernels.

1 Introduction

A clear interaction between syntactic and semantic
interpretations for sentences is important for many
high-level NLP tasks, such as question-answering,
textual entailment recognition, and semantic tex-
tual similarity. Systems and models for these tasks
often use classifiers or regressors that exploit con-
volution kernels (Haussler, 1999) to model both
interpretations.

Convolution kernels are naturally defined on
spaces where there exists a similarity function be-
tween terminal nodes. This feature has been used
to integrate distributional semantics within tree
kernels. This class of kernels is often referred to as
smoothed tree kernels (Mehdad et al., 2010; Croce
et al., 2011), yet, these models only use distribu-
tional vectors for words.

Compositional distributional semantics models
(CDSMs) on the other hand are functions map-
ping text fragments to vectors (or higher-order ten-
sors) which then provide a distributional meaning

for simple phrases or sentences. Many CDSMs
have been proposed for simple phrases like non-
recursive noun phrases or verbal phrases (Mitchell
and Lapata, 2008; Baroni and Zamparelli, 2010;
Clark et al., 2008; Grefenstette and Sadrzadeh,
2011; Zanzotto et al., 2010). Non-recursive
phrases are often referred to as chunks (Abney,
1996), and thus, CDSMs are good and reliable
models for chunks.

In this paper, we present the chunk-based
smoothed tree kernels (CSTK) as a way to merge
the two approaches: the smoothed tree kernels
and the models for compositional distributional se-
mantics. Our approach overcomes the limitation
of the smoothed tree kernels which only use vec-
tors for words by exploiting reliable CDSMs over
chunks. CSTKs are defined over a chunk-based
syntactic subtrees where terminal nodes are words
or word sequences. We experimented with CSTKs
on data from the recognizing textual entailment
challenge (Dagan et al., 2006) and we compared
our CSTKs with other standard tree kernels and
standard recursive CDSMs. Experiments show
that our CSTKs perform better than basic compo-
sitional distributional semantic models (CDSMs)
recursively applied at the sentence level and better
than syntactic tree kernels.

The rest of the paper is organized as follows.
Section 2 describes the CSTKs. Section 3 re-
ports on the experimental setting and on the re-
sults. Finally, Section 4 draws the conclusions and
sketches the future work.

2 Chunk-based Smoothed Tree Kernels

This section describes the new class of kernels.
We first introduce the notion of the chunk-based
syntactic subtree. Then, we describe the recursive
formulation of the class of kernels. Finally, we in-
troduce the basic CDSMs we use and we introduce
two instances of the class of kernels.
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2.1 Notation and preliminaries

Shhhhh
(((((

NPXXXX����
DT

the:d

NN

rock:n

NN

band:n

VPXXXX����
VBZ

holds:v

NPXXXX
����

PRP

its:p

JJ

final:j

NN

concert:n

Figure 1: Sample Syntactic Tree

A Chunk-based Syntactic Sub-Tree is a subtree
of a syntactic tree where each non-terminal node
dominating a contiguous word sequence is col-
lapsed into a chunk and, as usual in chunks (Ab-
ney, 1996), the internal structure is disregarded.
For example, Figure 2 reports some chunk-based
syntactic subtrees of the tree in Figure 1. Chunks
are represented with a pre-terminal node dominat-
ing a triangle that covers a word sequence. The
first subtree represents the chunk covering the sec-
ond NP and the node dominates the word sequence
its:d final:n concert:n. The second subtree repre-
sents the structure of the whole sentence and one
chunk, that is the first NP dominating the word
sequence the:d rock:n band:n. The third subtree
again represents the structure of the whole sen-
tence split into two chunks without the verb.

NP̀
``̀    

its:p final:j concert:n

SXXXX����
NPXXXX
����

the:d rock:n band:n

VP
ZZ��

VBZ NP
S̀
```

    
NPXXXX
����

the:d rock:j band:n

VP
PPP

���
VBZ NP̀

``̀    
its:p final:j concert:n

Figure 2: Some Chunk-based Syntactic Sub-Trees
of the tree in Figure 1

In the following sections, generic trees are de-
noted with the letter t and N(t) denotes the set of
non-terminal nodes of tree t. Each non-terminal
node n ∈ N(t) has a label sn representing its syn-
tactic tag. As usual for constituency-based parse
trees, pre-terminal nodes are nodes that have a sin-
gle terminal node as child. Terminal nodes of trees
are words denoted with w:pos where w is the ac-
tual token and pos is its postag. The structure of
these trees is represented as follows. Given a tree

t, ci(n) denotes i-th child of a node n in the set of
nodes N(t). The production rule headed in node
n is prod(n), that is, given the node nwithm chil-
dren, prod(n) is:

prod(n) = sn → sc1(n) . . . scm(n)

Finally, for a node n in N(t), the function d(n)
generates the word sequence dominated by the
non-terminal node n in the tree t. For example,
d(VP) in Figure 1 is holds:v its:p final:j concert:n.

Chunk-based Syntactic Sub-Trees (CSSTs) are
instead denoted with the letter τ . Differently
from trees t, CSSTs have terminal nodes that
can represent subsequences of words of the
original sentence. The explicit syntactic structure
of a CSST is the structure not falling in chunks
and it is represented as s(τ). For example, s(τ3) is:

S
HH��

NP VP
ZZ��

VBZ NP

where τ3 is the third subtree of Figure 2.
Given a tree t, the set S(t) is defined as the set

containing all the relevant CSSTs of the tree t.
As for the tree kernels (Collins and Duffy, 2002),
the set S(t) contains all CSSTs derived from the
subtrees of t such that if a node n belongs to a
subtree ts, all the siblings of n in t belongs to ts.
In other words, productions of the initial subtrees
are complete. A CSST is obtained by collapsing
in a single terminal nodes a contiguous sequence
of words dominated by a single non-terminal
node. For example:

NP
PPP���

DT NN
HH��

NN

rock:n

NN

band:n

is collapsed into:

NP
aaa!!!

DT NN:X
PPP���

rock:n band:n

Finally,
→
wn ∈ Rm represent the distributional

vectors for words wn and f(w1 . . . wk) represents
a compositional distributional semantics model
applied to the word sequence w1 . . . wk.
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2.2 Smoothed Tree Kernels on Chunk-based
Syntactic Trees

As usual, a tree kernel, although written in a re-
cursive way, computes the following general equa-
tion:

K(t1, t2) =
∑

τi ∈ S(t1)
τj ∈ S(t2)

λ|N(τi)|+|N(τj)|KF (τi, τj)

(1)
In our case, the basic similarity KF (ti, tj) is de-
fined to take into account the syntactic structure
and the distributional semantic part. Thus, we de-
fine it as follows in line with what done with sev-
eral other smoothed tree kernels:

KF (τi, τj) = δ(s(τi), s(τj))
∏

a ∈ PT (τi)
b ∈ PT (τj)

〈f(a), f(b)〉

where δ(s(τi), s(τj)) is the Kroneker’s delta
function between the the structural part of two
chunk-based syntactic subtrees, PT (τ) are the
nodes in τ directly covering a chunk or a word,
and 〈→x,→y 〉 is the cosine similarity between the
two vectors

→
x and

→
y . For example, given the

chunk-based subtree τ3 in Figure 2 and

τ4 =

SXXXX
����

NPXXXX����
the:d orchestra:n

VP
aa!!

VBZ NP
PPP���

its:p show:n

the similarity KF (τ3, τ4) is:
〈f(the:d orchestra:n), f(the:d rock:n band:n)〉 ·
〈f(its:p show:n), f(its:p final:j concert:n)〉.

The recursive formulation of the Chunk-based
Smoothed Tree Kernel (CSTK) is a bit more com-
plex but very similar to the recursive formulation
of the syntactic tree kernels:

K(t1, t2) =
∑

n1 ∈ N(t1)
n2 ∈ N(t2)

C(n1, n2) (2)

where C(n1, n2) =

〈f(d(n1)), f(d(n2))〉 if label(n1) = label(n2)
and prod(n1) 6= prod(n2)

〈f(d(n1)), f(d(n2))〉
+

∏nc(n1)
j=1 (1 + C(cj(n1), cj(n2)))

−∏nc(n1)
j=1 〈f(d(cj(n1))), f(d(cj(n2)))〉

if n1, n2 are not pre-terminals and
prod(n1) = prod(n2)

0 otherwise

where nc(n1) is the lenght of the production
prod(n1).

2.3 Compositional Distributional Semantic
Models and two Specific CSTKs

To define specific CSTKs, we need to introduce
the basic compositional distributional semantic
models (CDSMs). We use two CDSMs: the Ba-
sic Additive model (BA) and teh Full Additive
model (FA). We thus define two specific CSTKs:
the CSTK+BA that is based on the basic additive
model and the CSTK+FA that is based on the full
additive model. We describe the two CDSMs in
the following.

The Basic Additive model (BA) (introduced in
(Mitchell and Lapata, 2008)) computes the disti-
butional semantics vector of a pair of words a =
a1a2 as:

ADD(a1, a2) = α
→
a1 + β

→
a2

where α and β weight the first and the second
word of the pair. The basic additive model for
word sequences s = w1 . . . wk is recursively de-
fined as follows:

fBA(s) =

{→
w1 if k = 1
α
→
w1 + βfBA(w2 . . . wk) if k > 1

The Full Additive model (FA) (used in (Gue-
vara, 2010) for adjective-noun pairs and (Zanzotto
et al., 2010) for three different syntactic relations)
computes the compositional vector

→
a of a pair us-

ing two linear tranformations AR and BR respec-
tively applied to the vectors of the first and the
second word. These matrices generally only de-
pends on the syntactic relation R that links those
two words. The operation follows:

fFA(a1, a2, R) = AR
→
a1 +BR

→
a2

95



RR RRTWS
RTE1 RTE2 RTE3 RTE5 Average RTE1 RTE2 RTE3 RTE5 Average

Add 0.541 0.496 0.507 0.520 0.516 0.560 0.538 0.643 0.578 0.579

FullAdd 0.512 0.516 0.507 0.569 0.526 0.571 0.608 0.643 0.643 0.616

TK 0.561 0.552 0.531 0.54 0.546 0.608 0.627 0.648 0.630 0.628

CSTK+BA 0.553 0.545 0.562 0.568 0.557† 0.626 0.616 0.648 0.628 0.629†

CSTK+FA 0.543 0.550 0.574 0.576 0.560† 0.628 0.616 0.652 0.630 0.631†

Table 1: Task-based analysis: Accuracy on Recognizing Textual Entailment († is different from both ADD and

FullADD with a stat.sig. of p > 0.1.)

The full additive model for word sequences s =
w1 . . . wk, whose node has a production rule s →
sc1 . . . scm is also defined recursively:

fFA(s) =



→
w1 if k = 1

Avn
→
V +BvnfFA(NP )
if s→ V NP

Aan
→
A +BanfFA(N)
if s→ A N∑
fFA(sci) otherwise

where Avn, Bvn are matrices used for verb and
noun phrase interaction, andAan, Ban are used for
adjective, noun interaction.

3 Experimental Investigation

3.1 Experimental set-up
We experimented with the Recognizing Textual
Entailment datasets (RTE) (Dagan et al., 2006).
RTE is the task of deciding whether a long text
T entails a shorter text, typically a single sen-
tence, called hypothesis H . It has been often seen
as a classification task (see (Dagan et al., 2013)).
We used four datasets: RTE1, RTE2, RTE3, and
RTE5, with the standard split between training and
testing. The dev/test distribution for RTE1-3, and
RTE5 is respectively 567/800, 800/800, 800/800,
and 600/600 T-H pairs.

Distributional vectors are derived with
DISSECT (Dinu et al., 2013) from a cor-
pus obtained by the concatenation of ukWaC
(wacky.sslmit.unibo.it), a mid-2009 dump of the
English Wikipedia (en.wikipedia.org) and the
British National Corpus (www.natcorp.ox.ac.uk),
for a total of about 2.8 billion words. We collected
a 35K-by-35K matrix by counting co-occurrence
of the 30K most frequent content lemmas in
the corpus (nouns, adjectives and verbs) and all
the content lemmas occurring in the datasets

within a 3 word window. The raw count vectors
were transformed into positive Pointwise Mutual
Information scores and reduced to 300 dimensions
by Singular Value Decomposition. This setup was
picked without tuning, as we found it effective in
previous, unrelated experiments.

We built the matrices for the full additive mod-
els using the procedure described in (Guevara,
2010). We considered only two relations: the
Adjective-Noun and Verb-Noun. The full addi-
tive model falls back to the basic additional model
when syntactic relations are different from these
two.

To build the final kernel to learn the clas-
sifier, we followed standard approaches (Dagan
et al., 2013), that is, we exploited two models:
a model with only a rewrite rule feature space
(RR) and a model with the previous space along
with a token-level similarity feature (RRTWS).
The two models use our CSTKs and the stan-
dard TKs in the following way as kernel func-
tions: (1) RR(p1, p2) = κ(ta1, t

a
2) + κ(tb1, t

b
2);

(2) RRTWS(p1, p2) = κ(ta1, t
a
2) + κ(tb1, t

b
2) +

(TWS(a1, b1) · TWS(a2, b2) + 1)2 where TWS
is a weighted token similarity (as in (Corley and
Mihalcea, 2005)).

3.2 Results

Table 1 shows the results of the experiments, the
table is organised as follows: columns 2-6 re-
port the accuracy of the RTE systems based on
rewrite rules (RR) and columns 7-11 report the ac-
curacies of RR systems along with token similar-
ity (RRTS). We compare five differente models:
ADD is the Basic Additive model with parameters
α = β = 1 (as defined in 2.3) applied to the words
of the sentence (without considering its tree struc-
ture), the same is done for the Full Additive (Ful-
lADD), defined as in 2.3. The Tree Kernel (TK) as
defined in (Collins and Duffy, 2002) are applied to
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the constituency-based tree representation of the
tree, without the intervening collapsing step de-
scribed in 2.2. These three models are the base-
line against which we compare the CSTK models
where the collapsing procedure is done via Basic
Additive (CSTK + BA, again with α = β = 1) and
FullAdditive (CSTK + FA), as described in sec-
tion 2.2, again, with the aforementioned restric-
tion on the relation considered. For RR models we
have that CSTK+BA and CSTK+FA both achieve
higher accuracy than ADD and FullAdd, with a
statistical significante greater than 93.7%, as com-
puted with the sign test. Specifically we have that
CSTK+BA has an average accuracy 7.94% higher
than ADD and 5.89% higher than FullADD, while
CSTK+FA improves on ADD and FullADD by
8.52% and 6.46%, respectively. The same trend is
visible for the RRTS model, again both models are
statistically better than ADD and FullADD, in this
case we have that CSTK+BA is 8.63% more ac-
curate then ADD and 2.11% more than FullADD,
CSTK+FA is respectively 8.98% and 2.43% more
accurate than ADD and FullADD. As for the TK
models we have that both CSTK models achieve
again an higher average accuracy: for RR models
CSTK+BA and CSTK+FA are respectively 2.01%
and 0.15% better than TK, while for RRTS models
the number are 2.54% and 0.47%. These results
though are not statistically significant, as is the
difference between the two CSTK models them-
selves.

4 Conclusions and Future Work

In this paper, we introduced a novel sub-class
of the convolution kernels in order exploit reli-
able compositional distributional semantic mod-
els along with the syntactic structure of sen-
tences. Experiments show that this novel sub-
class, namely, the Chunk-based Smoothed Tree
Kernels (CSTKs), are a promising solution, per-
forming significantly better than a naive recursive
application of the compositional distributional se-
mantic models. We experimented with CSTKS
equipped with the basic additive and the full addi-
tive CDSMs but these kernels are definitely open
to all the CDSMs.

Acknowledgments

We acknowledge ERC 2011 Starting Independent
Research Grant n. 283554 (COMPOSES).

References
Steven Abney. 1996. Part-of-speech tagging and par-

tial parsing. In G.Bloothooft K.Church, S.Young,
editor, Corpus-based methods in language and
speech. Kluwer academic publishers, Dordrecht.

Marco Baroni and Roberto Zamparelli. 2010. Nouns
are vectors, adjectives are matrices: Representing
adjective-noun constructions in semantic space. In
Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages
1183–1193, Cambridge, MA, October. Association
for Computational Linguistics.

Stephen Clark, Bob Coecke, and Mehrnoosh
Sadrzadeh. 2008. A compositional distributional
model of meaning. Proceedings of the Second
Symposium on Quantum Interaction (QI-2008),
pages 133–140.

Michael Collins and Nigel Duffy. 2002. New rank-
ing algorithms for parsing and tagging: Kernels over
discrete structures, and the voted perceptron. In Pro-
ceedings of ACL02.

Courtney Corley and Rada Mihalcea. 2005. Measur-
ing the semantic similarity of texts. In Proc. of the
ACL Workshop on Empirical Modeling of Seman-
tic Equivalence and Entailment, pages 13–18. As-
sociation for Computational Linguistics, Ann Arbor,
Michigan, June.

Danilo Croce, Alessandro Moschitti, and Roberto
Basili. 2011. Structured lexical similarity via con-
volution kernels on dependency trees. In Proceed-
ings of the Conference on Empirical Methods in
Natural Language Processing, EMNLP ’11, pages
1034–1046, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment
challenge. In Quionero-Candela et al., editor,
LNAI 3944: MLCW 2005, pages 177–190. Springer-
Verlag, Milan, Italy.

Ido Dagan, Dan Roth, Mark Sammons, and Fabio Mas-
simo Zanzotto. 2013. Recognizing Textual Entail-
ment: Models and Applications. Synthesis Lectures
on Human Language Technologies. Morgan & Clay-
pool Publishers.

Georgiana Dinu, Nghia The Pham, and Marco Baroni.
2013. DISSECT: DIStributional SEmantics Com-
position Toolkit. In Proceedings of ACL (System
Demonstrations), pages 31–36, Sofia, Bulgaria.

Edward Grefenstette and Mehrnoosh Sadrzadeh. 2011.
Experimental support for a categorical composi-
tional distributional model of meaning. In Proceed-
ings of the Conference on Empirical Methods in
Natural Language Processing, EMNLP ’11, pages
1394–1404, Stroudsburg, PA, USA. Association for
Computational Linguistics.

97



Emiliano Guevara. 2010. A regression model of
adjective-noun compositionality in distributional se-
mantics. In Proceedings of the 2010 Workshop on
GEometrical Models of Natural Language Seman-
tics, pages 33–37, Uppsala, Sweden, July. Associa-
tion for Computational Linguistics.

David Haussler. 1999. Convolution kernels on discrete
structures. Technical report, University of Califor-
nia at Santa Cruz.

Yashar Mehdad, Alessandro Moschitti, and Fabio Mas-
simo Zanzotto. 2010. Syntactic/semantic struc-
tures for textual entailment recognition. In Human
Language Technologies: The 2010 Annual Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics, HLT ’10, pages
1020–1028, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. In Proceedings
of ACL-08: HLT, pages 236–244, Columbus, Ohio,
June. Association for Computational Linguistics.

Fabio Massimo Zanzotto, Ioannis Korkontzelos,
Francesca Fallucchi, and Suresh Manandhar. 2010.
Estimating linear models for compositional distribu-
tional semantics. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics
(COLING), August,.

98



Proceedings of the Third Joint Conference on Lexical and Computational Semantics (*SEM 2014), pages 99–109,
Dublin, Ireland, August 23-24 2014.

Generating Simulations of Motion Events from Verbal Descriptions

James Pustejovsky
Computer Science Dept.

Brandeis University
Waltham, MA USA
jamesp@cs.brandeis.edu

Nikhil Krishnaswamy
Computer Science Dept.

Brandeis University
Waltham, MA USA

nkrishna@brandeis.edu

Abstract
In this paper, we describe a computational
model for motion events in natural lan-
guage that maps from linguistic expres-
sions, through a dynamic event interpreta-
tion, into three-dimensional temporal sim-
ulations in a model. Starting with the
model from (Pustejovsky and Moszkow-
icz, 2011), we analyze motion events us-
ing temporally-traced Labelled Transition
Systems. We model the distinction be-
tween path- and manner-motion in an op-
erational semantics, and further distin-
guish different types of manner-of-motion
verbs in terms of the mereo-topological re-
lations that hold throughout the process of
movement. From these representations,
we generate minimal models, which are
realized as three-dimensional simulations
in software developed with the game en-
gine, Unity. The generated simulations
act as a conceptual “debugger” for the se-
mantics of different motion verbs: that
is, by testing for consistency and infor-
mativeness in the model, simulations ex-
pose the presuppositions associated with
linguistic expressions and their composi-
tions. Because the model generation com-
ponent is still incomplete, this paper fo-
cuses on an implementation which maps
directly from linguistic interpretations into
the Unity code snippets that create the sim-
ulations.

1 Introduction

Semantic interpretation requires access to both
knowledge about words and how they compose.
As the linguistic phenomena associated with lexi-
cal semantics have become better understood, sev-
eral assumptions have emerged across most mod-
els of word meaning. These include the following:

(1) a. Lexical meaning involves some sort of
“componential analysis”, either through
predicative primitives or a system of
types.

b. The selectional properties of predicators
can be explained in terms of these com-
ponents;

c. An understanding of event semantics and
the different role of event participants
seems crucial for modeling linguistic ut-
terances.

As a starting point in lexical semantic analysis,
a standard methodology in both theoretical and
computational linguistics is to identify features in
a corpus that differentiate the data in meaningful
ways; meaningful in terms of prior theoretical as-
sumptions or in terms of observably differentiated
behaviors. Combining these strategies we might,
for instance, take a theoretical constraint that we
hope to justify through behavioral distinctions in
the data. An example of this is the theoretical
claim that motion verbs can be meaningfully di-
vided into two classes: manner- and path-oriented
predicates (Talmy, 1985; Jackendoff, 1983; Talmy,
2000). These constructions can be viewed as en-
coding two aspects of meaning: how the move-
ment is happening and where it is happening. The
former strategy is illustrated in (2a) and the latter
in (2b) (where m indicates a manner verb, and p
indicates a path verb).

(2) a. The ball rolledm.
b. The ball crossedp the room.

With both of the verb types, adjunction can make
reference to the missing aspect of motion, by intro-
ducing a path (as in (3a)) or the manner of move-
ment (in (3b)).

(3) a. The ball rolledm across the room.
b. The ball crossedp the room rolling.

Differences in syntactic distribution and grammat-
ical behavior in large datasets, in fact, correlate
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fairly closely with the theoretical claims made by
linguists using small introspective datasets.

The path-manner classification is a case where
there are data-derived distinctions that corre-
late nicely with theoretically inspired predictions.
More often than not, however, lexical semantic
distinctions are formal stipulations in a linguistic
model, that often have no observable correlations
to data. For example, an examination of the man-
ner of movement class from Levin (1993) illus-
trates this point. The verbs below are all Levin-
class manner of motion verbs:

(4) MANNER OF MOTION VERBS: drive, walk,
run, crawl, fly, swim, drag, slide, hop, roll

Assuming the two-way distinction between path
and manner predication of motion mentioned
above, these verbs do, in fact, tend to pattern ac-
cording to the latter class in the corpus. Given
that they are all manner of motion verbs, however,
any data-derived distinctions that emerge within
this class will have to be made in terms of addi-
tional syntactic or semantic dimensions. While it
is most likely possible to differentiate, for exam-
ple, the verbs slide from roll, or walk from hop in
the corpus, given enough data, it is important to
realize that conceptual and theoretical modeling is
often necessary to reveal the factors that semanti-
cally distinguish such linguistic expressions, in the
first place.

We argue that this problem can be approached
with the use of minimal model generation. As
Blackburn and Bos (2008) point out, theorem
proving (essentially type satisfaction of a verb in
one class as opposed to another) provides a “nega-
tive handle” on the problem of determining consis-
tency and informativeness for an utterance, while
model building provides a “positive handle” on
both. For our concerns, simulation construction
provides a positive handle on whether two man-
ner of motion processes are distinguished in the
model. Further, the simulation must specify how
they are distinguished, the analogue to informa-
tiveness.

In this paper, we argue that traditional lexical
modeling can benefit greatly from examining how
semantic interpretations are contextually and con-
ceptually grounded. We explore a dynamic in-
terpretation of the lexical semantic model devel-
oped in Generative Lexicon Theory (Pustejovsky,
1995; Pustejovsky et al., 2014). Specifically, we
are interested in using model building (Blackburn

and Bos, 2008; Konrad, 2004; Gardent and Kon-
rad, 2000) and simulation generation (Coyne and
Sproat, 2001; Siskind, 2011) to reveal the concep-
tual presuppositions inherent in natural language
expressions. In this paper, we focus our attention
on motion verbs, in order to distinguish between
manner and path motion verbs, as well as to model
mereotopological distinctions within the manner
class.

2 Situating Motion in Space and Time

The interpretation of motion in language has been
one of the most researched areas in linguistics
and Artificial Intelligence (Kuipers, 2000; Freksa,
1992; Galton, 2000; Levinson, 2003; Mani and
Pustejovsky, 2012). Because of their grammatical
and semantic import, linguistic interest in identi-
fying where events happen has focused largely on
motion verbs and the role played by paths. Jack-
endoff (1983), for example, elaborates a semantics
for motion verbs incorporating explicit reference
to the path traversed by the mover, from source to
destination (goal) locations. Talmy (1983) devel-
ops a similar conceptual template, where the path
followed by the figure is integral to the conceptu-
alization of the motion against a ground. Hence,
the path can be identified as the central element in
defining the location of the event (Talmy, 2000).
Related to this idea, both Zwarts (2005) and Puste-
jovsky and Moszkowicz (2011) develop mecha-
nisms for dynamically creating the path traversed
by a mover in a manner of motion predicate, such
as run or drive. Starting with this approach, the
localization of a motion event, therefore, is at
least minimally associated with the path created
by virtue of the activity.

In addition to capturing the spatial trace of the
object in motion, several researchers have pointed
out that identifying the shape of the path dur-
ing motion is also critical for fully interpreting
the semantics of movement. Eschenbach et al.
(1999) discusses the orientation associated with
the trajectory, something they refer to as oriented
curves. Motivated more by linguistic considera-
tions, Zwarts (2006) introduces the notion of an
event shape, which is the trajectory associated
with an event in space represented by a path. He
defines a shape function, which is a partial func-
tion assigning unique paths to those events involv-
ing motion or extension in physical space. This
work suggests that the localization of an event
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makes reference to orientational as well as config-
urational factors, a view that is pursued in Puste-
jovsky (2013b). This forces us to look at the var-
ious spatio-temporal regions associated with the
event participants, and the interactions between
them.

These issues are relevant to our present con-
cerns, because in order to construct a simulation, a
motion event must be embedded within an appro-
priate minimal embedding space. This must suf-
ficiently enclose the event localization, while op-
tionally including room enough for a frame of ref-
erence visualization of the event (the viewer’s per-
spective). We return to this issue later in the paper
when constructing our simulation from the seman-
tic interpretation associated with motion events.

3 Modeling Motion in Language

3.1 Theoretical Assumptions

The advantage of adopting a dynamic interpre-
tation of motion is that we can directly distin-
guish path predication from manner of motion
predication in an operational semantics (Miller
and Charles, 1991; Miller and Johnson-Laird,
1976) that maps nicely to a simulation environ-
ment. Models of processes using updating typi-
cally make reference to the notion of a state tran-
sition (van Benthem, 1991; Harel, 1984). This is
done by distinguishing between formulae, φ, and
programs, π. A formula is interpreted as a clas-
sical propositional expression, with assignment of
a truth value in a specific model. We will inter-
pret specific models by reference to specific states.
A state is a set of propositions with assignments
to variables at a specific index. Atomic programs
are input/output relations ( [[π]] ⊆ S × S), and
compound programs are constructed from atomic
ones following rules of dynamic logic (Harel et al.,
2000).

For the present discussion, we represent the dy-
namics of actions in terms of Labeled Transition
Systems (LTSs) (van Benthem, 1991).1 An LTS
consists of a triple, 〈S,Act,→〉, where: S is the
set of states; Act is a set of actions; and→ is a to-
tal transition relation:→⊆ S×Act×S. An action,
α ∈ Act, provides the labeling on an arrow, mak-
ing it explicit what brings about a state-to-state

1This is consistent with the approach developed in (Fer-
nando, 2009; Fernando, 2013). This approach to a dynamic
interpretation of change in language semantics is also in-
spired by Steedman (2002).

transition. As a shorthand for (e1, α, e2) ∈→, we
will also use e1

α−→ e2. If reference to the state
content (rather than state name) is required for in-
terpretation purposes (van Benthem et al., 1994),
then as shorthand for ({φ}e1 , α, {¬φ}e2) ∈→, we
use, φ

e1

α−→ ¬φ
e2

. Finally, when referring
to temporally-indexed states in the model, where
ei@i indicates the state ei interpreted at time i, as
shorthand for ({φ}e1@i, α, {¬φ}e2@i+1) ∈→, we

will use, φ
i

e1

α−→ ¬φ i+1

e2
, as described in Puste-

jovsky (2013).

3.2 Distinguishing Path and Manner Motion

We will assume that change of location of an ob-
ject can be viewed as a special instance of a first-
order program, which we will refer to as ν (Puste-
jovsky and Moszkowicz, 2011).2

(5) x := y (ν-transition, where loc(z) is value
being updated)
“x assumes the value given to y in the next
state.”
〈M, (i, i+ 1), (u, u[x/u(y)])〉 |= x := y
iff 〈M, i, u〉 |= loc(z) = x ∧ 〈M, i +
1, u[x/u(y)]〉 |= loc(z) = y

Given a simple transition, a process can be viewed
as simply an iteration of ν (Fernando, 2009).
However, as (Pustejovsky, 2013a) points out, since
most manner motion verbs in language are ac-
tually directed processes, simple decompositions
into change-of-location are inadequate. That is,
they are guarded transitions where the test is not
just non-coreference, but makes reference to val-
ues on a scale, C, and ensures that it continues in
an order-preserving change through the iterations.
When this test references the values on a scale, C,
we call this a directed ν-transition (~ν), e.g., x 4 y,
x < y:

(6) ~ν =df

C?x
ei

ν−→ ei+1.

(7) loc(z) = x e0
~ν−→ loc(z) = y1 e1

~ν−→ . . .

loc(z) = yn en

This now provides us with our dynamic interpre-
tation of directed manner of motion verbs, such
as slide, swim, roll, where we have an iteration of
assignments of locations, undistinguished except

2Cf. Groenendijk and Stokhof (1990) for dynamic updat-
ing, and Naumann (2001) for a related analysis.
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that the values are order-preserving according to a
scalar constraint.

This is quite different from the dynamic inter-
pretation of path predicates. Following (Galton,
2004; Pustejovsky and Moszkowicz, 2011), path
predicates such as arrive and leave make refer-
ence to a “distinguished location”, not an arbi-
trary location. For example, the ball enters the
room is satisified when the distinguished location,
D, (the room) is successfully tested as the loca-
tion for the moving object. That is, the location
is tested against the current location for an object
((loc(x) 6= D)?), and retested until it is satisfied
((loc(x) = D)?).

(8)

(loc(x)6=D)?
x

loc(z) = x e0
~ν−→

(loc(x) 6=D)?
x

loc(z) = y1 e1
~ν−→ . . .

(loc(x)=D)?
x

loc(z) = yn en

While beyond the scope of the present discus-
sion, it is worth noting that the model of event
structure adopted here for motion verbs fits well
with most of the major semantic and syntactic phe-
nomena associated with event classes and Aktion-
sarten.3

3.3 Mereotopological Distinctions in Manner

Given the formal distinction between path and
manner predicates as described above, let us ex-
amine how to differentiate meaning within the
manner class. Levin (1993) differentiates this
class in terms of argument alternation patterns,
and identifies the following verb groupings: ROLL,
RUN, EPONYMOUS VEHICLE, WALTZ, ACCOM-
PANY, and CHASE verbs. While suggestive, these
distinctions are only partially useful towards actu-
ally teasing apart the semantic dimensions along
which we identify the contributing factors of man-
ner.

Mani and Pustejovsky (2012) suggest a differ-
ent strategy involving the identification of seman-
tic parameters that clearly differentiate verb senses
from each other within this class. One parameter
exploited quite extensively within the motion class
involves the mereotopological contraints that in-
here throughout the movement of the object (Ran-
dell et al., 1992; Asher and Vieu, 1995; Gal-
ton, 2000). Using this parameter, we are able to
distinguish several of Levin’s classes of manner

3Cf. (Pustejovsky, 2013a) and (Krifka, 1992).

as well as some novel ones, as described in (9),
where a class is defined by the constraints that hold
throughout the event (where EC is “externally con-
nected”, and DC is “disconnected”).

(9) For Figure (F) relative to Ground (G):
a. EC(F,G), throughout motion:
b. DC(F,G), throughout motion:
c. EC(F,G) followed by DC(F,G), through-
out motion:
d. Sub-part(F’,F), EC(F’,G) followed by
DC(F’,G), throughout motion:
e. Containment of F in a Vehicle (V).

For example, consider the semantic distinction be-
tween the verbs slide and hop or bounce. When the
latter are employed in induced (directed) motion
constructions (Levin, 1993; Jackendoff, 1996),
they take on the meaning of manner of motion
verbs. Distinguishing between a sliding and hop-
ping motion involves inspecting the next-state
content in the motion n-gram: namely, there is a
continuous satisfaction of EC(F,G) throughout the
motion for slide and a toggling effect (on-off) for
the predicates bounce and hop, as shown in (10).

(10)

¬DC(x,G)?
x

loc(z) = x e0
~ν−→

DC(x,G)?
x

loc(z) = y1 e1
~ν−→

¬DC(x,G)?
x

loc(z) = y2 e2

With the surface as the ground argument, these
verbs are defined in terms of two transitions.4

B

A

s1

AA

s3s2

l1 l2 l3

Figure 1: Slide Motion

B

A

s1

A

A

s3s2

l1 l2 l3

Figure 2: Hop Motion
4Many natural language predicates require reference to at

least three states. These include the semelfactives mentioned
above, as well as blink and iterative uses of knock and clap
(Vendler, 1967; Dowty, 1979; Rothstein, 2008).
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Distinguishing between a sliding motion and a
rolling motion is also fairly straightforward. We
have the entailments that result from each kind of
motion, given a set of initial conditions, as in the
following short sentence describing the motion of
a ball relative to a floor (the domain for our event
simulations).

• The ball slid.: At the termination of the ac-
tion, object ball has moved relative to a sur-
face in a manner that is [+translate].
That is, the movement is a translocation
across absolute space, but other attributes
(such as the ball’s orientation) do not change.

• The ball rolled.: At the termination of the
action, object ball has moved relative to a
surface in a manner that is [+translate]
and [+rotate]. Here, the translocation
across space is preserved, with the addition
of an orientation change.

We can further decompose these features, cast-
ing the [+translate] in terms of the trans-
lation’s dimensionality. For both the ball slid
and the ball rolled, it is required that the ball re-
main in the contact with the relevant surface, thus
we can enforce a [-3-dimensional] con-
straint on the [+translate] feature. Thus,
we arrive at the following differentiating se-
mantic constraints for these verbs: (a) slide,
[+translate], [-3-dimensional]; (b)
roll, [+translate], [-3-dimensional],
[+rotate]. This is illustrated below over three
states of execution.

B

s1

A

a

b

c

B

s2

A

b

a c

B

s3

A

c

b

a

Figure 3: Roll Motion

In our approach to conceptual modeling, we hy-
pothesize that between the members of any pair of
motion verbs, there exists at least one distinctive
feature of physical motion that distinguishes the

two predicates. While this may be too strong, it
is helpful in our use of simulations for debugging
the lexical semantics of linguistic expressions.5 In
order to quantify the qualitative distinctions be-
tween motion predicates and identify the precise
primitive components of a motion verb, we build
a real-time simulation, within which the individ-
ual features of a single motion verb can be defined
and isolated in three-dimensional space.

The idea of constructing simulations from lin-
guistic utterances is, of course, not new. There
are two groups of researchers who have developed
related ideas quite extensively: simulation theo-
rists, working in the philosophy of mind, such as
Alvin Goldman and Robert Gordon; and cogni-
tive scientists and linguists, such as Jerry Feldman,
Ron Langacker, and Ben Bergen. According to
Goldman (1989), simulation provides a process-
driven theory of mind and mental attribution, dif-
fering from the theory-driven models proposed by
Churchland and others (Churchland, 1991). From
the cognitive linguistics tradition, simulation se-
mantics has come to denote the mental instanti-
ation of an interpretation of any linguistic utter-
ance (Feldman, 2006; Bergen et al., 2007; Bergen,
2012). While these communities do not seem to
reference each other, it is clear from our perspec-
tive, that they are both pursuing similar programs,
where distinct linguistic utterances correspond to
generated models that have differentiated struc-
tures and behaviors (Narayanan, 1999; Siskind,
2011; Goldman, 2006).

4 Simulations as Minimal Models
The approach to simulation construction intro-
duced in the previous section is inspired by work
in minimal model generation (Blackburn and Bos,
2008; Konrad, 2004). Type satisfaction in the
compositional process mirrors the theorem prov-
ing component, while construction of the specific
model helps us distinguish what is inherent in the
different manner of motion events. This latter as-
pect is the “positive handle”, (Blackburn and Bos,
2008) which demonstrates the informativeness of
a distinction in our simulation.

Simulation software must be able to map a pred-
icate to a known behavior, its arguments to objects
in the scene, and then prompt those objects to ex-
ecute the behavior. A simple input sentence needs

5Obviously, true synonyms in the lexicon would not be
distinguishable in a model.
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to be tagged and parsed and transformed into pred-
icate/argument representation, and from there into
a dynamic event structure, as in (Pustejovsky and
Moszkowicz, 2011). The event structure is inter-
preted as the transformation executed over the ob-
ject or objects in each frame, and then rendered.

Ball1/NNP crossed/VBD Floor/NNP

SBJ OBJ

Ball1/NNP rolled/VBD

SBJ

Table 1: Dependency parses for Ball1 crossed
Floor (top) and Ball1 rolled (bottom).

We currently use only proper names to refer to
objects in the scene, to simplify model generation,
hence Ball1 and Floor. This facilitates easy object
identification in this prototype development stage.

Given a tagged and dependency parsed sen-
tence, we can the transform the parse into a pred-
icate formula, using the root of the parse as the
predicate, the subject as a singleton first argument,
and all objects as an optional stack of subsequent
arguments.

1. pred := cross 1. pred := roll
2. x := Ball1 2. x := Ball1
3. y.push(Floor)
cross(Ball1,[Floor]) roll(Ball1)

Table 2: Transformation to predicate formula for
Ball1 crossed Floor and Ball1 rolled.

The resulting predicates are represented in Ta-
ble 3 as expressions in Dynamic Interval Tempo-
ral Logic (DITL) (Pustejovsky and Moszkowicz,
2011), which are equivalent to the LTS expres-
sions used above.

cross(Ball1,Floor)
loc(Ball1) := y, target(Ball1) := z; b := y;
(y := w; y 6= w; d(b,y) < d(b,w),
d(b,z) > d(z,w), IN(y,Floor))+

roll(Ball1)
loc(Ball1) := y, rot(Ball1) := z; bloc := y,
brot := z; (y := w; y 6= w; d(bloc,y) < d(bloc,w),
IN(y,Floor))+, (z := v; z 6= v; z-brot < v-brot)+

Table 3: DITL expressions for Ball1 crossed Floor
and Ball1 rolled.

The DITL expression forms the basis of the
coded behavior. The first two initialization steps
are coded into the behavior’s start function while
the the third, Kleene iterated step, is encoded in
the behavior’s update function.

5 Generating Simulations

We use the freely-available game engine, Unity,
(Goldstone, 2009) to handle all underlying graph-
ics processing, and limited our object library to
simple primitive shapes of spheroids, rectangular
prisms, and planes. For every instance of an ob-
ject, the game engine maintains a data structure for
the object’s virtual representation. Table 4 shows
the data structure for Entity, the superclass of
all movable objects.

Entity:
position: 3-vector rotation: 3-vector
scale: 3-vector transform: Matrix

collider =

center: 3-vector
min: 3-vector
max: 3-vector
radius: float

geometry: Mesh

currentBehavior: Behavior

Table 4: Data structure of motion-capable entities.

The position and scale of the object are
represented as 3-vectors of floating point numbers.
The rotation is represented as the Euler angles
of the object’s current rotation, also a 3-vector.
This 3-vector is computed as a quaternion for ren-
dering purposes. The transform matrix com-
poses the position, scale, and quaternion rotation
into the complete transformation applied to the ob-
ject at any given frame. The geometry is a mesh.
The points, edges, faces, and texture attributes that
comprise the mesh are all immutable at the mo-
ment so the mesh type is considered atomic for
our purposes. The collider contains the coor-
dinates of the center of the object, minimum and
maximum extents of the object’s boundaries, and
radius of the boundaries (for spherical objects).

Behaviors can only be executed over Entity
instances, so we also provide each one with a
currentBehavior property, referencing the
code to be executed over the object every frame
that said behavior is being run. This code performs
a transformation over the object at every step, gen-
erating a new state in a dynamic model of the
event denoted by the a given predicate. Thus, the
event6 is decomposed into frame-by-frame trans-
formations representing the ν-transition from Sec-
tion 3.2.

We generate example simulations of behaviors
in a sample environment, shown in Figure 4, that

6These events are linguistic events, and not the same as
“events” as used in software development or with event han-
dlers.
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consists of a sealed four-walled room that contains
a number of primitive objects.

Figure 4: Sample environment in top-down and
perspective views.

The behaviors currently coded into our software
map directly from DITL to the simulation. The
various parts of the DITL formula that describes a
given behavior are coded into the behavior’s start
or update functions in Unity. Below is one such
C# code snippet: the per-frame transformation for
roll.

(11) transform.rotation = new Vector3(
0.0,0.0,transform.rotation.z+
(rotSpeed*deltaTime));

transform.position = new Vector3(
transform.position.x-radius*
deltaTime,transform.position.y,
transform.position.z);

This “translates” the DITL expression (y := w; y
6= w; d(bloc,y) < d(bloc,w))+, (z := v; z 6= v; z-brot
< v-brot),IN(y,Floor)+ while explicitly calculat-
ing the value of the precise differences in location
and rotation between each frame or time step. The
variables moveSpeed, rotSpeed and radius
are given explicit value. deltaTime refers to the
time elapsed between frames.

Translating a DITL formula into executable
code makes evident the differences in minimal
verb pairs, such as the ball (or box) rolled and the
ball (or box) slid. When an object rolls, one area

on the object must remain in contact with the sup-
porting surface, and that area must be adjacent to
the area contacting the surface in the previous time
step. When an object slides, the same area on the
object must contact the supporting surface. Com-
pare the per-frame transformation for slide below
to the given transformation for roll.

(12) transform.position = new Vector3(
transform.position.x-radius*deltaTime,
transform.position.y,
transform.position.z);

This maps the DITL expression (y := w; y 6= w;
d(bloc,y) < d(bloc,w),IN(y,Floor))+. Here, the ob-
ject’s location changes along a path leading away
from the start location, but does not rotate as in
roll.

DITL expressions and their coded equivalents
can also be composed into new, more specific mo-
tions. The cross formula from Section 4 can be
composed with that for roll to describe a “roll
across” motion.

In a model, a path verb such as cross does
not necessarily need an explicit manner of mo-
tion specified. In a simulation, the manner needs
to be given a value, requiring the composition of
the path verb (e.g., cross) with one of a certain
subsets of manner verbs specifying how the ob-
ject moves relative to the supporting surface. Be-
low are DITL expressions and code implementa-
tions for two cross predicates, the first a cross mo-
tion while sliding, the second a cross motion while
rolling.

(13) loc(Ball1) := y, target(Ball1) := z; b := y;
(y := w; y 6= w; d(b,y) < d(b,w), d(b,z) >
d(z,w), IN(y,Floor))+
offset = transform.position-
destination;

offset = Vector3.Normalize(offset);
transform.position = new Vector3(
transform.position.x-offset.x*
radius*deltaTime,
transform.position.y,
transform.position.z-
offset.z*radius*deltaTime);

At each frame, the distance between the object’s
current position and its previously computed des-
tination is computed again, and the update moves
the object away from its current position (d(b,y) <
d(b,w)) toward the destination (d(b,z) > d(z,w)).
Since no other manner of motion is specified, the
object does not turn or rotate as it moves, but sim-
ply “slides.”
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(14) loc(Ball1) := y, target(Ball1) := z; b := y; (y
:= w; y 6= w; d(bloc,y) < d(bloc,w), d(bloc,z)
> d(z,w), (u := v; u 6= v; u-brot < v-brot),
IN(y,Floor))+
offset = transform.position-
destination;

offset = Vector3.Normalize(offset);
transform.rotation = new Vector3(
0.0,arccos(offset.z)*(360/PI*2),
transform.rotation.z+
(rotSpeed*deltaTime));

transform.position = new Vector3(
transform.position.x-offset.x*
radius*deltaTime,
transform.position.y,
transform.position.z-offset.z*
radius*deltaTime);

Here the update is the same as above, but
with the introduction of the rolling motion. In
both code snippets, the non-changing value of
transform.position.y implicitly maps the
IN RCC condition in the DITL formulas, and
keeps the moving object attached to the floor.

If there exists a behavior corresponding to the
predicate (by name) on an entity bearing the name
of the predicate’s first (subject) argument, the
transformation encoded in that behavior is per-
formed over the entity until an end condition spe-
cific to the behavior is met. The resulting animated
motion depicts the manner of motion denoted by
the predicate. Given a predicate of arity greater
than 1, the simulator tries to prompt a behavior on
the first argument that can be run using parameters
of the subsequent arguments.

A cross behavior, for example, divides the
supporting surface into regions and attempts to
move the crossing object from one region to the
the opposite region. In figure 5, the bounds of
Floor completely surround the bounds of Ball2
(IN(Ball2,Floor) in RCC8). This configuration
makes it possible for the simulation to compute a
motion moving the Ball2 object from one side of
the Floor to the other.

The left side of figure 5 shows a ball rolling and
a box sliding, a depiction of two predicates: Box1
slid and Ball1 rolled. The right side depicts Ball2
crossed Floor (from the rear center to the front
center). The starting state of each scene is over-
laid semi-transparently while the in-progress state
is fully opaque.

6 Discussion and Conclusion
In this paper, we describe a model for mapping
natural language motion expressions into a 3D
simulation environment. Our strategy has been to
use minimal simulation generation as a conceptual

Figure 5: Roll and slide motions in progress (top),
and cross motion in progress (bottom).

debugging tool, in order to tease out the semantic
differences between linguistic expressions; specif-
ically those between verbs that are members of
conventionally homogeneous classes, according to
linguistic analysis.

It should be pointed out that our goal is different
from WordsEye (Coyne and Sproat, 2001). While
we are interested in using simulation generation
to differentiate semantic distinctions in both lex-
ical classes and compositional constructions, the
goal behind WordsEye is to provide an enhanced
interface to allow non-specialists create 3D scenes
without being familiar with special software mod-
els for everyday objects and relations. There are
obvious synergies between these two goals that
can be pursued.

The simulations we create provide an interpre-
tation of the given motion predicate over the given
entity, but not the only interpretation. Just as
Coyne et al. (2010) does for static objects in the
WordsEye system, we must apply some implicit
constraints to our motion predicates to allow them
to be visually simulated. For instance, in the roll
and slide examples given in Figure 5, both objects
are moving in the same direction–parallel to the
back wall of the room object. Had the objects been
moving perpendicular to the back wall or in any
other direction, as long as they remained in con-
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tact with the floor at all times, the simulated mo-
tion would still be considered a “roll” (if rotating
around an axis parallel to the floor), or a “slide”
(if not), regardless of what the precise direction of
motion is. Minimal pairs in a model have to be
compared and contrasted in a discriminative way,
and thus in modeling a slide predicate versus a roll
predicate, knowing that the distinction is one of
rotation parallel to the surface is enough to distin-
guish the two predicates in a model.

In a simulation, the discriminative process re-
quires that the two contrasting behaviors look dif-
ferent, and as such, the simulation software must
be able to completely render a scene for each
frame from behavior start to behavior finish, and
so every variable for every object being rendered
must have an assigned value, including the posi-
tion of the object from frame to frame. If these
values are left unspecified, the software either fails
to compile or throws an exception. Thus, we are
forced to arbitrarily choose a direction of motion
(as well as direction of rotation, speed of rota-
tion, speed of motion, etc.). As long as all non-
changing variables are kept consistent between a
minimal pair of behaviors, we can evaluate the
quantitative and qualitative differences between
the values that do change. As simulations re-
quire values to be assigned to variables that can be
left unspecified in an ordinary modeling process,
simulations expose presuppositions about the se-
mantics of motion verbs and of compositions that
would not be necessary in a model alone.

In order to evaluate the appropriateness of a
given simulation, we are currently experimenting
with a strategy often used in classification and an-
notation tasks, namely pairwise similarity judg-
ments (Rumshisky et al., 2012; Pustejovsky and
Rumshisky, 2014). This involves presenting a user
with a simple discrimination task that has a re-
duced cognitive load, comparing the similarity of
the example to the target instances. In the present
context, a subject is shown a specific simulation
resulting from the translation from textual input,
through DITL, to the visualization. A set of ac-
tivity or event descriptions is given, and the sub-
ject is then asked to select which best describes
the simulation shown; e.g., “Is this a sliding?”, “Is
this a rolling?”. The results of this experiment are
presently being evaluated.

The system is currently in the prototype stage
and needs to be expanded in three main areas: ob-

ject library, parsing pipeline, and predicate han-
dling. Our object and behavior libraries are cur-
rently limited to geometric primitives and the mo-
tions that can be applied over them. While roll,
slide, and cross behaviors can be scripted for
spheres and cubes and shapes derived from them,
a predicate like walk cannot be supported on the
current infrastructure. Thus, we intend to expand
the object library to include more complex inan-
imate objects (tables, chairs, or other household
objects) as well as animate objects. Having an ob-
ject library containing forms capable of executing
greater numbers of predicates will allow us to im-
plement those predicates.

The parsing pipeline described in Section 4 is
only partially implemented, with the only com-
pleted parts being the latter stages, relating a for-
mulas to a scripted behavior and its arguments. We
intend to expand the parsing pipeline to include all
the steps described in this paper: taking input as
a simple natural language sentence, tagging and
parsing it to extract the constituent parts of a pred-
icate/argument representation, and using that out-
put to prompt a behavior in software as a dynamic
event structure. More robust parsing will afford
us the opportunity to expand the diversity of pred-
icates that the software can handle as well (Mc-
Donald and Pustejovsky, 2014). While currently
limited to unary and binary predicates, we need
to extend the capability to ternary predicates and
predicates of greater arity, including the use of ad-
junct phrases and indirect objects. We are in the
process of developing an implementation that uses
Boxer (Curran et al., 2007) so that we can create
first-order models from the dynamic expressions
used here.
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Abstract

This paper studies generation of descrip-
tive sentences from densely annotated im-
ages. Previous work studied generation
from automatically detected visual infor-
mation but produced a limited class of sen-
tences, hindered by currently unreliable
recognition of activities and attributes. In-
stead, we collect human annotations of ob-
jects, parts, attributes and activities in im-
ages. These annotations allow us to build
a significantly more comprehensive model
of language generation and allow us to
study what visual information is required
to generate human-like descriptions. Ex-
periments demonstrate high quality output
and that activity annotations and relative
spatial location of objects contribute most
to producing high quality sentences.

1 Introduction

Image descriptions compactly summarize com-
plex visual scenes. For example, consider the de-
scriptions of the image in Figure 1, which vary in
content but focus on the women and what they are
doing. Automatically generating such descriptions
is challenging: a full system must understand the
image, select the relevant visual content to present,
and construct complete sentences. Existing sys-
tems aim to address all of these challenges but
use visual detectors for only a small vocabulary
of words, typically nouns, associated with objects
that can be reliably found.1 Such systems are blind

∗This work was conducted at Microsoft Research.
1While object recognition is improving (ImageNet accu-

racy is over 90% for 1000 classes) progress in activity recog-
nition has been slower; the state of the art is below 50% mean
average precision for 40 activity classes (Yao et al., 2011).

cars (Count:3) 
Isa: ride, vehicle,… 
Doing: parking,… 

Has: steering wheel,… 
Attrib: black, shiny,… 

children (Count:2) 
Isa: kids, children … 

Doing: biking, riding … 
Has: pants, bike … 

Attrib: young, small … 

bike (Count:1) 
Isa: bike, bicycle,… 
Doing: playing,… 

Has: chain, pedal,… 
Attrib: silver, white,… 

women(Count:3) 
Isa: girls, models,… 

Doing: smiling,...  
Has: shorts, bags,… 
Attrib: young, tan,… 

purses(Count:3) 
Isa: accessory,… 

Doing: containing,… 
Has: body, straps,… 
Attrib: black, soft,… 

sidewalk(Count:1) 
Isa: sidewalk, street,… 

Doing: laying,… 
Has: stone, cracks,… 
Attrib: flat, wide,… 

woman(Count:1) 
Isa: person, female,… 

Doing: pointing,… 
Has: nose, legs,… 

Attrib: tall, skinny,… 

tree(Count:1) 
Isa: plant,… 

Doing: growing,… 
Has: branches,… 

Attrib: tall, green,… 

kids(Count:5) 
Isa: group, teens,… 
Doing: walking,… 

Has: shoes, bags,… 
Attrib: young,… 

Five young people on the street, two sharing a bicycle.
Several young people are walking near parked vehicles.

Three girls with large handbags walking down the sidewalk.
Three women walk down a city street, as seen from above.
Three young woman walking down a sidewalk looking up.

Figure 1: An annotated image with human generated sen-
tence descriptions. Each bounding polygon encompasses one
or more objects and is associated with a count and text la-
bels.This image has 9 high level objects annotated with over
250 textual labels.

to much of the visual content needed to generate
complete, human-like sentences.

In this paper, we instead study generation with
more complete visual support, as provided by hu-
man annotations, allowing us to develop more
comprehensive models than previously consid-
ered. Such models have the dual benefit of (1)
providing new insights into how to construct more
human-like sentences and (2) allowing us to per-
form experiments that systematically study the
contribution of different visual cues in generation,
suggesting which automatic detectors would be
most beneficial for generation.

In an effort to approximate relatively complete
visual recognition, we collected manually labeled
representations of objects, parts, attributes and ac-
tivities for a benchmark caption generation dataset
that includes images paired with human authored
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descriptions (Rashtchian et al., 2010).2 As seen
in Figure 1, the labels include object boundaries
and descriptive text, here including the facts that
the children are “riding” and “walking” and that
they are “young.” Our goal is to be as exhaustive
as possible, giving equal treatment to all objects.
For example, the annotations in Figure 1 contain
enough information to generate the first three sen-
tences and most of the content in the remaining
two. Labels gathered in this way are a type of fea-
ture norms (McRae et al., 2005), which have been
used in the cognitive science literature to approxi-
mate human perception and were recently used as
a visual proxy in distributional semantics (Silberer
and Lapata, 2012). We present the first effort, that
we are aware of, for using feature norms to study
image description generation.

Such rich data allows us to develop significantly
more comprehensive generation models. We di-
vide generation into choices about which visual
content to select and how to realize a sentence that
describes that content. Our approach is grammar-
based, feature-rich, and jointly models both deci-
sions. The content selection model includes la-
tent variables that align phrases to visual objects
and features that, for example, measure how vi-
sual salience and spatial relationships influence
which objects are mentioned. The realization ap-
proach considers a number of cues, including lan-
guage model scores, word specificity, and relative
spatial information (e.g. to produce the best spa-
tial prepositions), when producing the final sen-
tence. When used with a reranking model, includ-
ing global cues such as sentence length, this ap-
proach provides a full generation system.

Our experiments demonstrate high quality vi-
sual content selection, within 90% of human per-
formance on unigram BLEU, and improved com-
plete sentence generation, nearly halving the dif-
ference from human performance to two base-
lines on 4-gram BLEU. In ablations, we measure
the importance of different annotations and visual
cues, showing that annotation of activities and rel-
ative bounding box information between objects
are crucial to generating human-like description.

2 Related Work

A number of approaches have been proposed
for constructing sentences from images, includ-
ing copying captions from other images (Farhadi

2Available at : http://homes.cs.washington.edu/˜my89/

et al., 2010; Ordonez et al., 2011), using text
surrounding an image in a news article (Feng
and Lapata, 2010), filling visual sentence tem-
plates (Kulkarni et al., 2011; Yang et al., 2011;
Elliott and Keller, 2013), and stitching together ex-
isting sentence descriptions (Gupta and Mannem,
2012; Kuznetsova et al., 2012). However, due to
the lack of reliable detectors, especially for activi-
ties, many previous systems have a small vocab-
ulary and must generate many words, including
verbs, with no direct visual support. These prob-
lems also extend to video caption systems (Yu and
Siskind, 2013; Krishnamoorthy et al., 2013).

The Midge algorithm (Mitchell et al., 2012)
is most closely related to our approach, and will
provide a baseline in our experiments. Midge is
syntax-driven but again uses a small vocabulary
without direct visual support for every word. It
outputs a large set of sentences to describe all
triplets of recognized objects in the scene, but does
not include a content selection model to select the
best sentence. We extend Midge with content and
sentence selection rules to use it as a baseline.

The visual facts we annotate are motivated by
research in machine vision. Attributes are a
good intermediate representation for categoriza-
tion (Farhadi et al., 2009). Activity recognition
is an emerging area in images (Li and Fei-Fei,
2007; Yao et al., 2011; Sharma et al., 2013) and
video (Weinland et al., 2011), although less stud-
ied than object recognition. Also, parts have been
widely used in object recognition (Felzenszwalb
et al., 2010). Yet, no work tests the contribution of
these labels for sentence generation.

There is also a significant amount of work
on other grounded language problems, where re-
lated models have been developed. Visual re-
ferring expression generation systems (Krahmer
and Van Deemter, 2012; Mitchell et al., 2013;
FitzGerald et al., 2013) aim to identify specific
objects, a sub-problem we deal with when de-
scribing images more generally. Other research
generates descriptions in simulated worlds and,
like this work, uses feature rich models (Angeli
et al., 2010), or syntactic structures like PCFGs
(Chen et al., 2010; Konstas and Lapata, 2012) but
does not combine the two. Finally, Zitnick and
Parikh (2013) study sentences describing clipart
scenes. They present a number of factors influenc-
ing overall descriptive quality, several of which we
use in sentence generation for the first time.
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3 Dataset

We collected a dataset of richly annotated images
to approximate gold standard visual recognition.
In collecting the data, we sought a visual annota-
tion with sufficient coverage to support the gen-
eration of as many of the words in the original
image descriptions as possible. We also aimed to
make it as visually exhaustive as possible—giving
equal treatment to all visible objects. This ensures
less bias from annotators’ perception about which
objects are important, since one of the problems
we would like to solve is content selection. This
dataset will be available for future experiments.

We built on the dataset from (Rashtchian et
al., 2010) which contained 8,000 Flickr images
and associated descriptions gathered using Ama-
zon Mechanical Turk (MTurk). Restricting our-
selves to Creative Commons images, we sampled
500 images for annotation.

We collected annotations of images in three
stages using MTurk, and assigned each annotation
task to 3-5 workers to improve quality through re-
dundancy (Callison-Burch, 2009). Below we de-
scribe the process for annotating a single image.

Stage 1: We prompted five turkers to list all ob-
jects in an image, ignoring objects that are parts of
larger objects (e.g., the arms of a person), which
we collected later in Stage 3. This list also in-
cluded groups, such as crowds of people.

Stage 2: For each unique object label from
Stage 1, we asked two turkers to draw a polygon
around the object identified.3 In cases where the
object is a group, we also asked for the number of
objects present (1-6 or many). Finally, we created
a list of all references to the object from the first
stage, which we call the Object facet.

Stage 3: For each object or group, we prompted
three turkers to provide descriptive phrases of:

• Doing – actions the object participates in, e.g.
“jumping.”
• Parts – physical parts e.g. “legs”, or other

items in the possession of the object e.g.
“shirt.”
• Attributes – adjectives describing the object,

e.g. “red.”
• Isa – alternative names for a object e.g.

“boy”, “rider.”

Figure 1 shows more examples for objects

3We modified LabelMe (Torralba et al., 2010).

in a labeled image.4 We refer to all of these
annotations, including the merged Object la-
bels, as facets. These labels provide feature
norms (McRae et al., 2005), which have recently
used as a visual proxy in distributional seman-
tics (Silberer and Lapata, 2012; Silberer et al.,
2013) but have not been previous studied for gen-
eration. This annotation of 500 images (2500
sentences) yielded over 4000 object instances and
100,000 textual labels.

4 Approach

Given such rich annotations, we can now de-
velop significantly more comprehensive genera-
tion models. In this section, we present an ap-
proach that first uses a generative model and then
a reranker. The generative model defines a dis-
tribution over content selection and content real-
ization choices, using diverse cues from the image
annotations. The reranker trades off our generative
model score, language model score (to encourage
fluency), and length to produce the final sentence.

Generative Model We want to generate a sen-
tence ~w = 〈w1 . . . wn〉 where each word wi ∈ V
comes from a fixed vocabulary V . The vocabu-
lary V includes all 2700 words used in descriptive
sentences in the training set.5

The model conditions on an annotated image I
that contains a set of objects O, where each ob-
ject o ∈ O has a bounding polygon and a number
of facets containing string labels. To model the
naming of specific objects, words wi can be asso-
ciated with alignment variables ai that range over
O. One such variable is introduced for each head
noun in the sentence. Figure 2 shows alignment
variable settings with colors that match objects in
the image. Finally, as a byproduct of the hierarchi-
cal generative process, we construct an undirected
dependency tree ~d over the words in ~w.

The complete generative model defines the
probability p(~w,~a, ~d | I) of a sentence ~w, word
alignments ~a, and undirected dependency tree ~d,
given the annotated input image I . The overall
process unfolds recursively, as seen in Figure 3.

4In the experiments, Parts and Isa facets do not improve
performance, so we do not use them in the final model. Isa
is redundant with the Object facet, as seen in Figure 1. Also
parts like clothing, were often annotated as separate objects.

5We do not generate from image facets directly, because
only 20% of the sentences in our data can be produced like
this. Instead, we develop features which consider the similar-
ity between labels in the image and words in the vocabulary.
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Three girls  with large  handbags  walking  down  the  sidewalk 

𝑎 = 

𝑤= 

𝑑 = 

Figure 2: One path through the generative model and the
Bayesian network it induces. The first row of colored circles
are alignment variables to objects in the image. The second
row is words, generated conditioned on alignments.

The main clause is produced by first selecting the
subject alignment as followed by the subject word
ws. It then chooses the verb and optionally the ob-
ject alignment ao and word wo. The process then
continues recursively, modifying the subject, verb,
and object of the sentence with noun and prepo-
sitional modifiers. The recursion begins at Step
2 in Figure 3. Given a parent word w and that
word’s relevant alignment variable a, the model
creates attachments where w is the grammatical
head of subsequently produced words. Choices
about whether to create noun modifiers or preposi-
tional modifiers are made in steps (a) and (b). The
process chooses values for the alignment variables
and then chooses content words, adding connec-
tive prepositions in the case of prepositional mod-
ifiers. It then chooses to end or submits new word-
alignment pairs to be recursively modified.

Each line defines a decision that must be made
according to a local probability distribution. For
example, Step 1.a defines the probability of align-
ing a subject word to various objects in the im-
age. The distributions are maximum entropy mod-
els, similar to previous work (Angeli et al., 2010),
using features described in the next section. The
induced undirected dependency tree ~d has an edge
between each word and the previously generated
word (or the input word w in Steps 2.a.i and 2.a.ii,
when no previous word is available). Figure 2
shows a possible output from the process, along
with the Bayesian network that encodes what each
decision was conditioned on during generation.

Learning We learn the model from data
{(~wi, ~di, Ii) | i = 1 . . .m} containing sentences
~wi, dependency trees ~di, computed with the Stan-
ford parser (de Marneffe et al., 2006), and images

1. for a main clause (d,e are optional), select:

(a) subject as alignment from pa(a).

(b) subject word ws from pn(w | as, ~dc)

(c) verb word wv from pv(w | as, ~dc)

(d) object alignment ao from pa(a′ | as, wv, ~dc)

(e) object word wo from pn(w | ao, ~dc)

(f) end with pstop or go to (2) with (ws, as)

(g) end with pstop or go to (2) with (wv, as)

(h) end with pstop or go to (2) with (wo, ao)

2. for a (word, alignment) (w′, a) (a,b are optional):

(a) if w′ not verb: modify w′ with noun, select:

i. modifier word wn from pn(w | a, ~dc).
ii. end with pstop or go to (2) with (am, wn)

(b) modify w′ with preposition, select:
i. preposition word wp

if w′ not a verb: from pp(w | a, ~dc)

else: from pp(w | a, wv, ~dc)

ii. object alignment ap from pa(a′ | a, wp, ~dc)

iii. object word wn from pn(w | ap, ~dc).
iv. end with pstop or go to (2) with (ap, wn)

Figure 3: Generative process for producing words ~w, align-
ments ~a and dependencies ~d. Each distribution is conditioned
on the partially complete path through generative process ~dc

to establish sentence context. The notation pstop is short hand
for pstop(STOP |~w, ~dc) the stopping distribution.

Ii. The dependency trees define the path that was
taken through the generative process in Figure 3
and are used to create a Bayesian network for ev-
ery sentence, like in Figure 2. However, object
alignments ~ai are latent during learning and we
must marginalize over them.

The model is trained to maximize the condi-
tional marginal log-likelihood of the data with reg-
ularization:

L(θ) =
∑

i

log
∑
~a

p(~a, ~wi, ~di | Ii; θ)− r|θ|2

where θ is the set of parameters and r is the regu-
larization coefficient. In essence, we maximize the
likelihood of every sentence’s observed Bayesian
network, while marginalizing over content selec-
tion variables we did not observe.

Because the model only includes pairwise de-
pendencies between the hidden alignment vari-
ables ~a, the inference problem is quadratic in the
number of objects and non-convex because ~a is
unobserved. We optimize this objective directly
with L-BFGS, using the junction-tree algorithm to
compute the sum and the gradient.6

6To compute the gradient, we differentiate the recurrence
in the junction-tree algorithm by applying the product rule.
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Inference To describe an image, we need to
maximize over word, alignment, and the depen-
dency parse variables:

arg max
~w,~a,~d

p(~w,~a, ~d | I)

This computation is intractable because we
need to consider all possible sentences, so we use
beam search for strings up to a fixed length.
Reranking Generating directly from the process
in Figure 3 results in sentences that may be short
and repetitive because the model score is a product
of locally normalized distributions. The reranker
takes as input a candidate list c, for an image I , as
decoded from the generative model. The candidate
list includes the top-k scoring hypotheses for each
sentence length up to a fixed maximum. A linear
scoring function is used for reranking optimized
with MERT (Och, 2003) to maximize BLEU-2.

5 Features

We construct indicator features to capture vari-
ation in usage in different parts of the sen-
tence, types of objects that are mentioned, visual
salience, and semantic and visual coordination be-
tween objects. The features are included in the
maximum entropy models used to parameterize
the distributions described in Figure 3. Whenever
possible, we use WordNet Synsets (Miller, 1995)
instead of lexical features to limit over-fitting.

Features in the generative model use tests for
local properties, such as the identity of a synset
of a word in WordNet, conjoined with an iden-
tifier that indicates context in the generative pro-
cess.7 Generative model features indicate (1) vi-
sual and semantic information about objects in dis-
tributions over alignments (content selection) and
(2) preferences for referring to objects in distribu-
tions over words (content realization). Features in
the reranking model indicate global properties of
candidate sentences. Exact formulas for comput-
ing the features are in the appendix.

Visual features, such as an object’s position in
the image, are used for content selection. Pairwise
visual information between two objects, for exam-
ple the bounding box overlap between objects or
the relative position of the two objects, is included
in distributions where selection of an alignment

7For example, in Figure 2 the context for the word “side-
walk” would be “word,syntactic-object,verb,preposition” in-
dicating it is a word, in the syntactic object of a preposition,
which was attached to a verb modifying prepositional phrase.

variable conditions on previously generated align-
ments. For verbs (Step 1.d in Figure 3) and prepo-
sitions (Step 2.b.ii), these features are conjoined
with the stem of the connective.

Semantic types of objects are also used in con-
tent selection. We define semantic types by finding
synsets of labels in objects that correspond to high
level types, a list motivated by the animacy hierar-
chy (Zaenen et al., 2004).8 Type features indicate
the type of the object referred to by an alignment
variable as well as the cross product of types when
an alignment variable is on conditioning side of
a distribution (e.g. Step 1.d). Like above, in the
presence of a connective word, these features are
conjoined with the stem of the connective.

Content realization features help select words
when conditioning on chosen alignments (e.g.
Step 1.b). These features include the identity of
the WordNet synset corresponding to a word, the
word’s depth in the synset hierarchy, the language
model score for adding that word9 and whether the
word matches labels in facets corresponding to the
object referenced by an alignment variable.

Reranking features are primarily used to over-
come issues of repetition and length in the genera-
tive distributions, more commonly used for align-
ment, than to create sentences. We use only four
features: length, the number of repetitions, gener-
ative model score, and language model score.

6 Experimental Setup

Data We used 70% of the data for training (1750
sentences, 350 images), 15% for development, and
15% for testing (375 sentences, 75 images).

Parameters The regularization parameter was
set on the held out data to r = 8. The reranker
candidate list included the top 500 sentences for
each sentence length up to 15 and weights were
optimized with Z-MERT (Zaidan, 2009).

Metrics Our evaluation is based on BLEU-n
(Papineni et al., 2001), which considers all n-
grams up to length n. To assess human perfor-
mance using BLEU, we score each of the five ref-
erences against the four other ones and finally av-
erage the five BLEU scores. In order to make these
results comparable to BLEU scores for our model

8For example, human, animal, artifact (a human created
object), natural body (trees, water, ect.), or natural artifact
(stick, leaf, rock).

9We use tri-grams with Kneser-Ney smoothing over the 1
million caption data set (Ordonez et al., 2011).
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and baselines, we perform the same five-fold aver-
aging when computing BLEU for each system.

We also compute accuracy for different syn-
tactic positions in the sentence. We look at a
number of categories: the main clause’s compo-
nents (S,V,O), prepositional phrase components,
the preposition (Pp) and their objects (Po) and
noun modifying words (N), including determiners.
Phrases match if they have an exact string match
and share context identifiers as defined in the fea-
tures sections.
Human Evaluation Annotators rated sentences
output by our full model against either human or a
baseline system generated descriptions. Three cri-
teria were evaluated: grammaticality, which sen-
tence is more complete and well formed; truthful-
ness, which sentence is more accurately capturing
something true in the image; and salience, which
sentence is capturing important things in the image
while still being concise. Two annotators anno-
tated all test pairs for all criteria for a given pair of
systems. Six annotators were used (none authors)
and agreement was high (Cohen’s kappa = 0.963,
0.823 and 0.703 for grammar, truth and salience).
Machine Translation Baseline The first base-
line is designed to see if it is possible to generate
good sentences from the facet string labels alone,
with no visual information. We use an extension of
phrase-based machine translation techniques (Och
et al., 1999). We created a virtual bitext by pair-
ing each image description (the target sentence)
with a sequence10 of visual identifiers (the source
“sentence”) listing strings from the facet labels.
Since phrases produced by turkers lack many of
the functions words needed to create fluent sen-
tences, we added one of 47 function words either
at the start or the end of each output phrase.

The translation model included standard fea-
tures such as language model score (using our cap-
tion language model described previously), word
count, phrase count, linear distortion, and the
count of deleted source words. We also define
three features that count the number of Object, Isa,
and Doing phrases, to learn a preference for types
of phrases. The feature weights are tuned with
MERT (Och, 2003) to maximize BLEU-4.
Midge Baseline As described in related work,
the Midge system creates a set of sentences to de-
scribe everything in an input image. These sen-

10We defined a consistent ordering of visual identifiers and
set the distortion limit of the phrase-based decoder to infinity.

BL-1 BL-2 BL-3 BL-4
Human 61.0 42.0 27.8 18.3
Full Model 57.1 35.7 18.3 9.5
MT Baseline 39.8 23.6 13.2 6.1
Midge Baseline 43.5 20.2 9.4 0.0

Table 1: Results for the test set for the BLEU1-4 metrics.

Grammar Full Other Equal
Full vs Human 7.65 19.4 72.94
Full vs MT 6.47 5.29 88.23
Full vs Midge 40.59 15.88 43.53
Truth Full Other Equal
Full vs Human 0.59 67.65 31.76
Full vs MT 30.0 10.59 59.41
Full vs Midge 51.76 27.71 23.53
Salience Full Other Equal
Full vs Human 8.82 88.24 2.94
Full vs MT 51.76 16.47 31.77
Full vs Midge 71.18 14.71 14.12

Table 2: Human evaluation of our Full-Model in heads
up tests against Human authored sentences and baseline sys-
tems, the machine translation baseline (MT) and the Midge
inspired baseline. Bold indicates the better system. Other is
not the Full system. Equal indicates neither sentence is better.

tences must all be true, but do not have to select
the same content that a person would. It can be
adapted to our task by adding object selection and
sentence ranking rules. For object selection, we
choose the three most frequently named objects
in the scene according to a background corpus of
image descriptions. For sentence selection, we
take all sentences within one word of the average
length of a sentence in our corpus, 11, and select
the one with best Midge generation score.

7 Results

We report experiments for our generation pipeline
and ablations that remove data and features.
Overall Performance Table 1 shows the re-
sults on the test set. The full model consis-
tently achieves the highest BLEU scores. Overall,
these numbers suggest strong content selection by
getting high recall for individual words (BLEU-
1), but fall further behind human performance as
the length of the n-gram grows (BLEU-2 through
BLEU-4). These number match our perception
that the model is learning to produce high quality
sentences, but does not always describe all of the
important aspects of the scene or use exactly the
expected wording. Table 4 presents example out-
put, which we will discuss in more detail shortly.
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Model BL-1 BL-2 BL-3 BL-4 S V O Pp Po N
Human 64.7 46.0 31.5 20.1 - - - - - -
Full-Model 59.0 36.9 19.3 10.5 64.9 40.4 36.8 50.0 20.7 69.1
– doing 51.1 32.6 16.9 9.2 63.2 15.8 10.5 45.5 21.6 69.7
– count 55.4 33.5 16.0 8.5 59.6 35.1 15.4 53.7 19.5 66.7
– properties 57.8 37.2 18.8 10.0 61.4 36.8 36.8 47.1 20.7 73.5
– visual 56.7 35.1 18.9 9.4 64.9 36.8 50.0 41.8 15.3 71.6
– pairwise 56.9 35.5 16.5 8.2 64.9 40.4 45.5 42.4 21.2 70.9

Table 3: Ablation results on development data using BLEU1-4 and reporting match accuracy for sentence structures.

S: A girl playing a
guitar in the grass

R: A woman with a nylon stringed
guitar is playing in a field

S: A man playing with two
dogs in the water

R: A man is throwing a log into
a waterway while two dogs watch

S: Two men playing with
a bench in the grass

R: Nine men are playing a game
in the park, shirts versus skins

S: Three kids sitting on a road

R: A boy runs in a race
while onlookers watch

Table 4: Two good examples of output (top), and two ex-
amples of poor performance (bottom). Each image has two
captions, the system output S and a human reference R.

Human Evaluation Table 2 presents the results
of a human evaluation. The full model outper-
forms all baselines on every measure, but is not
always competitive with human descriptions. It
performs the best on grammaticality, where it is
judged to be as grammatical as humans. How-
ever, surprisingly, in many cases it is also often
judged equal to the other baselines. Examination
of baseline output reveals that the MT baseline of-
ten generates short sentences, having little chance
of being judged ungrammatical. Furthermore, the
Midge baseline, like our system, is a syntax-based
system and therefore often produces grammatical
sentences. Although our system performs well
with respect to the baselines on truthfulness, of-
ten the system constructs sentences with incorrect
prepositions, an issue that could be improved with
better estimates of 3-d position in the image. On
truthfulness, the MT baseline is comparable to our
system, often being judged equal, because its out-
put is short. Our system’s strength is salience, a
factor the baselines do not model.

Data Ablation Table 3 shows annotation abla-
tion experiments on the development set, where
we remove different classes of data labels to mea-
sure the performance that can be achieved with
less visual information. In all cases, the overall
behavior of the system varies, as it tries to learn to
compensate for the missing information.

Ablating actions is by far the most detrimental.
Overall BLEU score suffers and prediction accu-
racy of the verb (V) degrades significantly causing
cascading errors that affect the object of the verb
(O). Removing count information affects noun at-
tachment (N) performance. Images where deter-
miner use is important or where groups of objects
are best identified by the number (for example,
three dogs) are difficult to describe naturally. Fi-
nally, we see a tradeoff when removing properties.
There is an increase in noun modifier accuracy (N)
but a decrease in content selection quality (BL-1),
showing recall has gone down. In essence, the ap-
proach learns to stop trying to generate adjectives
and other modifiers that would rely on the missing
properties. The difference in BLEU score with the
Full-Model is small, even without these modifiers,
because there often still exists a a short output with
high accuracy.

Feature Ablation The bottom two rows in Ta-
ble 3 show ablations of the visual and pairwise
features, measuring the contribution of the visual
information provided by the bounding box anno-
tations. The ablated visual information includes
bounding-box positions and relative pairwise vi-
sual information. The pairwise ablation removes
the ability to model any interactions between ob-
jects, for example, relative bounding box or pair-
wise object type information.

Overall, prepositional phrase accuracy is most
affected. Ablating visual features significantly im-
pacts accuracy of prepositional phrases (Pp and
Po), affecting the use of preposition words the
most, and lowering fluency (BL-4). Precision in
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the object of the verb (O) rises; the model makes
∼ 50% fewer predictions in that position than the
Full-Model because it lacks features to coordinate
subject and object of the verb. Ablating pairwise
features has similar results. While the model cor-
rects errors in the object of the preposition (Po)
with the addition of visual features, fluency is still
worse than Full-Model, as reflected by BL-4.
Qualitative Results Table 4 has examples of
good and bad system output. The first two im-
ages are good examples, including both system
output (S) and a human reference (R). The sec-
ond two contain lower quality outputs. Overall,
the model captures common ways to refer to peo-
ple and scenes. However, it does better for images
with fewer sentient objects because content selec-
tion is less ambiguous.

Our system does well at finding important ob-
jects. For example, in the first good image, we
mention the guitar instead of the house, both of
which are prominent and have high overlap with
the woman. In the second case, we identify that
both dogs and humans tend to be important actors
in scenes but poorly identify their relationship.

The bad examples show difficult scenes. In the
first description the broad context is not identi-
fied, instead focusing on the bench (highlighted in
red). The second example identifies a weakness
in our annotation: it encodes contradictory group-
ings of the people. The groupings covers all of
the children, including the boy running, and many
subsets of the people near the grass. This causes
ambiguity and our methods cannot differentiate
them, incorrectly mentioning just the children and
picking an inappropriate verb (one participant in
the group is not sitting). Improved annotation of
groups would enable the study of generation for
more complex scenes, such as these.

8 Conclusion

In this work we used dense annotations of images
to study description generation. The annotations
allowed us to not only develop new models, better
capable of generating human-like sentences, but
also to explore what visual information is crucial
for description generation. Experiments showed
that activity and bounding-box information is im-
portant and demonstrated areas of future work. In
images that are more complex, for example multi-
ple sentient objects, object grouping and reference
will be important to generating good descriptions.

Issues of this type can be explored with annota-
tions of increasing complexity.

Appendix A
This appendix describes the feature templates for
the generative model in greater detail.

Features in the generative model conjoin indica-
tors for local tests, such as STEM(w) which in-
dicates the stem of a wordw, with a global contex-
tual identifier CONTEXT(v, d) that indicates
properties of the generation history, as described
in detail below. Table 5 provides a reference for
which feature templates are used in the generative
model distributions, as defined in Figure 3.

8.1 Feature Templates

CONTEXT(n, d) is an indicator for a contex-
tual identifier for a variable n in the model de-
pending on the dependency structure d. There is
an indicator for all combinations of the type of n
(alignment or word), the position of n (subject,
syntactic object, verb, noun-modifier, or preposi-
tion), the position of the earliest variable along
the path to generate n, and the type of attach-
ment to that variable (noun or prepositional mod-
ifier). For example, in Figure 2 the context for
the word “sidewalk” would be “word,syntactic-
object,verb,preposition” indicating it is a word, the
object of a preposition, whose path was along a
verb modifying prepositional phrase.11

TYPE(a) indicates the high level type of an
object referred to by alignment variable a. We
use synsets to define high level types including
human, animal, artifact, natural artifact and var-
ious synsets that capture scene information,12 a
list motivated by the animacy hierarchy (Zaenen
et al., 2004). Each object is assigned a type by
finding the synset for its name (object facet), and
tracing the hypernym structure in Wordnet to find
the appropriate class, if one exists. Additionally,
the type indicates whether the object is a group or
not. For example, in Figure 2, the blue polygon
has type “person,group”, or the red bike polygon
has type “artifact,single.”

11Similarly “large” is “word,noun,subject,preposition”
while “girls” is special cased to “word,subject,root” be-
cause it has no initial attachment. The alignment vari-
able above the word handbags is “alignment,syntactic-
object,subject,preposition” because it an alignment variable,
is in the syntactic object position of a preposition and can be
located by following a subject attached pp.

12WordNet divides these into synsets expressing water,
weather, nature and a few more.
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Feature Family Included In Steps
CONTEXT(a′, ~dc)⊗

{TYPE(a′),MENTION(a′, do),MENTION(a′, obj ),VISUAL(a′)}
pa(a′|~dc)

pa(a′ | a, w, ~dc)

1.a, 1.d, 2.b.ii

CONTEXT(a′, ~dc)⊗ {TYPE(a)⊗TYPE(a′),VISUAL2(a, a′)} pa(a′ | a, w, ~dc) 1.d, 2.b.i
CONTEXT(a′, ~dc)⊗

{TYPE(a)⊗TYPE(a′)⊗ STEM(w),VISUAL2(a, a′)⊗ STEM(w)}
pa(a′ | a, w, ~dc) 1.d, 2.b.i

CONTEXT(a, ~dc)⊗
{WORDNET(w),MATCH(w, a),SPECIFICITY(w, a),

ADJECTIVE(w, a),DETERMINER(w, a)}

pn(w | a, ~dc) 1.b, 1.e, 2.a.i
2.b.ii

CONTEXT(a, ~dc)⊗ {MATCH(w, a),TYPE(a)⊗ STEM(w)} pv(w | a, ~dc) 1.c
CONTEXT(a′, ~dc)⊗TYPE(a)⊗ STEM(wp) pp(w | a, ~dc)

pp(w | a, wv, ~dc)

2.b.i

CONTEXT(a′, ~dc)⊗ STEM(wv)⊗ STEM(w) pp(w | a, wv, ~dc) 2.b.i

Table 5: Feature families and distributions that include them. ⊗ indicates the cross-product of the indi-
cator features. Distributions are listed more than once to indicate they use multiple feature families.

VISUAL(a) returns indicators for visual facts
about the object that a aligns to. There is an in-
dicator for two quantities: (1) overlap of object’s
polygon with every horizontal third of the image,
as a fraction of the object’s area, and (2) the ob-
ject’s distance to the center of the image as frac-
tion of the diagonal of the image. Each quantity,
v, is put into three overlapping buckets: if v > .1,
if v > .5, and if v > .9.

VISUAL2(a, a′) indicates pairwise visual
facts about two objects. There is an indicator for
the following quantities bucketed: the amount of
overlap between the polygons for a and a′ as a
fraction of the size of a’s polygon, the distance
between the center of the polygon for a and a′ as
a fraction of image’s diagonal, and the slope be-
tween the center of a and a′. Each quantity, v, is
put into three overlapping buckets: if v > .1, if
v > .5, and if v > .9. There is an indicator for the
relative position of extremities a and a′: whether
the rightmost point of a is further right than a′’s
rightmost or leftmost point, and the same for top,
left, and bottom.

WORDNET(w) returns indicators for all hy-
pernyms of a word w. The two most specific
synsets are not used when there at least 8 options.

MENTION(a, facet) returns the union of the
WORDNET(w) features for all words w in the
facet facet for the object referred to alignment a.

ADJECTIVE(w, a) indicates four types
of features specific to adjective usage. If
MENTION(w,Attributes) is not empty, indi-
cate : (1) the satellite adjective synset of w in
Wordnet, (2) the head adjective synset of w in
Wordnet, (3) the head adjective synset conjoined
with TYPE(a), and (4) the number of times there
exists a label in the Attributes facet of a that has

the same head adjective synset as w.
DETERMINER(w, a) indicates four deter-

miner specific features. If w is a determiner, then
indicate : (1) the identity of w conjoined with the
count (the label for numerosity) of a, (2) the iden-
tity of w conjoined with an indicator for if the
count of a is greater than one, (3) the identity of w
conjoined with TYPE(a) and (4) the frequency
with which w appears before its head word in the
Flikr corpus (Ordonez et al., 2011).

MATCH(w, a), indicates all facets of object
a that contain words with the same stem as w.

SPECIFICITY(w, a) is an indicator of the
specificity of the word w when referring to the ob-
ject aligned to a. Indicates the relative depth of
w in Wordnet, as compared to all words w′ where
MATCH(w′, a) is not empty. The depth is buck-
eted into quintiles.

STEM(w) returns the Porter2 stem of w.13

The distribution for stopping, pstop(STOP |
~dc, ~w), contains two types of features. (1) Struc-
tural features indicating for the number of times
a contextual identifier has appeared so far in the
derivation and (2) mention features indicating the
types of objects mentioned.14 To compute men-
tion features, we consider all possible types of ob-
jects, t, then there is an indicator for: (1) if ∃o, ∃w ∈
~w : MATCH(w, o) 6= ∅ ∧TYPE(o) = t, (2) whether
∃o, 6 ∃w ∈ ~w : MATCH(w, o) 6= ∅∧TYPE(o) = t and
(3) if (1) does not hold but (2) does.
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Abstract

We explore the novel task of identify-
ing latent attributes in video scenes, such
as the mental states of actors, using
only large text collections as background
knowledge and minimal information about
the videos, such as activity and actor types.
We formalize the task and a measure of
merit that accounts for the semantic re-
latedness of mental state terms. We de-
velop and test several largely unsupervised
information extraction models that iden-
tify the mental states of human partici-
pants in video scenes. We show that these
models produce complementary informa-
tion and their combination significantly
outperforms the individual models as well
as other baseline methods.

1 Introduction

“Labeling a narrowly avoided vehicular
manslaughter as approach(car, person) is
missing something.”1 The recognition of ac-
tivities, participants, and objects in videos has
advanced considerably in recent years (Li et al.,
2010; Poppe, 2010; Weinland et al., 2011; Yang
and Ramanan, 2011; Ng et al., 2012). However,
identifying latent attributes of scenes, such as the
mental states of human participants, has not been
addressed. Latent attributes matter: If a video
surveillance system detects one person chasing
another, the response from law enforcement
should be radically different if the people are
happy (e.g., children playing) or afraid and angry
(e.g., a person running from an assailant).

This work is licenced under a Creative Commons Attribution
4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http:
//creativecommons.org/licenses/by/4.0/

1James Donlon, former manager of DARPA’s Mind’s Eye
program, personal communication.

Attributes that are latent in visual representa-
tions are often explicit in textual representations.
This suggests a novel method for inferring latent
attributes: Use explicit features of videos to query
text corpora, and from the resulting texts extract
attributes that are latent in the videos, such as men-
tal states. The contributions of this work are:

1: We formalize the novel task of latent attribute
identification from video scenes, focusing on the
identification of actors’ mental states. The input
for the task is contextual information about the
scene, such as detections about the activity (e.g.,
chase) and actor types (e.g., policeman or child),
and the output is a distribution over mental state
labels. We show that gold standard annotations
for this task can be reliably generated using crowd
sourcing. We define a novel evaluation measure,
called constrained weighted similarity-aligned F1

score, that accounts for both the differences be-
tween mental state distributions and the seman-
tic relatedness of mental state terms (e.g., partial
credit is given for irate when the target is angry).

2: We propose several robust and largely unsuper-
vised information extraction (IE) models for iden-
tifying the mental state labels of human partici-
pants in a scene, given solely the activity and actor
types: a lexical semantic (LS) model that extracts
mental state labels that are highly similar to the
context of the scene in a latent, conceptual vector
space; and an information retrieval (IR) model that
identifies labels commonly appearing in sentences
related to the explicit scene context. We show that
these models are complementary and their combi-
nation performs better than either model, alone.

3: Furthermore, we show that an event-centric
model that focuses on the mental state labels of
the participants in the relevant event (identified us-
ing syntactic patterns and coreference resolution)
outperforms the above shallower models.
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2 Related Work

As far as we know, the task proposed here is novel.
We can, however, review work relevant to each
part of the problem and our solution. Mental
state inference is often formulated as a classifica-
tion problem, where the goal is to predict target
mental state labels based on low-level sensory in-
put data. Most solutions try to learn classification
models based on large amounts of training data,
while some require human engineering of domain
knowledge. Hidden Markov Models (HMMs) and
Dynamic Bayesian Networks (DBNs) are popular
representations because they can model the tem-
poral evolution of mental states. For instance, the
mental states of students can be inferred from un-
intentional body gestures using a DBN (Abbasi et
al., 2009). Likewise, an HMM can also be used
to model the emotional states of humans (Liu and
Wang, 2011). Some solutions combine HMMs
and DBNs in a Bayesian inference framework to
yield a multi-layer representation that can do real-
time inference of complex mental and emotional
states (El Kaliouby and Robinson, 2004; Baltru-
saitis et al., 2011). Our work differs from these
approaches in several ways: It is mostly unsuper-
vised, multi-modal, and requires little training.

Relevant video processing technology includes
object detection (e.g., (Felzenszwalb et al., 2008)),
person detection, and pose detection (e.g., (Yang
and Ramanan, 2011)). Many tracking algo-
rithms have been developed, such as group track-
ing (McKenna et al., 2000), tracking by learn-
ing appearances (Ramanan et al., 2007), and
tracking in 3D space (Giebel et al., 2004; Brau
et al., 2013). For human action recognition,
current state-of-the-art techniques are capable of
achieving near perfect performance on the com-
monly used KTH Actions dataset (Schuldt et al.,
2004) and high performance rates on other more
challenging datasets (O’Hara and Draper, 2012;
Sadanand and Corso, 2012).

To extract mental state information from texts,
one might use any or all of the technologies of
natural language processing, so a complete review
of relevant technologies is impossible, here. Of
immediate relevance is the work of de Marneffe
et al. (2010), which identified the latent meaning
behind scalar adjectives (e.g., which ages people
have in mind when talking about “little kids”).
The authors learned these meanings by extract-
ing scalars, such as children’s ages, that were

commonly collocated with phrases, such as “lit-
tle kids,” in web documents. Mohtarami et al.
(2011) tried to infer yes/no answers from indirect
yes/no question-answer pairs (IQAPs) by predict-
ing the uncertainty of sentiment adjectives in in-
direct answers. Their method employs antonyms,
synonyms, word sense disambiguation as well as
the semantic association between the sentiment
adjectives that appear in the IQAP to assign a de-
gree of certainty to each answer. Sokolova and La-
palme (2011) further showed how to learn a model
for predicting the opinions of users based on their
written contents, such as reviews and product de-
scriptions, on the Web. Gabbard et al. (2011)
found that coreference resolution can significantly
improve the recall rate of relations extraction with-
out much expense to the precision rate.

Our work builds on these efforts by combining
information retrieval, lexical semantics, and event
extraction to extract latent scene attributes.

3 Data

For the experiments in this paper, we focus solely
on videos containing chase scenes. Chases often
invoke clear mental state inferences, and depend-
ing on context can suggest very different mental
state distributions for the actors involved.

3.1 Video Corpus

We compiled a video dataset of 26 chase videos
found on the Web. Of these, five involve police
officers, seven involve children, four show sports-
related scenes, and twelve describe different chase
scenarios involving civilian adults (two videos in-
volve children playing sports). The average dura-
tion of the dataset is 8.8 seconds with a range of
[4, 18]. Most videos involve a single chaser and a
single chasee (a person being chased) while a few
have several chasers and/or chasees.

For each video, we used Amazon Mechanical
Turk (MTurk) to identify both the actors and their
mental states. Each worker was asked to view a
video in its entirety before answering some ques-
tions about the scene. We give no prior training to
the workers. The questions were carefully phrased
to apply to all participants of a particular role, for
example all chasers (if there are more than one).
We also ask obvious validation questions about the
participants in each role (e.g., are the chasers run-
ning towards the camera?) and use the answers to
these questions to filter out poor responses. In gen-
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eral, we found that most responses were good and
only a few incomplete submissions were rejected.

In the first experiment, we asked MTurk work-
ers to select the actor types and various other de-
tections from a predefined list of tags. This label-
ing task is a proxy for a computer vision detection
system that functions at a human level of perfor-
mance. Indeed, we restricted the actor type labels
to a set that can be reasonably expected from auto-
matic detection algorithms: person, police officer,
child, and (non-human) object. For instance, po-
lice officers often wear distinctive color uniforms
that can be learned using the Felzenszwalb detec-
tor (Felzenszwalb et al., 2008), whereas children
can be reliably differentiated by their heights un-
der a 3D-tracking model (Brau et al., 2013). Each
video was annotated by three different workers
and the union of their annotations is produced.
The overall accuracy of the annotation was excel-
lent. The MTurk workers correctly identified the
important actors in every video.

Next, we collected a gold standard list of mental
state labels for each video by asking MTurk work-
ers to identify all applicable mental state adjec-
tives for the actors involved. We used a text-box
to allow for free-form input. Studies have shown
that people of different cultures can perceive emo-
tions very differently, and having forced choice
options cannot always capture their true percep-
tion (Gendron et al., 2014). Therefore, we did not
restrict the response of the workers in any way.
Workers could abstain from answering if they felt
the video was too ambiguous. Each video was
evaluated by ten different workers. We converted
each term provided to the closest adjective form
if possible. Terms with no equivalent adjective
forms were left in place. On rare occasions, work-
ers provided sentence descriptions despite being
asked for single-word adjectives. These sentences
were either removed, or collapsed into a single
word if appropriate. The overall quality of the an-
notations was good and generally followed com-
mon intuition. Asides from the frequently used
terms, we also received some colorful (yet infor-
mative) descriptions, like incredulous and vindic-
tive. In general, chases involving police scenar-
ios often contained violent and angry states while
chases involving children received more cheerful
labels. There were unexpected descriptions, such
as annoy for a playful chase between two children.
Upon review of the video, we agreed that one child

did indeed look annoyed. Thus, the resulting de-
scriptions were subjective, but very few were hard
to rationalize. By aggregating the answers from
the workers, we generated a gold standard distri-
bution of mental state terms for each video.2

3.2 Text Corpus
The text corpus used for our models is the En-
glish Gigaword 5th Edition corpus3, made avail-
able by the Linguistics Data Consortium and in-
dexed by Lucene4. It is a comprehensive archive
of newswire text data (approximately 26 GB), ac-
quired over several years. It is in this corpus that
we expect to find mental state terms cued by con-
textual information from videos.

4 Neighborhood Models

We developed several individual models based on
the neighborhood paradigm, that is, the hypoth-
esis that relevant mental state labels will appear
“near” text cued by the visual features of a scene.

The models take as input the context extracted
from a video scene, defined simply as a list of “ac-
tivity and actor-type” tuples (e.g., (chase, police)).
Multiple actor types will result in multiple tuples
for a video. The actors can be either a person, a
policeman, a child, or a (non-human) object. If
the detections describe the actor as both a person
and a child, or a person and a policeman, we auto-
matically remove the person label as it is a Word-
Net (Miller, 1995) hypernym of both child and po-
liceman. For each human actor type, we further
increase our coverage by retrieving the synonym
set (synset) of its most frequent sense (i.e., sense
#1) from WordNet. For example, a chase involv-
ing a policeman would generate the following tu-
ples: (chase, policeman) and (chase, officer).

We call these query tuples because they are used
to query text for sentences that – if all goes well –
will contain relevant mental state labels.

Given query tuples, our models use an initial
seed set of 160 mental state adjectives to produce
a single distribution over mental state labels, re-
ferred to as the response distribution, for each
video. The seed set is compiled from popular
mental and emotional state dictionaries, includ-
ing the Profile of Mood States (POMS) (McNair
et al., 1971) and Plutchik’s wheel of emotion. We

2All videos and annotations are available at:
http://trananh.github.io/vlsa

3Linguistics Data Consortium catalog no. LDC2011T07
4Apache Lucene: http://lucene.apache.org
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Source Example Mental State Labels

POMS alert, annoyed, energetic, exhausted, helpful,
sad, terrified, unworthy, weary, etc.

Plutchik angry, disgusted, fearful, joyful/joyous,
sad, surprised, trusting, etc.

Others agitated, competitive, cynical, disappointed,
excited, giddy, happy, inebriated, violent, etc.

Table 1: The initial seed set contains 160 mental
state labels, compiled from different sources like
the popular Profile of Mood States dictionary and
Plutchik’s wheel of emotion.

also included frequently used labels gathered from
synsets found in WordNet (see Table 1 for exam-
ples). Note that the gold standard annotations pro-
duced by MTurk workers (Sec. 3) was not a source
for this set, nor was it restricted to these terms.

4.1 Back-off Interpolation in Vector Space
Our first model uses the recurrent neural net-
work language model (RNNLM) of Mikolov et
al. (2013) to project both mental state labels and
query tuples into a latent conceptual space. Simi-
larity is then trivially computed as the cosine sim-
ilarity between these vectors. In all of our experi-
ments, we used a RNNLM computed over the Gi-
gaword corpus with 600-dimensional vectors.

For this vector space (vec) model, we separate
the query tuples into different levels of back-off
context. The first level includes the set of activ-
ity types as singleton context tuples, e.g., (chase),
while the second level includes all (activity, actor)
context tuples. Hence, each query tuple will yield
two different context tuples, one for each back-off
level. For each context tuple with multiple terms,
such as (chase, policeman), we find the vector rep-
resentation for the context by aggregating the vec-
tors representing the search terms:

vec(chase, policeman) = vec(chase) +
vec(policeman) .

The vector representation for a singleton con-
text tuple is just the vector of the single search
term. We then calculate the distance of each men-
tal state labelm to the normalized vector represen-
tation of the context tuple by computing the cosine
similarity score between the two vectors:

cos(Θm) =
vec(m) · vec(context tuple)
||vec(m)|| ||vec(context tuple)|| .

The hypothesis here is that mental state labels
that are related to the search context will have a

RNNLM vector that is closer to the context tuple
vector, resulting in a high cosine similarity score.
Because the number of latent dimensions is rela-
tively small (when compared to vocabulary size),
cosine similarity scores in this latent space tend to
be close. To further separate these scores, we raise
them to an exponential power:

score(m) = ecos(Θm)+1 − 1 .

The processing of each context tuple yields 160
different scores, one for each mental state label.
We normalize these scores to form a single distri-
bution of scores for each context tuple. The distri-
butions are then integrated into a single distribu-
tion representative of the complete activity as fol-
lows: (a) the distributions at each context back-off
level are averaged to generate a single distribution
per level – for the second level (which includes
activity and actor types), it means distributions for
all (activity, actor) tuples are averaged, whereas
the first level only has a single distribution from
the singleton activity tuple (chase); and (b) distri-
butions for the different levels are linearly interpo-
lated, similar to the back-off strategy of (Collins,
1997). Let e1 and e2 represent the weights of some
mental state label m from the average distribution
at the first and second level, respectively. Then the
interpolated distribution score e for m is:

e = λe1 + (1− λ)e2 .

Compiling the distribution scores for each m
produces the final distribution representing the ac-
tivity modeled. We prune this final distribution by
taking the top ranked items that make up some γ
proportion of the distribution. We delay the dis-
cussion of how γ is tuned to Section 6. The final
pruned distribution is normalized to produce the
response distribution.

4.2 Sentence Co-occurrence with Deleted
Interpolation

Our second model, the sent model, extracts mental
state labels based on the likelihood that they ap-
pear in sentences cued by query tuples. For each
tuple, we estimate the conditional probability that
we will see a mental state label m in a sentence,
where m is from the seed set, given that we al-
ready observed the desired activity and actor type
in the same sentence: P (m|activity, actor). In this
case, we refer to the sentence length as the neigh-
borhood window. Furthermore, all terms must ap-
pear as the correct part-of-speech (POS): m must
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appear as an adjective or verb, the activity as a
verb, and the actor as a noun. (Mental state adjec-
tives are allowed to appear as verbs because some
are often mis-tagged as verbs; e.g., agitated, deter-
mined, welcoming.) We used Stanford’s CoreNLP
toolkit for tokenization and POS tagging.5

Note that this probability is similar to a trigram
probability in POS tagging, except the triples need
not form an ordered sequence but must appear in
the same sentence and under the correct POS tag.
Unfortunately, we cannot always compute this tri-
gram probability directly from the corpus because
there might be too few instances of each trigram
to compute a probability reliably. As is common,
we instead estimate it as a linear interpolation of
unigrams, bigrams, and trigrams. We define the
maximum likelihood probabilities P̂ , derived from
relative frequencies f , for the unigrams, bigrams,
and trigrams as follows:

P̂ (m) =
f(m)
N

P̂ (m|activity) =
f(m, activity)
f(activity)

P̂ (m|activity, actor) =
f(m, activity, actor)
f(activity, actor)

for all mental state labels m, activities, and actor
types in our queries. N is the total number of to-
kens in the corpus. The aforementioned POS re-
quirement is enforced: f(m) is the number of oc-
currences of m as an adjective or verb. We define
P̂ = 0 if the corresponding numerator and denom-
inator are zero. The desired trigram probability is
then estimated as:

P (m|activity, actor) = λ1P̂ (m) +

λ2P̂ (m|activity) + λ3P̂ (m|activity, actor) .

As λ1 +λ2 +λ3 = 1, P represents a probability
distribution. We use the deleted interpolation algo-
rithm (Brants, 2000) to estimate one set of lambda
values for the model, based on all trigrams.

For each query tuple generated in a video, 160
different trigrams are computed, one for each men-
tal state label in the seed set, resulting in 160 con-
ditional probability scores. We normalize these
scores into a single distribution – the mental state
distribution for that query tuple. We then combine

5http://nlp.stanford.edu/software/
corenlp.shtml.

all resulting distributions, one from each query tu-
ple, and take the average to produce a single dis-
tribution over mental state labels for the video. As
before, we prune this distribution by taking the
top-ranked items that cover a large fraction γ of
total probability. The pruned distribution is renor-
malized to yield the final response distribution.

4.3 Event-centric with Deleted Interpolation
The sent model has two limitations. On one hand,
it is too sparse: the single sentence neighborhood
window is too small to reliably estimate the fre-
quencies of trigrams for the probabilities of men-
tal state terms. On the other hand, it may be too
lenient, as it extracts all mental state mentions ap-
pearing in the same sentence with the activity, or
event, under consideration, regardless if they ap-
ply to this event or not. We address these limita-
tions next with an event-centric model (event).

Intuitively, the event model focuses on the men-
tal state labels of event participants. Formally,
these mental state terms are extracted as follows:

1: We identify event participants (or actors). We
do this by analyzing the syntactic dependencies of
sentences containing the target verb (e.g., chase)
to find the subject and object. In most cases, the
nominal subject of the verb chase is the chaser and
the direct object is the person being chased. We
implemented additional patterns to model passive
voice and other exceptions. We used Stanford’s
CoreNLP toolkit for syntactic dependency parsing
and the downstream coreference resolution.

2: Once the phrases that point to actors are iden-
tified, we identify all mentions of these actors in
the entire document by traversing the coreference
chains containing the phrases extracted in the pre-
vious step. The sentences traversed in the chains
define the neighborhood area for this model.

3: Lastly, we identify the mental state terms of
event participants using a second set of syntac-
tic patterns. First, we inspect several copulative
verbs, such as to be and feel, and extract men-
tal state labels from these structures if the corre-
sponding subject is one of the mentions detected
above. Second, we search for mental states along
adjectival modifier relations, where the head is an
actor mention. For all patterns, we make sure to
filter for only mental state complements belong-
ing to the initial seed list. The same POS restric-
tion as in the other models also applies. We incre-
ment the joint frequency f for the n-gram once for
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each neighborhood that properly contain all search
terms from the n-gram in the correct POS.

The event model addresses both limitations of
the sent model: it avoids the lenient extraction of
mental state labels by focusing on labels associ-
ated with event participants; it addresses sparsity
by considering all mentions of event participants
in a document.

To understand the impact of this model, we
compare it against two additional baselines. The
first baseline investigates the importance of focus-
ing on mental state terms associated with event
participants. This model, called coref, implements
the first two steps of the above algorithm, but in-
stead of extracting only mental state terms associ-
ated with event actors (last step), it considers all
mentions appearing anywhere in the coreference
neighborhood. That is, all unique sentences tra-
versed by the relevant coreference chains are first
pieced together to define a single neighborhood for
a given document; then the relative joint frequen-
cies of n-grams are computed by incrementing f
once for each neighborhood that contains all terms
with correct POS tags.

The second baseline analyzes the importance of
coreference resolution to our problem. This model
is similar to sent, with the modification that it in-
creases the size of the neighborhood window to in-
clude the immediate neighbors of target sentences
that contain activity labels. We call this the win-n
model: The window around a target verb contains
2n + 1 sentences. We build the context neigh-
borhood by concatenating all target sentences and
their windows together for a given document. This
defines a single neighborhood for each document.
This contrasts with the sent model, in which the
neighborhood is defined for each sentence con-
taining the activity label in the document, resulting
in several possible neighborhoods in a document.
The joint frequency f for each n-gram – where
n > 1 – is computed similarly with the coref
model: it is incremented once for each neighbor-
hood that contains all the terms from the n-gram
in the correct POS. Frequencies for unigrams are
computed similar to sent.

As before, 160 different trigrams are generated
for each query tuple, one for each mental state la-
bel in the seed set, resulting in 160 conditional
probability scores. We similarly combine these
scores and generate a single pruned distribution as
the response for each of the model above.

G (irate, 0.8), (afraid, 0.2)
R1 (angry, 0.6), (mad, 0.4)
R2 (irate, 0.2), (afraid, 0.8)
R3 (mad, 0.4), (irate, 0.4), (scared, 0.2)

Table 2: We show an example gold standard dis-
tribution G and several candidate response distri-
butions to be matched against G. Here, R3 best
matches the shape and meaning of G, because
(irate, mad) and (afraid, scared) are close syn-
onyms. R2 appears to match G semantically, but
matches its shape poorly. R1 misses one of the
mental state labels, afraid, but contains labels that
are semantically close to the weightiest term in G.

4.4 Ensemble Model

We combined the results from the event and
vec models to produce an ensemble model (ens)
which, for a mental state label m, returns the aver-
age of m’s scores according to the response distri-
butions of the two individual models.

5 Evaluation Measures

LetR denote the response distribution over mental
state labels produced for a single video by one of
the models described in the previous section, and
let G denote the gold standard distribution pro-
duced for the same video by MTurk workers. If
R is similar to G then our models produce simi-
lar mental state terms as the workers. There are
many ways to compare distributions (e.g., KL dis-
tance, chi-square statistics) but these give bad re-
sults when distributions are sparse. More impor-
tantly, for our purposes, the measures that compare
the shapes of distributions do not allow semantic
comparisons at the level of distribution elements.
Suppose R assigns high scores to angry and mad,
only, while G assigns a high score to happy, only.
Clearly, R is wrong. But if insteadG had assigned
a high score to irate, only, then R would be more
right than wrong because, at the level of the indi-
vidual elements, angry and mad are similar to irate
but not similar to happy.

We describe a series of measures, starting with
the familiar F1 score, and discuss their applicabil-
ity. To illustrate the effectiveness of each measure,
we will use the examples shown in Table 2.

5.1 F1 Score

The F1 score measures the similarity between two
sets of elements, R and G. F1 = 1 when R = G

126



and F1 = 0 when R and G share no elements. F1

is the harmonic mean of precision and recall:

precision =
|R ∩G|
|R| , recall =

|R ∩G|
|G| ,

(1)

F1 = 2 · precision · recall
precision+ recall

. (2)

The F1 score penalizes the responses in Table 3
that include semantically similar labels to those in
G, and fails to reflect the weights of the labels in
G and R.

5.2 Similarity-Aligned F1 Score
Although the standard F1 does not immediately fit
our needs, it is a good starting point. We can in-
corporate the semantic similarity of distribution el-
ements by generalizing the formulas for precision
and recall as follows:

precision =
1
|R|

∑
r∈R

max
g∈G

σ(r, g) ,

recall =
1
|G|

∑
g∈G

max
r∈R

σ(r, g) ,
(3)

where σ ∈ [0, 1] is a function that yields the simi-
larity between two elements. The standard F1 has:

σ(r, g) =
{

1 , if r = g
0 , otherwise

,

but clearly σ can be defined to take values pro-
portional to the similarity of r and g. We can
choose from a wide range of semantic similarity
and relatedness measures that are based on Word-
Net (Pedersen et al., 2004). The recent RNNLM
of Mikolov opens the door to even more similar-
ity measures based on vector space representations
of words (Mikolov et al., 2013). After experi-
mentations, we settled on one proposed by Hirst
and St-Onge (1998). It represents two lexicalized
concepts as semantically close if their WordNet
synsets are connected by a path that is not too
long and that “does not change direction too of-
ten” (Hirst and St-Onge, 1998). We chose this
metric because it has a finite range, accommodates
numerous POS pairs, and works well in practice.

Given the generalized precision and recall for-
mulas in Eq 3, our similarity-aligned (SA) F1

score can be computed in the usual way, as the
harmonic mean of precision and recall (Eq 2).

SA-F1 is inspired by the Constrained Entity-
Aligned F-Measure (CEAF) metric proposed

F1 SA-F1 CWSA-F1

p r f1 p r f1 p r f1

R1 0 0 0 1 .5 2
3 1 .8 .89

R2 1 1 1 1 1 1 .4 .4 .4
R3

1
3 .5 .4 1 1 1 1 1 1

Table 3: The precision (p), recall (r), and F1

(f1) scores under various evaluation models are
presented for the examples from Table 2. Sup-
pose that σ(irate, angry) = σ(irate,mad) =
σ(afraid, scared) = 1, with σ of any two identi-
cal strings being 1, and σ of all other pairs are 0.

by (Luo, 2005) for coreference resolution. CEAF
computes an optimal one-to-one mapping between
subsets of reference and system entities before it
computes recall, precision and F. Similarly, SA-F1

finds optimal mappings between the labels of the
two sets based on σ (this is what the max terms in
Eq 3 do). Table 3 shows that SA-F1 correctly re-
wards the use of synonyms. The high scores given
to R2, however, indicate that it does not measure
the similarity between distribution shapes.

5.3 Constrained Weighted Similarity-Aligned
F1 Score

Let R(r) and G(r) be the probabilities of label
r in the R and G distributions, respectively. Let
σ∗S(`) denote the best similarity score achievable
when comparing elements from set S to ` us-
ing the similarity function σ. That is, σ∗S(`) =
maxe∈S σ(`, e). We can easily weight σ∗S(`) by
the probability of `. For example, we might re-
define precision as

∑
r∈R R(r) ·σ∗G(r). However,

this would not account for the probability of r in
the gold standard distribution, G.

An analogy might help here: Suppose we have
an unknown “mystery bag” of 100 colored pen-
cils that we will try to match with a “response
bag” of pencils. If we fill our response bag with
100 crimson pencils, while the mystery bag con-
tains only 25 crimson pencils, then our precision
score should get points only for the first 25 pen-
cils, while the remaining 75 in the response bag
should not be rewarded. For recall, the reward
given for each color in the mystery bag is capped
by the number of pencils of that color in the re-
sponse bag. The analogy is complete when we
consider that crimson pencils should perhaps be
partially rewarded when matched by cardinal, rose
or cerise pencils. In other words, a similarity mea-
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sure should account for an accumulated mass of
synonyms. Let MS(`) denote the subset of terms
from S that have the best similarity score to `:

MS(`) = {e | σ(`, e) = σ∗S(`), ∀e ∈ S} .

We define new forms of precision and recall as:

p =
∑
r∈R

min

R(r),
∑

e∈MG(r)

G(e)

σ∗G(r) ,

r =
∑
g∈G

min

G(g),
∑

e∈MR(g)

R(e)

σ∗R(g) .

(4)
The resulting constrained weighted similarity-

aligned (CWSA) F1 score is the harmonic mean
of these new precision and recall scores. Table 3
shows that CWSA-F1 yields the most intuitive
evaluation of the response distributions, down-
weighting R2 in favor of R3 and R1.

6 Experimental Procedure

As described in Section 3, MTurk workers anno-
tated 26 videos by identifying the actor types and
mental state labels for each video. The actor types
become query tuples of the form (activity, actor)
and the mental state labels are compiled into one
probability distribution over labels for each video,
designated G. The query tuples were provided to
our neighborhood models (Sec. 4), which returned
a response distribution over mental state labels for
each video, designated R.

We selected four videos of the 26 to calibrate
the prune parameters γ and the interpolation pa-
rameters λ (Sec. 4). One of these videos contains
children, one has police involvement, and two con-
tain adults. We asked additional MTurk workers to
annotate these videos, yielding an independent set
of annotations to be used solely for calibration.

The experimental question is, how well does G
match R for each video?

7 Results & Discussions

We report the average performance of our mod-
els along with two additional baseline methods in
Table 4. The naı̈ve baseline method unif simply
binds R to the initial seed set of 160 mental state
labels with uniform probability, while the stronger
freq baseline uses the occurrence frequency dis-
tribution of the labels from the Gigaword corpus
(note that only occurrences tagged as adjectives or

F1 CWSA-F1

p r f1 p r f1
unif .107 .750 .187 .284 .289 .286
freq .107 .750 .187 .362 .352 .355
sent .194 .293 .227 .366 .376 .368
vec .226 .145 .175 .399 .392 .393

coref .264 .251 .253 .382 .461 .416
event .231 .303 .256 .446 .488 .463
ens .259 .296 .274 .488 .517 .500

Table 4: The average evaluation performance
across 26 different chase videos are shown against
2 different baselines for all proposed models. Bold
font indicates the best score in a given column.

verbs were counted). All average improvements
of the ensemble model over the baseline models
are significant (p < 0.01). Significance tests were
one-tailed and were based on nonparametric boot-
strap resampling with 10, 000 iterations.

Using the classical F1 measure, the coref model
scored highest on precision, while the ensemble
method did best on F1. Not surprisingly, no model
can top the baseline methods on recall as both
baselines use the entire seed set of 160 terms.
Even so, the average recall for the baselines were
only .750, which means that the initial seed set did
not include words that were used by the MTurk an-
notators. As we’ve mentioned, the classical F1 is
misleading because it does not credit synonyms.
For example, in one movie, one of our models
was rewarded once for matching the label angry
and penalized six times for also reporting irate,
enraged, raging, upset, furious, and mad. Fre-
quently, our models were penalized for using the
terms scared and afraid instead of fearful.

Under the CWSA-F1 evaluation measure,
which correctly accounts for both synonyms and
label probabilities, our ensemble model performed
best. The average CWSA-F1 score of the ensem-
ble model improves upon the simple uniform base-
line unif by almost 75%, and over the stronger
freq baseline by over 40%. The ensemble method
also outperforms each individual method in all
measured scores. These improvements were also
found to be significant. This strongly suggests
that the vec and event models are complementary,
and not entirely redundant. Furthermore, Table 4
shows that the event model performs considerably
better than coref. This result emphasizes the im-
portance of focusing on the mental state labels of
event participants rather than considering all men-
tal state terms collocated in the same sentence with
an actor or action verb.
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Models CWSA-F1 Versus coref p-value
win-0 0.388682 −0.027512 0.0067
win-1 0.415328 −0.000866 0.4629
win-2 0.399777 −0.016417 0.0311
win-3 0.392832 −0.023362 0.0029

Table 5: The average CWSA-F1 scores for the
win-n model with different window parameters are
shown in comparison to the coref model. The
coref model outperformed all tested configura-
tions, though the difference is not significant for
n = 1. The p-value based on the average differ-
ences were obtained using one-tailed nonparamet-
ric bootstrap resampling with 10, 000 iterations.

Table 5 explores the effectiveness of corefer-
ence resolution in expanding the neighborhood
area. The coref model outperformed the simple
windowing method under every tested configura-
tion. However, the improvement over windowing
with n = 1 is not significant. This can be ex-
plained by fact that immediately neighboring sen-
tences are more likely to be related. Moreover,
since newswire articles tend to be short, the neigh-
borhoods generated by win-1 tend to be similar to
those generated by coref. In general, coref does
not do worse than a simple windowing method and
has the bonus advantage of providing references to
the actors of interest for downstream processes.

In Table 6, we show the performance results
based on the types of chase scenarios happening in
the videos. The average scores under the uniform
baseline unif for chase videos involving children
and sporting events are lower than for police and
other chases. This suggests that our seed set of
160 mental state labels is biased towards the latter
types of events, and is not as fit to describe chases
involving children.

On average, videos involving police officers
show the biggest improvement in the CWSA-F1

scores over the unif baseline (+0.2693), whereas
videos involving children received the lowest gain
(+0.1517). We believe this is the effect of the
Gigaword text corpus, which is a comprehensive
archive of newswire text, and thus is heavily bi-
ased towards high-speed and violent chases in-
volving the police. The Gigaword corpus is not
the place to find children happily chasing each
other. Similarly, sports-related chases, which are
also news-worthy, have a higher gain than chil-
dren’s videos on average.

Categories Unif Ensemble Gain
children 0.2082 0.3599 +0.1517
police 0.3313 0.6006 +0.2693
sports 0.2318 0.4126 +0.1808
others 0.3157 0.5457 +0.2300

Table 6: The average CWSA-F1 scores for the en-
semble model are shown in comparison to the uni-
form baseline method, categorize by video types.

8 Conclusion and Future Work

We introduced the novel task of identifying latent
attributes in video scenes, specifically the men-
tal states of actors in chase scenes. We showed
that these attributes can be identified by using ex-
plicit features of videos to query text corpora, and
from the resulting texts extract attributes that are
latent in the videos. We presented several largely
unsupervised methods for identifying distributions
of actors’ mental states in video scenes. We de-
fined a similarity measure, CWSA-F1, for com-
paring distributions of mental state labels that ac-
counts for both semantic relatedness of the labels
and their probabilities in the corresponding distri-
butions. We showed that very little information
from videos is needed to produce good results that
significantly outperform baseline methods.

In the future, we plan to add more detection
types. Additional contextual information from
videos (e.g., scene locations) should help improve
performance, especially on tougher videos (e.g.,
videos involving children chases). Moreover, we
believe that the initial seed set of mental state la-
bels can be learned simultaneously with the ex-
traction patterns of the event model using a mutual
bootstrapping method, similar to that of (Riloff
and Jones, 1999).

Currently, our experiments assume one distri-
bution of mental state labels for each video. They
do not distinguish between the mental states of the
chaser and chasee, while in reality these partici-
pants may be in very different states of mind. Our
event model is capable of making this distinction
and we will test its performance on this task in the
future. We also plan to test the effectiveness of our
models with actual computer vision detectors. As
a first approximation, we will simulate the noisy
nature of detectors by degrading the quality of an-
notated data. Using artificial noise on ground-truth
data, we can simulate the performance of real de-
tectors and test the robustness of our models.
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Abstract 

With the advent of e-learning, there is a 
strong demand for tools that help to cre-
ate e-learning courses in an automatic or 
semi-automatic way. While resources for 
new courses are often freely available, 
they are generally not properly structured 
into easy to handle units. In this paper, 
we investigate how state of the art text 
segmentation algorithms can be applied 
to automatically transform unstructured 
text into coherent pieces appropriate for  
e-learning courses. The feasibility to 
course generation is validated on a test 
corpus specifically tailored to this scenar-
io. We also introduce a more generic 
training and testing method for text seg-
mentation algorithms based on a Latent 
Dirichlet Allocation (LDA) topic model. 
In addition we introduce a scalable ran-
dom text segmentation algorithm, in or-
der to establish lower and upper bounds 
to be able to evaluate segmentation re-
sults on a common basis. 

1 Introduction 

The creation of e-learning courses is generally a 
time consuming effort. However, separating text 
into topically cohesive segments can help to re-
duce this effort whenever textual content is al-
ready available but not properly structured ac-
cording to e-learning standards. Since these seg-

ments textually describe the content of learning 
units, automatic pedagogical annotation algo-
rithms could be applied to categorize them into 
introductions, descriptions, explanations, exam-
ples and other pedagogical meaningful concepts 
(K.Sathiyamurthy & T.V.Geetha, 2011).   

Course designers generally assume that learn-
ing content is composed of small inseparable 
learning objects at the micro level which in turn 
are wrapped into Concept Containers (CCs) at 
the macro level. This approach is followed, e.g., 
in the Web-Didactic approach by Swertz et al. 
(2013) where CCs correspond to chapters in a 
book and Knowledge Objects (KOs) correspond 
to course pages. To automate the partition of an 
unstructured text source into appropriate seg-
ments for the macro and micro level we applied 
different text segmentation algorithms (segment-
ers) on each level.  

To evaluate the segmenters in the described 
scenario, we created a test corpus based on fea-
tured Wikipedia articles. For the macro level we 
exploit sections from different articles and the 
corresponding micro structure consists of subse-
quent paragraphs from these sections. On the 
macro level the segmenter TopicTiling (TT) by 
Riedl and Biemann (2012) is used. It is based on 
a LDA topic model which we train based on the 
articles from Wikipedia to extract a predefined 
number of different topics. On the micro level, 
the segmenter BayesSeg (BS) is applied 
(Eisenstein & Barzilay, 2008). 

We achieved overall good results measured in 
three different metrics over a baseline approach, 
i.e., a scalable random segmenter, that indicate 
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text segmentation algorithms are ready to be ap-
plied to facilitate the creation of e-learning 
courses. 

This paper is organized as follows: Section 2 
gives an overview of related work on automatic 
course generation as well as text segmentation 
applications. In the main sections 3 and 4 we de-
scribe our approach and evaluation results on our 
corpus. In the last section we summarize the pre-
sented findings and give an outlook on further 
research needed for the automatic generation of 
e-learning courses. 

2 Related Work 

Automatic course generation can roughly be di-
vided into two different areas. One is concerned 
with generation from existing courses and is 
mainly focused on adaption to the learner or in-
structional plans see Lin et al. (2009), Capuno et 
al. (2009) and Tan et al. (2010). The other area is 
the course creation itself on which we focus on 
in this paper.  

Since the publication of the segmenter Text-
Tiling by Hearst (1997) at least a dozen different 
segmenters have been developed. They can be 
divided into linear and hierarchical segmenters. 
Linear segmenters process the text sequentially 
sentence by sentence. Hierarchical segmenters 
first process the whole text and extract topics 
with varying granularities. These topics are then 
agglomerated based on a predefined criterion.  

Linear segmenters have been developed by 
Kan et al. (1998) and Galley et al. (2003). One of 
the first probabilistic algorithms has been intro-
duced by Utiyama and Isahara (2001). LDA 
based approaches were first described by Sun et 
al. (2008) and improved by Misra et al. (2009). 
The newest LDA based segmenter is TT. It per-
forms linear text segmentation based on a pre-
trained LDA topic model and calculates the simi-
larity between segments (adjacent sentences) to 
measure text coherence on the basis of a topic 
vector representation using cosine similarity. For 
reasons of efficiency, only the most frequent top-
ic ID is assigned to each word in the sentence, 
using Gibbs sampling. 

Hierarchical text segmentation algorithms 
were first introduced by Yaari (1997). The latest 
approach by Eisenstein (2008) uses a generative 
Bayesian model BS for text segmentation, as-
suming that a) topic shifts are likely to occur at 
points marked by cue phrases and b) a linear dis-
course structure. Each sentence in the document 
is modeled by a language model associated with 

a segment. The algorithm then calculates the 
maximum likelihood estimates of observing the 
whole sequence of sentences at selected topic 
boundaries.  

The applications of text segmentation algo-
rithms range from information retrieval (Huang, 
et al., 2002) to topic tracking and segmentation 
of multi-party conversations (Galley, et al., 
2003). 

Similar to our work Sathiyamurthy and Geetha 
(2011) showed how LDA based text segmenta-
tion algorithms combined with hierarchical do-
main ontology and pedagogical ontology can be 
applied to content generation for e-learning 
courses. They focussed on the segmentation of 
existing e-learning material in the domain of 
computer science and introduced new metrics to 
measure the segmentation results with respect to 
concepts from the ontologies. Our work focusses 
on the appropriate segmentation of unstructured 
text instead of existing e-learning material. Alt-
hough the usage of domain models is an interest-
ing approach the availability of such models is 
very domain dependent. We rely on the LDA 
model parameters and training to accomplish a 
word to topic assignment.  

Rather than introducing new aspects such as 
pedagogical concepts we investigated the general 
usability of segmentation algorithms with focus 
on the macro and micro structure which is char-
acteristic for most e-learning content. 

3 Automatic Generation of E-Learning 
Courses 

The main objective is to provide e-learning 
course designers with a tool to efficiently organ-
ize existing textual content for new e-learning 
courses. This can be done by the application of 
text segmenters that automatically generate the 
basic structure of the course. The intended web-
didactic conform two-level structure differenti-
ates between macro and micro levels. The levels 
have different requirements with respect to the-
matic coherence: the CCs are thematically rather 
independent and the KOs within each CC need to 
be intrinsically coherent but still separable.  

We chose the linear LDA-based segmenter TT 
to find the boundaries between CCs. The LDA-
based topic model can be trained on content 
which is topically related to the target course. 
This approach gives the course creator flexibility 
in the generation of the macro level structure by 
either adjusting the training documents or by 
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changing the number and size of topics that 
should be extracted for the topic model. 

On the micro level we did not use TT. The 
training of an appropriate LDA model would 
have to be done for every CC separately since 
they are thematically relatively unrelated. Apart 
from that the boundaries between the KOs 
should be an optimal division for a given number 
of expected boundaries. The reason for this is 
that the length of KOs should be adapted to the 
intended skill and background of the learners. 
This is why we decided to use the hierarchical 
segmenter BS.    

3.1 Application Setting and Corpus 

To evaluate segmenters many different corpora 
have been created. The most commonly used 
corpus was introduced by Choi (2000). It is 
based on the Brown Corpus and contains 700 
samples, each containing a fixed number of sen-
tences from 10 different news texts, which are 
randomly chosen from the Brown Corpus. Two 
other widely tested corpora were introduced by 
Galley et al. (2003). Both contain 500 samples, 
one with concatenated texts from the Wall Street 
Journal (WSJ) and the other with concatenated 
texts from the Topic Detection and Tracking 
(TDT) corpus (Strassel, et al., 2000). A standard 
for the segmentation of speech is the corpus from 
the International Computer Science Institute 
(ICSI) by Janin et al. (2003). A medical text 
book has been used by Eisenstein and Barzilay 
(2008). The approaches to evaluate segmenters 
are always similar: they have to find the bounda-
ries in artificially concatenated texts. 

We developed our own dataset because we 
wanted to use text that potentially could be used 
as a basis for creating e-learning courses. We 
therefore need samples which, on the one hand, 
have relatively clear topic boundaries on the 
macro level and, on the other hand resemble the 
differences in number of topics and inter-topic 
cohesion on the micro level. 

We based our corpus on 530 featured1 articles 
from 6 different categories of the English Wik-
ipedia. It can be assumed that Wikipedia articles 
are often the source for learning courses. We 
used featured articles because the content struc-
ture is very consistent and clear, i.e., sections and 
paragraphs are well defined.  

The corpus is divided into a macro and micro 
dataset in the following manner: The macro da-

                                                 
1http://en.wikipedia.org/wiki/Wikipedia:Featured_arti
cles 

taset contains 1200 samples. Each sample is a 
concatenation of paragraphs from 6-8 different 
sections from featured articles. Each topic in a 
sample consists of 3-6 subsequent paragraphs 
from a randomly selected section. We propose 
that one paragraph describes one KO. One CC 
contains all KOs which are from the same sec-
tion in the article. Thus, one sample from the 
macro dataset contains 6-8 CCs, each containing 
3-6 KOs. The segmentation task is to find the 
topic boundaries between the CCs. The macro 
dataset is quite similar in structure to the Choi-
Corpus. 

The micro dataset is extracted from the macro 
dataset. It contains 8231 samples, where each 
sample contains all KOs from one CC of the 
macro dataset. The segmentation task is to find 
the topic boundaries between the KOs, i.e, sub-
sequent paragraphs of one section, see Figure 1. 

 

 
 

Figure 1: Schema for corpus samples: left and 
right Wikipedia articles with sections and para-
graphs, in the middle three samples, dashed rec-
tangle is a macro sample and dashed circles are 

micro samples. Filled squares indicate topic 
boundaries in the macro sample and filled circles 

in the micro samples. 
 

All texts in our corpus are stemmed and stop-
words are removed with the NLP-Toolkit for 
Python (Bird, et al., 2009) using an adapted vari-
ant2 of the keyword extraction method by Kim et 
al. (2013).  

The macro and micro dataset themselves are 
divided into multiple subsets to evaluate the sta-
bility of the segmenters when the number of sen-
tences per topic or the number of topics per sam-
ple have changed. The detailed configuration is 
shown in Table 1 and 2. Each subset is identified 
by the number of CCs per sample and the num-
ber of KOs per CC (the subset is denoted as 
#CC_#KO). Subsets of the micro dataset are 
identified by a single value which is the number 

                                                 
2 https://gist.github.com/alexbowe/879414 
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of KOs per sample (#KO). In Table 1 the identi-
fier R means that the number of CCs or KOs is 
not the same for all samples, it is chosen random-
ly from the set depicted by curly brackets. 
 

ID CCs per 
sample 

KOs per 
CC 

mean sen-
tences per 
CC 

7_3 7 3 20 
7_4 7 4 27 
7_5 7 5 33 
7_6 7 6 40 
7_R 7 {3,4,5,6} 30 
R_R {6,7,8} {3,4,5,6} 30 

 
Table 1: Macro dataset and its subsets each with 

200 samples. 
 

ID KOs per sam-
ple 

mean sentences per 
KO 

3 3 9 
4 4 8 
5 5 7 
6 6 7 

 
Table 2: Micro dataset and its subsets. 

 
The important difference between the macro and 
micro dataset is that every subset of the macro 
dataset contains a constant number of topics 
which differ in number of sentences per topic 
between 20 and 40, except the subset R_R which 
contains a random number of topics between 6 
and 8. In contrast, each micro-level subset differs 
in number of topics but not significantly in the 
number of sentences per topic.  

This difference between the datasets allows us 
to focus on the different level-specific aspects. 
On the macro dataset we can evaluate the stabil-
ity of TT over topics with highly varying lengths 
and on the micro dataset we can evaluate BS 
when the number of strongly coherent topics 
changes. 

3.2 Text Segmentation Metrics  

The performance of a segmenter cannot simply 
be measured by false positive and false negative 
boundaries compared to the true boundaries be-
cause, if the predicted boundary is only one sen-
tence away from the true boundary this could 
still be very close, e.g., if the next true topic 
boundary is 30 sentences away. Thus, the rela-
tive proximity to true boundaries should also be 

considered. There is an ongoing discussion about 
what kind of metric is appropriate to measure the 
performance of segmenters (Fournier & Inkpen, 
2012). Most prominent and widely used are 
WindowDiff wd (Pevzner & Hearst, 2002) and 
the probabilistic metric pk (Beeferman, et al., 
1999). The basic principle is to slide a window of 
fixed size over the segmented text, i.e., fixed 
number of words or sentences, and assess wheth-
er the sentences on the edges are correctly seg-
mented with respect to each other. Both metrics 
wd and pk are penalty metrics, therefore lower 
values indicate better segmentations. The prob-
lem with these metrics is that they strongly de-
pend on the arbitrarily defined window size pa-
rameter and do not penalize all error types equal-
ly, e.g., pk penalizes false negatives more than 
false positives and wd penalizes false positive 
and negative boundaries more at the beginning 
and end of the text (Lamprier, et al., 2007). Be-
cause of that we also used a rather new metric 
called BoundarySimilarity b. This metric is pa-
rameter independent and has been developed by 
Fournier and Inkpen (2013) to solve the men-
tioned deficiencies. Since b measures the similar-
ity between the boundaries, higher values indi-
cate better segmentations. We used the imple-
mentations of wd, pk and b by Fournier3 (wd and 
pk with default parameters). 

3.3 LDA Topic Model Training 

Riedl and Biemann evaluated TT on the Choi-
Corpus based on a 10-fold cross validation. 
Thus, the LDA topic model was generated with 
90% of the samples and TT then tested on the 
remaining 10% of the samples. The 700 samples 
in the Choi-Corpus are only concatenations of 
1111 different excerpts from the Brown Corpus 
and each sample contains 10 of these excepts it is 
clear that there are just not enough excerpts to 
make sure that the samples in the training set do 
not contain any excerpt that is also part of some 
samples in the testing set. 

That is one reason why we do not use the 
same approach since we want to make sure that 
training and testing sets are truly disjoint to eval-
uate TT on the macro dataset. The other reason is 
that the topic structure generated by TT should 
be based on an LDA topic model with topics ex-
tracted from documents which are thematically 
related to certain parts of the course that is to be 
created without using its text source. 

                                                 
3 https://github.com/cfournie/segmentation.evaluation 
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We train the LDA topic model to extract top-
ics from the real Wikipedia articles. This model 
is then used to evaluate TT on the macro dataset 
and not the Wikipedia articles. This approach has 
consequences for the LDA topic model training 
and respective TT testing sets, since the LDA 
training set contains real articles and the TT test 
set contains the samples from the macro dataset. 
Because training and testing set should truly be 
disjoint we cannot train with any article that is 
part of a sample from the test set. Because each 
test sample from the macro dataset contains parts 
of 6 to 8 articles, the training set is reduced by a 
large factor, even with little test set size, which is 
shown for different number of folds (k) for cross 
validation in Table 3. 

 
k Test Set Size Training Set Size 
10 120±0 Samples 

(10% of the  
macro dataset) 

139±7 featured  
Articles  
(26% of all arti-
cles) 

20 60±0 Samples  
(5% of the macro 
dataset) 

267±8 featured  
Articles  
(51% of all arti-
cles) 

30 40±0 Samples  
(3% of the macro 
dataset) 

338±7  
featured Articles  
(64% of all arti-
cles) 

 
Table 3: Mean size and standard deviation of 

truly disjunctive LDA training and respective TT 
testing set. 

 
If we truly separate training and testing sets and 
train the LDA topic model with real articles a 10-
fold cross validation  leads to very small training 
sets (only 26% of all articles are used), which is 
why we also used higher folds to evaluate the 
results of TT on the macro dataset. 

4 Evaluation Results 

We evaluated TT on the macro dataset without 
providing the number of boundaries. On the mi-
cro dataset we evaluated BS with the expected 
number of boundaries provided. We also imple-
mented a scalable random segmenter (RS) to 
compare TT and BS against some algorithm with 
interpretable performance. The interpretation of 
the values in any metric even with respect to dif-
ferent metrics is very difficult without compari-
son to another segmenter. For every true bounda-
ry in a document, RS predicts a boundary drawn 

from a normally distributed set around the true 
boundary with scalable standard deviation σ. 
Thus smaller values for σ result in better seg-
mentations because the probability of selecting 
the true boundary increases, e.g., for σ = 2, more 
than 68% of all predicted boundaries are at most 
2 sentences away from the true boundary and 
more than 99% of all predicted boundaries are 
located within a range of 6 sentences from it. But 
whether 6 sentences is a large or small distance 
should depend on the average topic size. We 
therefore relate the performance of RS to the 
mean number of sentence per topic by defining σ 
in percentages of that number as shown in the 
table below. 
 

Distance from True 
Boundary: 

Standard Deviation 

very close σ = 0% - 5% 
close σ = 5% -15% 
large σ = 15% - 30% 

 
Table 4: Defined performance of RS for different 

standard deviations σ, given in percentage of 
mean sentences per topic. 

 
To give an example, the subset 7_6 of the macro 
dataset has an average of 40 sentences per topic, 
therefore RS with σ=15% means that it is set to 6 
which is 15% of 40. This is defined as a medium 
performance in Table 4 because 68% of the 
boundaries predicted are within a range of 6 sen-
tences from the true boundaries and 99% within 
18 sentences.  

One important difference between the macro 
and micro dataset is that all subsets of the macro 
dataset have 7 topics, differing in length, except 
for subset R_R where this number is only slightly 
varied (Table 1). In contrast, all topics subsets of 
the micro dataset have roughly the same number 
of sentences but highly differ in the number of 
topics (Table 2). We therefore do not compare 
the performance of BS and TT since they are 
evaluated on quite different datasets designed for 
testing different types of segmentation tasks rel-
evant to course generation, as explained earlier. 
We compare both to RS for different standard 
deviations σ. 

4.1 Results for TopicTiling on the Macro 
Dataset 

For the LDA topic model training we used the 
following default parameters:  alpha=0.5, 
beta=0.1,ntopics=100,niters=1000, 
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twords=20,savestep=100, for details we 
refer to (Griffiths & Steyvers, 2004). To compare 
TT’s performance for different folds of the mac-
ro dataset we optimized the window parameter 
which has to be set for TT, it specifies the num-
ber of sentences to the left and to the right of the 
current position p between two sentences that are 
used to calculate the coherence score between 
these sentences (Riedl & Biemann, 2012). The 
performance for TT has been best with window 
sizes between 9 and 11 for all metrics as shown 
in Figure 2. As expected, higher folds increase 
TT’s overall performance especially with respect 
to metric b (Figure 3). This is due to the larger 
training set sizes of the LDA topic model. 
 

 
Figure 2: TT performance for different window 

sizes with 30-fold cross validation. 
 

 
Figure 3: TT performance for different folds and 

window size set to 9. 
 
In general smaller window sizes increase the 
number of predicted boundaries. The optimal 
window size is between 9 and 11 and we would 
expect the measures for 5 and 15 to be similar 

(Figure 2). This is only the case for metric b, the 
metrics wd and pk seem to penalize false posi-
tives more than false negatives. This would be a 
contradiction to the findings of Lamprier et al. 
(2007) since they actually found the opposite to 
be true. This behaviour is explained by the non-
linear relation between the window parameter 
and number of predicted boundaries by TT as 
shown in Figure 4. 

 
Figure 4: Mean number of predicted boundaries 
by TT for different window sizes and an LDA 

topic model trained with 30 folds. 
 

Another important finding is the stability of TT’s 
performance over different window sizes (from 9 
to 11). This is important since a very sensitive 
behaviour would be very difficult to handle for 
course creators because they would have to esti-
mate this parameter in advance. 

For the following detailed evaluation TT win-
dow size is set to 9 because of the best overall 
results with respect to metric b and 30-fold cross 
validation. The detailed performance with re-
spect to metric wd, pk and b of TT compared to 
RS with different standard deviations σ is shown 
in Figure 5 i), ii) and iii). 

 
i. TT measured with metric b. 
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ii. TT measured with metric wd. 

 
iii.  TT measured with metric pk. 

 
Figure 5: Performance of TT on the macro da-

taset. 
 

First of all we want to point out that the graphs 
of RS for different values of σ are ordered as ex-
pected by all metrics. Lower percentages indicate 
better results. And with respect to metric wd and 
pk the performance for each σ is nearly constant 
over all subsets, which indicates that the metrics 
correctly consider the relative distance of a pre-
dicted boundary from the true boundary by using 
the mean number of sentences per topic. In met-
ric b only the RS with σ=30%, 15% and 5% are 
constant. For σ=5% there is a strong decrease in 
performance for subsets with more sentences per 
topic. 

The overall performance of TT is between that 
of RS for σ=1% and σ=15%, except for subset 
7_6 with respect to metric wd. With respect to 
metric b TT even predicts very close boundaries. 
In all metrics TT has the worst results on subset 
7_6, which has the largest number of sentences 
per topic (see Table 1). This is due to TT’s win-
dow parameter which influences the number of 
predicted boundaries as shown in Figure 4. 

4.2 Results for BayesSeg on the Micro Da-
taset 

BS does not need any training or parameter fit-
ting, since it is provided with the number of ex-
pected segments. We therefore used the default 
parameter settings. 

 
i. BS measured with metric b. 

 
ii. BS measured with metric wd. 

 
iii.  BS measured with metric pk. 

 
Figure 6: Performance of BS on the micro da-

taset. 
 

As expected, the performance of RS is decreas-
ing for higher values of σ in all metrics (Figure 6 
i), ii), iii)). For metric wd and pk the increasing 

0.0

0.2

0.4

0.6

0.8

7_3 7_4 7_5 7_6 7_R R_R
Subset

m
ea

n

0.0

0.2

0.4

0.6

0.8

7_3 7_4 7_5 7_6 7_R R_R
Subset

m
ea

n

0.0

0.2

0.4

0.6

0.8

3 4 5 6
Subset

m
ea

n

0.0

0.2

0.4

0.6

0.8

3 4 5 6
Subset

m
ea

n

0.0

0.2

0.4

0.6

0.8

3 4 5 6
Subset

m
ea

n

138



number of topics leads to slightly increasing 
penalties for constant values of σ, which clearly 
indicates that the metrics do not treat all errors 
equally, as repeatedly pointed out. Metric b treats 
errors equally over increasing number of topics 
for RS. BS predicts with respect to all metrics 
close boundaries since it is better than RS with 
σ=15% except on subset 6 (Table 4). With an 
increasing number of topics BS is getting worse 
in all metrics.  

Comparing the measures of metric b for macro 
and micro dataset it seems that it handles increas-
ing numbers of topics better than increasing size 
of topics. On the micro dataset the results with 
respect to all metrics are far more similar than 
the once on the macro dataset, where the differ-
ences are very large. Since we are only interested 
in comparative measures of the performance of 
the segmenters and RS, which has shown to be a 
very useful approach to interpret segmentation 
results, we leave detailed explanations of the 
metrics behaviours itself to further research. 

5 Conclusion 

We demonstrated that text segmentation algo-
rithms can be applied to the generation of e-
learning courses. We use a web-didactic ap-
proach that is based on a flat two-level hierar-
chical structure. A new corpus has been com-
piled based on featured articles from the English 
Wikipedia that reflects this kind of course struc-
ture. On the broader macro level we applied the 
linear LDA-based text segmentation algorithm 
TopicTiling without providing the expected 
number of boundaries. The LDA topic model is 
usually trained with concatenated texts from the 
very same dataset TopicTiling is tested on. We 
showed that it is very difficult to ensure that the 
two sets are always truly disjoint. The reason is 
that concatenated texts normally always have 
identical parts. This problem is solved by apply-
ing a different training and testing method. 

The more fine grained micro level was seg-
mented using BayesSeg, a hierarchical algorithm 
which we provided with the expected number of 
boundaries. 

We used three different evaluation metrics and 
presented a scalable random segmentation algo-
rithm to establish upper and lower bounds for 
baseline comparison. The results, especially on 
the macro level, demonstrate that text segmenta-
tion algorithms have evolved enough to be used 
for the automatic generation of e-learning cours-
es. 

An interesting aspect of future research would 
be the application and creation of real e-learning 
content. Based on the textual segments, summa-
rization and question generation algorithms as 
well as automatic replacement with appropriate 
pictures and videos instead of text could be used 
to finally evaluate an automatically generated e-
learning course with real learners.  

Regarding text segmentation in general, future 
research especially needs to address the difficult 
task of transparently and equally measuring the 
performance of segmentation algorithms. Our 
results, i.e., the ones from the random segmenta-
tion algorithm, indicate that there are still un-
solved issues regarding the penalization of false 
positives and false negatives when the number of 
topics or sentences per topic is changed. 
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Abstract

This paper describes a graphical semantic
representation based on bottom-up ‘con-
tinuation’ dependencies which has the im-
portant property that its vertices define a
usable set of discourse referents in work-
ing memory even in contexts involving
conjunction in the scope of quantifiers. An
evaluation on an existing quantifier scope
disambiguation task shows that non-local
continuation dependencies can be as reli-
ably learned from annotated data as repre-
sentations used in a state-of-the-art quanti-
fier scope resolver, suggesting that contin-
uation dependencies may provide a natural
representation for scope information.

1 Introduction

It is now fairly well established that at least shal-
low semantic interpretation informs parsing deci-
sions in human sentence processing (Tanenhaus et
al., 1995; Brown-Schmidt et al., 2002), and re-
cent evidence points to incremental processing of
quantifier implicatures as well (Degen and Tanen-
haus, 2011). This may indicate that inferences
about the meaning of quantifiers are processed di-
rectly in working memory. Human working mem-
ory is widely assumed to store events (includ-
ing linguistic events) as re-usable activation-based
states, connected by a durable but rapidly mutable
weight-based memory of cued associations (Marr,
1971; Anderson et al., 1977; Murdock, 1982; Mc-
Clelland et al., 1995; Howard and Kahana, 2002).
Complex dependency structures can therefore be
stored in this associative memory as graphs, with
states as vertices and cued associations as directed
edges (e.g. Kintsch, 1988). This kind of represen-
tation is necessary to formulate and evaluate algo-
rithmic claims (Marr, 1982) about cued associa-
tions and working memory use in human sentence

processing (e.g. van Schijndel and Schuler, 2013).
But accounting for syntax and semantics in this
way must be done carefully in order to preserve
linguistically important distinctions. For example,
positing spurious local dependencies in filler-gap
constructions can lead to missed integrations of
dependency structure in incremental processing,
resulting in weaker model fitting (van Schijndel et
al., 2013). Similar care may be necessary in cases
of dependencies arising from anaphoric corefer-
ence or quantifier scope.

Unfortunately, most existing theories of compo-
sitional semantics (Montague, 1973; Barwise and
Cooper, 1981; Bos, 1996; Baldridge and Kruijff,
2002; Koller, 2004; Copestake et al., 2005) are
defined at the computational level (Marr, 1982),
employing beta reduction over complete or under-
specified lambda calculus expressions as a precise
description of the language processing task to be
modeled, not at the algorithmic level, as a model
of human language processing itself. The struc-
tured expressions these theories generate are not
intended to represent re-usable referential states
of the sort that could be modeled in current theo-
ries of associative memory. As such, it should not
be surprising that structural adaptations of lambda
calculus expressions as referential states exhibit a
number of apparent deficiencies:

First, representations based on lambda calculus
expressions lack topologically distinguishable ref-
erents for sets defined in the context of outscop-
ing quantifiers. For example, a structural adapta-
tion of a lambda calculus expression for the sen-
tence Every line contains two numbers, shown in
Figure 1a (adapted from Koller, 2004), contains
referents for the set of all document lines (sL) and
for the set of all numbers (sN) which can be iden-
tified by cued associations to predicate constants
like Number, but it is not clear how a referent for
the set of numbers in document lines can be dis-
tinguished from a referent for the set of numbers
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c) (Every pL sL s′L) ∧ (Set sL dL eL) ∧ (Line eL dL) ∧ (Set s′L d′L pN) ∧
(Two pN sN s′N) ∧ (Set sN dN eN) ∧ (Number eN dN) ∧ (Set s′N d′N eC) ∧ (Contain eC d′L d′N)

Figure 1: Semantic dependency graph in a ‘direct’ (top-down) style, adapted from a disambiguated rep-
resentation of Koller (2004), excluding quantifiers over eventualities. The semantic dependency structure
for the sentence Every line contains two numbers (a), with flat logical form (c), is not a subgraph of the
semantic dependency structure for Every line begins with a space and contains two numbers (b), because
the structure is interrupted by the explicit conjunction predicate ‘And’.

in each document line (s′N) using local topological
features of the dependency graph, as would be re-
quired to accurately recall assertions about total or
average quantities of numbers in document lines.1

Second, graphs based on traditional lambda
calculus representations do not model conjuncts
as subgraphs of conjunctions. For example, the
graphical representation of the sentence Every line

1This graph matching can be implemented in a vectorial
model of associative memory by comparing the (e.g. cosine)
similarity of superposed vectors resulting from cueing in-
coming and outgoing dependencies with all possible labels
in increasingly longer paths from one or more constant vec-
tor states (e.g. vectors for predicate constants). This graph
matching does not necessarily preclude the introduction of
monotonicity constraints from matched quantifiers. For ex-
ample, More than two perl scripts work, can entail More
than two scripts work, using a subgraph in the first argu-
ment, but Fewer than two scripts work, can entail Fewer than
two perl scripts work, using a supergraph in the first argu-
ment. This consideration is similar to those observed in rep-
resentations based on natural logic (MacCartney and Man-
ning, 2009) which also uses low-level matching to perform
some kinds of inference, but representations based on natural
logic typically exclude other forms of inference, whereas the
present model does not.

This matching also assumes properties of nuclear scope
variables are inherited from associated restrictor variables,
e.g. through a set of dependencies from nuclear scope sets
to restrictor sets not shown in the figure. This assumption
will be revisited in Section 3.

begins with a space and contains two numbers
shown in Figure 1b does not contain the graphical
representation of the sentence Every line contains
two numbers shown in Figure 1a as a connected
subgraph. Although one might expect a query
about a conjunct to be directly answerable from
a knowledge base containing the conjoined repre-
sentation, the pattern of dependencies that make
up the conjunct in a graphical representation of a
lambda calculus expression does not match those
in the larger conjunction.

Finally, representations based on lambda calcu-
lus expressions contain vertices that do not seem
to correspond to viable discourse referents. For
example, following the sentence Every line con-
tains two numbers, using the lambda expression
shown in Figure 1b, dL may serve as a referent of
it in but it has only one underscore, sN may serve
as a referent of they in but they are not negative,
eC may serve as a referent of that in but that was
before it was edited, and pL may serve as a ref-
erent of that in but the compiler doesn’t enforce
that, but it is not clear what if anything would nat-
urally refer to the internal conjunction pA. Predi-
cations over such conjunctions (e.g. Kim believes
that every line begins with a space and contains
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two numbers) are usually predicated at the outer
proposition pL, and in any case do not have truth
values that are independent of the same predica-
tion at each conjunct. One of the goals of Minimal
Recursion Semantics (Copestake et al., 2005) was
to eliminate similar kinds of superfluous conjunc-
tion structure.

Fortunately, lambda calculus expressions like
those shown in Figure 1 are not the only way to
represent compositional semantics of sentences.
This paper defines a graphical semantic depen-
dency representation that can be translated into
lambda calculus, but has the important property
that its vertices define a usable set of discourse
referents in working memory even in contexts in-
volving conjunction in the scope of quantifiers.
It does this by reversing the direction of de-
pendencies from parent-to-child subsumption in
a lambda-calculus tree to a representation sim-
ilar to the inside-out structure of function def-
initions in a continuation-passing style (Barker,
2002; Shan and Barker, 2006)2 so that sets are de-
fined in terms of their context, and explicit ‘And’
predicates are no longer required, leaving noth-
ing to get in the way of an exact pattern match.3

The learnability of the non-local continuation de-
pendencies involved in this representation is then
evaluated on an existing quantifier scope disam-
biguation task using a dependency-based statisti-
cal scope resolver, with results comparable to a
state-of-the-art unrestricted graph-based quantifier
scope resolver (Manshadi et al., 2013).

2 Continuation Dependencies

This paper explores the use of a bottom-up depen-
dency representation, inspired by the inside-out
structure of function definitions in a continuation-
passing style (Barker, 2002; Shan and Barker,
2006), which creates discourse referents for sets
that are associated with particular scoping con-
texts. This dependency representation preserves
the propositions, sets, eventualities, and ordinary

2This representation also has much in common with gen-
eralized Skolem terms of Steedman (2012), which also repre-
sent dependencies to outscoped terms, but here continuation
dependencies are applied to all quantifiers, including univer-
sals.

3This also holds for explicit disjunction predicates, which
can be cast as conjunction through application of de Morgan’s
law and manipulation of the polarity of adjacent quantifiers.
For example, Every line begins with at least one space or
contains at least two numbers, is equivalent to No line be-
gins with fewer than one space and contains fewer than two
numbers.

discourse referents of a ‘direct’ representation (the
p, s, e, and d nodes in Figure 1), but replaces the
downward dependencies departing set referents
with upward dependencies to context sets (high-
lighted in Figure 2).

Figures 1c and 2c also show flat logical forms
composed of elementary predications, adapted
from Kruijff (2001) and Copestake et al. (2005),
for the sentence Every line contains two numbers,
which are formed by identifying the function as-
sociated with the predicate constant (e.g. Contain)
that is connected to each proposition or eventual-
ity referent (e.g. eC) by a dependency labeled ‘0’,
then applying that function to this referent, fol-
lowed by the list of arguments connected to this
referent by functions numbered ‘1’ and up: e.g.
(Contain eC d′L d′N). These dependencies can also
be defined by numbered dependency functions fn

from source instance j to destination instance i,
notated (fn j) = i. This notation will be used
in Section 4 to define constraints in the form of
equations. For example, the subject (first argu-
ment) of a lexical item may be constrained to be
the subject (first argument) of that item’s senten-
tial complement (second argument), as in an in-
stance of subject control, using the dependency
equation (f1 i) = (f1 (f2 i)).

Since continuation dependencies all flow up the
tree, any number of conjuncts can impinge upon a
common outscoping continuation, so there is no
longer any need for explicit conjunction nodes.
The representation is also attractive in that it lo-
cally distinguishes queries about, say, the cardi-
nality of the set of numbers in each document line
(Set s′N d′N s′L) from queries about the cardinal-
ity of the set of numbers in general (Set s′N d′N s′⊥)
which is crucial for successful inference by pattern
matching. Finally, connected sets of continuation
dependencies form natural ‘scope graphs’ for use
in graph-based disambiguation algorithms (Man-
shadi and Allen, 2011; Manshadi et al., 2013),
which will be used to evaluate this representation
in Section 6.

3 Mapping to Lambda Calculus

It is important for this representation not only
to have attractive graphical subsumption proper-
ties, but also to be sufficiently expressive to de-
fine corresponding expressions in lambda calcu-
lus. When continuation dependencies are filled in,
the resulting dependency structure can be trans-
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c) (Every pL sL s′L) ∧ (Set sL dL s⊥) ∧ (Line eL dL) ∧ (Set s′L d′L s⊥) ∧
(Two pN sN s′N) ∧ (Set sN dN s⊥) ∧ (Number eN dN) ∧ (Set s′N d′N s′L) ∧ (Contain eC d′L d′N)

Figure 2: Semantic dependency graph in a ‘continuation-passing’ (bottom-up) style, including quantifiers
over eventualities for verbs (in gray). The semantic dependency structure for the sentence Every line
contains two numbers (a), with flat logical form (c), is now contained by the semantic dependency
structure for Every line begins with a space and contains two numbers (b).

lated into a lambda calculus expression by a de-
terministic algorithm which traverses sequences of
continuation dependencies and constructs accord-
ingly nested terms in a manner similar to that de-
fined for DRT (Kamp, 1981). This graphical rep-
resentation can be translated into lambda calculus
by representing the source graph as a set Γ of ele-
mentary predications ( f i0 .. iN) and the target as
a set ∆ of translated lambda calculus expressions,
e.g. (λi (h f i0 .. i .. iN)). The set ∆ can then be de-
rived from Γ using the following natural deduction
rules:4

• Initialize ∆ with lambda terms (sets) that have
no outscoped sets in Γ:

Γ, (Set s i ) ; ∆

Γ, (Set s i ) ; (λi True),∆
(Set s ) < Γ

• Add constraints to appropriate sets in ∆:
4Here, set predications are defined with an additional final

argument position, which is defined to refer in a nuclear scope
set to the restrictor set that is its sibling, and in a restrictor set
to refer to s⊥.

Γ, ( f i0 .. i .. iN) ; (λi o),∆
Γ ; (λi o ∧ (h f i0 .. i .. iN)),∆

i0 ∈ E

• Add constraints of supersets as constraints on
subsets in ∆:

Γ, (Set s i ), (Set s′ i′ s′′s) ;
(λi o ∧ (h f i0 .. i .. iN)), (λi′ o′),∆
Γ, (Set s i ), (Set s′ i′ s′′s) ;
(λi o ∧ (h f i0 .. i .. iN)),

(λi′ o′ ∧ (h f i0 .. i′ .. iN)),∆

• Add quantifiers over completely constrained
sets in ∆:
Γ, (Set s i ), ( f p s′ s′′),

(Set s′ i′ s ), (Set s′′i′′s′ s′) ;
(λi o), (λi′ o′), (λi′′ o′′),∆
Γ, (Set s i ) ;
(λi o ∧ (h f (λi′ o′) (λi′′ o′′))),∆

p ∈ P,
( f ′.. i′..) < Γ,

( f ′′.. i′′..) < Γ.

For example, the graph in Figure 2 can be trans-
lated into the following lambda calculus expres-
sion (including quantifiers over eventualities in the
source graph, to eliminate unbound variables):
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(Every (λdLSome (λeLLine eL dL))
(λd′LTwo (λdN Some (λeN Number eN dN))

(λd′N Some (λeC Contain eC d′L d′N))))

4 Derivation of Syntactic and Semantic
Dependencies

The semantic dependency representation defined
in this paper assumes semantic dependencies other
than those representing continuations are derived
compositionally by a categorial grammar. In par-
ticular, this definition assumes a Generalized Cat-
egorial Grammar (GCG) (Bach, 1981; Oehrle,
1994), because it can be used to distinguish argu-
ment and modifier compositions (from which re-
strictor and nuclear scope sets are derived in a tree-
structured continuation graph), and because large
GCG-annotated corpora defined with this distinc-
tion are readily available (Nguyen et al., 2012).
GCG category types c ∈ C each consist of a prim-
itive category type u ∈ U, typically labeled with
the part of speech of the head of a category (e.g.
V, N, A, etc., for phrases or clauses headed by
verbs, nouns, adjectives, etc.), followed by one or
more unsatisfied dependencies, each consisting of
an operator o ∈ O (-a and -b for adjacent argument
dependencies preceding and succeeding a head, -c
and -d for adjacent conjunct dependencies preced-
ing and succeeding a head, -g for filler-gap depen-
dencies, -r for relative pronoun dependencies, and
some others), each followed by a dependent cate-
gory type from C. For example, the category type
for a transitive verb would be V-aN-bN, since it is
headed by a verb, and has unsatisfied dependen-
cies to satisfied noun-headed categories preced-
ing and succeeding it (for the subject and direct
object noun phrase, respectively). This formula-
tion has the advantage for semantic dependency
calculation that it distinguishes modifier and ar-
gument attachment. Since the semantic represen-
tation described in this paper makes explicit dis-
tinctions between restrictor sets and scope sets
(which is necessary for coherent interpretation of
quantifiers) it is necessary to consistently apply
predicate-argument constraints to discourse refer-
ents in the nuclear scope set of a quantifier and
modifier-modificand constraints to discourse ref-
erents in the restrictor set of a quantifier. For ex-
ample, in Sentence 1:

(1) Everything is [A-aN open].

the predicate open constrains the nuclear scope set
of every, but in Sentence 2:

(2) Everything [A-aN open] is finished.

the predicate open constrains the restrictor set.
These constraints can be consistently applied in
the argument and modifier attachment rules of a
GCG.

Like a Combinatory Categorial Grammar
(Steedman, 2000), a GCG defines syntactic depen-
dencies for compositions that are determined by
the number and kind of unsatisfied dependencies
of the composed category types. These are similar
to dependencies for subject, direct object, prepo-
sition complement, etc., of Stanford dependencies
(de Marneffe et al., 2006), but are reduced to num-
bers based on the order of the associated depen-
dencies in the category type of the lexical head.

These syntactic dependencies are then associ-
ated with semantic dependencies, with the refer-
ent of a subject associated with the first argument
of an eventuality, the referent of a direct object as-
sociated with the second argument, and so on, for
all verb forms other than passive verbs. In the case
of passive verbs, the referent of a subject is asso-
ciated with the second argument of an eventuality,
the referent of a direct object associated with the
third argument, and so on.

In order to have a consistent treatment of ar-
gument and modifier attachment across all cate-
gory types, and also in order to model referents
of verbs as eventualities which can be quantified
by adverbs like never, once, twice, etc. (Parsons,
1990), it is desirable for eventualities associated
with verbs to also be quantified. Outgoing seman-
tic dependencies to arguments of eventualities are
then applied as constraints to the discourse refer-
ent variable of the restrictor sets of these quanti-
fiers. Incoming dependencies to eventualities and
other discourse referents used as modificands of
modifiers are also applied as constraints to dis-
course referent variables of restrictor sets, but in-
coming dependencies to discourse referents used
as arguments of predicates are applied as con-
straints to discourse referent variables of nuclear
scope sets. This assignment to restrictor or nuclear
scope sets depends on the context of the relevant
(argument or modifier attachment) parser opera-
tion, so associations between syntactic and seman-
tic dependencies must be left partially undefined
in lexical entries. Lexical entries are therefore de-
fined with separate syntactic and semantic depen-
dencies, using even numbers for syntactic depen-
dencies from lexical items, and odd numbers for
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Figure 3: Example lexical semantic dependencies for the verb containing (a), and dependency equations
for argument attachment (b) and modifier attachment (c) in GCG deduction rules. Lexical dependencies
are shown in gray. Even numbered edges departing lexical items denote lexical syntactic dependen-
cies, and odd numbered edges departing lexical items are lexical semantic dependencies. Argument
attachments constrain semantic arguments to the nuclear scope sets of syntactic arguments, and modifier
attachments constrain semantic arguments to the restrictor sets of syntactic arguments.

semantic dependencies from lexical items. For ex-
ample, a lexical mapping for the finite transitive
verb contains might be associated with the pred-
icate Contain, and have the discourse referent of
its first lexical semantic argument (f1 (f3 i)) as-
sociated with the first argument of the eventuality
discourse referent of the restrictor set of its propo-
sition (f1 (f1 (f1 (f1 i)))), and the discourse referent
of its second lexical semantic argument (f1 (f5 i))
associated with the second argument of the even-
tuality discourse referent of the restrictor set of its
proposition (f2 (f1 (f1 (f1 i)))):

contains ⇒ V-aN-bN : λi (f0 i)=contains

∧ (f0 (f1 (f1 (f1 i))))=Contain

∧ (f1 (f1 (f1 (f1 i))))=(f1 (f3 i))

∧ (f2 (f1 (f1 (f1 i))))=(f1 (f5 i))

A graphical representation of these dependencies
is shown in Figure 3a. These lexical semantic con-
straints are then associated with syntactic depen-
dencies by grammar rules for argument and modi-
fier attachment, as described below.

4.1 Inference rules for argument attachment
In GCG, as in other categorial grammars, infer-
ence rules for argument attachment apply functors
of category c-ad or c-bd to preceding or succeed-
ing arguments of category d:

d : g c-ad : h⇒ c : (fc-ad g h) (Aa)

c-bd : g d : h⇒ c : (fc-bd g h) (Ab)

where fuϕ1...ϕn are composition functions for u∈U
and ϕ∈{-a, -b, -c, -d}×C, which connect the lexi-
cal item (f2n i) of a preceding child function g as
the 2nth argument of lexical item i of a succeeding
child function h, or vice versa:

fuϕ1..n−1-ad
def
= λg h i (g (f2n i)) ∧ (h i)

∧ (f2n+1 i)=(f2 (f1 (f2n i))) (1a)

fuϕ1..n−1-bd
def
= λg h i (g i) ∧ (h (f2n i))

∧ (f2n+1 i)=(f2 (f1 (f2n i))) (1b)

as shown in Figure 3b. This associates the lex-
ical semantic argument of the predicate (f2n+1 i)
with the nuclear scope of the quantifier propo-
sition associated with the syntactic argument
(f2 (f1 (f2n i))). For example, the following infer-
ence attaches a subject to a verb:

every line
N : λi (f0 i)=line ..

contains two numbers
V-aN : λi (f0 i)=contains ..

V : λi (f0 (f2 i))=line .. ∧ (f0 i)=contains ..
∧ (f3 i)=(f2 (f1 (f2 i)))

Aa

4.2 Inference rules for modifier attachment
This grammar also uses distinguished inference
rules for modifier attachment. Inference rules for
modifier attachment apply preceding or succeed-
ing modifiers of category u-ad to modificands of
category c, for u ∈ U and c, d ∈ C:

u-ad : g c : h⇒ c : (fPM g h) (Ma)

c : g u-ad : h⇒ c : (fSM g h) (Mb)
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Figure 4: Compositional analysis of noun phrase lines containing numbers exemplifying both argument
attachment (to numbers) and modifier attachment (to lines). Lexical dependencies are shown in gray, and
continuation dependencies (which do not result from syntactic composition) are highlighted.

where fPM and fSM are category-independent com-
position functions for preceding and succeeding
modifiers, which return the lexical item of the ar-
gument ( j) rather than of the predicate (i):

fPM
def
= λg h j ∃i (f2 i)= j ∧ (g i) ∧ (h j)

∧ (f3 i)=(f1 (f1 (f2 i))) (2a)

fSM
def
= λg h j ∃i (f2 i)= j ∧ (g j) ∧ (h i)

∧ (f3 i)=(f1 (f1 (f2 i))) (2b)

as shown in Figure 3c. This allows categories
for predicates to be re-used as modifiers. Unlike
argument attachment, modifier attachment asso-
ciates the lexical semantic argument of the mod-
ifier (f2n+1 i) with the restrictor of the quantifier
proposition of the modificand (f1 (f1 (f2n i))). For
example, the following inference attaches an ad-
jectival modifier to the quantifier proposition of a
noun phrase:

every line
N:λi (f0 i)=line ..

containing two numbers
A-aN:λi (f0 i)=containing ..

N : λi (f0 i)=line .. ∧ ∃ j (f0 j)=containing ..
∧ (f2 j)=i ∧ (f3 j)=(f1 (f1 (f2 j)))

Mb

An example of argument and modifier attachment
is shown in Figure 4.

5 Estimation of Scope Dependencies

Semantic dependency graphs obtained from GCG
derivations as described in Section 4 are scopally
underspecified. Scope disambiguations must then

be obtained by specifying continuation dependen-
cies from every set referent to some other set ref-
erent (or to a null context, indicating a top-level
set). In a sentence processing model, these non-
local continuation dependencies would be incre-
mentally calculated in working memory in a man-
ner similar to coreference resolution.5 However, in
this paper, in order to obtain a reasonable estimate
of the learnability of such a system, continuation
dependencies are assigned post-hoc by a statistical
inference algorithm.

The disambiguation algorithm first defines a
partition of the set of reified set referents into
sets {s, s′, s′′} of reified set referents s whose dis-
course referent variables (f1 s) are connected by
semantic dependencies. For example, sL, sC and
s′N in Figure 4 are part of the same partition, but s′L
is not.

Scope dependencies are then constructed from
these partitions using a greedy algorithm which
starts with an arbitrary set from this partition in

5Like any other dependency, a continuation dependency
may be stored during incremental processing when both its
cue (source) and target (destination) referents have been hy-
pothesized. For example, upon processing the word numbers
in the sentence Every line contains two numbers, a continu-
ation dependency may be stored from the nuclear scope set
associated with this word to the nuclear scope set of the sub-
ject every line, forming an in-situ interpretation with some
amount of activation (see Figure 4), and with some (proba-
bly smaller) amount of activation, a continuation dependency
may be stored from the nuclear scope set of this subject to
the nuclear scope set of this word, forming an inverted inter-
pretation. See Schuler (2014) for a model of how sentence
processing in associative memory might incrementally store
dependencies like these as cued associations.
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the dependency graph, then begins connecting it,
selecting the highest-ranked referent of that par-
tition that is not yet attached and designating it
as the new highest-scoping referent in that parti-
tion, attaching it as the context of the previously
highest-scoping referent in that partition if one ex-
ists. This proceeds until:

1. the algorithm reaches a restrictor or nuclear
scope referent with a sibling (superset or sub-
set) nuclear scope or restrictor referent that
has not yet served as the highest-scoping ref-
erent in its partition, at which point the algo-
rithm switches to the partition of that sibling
referent and begins connecting that; or

2. the algorithm reaches a restrictor or nuclear
scope referent with a sibling nuclear scope or
restrictor referent that is the highest-scoping
referent in its partition, in which case it con-
nects it to its sibling with a continuation de-
pendency from the nuclear scope referent to
the restrictor referent and merges the two sib-
lings’ partitions.

In this manner, all set referents in the dependency
graph are eventually assembled into a single tree
of continuation dependencies.

6 Evaluation

This paper defines a graphical semantic represen-
tation with desirable properties for storing sen-
tence meanings as cued associations in associa-
tive memory. In order to determine whether this
representation of continuation dependencies is re-
liably learnable, the set of test sentences from the
QuanText corpus (Manshadi et al., 2011) was au-
tomatically annotated with these continuation de-
pendencies and evaluated against the associated
set of gold-standard quantifier scopes. The sen-
tences in this corpus were collected as descrip-
tions of text editing tasks using unix tools like sed
and awk, collected from online tutorials and from
graduate students asked to write and describe ex-
ample scripts. Gold-standard scoping relations in
this corpus are specified over bracketed sequences
of words in each sentence. For example, the sen-
tence Print every line that starts with a number
might be annotated:

Print [1 every line] that starts with [2 a number] .

scoping relations: 1 > 2

meaning that the quantifier over lines, referenced
in constituent 1, outscopes the quantifier over
numbers, referenced in constituent 2. In order to
isolate the learnablility of the continuation depen-
dencies described in this paper, both training and
test sentences of this corpus were annotated with
hand-corrected GCG derivations which are then
used to obtain semantic dependencies as described
in Section 4. Continuation dependencies are then
inferred from these semantic dependencies us-
ing the algorithm described in Section 5. Gold-
standard scoping relations are considered success-
fully recalled if a restrictor (f1 (f1 i)) or nuclear
scope (f2 (f1 i)) referent of any lexical item i within
the outscoped span is connected by a sequence of
continuation dependencies (in the appropriate di-
rection) to any restrictor or nuclear scope referent
of any lexical item within the outscoping span.

First, the algorithm was run without any lexical-
ization on the 94 non-duplicate sentences of the
QuanText test set. Results of this evaluation are
shown in the third line of Table 1 using the per-
sentence complete recall accuracy (‘AR’) defined
by Manshadi et al. (2013).

The algorithm was then run using bilexical
weights based on the frequencies F̃(h, h′) with
which a word h′ occurs as a head of a category
outscoped by a category headed by word h in the
350-sentence training set of the QuanText corpus.
For example, since quantifiers over lines are often
outscoped by quantifiers over files in the training
data, the system learns to rank continuation de-
pendencies to referents associated with the word
lines ahead of continuation dependencies to ref-
erents associated with the word files in bottom-
up inference. These lexical features may be par-
ticularly helpful because continuation dependen-
cies are generated only between directly adjacent
sets. Results for scope disambiguation using these
rankings are shown in the fourth line of Table 1.
This increase is statistically significant (p = 0.001
by two-tailed McNemar’s test). This significance
for local head-word features on continuation de-
pendencies shows that these dependencies can be
reliably learned from training examples, and sug-
gests that continuation dependencies may be a nat-
ural representation for scope information.

Interestingly, effects of lexical features for
quantifiers (the word each, or definite/indefinite
distinctions) were not substantial or statistically
significant, despite the relatively high frequencies
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System AR
Manshadi and Allen (2011) baseline 63%
Manshadi et al. (2013) 72%
This system, w/o lexicalized model 61%
This system, w. lexicalized model 72%

Table 1: Per-sentence complete recall accuracy
(‘AR’) of tree-based algorithm as compared to
Manshadi and Allen (2011) and Manshadi et al.
(2013) on explicit NP chunks in the QuanText test
set, correcting for use of gold standard trees as de-
scribed in footnote 19 of Manshadi et al. (2013).

of the words each and the in the test corpus (oc-
curring in 16% and 68% of test sentences, respec-
tively), which suggests that these words may often
be redundant with syntactic and head-word con-
straints. Results using preferences that rank refer-
ents quantified by the word each after other refer-
ents achieve a numerical increase in accuracy over
a model with no preferences (up 5 points, to 66%),
but it is not statistically significant (p = .13). Re-
sults using preferences that rank referents quanti-
fied by the word the after other referents achieve a
numerical increase in accuracy over a model with
no preferences (up 1 point, to 62%), but this is
even less significant (p = 1). Results are even
weaker in combination with head-word features
(up 1 point, to 73%, for each; down two points,
to 70%, for the). This suggests that world knowl-
edge (in the form of head-word information) may
be more salient to quantifier scope disambiguation
than many intuitive linguistic preferences.

7 Conclusion

This paper has presented a graphical semantic de-
pendency representation based on bottom-up con-
tinuation dependencies which can be translated
into lambda calculus, but has the important prop-
erty that its vertices define a usable set of discourse
referents in working memory even in contexts in-
volving conjunction in the scope of quantifiers.
An evaluation on an existing quantifier scope dis-
ambiguation task shows that non-local continua-
tion dependencies can be as reliably learned from
annotated data as representations used in a state-
of-the-art quantifier scope resolver. This suggests
that continuation dependencies may be a natural
representation for scope information.

Continuation dependencies as defined in this
paper provide a local representation for quantifi-

cational context. This ensures that graphical repre-
sentations match only when their quantificational
contexts match. When used to guide a statistical
or vectorial representation, it is possible that this
local context will allow certain types of inference
to be defined by simple pattern matching, which
could be implemented in existing working mem-
ory models. Future work will explore the use of
this graph-based semantic representation as a ba-
sis for vectorial semantics in a cognitive model of
inference during sentence processing.
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Abstract

We present a formal account of the mean-
ing of vague scalar adjectives such as ‘tall’
formulated in Type Theory with Records.
Our approach makes precise how percep-
tual information can be integrated into
the meaning representation of these pred-
icates; how an agent evaluates whether an
entity counts as tall; and how the proposed
semantics can be learned and dynamically
updated through experience.

1 Introduction

Traditional semantic theories such as those de-
scribed in Partee (1989) and Blackburn and
Bos (2005) offer precise accounts of the truth-
conditional content of linguistic expressions, but
do not deal with the connection between meaning,
perception and learning. One can argue, however,
that part of getting to know the meaning of lin-
guistic expressions consists in learning to identify
the individuals or the situations that the expres-
sions can describe. For many concrete words and
phrases, this identification relies on perceptual in-
formation. In this paper, we focus on characteris-
ing the meaning of vague scalar adjectives such
as ‘tall’, ‘dark’, or ‘heavy’. We propose a for-
mal account that brings together notions from tra-
ditional formal semanticswith perceptual informa-
tion, which allows us to specify how a logic-based
interpretation function is determined and modified
dynamically by experience.

The need to integrate language and percep-
tion has been emphasised by researchers work-
ing on the generation and resolution of referring

This work is licensed under a Creative Commons Attribution
4.0 International Licence. Page numbers and proceedings
footer are added by the organisers. Licence details: http:
//creativecommons.org/licenses/by/4.0/

expressions (Kelleher et al., 2005; Reiter et al.,
2005; Portet et al., 2009) and, perhaps even more
strongly, on the field of robotics, where ground-
ing language on perceptual information is critical
to allow artificial agents to autonomously acquire
and verify beliefs about the world (Siskind, 2001;
Steels, 2003; Roy, 2005; Skocaj et al., 2010).
Most of these approaches, however, do not build
on theories of formal semantics for natural lan-
guage. Here we choose to formalise our account
in a theoretical framework known as Type Theory
with Records (TTR), which has been shown to be
suitable for formalising classic semantic aspects
such as intensionality, quantification, and nega-
tion (Cooper, 2005a; Cooper, 2010; Cooper and
Ginzburg, 2011) as well as less standard phenom-
ena such as linguistic interaction (Ginzburg, 2012;
Purver et al., 2014), perception and action (Dob-
nik et al., 2013), and semantic coordination and
learning (Larsson, 2009). In this paper we use
TTR to put forward an account of the semantics of
vague scalar predicates like ‘tall’ that makes pre-
cise how perceptual information can be integrated
into their meaning representation; how an agent
evaluates whether an entity counts as tall; and how
the proposed semantics for these expressions can
be learned and dynamically updated through lan-
guage use.

We start by giving a brief overview of TTR and
explaining how it can be used for classifying en-
tities as being of particular types integrating per-
ceptual information. After that, in Section 3, we
describe the main properties of vague scalar pred-
icates. Section 4 presents a probabilistic TTR for-
malisation of the meaning of ‘tall’, which captures
its context-dependence and its vague character. In
Section 5, we then offer an account of how that
meaning representation is acquired and updated
with experience. Finally, in Section 6 we discuss
related work, before concluding in Section 7.
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2 Meaning as Classification in TTR

In this section we give a brief and hence inevitably
partial introduction to Type Theory with Records.
For more comprehensive introductions, we refer
the reader to Cooper (2005b) and Cooper (2012).

2.1 Type Theory with Records: Main Notions

As in any type theory, the most central notion in
TTR is that of a judgement that an object a is
of type T , written as a : T . In TTR judgements
are seen as fundamentally related to perception, in
the sense that perceiving inherently involves cate-
gorising what we perceive. Some common basic
types in TTR are Ind (the type of individuals) and
R+ (the type of positive real numbers). All basic
types are members of a special type Type. Given
types T1 and T2, we can create the function type
T1 → T2 whose domain are objects of type T1

and whose range are objects of type T2. Types
can also be constructed from predicates and ob-
jects P (a1, . . . , an). Such types are called ptypes
and correspond roughly to propositions in first or-
der logic. In TTR, propositions are types of proofs,
where proofs can be a variety of things, from situ-
ations to sensor readings (more on this below).

Next, we introduce records and record types.
These are structured objects made up of pairs 〈l, v〉
of labels and values that are displayed in a matrix:

(1) a. A record type:
`1 : T1

`2 : T2(`1)
. . .
`n : Tn(`1, `2, . . . , `n−1)



b. A record: r =


`1 = a1

`2 = a2
. . .
`n = an
. . .


Record r in (1b) is of the record type in (1a) if
and only if a1 : T1, a2 : T2(a1), . . . , and an :
Tn(a1, a2, . . . , an−1). Note that the record may
contain more fields but would still be of type (1a)
if the typing condition holds. Records and record
types can be nested so that the value of a label is
itself a record (or record type). We can use paths
within a record or record type to refer to specific
bits of structure: for instance, we can use r.`2 to
refer to a2 in (1b).

As can be seen in (1a), the labels `1, . . . `n in a
record type can be used elsewhere to refer to the
values associated with them. This is a common

way of constructing ptypes where the arguments
of a predicate are entities that have been intro-
duced before in the record type. A sample record
and record type are shown in (2).

(2)

x = a
cman= prf(man(a))
crun = prf(run(a))

 :

x : Ind
cman: man(x)
crun : run(x)


In (2), a is an entity of type individual and prf(P )
is used as a placeholder for proofs of ptypes P .
In the record type above, the ptypes man(x) and
run(x) constructed from predicates are dependent
on x (introduced earlier in the record type).

2.2 Perceptual Meaning

Larsson (2013) proposes a system formalised in
TTR where some perceptual aspects of meaning
are represented using classifiers. For example, the
meaning of ‘right’ (as in ‘to the right of ’) involves
a two-input perceptron classifier κright(w, t, r),
specified by a weight vector w and a threshold
t, which takes as input a context r including an
object x and a position-sensor reading srpos. The
sensor reading consists of a vector containing two
real numbers representing the space coordinates of
x. The classifier classifies x as either being to the
right on a plane or not.1

(3) if r :
[

x : Ind
srpos : RealVector

]
, then

κright(w, t, r) =
{

right(r.x) if (r.srpos · w) > t
¬ right(r.x) otherwise

As output we get a record type containing either a
ptype right(x) or its negation, ¬ right(x). Larsson
(2013) proposes that readings from sensors may
count as proofs of such ptypes. A classifier can
be used for judging x as being of a particular type
on the grounds of perceptual information. A per-
ceptual proof for right(x) would thus include the
output from the position sensor that is directed to-
wards x. Here, this output would be the space co-
ordinates of x.

3 Vague Scalar Predicates

Scalar predicates such as ‘tall’, ‘long’ and ‘ex-
pensive’, also called “relative gradable adjectives”
(Kennedy, 2007), are interpreted with respect to a

1We are here assuming that we have a definition of dot
product for TTR vectors a:RealVectorn and b:RealVectorn
such that a · b = Σn

i=1aibi = a1b1 + a2b2 + . . . + anbn. We
also implicitly assume that the weight vector and the sensor
reading vector have the same dimensionality.
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scale, i.e., a dimension such as height, length, or
cost along which entities for which the relevant di-
mension is applicable can be ordered. This makes
scalar predicates compatible with degree morphol-
ogy, like comparative and superlative morphemes
(‘taller than’, ‘the longest’) and intensifier mor-
phemes such as ‘very’ or ‘quite’. In this pa-
per, our focus is on the so-called positive form of
these adjectives (e.g. ‘tall’ as opposed to ‘taller’
or ‘tallest’).

A property that distinguishes the positive form
from the comparative and the superlative forms is
its context-dependance. To take a common exam-
ple: If Sue’s height is 180cm, she may be appro-
priately described as a tall woman, but probably
not as a tall basketball player. Thus, what counts
as tall can vary from context to context, with the
most relevant contextual parameter being a com-
parison class relative to which the adjective is in-
terpreted (e.g., the set of women, the set of bas-
ketball players, etc.). In addition to being context-
dependent, positive-form scalar predicates are also
vague, in the sense that they give rise to borderline
cases, i.e., entities for which it is unclear whether
the predicate holds or not.

Vagueness is certainly a property that affects
most natural language expressions, not only scalar
adjectives. However, scalar adjectives have a
relatively simple semantics (they are often uni-
dimensional) and thus constitute a perfect case-
study for investigating the properties and effects of
vagueness on language use. Gradable adjectives
have received a high amount of attention in the
formal semantics literature. It is common to dis-
tinguish between two main approaches to their se-
mantics: delineation-based and degree-based ap-
proaches. The delineation approach is associated
with the work of Klein (1980), who proposes that
gradable adjectives denote partial functions de-
pendent on a comparison class. They partition the
comparison class into three disjoint sets: a positive
extension, a negative extension, and an extension
gap (entities for which the predicate is neither true
nor false). In contrast, degree-based approaches
assume a measure function m mapping individu-
als x to degrees on a particular scale (degrees of
height, degrees of darkness, etc.) and a standard
of comparison or degree threshold θ (again, de-
pendent on a comparison class) such that x be-
longs to the adjective’s denotation if m(x) > θ
(Kamp, 1975; Pinkal, 1979; Pinkal, 1995; Barker,

2002; Kennedy and McNally, 2005; Kennedy,
2007; Solt, 2011; Lassiter, 2011).

We build on degree approaches but adopt a
perception-based perspective and take a step fur-
ther to formalise how the meaning of these pred-
icates can be learned and constantly updated
through language use.

4 A Perceptual Semantics for ‘Tall’

To exemplify our approach, we will use the scalar
predicate ‘tall’ throughout.

4.1 Context-sensitivity

We first focus on capturing the context-
dependence of relative scalar predicates. For
this we define a type Tctxt as follows:

(4) Tctxt=

 c : Type
x : c
h : R+


The context (ctxt) of a scalar predicate like ‘tall’
is a record of the type in (4), which includes: a
type c (typically a subtype of Ind) representing the
comparison class; an individual x within the com-
parison class (the argument of tall); a perceived
measure on the relevant scale(s), in this case the
perceived height h of x expressed as a positive real
number.

The context presupposes the acquisition of sen-
sory input from the environment. In particular, it
assumes that an agent using such a representation
is able to classify the entity in focus x as being
of type c and is able to use some height sensor to
obtain an estimate of x’s height (the value of h is
the sensor reading). We thus forgo the inclusion of
an abstract measure function in the representation.
In an artificial agent, this may be accomplished by
image processing software for detecting and mea-
suring objects in a digital image.

Besides the ctxt, we also assume a standard
threshold of tallness θtall of the type given in (5).
θtall is a function from a type specifying a com-
parison class to a height value, which corresponds
to a tallness threshold for that comparison class.
(In Section 5 we will discuss how such a threshold
may be computed.)

(5) θtall : Type→ R+

The meaning of ‘tall’ involves a classifier for tall-
ness, κtall, of the following type:

(6) κtall : (Type→ R+, Tctxt)→ Type
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We define this classifier as a one-input perceptron
that compares the perceived height h of an indi-
vidual x to the relevant threshold θ determined by
a comparison class c. Thus, if θ : Type→ R+ and
r : Tctxt, then:

κtall(θ, r) =
{

tall(r.x) if r.h > θ(r.c)
¬tall(r.x) otherwise

Simplifying somewhat, we can represent the mea-
ning of ‘tall’, tall, as a record specifying the type
of context (Tctxt) where an utterance of ‘tall’ can
be made, the parameter of the tallness classifier
(the threshold θ), and a function f which is applied
to the context to produce the content of ‘tall’.

(7)

tall =



Tctxt=

 c : Type
x : c
h : R+


θ = θtall

f = λr : Tctxt.[
sit = r
sit-type =

[
ctall : κtall(θ, r)

]]


The output of the function f is an Austinian propo-
sition (Cooper, 2005b): a judgement that a situa-
tion (sit, represented as a record r of type Tctxt),
is of a particular type (specified in sit-type). In the
case of tall, the context of utterance (which instan-
tiates r) is judged to be of the type where there is
an individual x which is either tall or not tall, ac-
cording to the output of the classifier κtall. The
context of utterance in the sit field will include the
height-sensor reading, which means that the sen-
sor reading is part of the proof of the sit-type indi-
cating that x is tall (or not, as the case may be).

Thus, to decide whether to refer to some indi-
vidual x as tall or to evaluate someone else’s utter-
ance describing x as tall, an agent applies the func-
tion tall.f to the current situation, represented as a
record r : Tctxt. As an example, let us consider a
situation that includes the context in (8), resulting
from observing John Smith as being 1.88 meters
tall (assuming this is our scale of tallness):

(8) ctxt =

 c = Human
x = john smith
h = 1.88


Let us assume that given the comparison class
Human, θtall(Human) = 1.87. In this case,
tall.f(ctxt) will compute as shown in (9). The re-
sulting Austinian proposition corresponds to the
agent’s judgement that the situation in sit is one
where John Smith counts as tall.

(9) λr : Tctxt.
[

sit = r
sit-type =

[
ctall : κtall(θtall, r)

] ]

(

 c = Human
x = john smith
h = 1.88

) =

sit =

 c = Human
x = john smith
h = 1.88


sit-type =

[
ctall : tall(john smith)

]


4.2 Vagueness
According to the above account, ‘tall’ has a
precise interpretation: given a degree of height
and a comparison class, the threshold sharply
determines whether tall applies or not. There
are several ways in which one can account for
vagueness—amongst others, by introducing per-
ceptual uncertainty (possibly inaccurate sensor
readings). Here, in line with Lassiter (2011), we
opt for substituting the precise threshold with a
noisy, probabilistic threshold. We consider the
threshold to be a normal random variable, which
can be represented by the parameters of its Gaus-
sian distribution, the mean µ and the standard de-
viation σ (the noise width).2

To incorporate this modification into our ap-
proach, we update the tallness classifier κtall we
had defined in (6) so that it now takes as parame-
ters µtall and σtall, both of them dependent on the
comparison class and hence of type Type→ R+.
The output of the classifier is now a probability
rather than a ptype such as tall(x) or¬tall(x). Be-
fore indicating how this probability is computed,
we give the type of the vague version of the clas-
sifier in (10) and the vague representation of the
meaning of ‘tall’ in (11).

(10)κtall : (Type→R+, Type→R+, Tctxt)→ [0, 1]

(11)

tall =



Tctxt=

 c : Type
x : c
h : R+


µ = µtall

σ = σtall

f = λr : Tctxt.sit = r
sit-type =

[
ctall : tall(r.x)

]
prob = κtall(σ, µ, r)




2Which noise function may be the most appropriate is an

empirical question we do not tackle in this paper. Our choice
of Gaussian noise follows Schmidt et al. (2009)—see Sec-
tion 5.1.
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The output of the function tall.f is now a prob-
abilistic Austinian proposition (Cooper et al.,
2014). Like before, the proposition expresses a
judgement that a situation sit is of a particular
type. But here the judgement is probabilistic—it
encodes the belief of an agent concerning the like-
lihood that sit is of a type where x counts as tall.

Since we take the noisy threshold to be a normal
random variable, given a particular µ and σ, we
can calculate the probability that the height r.h of
individual r.x counts as tall as follows:

κtall(µ, σ, r) =
1
2

[
1 + erf

(
r.h− µ(r.c)
σ(r.c)

√
2

)]
Here erf is the error function, defined as3

erf(x) =
2√
π

∫ x

t=0
e−t2dt

The error function defines a sigmoid shape (see
Figure 1), in line with the upward monotonicity
of ‘tall’. The output of κtall(µ, σ, r) corresponds
to the probability that h will exceed the normal
random threshold with mean µ and deviation σ.

Figure 1: Plot of the error function.

Let us consider an example. Assume that we have
µtall(Human) = 1.87 and σtall(Human) = 0.05
(see Section 5.1 below for justification of the latter
value). Let’s also assume the same ctxt as above
in (8). In this case, tall.f(ctxt) will compute as in
(12), given that

κtall(µtall, σtall,

c=Human
x=john smith
h=1.88

) =

1
2

[
1 + erf

(
1.88− 1.87

0.05
√

2

)]
= 0.579

3For an explanation of this standard definition, see http:
//en.wikipedia.org/wiki/Error_function,
which is the source of the graph in Figure 1.

(12) λr : Tctxt.

sit = r
sit-type =

[
ctall : tall(r.x)

]
prob = κtall(µtall, σtall, r)


(

 c = Human
x = john smith
h = 1.88

) =


sit =

 c = Human
x = john smith
h = 1.88


sit-type =

[
ctall : tall(john smith)

]
prob = 0.579


This probability can now be used in further prob-
abilistic reasoning, to decide whether to refer to
an individual x as tall, or to evaluate someone
else’s utterance describing x is tall. For exam-
ple, an agent may map different probabilities to
different adjective qualifiers of tallness to yield
compositional phrases such as ‘sort of tall’, ‘quite
tall’, ‘very tall’, ‘extremely tall’, etc. The mean-
ings of these composed adjectival phrases could
specify probability ranges trained independently.
Compositionality for vague perceptual meanings,
and the interaction between compositionality and
learning, is an exciting area for future research.4

5 Learning from Language Use

In this section we consider possibilities for com-
puting the noisy threshold we have introduced
in the previous section and discuss how such a
threshold and the probabilistic judgements it gives
rise to are updated with language use.

5.1 Computing the Noisy Threshold
We assume that agents keep track of judgements
made by other agents. More concretely, for a
vague scalar predicate like ‘tall’, we assume that
an agent will have at its disposal a set of obser-
vations consisting of entities of a particular type
T (a comparison class such as Human) that have
been judged to be tall, together with their observed
heights. Judgements of tallness may vary across
individuals—indeed, such variation (both inter-
and intra-individual) is a hallmark of vague pred-
icates. We use ΩT

tall to refer to the set of heights
of those entities x : T that have been considered
tall by some individual. From this agent-specific
set of observations, which is constantly updated as
the agent is exposed to new judgements by other
individuals, we want to compute a noisy threshold,

4See Larsson (2013) for a sketch of compositionality for
perceptual meaning.
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which the agent uses to make her own judgements
of tallness, as specified in (11).

Different functions can be used to compute µtall

and σtall from ΩT
tall. What constitutes an appro-

priate function is an empirical matter and what
the most suitable function is possibly varies across
predicates (what may apply to ‘tall’ may not be
suitable for ‘dark’ or ‘expensive’, for example).
Hardly any work has been done on trying to iden-
tify how the threshold is computed from experi-
ence. A notable exception, however, is the work of
Schmidt et al. (2009), who collect judgements of
people asked to indicate which items are tall given
distributions of items of different heights. Schmidt
and colleagues then propose different probabilis-
tic models to account for the data and compare
their output to the human judgements. They ex-
plore two types of models: threshold-based mod-
els and category-based or cluster models. The best
performing models within these two types perform
equally well and the study does not identify any
advantages of one type over the other one. Since
we have chosen threshold models as our case-
study, we focus our attention on those here.

Each of the threshold models tested by Schmidt
et al. (2009) corresponds to a possible way of com-
puting the mean µtall of a noisy threshold from a
set of observations. The best performing threshold
model in their study is the relative height by range
model, where (in our notation):

(13) relative height by range (RH-R): µtall(T ) =
max(ΩT

tall)− k · (max(ΩT
tall)−min(ΩT

tall))

Here max(ΩT
tall) and min(ΩT

tall) stand for the
maximum and the minimum height, respectively,
of the items that have been judged to be tall
by some individual. According to this threshold
model, any item within the top k% of the range
of heights that have been judged to be tall counts
as tall. The model includes two parameters, k and
a noise-width parameter that in our approach cor-
responds to σtall. Schmidt et al. (2009) report
that the best fit of their data was obtained with
k = 29% and σtall = 0.05.

5.2 Updating Vague Meanings

We now want to specify how the vague meaning
of ‘tall’ is updated as an agent is exposed to new
judgements via language use. Our setting so far
offers a straightforward solution to this: If a new
entity x : T with height h is referred to as tall, the

agent adds h to its set of observations ΩT
tall and

recomputes µtall(Human), for instance using RH-
R as defined in (13). If RH-H is used, ideally the
value of k and σtall should be (re)estimated from
ΩT

tall. For the sake of simplicity, however, here
we will assume that these two parameters take the
values experimentally validated by Schmidt et al.
(2009) and are kept constant. An update to µtall

will take place if it is the case that h > max(ΩT
tall)

or h < min(ΩT
tall). This in turn will trigger un

update to the probability outputted by κtall.
As an example, let us assume that our

initial set of observations is ΩHuman
tall =

{1.87, 1.92, 1, 90, 1.75, 1.80} (recall this corre-
sponds to the perceived heights of individuals
that have been described as tall by some agent).
This means that max(ΩHuman

tall ) = 1.92 and
min(ΩHuman

tall ) = 1.75. Hence, given (13):

(14) µtall(Human) =
1.92− 0.29 · (1.92− 1.75) = 1.87

Let’s assume we now make an observation where
a person of height 1.72 is judged to be tall. This
will mean that the set of observations is now
ΩHuman

tall = {1.87, 1.92, 1, 90, 1.75, 1.80, 1.72}
and consequently min(ΩHuman

tall ) = 1.72, which
yields an updated mean of the noisy threshold:

(15) µtall(Human) =
1.92− 0.29 · (1.92− 1.72) = 1.862

If we were to re-evaluate John Smith’s tallness in
light of this observation, we would get a new prob-
ability 0.64 that he is tall (in contrast to the earlier
probability of 0.579 given in (12)).

5.3 Possible Extensions

The set of observations ΩHuman
tall can be derived

from a set of Austinian propositions correspond-
ing to instances where people have been judged
to be tall. To update from an Austinian proposi-
tion p we simply add p.sit.h to Ωtall

Human and re-
compute µtall(p.c). Note that we are here treating
these Austinian propositions as non-probabilistic.
This seems to make sense since an addressee does
not have direct access to the probability associated
with the judgement of the speaker. If we were to
take these probabilities into account (for instance,
the use of a hedge in ‘sort of tall’ may be used
to make inferences about such probabilities), and
if those probabilities are not always 1, we would
need a different way of computing µtall than the
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one specified so far.
Somewhat related to the point above, note that

in our approach we treat all judgements equally,
i.e., we do not distinguish between possible dif-
ferent levels of trustworthiness amongst speakers.
An agent who is told that an entity with height h
is tall adds that observation to its knowledge base
without questioning the reliability of the speaker.
This is clearly a simplification. For instance, there
is developmental evidence showing that children
are more sensitive to reliable speakers than to un-
reliable ones during language acquisition (Scofield
and Behrend, 2008).

6 Other Approaches
Within the literature in formal semantics, Las-
siter (2011) has put forward a proposal that ex-
tends in interesting ways earlier work by Barker
(2002) and shares some aspects with the account
we have presented here. Operating in a probabilis-
tic version of classical possible-worlds semantics,
Lassiter assumes a probability distribution over a
set of possible worlds and a probability distribu-
tion over a set of possible languages. Each pos-
sible language represents a precise interpretation
of a predicate like ‘tall’: tall1 = λx.x’s height ≥
5’6”; tall2 = λx.x’s height ≥ 5’7”; and so forth.
Lassiter thus treats “metalinguistic belief” (repre-
senting an agent’s knowledge of the meaning of
words) in terms of probability distributions over
precise languages. Since each precise interpreta-
tion of ‘tall’ includes a given threshold, this can
be seen as defining a probability distribution over
possible thresholds, similarly to the noisy thresh-
old we have used in our account. Lassiter, how-
ever, is not concerned with learning.

Within the computational semantics literature,
DeVault and Stone (2004) describe an imple-
mented system in a drawing domain that is able to
interpret and execute instructions including vague
scalar predicates such as ‘Make a small circle’.
Their approach makes use of degree-based seman-
tics, but does not take into account comparison
classes. This is possible in their drawing domain
since the kind of geometric figures it includes
(squares, rectangles, circles) do not have intrinsic
expected properties (size, length, etc). Their focus
is on modelling how the threshold for a predicate
such as ‘small’ is updated during an interaction
with the system given the local discourse context.
For instance, if the initial context just contains a
square, the size of that square is taken to be the

standard of comparison for the predicate ‘small’.
The user’s utterance ‘Make a small circle’ is then
interpreted as asking for a circle of an arbitrary
size that is smaller than the square.

In our characterisation of the context-sensitivity
of vague gradable adjectives in Section 4.1, we
have focused on their dependence on general com-
parison classes corresponding to types of entities
(such as Human, Woman, etc) with expected prop-
erties such as height. Thus, in contrast to DeVault
and Stone (2004), who focus on the local context
of discourse, we have focused on what could be
called the global context (an agent’s experience re-
garding types of entities and their expected prop-
erties). How these two types of context interact
remains an open question, which we plan to ex-
plore in our future work (see Kyburg and Morreau
(2000), Kemp et al. (2007), and Fernández (2009)
for pointers in this direction).

7 Conclusions and future work

Traditional formal semantics theories postulate a
fixed, abstract interpretation function that medi-
ates between natural language expressions and the
world, but fall short of specifying how this func-
tion is determined or modified dynamically by
experience. In this paper we have presented a
characterisation of the semantics of vague scalar
predicates such as ‘tall’ that clarifies how their
context-dependent meaning and their vague char-
acter are connected with perceptual information,
and we have also shown how this low-level per-
ceptual information (here, real-valued readings
from a height sensor) connects to high level logical
semantics (ptypes) in a probabilistic framework.
In addition, we have put forward a proposal for
explaining how the meaning of vague scalar ad-
jectives like ‘tall’ is dynamically updated through
language use.

Tallness is a function of a single value (height),
and is in this sense a uni-dimensional pred-
icate. Indeed, most linguistic approaches to
vagueness focus on uni-dimensional predicates
such as ‘tall’. However, many vague predicates
are multi-dimensional, including nouns for posi-
tions (‘above’), shapes (‘hexagonal’), and colours
(‘green’), amongst many others. Together with
compositionality (mentioned at the end of Sec-
tion 4.2), generalisation of the present account to
multi-dimensional vague predicates is an interest-
ing area of future development.
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project 2009-1569, Semantic analysis of interac-
tion and coordination in dialogue (SAICD); the
Department of Philosophy, Linguistics, and The-
ory of Science; and the Centre for Language Tech-
nology at the University of Gothenburg.

References
Chris Barker. 2002. The dynamics of vagueness. Lin-

guistics & Philosophy, 25(1):1–36.

Patrick Blackburn and Johan Bos. 2005. Represen-
tation and Inference for Natural Language: A First
Course in Computational Semantics. CSLI Publica-
tions.

Robin Cooper and Jonathan Ginzburg. 2011. Negation
in dialogue. In Proceedings of the 15th Workshop on
the Semantics and Pragmatics of Dialogue (SemDial
2011), Los Angeles (USA).

Robin Cooper, Simon Dobnik, Shalom Lappin, and
Staffan Larsson. 2014. A probabilistic rich type
theory for semantic interpretation. In Proceedings
of the EACL Workshop on Type Theory and Natural
Language Semantics (TTNLS).

Robin Cooper. 2005a. Austinian truth, attitudes and
type theory. Research on Language and Computa-
tion, 3(4):333–362, December.

Robin Cooper. 2005b. Austinian truth, attitudes and
type theory. Research on Language and Computa-
tion, 3:333–362.

Robin Cooper. 2010. Generalized quantifiers and clar-
ification content. In Paweł Łupkowski and Matthew
Purver, editors, Aspects of Semantics and Pragmat-
ics of Dialogue. SemDial 2010, 14th Workshop on
the Semantics and Pragmatics of Dialogue, Poznań.
Polish Society for Cognitive Science.

Robin Cooper. 2012. Type theory and semantics in
flux. In Ruth Kempson, Nicholas Asher, and Tim
Fernando, editors, Handbook of the Philosophy of
Science, volume 14: Philosophy of Linguistics. El-
sevier BV. General editors: Dov M. Gabbay, Paul
Thagard and John Woods.

David DeVault and Matthew Stone. 2004. Interpret-
ing vague utterances in context. In Proceedings of
the 20th International Conference on Computational
Linguistics (COLING’04), pages 1247–1253.

Simon Dobnik, Robin Cooper, and Staffan Larsson.
2013. Modelling language, action, and perception
in type theory with records. In Constraint Solving
and Language Processing, Lecture Notes in Com-
puter Science, pages 70–91. Springer.

Raquel Fernández. 2009. Salience and feature vari-
ability in definite descriptions with positive-form
vague adjectives. In Workshop on the Production
of Referring Expressions: Bridging the gap between
computational and empirical approaches to refer-
ence (CogSci’09).

Jonathan Ginzburg. 2012. The Interactive Stance. Ox-
ford University Press.

Hans Kamp. 1975. Two theories of adjectives. In
E. Keenan, editor, Formal Semantics of Natural Lan-
guage, pages 123–155. Cambridge University Press.

John Kelleher, Fintan Costello, and Josef van Genabith.
2005. Dynamically structuring, updating and inter-
relating representations of visual and linguistic dis-
course context. Artificial Intelligence, 167(1):62–
102.

Charles Kemp, Amy Perfors, and Joshua B. Tenen-
baum. 2007. Learning overhypotheses with hier-
archical bayesian models. Developmental Science,
10(3):307–321.

Christopher Kennedy and Louise McNally. 2005.
Scale structure, degree modification, and the seman-
tics of gradable predicates. Language, pages 345–
381.

Christopher Kennedy. 2007. Vagueness and grammar:
The semantics of relative and absolute gradable ad-
jectives. Linguistics and Philosophy, 30(1):1–45.

Ewan Klein. 1980. A semantics for positive and
comparative adjectives. Linguistics and Philosophy,
4:1–45.

Alice Kyburg and Michael Morreau. 2000. Fitting
words: Vague language in context. Linguistics and
Philosophy, 23:577–597.

Staffan Larsson. 2009. Detecting and learning from
lexical innovation in dialogue: a ttr account. In
Proceedings of the 5th International Conference on
Generative Approaches to the Lexicon.

Staffan Larsson. 2013. Formal semantics for percep-
tual classification. Journal of Logic and Computa-
tion.

Dan Lassiter. 2011. Vagueness as probabilistic linguis-
tic knowledge. In R. Nowen, R. van Rooij, U. Sauer-
land, and H. C. Schmitz, editors, Vagueness in Com-
munication. Springer.

Barbara Partee. 1989. Possible worlds in model-
theoretic semantics: A linguistic perspective. In
S. Allen, editor, Possible Worlds in Humanities, Arts
and Sciences, pages 93–123. Walter de Gruyter.

158



Manfred Pinkal. 1979. Semantics from different
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Abstract

This paper presents a large-scale evalua-
tion of bag-of-words distributional models
on two datasets from priming experiments
involving syntagmatic and paradigmatic
relations. We interpret the variation in
performance achieved by different settings
of the model parameters as an indication
of which aspects of distributional patterns
characterize these types of relations. Con-
trary to what has been argued in the litera-
ture (Rapp, 2002; Sahlgren, 2006) – that
bag-of-words models based on second-
order statistics mainly capture paradig-
matic relations and that syntagmatic rela-
tions need to be gathered from first-order
models – we show that second-order mod-
els perform well on both paradigmatic and
syntagmatic relations if their parameters
are properly tuned. In particular, our re-
sults show that size of the context window
and dimensionality reduction play a key
role in differentiating DSM performance
on paradigmatic vs. syntagmatic relations.

1 Introduction

Distributional takes on the representation and ac-
quisition of word meaning rely on the assump-
tion that words with similar meaning tend to oc-
cur in similar contexts: this assumption, known as
distributional hypothesis, has been first proposed
by Harris (1954). Distributional Semantic Mod-
els (henceforth, DSMs) are computational mod-
els that operationalize the distributional hypoth-
esis; they produce semantic representations for
words in the form of distributional vectors record-
ing patterns of co-occurrence in large samples of
language data (Sahlgren, 2006; Baroni and Lenci,
2010; Turney and Pantel, 2010). Comparison be-
tween distributional vectors allows the identifica-
tion of shared contexts as an empirical correlate of

the semantic similarity between the target words.
As noted in Sahlgren (2008), the notion of seman-
tic similarity applied in distributional approaches
to meaning is an easy target of criticism, as it is
employed to capture a wide range of semantic re-
lations, such as synonymy, antonymy, hypernymy,
up to topical relatedness.

The study presented in this paper contributes
to the debate concerning the nature of the seman-
tic representations built by DSMs, and it does so
by comparing the performance of several DSMs
in a classification task conducted on priming data
and involving paradigmatic and syntagmatic rela-
tions. Paradigmatic relations hold between words
that occur in similar contexts; they are also called
relations in absentia (Sahlgren, 2006) because
paradigmatically related words do not co-occur.
Examples of paradigmatic relations are synonyms
(e.g., frigid–cold) and antonyms (e.g., cold–hot).
Syntagmatic relations hold between words that co-
occur (relations in praesentia) and therefore ex-
hibit a similar distribution across contexts. Typi-
cal examples of syntagmatic relations are phrasal
associates (e.g., help–wanted) and syntactic collo-
cations (e.g., dog–bark).

Distributional modeling has already tackled the
issue of paradigmatic and syntagmatic relations
(Sahlgren, 2006; Rapp, 2002). Key contributions
of the present work are the scope of its evaluation
(in terms of semantic relations and model parame-
ters) and the new perspective on paradigmatic vs.
syntagmatic models provided by our results.

Concerning the scope of the evaluation, this is
the first study in which the comparison involves
such a wide range of semantic relations (paradig-
matic: synonyms, antonyms and co-hyponyms;
syntagmatic: syntactic collocations, backward and
forward phrasal associates). Moreover, our eval-
uation covers a large number of DSM parame-
ters: source corpus, size and direction of the con-
text window, criteria for feature selection, feature
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weighting, dimensionality reduction and index of
distributional relatedness. We consider the varia-
tion in performance achieved by different parame-
ter settings as a cue towards characteristic aspects
of specific relations (or groups of relations).

Our work also differs from previous studies
(Sahlgren, 2006; Rapp, 2002) in its focus on
second-order models. We aim to show that they
are able to capture both paradigmatic and syn-
tagmatic relations with appropriate parameter set-
tings. In addition, this focus provides a uniform
experimental design for the evaluation. For ex-
ample, parameters like window size and direction-
ality apply to bag-of-words DSMs and colloca-
tion lists but not to term-context models; dimen-
sionality reduction, whose effect has not yet been
explored systematically in the context of syntag-
matic and paradigmatic relations, is not applicable
to collocation lists.

This paper is structured as follows. Section 2
summarizes previous work. Section 3 describes
the experimental setup, in terms of task, datasets
and evaluated parameters. Section 4 introduces
our model selection methodology. Section 5
presents the results of our evaluation study. Sec-
tion 6 summarizes main findings and sketches on-
going and future work.

2 Previous Work

In this section we discuss previous work relevant
to the distributional modeling of paradigmatic and
syntagmatic relations. For space constraints, we
focus only on two studies (Rapp, 2002; Sahlgren,
2006) in which the two classes of relations are
compared at a global level, and not on studies
that are concerned with specific semantic rela-
tions, e.g., synonymy (Edmonds and Hirst, 2002;
Curran, 2003), hypernymy (Weeds et al., 2004;
Lenci and Benotto, 2012) or syntagmatic predicate
preferences (McCarthy and Carroll, 2003; Erk et
al., 2010), etc.

In previous studies, the comparison of syntag-
matic and paradigmatic relations has been imple-
mented in terms of an opposition between differ-
ent classes of corpus-based models: term-context
models (words as targets, documents or context re-
gions as features) vs. bag-of-words models (words
as targets and features) in Sahlgren (2006); col-
location lists vs. bag-of-words models in Rapp
(2002). Given the high terminological variation
in the literature, in this paper we will adopt the

labels syntagmatic and paradigmatic to character-
ize different types of semantic relations, and we
will use the labels first-order and second-order
to characterize corpus-based models with respect
to the kind of co-occurrence information they en-
code. We will refer to collocation lists and term-
document DSMs as first-order models, and to bag-
of-words DSMs as second-order models1.

Rapp (2002) integrates first-order (co-
occurrence lists) and second-order (bag-of-words
DSMs) information to distinguish syntagmatic
and paradigmatic relations. Under the assumption
that paradigmatically related words will be found
among the closest neighbors of a target word in
the DSM space and that paradigmatically and syn-
tagmatically related words will be intermingled
in the list of collocates of the target word, Rapp
proposes to exploit a comparison of the most
salient collocates and the nearest DSM neighbors
to distinguish between the two types of relations.

Sahlgren (2006) compares term-context and
bag-of-words DSMs in a number of tasks involv-
ing syntagmatic and paradigmatic relations. First,
a comparison between the thesaurus entries for tar-
get words (containing both paradigmatically and
syntagmatically related words) and neighbors in
the distributional spaces is conducted. It shows
that, while term-context DSMs produce both syn-
tagmatically and paradigmatically related words,
the nearest neighbors in a bag-of-words DSM
mainly provide paradigmatic information. Bag-
of-words models also performed better than term-
context models in predicting association norms,
in the TOEFL multiple-choice synonymy task and
in the prediction of antonyms (although the dif-
ference in performance was less significant here).
Last, word neighborhoods are analysed in terms of
their part-of-speech distribution. Sahlgren (2006)
observes that bag-of-words spaces contain more
neighbors with the same part of speech as the tar-
get than term-context spaces. He concludes that
bag-of-words spaces privilege paradigmatic rela-
tions, based on the assumption that paradigmati-
cally related word pairs belong to the same part of
speech, while this is not necessarily the case for
syntagmatically related word pairs.

1Term-document models encode first-order information
because dot products between row vectors are related to co-
occurrence counts of the corresponding words (within docu-
ments). More precisely, for a binary term-document matrix,
cosine similarity is identical to the square root of the MI2 as-
sociation measure. Please note that our terminology differs
from that of Schütze (1998) and Peirsman et al. (2008).
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Summing up, in both Rapp (2002) and Sahlgren
(2006) it is claimed that second-order models per-
form poorly in predicting syntagmatic relations.
However, neither of those studies involves datasets
containing exclusively syntagmatic relations, as
the evaluation focuses either on paradigmatic rela-
tions (TOEFL multiple choice test, antonymy test)
or on resources containing both types of relations
(thesauri, association norms).

3 Experimental Setting

3.1 Evaluation Task and Data

In this study, bag-of-words DSMs are evaluated on
two datasets containing experimental items from
two priming studies. Each item is a word triple
(target, consistent prime, inconsistent prime) with
a particular semantic relation between target and
consistent prime. Following previous work on
modeling priming effects as a comparison between
prime-target pairs (McDonald and Brew, 2004;
Padó and Lapata, 2007; Herdağdelen et al., 2009),
we evaluate our models in a classification task.
The goal is to identify the consistent prime on the
basis of its distributional relatedness to the tar-
get: if a particular DSM (i.e., a certain parame-
ter combination) is sensitive to a specific relation
(or group of relations), we expect the consistent
primes to be closer to the target in semantic space
than the inconsistent ones.

The first dataset is derived from the Semantic
Priming Project (SPP) (Hutchison et al., 2013).
To the best of our knowledge, our study repre-
sents the first evaluation of bag-of-words DSMs
on items from this dataset. The original data con-
sist of 1661 word triples (target, consistent prime,
inconsistent prime) collected within a large-scale
project aiming at characterizing English words in
terms of a set of lexical and associative/semantic
characteristics, along with behavioral data from
visual lexical decision and naming studies2. We
manually discarded all triples containing proper
nouns, adverbs or inflected words. We then
selected five subsets involving different seman-
tic relations, namely: synonyms (SYN), 436
triples (example of a consistent prime and tar-
get: frigid–cold); antonyms (ANT): 135 triples
(e.g., hot–cold); cohyponyms (COH): 159 triples
(e.g., table–chair); forward phrasal associates
(FPA): 144 triples (e.g., help–wanted); back-

2The dataset is available at http://spp.montana.edu/

ward phrasal associates (BPA): 89 triples (e.g.,
wanted–help).

The second priming dataset is the Generalized
Event Knowledge dataset (henceforth GEK), al-
ready evaluated in Lapesa and Evert (2013): a
collection of 402 triples (target, consistent prime,
inconsistent prime) from three priming studies
conducted to demonstrate that event knowledge
is responsible for facilitation of the processing
of words that denote events and their partici-
pants. The first study was conducted by Fer-
retti et al. (2001), who found that verbs facili-
tate the processing of nouns denoting prototypi-
cal participants in the depicted event and of ad-
jectives denoting features of prototypical partic-
ipants. The study covered five thematic rela-
tions: agent (e.g., pay–customer), patient, fea-
ture of the patient, instrument, location. The sec-
ond study (McRae et al., 2005) focussed on prim-
ing from nouns to verbs. It involved four re-
lations: agent (e.g., reporter–interview), patient,
instrument, location. The third study (Hare et
al., 2009) investigated priming from nouns to
nouns, referring to participants of the same event
or the event itself. The dataset involves seven
relations: event-people (e.g., trial–judge), event-
thing, location-living, location-thing, people-
instrument, instrument-people, instrument-thing.

In the presentation of our results we group syn-
onyms with antonyms and cohyponyms from SPP
as paradigmatic relations, and the entire GEK
dataset with backward and forward phrasal asso-
ciates from SPP as syntagmatic relations.

3.2 Evaluated Parameters

DSMs evaluated in this paper belong to the class of
bag-of-words models. We defined a large vocab-
ulary of target words (27522 lemma types) con-
taining all the items from the evaluated datasets
as well as items from other state-of-the-art evalu-
ation studies (Baroni and Lenci, 2010; Baroni and
Lenci, 2011). Context words were filtered by part-
of-speech (nouns, verbs, adjectives, and adverbs).
Distributional models were built using the UCS
toolkit3 and the wordspace package for R4. The
following parameters have been evaluated:
• Source corpus (abbreviated as corpus in plots

1-4): We compiled DSMs from three corpora
often used in DSM evaluation studies and that

3http://www.collocations.de/software.html
4http://r-forge.r-project.org/projects/wordspace/
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differ in both size and quality: British National
Corpus5, ukWaC, and WaCkypedia EN6.
• Size of the context window (win.size): As

this parameter quantifies the amount of shared
context involved in the computation of similar-
ity, we expect it to be crucial in determining
whether syntagmatic or paradigmatic relations
are captured. We therefore use a finer granu-
larity for window size than Lapesa and Evert
(2013): 1, 2, 4, 8 and 16 words.
• Directionality of the context window

(win.direction): When collecting co-occurrence
information from the source corpora, we use ei-
ther a directed window (i.e., separate frequency
counts for co-occurrences of a context term
to the left and to the right of the target term)
or an undirected window (i.e., no distinction
between left and right context when collecting
co-occurrence counts).
• Context selection: From the full co-occurrence

matrix collected as described above, we select
dimensions (columns) according to the follow-
ing parameters:

– Criterion for context selection (criterion):
We select the top-ranked dimensions either
according to marginal frequency (i.e., we use
the most frequent words as context terms)
or number of nonzero co-occurrence counts
(i.e., we use the context terms that co-occur
with the highest number of targets).

– Number of context dimensions (con-
text.dim): We select the top-ranked 5000,
10000, 20000, 50000 or 100000 dimensions,
according to the criterion above.

• Feature scoring (score): Co-occurrence counts
are weighted using one of the following associa-
tion measures: frequency, Dice coefficient, sim-
ple log-likelihood, Mutual Information, t-score,
z-score or tf.idf.7

• Feature transformation (transformation): A
transformation function may be applied to re-
duce the skewness of feature scores. Possible
transformations are: none, square root, logarith-
mic and sigmoid.

5http://www.natcorp.ox.ac.uk/
6Both ukWaC and WaCkypedia EN are available at:

wacky.sslmit.unibo.it/doku.php?id=corpora
7See Evert (2008) for a description of these measures and

details on the calculation of association scores. Note that
we compute “sparse” versions of the association measures
(where negative values are clamped to zero) in order to pre-
serve the sparseness of the co-occurrence matrix.

• Distance metric (metric): We apply cosine dis-
tance (i.e., angle between vectors) or Manhattan
distance.
• Dimensionality reduction: We apply singular

value decomposition in order to project distri-
butional vectors to a relatively small number of
latent dimensions and compare the results to the
unreduced runs8. For the SVD-based models,
there are two additional parameters:

– Number of latent dimensions (red.dim):
Whether to use the first 100, 300, 500, 700
or 900 latent dimensions from the SVD anal-
ysis.

– Number of skipped dimensions (dim.skip):
When selecting latent dimensions, we option-
ally skip the first 50 or 100 SVD compo-
nents. This parameter was inspired by Bul-
linaria and Levy (2012), who found that dis-
carding the initial components of the reduced
matrix, i.e. the SVD components with highest
variance, improves evaluation results.

• Index of distributional relatedness (rel.index):
We propose two alternative ways of quantify-
ing the degree of relatedness between two words
a and b represented in a DSM. The first op-
tion (and standard in distributional modeling)
is to compute the distance (cosine or Manhat-
tan) between the vectors of a and b. The sec-
ond option, proposed in this work, is based on
neighbor rank, i.e. we determine the rank of
the target among the nearest neighbors of each
prime. We expect that the target will occur in a
higher position among the neighbors of the con-
sistent prime than among those of the inconsis-
tent prime. Since this corresponds to a lower
numeric rank value for the consistent prime, we
can treat neighbor rank as a measure of dissim-
ilarity. Neighbor rank is particularly interesting
as an index of relatedness because, unlike a dis-
tance metric, it can capture asymmetry effects9.

4 Methodology

In our evaluation study, we tested all the possible
combinations of the parameters listed in section

8For efficiency reasons, we use randomized SVD (Halko
et al., 2009) with a sufficiently high oversampling factor to
ensure a good approximation.

9Note that our use of neighbor rank is fully consistent with
the experimental design (primes are shown before targets).
See Lapesa and Evert (2013) for an analysis of the perfor-
mance of neighbor rank as a predictor of priming and discus-
sion of the implications of using rank in cognitive modeling.
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3.2, resulting in a total of 537600 different model
runs (33600 in the setting without dimensionality
reduction, 504000 in the dimensionality-reduced
setting). The models were generated and evaluated
on a large HPC cluster within approx. 4 weeks.

Our methodology for model selection follows
the proposal of Lapesa and Evert (2013), who con-
sider DSM parameters as predictors of model per-
formance. We analyze the influence of individual
parameters and their interactions using general lin-
ear models with performance (percent accuracy)
as a dependent variable and the model parame-
ters as independent variables, including all two-
way interactions. Analysis of variance – which
is straightforward for our full factorial design – is
used to quantify the importance of each parameter
or interaction. Robust optimal parameter settings
are identified with the help of effect displays (Fox,
2003), which marginalize over all the parameters
not shown in a plot and thus allow an intuitive in-
terpretation of the effect sizes of categorical vari-
ables irrespective of the dummy coding scheme.

For each dataset, a separate linear model was
fitted. The results are reported and compared in
section 5. Table 1 lists the global goodness-of-fit
(R2) on each dataset, for the reduced and unre-
duced runs. Despite some variability across re-
lations and between unreduced and reduced runs,
the R2 values are always high (≥ 75%), showing
that the linear model explains a large part of the
observed performance differences. It is therefore
justified to base our analysis on the linear models.

Relation Dataset Unreduced Reduced
Syntagmatic GEK 93% 87%
Syntagmatic FPA 90% 79%
Syntagmatic BPA 88% 77%
Paradigmatic SYN 92% 85%
Paradigmatic COH 89% 75%
Paradigmatic ANT 89% 76%

Table 1: Evaluation, Global R2

5 Results

In this section, we present the results of our study.
We begin by looking at the distribution of accu-
racy for different datasets, and by comparing re-
duced and unreduced experimental runs in terms
of minimum, maximum and mean performance.

The results displayed in table 2 show that di-
mensionality reduction with SVD improves the
performance of the models for all datasets but
GEK. We conclude that the information lost by ap-
plying SVD reduction (namely, meaningful distri-
butional features, which are replaced by the gener-

Relation Dataset Unreduced Reduced
Min Max Mean Min Max Mean

Syntagmatic GEK 54.8 98.4 86.6 48.0 97.0 80.8
Syntagmatic FPA 41.0 98.0 82.3 43.0 98.6 82.1
Syntagmatic BPA 49.4 97.7 83.8 41.6 98.9 83.9
Paradigmatic SYN 54.8 98.4 86.6 57.3 99.0 88.2
Paradigmatic COH 49.0 100.0 92.6 54.3 100.0 94.0
Paradigmatic ANT 69.6 100.0 94.2 57.8 100.0 94.3

Table 2: Distribution of Accuracy

alization encoded in the reduced dimensions) is ir-
relevant to other tasks, but crucial for modeling the
relations in the GEK dataset. This interpretation is
consistent with the detrimental effect of SVD in
tasks involving vector composition reported in the
literature (Baroni and Zamparelli, 2010).

5.1 Importance of Parameters

To obtain further insights into DSM performance
we explore the effect of specific model parameters,
comparing syntagmatic vs. paradigmatic relations
and reduced vs. unreduced runs.

In order to establish a ranking of the parameters
according to their importance wrt. model perfor-
mance, we use a feature ablation approach. The
ablation value for a given parameter is the propor-
tion of variance (R2) explained by this parameter
together with all its interactions, corresponding to
the reduction in adjusted R2 of the linear model fit
if the parameter were left out. In other words, it
allows us to find out whether a certain parameter
has a substantial effect on model performance (on
top of all other parameters). Figures 1 to 4 display
the feature ablation values of all the evaluated pa-
rameters in the unreduced and reduced setting, for
paradigmatic and syntagmatic relations. Parame-
ters are ranked according to their average feature
ablation values in each setting.

Two parameters, namely feature score and fea-
ture transformation, are consistently crucial in
determining DSM performance, both in reduced
and unreduced runs, and for both paradigmatic
and syntagmatic relations. In the next section we
will show that it is possible to identify optimal (or
nearly optimal) values for those parameters that
are constant across relations.

A comparison of figures 1 and 2 with figures 3
and 4 allows us to identify parameters that lose
or gain explanatory power when SVD comes into
play. Feature ablation shows that the effect of the
index of distributional relatedness is substan-
tially smaller in the SVD-reduced runs, but this pa-
rameter still plays an important role. On the other
hand, two parameters gain explanatory power in a
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SVD-reduced setting: the size of the context win-
dow and the source corpus. Optimal values are
discussed in section 5.2.

Three parameters consistently have little or no
explanatory power: directionality of the con-
text window, criterion for context selection and
number of context dimensions.

We conclude this section by comparing rela-
tions within groups. Within paradigmatic rela-
tions, we note a significant drop in explanatory
power for the relatedness index when it comes to
antonyms. Within syntagmatic relations, the size
of the context window appears to be more crucial
on the GEK dataset than it is for FPA and BPA:
in the next section, the analysis of the best choices
for this parameter will provide a clue for the inter-
pretation of this opposition.

5.2 Best Parameter Values
In this section, we identify the best parameter val-
ues for syntagmatic and paradigmatic relations by
inspecting partial effects plots10. Our discussion
starts from the parameters that contribute to the
leading topic of this paper, namely the comparison
between syntagmatic and paradigmatic relations:

10The partial effect plots in figures 5 to 12 display param-
eter values on the x-axis and their effect size in terms of pre-
dicted accuracy on the y-axis (see section 4 for more details
concerning the calculation of effect size).

window size, parameters related to dimensionality
reduction, and relatedness index.

As already anticipated in the feature ablation
analysis, the size of the context window plays
a crucial role in contrasting syntagmatic and
paradigmatic relations, as well as different rela-
tions within those general groups. The plots in fig-
ures 5 and 6 display its partial effect for paradig-
matic relations in the unreduced and reduced set-
tings, respectively. The plots in figures 7 and 8
display its partial effect for syntagmatic relations.
When no dimensionality reduction is involved, a
very small context window (i.e., one word) is suffi-
cient for all paradigmatic relations, and DSM per-
formance decreases as soon as we enlarge the con-
text window. The picture changes when apply-
ing dimensionality reduction: a 4-word window
is a robust choice for all paradigmatic relations
(although ANT show a further increase in perfor-
mance with an 8-word window), even in the SYN
task that is traditionally associated with very small
windows of 1 or 2 words (cf. Sahlgren (2006)).

A significant interaction between window size
and number of skipped dimensions (not shown for
reasons of space) sheds further light on this matter.
Without skipping SVD dimensions, the reduced
models achieve optimal performance for a 2-word
window and degrade more (COH) or less (ANT)
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quickly for larger windows. With 50 or 100 di-
mensions skipped, performance improves up to a
4- or 8-word window. Our interpretation is that the
first SVD dimensions capture general domain and
topic information dominating the co-occurrence
data; removing these dimensions reveals paradig-
matic semantic relations even for larger windows.
For syntagmatic relations without dimensionality
reduction, a larger context window of 4 words is
needed for FPA and BPA; a further increase of the
window is detrimental. For the GEK dataset, per-
formance peaks at 8 words, and decreases only
minimally for even larger windows. Again, di-
mensionality reduction improves performance for
large co-occurrence windows. For FPA and BPA,
the optimum seems to be achieved with a win-
dow of 4–8 words; performance on GEK contin-
ues to increase up to 16 words, the largest win-
dow size considered in our experiments. Such pat-
terns reflect differences in the nature of the se-
mantic relations involved: smaller windows pro-
vide better contextual representations for paradig-
matic relations while larger windows are needed to
capture syntagmatic relations with bag-of-words
DSMs (because co-occurring words then share a
large portion of their context windows). Interme-
diate window sizes are sufficient for phrasal col-
locates (which are usually adjacent), while event-
based relatedness (GEK) requires larger windows.
Returning briefly to the slight preference shown
by ANT for a larger window, we notice that ANT

seems to be more similar to the syntagmatic rela-
tions than SYN and COH. This is in line with the
observations of Justeson and Katz (1992) concern-
ing the tendency of antonyms to co-occur (e.g., in
coordinations such as short and long). Like syn-
onyms, antonyms are interchangeable in absentia;
but they also enter into syntagmatic patterns that
are uncommon for synonyms.

We now focus on the parameters related to di-
mensionality reduction, namely the number of la-
tent dimensions (figures 9 and 10) and the num-
ber of skipped dimensions (figures 11 and 12).
These parameters represent an extension of the
experiments conducted on the GEK dataset by
Lapesa and Evert (2013). They have already been
applied by Bullinaria and Levy (2012) to a differ-
ent set of tasks, including the TOEFL multiple-
choice synonymy task. In particular, Bullinaria
and Levy found that discarding the initial SVD di-
mensions (with highest variance) leads to substan-
tial improvements, especially in the TOEFL task.
In our experiments, we found no difference be-
tween syntagmatic and paradigmatic relations wrt.
the number of latent dimensions: the more, the
better in both cases (900 dimensions). The number
of skipped dimensions, however, shows some vari-
ability across the different relations. The results
for SYN are in agreement with the findings of Bul-
linaria and Levy (2012) on TOEFL: skipping 50
or 100 initial dimensions improves performance.
Skipping dimensions makes minimal difference
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for COH (best choice is 50 dimensions), while the
full range of reduced dimensions is necessary for
ANT. Within syntagmatic relations, the full range
of latent dimensions ensures good performance on
phrasal associates (even if skipping 50 dimensions
is not detrimental for BPA). GEK shows a pattern
similar to SYN, with 50 skipped dimensions lead-
ing to a considerable improvement.

We now inspect the best values for the related-
ness index. As shown in figure 13 for the unre-
duced runs and in figure 14 for the reduced runs,
neighbor rank is consistently better than distance
on all datasets. This is not surprising because, as
discussed in section 3.2, our use of neighbor rank
captures asymmetry and mirrors the experimental
setting, in which targets are shown after primes.
A further observation may be made relating to the
degree of asymmetry of different relations. The
unreduced setting in particular shows that syntag-
matic relations are subject to stronger asymme-
try effects than the paradigmatic ones, presumably
due to the directional nature of the relations in-
volved (phrasal associates and syntactic colloca-
tions). Among paradigmatic relations, antonyms
appear to be the least asymmetric ones (because
using neighbor rank instead of distance makes a
comparatively small difference).

We conclude by briefly summarizing the opti-
mal choices for the remaining parameters. The
corresponding partial effects plots are not shown
because of space constraints.

A very strong interaction between score and
transformation characterizes all four settings
(paradigmatic or syntagmatic datasets, reduced or
unreduced experimental runs). Association mea-
sures outperform raw co-occurrence frequency.
Measures based on significance tests (simple-ll,
t-score, z-score) are better than Dice, and to a
lesser extent, MI. Simple-ll is the best choice in
combination with a logarithmic transformation for
paradigmatic relations, z-score appears to be the
best measure for syntagmatic relations in combi-
nation with a square root transformation. The dif-
ference is small, however, and simple-ll with log
transformation works well across all datasets. On-
going experiments with standard tasks show a sim-
ilar pattern, suggesting that this combination of
score and transformation parameters is appropri-
ate for DSMs, regardless of the task involved.

The optimal distance metric is the cosine
distance, consistently outperforming Manhattan.
Concerning source corpus, BNC consistently
yields the worst results, while WaCkypedia and
ukWaC appear to be almost equivalent in the unre-
duced runs. The trade-off between quality and
quantity appears to be strongly biased towards
sheer corpus size in the case of distributional mod-
els. For syntagmatic relations and SVD-reduced
models, ukWaC is clearly the best choice. This
suggests that syntagmatic relations are better cap-
tured by features from a larger lexical inventory,
combined with the abstraction performed by SVD.
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Concerning minimally explanatory parameters,
inspection of partial effect plots supported the
choice of “unmarked” default values for direc-
tionality of the context window (i.e., undirected)
and criterion for context selection (i.e., fre-
quency), as well as an intermediate number of
context dimensions (i.e., 50000 dimensions).

5.3 Best Settings

We conclude by comparing the performance
achieved by our robust choice of optimal param-
eter values (“best setting”) from section 5.2 with
the performance of the best model for each dataset.
For space constraints, the analysis of best settings
focuses on the reduced experimental runs. Our
best settings, shown in table 3, perform fairly well
on the respective datasets11.
dataset corpus win score transf r.dim d.sk acc best
GEK ukwac 16 s-ll log 900 50 96.0 97.0
FPA ukwac 8 z-sc root 900 0 93.0 98.6
BPA ukwac 8 z-sc root 900 0 95.5 98.9
SYN ukwac 4 s-ll log 900 50 96.3 99.0
COH ukwac 4 s-ll log 900 50 98.7 100
ANT wacky 8 s-ll log 900 0 100 100

Table 3: Best settings: datasets, parameter values,
accuracy (acc), accuracy of the best model (best)

best setting corpus win score transf r.dim d.sk
Syntagmatic ukwac 8 z-sc root 900 0
Paradigmatic ukwac 4 s-ll log 900 50
General ukwac 4 s-ll log 900 0

Table 4: General best settings: parameter values

Dataset Best Synt. Best Para. General
GEK 92.5 94.8 91.3
FPA 93.0 90.2 91.7
BPA 95.5 97.7 95.5
SYN 94.4 96.3 96.3
COH 99.3 98.7 98.7
ANT 99.2 99.2 99.2

Table 5: General best settings: accuracy

11Abbreviations in tables 3 and 4: win = window size;
transf = transformation; z-sc = z-score; s-ll = simple-ll; r.dim
= number of latent dimensions; d.sk = number of skipped di-
mensions. Parameters with fixed values for all datasets: num-
ber of context dimensions = 50k; direction = undirected; cri-
terion = frequency; metric = cosine; relatedness index = rank.

As a next step, we identified parameter combi-
nations that work well for all types of syntagmatic
and paradigmatic relations, as well as an even
more general setting that is suitable for paradig-
matic and syntagmatic relations alike. Best set-
tings are shown in table 4, their performance on
each dataset is reported in table 5. General models
achieve fairly good performance on all relations.

6 Conclusion

We presented a large-scale evaluation study of
bag-of-words DSMs on a classification task de-
rived from priming experiments. The leading
theme of our study is a comparison between syn-
tagmatic and paradigmatic relations in terms of
the aspects of distributional similarity that char-
acterize them. Our results show that second-order
DSMs are capable of capturing both syntagmatic
and paradigmatic relations, if parameters are prop-
erly tuned. Size of the co-occurrence window as
well as parameters connected to dimensionality re-
duction play a key role in adapting DSMs to par-
ticular relations. Even if we do not address the
more specific task of distinguishing between rela-
tions (e.g., synonyms vs. antonyms; see Scheible
et al. (2013) and references therein), we believe
that such applications may benefit from our de-
tailed analyses on the effects of DSM parameters.

Ongoing and future work is concerned with the
expansion of the evaluation setting to other classes
of models (first-order models, dependency-based
second-order models) and parameters (e.g., di-
mensionality reduction with Random Indexing).
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Abstract

Sometimes modifiers have a strong effect
on core aspects of the meaning of the
nouns they are attached to: A parrot is
a desirable pet, but a dead parrot is, at
the very least, a rather unusual household
companion. In order to stimulate compu-
tational research into the impact of mod-
ification on phrase meaning, we collected
and made available a large dataset contain-
ing subject ratings for a variety of noun
phrases and the categories they might be-
long to. We propose to use compositional
distributional semantics to model these
data, experimenting with numerous distri-
butional semantic spaces, phrase compo-
sition methods and asymmetric similarity
measures. Our models capture a statis-
tically significant portion of the data, al-
though much work is still needed before
we achieve a full computational account of
modification effects.

1 Introduction

Not all modifiers are created equal. Green parrots
have all essential qualities of parrots, but dead par-
rots don’t. For example, as vocally argued by the
disgruntled costumer in Monty Python’s famous
Dead Parrot Sketch,1 dead parrots make rather
poor pet birds. In modifier-head constructions
(that, for the purpose of this article, we restrict to
right-headed adjective-noun and noun-noun con-
structions), modifiers are not simply picking a sub-
set of the denotation of the head they modify, but
they are often distorting the properties of the head
in a radical manner.

These modifier effects on phrase meaning have
been studied extensively by theoretical linguists,

1http://en.wikipedia.org/wiki/Dead_
Parrot_sketch

who have focused primarily on the extreme case
of intensional modifiers such as fake, alleged and
toy, where the phrase denotes something that is
no longer (or is not necessarily) a head (a toy
gun is not a gun). See McNally (2013) for a re-
cent review of the linguistic literature. Cognitive
scientists have looked at modification phenomena
within the general study of conceptual combina-
tion (see Chapter 12 of Murphy (2002) for an ex-
tensive review). The cognitive tradition has fo-
cused on how modification affects prototypicality:
a guppy is the prototypical pet fish, but it is neither
a typical pet nor a typical fish (Smith and Osher-
son, 1984). This line of research has highlighted
how strong modification effects might be the rule,
rather than the exception: Wisniewski (1997) re-
ports that, when subjects were asked to provide
the meaning for more than 200 novel modifier-
head constructions, “70% [of the answers] in-
volved the construal of a noun’s referent as some-
thing other than the typical category named by the
noun [head].” Indeed, recent research suggests
that even the most stereotypical modifiers affect
prototypicality, so that subjects are less willing
to attribute to quacking ducks such obvious duck
properties as having webbed feet (Connolly et al.,
2007).

The impact of modification on phrase mean-
ing is not only very interesting from a linguistic
and cognitive perspective, but also important from
a practical point of view, as it might affect ex-
pected entailment patterns: If parrot entails pet,
then lively parrot also entails pet. However, as we
saw above, dead parrot doesn’t necessarily entail
pet (at least not from the point of view of a dis-
gruntled costumer who was just sold the corpse).
Being able to track the impact that modifiers have
on heads should thus have a positive effect on im-
portant tasks such as recognizing textual entail-
ment, paraphrasing and anaphora resolution (An-
droutsopoulos and Malakasiotis, 2010; Dagan et
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al., 2009; Poesio et al., 2010).
Despite their theoretical and practical import,

modification effects have been largely overlooked
in computational linguistics, with the notable ex-
ception of Boleda et al. (2012; 2013), who only
focused on the extreme case of intensional adjec-
tives, studied a limited number of modifiers, and
did not attempt to capture the graded nature of
modification (a dead parrot is not a prototypical
animal, but a toy parrot is not an animal at all).

This paper aims to stimulate computational re-
search into modifier effects on phrase meaning in
two ways. First, we introduce a new, large, pub-
licly available data set of modifier-head phrases
annotated with four kinds of modification-related
subject ratings: whether the concept denoted by
the phrase is an instance of the concept denoted by
its head (is a dead parrot still a parrot?), to what
extent it is a member of one of the larger categories
the head belongs to (is it still a pet?), and typical-
ity ratings for the same questions (how typical is a
dead parrot as a parrot? and as a pet?).

Second, we present a first attempt to model the
collected judgments computationally. We choose
distributional semantics (Erk, 2012) as our frame
of reference, as it produces continuous similarity
scores, in line with the graded nature of the mod-
ification effects we are investigating. In partic-
ular, we look at the compositional extension of
distributional semantics (Baroni, 2013), because
we need representations not only for words, but
also phrases, and we adopt the asymmetric simi-
larity measures developed in the literature on lex-
ical entailment (Kotlerman et al., 2010; Lenci and
Benotto, 2012), because we are interested in an
asymmetric relation (to what extent the concept
denoted by the phrase is a good instance of the tar-
get class, and not vice versa). As far as we know,
this is the first time these asymmetric measures
are applied to composed representations (Baroni
et al. (2012) experimented with entailment mea-
sures applied to phrase representations directly
harvested from corpora, and not derived composi-
tionally). We are thus also providing a novel eval-
uation of compositional models and asymmetric
measures on a challenging task where they could
potentially be very useful.2

2Connell and Ramscar (2001) showed good correlation of
similarity scores produced by the LSA distributional seman-
tic model with human category typicality judgments, how-
ever they did not consider phrases nor adopted an asymmetric
measure to take directionality into account.

2 The Norwegian Blue Parrot data set

We introduce Norwegian Blue Parrot (NBP),3 a
new, large data set to explore modification effects.
Given a head noun h and a modifier adjective or
noun m, NBP contains average membership and
typicality ratings for the phrase mh both as an
instance of h and as an instance of c (a broader
category h belongs to). As a control, we also
present ratings for unmodified h as an instance
of c (we will use them below to test similarity
measures on their ability to capture the direction
of the membership relation, and to zero in on the
effect of modification vs. more general member-
ship/typicality effects). We include, and indeed fo-
cus on, relations with broader categories because
they are more prone to modification effects: In-
tuitively, a dead parrot is still a parrot, but it is,
at the very least, an atypical pet. The statistics
in Table 1, discussed below, confirm our intuition
that subjects are more likely to assign lower scores
with respect to a broader category than to the head
category itself (although this is, no doubt, in part
by construction, since we started constructing the
dataset by mining examples where mh is atypi-
cal of c, not h). We collect both membership and
typicality ratings because we expect them to have
different implications for sound entailment. If x
is not a member of class y, then x obviously does
not entail y. However, if x is an atypical y, en-
tailment still holds, but some typical properties of
y might not carry over (e.g., in an anaphora reso-
lution setting, we might still consider co-indexing
dead parrot with animal, but not with breathing
creature, despite the fact that breathing is a highly
characteristic property of animals).

In order to make sure that NBP would contain a
fair number of examples affected by strong mod-
ification effects, we first came up with a set of
〈m,h, c〉 tuples where, according to our own in-
tuition, m makes h fairly atypical as an instance
of c. For example, a bottle is a piece of drinkware.
If we add the modifier perfume, we expect that,
while subjects might still agree that a perfume bot-
tle is a bottle, they should generally disagree on
the statement that a perfume bottle belongs to the
drinkware category. We refer to tuples of this
sort (e.g., 〈perfume, bottle, drinkware〉) as dis-
torted tuples in what follows.4

3Available from http://clic.cimec.unitn.it/
composes/

4When creating the tuples, we also used some adjectives
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We then constructed a number of tuples that
should not display a strong modification effect. In
particular, in order to insure that any atypical rat-
ing we obtained on the distorted tuples could not
be explained away by characteristics of m or h
alone (rather than by their combination), for each
distorted tuple we constructed a few more tuples
with the same h and c but a different m, that
we did not expect to be strongly distorting (e.g.,
〈plastic, bottle, drinkware〉). Similarly, for each
distorted tuple we generated a few more with the
same m, but combined with (the same or differ-
ent) h and c on which the m should not exert a
strong effect (〈perfume, bottle, container〉). In
total, NBP is based on 489 distorted tuples and
1938 more matching tuples.

We constructed NBP to insure that it would
contain many tuples displaying strong modifica-
tion effects, and highly comparable tuples that do
not feature such effects. An alternative approach
would have been to rate phrases that were ran-
domly selected from a corpus. This would have
led to a dataset reflecting a more realistic distribu-
tion of modification effects, but it would not have
guaranteed, for the same number of pairs, a fair
amount of distorted tuples and comparable con-
trols. We leave the study of the natural distribution
of modification strength in text to further work.

To find inspiration for the tuples, we looked into
various databases containing concepts organized
by category, namely BLESS (Baroni and Lenci,
2011), ConceptNet (Speer and Havasi, 2013) and
WordNet (Fellbaum, 1998). We insured that all
words in our tuples occurred at least 200 times in
the large corpus we describe below (phrases were
not filtered by frequency, due to data sparseness).
Finally, when looking for tuples matching the dis-
torted ones, we made sure that the mh phrases in
the new tuples have similar Pointwise Mutual In-
formation to the corresponding phrases in the dis-
torted tuple (or, where the latter were not attested
in the corpus, similar m and h frequencies). Find-
ing meaningful combinations among unattested or
infrequent phrases was not an easy task and there
was not always a perfect candidate. However, the
phrases selected in this way yielded challenging
items for which there is little or no direct cor-
pus evidence, so that compositional models are re-
quired to account for them.

that have been traditionally labeled as intensional by seman-
ticists: artificial, toy, former.

From each source tuple (e.g.,
〈plastic, bottle, drinkware〉), we generated 3
instance-class combinations to be rated: mh → c
(plastic bottle → drinkware), mh → h (plastic
bottle→ bottle), h→ c (bottle→ drinkware), for
a total of 5,849 pairs, that constitute the final NBP
data set (2,417 mh → c pairs, 2,115 mh → h
pairs and 1,317 h→ c pairs).5

For each of these pairs, we collected both mem-
bership and typicality ratings through two surveys
on the CrowdFlower platform.6 Subjects came
exclusively from English speaking countries and
no special qualifications were required from them.
Membership ratings were collected by asking sub-
jects whether the instance is a member of the class
(formulated as a yes/no question). In a separate
study, we asked subjects to rate how typical the in-
stance is as member of the class on a 7-point scale.
For both questions, we collected 10 judgments per
pair and report their averages in NBP. For both sur-
veys, we added 48 control pairs with an expected
answer (yes/no for membership, high/low range
for typicality), that the subjects had to provide in
order for their ratings to be included in the final
set (“gold standard” items in crowd-sourcing par-
lance). These controls included highly prototypi-
cal pairs (dog→ animal), possibly with stereotyp-
ical modifiers (beautiful rose→ flower), and unre-
lated pairs (biology→ dance), also possibly under
modification (popular magazine→ animal).

We asked for binary rather than graded member-
ship judgments because these are more in line with
commonsense intuitions about category member-
ship (we might naturally speak of sparrows being
more typical birds than penguins, but it is strange
to say that they are “more birds”). The standard
view in the psychology of concepts (Hampton,
1991) is that membership judgments are the prod-
uct of a hard threshold we impose on the typicality
scale (x is not y if the typicality of x as y is below
a certain, subject-dependent threshold), although
under certain experimental conditions subjects can
also conceptualize membership as a graded prop-
erty (Kalish, 1995).

Membership and typicality ratings, especially
in borderline cases such as those we constructed,
are the output of complex cognitive processes
where large inter-subject differences are expected,

5There is a larger number of mh → c pairs because dif-
ferent tuples can lead to the same mh→ h or h→ c combi-
nations.

6http://crowdflower.com/
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measure mh→ c mh→ h h→ c tot.
memb. 0.84 (0.2) 0.97 (0.1) 0.88 (0.2) 0.89 (0.2)
typ. 5.45 (1.1) 6.29 (0.6) 5.81 (1.0) 5.84 (1.0)

Table 1: NBP summary statistics: Mean average
ratings and their standard deviations across pairs,
itemized by instance-class type and in total. Mem-
bership values range from 0 to 1, typicality values
from 1 to 7.

so it doesn’t make sense to worry about “inter-
annotator agreement” in this context. Still, several
sanity checks indicate that, overall, our subjects
understood our questions as we meant them, and
behaved in a reasonably coherent manner. First,
both average membership and typicality, ratings
are significantly lower (p < 0.001) for the mh →
c pairs deriving from those tuples that we manu-
ally labeled as distorted than for the non-distorted
ones. Moreover, for membership, in 86% of the
cases at least 8 over 10 subjects gave the same re-
sponse. For typicality, the observed average rat-
ing standard deviation across pairs (1.2) is signifi-
cantly below what expected by chance (p < 0.05),
based on a simulated random rating distribution.
Membership and typicality ratings are highly cor-
related, but not identical (r = 0.76)

Table 1 reports mean membership and typicality
scores in NBP. Both ratings are negatively skewed,
that is, subjects had the tendency to respond as-
sertively to the membership question and to give
high typicality scores. This is not surprising: Be-
cause of the way NBP was constructed, there are
about 4 tuples with no expected strong modifica-
tion effect for each distorted tuple. Furthermore,
except for the negative control items (not entered
in NBP), our questions did not feature cases where
a negative/low response would be entirely straight-
forward (of the “is a cat a building?” kind). We
observe moreover that, in accordance with the in-
tuition we discussed at the beginning of this sec-
tion, the ratings are extremely high when the class
is identical to the phrase head. On the other hand,
the mh → c condition displays, as expected, the
lowest averages, suggesting that this will be the
most interesting type to model experimentally.

Table 2 presents a few example entries from
NBP. The first block of the table illustrates cases
with the highest possible membership and typical-
ity scores. At the other extreme, the second block
contains examples with very low membership and
typicality. Interestingly, there are also cases, such

instance class memb. typ.
top membership, top typicality

gourmet soup food 1.00 7.00
huge tiger predator 1.00 7.00

sugared soda drink 1.00 7.00
live fish animal 1.00 7.00
Thai rice rice 1.00 7.00

silver spoon spoon 1.00 7.00
low membership, low typicality

fatal shooting sport 0.20 1.40
human egg food 0.40 1.50

perfume bottle drinkware 0.10 1.30
explosive vest commodity 0.30 1.90
lemon water chemical 0.20 1.60
creamy rice bean 0.20 1.30
top membership, (relatively) low typicality

sick tuna tuna 1.00 3.20
explosive vest vest 1.00 3.50

perforated sieve tool 1.00 4.20
bottled oxygen substance 1.00 4.30

grilled trout creature 1.00 4.40
educational toy amusement 1.00 4.50

Table 2: Instance-class pairs illustrating various
combinations of membership and typicality rat-
ings in NBP.

as the ones in the third block of the table, where all
subjects agreed on class membership, but the typ-
icality scores are relatively low (we did not find
clear cases of the opposite pattern, and indeed we
would have been surprised to find highly typical
instances of a class not being treated as members
of the class).

Some examples in Table 2 illustrate an impor-
tant design choice we made in constructing NBP,
namely, to ignore the issue of whether potential
modification effects are actually due to the modi-
fier and the category pertaining to different word
senses of the head term. One might argue, for
example, that egg has a food sense and a repro-
ductive vessel sense. The human modifier picks
the second sense, and so, obviously, human eggs
are judged as bad instances of food. While we
see the point of this objection, we think it’s im-
possible to draw a clear-cut distinction between
discrete word senses (even in the rather extreme
egg case, the eggs we eat are reproductive ves-
sels from a chicken point of view!). This has
been long recognized in the linguistic and cog-
nitive literature (Kilgarriff, 1997; Murphy, 2002),
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and even by the computational word sense disam-
biguation community, that is currently addressing
the continuous nature of polysemy by shifting to
the lexical-substitution-in-context task (McCarthy
and Navigli, 2009). Context provides fundamen-
tal cues to disambiguating polysemous words, and
noun modifiers typically act as important disam-
biguating contexts for the nouns. Thus, we think
that it is more productive for computational sys-
tems to handle modifier-triggered disambiguation
as a special case of the more general class of mod-
ification effects, than to engage in the quixotic
pursuit to determine, a priori, what’s the bound-
ary between a word-sense and a “pure” modifi-
cation effect. Note in Table 2 that grilled trout
was unanimously rated by subjects as an instance
of the creature category, despite the fact that the
cooking-related grilled modifier cues a classic
shift from an animal (and thus creature) sense to
food (Copestake and Briscoe, 1995). Examples
like this suggest that our agnosticism is warranted.

3 Methods

3.1 Composition models

We experiment with many ways to derive a phrase
vector by combining the vectors of its constituents.
Mitchell and Lapata (2010) proposed a set of sim-
ple models in which each component of the phrase
vector is a function of the corresponding compo-
nents of the constituent vectors. Given vectors ~a
and~b, the weighted additive model (wadd) returns
their weighted sum: ~p = w1~a + w2

~b. In the dila-
tion model (dil), the output vector is obtained by
decomposing one of the input vectors, say ~b, into
a vector parallel to ~a and its orthogonal counter-
part, and then dilating only the parallel vector by a
factor λ before re-combining. The corresponding
formula is: (~a ·~a)~b + (λ − 1)(~a ·~b)~a. In our ex-
periments, we stretch the head vector in the direc-
tion of the modifier (i.e., ~a is the modifier, ~b is the
head). In the multiplicative model (mult), vectors
are combined by component-wise multiplication,
such that each phrase component pi is given by:
pi = aibi.

Guevara (2010) and Zanzotto et al. (2010) pro-
pose a full form of the additive model (fulladd),
where the two constituent vectors are multiplied
by weight matrices before being added, so that
each phrase component is a weighted sum of all
constituent components: ~p = W1~a+W2

~b.
Finally, the lexical function (lexfunc) model of

Baroni and Zamparelli (2010) and Coecke et al.
(2010) takes inspiration from formal semantics
to characterize composition as function applica-
tion. In particular, in modifier-head phrases, the
modifier is treated as a linear function operating
on the head vector. Given that linear functions
can be expressed by matrices and their application
by matrix-by-vector multiplication, the modifier is
represented by a matrix A to be multiplied with
the modifier vector~b, so that: ~p = A~b.

We use the DISSECT toolkit7 to estimate the
parameters of the composition methods and de-
rive phrase vectors. In particular, DISSECT finds
optimal parameter settings by learning to approx-
imate corpus-extracted phrase vector examples
with least-squares methods (Dinu et al., 2013).
We use as training examples all the modifier-head
phrases that contain a modifier of interest and oc-
cur at least 50 times in our source corpus (see Sec-
tion 3.3 below).

3.2 Asymmetric similarity measures

Several measures to identify word pairs that stand
in an instance-class relationship by comparing
their vectors have been proposed in the recent dis-
tributional semantics literature (Kotlerman et al.,
2010; Lenci and Benotto, 2012; Weeds et al.,
2004).8 While the task of deciding if u is in class v
is typically framed (also by distributional semanti-
cists) in binary, yes-or-no terms, all proposed mea-
sures return a continuous numerical score.9 Con-
sequently, we conjecture that they might be well-
suited to capture the graded notions of class mem-
bership and typicality we recorded in NBP.10

In what follows, we use wx(f) to denote the
weight (value) of feature (dimension) f in the dis-
tributional vector of term x. Fx denotes the set of
features (dimensions) in the vector of x such that
wx(f) > t, where t is a predefined threshold to
decide whether a feature is active.11 Importantly,

7http://clic.cimec.unitn.it/composes/
toolkit/

8We speak of “instance-class relations” in a very broad
and loose sense, to encompass classic relations such as hy-
ponymy but also the fuzzier notion of lexical entailment.

9SVM classifiers have also been shown by Baroni et al.
(2012) to be well-suited for entailment detection, but they do
not naturally return continuous scores.

10Subjects had to answer a yes/no question concerning
class membership, but by averaging their response we derive
continuous membership scores.

11The obvious choice for t is 0. However, when work-
ing with the low-rank spaces described in Section 3.3 below,
we set t to 0.1, since after SVD/NMF smoothing we observe
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all measures assume non-negative values.
Most asymmetric measures proposed in the lit-

erature build upon the distributional inclusion hy-
pothesis, stating that “if u is a semantically nar-
rower term than v, then a significant number
of salient distributional features of u is included
in the feature vector of v as well” (Lenci and
Benotto, 2012). In our terminology, u is the poten-
tial instance, and v is the class. We re-implement
all the measures adopted by Lenci and Benotto,
namely weedsprec, cosweeds, clarkede and invcl
(see their paper for the original references):

weedsprec(u, v) =

∑
f∈Fu∩Fv

wu(f)∑
f∈Fu

wu(f)

cosweeds(u, v) =
√

weedsprec(u, v)× cosine(u, v)

clarkede(u, v) =

∑
f∈Fu∩Fv

min(wu(f), wv(f))∑
f∈Fu

wu(f)

invcl(u, v) =
√

clarkede(u, v)× (1− clarkede(u, v))

The cosweeds formula combines weedsprec
with the widely used symmetric cosine measure:

cosine(u, v) =

∑
f∈Fu∩Fv

wu(f)× wv(f)√∑
f∈Fu

wu(f)2 ×
√∑

f∈Fv
wv(f)2

Finally, we experiment with the carefully
crafted balapinc measure of Kotlerman et al.
(2010):

balapinc(u, v) =
√

lin(u, v) · apinc(u, v)

where the lin term is computed as follows:

lin(u, v) =

∑
f∈Fu∩Fv

wu(f) + wv(f)∑
f∈Fu

wu(f) +
∑

f∈Fv
wv(f)

The balapinc score is the geometric average
of a symmetric similarity measure (lin) and the
strongly asymmetric apinc measure, that takes
large values when dimensions with high values in
the vector of the more specific term are also high
in the vector of the more general term (refer to
Kotlerman et al. (2010) for the apinc formula).

widespread low-frequency noise.

3.3 Distributional semantic spaces

We extract co-occurrence information from a cor-
pus of about 2.8 billion words obtained by con-
catenating ukWaC,12 Wikipedia13 and the British
National Corpus.14 With DISSECT, we build co-
occurrence vectors for the top 20K most frequent
lemmas in the source corpus (plus any NBP term
missing from this list). We treat the top 10K
most frequent lemmas as context elements. We
consider context windows of 2 and 20 words on
the two sides of the targets. We weight the vec-
tors by non-negative Pointwise Mutual Informa-
tion and Local Mutual Information (Evert, 2005).
We experiment with vectors in the resulting full-
rank (10K-dimensional) semantic spaces as well
as with vectors in spaces of ranks 100 and 300.
Rank reduction is performed by applying the Sin-
gular Value Decomposition (Golub and Van Loan,
1996) or Non-negative Matrix Factorization (Lee
and Seung, 2000). It is customary to represent the
output of these operations directly in a dense low-
dimensional space. However, the asymmetric sim-
ilarity measures we use assume sparse vectors (or
the “inclusion” criterion would be meaningless),
so we project back the outcome of SVD and NMF
to sparse 10K-dimensional but low-rank spaces. In
total, we explore 20 distinct semantic spaces.

We also collect co-occurrence vectors for
the phrases needed to estimate the composi-
tion method parameters (see Section 3.1 above).
We use DISSECT’s “peripheral space” option to
project the phrase raw count vectors into the vari-
ous spaces without affecting their structure.

Due to memory constraints, we restrict evalua-
tion in the full-rank spaces to the wadd and mult
models.

4 Experiments

Given the methods described above, the main
question we want to answer is: Which combina-
tion of compositional model and asymmetric sim-
ilarity measure yields a better fit for the data in the
NBP dataset?

We start however with a sanity check on the
ability of the measures to capture the direction of
the instance-class membership relation. Even a
measure that is good at capturing degrees of mem-
bership/typicality won’t be of much practical use

12http://wacky.sslmit.unibo.it
13http://en.wikipedia.org
14http://www.natcorp.ox.ac.uk
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clarkede weedsprec balapinc cosweeds invcl
Low-rank spaces

10 8 11 8 7
Full-rank spaces

2 4 4 4 2

Table 3: Number of spaces (over totals of 16 low-
rank and 4 full-rank spaces) in which each mea-
sure was able to predict class membership direc-
tion significantly above chance.

if it is not able to tell us which item in a pair is the
instance and which is the class.

Detecting membership direction As described
in Section 2 above, NBP also contains single-
word h→ c pairs (parrot→ pet). We extracted
the subset of those that all judges considered to
be in the category membership relation, and we
checked them manually to make sure that the di-
rection was one-way only. This resulted in a set
of 639 pairs where the membership relation holds
unidirectionally. We tested all combination of se-
mantic spaces (Section 3.3) and asymmetric sim-
ilarity measures (Section 3.2) on the task of as-
signing a higher score to the pairs in the h → c
(vs. c → h) direction (e.g., (score(parrot →
pet) > score(pet → parrot)). Table 3 reports,
for each measure, the number of spaces in which
the measure was able to predict membership di-
rection significantly better than chance (binomial
test, p < 0.05). We report results on full- and
low-rank (SVD, NMF) spaces separately since, as
discussed above, for most composition models we
can only use the latter. We observe that all mea-
sures are able to significantly detect directionality
in at least some spaces. For all the analyses below,
we exclude from further testing the space-measure
combinations that failed to pass this sanity check,
since they are clearly failing to capture properties
pertaining to the instance-class relation (if a com-
bination is not able to tell that it is a parrot that is
a pet, and not vice versa, there is no point in ask-
ing if the same combination is able to model how
typical a dead parrot is as a pet).

Modeling typicality ratings of mh → c pairs
Next, for each of the remaining spaces, we first
performed composition as described in Section 3.1
above to build the representations for the nominal
phrases in the NBP dataset, and then computed
asymmetric similarity scores for pairs made of a

phrase and the corresponding potential class.

We computed the correlations between mean
human membership or typicality ratings and the
scores produced with each combination of com-
position model, similarity measure and space.
The resulting performance profiles for member-
ship and typicality are very highly correlated (r =
.99), and we thus report only the latter. We leave
it to further work to devise measures that are more
specifically tuned to capture membership or typi-
cality.

Table 4 reports the top correlation coefficients
between typicality judgments and scores of each
mh → c pair (dead parrot→ pet) across spaces,
organized by measures and composition meth-
ods. The best correlation is achieved with the
weedsprec measure using the mult composition
model in a full-rank space (precisely that of con-
text window size 2 and ppmi weighting). Recall
that mult returns the component-wise product of
the vectors it combines. Thus, modification un-
der mult is carried out by picking only those fea-
tures of the head that are also present in the mod-
ifier, and enhancing them by a factor given by the
modifier’s feature value. The weedsprec measure
is then given by the weighted proportion of active
features in mh that are also active in c. Therefore,
the more the modifier shares features with the par-
ent category, the higher weedsprec will be. This
might explain why weedsprec is a good fit for the
mult model in measuring degrees of category typ-
icality.

Looking at composition methods, there is no ev-
idence that the more complex, matrix-based ful-
ladd and lexfunc approaches are performing any
better than the simple multiplicative and additive
methods. Indeed, mult shows the most consistent
overall performance, confirming the conclusion of
Blacoe and Lapata (2012) that, at the present time,
when it comes to composition, “simpler is better”.
A related point emerges from the comparison of
the low- and full-rank results for mult and wadd.
The smoothing process due to dimensionality re-
duction is quite disruptive for the current asym-
metric measures, that are based on feature inclu-
sion. This is a further reason to stick to simpler
composition methods, that can be applied directly
in the full-rank spaces.

Regarding the measures themselves, we see that
cosweeds, that balances weedsprec with the clas-
sic cosine score, is the most robust, returning good
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clarkede weedsprec balapinc cosweeds invcl
Low-rank spaces

dil 9* 15* 16* 19* 8*
fulladd 17* 16* 12* 24* −3
lexfunc 17* 12* 12* 27* −2

mult 13* 19* 19* 29* 12*
wadd 14* 14* 16* 27* −2

Full-rank spaces
mult 9* 39* 33* 36* 15*
wadd 30* 34* 31* 35* 14*

Table 4: Percentage Pearson r between asymmet-
ric similarity measures andmh→ c typicality rat-
ings. *p < 0.001

results across all composition methods. On the
other hand, the related clarkede and invcl mea-
sures turn out to be quite brittle.

The highly significant correlations show that the
measures do capture to some extent the patterns of
variance in the data. However, when considering
potential practical applications, even the highest
reported correlation (.39) is certainly not impres-
sive, indicating that there is plenty of room for fur-
ther research into developing better composition
methods and/or membership/typicality measures.

Focusing on the modifier effect for mh→ c
pairs The typicality judgment for dead parrot as
a pet is influenced by two factors: how typical par-
rots are as pets, and how much more or less typical
dead parrots are as pets, as opposed to parrots in
general. A good model must be able to capture
both factors (and this is what we tested above).
However, we are also interested in assessing to
what extent the models are capturing the modifi-
cation effectproper, as opposed to the overall de-
gree of typicality of the h concept as member of
the c category. To focus on the modification fac-
tor, we partialed out the h→c (parrot→pet) rat-
ings from the mh→c (dead parrot→pet) ratings
and from the corresponding model scores (that is,
we correlated the residuals of mh→c ratings and
model-produced scores after regressing the h→c
ratings on both). The results are shown in Table
5. Correlations are lower overall, but the general
picture from the previous analysis still holds, con-
firming that the computational models are (also)
capturing modifier effects. Interestingly, wadd, dil
and fulladd generally undergo larger performance
drops than mult and lexfunc. Evidently, models
like the latter, in which the modifier selects the
relevant features from the head, are better suited
to explain modification than the former, in which

clarkede weedsprec balapinc cosweeds invcl
Low-rank spaces

dil 5 −1 −1 −2 7*
fulladd 10* 7* 5+ 7+ −2
lexfunc 15* 9* 10* 18* −2

mult 4+ 14* 13* 15* 9*
wadd 7+ 7* 9* 12+ −2

Full-rank spaces
mult 1 25* 21* 24* 5+
wadd 11* 18* 13* 20* 2

Table 5: Percentage Pearson r between asymmet-
ric similarity measures andmh→ c typicality rat-
ings where h → c scores have been partialed out.
*p < 0.001, +p < 0.05

the modifier features are just added to those of the
head by means of a linear combination.

Modeling typicality ratings of mh → h pairs
We repeated the first analysis for pairs of the type
mh → h (dead parrot→ parrot). The results,
shown in Table 6, are lower than in the previous
analysis. This is probably due to the fact that, as
discussed in Section 2, when the very same con-
cept is used as phrase head and category, judg-
ments are subject to a strong ceiling effect, and
none of our measures is designed to flatten out
above a certain threshold. Indeed, if we measure
the skewness of the typicality ratings,15 we obtain
that, while for h→ c and mh→ c the skewness is
of−1.9 and−1.5, respectively, formh→h it gets
to −3.9.

In any case, the results confirm the brittleness of
the clarkede and invcl measures. The linguistically
motivated lexfunc model emerges here as a com-
petitive alternative to the simpler models. Still, the
best results are obtained with mult and cosweeds
(on the full-rank, context window size 20, ppmi
weighted space). Notably, weedsprec applied to a
pair of the type mh→ h, where the phrase is con-
structed using the mult model, results in a constant
value of 1, whatever the modifier and the head
noun is. This is due to the fact that the features of
a phrase composed using mult are a subset of the
features of the head,16 and in this case the head is
the same as the category. Therefore, by definition,
weedsprec yields a score of 1 for every pair, the
variance is null and hence the correlation is unde-

15A skewness factor of 0 means that the distribution is bal-
anced around the mean, while the more negative the coeffi-
cient is, the more the left tail is longer and the distribution is
concentrated to the right (toward high typicality values in our
case).

16In set notation: Fu ∩ Fv = Fu since Fu ⊆ Fv
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clarkede weedsprec balapinc cosweeds invcl
Low-rank spaces

dil 2 −1 −2 −3 4
fulladd 5+ 5+ 2 1 −1
lexfunc 14* 8* 14* 17* −1

mult 3 - 13* 15* 5+
wadd 6+ 8* 7+ 6 −3

Full-rank spaces
mult −2 - 18* 19* −2
wadd 7* 13* 7* 12* −2

Table 6: Percentage Pearson r between asymmet-
ric similarity measures andmh→ h typicality rat-
ings. *p < 0.001, +p < 0.05

fined. As a consequence, in this case cosweeds,
which is the geometric mean between weedsprec
and cosine, reduces to cosine similarity! The latter
might be effective in capturing the degree of simi-
larity between the phrase and its potential category
but, as a symmetric measure, it cannot, alone, pro-
vide a full account of category typicality effects.

5 Conclusion

We introduced the challenge of quantifying the
impact of modification on the meaning of noun
phrases to the computational linguistics commu-
nity. We presented a new dataset that collects
membership and typicality ratings for modifier-
head phrases with respect to the category repre-
sented by the head as well as a broader category.
Since accounting for modifier distortion requires
semantic representations of phrases and model-
ing graded judgments, we consider this an ideal
testbed for compositional distributional semantics.

In the interaction between compositional mod-
els and directional similarity measures, we have
observed that simpler models yield better results.
Specifically, mult and wadd are economical com-
position models than can be applied on full-rank
spaces, which in turn work best with our similar-
ity measures.

Psychologists studying modification effects in
concept combination have proposed models that
are usually quite complex, relying on hand-crafted
feature definitions and making very strong as-
sumptions about the combination process (see for
example Cohen and Murphy (1984), Smith et al.
(1988)). Some of these assumptions have led other
researchers to argue that prototypes do not com-
pose at all (Connolly et al., 2007). In contrast,
the approach we borrow from distributional se-
mantics, while only mildly successful for now, has
the advantage of being very simple both in its con-

struction and application, and in the assumptions
that it makes.

Also notable is that we are putting under the
same umbrella tasks that have been traditionally
tackled separately. For example, among the ef-
fects present in the dataset, we can find both word
sense disambiguation (see discussion at the end of
Section 2) and what Murphy (2002) calls “knowl-
edge effects” (e.g., a plane makes a very good ma-
chine, but a paper plane doesn’t). Moreover, these
effects can also interact (people know that a hu-
man egg is actually a single, small cell, and hence
not even cannibals would consider it satisfactory
food). We can thus explore the empirical ques-
tion of whether all these related phenomena can
be tackled together, with a single model account-
ing for all of them.

In conclusion, the challenge that we intro-
duced brings together concept combination and
non-subsective modification phenomena studied
in psychology and theoretical linguistics, and tries
to handle them with the standard machinery of
computational linguistics. This challenge has
proved quite difficult for current tools, but this is
exactly what we expected in the first place. Our
goal, from the outset, was to create a task that
could help us delimiting the boundaries of com-
putational methods for characterizing human con-
cepts, while delimiting, at the same time, the no-
tion of human concepts itself.
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Abstract

German particle verbs, like anblicken (to
gaze at) combine a base verb (blicken)
with a particle (an) to form a special
kind of Multi Word Expression. Parti-
cle verbs may share the semantics of the
base verb and the particle to a variable de-
gree. However, while syntactic subcate-
gorization frames tend to be good predic-
tor for the semantics of verbs in general
(verbs that are similar in meaning also tend
to have similar subcategorization frames
and selectional preferences), there are reg-
ular changes in subcategorization frames
by particle verbs with regard to the corre-
sponding base verbs. This paper demon-
strates that the syntactic behavior of par-
ticle verbs and base verbs together (mod-
eling regular changes in subcategorization
frames by particle verbs and correspond-
ing base verbs) and applying clustering
techniques allows us to distinguish parti-
cle verb meaning and shows the tight con-
nection between transfer patterns and the
semantic classes of particle verbs.

1 Introduction

In German, particle verbs (PVs), like anblicken in
(1), are a highly productive class. PVs present
challenges for a both theoretical analysis and their
computational treatment. One of the central prob-
lems is the prediction of their meaning from their
constituent parts: the base verb (BV, e.g. blicken
in (1)) and the particle (e.g. an). Many PVs de-
rive their meaning from the corresponding BVs –
with a varying degree of transparency. It is often

This work is licensed under a Creative Commons Attribution
4.0 International Licence. Page numbers and proceedings
footer are added by the organisers. Licence details: http:
//creativecommons.org/licenses/by/4.0/

not clear, however, how to interpret the semantics
of the particles and their contribution to the mean-
ing of the PVs. Since particles never occur iso-
lated, without the context of the verb, it is difficult
to assign them a lexical semantic entry on their
own. Even more, German particles are a notori-
ously ambiguous word class.

(1) Das
The

Kind
child

blickt
gazes

seine
his-acc

Mutter
mother

an.
PRT.

The child looks at his mother.

One way to approximate the meaning of parti-
cles is to group together the particle verbs which
share the same particle into semantic groups (such
as anblicken, anstarren, anschauen ‘to stare/look
at’), such that both the meaning of the PV and the
meaning of the BV is similar in each group. This
allows us to make inferences like ”taking a BV
from semantic group α and particle β, we will de-
rive a PV from semantic group δ”. Such groups
can be established and they represent productive
paradigms. Springorum et al. (2013) have shown
in a generation experiment setup that subjects are
able to associate a meaning to artificially created,
previously unattested PVs and to construct exam-
ple sentences for them.1 Different subjects also
agree to a large degree on the meaning they at-
tribute to the newly formed lexical items.

But this approach also rises a series of ques-
tions, especially concerning the way in which such
groups can be distinguished, both from a theoreti-
cal and a corpus-based perspective. For example,
which kinds of linguistic features allow us to dis-
criminate such semantic classes? In this paper we
investigate the influence of syntax, which repre-
sents one of the possible feature sources. Syn-

1For example for the neologism anlauschen, referring to a
partitive meaning of the particle, senentence like the follow-
ing could be found: Er hatte an der Wand angelauscht und
wusste Bescheid. (‘He had listened at the wall and knew
everything.’)

182



tactic subcategorization frames tend to be good
predictors for the semantics of verbs in general:
verbs that are similar in meaning also tend to have
similar subcategorization frames and selectional
preferences (Schulte im Walde, 2000; Merlo and
Stevenson, 2001; Korhonen et al., 2003; Schulte
im Walde, 2006a; Joanis et al., 2008). But, as
we will show below, PV-BV pairs tend to have a
special behavior with respect to their subcatego-
rization, even if their meanings are closely related.
Because we are interested in pairs of PVs and their
BVs, we thus have to look at pairs of subcatego-
rization preferences, and rely on the concept of
syntactic transfer. We use syntactic transfer as
a technical term here, which we define as regular
changes in subcategorization frames by PVs and
corresponding BVs, e.g., the incorporation or ad-
dition of complements of PVs in comparison to
their BVs (Stiebels, 1996; Lüdeling, 2001; Fleis-
cher and Barz, 2012a). We claim that the syntac-
tic behavior of PVs and BVs together allows us to
distinguish semantic classes.

A better understanding of the nature of the con-
nection between syntactic transfer patterns and se-
mantic classes may be beneficial for both theoret-
ical and computational linguistics. On the theo-
retical side we can hope to find new arguments to
guide and justify lexical semantic classifications.
We may also shed light on what particles actu-
ally mean, a topic which is not trivial by itself.
In computational semantics, a better understand-
ing of syntactic transfer patterns can potentially
contribute to a better treatment of PVs in meaning-
related areas, such as machine translation and in-
formation retrieval.

In sum, this paper makes the following contri-
butions:

• We show that the meaning of verb particles
can be modeled as classes of pairs of PVs and
their corresponding BVs, where both PVs
and BVs in each class are closely related in
meaning. In addition, the PV-BV pairs in
each class undergo the same syntactic trans-
fers, i.e. the selectional preferences of PV-
BV pairs within each class tend to be very
similar, even if the subcategorization pref-
erences may be different between PVs and
BVs.
• We show that automatic clustering can repli-

cate a gold standard classification of PV-BV
pairs to a large degree when clustering only

relies on syntax and the gold standard reflects
semantic regularities.

The rest of this paper is organized as follows: In
section 2 we describe the task and our goals. Here
we also define the term syntactic transfer pattern,
which is central to our discussion. Section 3 is
dedicated to related work relevant for our study.
In section 4 we describe the experimental setup,
while sections 5 and 6 present the experiment re-
sults and discuss them.

2 Goal and Motivation

The work we describe here centers around the con-
cept of semantic classes and syntactic transfer pat-
terns. As concerning the semantic side, the PVs
which share the same particle may be grouped into
different classes according to their meaning. For
example, among the PVs incorporating the parti-
cle an we find a group of verbs whose meanings
center around the concept of ”to look at some-
one/something in manner X”, ”to attach something
somewhere in manner X”, ”to make an unpleasant
sound towards someone in a manner X” and ”to
start an action X on something which starts con-
suming it”, as exemplified in (2) a-d.

(2) a. A
A

blickt/schaut/starrt/stiert/
looks/stares/gazes

B
B

an.
PRT.

A looks/stares/gazes at B.
b. A

A
klebt/heftet/schraubt/nagelt
glues/affixes/screws

B
B

an
at/onto

C
C

an.
PRT.

A glues/affixes/screws B onto C.
c. A

A
brüllt/faucht/bellt/meckert
roars/hisses/bleats

B
B

an.
PRT.

A brawls/hisses/scolds at B.
d. A

A
schneidet/bricht/reißt
cuts/breaks/tears

B
B

an.
PRT.

A cuts/breaks/tears the first
slice/piece of B.

Such semantic classes are not easy to define and
they are also difficult to induce automatically. Al-
though there is general agreement in the theo-
retical literature that such semantic classes for
PVs exist (cf. Lechler and Roßdeutscher (2009),
Kliche (2011) and Springorum (2011)) the agree-
ment on the number and nature of such classes is
not very high. For example, Springorum (2011)
(who develops her analysis within Discourse Rep-
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resentation Theory (Kamp and Reyle, 1993)) dis-
tinguishes between 11 classes of PVs with the par-
ticle an, while Fleischer and Barz (2012b) only
distinguish 3 major de-verbal classes, based on
their aktionsart, which can be divided into some
9 minor classes.2 It should be noted that all the
PVs and BVs in (2) a-d are not only quite homo-
geneous in their semantics; they also form coher-
ent syntactic classes. The PVs and BVs of these
examples are quite similar in the way they typi-
cally select their syntactic complements. For ex-
ample, the BVs of (2-a) typically take a PP argu-
ment that expresses the direction of gaze using a
prepositional phrases with one of the prepositions
auf, zu, nach or in subcategorizing a dative noun
phrase. The corresponding PVs, however, typi-
cally express this semantic role by an accusative
object. The type of change from the typical frame
of a BV to the typical frame of a PV is an example
of what we mean by a syntactic transfer pattern.

So, while similar syntactic behavior of two
verbs in general may indicate that the verbs are
also semantically similar, this is typically not the
case for PV-BV pairs. Compare (1) to (3), which
are nearly synonymous but (3) uses the BV blicken
instead of the PV anblicken in (1). We can only in-
duce the similarity of the PV and the BV if we take
the syntactic transfer into consideration.

(3) a. Das
The

Kind
child

blickt
looks

zu
at

seiner
his-dat

Mutter.
mother.

b. Das
The

Kind
child

stiert/starrt/schaut
stares/stares/looks

zu
at

seiner
his-dat

Mutter.
Mother.

Looking at the class to which this PV belongs, all
the variants of (3-b) are semantically very similar
to (3-a). This also corresponds to a syntactic sim-
ilarity: all the verbs of this group share the same
preferred syntactic subcategorization frames. The
dominant frame of theses verbs is ”NPnom+PP-
dat” (the head preposition of the PP may vary, but
within well-defined limits). But this is not the case
for the PV anblicken in (1). (1) is nearly synony-
mous to (3-a), but the PV in this example has a to-
tally different frame, namely the simple transitive
”NPnom+NP-acc”. It may not come as a surprise
that all of the verbs in (3-b) have PV counterparts
(anstieren, anstarren, etc.), which all behave syn-

2The subdivision is, however not fully spelled out and
only implicit in their description.

tactically like anblicken.
In sum, we part from the hypothesis that there

is a tight connection between transfer patterns and
the semantic classes of PVs. There is only one
more point to make: the classes shown in (2),
could actually be seen as reflecting different mean-
ings of the particle an itself.

3 Related Work

Particle verbs have been studied from the theo-
retical perspective and, to a more limited extend,
from the aspect of the computational predictabil-
ity of the degree of semantic compositionality (the
transparency of their meaning with respect to the
meaning of the base verb and the particle) and the
semantic classifiabilty of PVs.

For English, there is work on the automatic
extraction of PVs from corpora (Baldwin and
Villavicencio, 2002; Baldwin, 2005; Villavicen-
cio, 2005) and the determination of composition-
ality (McCarthy et al., 2003; Baldwin et al., 2003;
Bannard, 2005).

To the best of our knowledge Aldinger (2004)
is the first work that studies German PVs from a
corpus based perspective, with an emphasis on the
syntactic behavior and syntactic change. Schulte
im Walde (2004), Schulte im Walde (2005) and
Schulte im Walde (2006b) present preliminary dis-
tributional studies to explore salient features at the
syntax-semantics interface that determine the se-
mantic nearest neighbours of German PVs. Re-
lying on the insights of those studies, Schulte
im Walde (2006b) and Hartmann (2008) describe
experiments which model the subcategorization
transfer of German PVs with respect to their BVs
in order to strengthen PV-BV distributional simi-
larity. The main goal for them is to use transfer in-
formation in order to predict the degree of seman-
tic compositionality of PVs. Kühner and Schulte
im Walde (2010) use clustering to determine the
degree of compositionality of German PVs, via
common PV-BV cluster membership. They are,
again, mainly interested in the assessment of com-
positionality, which is done on the basis of lexi-
cal information. They use syntactic information,
but only as a filter and for lexical heads as cooc-
currence features in order to limit the selected ar-
gument slots to certain syntactic functions. They
conclude that the best results can be obtained with
information stemming from direct objects and PP-
objects. The incorporation of syntactic informa-
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tion in the form of dependency arc labels (concate-
nated with the head nouns) does not yield satisfac-
tory results, putting the syntactic transfer problem
in evidence, again. They conclude that an incor-
poration of syntactic transfer information between
BVs and PVs could possibly improve the results.

Based on a theoretical study (Springorum,
2011), which explains particle meanings in terms
of Discourse Representation Theory (Kamp and
Reyle, 1993), Springorum et al. (2012) show that
four classes of PVs with the particle an can be
classified automatically. They take a supervised
approach using decision trees. The use of decision
trees also allows them to manually inspect and an-
alyze the decisions made by the classifier. As pre-
dictive features they use the head nouns of objects,
generalized classes of these nouns and PP types.

The approach we take here is not fully compa-
rable to any of the former approaches, since we
try to derive a semantic classification BV-PP pairs
in an unsupervised manner and we only use syn-
tactic features, stemming from corpus instances of
both the BVs and the PVs. In other words, we do
not attempt to classify PVs, but we try to classify
syntactic transfers and, by doing so, we identify
syntactic transfer patterns which we hypothesize
to have a close relation to semantic PV classes and
the semantics of the particles.

4 Experimental Setup

4.1 Gold Standard Classification

For testing our hypothesis, we created a gold stan-
dard of 32 PVs, including 14 with the particle an
and 18 with the particle auf. We concentrated on
two particles here in order to have a small and con-
trolled test bed which allows us to study the syn-
tactic transfers.

We based the creation of the gold standard on
the classification by Fleischer and Barz (2012b),
but we further distinguished the classes based
on the meanings of the BVs. For example, we
grouped all the BVs with the meaning of ’looking
in a manner X’ or ’tying X to Y in a manner Z’.
From these classes we selected those which had
a clear subcategorization pattern for both the BVs
and the PVs. We discarded such PVs where ei-
ther the PV itself or its underlying BV was clearly
ambiguous. The full gold standard can be seen in
table 2. The table also lists the expected dominant
subcategorization frames for the BVs and PVs of
each category.

While the gold standard was based on theo-
retic considerations, we expected it to correlate
with human intuitions. To test this, we presented
the gold standard verbs to 6 human raters. These
raters were all German native speakers with work-
ing practice in various areas of linguistics or lan-
guage didactics. The raters were not directly asked
to group PVs into categories. Instead the PVs were
presented in pairs3 and raters had to make a deci-
sion on whether or not the pairs belong to the same
semantic category (even if they could not think
of a name or description of that category). No
pre-defined categories were given, nor were raters
asked to provide a name or description for these
categories. The annotators were asked to take the
similarity of the BVs and the similarity of the PVs
into consideration for their judgements. In order
to avoid possible bias, the verbs were presented
without given context. What is important here is
that we did not ask them to take any syntactic cri-
terion into consideration, the criterion we used for
the initial compilation of the gold standard.

The inter-annotator agreement was substantial
with a Fleiss’ Kappa score of 0.68 (Fleiss, 1971).4

As a measure of agreement between raters and the
previously created gold standard, we performed
pair-wise calculations between the ratings of each
annotator and the gold standard. For the compar-
ison, the gold standard was transformed into PV
pairs and the value true was assigned if the two
verbs of a pairs belonged to the same category, and
false otherwise. We calculated the Kappa scores
for each annotator and took the average of the
agreement scores. Table 1 resumes the compari-
son. Values are given for the parts of the gold stan-
dard corresponding to PVs with an and auf sepa-
rately and also for the gold standard as a whole.

It can clearly be seen that humans agreement
with the gold standard is as high as the agree-
ment among different annotators. This shows that
the gold standard used here is a valid represen-
tation of human language intuition. Most impor-
tantly, the annotators did not use syntactic criteria

3All possible PV combinations were generated, but the
PVs with an were kept separate from those with auf in order
to avoid an unnecessary explosion of the number of pairs to
be rated.

4One of the 6 raters showed less agreement with the other
raters. If we eliminate this rater from the calculation of agree-
ment, we achieve an even higher Kappa score of 0.76 and also
agreement scores with the gold standard improved. Two of
the annotators even achieved Kappa scores of over 0.80 when
compared to the gold standard.
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and still validated a gold standard whose creation
was explicitly based on syntactic subcategoriza-
tion frames. In other words: there is an apparent
tight interrelation between syntax and semantics
for PVs, at least in the sense that semantic dis-
tinctions can be used to predict different syntactic
behaviour. The inverse case - predicting semantic
classes from syntactic information - will be dis-
cussed below.

4.2 Corpus Data

We used a lemmatized and tagged version of the
SdeWaC corpus (Faaß and Eckart, 2013), a web
corpus of 880 million words. For linguistic pre-
processing we used the MATE parser (Bohnet,
2010), which allowed us to extract syntactic sub-
categorization frames.

4.3 Feature Selection

For each PV-BV pair we extracted two parallel sets
of features, one pertaining to the BV and one for
the PV. This allows us to model the syntactic trans-
fer. For example, we expected that an ideal trans-
fer from a group of transitive BVs to a group of
intransitive PVs should be reflected in high values
for the features BV:transitive and PV:intransitive5

and, in turn, low values for BV:intransitive and
PV:transitive.

We had two ways of selecting the feature types:
manually and automatically. For the manual fea-
ture selection we extracted only those features
from the parsed frames which we already used in
the creation of the gold standard and which are
listed in table 2. This resulted in a small feature
set of 30 features (15 features for PVs and BVs,
respectively). For the automatic feature selection
we simply used the n most frequent frames which
could be observed in the corpus for the set of verbs
of the gold standard.

From the syntactic dependency representation
provided by the parser, we excluded subjects and
modifiers (except for PP-modifiers) in the repre-
sentation of subcat frames. We did not use infor-
mation on subjects, because in German all verbs
have subjects, which may be implicit in the case
of subordinate clauses. We found that for this
reason that with the representation of subjects in
the extracted features no relevant information was

5Note that transitive and transitive are only convenient
abreviations for the labels NPnom and NPnom+NPacc, which
are used in table2.

gained, but some distortion was introduced. Mod-
ifiers in the MATE parser represent information
which is too general to be good predictors. Based
on theoretical considerations on the best lexico-
graphic representation of verbs, we included PP-
modifiers, however, because quantitative informa-
tion on PP-adjuncts has proven successful next to
that of PP-arguments (Schulte im Walde, 2006a;
Joanis et al., 2008), and in addition the parser of-
ten distinguishes poorly between PP-modifiers and
PP-arguments.

In order to create an idealized artificial upper
bound, we also created a set of idealized ”lexico-
graphic” descriptions in the form of manually in-
stantiated feature vectors and feature values, us-
ing the manually selected feature configuration
we just described (and ultimately based on the
gold standard description represented by table 2).
These idealized vectors were also used for clus-
tering experiments in order to estimate an upper
bound.

4.4 Clustering Methods
For the clustering experiments we used two dif-
ferent clustering algorithms: K-means and La-
tent Semantic Classes (LSC). K-means is a stan-
dard flat, hard-clustering algorithm; we used the
Weka implementation (Witten and Frank, 2005).
LSC (Rooth, 1998; Rooth et al., 1999) is a
two-dimensional soft-clustering algorithm which
learns three probability distributions: one for the
clusters, and one for the output probabilities of
each element and for each feature type with regard
to a cluster. The latter two (elements and features)
correspond to the two dimensions of the cluster-
ing. In our case the elements are the PV-BV pairs,
and the features are normalized counts of the sub-
categorization frames.

4.5 Evaluation
Our feature vectors are a combination of the fea-
ture vector for the BV and the feature vector for
the PV of each PV-BV pair. Since the length of
each vector depends on the base frequency of each
verb we need to apply a feature normalization: we
simply reduce each feature to its unit vector of
length 1. Because the frequency ratio between BV
and PV may vary strongly, we need to normalize
PV vectors and BV vectors separately before they
can be combined.

The vector combination for each PV-BV pair is
done by simply adding the dimensions (and not the
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an auf an+auf
Inter-annotator agreement 0.79 0.64 0.70
Average agreement between 0.73 0.74 0.73
annotators and gold standard

Table 1: Inter-annotator agreement and comparison of the gold standard to the ratings of 6 human anno-
tators (Fleiss’ Kappa Scores).

Particle Typical frames Typical frames Semantic Verbs in Class
for the BV for the PV Class

an

NPnom
+NPacc
+PP-an

NPnom
+NPacc
+PP-an

locative/
relational
tying

an|binden to tie at
an|ketten to chain at

NPnom
+PP-zu/in/
nach/auf

NPnom
+NPacc

locative/
relational
gaze

an|blicken to glance at
an|gucken to look at
an|starren to stare at

NPnom
+NPacc
+PP-mit

NPnom
+NPacc
+PP-mit

ingressive
consump-
tion

an|brechen start to break
an|reißen start to tear
an|schneiden start to cut

NPnom
NPnom
+NPacc

locative/
relational
sound

an|brüllen to roar at
an|fauchen to hiss at
an|meckern to bleat at

NPnom
+NPacc
+PP-an

NPnom
+NPacc

locative/
relational
fixation

an|heften to stick at
an|kleben to glue at
an|schrauben to screw at

auf

NPnom NPnom
locative
blaze-
bubble

auf|brodeln to bubble up
auf|flammen to light up
auf|lodern to blaze up
auf|spudeln to bubble up

NPnom
+PP-zu/in/
nach/auf

NPnom
locative
gaze

auf|blicken to glance up
auf|schauen to look up
auf|sehen to look up

NPnom
+NPacc

NPnom
+NPacc

locative/
dimensional
instigate

auf|hetzen to instigate
auf|scheuchen to rouse

NPnom
+NPacc
+PP-auf

NPnom
+NPacc

locative/
relational
fixation

auf|heften to staple on
auf|kleben to glue on
auf|pressen to press on

NPnom NPnom
ingressive
sound

auf|brüllen suddenly roar
auf|heulen suddenly howl
auf|klingen suddenly sound
auf|kreischen suddenly scream
auf|schluchzen suddenly sob
auf|stöhnen suddenly moan

Table 2: The gold standard classes for the experiments, with subcategorization patterns.
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an auf an+auf
Purity RI ARI Purity RI ARI Purity RI ARI

Human 0.93 0.92 0.92
ratings

K-means

idealized features 0.83 0.91 0.70 0.88 0.92 0.72 0.93 0.97 8.2
(manually set)
selected features 0.67 0.82 0.29 0.75 0.87 0.52 0.46 0.88 0.32
(extracted)
20 feat 0.58 0.74 0.18 0.69 0.69 0.40 0.43 0.88 0.14
50 feat 0.67 0.80 0.20 0.75 0.83 0.38 0.43 0.90 0.19
100 feat 0.67 0.79 0.18 0.75 0.83 0.40 0.49 0.90 0.21
200 feat 0.58 0.74 0.13 0.81 0.86 0.52 0.43 0.88 0.18

LSC selected features 0.63 0.78 0.22 0.80 0.85 0.55 0.85 0.92 0.59
(extracted)
Cutoff: 0.1

Table 3: Comparison of the results from different clustering methods and feature configurations.

dimension extensions) of the two vectors. In this
way, each subcategorization frame is represented
separately for the BV and the PV. For example,
the vectors for the intransitive frame will be repre-
sented as BV:intransitive and PV:intransitive.

We evaluated the clusterings in terms of Pu-
rity (Manning et al., 2008), Rand Index and Ad-
justed Rand Index (Rand, 1971; Hubert and Ara-
bie, 1985). Purity is a measure with values be-
tween 0 and 1 which captures the purity of indi-
vidual clusters in terms of the ratio between the
number of elements of the majority class in each
cluster and the total of elements in the cluster. A
perfect clustering will have a purity of 1. What Pu-
rity does not capture is the amount of clusters over
which each target class is distributed. That means
that also non-perfect clusters may achieve a Purity
of 1 if there are more clusters than target classes.
As long as the number of clusters is constant, how-
ever, purity is a good and intuitive approximation
to clustering evaluation.

The Rand Index (RI) looks at pairs of ele-
ments and assesses whether they have been cor-
rectly placed in the same cluster (which is correct
if they pertain to the same target class) or in dif-
ferent clusters (correct if they belong to different
target classes). RI is sensitive to the number of
non-empty clusters and can capture both the qual-
ity of individual clusters and the amount to which
elements of target categories have been grouped
together. RI looks as pair-wise decisions, which
makes it also applicable to the human ratings de-
scribed in section 4.1. The Adjusted Rand Index

(ARI) is a version of RI which is corrected for
chance. While RI has values between 0 and 1, ARI
can have negative values; 1 still represents a per-
fect clustering.

The Adjusted Rand Index (ARI) is a version of
RI which is corrected for chance. While RI has
values between 0 and 1, ARI can have negative
values; 1 still represents a perfect clustering.

We evaluated the clustering of the verbs with the
particles an and auf separately from each other,
since we have to expect that there is a different set
of semantic classes for each verb particle. We also
ran the same experiments for the gold standard as
a whole (an+auf ), in order to test if we could find
some tendencies across clusters.

We set the number of clusters equal to the num-
ber of target categories from the gold standard.
This gave us 5 clusters for both the an-set and the
auf -set and 10 clusters for the classification of the
whole gold standard.

Note that LSC is a soft clustering algorithm. For
the evaluation of LSC clusters with respect to pu-
rity and RI and ARI, a conversion to hard clus-
tering must be done. We did this conversion by
simply applying a cutoff value for the output prob-
abilities for cluster membership. We tried out var-
ious cut-off levels and found that for the sets of an
and auf PVs the value of 0.1 gave a good trade-off
between coverage (the total number of elements
retained in all clusters) and ARI (cf also Table 4
below). This value is also the one used in Kühner
and Schulte im Walde (2010).
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5 Results

The comparison of the results from different meth-
ods can be seen in table 3. The strongest automati-
cally obtained results are printed in bold face. The
human rating scores are given in the first row and
allow for a direct comparison between automatic
clustering and human decisions.6 The second row
shows the artificial upper bound represented by the
manually set feature vectors as lexicographic en-
tries. Note that this is an artificial upper bound
and not an experimental result, even if obtained
by clustering.

The third row corresponds to the evaluation re-
sults for the manually selected corpus-based fea-
ture configuration used within K-means. They are
to be compared with the following rows concern-
ing the results based on automatically selected n
most frequent features. The last row shows the
results obtained with the LSC soft clustering al-
gorithm, applying a cutoff of 0.1 output probabil-
ity for cluster membership, again for the manu-
ally selected feature configuration. This result is
not fully comparable to the rows above, which are
obained with K-means or human ratings. Since
LSC is a soft clustering algorithm, there is a trade-
off between coverage and accuracy which depends
on the cutoff point selected for the conversion into
hard clusters.

Note that the Purity values are comparable
among each other since the number of clusters was
held constant. We always chose a number of clus-
ters equal to the number of target categories (5 cat-
egories for an, 5 for auf and 10 for an+auf ).

Table 4 shows the results for LSC clustering
in more detail. The soft clusterings have to be
converted to hard clusterings. Because of this
the cut-off point within the conversion becomes
an important parameter. We chose here cut-off
points which correspond to the output probabil-
ity of cluster-elements (e.g. PV-BV pairs) with
regard to each cluster. The table shows a clear ten-
dency towards better ARI scores when higher cut-
off points are chosen. But this is counterbalanced
by the fact that for higher cutoff points less ele-
ments are retained. Below a certain cutoff-point
the total number of elements retaind is smaller

6RI is a measure which is based on pair-wise clustering
decisions, we were able to calculate these scores for the hu-
man ratings described in section 4.1. Since purity is not based
on a pair-wise decision, it was not applicable to the human
ratings. For the same reason ARI was also not adaptable to
the human rating scenario.

than the target set of verbs in the gold standard.

6 Discussion

It is not surprising that the manually defined fea-
ture configuration in our ”lexicographic” setting
perform best. These results are also similar to
those obtained by the human validation of the gold
standard. They do not get perfect scores of 1 be-
cause of small lexicographic differences concern-
ing individual entries. The automatic clustering
results relying on corpus-based features are worse,
as expected, but they still represent a very strong
tendency to group together PV-BV pairs into se-
mantic classes. We can achieve relatively high pu-
rity scores, thus demonstrating that our approach
is generally valid.

Concerning the feature selection for the corpus-
based data, the manually selected set seems to per-
form slightly better than the automatic feature se-
lection settings. Moreover, the manual selection
represents a more stable setting since automatic
selection seems to vary with the number n of fea-
tures. There appears to be no optimal setting for n
which gives the best results for all sets. For the an
set the local maximum is reached with the selec-
tion of the 50 or 100 most frequent subcat frames.
The selection of more or less features leads to
worse evaluation scores. For the auf set this lo-
cal maximum is reach with much higher values for
n. The manually created feature set, on the other
hand, always results in a relatively good perfor-
mance. This is also an expected result since the
feature selection already contains human linguis-
tic knowledge on which syntactic arguments rep-
resent the core set of the semantic roles which the
verbs can realize.

It is apparently surprising that for the joint gold
standard set an+auf LSC performs much better
than K-means. But this high ARI value comes at
the cost of a very low coverage. If we compare
this value to table 4, it can be seen that the cutoff
point of 0.1, which works very well for sets of an
and auf is inadequate for the set an+auf : only 20
verbs are retained in the converted clusters while
the target size is 32. While we can observe the
general tendency of LSC to perform on a roughly
comparable level to K-means, an exact compari-
son is hard to obtain with the used evaluation met-
rics. There are, nevertheless, possible problem set-
tings where soft clusters are more adequate, which
justifies to include LSC in this comparison.
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an auf an+auf
Cutoff ARI nclust ARI nclust ARI nclust

0.07 0.17 25 0.39 22 0.31 40
0.08 0.18 23 0.55 20 0.39 32
0.09 0.19 21 0.55 20 0.56 23
0.10 0.22 19 0.55 20 0.59 20
0.11 0.30 16 0.5 19 0.48 17
0.12 0.30 16 0.41 16 0.56 16
nclasses 14 18 32

Table 4: Evaluation with LSC using extracted selected features for different cutoff points (probabilities
of class membership) when creating hard clusters from soft clusters. (nclasses refers to the number of
elements across target classes, nclust refers to the number of elements across hard clusters.)

The class of anketten/anbinden tends to end up
in singleton clusters, especially anketten. We first
suspected that this is due to the fact that anket-
ten is a relatively infrequent verb and is repre-
sented by a sparse vector. But a comparison to
the human ratings reveals that human raters show
a similar and quite consistent disagreement with
the gold standad with respect to this the locative
relational tying and fixation classes. All 6 raters
judged anheften (a fixation verb) and anbinden
(a tying verb) as pertaining to the same category,
contrary to the gold standard. Interestingly, this
fixation-tying distinction is the only one, where
a majority of raters deviated in their judgements
from the gold standard at the same point. On the
other hand some of the raters were confused by the
fact the class of aufbrodeln combines two different
elements: water and fire. This did not affect the
majority of raters, nor was the disagreement con-
sistent, but it is reflected in the somewhat lower
inter-annotator agreement for the auf set (cf. table
1). These findings strongly suggest that the prob-
lem should be located in the gold standard rather
than in the clustering method.

Finally, is interesting to compare the automatic
clustering results to the human ratings from sec-
tion 4.1. The human annotation task was com-
plementary to the automatic clustering because
clustering was done on the basis of corpus-based
purely syntactic features while for the human rat-
ing the annotators focused on purely semantic in-
formation. Apart from the expectably worse per-
formance of an automatic clustering it can be con-
cluded that both information from the semantic
and the syntactic perspectives ultimately lead to
the creation of quite similar clusters, which is
probably the most important conclusion we can

draw from the experiment.

7 Conclusion

In this paper we have shown that a pairwise clus-
tering of particle verbs in combination with their
base verbs can be done with success if syntac-
tic subcategorization frames for PVs and BVs are
taken as features separately. By combining the ex-
tracted subcategorization frame count from base
verbs and particle verbs as separate dimensions
in a common vector space, we are able to model
syntactic transfer patterns. We can also show that
within our setting we are able to replicate a gold
standard classification with a reasonable degree of
success when we apply various clustering algo-
rithms. The gold standard by itself can be vali-
dated by human judgements to a high degree. Hu-
man judges based their annotations on semantic
factors and still they converge largely with an au-
tomatic clustering which is purely based on syn-
tactic subcategorization.

In future work we plan to adress the problem
of finding correspondences between the syntactic
subcategorization slots, hence model the syntactic
transfer proper, and to investigate if the syntactic
transfer information can be used to predict the de-
gree of semantic compositionality of PVs.
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