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Abstract

Most work on word sense disambiguation has
assumed that word usages are best labeled
with a single sense. However, contextual am-
biguity or fine-grained senses can potentially
enable multiple sense interpretations of a us-
age. We present a new SemEval task for evalu-
ating Word Sense Induction and Disambigua-
tion systems in a setting where instances may
be labeled with multiple senses, weighted by
their applicability. Four teams submitted nine
systems, which were evaluated in two settings.

1 Introduction

Word Sense Disambiguation (WSD) attempts to
identify which of a word’s meanings applies in a
given context. A long-standing task, WSD is fun-
damental to many NLP applications (Navigli, 2009).
Typically, each usage of a word is treated as express-
ing only a single sense. However, contextual ambi-
guity as well as the relatedness of certain meanings
can potentially elicit multiple sense interpretations.
Recent work has shown that annotators find multi-
ple applicable senses in a given target word context
when using fine-grained sense inventories such as
WordNet (Véronis, 1998; Murray and Green, 2004;
Erk et al., 2009; Passonneau et al., 2012b; Jurgens,
2013; Navigli et al., 2013). Such contexts would be
better annotated with multiple sense labels, weight-
ing each sense according to its applicability (Erk et
al., 2009; Jurgens, 2013), in effect allowing ambigu-
ity or multiple interpretations to be explicitly mod-
eled. Accordingly, the first goal of this task is to
evaluate WSD systems in a setting where instances

may be labeled with one or more senses, weighted
by their applicability.

WSD methods are ultimately defined and poten-
tially restricted by their choice in sense inventory;
for example, a sense inventory may have insufficient
sense-annotated data to build WSD systems for spe-
cific types of text (e.g., social media), or the inven-
tory may lack domain-specific senses. Word Sense
Induction (WSI) has been proposed as a method for
overcoming such limitations by learning the senses
automatically from text. In essence, a WSI algo-
rithm acts as a lexicographer by grouping word us-
ages according to their shared meaning. The sec-
ond goal of this task is to assess the performance of
WSI algorithms when they are able to model multi-
ple meanings of a usage with graded senses.

Task 12 focuses on disambiguating senses for 50
target lemmas: 20 nouns, 20 verbs, and 10 adjectives
(Sec. 2). Since the Task evaluates only unsupervised
systems, no training data was provided; however, to
enable more comparison, Unsupervised WSD sys-
tems were also allowed to participate. Participat-
ing systems were evaluated in two settings (Sec. 3),
depending on whether they used induced senses or
WordNet 3.1 senses for their annotations. The re-
sults (Sec. 5) demonstrate a substantial improvement
over the competitive most frequent sense baseline.

2 Task Description

This task required participating systems to annotate
instances of nouns, verb, and adjectives using Word-
Net 3.1 (Fellbaum, 1998), which was selected due
to its fine-grained senses. Participants could label
each instance with one or more senses, weighting
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We all are relieved to lay aside our fight-or-flight reflexes and to commemorate our births from out of the dark
centers of the women, to feel the complexity of our love and frustration with each other, to stretch our cognition to
encompass the thoughts of every entity we know.

dark%3:00:01:: – devoid of or deficient in light or brightness; shadowed or black
dark%3:00:00:: – secret

I ask because my practice has always been to allow about five minutes grace, then remove it.

ask%2:32:02:: – direct or put; seek an answer to
ask%2:32:04:: – address a question to and expect an answer from

Table 1: Example instances with multiple senses due to intended double meanings (top) or contextual am-
biguity (bottom). Senses are specified using their WordNet 3.1 sense keys.

each by their applicability. Table 1 highlights two
example contexts where multiple senses apply. The
first example shows a case of an intentional dou-
ble meaning that evokes both the physical aspect of
dark.a as being devoid of light and the causal re-
sult of being secret. In contrast, the second example
shows a case of multiple interpretations from ambi-
guity; a different preceding context could generate
the alternate interpretations “I ask [you] because”
(sense ask%2:32:04::) or “I ask [the question]
because” (sense ask%2:32:02::).

2.1 Data

Three datasets were provided with the task. The trial
dataset provided weighted word sense annotations
using the data gathered by Erk et al. (2009). The
trial dataset consisted of 50 contexts for eight words,
where each context was labeled with WordNet 3.0
sense ratings from three untrained lexicographers.

Due to the unsupervised nature of the task, partic-
ipants were not provided with sense-labeled training
data. However, WSI systems were provided with the
ukWaC corpus (Baroni et al., 2009) to use in induc-
ing senses. Previous SemEval WSI tasks had pro-
vided participants with corpora specific to the task’s
target terms; in contrast, this task opted to use a large
corpus to enable WSI methods that require corpus-
wide statistics, e.g., statistical associations.

Test data was drawn from the Open American
National Corpus (Ide and Suderman, 2004, OANC)
across a variety of genres and from both the spoken
and written portions of the corpus, summarized in
Table 2. All contexts were manually inspected to en-
sure that the lemma being disambiguated was of the
correct part of speech and had an interpretation that

matched at least one WordNet 3.1 sense. This filter-
ing also removed instances that were in a colloca-
tion, or had an idiomatic meaning. Ultimately, 4664
contexts were used as test data, with a minimum of
22 and a maximum of 100 contexts per word.

2.2 Sense Annotation

Recent work proposes to gather sense annotations
using crowdsourcing in order to reduce the time
and cost of acquiring sense-annotated corpora (Bie-
mann and Nygaard, 2010; Passonneau et al., 2012b;
Rumshisky et al., 2012; Jurgens, 2013). There-
fore, we initially annotated the Task’s data using the
method of Jurgens (2013), where workers on Ama-
zon Mechanical Turk (AMT) rated all senses of a
word on a Likert scale from one to five, indicat-
ing the sense does not apply at all or completely
applies, respectively. Twenty annotators were as-
signed per instance, with their ratings combined by
selecting the most frequent rating. However, we
found that while the annotators achieved moderate
inter-annotator agreement (IAA), the resulting an-
notations were not of high enough quality to use in
the Task’s evaluations. Specifically, for some senses
and contexts, AMT annotators required more infor-
mation about sense distinctions than was feasible to
integrate into the AMT setting, which led to consis-
tent but incorrect sense assignments.

Therefore, the test data was annotated by the two
authors, with the first author annotating all instances
and the second author annotating a 10% sample of
each lemma’s instances in order to calculate IAA.
IAA was calculated using Krippendorff’s α (Krip-
pendorff, 1980; Artstein and Poesio, 2008), which is
an agreement measurement that adjusts for chance,
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Spoken Written
Genre Face-to-face Telephone Fiction Journal Letters Non-fiction Technical Travel Guides All

Instances 52 699 127 2403 103 477 611 192 4664
Tokens 1742 30,700 3438 69,479 2238 11,780 17,337 4490 141,204
Mean senses/inst. 1.17 1.08 1.15 1.13 1.31 1.10 1.11 1.11 1.12

Table 2: Test data used in Task 12, divided according to source type

ranging in (−1, 1] for interval data, where 1 indi-
cates perfect agreement and -1 indicates systematic
disagreement; two random annotations have an ex-
pected α of zero. We treat each sense and instance
combination as a separate item to rate. The total IAA
for the dataset was 0.504, and on individual words,
ranged from 0.903 for number.n to 0.00 for win.v.
While this IAA is less than the 0.8 recommended by
Krippendorff (2004), it is consistent with the IAA
distribution for the sense annotations of MASC on
other parts of the OANC corpus: Passonneau et al.
(2012a) reports an α of 0.88 to -0.02 with the MASI
statistic (Passonneau et al., 2006).

Table 2 summarizes the annotation statistics for
the Task’s data. The annotation process resulted in
far fewer senses per instance in the trial data, which
we attribute to using trained annotators. An analysis
across the corpora genres showed that the multiple-
sense annotation rates were similar. Due to the vari-
ety of contextual sources, all lemmas were observed
with at least two distinct senses.

3 Evaluation

We adopt a two-part evaluation setting used in pre-
vious SemEval WSI and WSD tasks (Agirre and
Soroa, 2007; Manandhar et al., 2010). The first eval-
uation uses a traditional WSD task that directly com-
pares WordNet sense labels. For WSI systems, their
induced sense labels are converted to WordNet 3.1
labels via a mapping procedure. The second evalu-
ation performs a direct comparison of the two sense
inventories using clustering comparisons.

3.1 WSD Task
In the first evaluation, we adopt a WSD task with
three objectives: (1) detecting which senses are ap-
plicable, (2) ranking senses by their applicability,
and (3) measuring agreement in applicability rat-
ings with human annotators. Each objectives uses
a specific measurement: (1) the Jaccard Index, (2)

positionally-weighted Kendall’s τ similarity, and
(3) a weighted variant of Normalized Discounted
Cumulative Gain, respectively. Each measure is
bounded in [0, 1], where 1 indicates complete agree-
ment with the gold standard. We generalize the tra-
ditional definition of WSD Recall such that it mea-
sures the average score for each measure across all
instances, including those not labeled by the system.
Systems are ultimately scored using the F1 measure
between each objective’s measure and Recall.

3.1.1 Transforming Induced Sense Labels

In the WSD setting, induced sense labels may be
transformed into a reference inventory (e.g., Word-
Net 3.1) using a sense mapping procedure. We fol-
low the 80/20 setup of Manandhar et al. (2010),
where the corpus is randomly divided into five par-
titions, four of which are used to learn the sense
mapping; the sense labels for the held-out partition
are then converted and compared with the gold stan-
dard. This process is repeated so that each partition
is tested once. For learning the sense mapping func-
tion, we use the distribution mapping technique of
Jurgens (2012), which takes into account the sense
applicability weights in both labelings.

3.1.2 Jaccard Index

Given two sets of sense labels for an instance,
X and Y , the Jaccard Index is used to measure the
agreement: |X∩Y ||X∪Y | . The Jaccard Index is maximized
when X and Y use identical labels, and is mini-
mized when the sets of sense labels are disjoint.

3.1.3 Positionally-Weighted Kendall’s τ

Rank correlations have been proposed for evalu-
ating a system’s ability to order senses by applicabil-
ity; in previous work, both Erk and McCarthy (2009)
and Jurgens (2012) propose rank correlation coeffi-
cients that assume all positions in the ranking are
equally important. However, in the case of graded
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sense evaluation, often only a few senses are appli-
cable, with the applicability ratings of the remain-
ing senses being relatively inconsequential. There-
fore, we consider an alternate rank scoring based on
Kumar and Vassilvitskii (2010), which weights the
penalty of reordering the lower positions less than
the penalty of reordering the first ranks.

Kendall’s τ distance, K, is a measure of the
number of item position swaps required to make
two sequences identical. Kumar and Vassilvitskii
(2010) extend this distance definition using a vari-
able penalty function δ for the cost of swapping two
positions, which we denote Kδ. By using an appro-
priate δ, Kδ can be biased towards the correctness
of higher ranks by assigning a smaller δ to lower
ranks. Because Kδ is a distance measure, its value
range will be different depending on the number of
ranks used. Therefore, to convert the measure to a
similarity we normalize the distance to [0, 1] by di-
viding by the maximum Kδ distance and then sub-
tracting the distance from one. Given two rankings
x and y where x is the reference by which y is to be
measured, we may compute the normalized similar-
ity using

Ksim
δ = 1− Kδ(x, y)

Kmax
δ (x)

. (1)

Equation 1 has its maximal value of one when rank-
ing y is identical to ranking x, and its minimal value
of zero when y is in the reverse order as x. We refer
to this value as the positionally-weighted Kendall’s
τ similarity, Ksim

δ . As defined, Ksim
δ does not ac-

count for ties. Therefore, we arbitrarily break ties in
a deterministic fashion for both rankings. Second,
we define δ to assign higher cost to the first ranks:
the cost to move an item into position i, δi, is de-
fined as n−(i+1)

n , where n is the number of senses.

3.1.4 Weighted NDCG

To compare the applicability ratings for sense an-
notations, we recast the annotation process in an In-
formation Retrieval setting: Given an example con-
text acting as a query over a word’s senses, the task
is to retrieve all applicable senses, ranking and scor-
ing them by their applicability. Moffat and Zobel
(2008) propose using Discounted Cumulative Gain
(DCG) as a method to compare a ranking against a
baseline. Given (1) a gold standard weighting of the

k senses applicable to a context, where wi denotes
the applicability for sense i in the gold standard, and
(2) a ranking of the k senses by some method, the
DCG may be calculated as

∑k
i=1

2wi+1−1
log2(i+1) . DCG is

commonly normalized to [0, 1] so that the value is
comparable when computed on rankings with dif-
ferent k and weight values. To normalize, the maxi-
mum value is calculated by first computing the DCG
on the ranking when the k items are sorted by their
weights, referred as the Ideal DCG (IDCG), and then
normalizing as NDCG = DCG

IDCG .
The DCG only considers the weights assigned

in the gold standard, which potentially masks im-
portance differences in the weights assigned to the
senses. Therefore, we propose weighting the DCG
by the relative difference in the two weights. Given
an alternate weighting of the k items, denoted as ŵi,

WDCG =
k∑
i=1

min(wi,ŵi)
max(wi,ŵi)

(
2wi+1 − 1

)
log2(i)

. (2)

The key impact in Equation 2 comes from weight-
ing an item’s contribution to the score by its rela-
tive deviation in absolute weight. A set of weights
that achieves an equivalent ranking may have a low
WDCG if the weights are significantly higher or
lower than the reference. Equation 2 may be nor-
malized in the same way as the DCG. We refer to
this final normalized measure as the Weighted Nor-
malized Discounted Cumulative Gain (WNDCG).

3.2 Sense Cluster Comparisons

Sense induction can be viewed as an unsupervised
clustering task where usages of a word are grouped
into clusters, each representing uses of the same
meaning. In previous SemEval tasks on sense in-
duction, instances were labeled with a single sense,
which yields a partition over the instances into dis-
joint sets. The proposed partition can then be com-
pared with a gold-standard partition using many ex-
isting clustering comparison methods, such as the
V-Measure (Rosenberg and Hirschberg, 2007) or
paired FScore (Artiles et al., 2009). Such cluster
comparison methods measure the degree of similar-
ity between the sense boundaries created by lexicog-
raphers and those created by WSI methods.

In the present task, instances are potentially la-
beled both with multiple senses and with weights
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reflecting the applicability. This type of sense label-
ing produces a fuzzy clustering: An instance may
belong to one or more sense clusters with its clus-
ter membership relative to its weight for that sense.
Formally, we refer to (1) a solution where the sets
of instances overlap as a cover and (2) a solution
where the sets overlap and instances may have par-
tial memberships in a set as fuzzy cover.

We propose two new fuzzy measures for com-
paring fuzzy sense assignments: Fuzzy B-Cubed
and Fuzzy Normalized Mutual Information. The
two measures provide complementary information.
B-Cubed summarizes the performance per instance
and therefore provides an estimate of how well a sys-
tem would perform on a new corpus with a similar
sense distribution. In contrast, Fuzzy NMI is mea-
sured based on the clusters rather than the instances,
thereby providing a performance analysis that is in-
dependent of the corpus sense distribution.

3.2.1 Fuzzy B-Cubed
Bagga and Baldwin (1998) proposed a clustering

evaluation known as B-Cubed, which compares two
partitions on a per-item basis. Amigó et al. (2009)
later extended the definition of B-Cubed to compare
overlapping clusters (i.e., covers). We generalize B-
Cubed further to handle the case of fuzzy covers.
B-Cubed is based on precision and recall, which es-
timate the fit between two clusterings, X and Y at
the item level. For an item i, precision reflects how
many items sharing a cluster with i inX appear in its
cluster in Y ; conversely, recall measures how many
items sharing a cluster in Y with i also appear in its
cluster in X . The final B-Cubed value is the har-
monic mean of the two scores.

To generalize B-Cubed to fuzzy covers, we adopt
the formalization of Amigó et al. (2009), who define
item-based precision and recall functions, P and R,
in terms of a correctness function, C → {0, 1}. For
notational brevity, let avg be a function that returns
the mean value of a series, and µx(i) denote the set
of clusters in clusteringX of which item i is a mem-
ber. B-Cubed precision and recall may therefore cal-
culated over all n items:

B-Cubed Precision = avg
i

[ avg
j 6=i∈∪µy(i)

P (i, j)] (3)

B-Cubed Recall = avg
i

[ avg
j 6=i∈∪µx(i)

R(i, j)]. (4)

When comparing partitions, P and R are defined as
1 if two items cluster labels are identical. To gen-
eralize B-Cubed for fuzzy covers, we redefine P
and R to account for differences in the partial clus-
ter membership of items. Let `X(i) denote the set
of clusters of which i is a member, and wk(i) de-
note the membership weight of item i in cluster k in
X . We therefore define C with respect to X of two
items as

C(i, j,X) =
∑

k∈`X(i)∪`X(j)

1−|wk(i)−wk(j)|. (5)

Equation 5 is maximized when i and j have
identical membership weights in the clusters of
which they are members. Importantly, Equation
5 generalizes to the correctness operations both
when comparing partitions and covers, as defined
by Amigó et al. (2009). Item-based Precision
and Recall are then defined using Equation 5 as
P (i, j,X) = Min(C(i,j,X),C(i,j,Y ))

C(i,j,X) and R(i, j,X) =
Min(C(i,j,X),C(i,j,Y ))

C(i,j,Y ) , respectively. These fuzzy gen-
eralizations are used in Equations 3 and 4.

3.2.2 Fuzzy Normalized Mutual Information
Mutual information measures the dependence be-

tween two random variables. In the context of
clustering evaluation, mutual information treats the
sense labels as random variables and measures the
level of agreement in which instances are labeled
with the same senses (Danon et al., 2005). For-
mally, mutual information is defined as I(X;Y ) =
H(X)−(H(X|Y ) whereH(X) denotes the entropy
of the random variable X that represents a parti-
tion, i.e., the sets of instances assigned to each sense.
Typically, mutual information is normalized to [0, 1]
in order to facilitate comparisons between multiple
clustering solutions on the same scale (Luo et al.,
2009), with Max(H(X), H(Y )) being the recom-
mended normalizing factor (Vinh et al., 2010).

In its original formulation Mutual information
is defined only to compare non-overlapping cluster
partitions. Therefore, we propose a new definition of
mutual information between fuzzy covers using ex-
tension of Lancichinetti et al. (2009) for calculating
the normalized mutual information between covers.
In the case of partitions, a clustering is represented
as a discrete random variable whose states denote
the probability of being assigned to each cluster. In
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the fuzzy cover setting, each item may be assigned
to multiple clusters and no longer has a binary as-
signment to a cluster, but takes on a value in [0, 1].
Therefore, each cluster Xi can be represented sepa-
rately as a continuous random variable, with the en-
tire fuzzy cover denoted as the variable X1...k, where
the ith entry of X is the continuous random vari-
able for cluster i. However, by modeling clusters us-
ing continuous domain, differential entropy must be
used for the continuous variables; importantly, dif-
ferential entropy does not obey the same properties
as discrete entropy and may be negative.

To avoid calculating entropy in the continuous do-
main, we therefore propose an alternative method of
computing mutual information based on discretiz-
ing the continuous values of Xi in the fuzzy set-
ting. For the continuous random variable Xi, we
discretize the value by dividing up probability mass
into discrete bins. That is, the support of Xi is parti-
tioned into disjoint ranges, each of which represents
a discrete outcome of Xi. As a result, Xi becomes a
categorical distribution over a set of weights ranges
{w1, . . . , wn} that denote the strength of member-
ship in the fuzzy set. With respect to sense annota-
tion, this discretization process is analogous to hav-
ing an annotator rate the applicability of a sense for
an instance using a Likert scale instead of using a
rational number within a fixed bound.

Discretizing the continuous cluster membership
ratings into bins allows us to avoid the problematic
interpretation of entropy in the continuous domain
while still expanding the definition of mutual infor-
mation from a binary cluster membership to one of
degrees. Using the definition of Xi and Yj as a cate-
gorical variables over discrete ratings, we may then
estimate the entropy and joint entropy as follows.

H(Xi) =

n∑
i=1

p(wi)log2p(wi) (6)

where p(wi) is the probability of an instance being
labeled with rating wi Similarly, we may define the
joint entropy of two fuzzy clusters as

H(Xk, Yl) =
n∑
i=1

m∑
j=1

p(wi, wj)log2p(wi, wj) (7)

where p(wi, wj) is the probability of an instance be-
ing labeled with rating wi in cluster Xk and wj in

cluster Yl, and m denotes the number of bins for Yl.
The conditional entropy between two clusters may
then be calculated as

H(Xk|Yl) = H(Xk, Yl)−H(Yl).

Together, Equations 6 and 7 may be used to define
I(X,Y ) as in the original definition. We then nor-
malize using the method of McDaid et al. (2011).
Based on the limited range of fuzzy memberships
in [0, 1], we selected uniformly distributed bins in
[0, 1] at 0.1 intervals when discretizing the member-
ship weights for sense labelings.

3.3 Baselines
Task 12 included multiple baselines based on mod-
eling different types of WSI and WSD systems.
Due to space constraints, we include only the four
most descriptive here: (1) Semcor MFS which la-
bels each instance with the most frequent sense of
that lemma in SemCor, (2) Semcor Ranked Senses
baseline, which labels each instance with all of the
target lemma’s senses, ranked according to their fre-
quency in SemCor, using weights n−i+1

n , where n is
the number of senses and i is the rank, (3) 1c1inst
which labels each instance with its own induced
sense and (4) All-instances, One sense which la-
bels all instances with the same induced sense. The
first two baselines directly use WordNet 3.1 senses,
while the last two use induced senses.

4 Participating Systems

Four teams submitted nine systems, seven of which
used induced sense inventories. AI-KU submitted
three WSI systems based on a lexical substitution
method; a language model is built from the target
word’s contexts in the test data and the ukWaC cor-
pus and then Fastsubs (Yuret, 2012) is used to iden-
tify lexical substitutes for the target. Together, the
contexts of the target and substitutes are used to
build a distributional model using the S-CODE al-
gorithm (Maron et al., 2010). The resulting contex-
tual distributions are then clustered using K-means
to identify word senses. The University of Mel-
bourne (Unimelb) team submitted two WSI systems
based on the approach of Lau et al. (2012). Their
systems use a Hierarchical Dirichlet Process (Teh
et al., 2006) to automatically infer the number of
senses from contextual and positional features. Un-
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WSD F1 Cluster Comparison

Team System Jac. Ind. Ksim
δ WNDCG Fuzzy NMI Fuzzy B-Cubed #Cl #S

AI-KU Base 0.197 0.620 0.387 0.065 0.390 7.76 6.61
AI-KU add1000 0.197 0.606 0.215 0.035 0.320 7.76 6.61
AI-KU remove5-add1000 0.244 0.642 0.332 0.039 0.451 3.12 5.33
Unimelb 5p 0.218 0.614 0.365 0.056 0.459 2.37 5.97
Unimelb 50k 0.213 0.620 0.371 0.060 0.483 2.48 6.08
UoS #WN Senses 0.192 0.596 0.315 0.047 0.201 8.08 6.77
UoS top-3 0.232 0.625 0.374 0.045 0.448 3.00 5.44
La Sapienza system-1 0.149 0.507 0.311 - - - 8.69
La Sapienza system-2 0.149 0.510 0.383 - - - 8.67

All-instances, One sense 0.192 0.609 0.288 0.0 0.623 1.00 6.62
1c1inst 0.0 0.0 0.0 0.071 0.0 1.00 0.0
Semcor MFS 0.455 0.465 0.339 - - - 1.00
Semcor Ranked Senses 0.149 0.559 0.489 - - - 8.66

Table 3: Performance on the five evaluation measures for all system and selected baselines. Top system
performances are marked in bold.

like other teams, the Unimelb systems were trained
on a Wikipedia corpus instead of the ukWaC cor-
pus. The University of Sussex (UoS) team submit-
ted two WSI systems that use dependency-parsed
features from the corpus, which are then clustered
into senses using the MaxMax algorithm (Hope and
Keller, 2013); the resulting fine-grained clusters are
then combined based on their degree of separabil-
ity. The La Sapienza team submitted two Unsu-
pervised WSD systems based applying Personal-
ized Page Rank (Agirre and Soroa, 2009) over a
WordNet-based network to compare the similarity of
each sense with the similarity of the context, ranking
each sense according to its similarity.

5 Results and Discussion

Table 3 shows the main results for all instances. Ad-
ditionally, we report the number of induced clusters
used to label each sense as #Cl and the number of
resulting WordNet 3.1 senses for each sense with
#S. As in previous WSD tasks, the MFS baseline
was quite competitive, outperforming all systems on
detecting which senses were applicable, measured
using the Jaccard Index. However, most systems
were able to outperform the MFS baseline on rank-
ing senses and quantifying their applicability.

Previous cluster comparison evaluations often
faced issues with the measures being biased either
towards the 1c1inst baseline or labeling all instances
with the same sense. However, Table 3 shows that

Team System F1 NMI B-Cubed

AI-KU Base 0.641 0.045 0.351
AI-KU add1000 0.601 0.023 0.288
AI-KU remove5-add1000 0.628 0.026 0.421
Unimelb 5p 0.596 0.035 0.421
Unimelb 50k 0.605 0.039 0.441
UoS #WN Senses 0.574 0.031 0.180
UoS top-3 0.600 0.028 0.414
La Sapienza System-1 0.204 - -
La Sapienza System-2 0.217 - -

All-instances, One sense 0.569 0.0 0.570
1c1inst 0.0 0.018 0.0
Semcor MFS 0.477 0.0 0.570

Table 4: System performance in the single-sense set-
ting. Top system performances are marked in bold.

systems are capable of performing well in both the
Fuzzy NMI and Fuzzy B-Cubed measures, thereby
avoiding the extreme performance of either baseline.

An analysis of the systems’ results showed that
many systems labeled instances with a high num-
ber of senses, which could have been influenced by
the trial data having significantly more instances la-
beled with multiple senses than the test data. There-
fore, we performed a second analysis that parti-
tioned the test set into two sets: those labeled with
a single sense and those with multiple senses. For
single-sense set, we modified the test setting to have
systems also label instances with a single sense:
(1) the sense mapping function for WSI systems
(Sec. 3.1.1) was modified so that after the mapping,
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WSD F1 Cluster Comparison

Team System Jac. Ind. Ksim
δ WNDCG Fuzzy NMI Fuzzy B-Cubed

AI-KU Base 0.394 0.617 0.317 0.029 0.078
AI-KU add1000 0.394 0.620 0.214 0.014 0.061
AI-KU remove5-add1000 0.434 0.585 0.290 0.004 0.116
Unimelb 5p 0.436 0.585 0.286 0.019 0.130
Unimelb 5000k 0.414 0.602 0.298 0.021 0.134
UoS #WN Senses 0.367 0.627 0.313 0.036 0.037
UoS top-3 0.421 0.574 0.302 0.006 0.113
La Sapienza system-1 0.263 0.660 0.447 - -
La Sapienza system-2 0.412 0.694 0.536 - -

All-instances, One sense 0.387 0.635 0.254 0.0 0.130
1c1inst 0.0 0.0 0.0 0.300 0.0
Semcor MFS 0.283 0.373 0.197
Semcor Ranked Senses 0.263 0.593 0.395

Table 5: System performance on all instances labeled with multiple senses. Top system performances are
marked in bold.

only the highest-weighted WordNet 3.1 sense was
used, and (2) the La Sapienza system output was
modified to retain only the highest weighted sense.
In this single-sense setting, systems were evaluated
using the standard WSD Precision and Recall mea-
sures; we report the F1 measure of Precision and Re-
call. The remaining subset of instances annotated
with multiple senses were evaluated separately.

Table 4 shows the systems’ performance on
single-sense instances, revealing substantially in-
creased performance and improvement over the
MFS baseline for WSI systems. Notably, the per-
formance of the best sense-remapped WSI systems
surpasses the performance of many supervised WSD
systems in previous WSD evaluations (Kilgarriff,
2002; Mihalcea et al., 2004; Pradhan et al., 2007;
Agirre et al., 2010). This performance suggests that
WSI systems using graded labels provide a way to
leverage huge amounts of unannotated corpus data
for finding sense-related features in order to train
semi-supervised WSD systems.

Table 5 shows the performance on the subset of
instances that were annotated with multiple senses.
We note that in this setting, the mapping proce-
dure transforms the All-Instances One Sense base-
line into the average applicability rating for each
sense in the test corpus. Notably, the La Sapienza
systems sees a significant performance increase in
this setting; their systems label each instance with
all of the lemma’s senses, which significantly de-

grades performance in the most common case where
only a single sense applies. However, when multi-
ple senses are known to be present, their method for
quantifying sense applicability appears closest to the
gold standard judgments. Furthermore, the majority
of WSI systems are able to surpass all four baselines
on identifying which senses are present and quanti-
fying their applicability.

6 Conclusion

We have introduced a new evaluation setting for
WSI and WSD systems where systems are measured
by their ability to detect and weight multiple appli-
cable senses for a single context. Four teams submit-
ted nine systems, annotating a total of 4664 contexts
for 50 words from the OANC. Many systems were
able to surpass the competitive MFS baseline. Fur-
thermore, when WSI systems were trained to pro-
duce only a single sense label, the performance of
resulting semi-supervised WSD systems surpassed
that of many supervised systems in previous WSD
evaluations. Future work may assess the impact of
graded sense annotations in a task-based setting. All
materials have been released on the task website.1
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