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Abstract

The ClearTK-TimeML submission to Temp-
Eval 2013 competed in all English tasks: identi-
fying events, identifying times, and identifying
temporal relations. The system is a pipeline of
machine-learning models, each with a small set
of features from a simple morpho-syntactic an-
notation pipeline, and where temporal relations
are only predicted for a small set of syntac-
tic constructions and relation types. ClearTK-
TimeML ranked 1st for temporal relation F1,
time extent strict F1 and event tense accuracy.

1 Introduction

The TempEval shared tasks (Verhagen et al., 2007;
Verhagen et al., 2010; UzZaman et al., 2013) have
been one of the key venues for researchers to com-
pare methods for temporal information extraction. In
TempEval 2013, systems are asked to identify events,
times and temporal relations in unstructured text.

This paper describes the ClearTK-TimeML system
submitted to TempEval 2013. This system is based
off of the ClearTK framework for machine learning
(Ogren et al., 2008)1, and decomposes TempEval
2013 into a series of sub-tasks, each of which is for-
mulated as a machine-learning classification problem.
The goals of the ClearTK-TimeML approach were:

• To use a small set of simple features that can be
derived from either tokens, part-of-speech tags or
syntactic constituency parses.
• To restrict temporal relation classification to a sub-

set of constructions and relation types for which
the models are most confident.
1http://cleartk.googlecode.com/

Thus, each classifier in the ClearTK-TimeML
pipeline uses only the features shared by success-
ful models in previous work (Bethard and Martin,
2006; Bethard and Martin, 2007; Llorens et al., 2010;
UzZaman and Allen, 2010) that can be derived from
a simple morpho-syntactic annotation pipeline2. And
each of the temporal relation classifiers is restricted
to a particular syntactic construction and to a partic-
ular set of temporal relation labels. The following
sections describe the models, classifiers and datasets
behind the ClearTK-TimeML approach.

2 Time models

Time extent identification was modeled as a BIO
token-chunking task, where each token in the text
is classified as being at the B(eginning) of, I(nside)
of, or O(utside) of a time expression. The following
features were used to characterize tokens:

• The token’s text
• The token’s stem
• The token’s part-of-speech
• The unicode character categories for each character

of the token, with repeats merged (e.g. Dec28
would be ‘LuLlNd‘)
• The temporal type of each alphanumeric sub-token,

derived from a 58-word gazetteer of time words
• All of the above features for the preceding 3 and

following 3 tokens

Time type identification was modeled as a multi-
class classification task, where each time is classified

2 OpenNLP sentence segmenter, ClearTK PennTreebank-
Tokenizer, Apache Lucene Snowball stemmer, OpenNLP part-
of-speech tagger, and OpenNLP constituency parser
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as DATE, TIME, DURATION or SET. The following
features were used to characterize times:

• The text of all tokens in the time expression
• The text of the last token in the time expression
• The unicode character categories for each character

of the token, with repeats merged
• The temporal type of each alphanumeric sub-token,

derived from a 58-word gazetteer of time words

Time value identification was not modeled by the
system. Instead, the TimeN time normalization sys-
tem (Llorens et al., 2012) was used.

3 Event models

Event extent identification, like time extent identi-
fication, was modeled as BIO token chunking. The
following features were used to characterize tokens:

• The token’s text
• The token’s stem
• The token’s part-of-speech
• The syntactic category of the token’s parent in the

constituency tree
• The text of the first sibling of the token in the

constituency tree
• The text of the preceding 3 and following 3 tokens

Event aspect identification was modeled as a multi-
class classification task, where each event is classi-
fied as PROGRESSIVE, PERFECTIVE, PERFECTIVE-
PROGRESSIVE or NONE. The following features
were used to characterize events:

• The part-of-speech tags of all tokens in the event
• The text of any verbs in the preceding 3 tokens

Event class identification was modeled as a multi-
class classification task, where each event is classi-
fied as OCCURRENCE, PERCEPTION, REPORTING,
ASPECTUAL, STATE, I-STATE or I-ACTION. The
following features were used to characterize events:

• The stems of all tokens in the event
• The part-of-speech tags of all tokens in the event

Event modality identification was modeled as a
multi-class classification task, where each event is
classified as one of WOULD, COULD, CAN, etc. The
following features were used to characterize events:

• The text of any prepositions, adverbs or modal
verbs in the preceding 3 tokens

Event polarity identification was modeled as a bi-
nary classification task, where each event is classified
as POS or NEG. The following features were used to
characterize events:

• The text of any adverbs in the preceding 3 tokens

Event tense identification was modeled as a multi-
class classification task, where each event is clas-
sified as FUTURE, INFINITIVE, PAST, PASTPART,
PRESENT, PRESPART or NONE. The following fea-
tures were used to characterize events:

• The last two characters of the event
• The part-of-speech tags of all tokens in the event
• The text of any prepositions, verbs or modal verbs

in the preceding 3 tokens

4 Temporal relation models

Three different models, described below, were trained
for temporal relation identification. All models fol-
lowed a multi-class classification approach, pairing
an event and a time or an event and an event, and
trying to predict a temporal relation type (BEFORE,
AFTER, INCLUDES, etc.) or NORELATION if there
was no temporal relation between the pair.

While the training and evaluation data allowed
for 14 possible relation types, each of the temporal
relation models was restricted to a subset of relations,
with all other relations mapped to the NORELATION

type. The subset of relations for each model was
selected by inspecting the confusion matrix of the
model’s errors on the training data, and removing
relations that were frequently confused and whose
removal improved performance on the training data.

Event to document creation time relations were
classified by considering (event, time) pairs where
each event in the text was paired with the document
creation time. The classifier was restricted to the rela-
tions BEFORE, AFTER and INCLUDES. The follow-
ing features were used to characterize such relations:

• The event’s aspect (as classified above)
• The event’s class (as classified above)
• The event’s modality (as classified above)
• The event’s polarity (as classified above)
• The event’s tense (as classified above)
• The text of the event, only if the event was identi-

fied as having class ASPECTUAL
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Event to same sentence time relations were clas-
sified by considering (event, time) pairs where the
syntactic path from event to time matched a regu-
lar expression of syntactic categories and up/down
movements through the tree: ˆ((NP|PP|ADVP)↑)*
((VP|SBAR|S)↑)* (S|SBAR|VP|NP) (↓(VP|SBAR|S))*
(↓(NP|PP|ADVP))*$. The classifier relations were re-
stricted to INCLUDES and IS-INCLUDED. The follow-
ing features were used to characterize such relations:

• The event’s class (as classified above)
• The event’s tense (as classified above)
• The text of any prepositions or verbs in the 5 tokens

following the event
• The time’s type (as classified above)
• The text of all tokens in the time expression
• The text of any prepositions or verbs in the 5 tokens

preceding the time expression

Event to same sentence event relations were clas-
sified by considering (event, event) pairs where
the syntactic path from one event to the other
matched ˆ((VP↑|ADJP↑|NP↑)? (VP|ADJP|S|SBAR)
(↓(S|SBAR|PP))* ((↓VP|↓ADJP)*|(↓NP)*)$. The classi-
fier relations were restricted to BEFORE and AFTER.
The following features were used to characterize such
relations:

• The aspect (as classified above) for each event
• The class (as classified above) for each event
• The tense (as classified above) for each event
• The text of the first child of the grandparent of the

event in the constituency tree, for each event
• The path through the syntactic constituency tree

from one event to the other
• The tokens appearing between the two events

5 Classifiers

The above models described the translation from
TempEval tasks to classification problems and clas-
sifier features. For BIO token-chunking problems,
Mallet3 conditional random fields and LIBLINEAR4

support vector machines and logistic regression were
applied. For the other problems, LIBLINEAR, Mal-
let MaxEnt and OpenNLP MaxEnt5 were applied.
All classifiers have hyper-parameters that must be

3http://mallet.cs.umass.edu/
4http://www.csie.ntu.edu.tw/˜cjlin/liblinear/
5http://opennlp.apache.org/

tuned during training – LIBLINEAR has the classi-
fier type and the cost parameter, Mallet CRF has the
iteration count and the Gaussian prior variance, etc.6

The best classifier for each training data set was
selected via a grid search over classifiers and param-
eter settings. The grid of parameters was manually
selected to provide several reasonable values for each
classifier parameter. Each (classifier, parameters)
point on the grid was evaluated with a 2-fold cross
validation on the training data, and the best perform-
ing (classifier, parameters) was selected as the final
model to run on the TempEval 2013 test set.

6 Data sets

The classifiers were trained using the following
sources of training data:

TB The TimeBank event, time and relation annota-
tions, as provided by the TempEval organizers.

AQ The AQUAINT event, time and relation annota-
tions, as provided by the TempEval organizers.

SLV The “Silver” event, time and relation annota-
tions, from the TempEval organizers’ system.

BMK The verb-clause temporal relation annotations
of (Bethard et al., 2007). These relations are
added on top of the original relations.

PM The temporal relations inferred via closure on
the TimeBank and AQUAINT data by Philippe
Muller7. These relations replace the original
ones, except in files where no relations were
inferred (because of temporal inconsistencies).

7 Results

Table 1 shows the performance of the ClearTK-
TimeML models across the different tasks when
trained on different sets of training data. The “Data”
column of each row indicates both the training data
sources (as in Section 6), and whether the events and
times were predicted by the models (“system”) or
taken from the annotators (“human”). Performance
is reported in terms of strict precision (P), Recall (R)
and F1 for event extents, time extents and temporal
relations, and in terms of Accuracy (A) on the cor-
rectly identified extents for event and time attributes.

6For BIO token-chunking tasks, LIBLINEAR also had a pa-
rameter for how many previous classifications to use as features.

7https://groups.google.com/d/topic/tempeval/

LJNQKwYHgL8
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Data Event Time Relation
annotation events extent class tense aspect extent value type type

sources & times F1 P R A A A F1 P R A A F1 P R
TB+BMK system 77.3 81.9 73.3 84.6 80.4 91.0 82.7 85.9 79.7 71.7 93.3 31.0 34.1 28.4
TB system 77.3 81.9 73.3 84.6 80.4 91.0 82.7 85.9 79.7 71.7 93.3 29.8 34.5 26.2
TB+AQ system 78.8 81.4 76.4 86.1 78.2 90.9 77.0 83.2 71.7 69.9 92.9 28.6 30.9 26.6
TB+AQ+PM system 78.8 81.4 76.4 86.1 78.2 90.9 77.0 83.2 71.7 69.9 92.9 28.5 29.7 27.3
*TB+AQ+SLV system 80.5 82.1 78.9 88.4 71.6 91.2 80.0 91.6 71.0 73.6 91.5 27.8 26.5 29.3

Highest in TempEval 81.1 82.0 80.8 89.2 80.4 91.8 82.7 91.4 80.4 86.0 93.7 31.0 34.5 34.4
TB+BMK human - - - - - - - - - - - 36.3 37.3 35.2
TB human - - - - - - - - - - - 35.2 37.6 33.0
TB+AQ human - - - - - - - - - - - 34.1 33.3 35.0
TB+AQ+PM human - - - - - - - - - - - 35.9 35.2 36.6
*TB+AQ+SLV human - - - - - - - - - - - 37.7 34.9 41.0

Highest in TempEval - - - - - - - - - - - 36.3 37.6 65.6

Table 1: Performance across different training data. Systems marked with * were tested after the official evaluation.
Scores in bold are at least as high as the highest in TempEval.

Training on the AQUAINT (AQ) data in addition to
the TimeBank (TB) hurt times and relations. Adding
the AQUAINT data caused a -2.7 drop in extent preci-
sion, a -8.0 drop in extent recall, a -1.8 drop in value
accuracy and a -0.4 drop in type accuracy, and a -3.6
to -4.3 drop in relation recall.

Training on the “Silver” (SLV) data in addition
to TB+AQ data gave mixed results. There were big
gains for time extent precision (+8.4), time value ac-
curacy (+3.7), event extent recall (+2.5) and event
class accuracy (+2.3), but a big drop for event tense
accuracy (-6.6). Relation recall improved (+2.7 with
system events and times, +6.0 with manual) but pre-
cision varied (-4.4 with system, +1.6 with manual).

Adding verb-clause relations (BMK) and closure-
inferred relations (PM) increased recall but low-
ered precision. With system-annotated events and
times, the change was +2.2/-0.4 (recall/precision)
for verb-clause relations, and +0.7/-1.2 for closure-
inferred relations. With manually-annotated events
and times, the change was +2.2/-0.3 for verb-clause
relations, and (the one exception where recall im-
proved) +1.5/+1.9 for closure-inferred relations.

8 Discussion

Overall, the ClearTK-TimeML ranked 1st in relation
F1, time extent strict F1 and event tense accuracy.

Analysis across the different ClearTK-TimeML
runs showed that including annotations from the

AQUAINT corpus hurt model performance across
a variety of tasks. A manual inspection of the
AQUAINT corpus revealed many annotation errors,
suggesting that the drop may be the result of attempt-
ing to learn from inconsistent training data. The
AQUAINT corpus may thus have to be partially re-
annotated to be useful as a training corpus.

Analysis also showed that adding more relation
annotations increased recall, typically at the cost of
precision, even though the added annotations were
highly accurate: (Bethard et al., 2007) reported agree-
ment of 90%, and temporal closure relations were
100% deterministic from the already-annotated re-
lations. One would expect that adding such high-
quality relations would only improve performance.
But not all temporal relations were annotated by the
TempEval 2013 annotators, so the system could be
marked wrong for a finding a true temporal relation
that was not noticed by the annotators. Further analy-
sis is necessary to investigate this hypothesis.
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