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Introduction to *SEM 2013

Building on the momentum generated by the spectacular success of the Joint Conference on Lexical and
Computational Semantics (*SEM) in 2012, bringing together the ACL SIGLEX and ACL SIGSEM
communities, we are delighted to bring to you the second edition of the conference, as a top-tier
showcase of the latest research in computational semantics. We accepted 14 papers (11 long and 3
short) for publication at the conference, out of a possible 45 submissions (a 31% acceptance rate).
This is on par with some of the most competitive conferences in computational linguistics, and we are
confident will set the stage for a scintillating conference.

This year, we started a tradition that we intend to maintain in all future iterations of the conference in
integrating a shared task into the conference. The shared task was selected by an independent committee
comprising members from SIGLEX and SIGSEM, based on an open call for proposals, and revolved
around Semantic Textual Similarity (STS). The task turned out to be a huge success with 34 teams
participating, submitting a total of 103 system runs.

*SEM 2013 features a number of highlight events:

Day One, June 13th:

• A timely and impressive panel on Towards Deep Natural Language Understanding,
featuring the following panelists:

– Kevin Knight (USC/Information Sciences Institute)
– Chris Manning (Stanford University)
– Martha Palmer (University of Colorado at Boulder)
– Owen Rambow (Columbia University)
– Dan Roth (University of Illinois at Urbana-Champaign)

• A Reception and Shared Task Poster Session in the evening, thanks to the generous
sponsorship of the DARPA Deft program.

Day Two, June 14th:

• In the morning, a keynote address by David Forsyth from the Computer Science Department
at the University of Illinois at Urbana Champagne on issues of Vision and Language. It
promises to be an extremely stimulating speech, and is not to be missed.

• In the early afternoon, a panel on the relation between and future of *SEM, the *SEM
Shared Task, SemEval and other events on computational semantics. In this panel, we will
attempt to clarify and explain as well as devise plans for these different entities.

• Finally, at the end of the day, an award ceremony for the Best Long Paper and Best Short
Paper.
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As always, *SEM 2013 would not have been possible without the considerable efforts of our area chairs
and an impressive assortment of reviewers, drawn from the ranks of SIGLEX and SIGSEM, and the
computational semantics community at large. We would also like to acknowledge the generous support
for the STS Task from the DARPA Deft Program.

We hope you enjoy *SEM 2013, and look forward to engaging with all of you,

Mona Diab (The George Washington University, General Chair)
Timothy Baldwin (The University of Mebourne, Program Committee Co-Chair)
Marco Baroni (University of Trento, Program Committee Co-Chair)
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Introduction to SemEval

The Semantic Evaluation (SemEval) series of workshops focus on the evaluation and comparison
of systems that can analyse diverse semantic phenomena in text with the aim of extending the
current state-of-the-art in semantic analysis and creating high quality annotated datasets in a range of
increasingly challenging problems in natural language semantics. SemEval provides an exciting forum
for researchers to propose challenging research problems in semantics and to build systems/techniques
to address such research problems.

SemEval-2013 is the seventh workshop in the series. The first three workshops, SensEval-1 (1998),
SensEval-2 (2001), and SensEval-3 (2004), were focused on word sense disambiguation, each time
growing in the number of languages offered in the tasks and in the number of participating teams. In
2007 the workshop was renamed SemEval and in the next three workshops SemEval-2007, SemEval-
2010 and SemEval-2012 the nature of the tasks evolved to include semantic analysis tasks outside of
word sense disambiguation. Starting in 2012 SemEval turned into a yearly event associated with *SEM.

This volume contains papers accepted for presentation at the SemEval-2013 International Workshop
on Semantic Evaluation Exercises. SemEval-2013 is co-organized with the *SEM-2013 The Second
Joint Conference on Lexical and Computational Semantics and co-located with The 2013 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL HLT).

SemEval-2013 included the following 12 tasks for evaluation:

• TempEval-3 Temporal Annotation

• Sentiment Analysis in Twitter

• Spatial Role Labeling

• Free Paraphrases of Noun Compounds

• Evaluating Phrasal Semantics

• The Joint Student Response Analysis and 8th Recognizing Textual Entailment Challenge

• Cross-lingual Textual Entailment for Content Synchronization

• Extraction of Drug-Drug Interactions from BioMedical Texts

• Cross-lingual Word Sense Disambiguation

• Evaluating Word Sense Induction & Disambiguation within An End-User Application

• Multilingual Word Sense Disambiguation

• Word Sense Induction for Graded and Non-Graded Senses

v



About 100 teams submitted more than 300 systems for the 12 tasks of SemEval-2013. This volume
contains both Task Description papers that describe each of the above tasks and System Description
papers that describe the systems that participated in the above tasks. A total of 12 task description
papers and 101 system description papers are included in this volume.

We are indebted to all program committee members for their high quality, elaborate and thoughtful
reviews. The papers in this proceedings have surely benefited from this feedback. We are grateful
to *SEM 2013 and NAACL-HLT 2013 conference organizers for local organization and the forum.
We most gratefully acknowledge the support of our sponsors, the ACL Special Interest Group on the
Lexicon (SIGLEX) and the ACL Special Interest Group on Computational Semantics (SIGSEM).

Welcome to SemEval-2013!

Suresh Manandhar and Deniz Yuret
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México), Marina Santini, Christina Sauper, Roser Saurı́ (Barcelona Media), Hansen Andrew Schwartz
(University of Pennsylvania), Aliaksei Severyn (University of Trento), Ehsan Shareghi (Concordia Uni-
versity - Master’s Student), Eyal Shnarch (Bar Ilan University), Niraj Shrestha (KUL), Ekaterina Shutova
(University of California at Berkeley), Ravi Sinha, Gabriel Skantze (KTH Speech Music and Hearing), Aitor
Soroa (assistant lecturer), Caroline Sporleder (Trier University), Manfred Stede (University of Potsdam),
Herman Stehouwer (Max Planck for Psycholinguistics), Benno Stein, Matthew Stone (Rutgers University),
Veselin Stoyanov (Facebook), Michael Strube (HITS gGmbH), L V Subramaniam (IBM Research India),
Md. Sultan (University of Colorado - Boulder), György Szarvas (Nuance Communications AG), Stefan
Thater (Universität des Saarlandes), Kristina Toutanova (Microsoft Research), Yulia Tsvetkov (CMU),
Tim Van de Cruys (IRIT & CNRS), Antal van den Bosch (Radboud University Nijmegen), Eva Vecchi
(CIMeC - University of Trento), Paola Velardi, Erik Velldal, Noortje Venhuizen, Sriram Venkatapathy
(Xerox Research Centre Europel), Yannick Versley (University of Tuebingen), Darnes Vilariño (Benemérita
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4:30‐‐6:00
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*SEM 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Papers 1
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STS 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Conference Program

Day 1: Thursday June 13, 2013

*SEM Main Conference and Shared Task Sessions (no SemEval on Day 1)

Session PLN1: (6:30–8:30) *SEM Opening Reception and STS Poster Session
(All SemEval attendees are invited)

Day 2: Friday June 14, 2013

(08:00–08:30) Registration

Session SE1: (08:30–09:30) Session 1

08:30–08:40 Opening remarks

08:40–09:00 SemEval-2013 Task 1: TempEval-3: Evaluating Time Expressions, Events, and
Temporal Relations
Naushad UzZaman, Hector Llorens, Leon Derczynski, James Allen, Marc Verhagen
and James Pustejovsky

09:00–09:20 ClearTK-TimeML: A minimalist approach to TempEval 2013
Steven Bethard

09:20–09:30 HeidelTime: Tuning English and Developing Spanish Resources for TempEval-3
Jannik Strötgen, Julian Zell and Michael Gertz

Session PLN2: (09:30–10:30) Keynote address: David Forsyth

(10:30–11:00) Coffee Break

Session SE2: (11:00–12:30) Session 2

11:00–11:10 ATT1: Temporal Annotation Using Big Windows and Rich Syntactic and Semantic
Features
Hyuckchul Jung and Amanda Stent

11:10–11:30 Semeval-2013 Task 8: Cross-lingual Textual Entailment for Content Synchroniza-
tion
Matteo Negri, Alessandro Marchetti, Yashar Mehdad, Luisa Bentivogli and Danilo
Giampiccolo

11:30–11:50 SOFTCARDINALITY: Learning to Identify Directional Cross-Lingual Entailment
from Cardinalities and SMT
Sergio Jimenez, Claudia Becerra and Alexander Gelbukh

11:50–12:10 SemEval-2013 Task 5: Evaluating Phrasal Semantics
Ioannis Korkontzelos, Torsten Zesch, Fabio Massimo Zanzotto and Chris Biemann
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Day 2: Friday June 14, 2013 (continued)

12:10–12:30 HsH: Estimating Semantic Similarity of Words and Short Phrases with Frequency Normal-
ized Distance Measures
Christian Wartena

Session SP1: (12:30–13:30) Lunch Break + Poster Session 1 for Tasks 1, 5, 8

SemEval-2013 Task 1: TempEval-3: Evaluating Time Expressions, Events, and Temporal
Relations
Naushad UzZaman, Hector Llorens, Leon Derczynski, James Allen, Marc Verhagen and
James Pustejovsky

ClearTK-TimeML: A minimalist approach to TempEval 2013
Steven Bethard

ManTIME: Temporal expression identification and normalization in the TempEval-3 chal-
lenge
Michele Filannino, Gavin Brown and Goran Nenadic

HeidelTime: Tuning English and Developing Spanish Resources for TempEval-3
Jannik Strötgen, Julian Zell and Michael Gertz

FSS-TimEx for TempEval-3: Extracting Temporal Information from Text
Vanni Zavarella and Hristo Tanev

ATT1: Temporal Annotation Using Big Windows and Rich Syntactic and Semantic Fea-
tures
Hyuckchul Jung and Amanda Stent

JU CSE: A CRF Based Approach to Annotation of Temporal Expression, Event and Tem-
poral Relations
Anup Kumar Kolya, Amitava Kundu, Rajdeep Gupta, Asif Ekbal, Sivaji Bandyopadhyay

NavyTime: Event and Time Ordering from Raw Text
Nate Chambers

SUTime: Evaluation in TempEval-3
Angel Chang and Christopher D. Manning

KUL: Data-driven Approach to Temporal Parsing of Newswire Articles
Oleksandr Kolomiyets and Marie-Francine Moens

UTTime: Temporal Relation Classification using Deep Syntactic Features
Natsuda Laokulrat, Makoto Miwa, Yoshimasa Tsuruoka and Takashi Chikayama

SemEval-2013 Task 5: Evaluating Phrasal Semantics
Ioannis Korkontzelos, Torsten Zesch, Fabio Massimo Zanzotto and Chris Biemann
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Day 2: Friday June 14, 2013 (continued)

HsH: Estimating Semantic Similarity of Words and Short Phrases with Frequency Normal-
ized Distance Measures
Christian Wartena

UMCC DLSI-(EPS): Paraphrases Detection Based on Semantic Distance
Héctor Dávila, Antonio Fernández Orquı́n, Alexander Chávez, Yoan Gutiérrez, Armando
Collazo, José I. Abreu, Andrés Montoyo and Rafael Muñoz

MELODI: Semantic Similarity of Words and Compositional Phrases using Latent Vector
Weighting
Tim Van de Cruys, Stergos Afantenos and Philippe Muller

IIRG: A Naive Approach to Evaluating Phrasal Semantics
Lorna Byrne, Caroline Fenlon and John Dunnion

ClaC: Semantic Relatedness of Words and Phrases
Reda Siblini and Leila Kosseim

UNAL: Discriminating between Literal and Figurative Phrasal Usage Using Distribu-
tional Statistics and POS tags
Sergio Jimenez, Claudia Becerra and Alexander Gelbukh

Semeval-2013 Task 8: Cross-lingual Textual Entailment for Content Synchronization
Matteo Negri, Alessandro Marchetti, Yashar Mehdad, Luisa Bentivogli and Danilo Gi-
ampiccolo

ECNUCS: Recognizing Cross-lingual Textual Entailment Using Multiple Text Similarity
and Text Difference Measures
Jiang Zhao, Man Lan and Zheng-Yu Niu

BUAP: N-gram based Feature Evaluation for the Cross-Lingual Textual Entailment Task
Darnes Vilariño, David Pinto, Saul León, Yuridiana Aleman and Helena Gómez

ALTN: Word Alignment Features for Cross-lingual Textual Entailment
Marco Turchi and Matteo Negri

SOFTCARDINALITY: Learning to Identify Directional Cross-Lingual Entailment from
Cardinalities and SMT
Sergio Jimenez, Claudia Becerra and Alexander Gelbukh

Umelb: Cross-lingual Textual Entailment with Word Alignment and String Similarity Fea-
tures
Yvette Graham, Bahar Salehi and Timothy Baldwin
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Day 2: Friday June 14, 2013 (continued)

Session PLN3: (13:30–14:30) Joint Panel: Future of *SEM / STS Shared Task / Se-
mEval

Session SE3: (14:30–15:30) Session 3

14:30–14:50 UNAL: Discriminating between Literal and Figurative Phrasal Usage Using Distribu-
tional Statistics and POS tags
Sergio Jimenez, Claudia Becerra and Alexander Gelbukh

14:50–15:10 SemEval-2013 Task 4: Free Paraphrases of Noun Compounds
Iris Hendrickx, Zornitsa Kozareva, Preslav Nakov, Diarmuid Ó Séaghdha, Stan Szpakow-
icz and Tony Veale

15:10–15:30 MELODI: A Supervised Distributional Approach for Free Paraphrasing of Noun Com-
pounds
Tim Van de Cruys, Stergos Afantenos and Philippe Muller

Session SP2: (15:30–16:30) Coffee Break + Poster Session 2 for Tasks 4, 10, 11, 12

SemEval-2013 Task 4: Free Paraphrases of Noun Compounds
Iris Hendrickx, Zornitsa Kozareva, Preslav Nakov, Diarmuid Ó Séaghdha, Stan Szpakow-
icz and Tony Veale

SFS-TUE: Compound Paraphrasing with a Language Model and Discriminative Rerank-
ing
Yannick Versley

IIIT-H: A Corpus-Driven Co-occurrence Based Probabilistic Model for Noun Compound
Paraphrasing
Nitesh Surtani, Arpita Batra, Urmi Ghosh and Soma Paul

MELODI: A Supervised Distributional Approach for Free Paraphrasing of Noun Com-
pounds
Tim Van de Cruys, Stergos Afantenos and Philippe Muller

SemEval-2013 Task 10: Cross-lingual Word Sense Disambiguation
Els Lefever and Véronique Hoste

XLING: Matching Query Sentences to a Parallel Corpus using Topic Models for WSD
Liling Tan and Francis Bond

HLTDI: CL-WSD Using Markov Random Fields for SemEval-2013 Task 10
Alex Rudnick, Can Liu and Michael Gasser
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Day 2: Friday June 14, 2013 (continued)

LIMSI : Cross-lingual Word Sense Disambiguation using Translation Sense Clustering
Marianna Apidianaki

WSD2: Parameter optimisation for Memory-based Cross-Lingual Word-Sense Disam-
biguation
Maarten van Gompel and Antal van den Bosch

NRC: A Machine Translation Approach to Cross-Lingual Word Sense Disambiguation
(SemEval-2013 Task 10)
Marine Carpuat

SemEval-2013 Task 11: Word Sense Induction and Disambiguation within an End-User
Application
Roberto Navigli and Daniele Vannella

Duluth : Word Sense Induction Applied to Web Page Clustering
Ted Pedersen

SATTY : Word Sense Induction Application in Web Search Clustering
Satyabrata Behera, Upasana Gaikwad, Ramakrishna Bairi and Ganesh Ramakrishnan

UKP-WSI: UKP Lab Semeval-2013 Task 11 System Description
Hans-Peter Zorn and Iryna Gurevych

unimelb: Topic Modelling-based Word Sense Induction for Web Snippet Clustering
Jey Han Lau, Paul Cook and Timothy Baldwin

SemEval-2013 Task 12: Multilingual Word Sense Disambiguation
Roberto Navigli, David Jurgens and Daniele Vannella

GETALP System : Propagation of a Lesk Measure through an Ant Colony Algorithm
Didier Schwab, Andon Tchechmedjiev, Jérôme Goulian, Mohammad Nasiruddin, Gilles
Sérasset and Hervé Blanchon

UMCC DLSI: Reinforcing a Ranking Algorithm with Sense Frequencies and Multidimen-
sional Semantic Resources to solve Multilingual Word Sense Disambiguation
Yoan Gutiérrez, Yenier Castañeda, Andy González, Rainel Estrada, Dennys D. Piug, Jose
I. Abreu, Roger Pérez, Antonio Fernández Orquı́n, Andrés Montoyo, Rafael Muñoz and
Franc Camara

DAEBAK!: Peripheral Diversity for Multilingual Word Sense Disambiguation
Steve L. Manion, and Raazesh Sainudiin
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Day 2: Friday June 14, 2013 (continued)

Session SE4: (16:30–18:30) Session 4

16:30–16:50 SemEval-2013 Task 10: Cross-lingual Word Sense Disambiguation
Els Lefever and Véronique Hoste

16:50–17:10 HLTDI: CL-WSD Using Markov Random Fields for SemEval-2013 Task 10
Alex Rudnick, Can Liu and Michael Gasser

17:10–17:30 SemEval-2013 Task 11: Word Sense Induction and Disambiguation within an End-User
Application
Roberto Navigli and Daniele Vannella

17:30–17:50 unimelb: Topic Modelling-based Word Sense Induction for Web Snippet Clustering
Jey Han Lau, Paul Cook and Timothy Baldwin

17:50–18:10 SemEval-2013 Task 12: Multilingual Word Sense Disambiguation
Roberto Navigli, David Jurgens and Daniele Vannella

18:10–18:20 UMCC DLSI: Reinforcing a Ranking Algorithm with Sense Frequencies and Multidimen-
sional Semantic Resources to solve Multilingual Word Sense Disambiguation
Yoan Gutiérrez, Yenier Castañeda, Andy González, Rainel Estrada, Dennys D. Piug, Jose
I. Abreu, Roger Pérez, Antonio Fernández Orquı́n, Andrés Montoyo, Rafael Muñoz and
Franc Camara

18:20–18:30 DAEBAK!: Peripheral Diversity for Multilingual Word Sense Disambiguation
Steve L. Manion, and Raazesh Sainudiin

Day 3: Saturday June 15, 2013

Session SE5: (08:40–10:30) Session 5

08:40–09:00 SemEval-2013 Task 3: Spatial Role Labeling
Oleksandr Kolomiyets, Parisa Kordjamshidi, Marie-Francine Moens and Steven Bethard

09:00–09:20 SemEval-2013 Task 7: The Joint Student Response Analysis and 8th Recognizing Textual
Entailment Challenge
Myroslava Dzikovska, Rodney Nielsen, Chris Brew, Claudia Leacock, Danilo Giampic-
colo, Luisa Bentivogli, Peter Clark, Ido Dagan and Hoa Trang Dang

09:20–09:35 ETS: Domain Adaptation and Stacking for Short Answer Scoring
Michael Heilman and Nitin Madnani
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Day 3: Saturday June 15, 2013 (continued)

09:35–09:50 SOFTCARDINALITY: Hierarchical Text Overlap for Student Response Analysis
Sergio Jimenez, Claudia Becerra and Alexander Gelbukh

09:50–10:00 UKP-BIU: Similarity and Entailment Metrics for Student Response Analysis
Omer Levy, Torsten Zesch, Ido Dagan and Iryna Gurevych

10:00–10:20 SemEval-2013 Task 13: Word Sense Induction for Graded and Non-Graded Senses
David Jurgens and Ioannis Klapaftis

10:20–10:30 AI-KU: Using Substitute Vectors and Co-Occurrence Modeling For Word Sense Induction
and Disambiguation
Osman Baskaya, Enis Sert, Volkan Cirik and Deniz Yuret

(10:30–11:00) Coffee Break

Session SE6: (11:00–13:10) Session 6

11:00–11:10 unimelb: Topic Modelling-based Word Sense Induction
Jey Han Lau, Paul Cook and Timothy Baldwin

11:10–11:30 SemEval-2013 Task 2: Sentiment Analysis in Twitter
Preslav Nakov, Sara Rosenthal, Zornitsa Kozareva, Veselin Stoyanov, Alan Ritter and
Theresa Wilson

11:30–11:50 NRC-Canada: Building the State-of-the-Art in Sentiment Analysis of Tweets
Saif Mohammad, Svetlana Kiritchenko and Xiaodan Zhu

11:50–12:00 GU-MLT-LT: Sentiment Analysis of Short Messages using Linguistic Features and
Stochastic Gradient Descent
Tobias Günther and Lenz Furrer

12:00–12:10 AVAYA: Sentiment Analysis on Twitter with Self-Training and Polarity Lexicon Expansion
Lee Becker, George Erhart, David Skiba and Valentine Matula

12:10–12:30 SemEval-2013 Task 9 : Extraction of Drug-Drug Interactions from Biomedical Texts
(DDIExtraction 2013)
Isabel Segura-Bedmar, Paloma Martı́nez and Marı́a Herrero Zazo

12:30–12:50 FBK-irst : A Multi-Phase Kernel Based Approach for Drug-Drug Interaction Detection
and Classification that Exploits Linguistic Information
Md. Faisal Mahbub Chowdhury and Alberto Lavelli

12:50–13:10 WBI-NER: The impact of domain-specific features on the performance of identifying and
classifying mentions of drugs
Tim Rocktäschel, Torsten Huber, Michael Weidlich and Ulf Leser
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Day 3: Saturday June 15, 2013 (continued)

Session SP3: (13:10–15:30) Lunch Break + Poster Session 3 for Tasks 2, 3, 7, 9, 13

SemEval-2013 Task 2: Sentiment Analysis in Twitter
Preslav Nakov, Sara Rosenthal, Zornitsa Kozareva, Veselin Stoyanov, Alan Ritter and
Theresa Wilson

AMI&ERIC: How to Learn with Naive Bayes and Prior Knowledge: an Application to
Sentiment Analysis
Mohamed Dermouche, Leila Khouas, Julien Velcin and Sabine Loudcher

UNITOR: Combining Syntactic and Semantic Kernels for Twitter Sentiment Analysis
Giuseppe Castellucci, Simone Filice, Danilo Croce and Roberto Basili

GU-MLT-LT: Sentiment Analysis of Short Messages using Linguistic Features and
Stochastic Gradient Descent
Tobias Günther and Lenz Furrer

AVAYA: Sentiment Analysis on Twitter with Self-Training and Polarity Lexicon Expansion
Lee Becker, George Erhart, David Skiba and Valentine Matula

TJP: Using Twitter to Analyze the Polarity of Contexts
Tawunrat Chalothorn and Jeremy Ellman

uOttawa: System description for SemEval 2013 Task 2 Sentiment Analysis in Twitter
Hamid Poursepanj, Josh Weissbock and Diana Inkpen

UT-DB: An Experimental Study on Sentiment Analysis in Twitter
Zhemin Zhu, Djoerd Hiemstra, Peter Apers and Andreas Wombacher

USNA: A Dual-Classifier Approach to Contextual Sentiment Analysis
Ganesh Harihara, Eugene Yang and Nate Chambers

KLUE: Simple and robust methods for polarity classification
Thomas Proisl, Paul Greiner, Stefan Evert and Besim Kabashi

SINAI: Machine Learning and Emotion of the Crowd for Sentiment Analysis in Microblogs
Eugenio Martı́nez-Cámara, Arturo Montejo-Ráez, M. Teresa Martı́n-Valdivia and L. Al-
fonso Ureña-López

ECNUCS: A Surface Information Based System Description of Sentiment Analysis in Twit-
ter in the SemEval-2013 (Task 2)
Zhu Tiantian, Zhang Fangxi and Man Lan

Umigon: sentiment analysis for tweets based on terms lists and heuristics
Clement Levallois
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Day 3: Saturday June 15, 2013 (continued)

[LVIC-LIMSI]: Using Syntactic Features and Multi-polarity Words for Sentiment Analysis
in Twitter
Morgane Marchand, Alexandru Ginsca, Romaric Besançon and Olivier Mesnard

SwatCS: Combining simple classifiers with estimated accuracy
Sam Clark and Rich Wicentwoski

NTNU: Domain Semi-Independent Short Message Sentiment Classification
Øyvind Selmer, Mikael Brevik, Björn Gambäck and Lars Bungum

SAIL: A hybrid approach to sentiment analysis
Nikolaos Malandrakis, Abe Kazemzadeh, Alexandros Potamianos and Shrikanth
Narayanan

UMCC DLSI-(SA): Using a ranking algorithm and informal features to solve Sentiment
Analysis in Twitter
Yoan Gutiérrez, Andy González, Roger Pérez, José I. Abreu, Antonio Fernández Orquı́n,
Alejandro Mosquera, Andrés Montoyo, Rafael Muñoz and Franc Camara

ASVUniOfLeipzig: Sentiment Analysis in Twitter using Data-driven Machine Learning
Techniques
Robert Remus

Experiments with DBpedia, WordNet and SentiWordNet as resources for sentiment analy-
sis in micro-blogging
Hussam Hamdan, Frederic Béchet and Patrice Bellot

OPTWIMA: Comparing Knowledge-rich and Knowledge-poor Approaches for Sentiment
Analysis in Short Informal Texts
Alexandra Balahur

FBK: Sentiment Analysis in Twitter with Tweetsted
Md. Faisal Mahbub Chowdhury, Marco Guerini, Sara Tonelli and Alberto Lavelli

SU-Sentilab : A Classification System for Sentiment Analysis in Twitter
Gizem Gezici, Rahim Dehkharghani, Berrin Yanikoglu, Dilek Tapucu and Yucel Saygin

Columbia NLP: Sentiment Detection of Subjective Phrases in Social Media
Sara Rosenthal and Kathy McKeown

FBM: Combining lexicon-based ML and heuristics for Social Media Polarities
Carlos Rodriguez-Penagos, Jordi Atserias Batalla, Joan Codina-Filbà, David Garcı́a-
Narbona, Jens Grivolla, Patrik Lambert and Roser Saurı́
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Day 3: Saturday June 15, 2013 (continued)

REACTION: A naive machine learning approach for sentiment classification
Silvio Moreira, João Filgueiras, Bruno Martins, Francisco Couto and Mário J. Silva

IITB-Sentiment-Analysts: Participation in Sentiment Analysis in Twitter SemEval 2013
Task
Karan Chawla, Ankit Ramteke and Pushpak Bhattacharyya

SSA-UO: Unsupervised Sentiment Analysis in Twitter
Reynier Ortega Bueno, Adrian Fonseca Bruzón, Yoan Gutiérrez and Andres Montoyo

senti.ue-en: an approach for informally written short texts in SemEval-2013 Sentiment
Analysis task
José Saias and Hilário Fernandes

teragram: Rule-based detection of sentiment phrases using SAS Sentiment Analysis
Hilke Reckman, Cheyanne Baird, Jean Crawford, Richard Crowell, Linnea Micciulla,
Saratendu Sethi and Fruzsina Veress

CodeX: Combining an SVM Classifier and Character N-gram Language Models for Sen-
timent Analysis on Twitter Text
Qi Han, Junfei Guo and Hinrich Schuetze

sielers : Feature Analysis and Polarity Classification of Expressions from Twitter and SMS
Data
Harshit Jain, Aditya Mogadala and Vasudeva Varma

Kea: Expression-level Sentiment Analysis from Twitter Data
Ameeta Agrawal and Aijun An

NRC-Canada: Building the State-of-the-Art in Sentiment Analysis of Tweets
Saif Mohammad, Svetlana Kiritchenko and Xiaodan Zhu

UoM: Using Explicit Semantic Analysis for Classifying Sentiments
Sapna Negi and Michael Rosner

bwbaugh : Hierarchical sentiment analysis with partial self-training
Wesley Baugh

Serendio: Simple and Practical lexicon based approach to Sentiment Analysis
Prabu palanisamy, Vineet Yadav and Harsha Elchuri

SZTE-NLP: Sentiment Detection on Twitter Messages
Viktor Hangya, Gabor Berend and Richárd Farkas
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Day 3: Saturday June 15, 2013 (continued)

BOUNCE: Sentiment Classification in Twitter using Rich Feature Sets
Nadin Kökciyan, Arda Çelebi, Arzucan Özgür and Suzan Üsküdarlı

nlp.cs.aueb.gr: Two Stage Sentiment Analysis
Prodromos Malakasiotis, Rafael Michael Karampatsis, Konstantina Makrynioti and John
Pavlopoulos

NILC USP: A Hybrid System for Sentiment Analysis in Twitter Messages
Pedro Balage Filho and Thiago Pardo

SemEval-2013 Task 3: Spatial Role Labeling
Oleksandr Kolomiyets, Parisa Kordjamshidi, Marie-Francine Moens and Steven Bethard

UNITOR-HMM-TK: Structured Kernel-based learning for Spatial Role Labeling
Emanuele Bastianelli, Danilo Croce, Roberto Basili and Daniele Nardi

SemEval-2013 Task 7: The Joint Student Response Analysis and 8th Recognizing Textual
Entailment Challenge
Myroslava Dzikovska, Rodney Nielsen, Chris Brew, Claudia Leacock, Danilo Giampic-
colo, Luisa Bentivogli, Peter Clark, Ido Dagan and Hoa Trang Dang

UKP-BIU: Similarity and Entailment Metrics for Student Response Analysis
Omer Levy, Torsten Zesch, Ido Dagan and Iryna Gurevych

ETS: Domain Adaptation and Stacking for Short Answer Scoring
Michael Heilman and Nitin Madnani

EHU-ALM: Similarity-Feature Based Approach for Student Response Analysis
Itziar Aldabe, Montse Maritxalar and Oier Lopez de Lacalle

CNGL: Grading Student Answers by Acts of Translation
Ergun Bicici and Josef van Genabith

Celi: EDITS and Generic Text Pair Classification
Milen Kouylekov, Luca Dini, Alessio Bosca and Marco Trevisan

LIMSIILES: Basic English Substitution for Student Answer Assessment at SemEval 2013
Martin Gleize and Brigitte Grau

SOFTCARDINALITY: Hierarchical Text Overlap for Student Response Analysis
Sergio Jimenez, Claudia Becerra and Alexander Gelbukh

CU : Computational Assessment of Short Free Text Answers - A Tool for Evaluating Stu-
dents’ Understanding
IFEYINWA OKOYE, Steven Bethard and Tamara Sumner
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Day 3: Saturday June 15, 2013 (continued)

CoMeT: Integrating different levels of linguistic modeling for meaning assessment
Niels Ott, Ramon Ziai, Michael Hahn and Detmar Meurers

SemEval-2013 Task 9 : Extraction of Drug-Drug Interactions from Biomedical Texts
(DDIExtraction 2013)
Isabel Segura-Bedmar, Paloma Martı́nez and Marı́a Herrero Zazo

UC3M: A kernel-based approach to identify and classify DDIs in bio-medical texts.
Daniel Sanchez-Cisneros

UEM-UC3M: An Ontology-based named entity recognition system for biomedical texts.
Daniel Sanchez-Cisneros and Fernando Aparicio Gali

FBK-irst : A Multi-Phase Kernel Based Approach for Drug-Drug Interaction Detection
and Classification that Exploits Linguistic Information
Md. Faisal Mahbub Chowdhury and Alberto Lavelli

WBI-DDI: Drug-Drug Interaction Extraction using Majority Voting
Philippe Thomas, Mariana Neves, Tim Rocktäschel and Ulf Leser

WBI-NER: The impact of domain-specific features on the performance of identifying and
classifying mentions of drugs
Tim Rocktäschel, Torsten Huber, Michael Weidlich and Ulf Leser

UMCC DLSI: Semantic and Lexical features for detection and classification Drugs in
biomedical texts
Armando Collazo, Alberto Ceballo, Dennys D. Puig, Yoan Gutiérrez, José I. Abreu, Roger
Pérez, Antonio Fernández Orquı́n, Andrés Montoyo, Rafael Muñoz and Franc Camara

NIL UCM: Extracting Drug-Drug interactions from text through combination of sequence
and tree kernels
Behrouz Bokharaeian and ALBERTO DIAZ

UTurku: Drug Named Entity Recognition and Drug-Drug Interaction Extraction Using
SVM Classification and Domain Knowledge
Jari Björne, Suwisa Kaewphan and Tapio Salakoski

LASIGE: using Conditional Random Fields and ChEBI ontology
Tiago Grego, Francisco Pinto and Francisco M Couto

UWM-TRIADS: Classifying Drug-Drug Interactions with Two-Stage SVM and Post-
Processing
Majid Rastegar-Mojarad, Richard D. Boyce and Rashmi Prasad
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Day 3: Saturday June 15, 2013 (continued)

SCAI: Extracting drug-drug interactions using a rich feature vector
Tamara Bobic, Juliane Fluck and Martin Hofmann-Apitius

UColorado SOM: Extraction of Drug-Drug Interactions from Biomedical Text using
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Abstract

Within the SemEval-2013 evaluation exercise, the
TempEval-3 shared task aims to advance research
on temporal information processing. It follows on
from TempEval-1 and -2, with: a three-part struc-
ture covering temporal expression, event, and tem-
poral relation extraction; a larger dataset; and new
single measures to rank systems – in each task and in
general. In this paper, we describe the participants’
approaches, results, and the observations from the
results, which may guide future research in this area.

1 Introduction
The TempEval task (Verhagen et al., 2009) was added as a
new task in SemEval-2007. The ultimate aim of research
in this area is the automatic identification of temporal ex-
pressions (timexes), events, and temporal relations within
a text as specified in TimeML annotation (Pustejovsky et
al., 2005). However, since addressing this aim in a first
evaluation challenge was deemed too difficult a staged
approach was suggested.

TempEval (henceforth TempEval-1) was an initial
evaluation exercise focusing only on the categorization of
temporal relations and only in English. It included three
relation types: event-timex, event-dct,1 and relations be-
tween main events in consecutive sentences.

TempEval-2 (Verhagen et al., 2010) extended
TempEval-1, growing into a multilingual task, and con-
sisting of six subtasks rather than three. This included
event and timex extraction, as well as the three relation
tasks from TempEval-1, with the addition of a relation
task where one event subordinates another.

TempEval-3 (UzZaman et al., 2012b) is a follow-up
to TempEval 1 and 2, covering English and Spanish.
TempEval-3 is different from its predecessors in a few
respects:

1DCT stands for document creation time

Size of the corpus: the dataset used has about 600K
word silver standard data and about 100K word gold stan-
dard data for training, compared to around 50K word cor-
pus used in TempEval 1 and 2. Temporal annotation is
a time-consuming task for humans, which has limited
the size of annotated data in previous TempEval exer-
cises. Current systems, however, are performing close to
the inter-annotator reliability, which suggests that larger
corpora could be built from automatically annotated data
with minor human reviews. We want to explore whether
there is value in adding a large automatically created sil-
ver standard to a hand-crafted gold standard.

End-to-end temporal relation processing task: the
temporal relation classification tasks are performed from
raw text, i.e. participants need to extract their own events
and temporal expressions first, determine which ones to
link and then obtain the relation types. In previous Tem-
pEvals, gold timexes, events, and relations (without cate-
gory) were given to participants.

Temporal relation types: the full set of temporal re-
lations in TimeML are used, rather than the reduced set
used in earlier TempEvals.

Platinum test set: A new test dataset has been devel-
oped for this edition. It is based on manual annotations
by experts over new text (unseen in previous editions).

Evaluation: we report a temporal awareness score for
evaluating temporal relations, which helps to rank sys-
tems with a single score.

2 Data

In TempEval-3, we reviewed and corrected existing cor-
pora, and also released new corpora.

2.1 Reviewing Existing Corpora

We considered the existing TimeBank (Pustejovsky et al.,
2003) and AQUAINT2 data for TempEval-3. TempEval-

2See http://timeml.org/site/timebank/timebank.html
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Entity Agreement
Event 0.87
Event class 0.92
Timex 0.87
Timex value 0.88

Table 1: Platinum corpus entity inter-annotator agreement.

Corpus # of words Standard
TimeBank 61,418 Gold
AQUAINT 33,973 Gold
TempEval-3 Silver 666,309 Silver
TempEval-3 Eval 6,375 Platinum
TimeBank-ES Train 57,977 Gold
TimeBank-ES Eval 9,833 Gold

Table 2: Corpora used in TempEval-3.

1 and TempEval-2 had the same documents as TimeBank
but different relation types and events.

For both TimeBank and AQUAINT, we, (i) cleaned up
the formatting for all files making it easy to review and
read, (ii) made all files XML and TimeML schema com-
patible, (iii) added some missing events and temporal ex-
pressions. In TimeBank, we, (i) borrowed the events from
the TempEval-2 corpus and (ii) borrowed the temporal re-
lations from TimeBank corpus, which contains a full set
of temporal relations. In AQUAINT, we added the tem-
poral relations between event and DCT (document cre-
ation time), which was missing for many documents in
that corpus. These existing corpora comprised the high-
quality component of our training set.

2.2 New Corpora

We created two new datasets: a small, manually-
annotated set over new text (platinum); and a machine-
annotated, automatically-merged dataset based on out-
puts of multiple systems (silver).

The TempEval-3 platinum evaluation corpus was anno-
tated/reviewed by the organizers, who are experts in the
area. This process used the TimeML Annotation Guide-
lines v1.2.1 (Saurı́ et al., 2006). Every file was anno-
tated independently by at least two expert annotators, and
a third was dedicated to adjudicating between annotations
and merging the final result. Some annotators based their
work on TIPSem annotation suggestions (Llorens et al.,
2012b). The GATE Annotation Diff tool was used for
merging (Cunningham et al., 2013), a custom TimeML
validator ensured integrity,3 and CAVaT (Derczynski and
Gaizauskas, 2010) was used to determine various modes
of TimeML mis-annotation and inconsistency that are in-
expressable via XML schema. Post-exercise, that corpus
(TempEval-3 Platinum with around 6K tokens, on com-
pletely new text) is released for the community to review

3See https://github.com/hllorens/TimeML-validator

and improve.4 Inter-annotator agreement (measured with
F1, as per Hripcsak and Rothschild (2005)) and the num-
ber of annotation passes per document were higher than
in existing TimeML corpora, hence the name. Details are
given in Table 1. Attribute value scores are given based
on the agreed entity set. These are for exact matches.

The TempEval-3 silver evaluation corpus is a 600K
word corpus collected from Gigaword (Parker et
al., 2011). We automatically annotated this corpus
by TIPSem, TIPSem-B (Llorens et al., 2013) and
TRIOS (UzZaman and Allen, 2010). These systems were
retrained on the corrected TimeBank and AQUAINT cor-
pus to generate the original TimeML temporal relation
set. We then merged these three state-of-the-art sys-
tem outputs using our merging algorithm (Llorens et al.,
2012a). In our selected merged configuration all entities
and relations suggested by the best system (TIPSem) are
added in the merged output. Suggestions from other sys-
tems (TRIOS and TIPSem-B) are added in the merged
output, only if they are also supported by another system.
The weights considered in our configuration are: TIPSem
0.36, TIPSemB 0.32, TRIOS 0.32.

For Spanish, Spanish TimeBank 1.0 corpus (Saurı́ and
Badia, 2012) wads used. It is the same corpus that was
used in TempEval-2, with a major review of entity anno-
tation and an important improvement regarding temporal
relation annotation. For TempEval-3, we converted ES-
TimeBank link types to the TimeML standard types based
on Allen’s temporal relations (Allen, 1983).

Table 2 summarizes our released corpora, measured
with PTB-scheme tokens as words. All data produced
was annotated using a well-defined subset of TimeML,
designed for easy processing, and for reduced ambigu-
ity compared to standard TimeML. Participants were en-
couraged to validate their submissions using a purpose-
built tool to ensure that submitted runs were legible. We
called this standard TimeML-strict, and release it sepa-
rately (Derczynski et al., 2013).

3 Tasks

The three main tasks proposed for TempEval-3 focus on
TimeML entities and relations:

3.1 Task A (Timex extraction and normalization)

Determine the extent of the timexes in a text as defined
by the TimeML TIMEX3 tag. In addition, determine the
value of the features TYPE and VALUE. The possible
values of TYPE are time, date, duration, and set; VALUE
is a normalized value as defined by the TIMEX3 standard.

4In the ACL data and code repository, reference ADCR2013T001.
See also https://bitbucket.org/leondz/te3-platinum
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3.2 Task B (Event extraction and classification)

Determine the extent of the events in a text as defined by
the TimeML EVENT tag and the appropriate CLASS.

3.3 Task ABC (Annotating temporal relations)

This is the ultimate task for evaluating an end-to-end sys-
tem that goes from raw text to TimeML annotation of
entities and links. It entails performing tasks A and B.
From raw text extract the temporal entities (events and
timexes), identify the pairs of temporal entities that have
a temporal link (TLINK) and classify the temporal re-
lation between them. Possible pair of entities that can
have a temporal link are: (i) main events of consecu-
tive sentences, (ii) pairs of events in the same sentence,
(iii) event and timex in the same sentence and (iv) event
and document creation time. In TempEval-3, TimeML
relation are used, i.e.: BEFORE, AFTER, INCLUDES, IS-
INCLUDED, DURING, SIMULTANEOUS, IMMEDIATELY
AFTER, IMMEDIATELY BEFORE, IDENTITY, BEGINS,
ENDS, BEGUN-BY and ENDED-BY.

In addition to this main tasks, we also include two extra
temporal relation tasks:

Task C (Annotating relations given gold entities)
Given the gold entities, identify the pairs of entities that
have a temporal link (TLINK) and classify the temporal
relations between them.

Task C relation only (Annotating relations given gold
entities and related pairs) Given the temporal entities
and the pair of entities that have a temporal link, classify
the temporal relation between them.

4 Evaluation Metrics

The metrics used to evaluate the participants are:

4.1 Temporal Entity Extraction

To evaluate temporal entities (events and temporal ex-
pressions), we need to evaluate, (i) How many entities are
correctly identified, (ii) If the extents for the entities are
correctly identified, and (iii) How many entity attributes
are correctly identified. We use classical precision and
recall for recognition.

How many entities are correctly identified: We evalu-
ate our entities using the entity-based evaluation with the
equations below.

Precision =
|Sysentity∩Refentity|

|Sysentity|

Recall =
|Sysentity∩Refentity|

|Refentity|
where, Sysentity contains the entities extracted by the

system that we want to evaluate, and Refentity contains
the entities from the reference annotation that are being
compared.

If the extents for the entities are correctly identified:
We compare our entities with both strict match and re-
laxed match. When there is a exact match between the
system entity and gold entity then we call it strict match,
e.g. “sunday morning” vs “sunday morning”. When there
is a overlap between the system entity and gold entity
then we call it relaxed match, e.g. “sunday” vs “sunday
morning”. When there is a relaxed match, we compare
the attribute values.

How many entity attributes are correctly identified: We
evaluate our entity attributes using the attribute F1-score,
which captures how well the system identified both the
entity and attribute (attr) together.

Attribute Recall =
|{∀x | x∈(Sysentity∩Refentity)∧Sysattr(x)==Refattr(x)}|

|Refentity|
Attribute Precision =
|{∀x | x∈(Sysentity∩Refentity)∧Sysattr(x)==Refattr(x)}|

|Sysentity|

Attribute F1-score = 2∗p∗r
p+r

Attribute (Attr) accuracy, precision and recall can be
calculated as well from the above information.
Attr Accuracy = Attr F1 / Entity Extraction F1
Attr R = Attr Accuracy * Entity R
Attr P = Attr Accuracy * Entity P

4.2 Temporal Relation Processing

To evaluate relations, we use the evaluation metric pre-
sented by UzZaman and Allen (2011).5 This metric cap-
tures the temporal awareness of an annotation in terms
of precision, recall and F1 score. Temporal awareness
is defined as the performance of an annotation as identi-
fying and categorizing temporal relations, which implies
the correct recognition and classification of the tempo-
ral entities involved in the relations. Unlike TempEval-
2 relation score, where only categorization is evaluated
for relations, this metric evaluates how well pairs of enti-
ties are identified, how well the relations are categorized,
and how well the events and temporal expressions are ex-
tracted.

Precision =
|Sys−

relation
∩Ref+

relation
|

|Sys−
relation

|

Recall =
|Ref−

relation
∩Sys+

relation
|

|Ref−
relation

|

where, G+ is the closure of graph G and G− is the
reduced of graph G, where redundant relations are re-
moved.6

We calculate the Precision by checking the number
of reduced system relations (Sys−relation) that can be veri-
fied from the reference annotation temporal closure graph
(Ref+

relation), out of number of temporal relations in the

5We used a minor variation of the formula, where we consider the
reduced graph instead of all system or reference relations. Details can
be found in Chapter 6 of UzZaman (2012).

6A relation is redundant if it can be inferred through other relations.
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strict value
F1 P R F1 F1

HeidelTime-t 90.30 93.08 87.68 81.34 77.61
HeidelTime-bf 87.31 90.00 84.78 78.36 72.39
HeidelTime-1.2 86.99 89.31 84.78 78.07 72.12
NavyTime-1,2 90.32 89.36 91.30 79.57 70.97
ManTIME-4 89.66 95.12 84.78 74.33 68.97
ManTIME-6 87.55 98.20 78.99 73.09 68.27
ManTIME-3 87.06 94.87 80.43 69.80 67.45
SUTime 90.32 89.36 91.30 79.57 67.38
ManTIME-1 87.20 97.32 78.99 70.40 67.20
ManTIME-5 87.20 97.32 78.99 69.60 67.20
ManTIME-2 88.10 97.37 80.43 72.22 66.67
ATT-2 85.25 98.11 75.36 78.69 65.57
ATT-1 85.60 99.05 75.36 79.01 65.02
ClearTK-1,2 90.23 93.75 86.96 82.71 64.66
JU-CSE 86.38 93.28 80.43 75.49 63.81
KUL 83.67 92.92 76.09 69.32 62.95
KUL-TE3RunABC 82.87 92.04 75.36 73.31 62.15
ClearTK-3,4 87.94 94.96 81.88 77.04 61.48
ATT-3 80.85 97.94 68.84 72.34 60.43
FSS-TimEx 85.06 90.24 80.43 49.04 58.24
TIPSem (TE2) 84.90 97.20 75.36 81.63 65.31

Table 3: Task A - Temporal Expression Performance.

reduced system relations (Sys−relation). Similarly, we
calculate the Recall by checking the number of reduced
reference annotation relations (Ref−relation) that can be
verified from the system output’s temporal closure graph
(Sys+

relation), out of number of temporal relations in the
reduced reference annotation (Ref−relation).

This metric evaluates Task ABC together. For Task C
and Task C - relation only, all the gold annotation entities
were provided and then evaluated using the above metric.

Our evaluation toolkit that evaluated TempEval-3 par-
ticipants is available online.7

5 Evaluation Results

The aim of this evaluation is to provide a meaningful re-
port of the performance obtained by the participants in
the tasks defined in Section 3.

Furthermore, the results include TIPSem as reference
for comparison. This was used as a pre-annotation system
in some cases. TIPSem obtained the best results in event
processing task in TempEval-2 and offered very compet-
itive results in timex and relation processing. The best
timex processing system in TempEval-2 (HeidelTime) is
participating in this edition as well, therefore we included
TIPSem as a reference in all tasks.

We only report results in main measures. Results are
divided by language and shown per task. Detailed scores
can be found on the task website.8

7See http://www.cs.rochester.edu/u/naushad/temporal
8See http://www.cs.york.ac.uk/semeval-2013/task1/

5.1 Results for English
5.1.1 Task A: Timexes

We had nine participants and 21 unique runs for tem-
poral expression extraction task, Task A. Table 3 shows
the results. Details about participants’ approaches can be
found in Table 4.

We rank the participants for Task A on the F1 score
of most important timex attribute – Value. To get the
attribute Value correct, a system needs to correctly nor-
malise the temporal expression. This score (Value F1)
captures the performance of extracting the timex and
identifying the attribute Value together (Value F1 = Timex
F1 * Value Accuracy).

Participants approached the temporal expression ex-
traction task with rule-engineered methods, machine
learning methods and also hybrid methods. For temporal
expression normalization (identifying the timex attribute
value), all participants used rule-engineered approaches.

Observations: We collected the following observa-
tions from the results and from participants’ experiments.

Strategy: Competition was close for timex recogni-
tion and the best systems all performed within 1% of
each other. On our newswire corpus, statistical systems
(ClearTK) performed best at strict matching, and rule-
engineered system best at relaxed matching (NavyTime,
SUTime, HeidelTime).

Strategy: post-processing, on top of machine learning-
base temporal expression extraction, provided a statisti-
cally significant improvement in both precision and recall
(ManTIME).

Data: using the large silver dataset, alone or together
with human annotated data, did not give improvements in
performance for Task A. Human-annotated gold standard
data alone provided the best performance (ManTIME).

Data: TimeBank alone was better than TimeBank and
AQUAINT together for Task A (ClearTK).

Features: syntactic and gazetteers did not provide any
statistically significant increment of performance with re-
spect to the morphological features alone (ManTIME).

Regarding the two sub-tasks of timex annotation,
recognition and interpretation/normalisation, we noticed
a shift in the state of the art. While normalisation is
currently (and perhaps inherently) done best by rule-
engineered systems, recognition is now done well by a
variety of methods. Where formerly, rule-engineered
timex recognition always outperformed other classes of
approach, now it is clear that rule-engineering and ma-
chine learning are equally good at timex recognition.

5.1.2 Task B: Events
For event extraction (Task B) we had seven participants

and 10 unique runs. The results for this task can be found
in Table 6. We rank the participants for TaskB on the F1
score of most important event attribute – Class. Class
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Strategy System Training data Classifier used
Data-driven ATT-1, 2, 3 TBAQ + TE3Silver MaxEnt

ClearTK-1, 2 TimeBank SVM, Logit
ClearTK-3, 4 TBAQ SVM, Logit
JU-CSE TBAQ CRF
ManTIME-1 TBAQ + TE3Silver CRF
ManTIME-3 TBAQ CRF
ManTIME-5 TE3Silver CRF
Temp : ESAfeature TBAQ MaxEnt
Temp : WordNetfeature TBAQ MaxEnt
TIPSem (TE2) TBAQ CRF

Rule-based FSS-TimEx (EN) None None
FSS-TimEx (ES) None None
HeidelTime-1.2, bf (EN) None None
HeidelTime-t (EN) TBAQ None
HeidelTime (ES) Gold None
NavyTime-1, 2 None None
SUTime None None

Hybrid KUL TBAQ + TE3Silver Logit + post-processing
KUL-TE3RunABC TBAQ +TE3Silver Logit + post-processing
ManTIME-2 TBAQ + TE3Silver CRF + post-processing
ManTIME-4 TBAQ CRF + post-processing
ManTIME-6 TE3Silver CRF + post-processing

Table 4: Automated approaches for TE3 Timex Extraction

Strategy System Training data Classifier used Linguistic
Knowledge

Data-driven ATT-1, 2, 3 TBAQ + TE3Silver MaxEnt ms, ss
ClearTK-1, 2 TimeBank SVM, Logit ms
ClearTK-3, 4 TBAQ SVM, Logit ms
JU-CSE TBAQ CRF
KUL TBAQ +TE3Silver Logit ms, ls
KUL-TE3RunABC TBAQ +TE3Silver Logit ms, ls
NavyTime-1 TBAQ MaxEnt ms, ls
NavyTime-2 TimeBank MaxEnt ms, ls
Temp : ESAfeature TBAQ MaxEnt ms, ls, ss
Temp : WordNetfeature TBAQ MaxEnt ms, ls
TIPSem (TE2) TBAQ CRF/SVM ms, ls, ss

Rule-based FSS-TimEx (EN) None None ls, ms
FSS-TimEx (ES) None None ls, ms

Table 5: Automated approaches for Event Extraction

5



F1 P R class F1
ATT-1 81.05 81.44 80.67 71.88
ATT-2 80.91 81.02 80.81 71.10
KUL 79.32 80.69 77.99 70.17
ATT-3 78.63 81.95 75.57 69.55
KUL-TE3RunABC 77.11 77.58 76.64 68.74
ClearTK-3,4 78.81 81.40 76.38 67.87
NavyTime-1 80.30 80.73 79.87 67.48
ClearTK-1,2 77.34 81.86 73.29 65.44
NavyTime-2 79.37 80.52 78.26 64.81
Temp:ESAfeature 68.97 78.33 61.61 54.55
JU-CSE 78.62 80.85 76.51 52.69
Temp:WordNetfeature 63.90 78.90 53.69 50.00
FSS-TimEx 65.06 63.13 67.11 42.94
TIPSem (TE2) 82.89 83.51 82.28 75.59

Table 6: Task B - Event Extraction Performance.

F1 P R
ClearTK-2 30.98 34.08 28.40
ClearTK-1 29.77 34.49 26.19
ClearTK-3 28.62 30.94 26.63
ClearTK-4 28.46 29.73 27.29
NavyTime-1 27.28 31.25 24.20
JU-CSE 24.61 19.17 34.36
NavyTime-2 21.99 26.52 18.78
KUL-TE3RunABC 19.01 17.94 20.22
TIPSem (TE2) 42.39 38.79 46.74

Table 7: Task ABC - Temporal Awareness Evaluation (Task C
evaluation from raw text).

F1 captures the performance of extracting the event and
identifying the attribute Class together (Class F1 = Event
F1 * Class Accuracy).

All the participants except one used machine learning
approaches. Details about the participants’ approaches
and the linguistic knowledge9 used to solve this problem,
and training data, are in Table 5.

Observations: We collected the following observa-
tions from the results and from participants’ experiments.

Strategy: All the high performing systems for event
extraction (Task B) are machine learning-based.

Data: Systems using silver data, along with the hu-
man annotated gold standard data, performed very well
(top three participants in the task – ATT, KUL, KUL-
TE3RunABC). Additionally, TimeBank and AQUAINT
together performed better than just TimeBank alone
(NavyTime-1, ClearTK-3,4).

Linguistic Features: Semantic features (ls and ss) have
played an important role, since the best systems (TIPSem,
ATT1 and KUL) include them. However, these three are
not the only systems using semantic features.

9Abbreviations used in the table: TBAQ – TimeBank + AQUAINT
corpus ms – morphosyntactic information, e.g. POS, lexical informa-
tion, morphological information and syntactic parsing related features;
ls –lexical semantic information, e.g. WordNet synsets; ss – sentence-
level semantic information, e.g. Semantic Role labels.

F1 P R
ClearTK-2 36.26 37.32 35.25
ClearTK-4 35.86 35.17 36.57
ClearTK-1 35.19 37.64 33.04
UTTime-5 34.90 35.94 33.92
ClearTK-3 34.13 33.27 35.03
NavyTime-1 31.06 35.48 27.62
UTTime-4 28.81 37.41 23.43
JU-CSE 26.41 21.04 35.47
NavyTime-2 25.84 31.10 22.10
KUL-TE3RunABC 24.83 23.35 26.52
UTTime-1 24.65 15.18 65.64
UTTime-3 24.28 15.10 61.99
UTTime-2 24.05 14.80 64.20
TIPSem (TE2) 44.25 39.71 49.94

Table 8: Task C - TLINK Identification and Classification.

F1 P R
UTTime-1, 4 56.45 55.58 57.35
UTTime-3, 5 54.70 53.85 55.58
UTTime-2 54.26 53.20 55.36
NavyTime-1 46.83 46.59 47.07
NavyTime-2 43.92 43.65 44.20
JU-CSE 34.77 35.07 34.48

Table 9: Task C - relation only: Relation Classification.

5.1.3 Task C: Relation Evaluation
For complete temporal annotation from raw text (Task

ABC - Task C from raw text) and for temporal relation
only tasks (Task C, Task C relation only), we had five
participants in total.

For relation evaluation, we primarily evaluate on Task
ABC (Task C from raw text), which requires joint entity
extraction, link identification and relation classification.
The results for this task can be found in Table 7.

While TIPSem obtained the best results in task ABC,
especially in recall, it was used by some annotators to
pre-label data. In the interest of rigour and fairness, we
separate out this system.

For task C, for provided participants with entities and
participants identified: between which entity pairs a rela-
tion exists (link identification); and the class of that rela-
tion. Results are given in Table 8. We also evaluate the
participants on the relation by providing the entities and
the links (performance in Table 9) – TIPSem could not be
evaluated in this setting since the system is not prepared
to do categorization only unless the relations are divided
as in TempEval-2. For these Task C related tasks, we had
only one new participant, who didn’t participate in Task
A and B: UTTime.

Identifying which pair of entities to consider for tem-
poral relations is a new task in this TempEval challenge.
The participants approached the problems in data-driven,
rule-based and also in hybrid ways (Table 1010). On

10New abbreviation in the table, e-attr – entity attributes, e.g. event
class, tense, aspect, polarity, modality; timex type, value.
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Strategy System Training data Classifier used Linguistic
Knowledge

Data-driven ClearTK-1 TimeBank SVM, Logit e-attr, ms
ClearTK-2 TimeBank + Bethard et al. (2007) SVM, Logit e-attr, ms
ClearTK-3 TBAQ SVM, Logit e-attr, ms
ClearTK-4 TBAQ + Muller’s inferences SVM, Logit e-attr, ms
KULRunABC TBAQ SVM, Logit ms

Rule-based JU-CSE None None
UTTime-1, 2 ,3 None None
TIPSem (TE2) None None e-attr, ms, ls, ss

Hybrid NavyTime-1 TBAQ MaxEnt ms
NavyTime-2 TimeBank MaxEnt ms
UTTime-4 TBAQ Logit ms, ls, ss
UTTime-5 TBAQ + inverse relations Logit ms, ls, ss

Table 10: Automated approaches for TE3 TLINK Identification

Strategy System Training data Classifier used Linguistic
Knowledge

Data-driven ClearTK-1 TimeBank SVM, Logit ms, ls
ClearTK-2 TimeBank + Bethard et al. (2007) SVM, Logit ms, ls
ClearTK-3 TBAQ SVM, Logit ms, ls
ClearTK-4 TBAQ + Muller’s inferences SVM, Logit ms, ls
JU-CSE TBAQ CRF
KULRunABC TBAQ SVM, Logit ms
NavyTime-1 TBAQ MaxEnt ms, ls
NavyTime-2 TimeBank MaxEnt ms, ls
UTTime-1,4, 2 TBAQ Logit ms, ls, ss
UTTime-3,5 TBAQ + inverse relations Logit ms, ls, ss
TIPSem (TE-2) TBAQ CRF/SVM ms, ls, ss

Table 11: Automated approaches for Relation Classification

the other hand, all the participants used data-driven ap-
proaches for temporal relations (Table 11).

Observations: We collected the following observa-
tions from the results and from participants’ experiments.

Strategy: For relation classification, all participants
used partially or fully machine learning-based systems.

Data: None of the participants implemented their sys-
tems training on the silver data. Most of the systems use
the combined TimeBank and AQUAINT (TBAQ) corpus.

Data: Adding additional high-quality relations, either
Philippe Muller’s closure-based inferences or the verb
clause relations from Bethard et al. (2007), typically in-
creased recall and the overall performance (ClearTK runs
two and four).

Features: Participants mostly used the morphosyntac-
tic and lexical semantic information. The best perform-
ing systems from TempEval-2 (TIPSem and TRIOS) ad-
ditionally used sentence level semantic information. One
participant in TempEval-3 (UTTime) also did deep pars-
ing for the sentence level semantic features.

Features: Using more Linguistic knowledge is impor-
tant for the task, but it is more important to execute it
properly. Many systems performed better using less lin-
guistic knowledge. Hence a system (e.g. ClearTK) with
basic morphosyntactic features is hard to beat with more
semantic features, if not used properly.

entity extraction
strict relaxed
F1 F1 P R value

HeidelTime 85.3 90.1 96.0 84.9 87.5
TIPSemB-F 82.6 87.4 93.7 81.9 82.0
FSS-TimEx 49.5 65.2 86.6 52.3 62.7

Table 12: Task A: Temporal Expression (Spanish).

class tense aspect
F1 P R F1 F1 F1

FSS-TimEx 57.6 89.8 42.4 24.9 - -
TIPSemB-F 88.8 91.7 86.0 57.6 41.0 36.3

Table 13: Task B: Event Extraction (Spanish).

Classifier: Across the various tasks, ClearTK tried
Mallet CRF, Mallet MaxEnt, OpenNLP MaxEnt, and LI-
BLINEAR (SVMs and logistic regression). They picked
the final classifiers by running a grid search over models
and parameters on the training data, and for all tasks, a
LIBLINEAR model was at least as good as all the other
models. As an added bonus, it was way faster to train
than most of the other models.

6 Evaluation Results (Spanish)

There were two participants for Spanish. Both partici-
pated in task A and only one of them in task B. In this
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F1 P R
TIPSemB-F 41.6 37.8 46.2

Table 14: Task ABC: Temporal Awareness (Spanish).

entity extraction attributes
strict relaxed val type
F1 F1 P R F1 F1

HeidelTime 86.4 89.8 94.0 85.9 87.5 89.8
FSS-TimEx 42.1 68.4 86.7 56.5 48.7 65.8
TIPSem 86.9 93.7 98.8 89.1 75.4 88.0
TIPSemB-F 84.3 89.9 93.0 87.0 82.0 86.5

Table 15: Task A: TempEval-2 test set (Spanish).

case, TIPSemB-Freeling is provided as a state-of-the-art
reference covering all the tasks. TIPSemB-Freeling is the
Spanish version of TIPSem with the main difference that
it does not include semantic roles. Furthermore, it uses
Freeling (Padró and Stanilovsky, 2012) to obtain the lin-
guistic features automatically.

Table 12 shows the results obtained for task A. As it
can be observed HeidelTime obtains the best results. It
improves the previous state-of-the-art results (TIPSemB-
F), especially in normalization (value F1).

Table 13 shows the results from event extraction. In
this case, the previous state-of-the-art is not improved.

Table 14 only shows the results obtained in temporal
awareness by the state-of-the-art system since there were
not participants on this task. We observe that TIPSemB-F
approach offers competitive results, which is comparable
to results obtained in TE3 English test set.

6.1 Comparison with TempEval-2

TempEval-2 Spanish test set is included as a subset of this
TempEval-3 test set. We can therefore compare the per-
formance across editions. Furthermore, we can include
the full-featured TIPSem (Llorens et al., 2010), which
unlike TIPSemB-F used the AnCora (Taulé et al., 2008)
corpus annotations as features including semantic roles.

For timexes, as can be seen in Table 15, the origi-
nal TIPSem obtains better results for timex extraction,
which favours the hypothesis that machine learning sys-
tems are very well suited for this task (if the training data
is sufficiently representative). However, for normaliza-
tion (value F1), HeidelTime – a rule-engineered system –
obtains better results. This indicates that rule-based ap-
proaches have the upper hand in this task. TIPSem uses

class tense aspect
F1 P R F1 F1 F1

FSS-TimEx 59.0 90.3 43.9 24.6 - -
TIPSemB-F 90.2 92.5 88.0 58.6 39.7 38.1
TIPSem 88.2 90.6 85.8 58.7 84.9 78.7

Table 16: Task B: TempEval-2 test set (Spanish).

a partly data-driven normalization approach which, given
the small amount of training data available, seemed less
suited to the task.

Table 16 shows event extraction performance in TE2
test set. TIPSemB-F and TIPSem obtained a similar per-
formance. TIPSemB-F performed better in extraction and
TIPSem better in attribute classification.

7 Conclusion
In this paper, we described the TempEval-3 task within
the SemEval 2013 exercise. This task involves identify-
ing temporal expressions (timexes), events and their tem-
poral relations in text. In particular participating systems
were required to automatically annotate raw text using
TimeML annotation scheme

This is the first time end-to-end systems are evalu-
ated with a new single score (temporal awareness). In
TempEval-3 participants had to obtain temporal relations
from their own extracted timexes and events which is a
very challenging task and was the ultimate evaluation aim
of TempEval. It was proposed at TempEval-1 but has not
been carried out until this edition.

The newly-introduced silver data proved not so useful
for timex extraction or relation classification, but did help
with event extraction. The new single-measure helped to
rank systems easily.

Future work could investigate temporal annotation in
specific applications. Current annotations metrics evalu-
ate relations for entities in the same consecutive sentence.
For document-level understanding we need to understand
discourse and pragmatic information. Temporal question
answering-based evaluation (UzZaman et al., 2012a) can
help us to evaluate participants on document level tempo-
ral information understanding without creating any addi-
tional training data. Also, summarisation, machine trans-
lation, and information retrieval need temporal annota-
tion. Application-oriented challenges could further re-
search in these areas.

From a TimeML point of view, we still haven’t tack-
led subordinate relations (TimeML SLINKs), aspectual
relations (TimeML ALINKs), or temporal signal anno-
tation (Derczynski and Gaizauskas, 2011). The critical
questions of which links to annotate, and whether the cur-
rent set of temporal relation types are appropriate for lin-
guistic annotation, are still unanswered.
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Abstract

The ClearTK-TimeML submission to Temp-
Eval 2013 competed in all English tasks: identi-
fying events, identifying times, and identifying
temporal relations. The system is a pipeline of
machine-learning models, each with a small set
of features from a simple morpho-syntactic an-
notation pipeline, and where temporal relations
are only predicted for a small set of syntac-
tic constructions and relation types. ClearTK-
TimeML ranked 1st for temporal relation F1,
time extent strict F1 and event tense accuracy.

1 Introduction

The TempEval shared tasks (Verhagen et al., 2007;
Verhagen et al., 2010; UzZaman et al., 2013) have
been one of the key venues for researchers to com-
pare methods for temporal information extraction. In
TempEval 2013, systems are asked to identify events,
times and temporal relations in unstructured text.

This paper describes the ClearTK-TimeML system
submitted to TempEval 2013. This system is based
off of the ClearTK framework for machine learning
(Ogren et al., 2008)1, and decomposes TempEval
2013 into a series of sub-tasks, each of which is for-
mulated as a machine-learning classification problem.
The goals of the ClearTK-TimeML approach were:

• To use a small set of simple features that can be
derived from either tokens, part-of-speech tags or
syntactic constituency parses.
• To restrict temporal relation classification to a sub-

set of constructions and relation types for which
the models are most confident.
1http://cleartk.googlecode.com/

Thus, each classifier in the ClearTK-TimeML
pipeline uses only the features shared by success-
ful models in previous work (Bethard and Martin,
2006; Bethard and Martin, 2007; Llorens et al., 2010;
UzZaman and Allen, 2010) that can be derived from
a simple morpho-syntactic annotation pipeline2. And
each of the temporal relation classifiers is restricted
to a particular syntactic construction and to a partic-
ular set of temporal relation labels. The following
sections describe the models, classifiers and datasets
behind the ClearTK-TimeML approach.

2 Time models

Time extent identification was modeled as a BIO
token-chunking task, where each token in the text
is classified as being at the B(eginning) of, I(nside)
of, or O(utside) of a time expression. The following
features were used to characterize tokens:

• The token’s text
• The token’s stem
• The token’s part-of-speech
• The unicode character categories for each character

of the token, with repeats merged (e.g. Dec28
would be ‘LuLlNd‘)
• The temporal type of each alphanumeric sub-token,

derived from a 58-word gazetteer of time words
• All of the above features for the preceding 3 and

following 3 tokens

Time type identification was modeled as a multi-
class classification task, where each time is classified

2 OpenNLP sentence segmenter, ClearTK PennTreebank-
Tokenizer, Apache Lucene Snowball stemmer, OpenNLP part-
of-speech tagger, and OpenNLP constituency parser
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as DATE, TIME, DURATION or SET. The following
features were used to characterize times:

• The text of all tokens in the time expression
• The text of the last token in the time expression
• The unicode character categories for each character

of the token, with repeats merged
• The temporal type of each alphanumeric sub-token,

derived from a 58-word gazetteer of time words

Time value identification was not modeled by the
system. Instead, the TimeN time normalization sys-
tem (Llorens et al., 2012) was used.

3 Event models

Event extent identification, like time extent identi-
fication, was modeled as BIO token chunking. The
following features were used to characterize tokens:

• The token’s text
• The token’s stem
• The token’s part-of-speech
• The syntactic category of the token’s parent in the

constituency tree
• The text of the first sibling of the token in the

constituency tree
• The text of the preceding 3 and following 3 tokens

Event aspect identification was modeled as a multi-
class classification task, where each event is classi-
fied as PROGRESSIVE, PERFECTIVE, PERFECTIVE-
PROGRESSIVE or NONE. The following features
were used to characterize events:

• The part-of-speech tags of all tokens in the event
• The text of any verbs in the preceding 3 tokens

Event class identification was modeled as a multi-
class classification task, where each event is classi-
fied as OCCURRENCE, PERCEPTION, REPORTING,
ASPECTUAL, STATE, I-STATE or I-ACTION. The
following features were used to characterize events:

• The stems of all tokens in the event
• The part-of-speech tags of all tokens in the event

Event modality identification was modeled as a
multi-class classification task, where each event is
classified as one of WOULD, COULD, CAN, etc. The
following features were used to characterize events:

• The text of any prepositions, adverbs or modal
verbs in the preceding 3 tokens

Event polarity identification was modeled as a bi-
nary classification task, where each event is classified
as POS or NEG. The following features were used to
characterize events:

• The text of any adverbs in the preceding 3 tokens

Event tense identification was modeled as a multi-
class classification task, where each event is clas-
sified as FUTURE, INFINITIVE, PAST, PASTPART,
PRESENT, PRESPART or NONE. The following fea-
tures were used to characterize events:

• The last two characters of the event
• The part-of-speech tags of all tokens in the event
• The text of any prepositions, verbs or modal verbs

in the preceding 3 tokens

4 Temporal relation models

Three different models, described below, were trained
for temporal relation identification. All models fol-
lowed a multi-class classification approach, pairing
an event and a time or an event and an event, and
trying to predict a temporal relation type (BEFORE,
AFTER, INCLUDES, etc.) or NORELATION if there
was no temporal relation between the pair.

While the training and evaluation data allowed
for 14 possible relation types, each of the temporal
relation models was restricted to a subset of relations,
with all other relations mapped to the NORELATION

type. The subset of relations for each model was
selected by inspecting the confusion matrix of the
model’s errors on the training data, and removing
relations that were frequently confused and whose
removal improved performance on the training data.

Event to document creation time relations were
classified by considering (event, time) pairs where
each event in the text was paired with the document
creation time. The classifier was restricted to the rela-
tions BEFORE, AFTER and INCLUDES. The follow-
ing features were used to characterize such relations:

• The event’s aspect (as classified above)
• The event’s class (as classified above)
• The event’s modality (as classified above)
• The event’s polarity (as classified above)
• The event’s tense (as classified above)
• The text of the event, only if the event was identi-

fied as having class ASPECTUAL
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Event to same sentence time relations were clas-
sified by considering (event, time) pairs where the
syntactic path from event to time matched a regu-
lar expression of syntactic categories and up/down
movements through the tree: ˆ((NP|PP|ADVP)↑)*
((VP|SBAR|S)↑)* (S|SBAR|VP|NP) (↓(VP|SBAR|S))*
(↓(NP|PP|ADVP))*$. The classifier relations were re-
stricted to INCLUDES and IS-INCLUDED. The follow-
ing features were used to characterize such relations:

• The event’s class (as classified above)
• The event’s tense (as classified above)
• The text of any prepositions or verbs in the 5 tokens

following the event
• The time’s type (as classified above)
• The text of all tokens in the time expression
• The text of any prepositions or verbs in the 5 tokens

preceding the time expression

Event to same sentence event relations were clas-
sified by considering (event, event) pairs where
the syntactic path from one event to the other
matched ˆ((VP↑|ADJP↑|NP↑)? (VP|ADJP|S|SBAR)
(↓(S|SBAR|PP))* ((↓VP|↓ADJP)*|(↓NP)*)$. The classi-
fier relations were restricted to BEFORE and AFTER.
The following features were used to characterize such
relations:

• The aspect (as classified above) for each event
• The class (as classified above) for each event
• The tense (as classified above) for each event
• The text of the first child of the grandparent of the

event in the constituency tree, for each event
• The path through the syntactic constituency tree

from one event to the other
• The tokens appearing between the two events

5 Classifiers

The above models described the translation from
TempEval tasks to classification problems and clas-
sifier features. For BIO token-chunking problems,
Mallet3 conditional random fields and LIBLINEAR4

support vector machines and logistic regression were
applied. For the other problems, LIBLINEAR, Mal-
let MaxEnt and OpenNLP MaxEnt5 were applied.
All classifiers have hyper-parameters that must be

3http://mallet.cs.umass.edu/
4http://www.csie.ntu.edu.tw/˜cjlin/liblinear/
5http://opennlp.apache.org/

tuned during training – LIBLINEAR has the classi-
fier type and the cost parameter, Mallet CRF has the
iteration count and the Gaussian prior variance, etc.6

The best classifier for each training data set was
selected via a grid search over classifiers and param-
eter settings. The grid of parameters was manually
selected to provide several reasonable values for each
classifier parameter. Each (classifier, parameters)
point on the grid was evaluated with a 2-fold cross
validation on the training data, and the best perform-
ing (classifier, parameters) was selected as the final
model to run on the TempEval 2013 test set.

6 Data sets

The classifiers were trained using the following
sources of training data:

TB The TimeBank event, time and relation annota-
tions, as provided by the TempEval organizers.

AQ The AQUAINT event, time and relation annota-
tions, as provided by the TempEval organizers.

SLV The “Silver” event, time and relation annota-
tions, from the TempEval organizers’ system.

BMK The verb-clause temporal relation annotations
of (Bethard et al., 2007). These relations are
added on top of the original relations.

PM The temporal relations inferred via closure on
the TimeBank and AQUAINT data by Philippe
Muller7. These relations replace the original
ones, except in files where no relations were
inferred (because of temporal inconsistencies).

7 Results

Table 1 shows the performance of the ClearTK-
TimeML models across the different tasks when
trained on different sets of training data. The “Data”
column of each row indicates both the training data
sources (as in Section 6), and whether the events and
times were predicted by the models (“system”) or
taken from the annotators (“human”). Performance
is reported in terms of strict precision (P), Recall (R)
and F1 for event extents, time extents and temporal
relations, and in terms of Accuracy (A) on the cor-
rectly identified extents for event and time attributes.

6For BIO token-chunking tasks, LIBLINEAR also had a pa-
rameter for how many previous classifications to use as features.

7https://groups.google.com/d/topic/tempeval/

LJNQKwYHgL8
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Data Event Time Relation
annotation events extent class tense aspect extent value type type

sources & times F1 P R A A A F1 P R A A F1 P R
TB+BMK system 77.3 81.9 73.3 84.6 80.4 91.0 82.7 85.9 79.7 71.7 93.3 31.0 34.1 28.4
TB system 77.3 81.9 73.3 84.6 80.4 91.0 82.7 85.9 79.7 71.7 93.3 29.8 34.5 26.2
TB+AQ system 78.8 81.4 76.4 86.1 78.2 90.9 77.0 83.2 71.7 69.9 92.9 28.6 30.9 26.6
TB+AQ+PM system 78.8 81.4 76.4 86.1 78.2 90.9 77.0 83.2 71.7 69.9 92.9 28.5 29.7 27.3
*TB+AQ+SLV system 80.5 82.1 78.9 88.4 71.6 91.2 80.0 91.6 71.0 73.6 91.5 27.8 26.5 29.3

Highest in TempEval 81.1 82.0 80.8 89.2 80.4 91.8 82.7 91.4 80.4 86.0 93.7 31.0 34.5 34.4
TB+BMK human - - - - - - - - - - - 36.3 37.3 35.2
TB human - - - - - - - - - - - 35.2 37.6 33.0
TB+AQ human - - - - - - - - - - - 34.1 33.3 35.0
TB+AQ+PM human - - - - - - - - - - - 35.9 35.2 36.6
*TB+AQ+SLV human - - - - - - - - - - - 37.7 34.9 41.0

Highest in TempEval - - - - - - - - - - - 36.3 37.6 65.6

Table 1: Performance across different training data. Systems marked with * were tested after the official evaluation.
Scores in bold are at least as high as the highest in TempEval.

Training on the AQUAINT (AQ) data in addition to
the TimeBank (TB) hurt times and relations. Adding
the AQUAINT data caused a -2.7 drop in extent preci-
sion, a -8.0 drop in extent recall, a -1.8 drop in value
accuracy and a -0.4 drop in type accuracy, and a -3.6
to -4.3 drop in relation recall.

Training on the “Silver” (SLV) data in addition
to TB+AQ data gave mixed results. There were big
gains for time extent precision (+8.4), time value ac-
curacy (+3.7), event extent recall (+2.5) and event
class accuracy (+2.3), but a big drop for event tense
accuracy (-6.6). Relation recall improved (+2.7 with
system events and times, +6.0 with manual) but pre-
cision varied (-4.4 with system, +1.6 with manual).

Adding verb-clause relations (BMK) and closure-
inferred relations (PM) increased recall but low-
ered precision. With system-annotated events and
times, the change was +2.2/-0.4 (recall/precision)
for verb-clause relations, and +0.7/-1.2 for closure-
inferred relations. With manually-annotated events
and times, the change was +2.2/-0.3 for verb-clause
relations, and (the one exception where recall im-
proved) +1.5/+1.9 for closure-inferred relations.

8 Discussion

Overall, the ClearTK-TimeML ranked 1st in relation
F1, time extent strict F1 and event tense accuracy.

Analysis across the different ClearTK-TimeML
runs showed that including annotations from the

AQUAINT corpus hurt model performance across
a variety of tasks. A manual inspection of the
AQUAINT corpus revealed many annotation errors,
suggesting that the drop may be the result of attempt-
ing to learn from inconsistent training data. The
AQUAINT corpus may thus have to be partially re-
annotated to be useful as a training corpus.

Analysis also showed that adding more relation
annotations increased recall, typically at the cost of
precision, even though the added annotations were
highly accurate: (Bethard et al., 2007) reported agree-
ment of 90%, and temporal closure relations were
100% deterministic from the already-annotated re-
lations. One would expect that adding such high-
quality relations would only improve performance.
But not all temporal relations were annotated by the
TempEval 2013 annotators, so the system could be
marked wrong for a finding a true temporal relation
that was not noticed by the annotators. Further analy-
sis is necessary to investigate this hypothesis.
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Abstract

In this paper, we describe our participation in
the TempEval-3 challenge. With our multi-
lingual temporal tagger HeidelTime, we ad-
dressed task A, the extraction and normaliza-
tion of temporal expressions for English and
Spanish. Exploiting HeidelTime’s strict sep-
aration between source code and language-
dependent parts, we tuned HeidelTime’s ex-
isting English resources and developed new
Spanish resources. For both languages, we
achieved the best results among all partici-
pants for task A, the combination of extraction
and normalization. Both the improved English
and the new Spanish resources are publicly
available with HeidelTime.

1 Introduction

The task of temporal annotation, which is addressed
in the TempEval-3 challenge, consists of three sub-
tasks: (A) the extraction and normalization of tem-
poral expressions, (B) event extraction, and (C) the
annotation of temporal relations (UzZaman et al.,
2012). This makes sub-task A, i.e., temporal tag-
ging, a prerequisite for the full task of temporal an-
notating documents. In addition, temporal tagging
is important for many further natural language pro-
cessing and understanding tasks, and can also be ex-
ploited for search and exploration scenarios in infor-
mation retrieval (Alonso et al., 2011).

In the context of the TempEval-2 challenge (Ver-
hagen et al., 2010), we developed our temporal tag-
ger HeidelTime (Strötgen and Gertz, 2010), which
achieved the best results for the extraction and nor-

malization of temporal expressions for English doc-
uments. For our work on multilingual information
retrieval (e.g., Strötgen et al. (2011)), we extended
HeidelTime with a focus on supporting the simple
integration of further languages (Strötgen and Gertz,
2012a). For TempEval-3, we now tuned Heidel-
Time’s English resources and developed new Span-
ish resources to address both languages that are part
of TempEval-3. As the evaluation results demon-
strate, HeidelTime outperforms the systems of all
other participants for the full task of temporal tag-
ging by achieving high quality results for the extrac-
tion and normalization for English and Spanish.

The remainder of the paper is structured as fol-
lows: We explain HeidelTime’s system architecture
in Section 2. Section 3 covers the tuning of Heidel-
Time’s English and the development of the Spanish
resources. Finally, we discuss the evaluation results
in Section 4, and conclude the paper in Section 5.

2 HeidelTime

HeidelTime is a multilingual, cross-domain tempo-
ral tagger. So far, it can process English, Ger-
man, and Dutch text. In previous work, we an-
alyzed domain-dependent challenges and demon-
strated that domain-sensitive strategies for normal-
izing temporal expressions result in significant nor-
malization improvements when switching between
news- and narrative-style documents (Strötgen and
Gertz, 2012b). Although TempEval-3 only ad-
dresses news documents, the tuned English and new
Spanish resources can be used to process news and
also narrative-style documents such as Wikipedia ar-
ticles with high extraction and normalization quality.
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Architecture of HeidelTime. HeidelTime is a
rule-based system with a strict separation between
source code and language-dependent resources.
While the strategies for processing different do-
mains are part of the source code, resources con-
sist of files for (i) patterns, (ii) normalizations, and
(iii) rules. They are read by HeidelTime’s resource
interpreter and thus have to be developed based on
HeidelTime’s well-defined rule syntax.

The pattern files contain words and phrases,
which are typically used to express temporal ex-
pressions, e.g., names of months. The normaliza-
tion files contain normalization information about
the patterns, e.g., the value of a specific month’s
name. Finally, the rule files contain rules for date,
time, duration, and set expressions.

All rules have an extraction part and a normal-
ization part. The extraction part, in which the pat-
tern resources can be used for generalization, de-
fines the expressions that have to be matched in a
document. The normalization part normalizes the
context-independent content of the expression using
the normalization resources. While explicit tempo-
ral expressions (e.g., May 1st, 2013) can directly
be fully normalized, underspecified (November) and
relative (today, two weeks ago) expressions can only
be normalized in an underspecified manner. The full
normalization depends on the domain of the docu-
ment that is to be processed and the context of the
expression. For this, HeidelTime applies domain-
sensitive strategies to normalize such expressions
during its disambiguation phase, which is called af-
ter the extraction and the normalization phases.

The TempEval-3 data is from the news domain.
Here, HeidelTime usually uses the document cre-
ation time as reference time. The temporal relation
to it is identified based on the tense in the sentence.1

Preprocessing. HeidelTime requires sentence, to-
ken, and part-of-speech information. For this, the
TreeTagger (Schmid, 1994) is used. Since there is
a Spanish model for the TreeTagger, adding Spanish
preprocessing capabilities to HeidelTime was fairly
easy. A wrapper for the TreeTagger is also part of
the UIMA HeidelTime kit described next.

1For further details on HeidelTime’s rule syntax, its domain-
dependent normalization strategies, and its architecture in gen-
eral, we refer to Strötgen and Gertz (2012a).

UIMA HeidelTime kit. For processing Temp-
Eval-3 data, we used the UIMA version of Heidel-
Time, developed a collection reader and a CAS con-
sumer to read and write TempEval-3 input and out-
put data, and added both components to our UIMA
HeidelTime kit. This makes HeidelTime’s evalua-
tion results reproducible on the training and test sets.

3 HeidelTime for TempEval-3

In TempEval-3, we participated with one Spanish
and three English runs: For Spanish, we used our
newly developed resources. For English, we used
(i) HeidelTime 1.2, which was released in May
2012, (ii) a version containing several bug fixes and
improvements, which were implemented indepen-
dently from TempEval-3, and (iii) HeidelTime with
its new English resources tuned for TempEval-3.

In general, our goal when developing HeidelTime
resources is to achieve high quality normalization re-
sults. Thus, we only want to extract temporal ex-
pressions which can be normalized correctly with
high probability – an issue, which will be further
looked at in the discussion in the evaluation section.
Before that, we next describe language-independent
adaptations to HeidelTime. Then, we present the
tuning of the English resources (Section 3.2) and the
development of the Spanish resources (Section 3.3).

3.1 General HeidelTime Adaptations

We performed the following language-independent
changes to HeidelTime:

(i) Weekday normalization: In news-style doc-
uments, extracted weekdays that are equal to the
weekday of the document creation time (dct) are
now normalized to the date of the dct independent
of the tense in the sentence.

(ii) Century/decade normalization: So far, decade
and century expressions were not correctly normal-
ized by HeidelTime according to TimeML, e.g.,
“199X” instead of “199” for “the 1990s”.

The first change is based on the intuitive assump-
tion that information in news-style documents is
temporally focused around the dct. In addition,
this assumption is supported by the English and the
Spanish training data. The second change is related
to the annotation standard. Both changes can thus
be generalized in a language-independent manner.
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3.2 Tuning HeidelTime’s English Resources

Three training corpora were provided by the orga-
nizers: the Aquaint and TimeBank gold standard
corpora, and a large corpus referred to as silver stan-
dard, which was created by merging results of three
tools (Llorens et al., 2012). After a brief analysis,
we decided not to use the silver standard due to the
rather low annotation quality. Motivated by observa-
tions in the gold standard corpora, we performed the
following English-specific modifications in addition
to the general adaptations described above:

(i) REF-value expressions: expressions normal-
ized to past, present, or future are not consistently
annotated in the training data. Since such expres-
sions are rather less valuable for further tasks and
to avoid false positives, we removed some of those
patterns from the resources.

(ii) Ambiguous expressions: We added negative
rules for expressions such as may, march, and fall to
filter them out if they do not refer to a date.

(iii) Article/modifier: We allowed some more
combinations of articles and modifiers.

Note that HeidelTime was already a state-of-the-
art tool for English temporal tagging so that the
changes are rather minor.

3.3 Developing Spanish Resources

In this section, we explain the resource develop-
ment process for Spanish. Then, we detail language-
specific challenges we faced during this process.

Resource Development Process. So far, there
were no HeidelTime resources for Spanish, and we
thus started the development from scratch.

(i) Preprocessing: As mentioned in Section 2, we
use the TreeTagger with its Spanish module for sen-
tence, token, and part-of-speech annotation.

(ii) Translation of pattern files: Starting with Hei-
delTime’s English pattern resources, we developed
the Spanish pattern resources. The goal was that all
patterns that are frequently used to express tempo-
ral expressions are included in the resources. Note
that it is not important that the patterns are context
independent. The context in which a pattern should
occur can be defined within the rules.

(iii) Translation of normalization files: Similar to
the patterns, we translated the English normalization
files and adapted them to the new Spanish patterns.

(iv) Rule Development: Based on the English
rules for dates, times, durations, and sets, we de-
veloped similar Spanish rules. Using the Spanish
training corpus to check for partially matching pat-
terns, false positives, false negatives, and incorrect
normalizations, we then iteratively adapted the rules,
but also the pattern and normalization resources.

Challenges. Spanish as a Romance language is
rich in inflection. Nouns, adjectives, and determin-
ers are inflected with respect to number and gender.
During the development of the pattern and normal-
ization resources, this had to be taken into account.

As for nouns, there are many inflection forms of
verbs in Spanish, e.g., to represent tense. While
verbs are usually not part of temporal expressions,
the inflection of verbs has to be considered for the
normalization of ambiguous expressions such as el
lunes (Monday) or junio (June). As mentioned
above, in news-style documents, HeidelTime uses
the tense of the sentence to determine the relation
to the reference time, i.e., to decide whether the ex-
pression refers to a previous or upcoming date.

The tense is determined using part-of-speech in-
formation, and, if necessary, pattern information of
words with specific part-of-speech tags. For each
language, this information is defined in the pattern
resources. Unfortunately, the Spanish tag-set of the
TreeTagger module does not contain tags covering
tense information, e.g., all finite lexical verbs are
tagged as VLfin. Thus, we created regular expres-
sion patterns to match typical inflection patterns rep-
resenting tense information and check words tagged
as verbs by the tagger for these patterns.

However, due to the ambiguity of the Spanish in-
flection, we can only add patterns to detect future
tense. If no tense is identified, the year is set to the
year of the reference time. As detailed in the discus-
sion of the evaluation results described in Section 4,
identifying the correct relation to the reference time
is a frequent source of normalization errors.

4 Evaluation Results

Measures. For the extraction task, precision (P),
recall (R), and f1-score (F1) are used for strict and
relaxed matching. The value F1 and type F1 mea-
sures combine relaxed matching with correct nor-
malization. Systems are ranked by value F1 (value).
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strict match relaxed match normalization
a) Aquaint P R F1 P R F1 value type
tuned 80.17 81.69 80.92 90.85 92.57 91.7 72.37 83.32
bug-fixed 77.56 81.17 79.32 88.28 92.40 90.30 70.21 82.03
1.2 73.32 81.17 77.05 83.46 92.40 87.70 67.87 79.67
b) TimeBank P R F1 P R F1 value type
tuned 85.39 84.15 84.76 92.16 90.83 91.49 79.01 88.74
bug-fixed 83.17 82.70 82.94 90.86 90.35 90.60 76.24 87.78
1.2 82.89 82.62 82.76 90.72 90.43 90.57 76.39 87.75
c) Spanish P R F1 P R F1 value type
new 90.53 81.26 85.65 96.23 86.38 91.04 84.10 89.40

Table 1: Results on training data ranked by value F1.

Results on Training Data. Table 1 shows the re-
sults on the Aquaint (a), TimeBank (b), and Spanish
training corpora (c). On both English corpora, Hei-
delTime’s TempEval-3 tuned version outperforms
the other two versions. The big differences between
the two English corpora are rather due to the better
annotation quality of TimeBank than due to different
challenges in the documents of the two corpora.

TempEval-3 Evaluation. The evaluation results
on the test data are presented in Table 2. For English,
HeidelTime’s TempEval-3 tuned version achieves
the best results, and all three HeidelTime versions
outperform the systems of the eight other partici-
pating teams with a total number of 21 submissions
(task A ranking measure value F1). For comparison,
the results of the next best system (NavyTime) is
listed in Table 2(a). For Spanish, we highly outper-
form the other two systems, as shown in Table 2(b).

Discussion. In order to be able to interpret Hei-
delTime’s results on the training and test data, we
performed an error analysis (TimeBank and Spanish
training corpus). The most important findings are:

(i) For a rule-based system, HeidelTime’s recall
is relatively low (many false negatives; FN). How-
ever, note that several FN are intentional. 55% and
29% of 117 and 149 FN in the English and Span-
ish training corpora are due to imprecise expressions
(some time; the latest period). These are difficult
to normalize correctly, e.g., some time can refer to
seconds or years. To guarantee high quality normal-
ization, we do not extract expressions that cannot be
normalized correctly with high probability.

(ii) There is a trade-off between precision and re-
call due to expressions referring to past, present, or
future (X REF). These are annotated either only in
some contexts or inconsistently throughout the train-

strict match relaxed match normalization
a) English P R F1 P R F1 value type
tuned 83.85 78.99 81.34 93.08 87.68 90.30 77.61 82.09
bug-fixed 80.77 76.09 78.36 90.00 84.78 87.31 72.39 79.10
1.2 80.15 76.09 78.07 89.31 84.78 86.99 72.12 78.81
next best* 78.72 80.43 79.57 89.36 91.30 90.32 70.97 80.29
b) Spanish P R F1 P R F1 value type
HeidelTime 90.91 80.40 85.33 96.02 84.92 90.13 85.33 87.47
TipSemB 88.51 77.39 82.57 93.68 81.91 87.40 71.85 82.04
jrc-1/2 65.83 39.70 49.53 86.67 52.26 65.20 50.78 62.70

Table 2: TempEval-3 task A evaluation results ranked by
value F1 (* next best: NavyTime).

ing data, and thus result in FN (21%/en; 34%/es) and
false positives (43% of 98 FP in English training and
43%/es of 35 FP in Spanish training corpora).

(iii) The main sources for incorrect value normal-
ization of underspecified expressions (Feb. 1; Mon-
day) are wrongly detected reference times or rela-
tions to them (e.g., due to wrong tense identifica-
tion), annotation errors in the corpora (e.g., last week
annotated as WXX instead of the week it is referring
to), granularity errors (e.g., a year ago can refer to a
day, month, quarter, or year), and ambiguities (e.g.,
the year can be a duration or a specific year).

(iv) Some expressions in the Spanish test set were
extracted and normalized correctly although no sim-
ilar expressions exist in the Spanish training data.
Here, the Spanish resources highly benefited from
the high quality English resources as starting point
of the development process, and from HeidelTime’s
language-independent normalization strategies.

(v) A reoccurring error in the English test set
is that HeidelTime matches and normalizes expres-
sions such as two days earlier while only two days
should be annotated according to TimeML. This re-
sults in a relaxed match with false type and value.

5 Conclusions & Ongoing Work

In this paper, we presented HeidelTime’s results in
the TempEval-3 temporal tagging task. For both lan-
guages, English and Spanish, we achieved the best
results of all participants (value F1). We showed that
adding a new language to HeidelTime can result in
high quality temporal tagging of the new language.

Currently, we are working on improving the Span-
ish tense detection to better normalize underspec-
ified temporal expressions. Furthermore, we will
make available HeidelTime resources for Arabic,
Italian, and Vietnamese (HeidelTime, 2013).
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Abstract

In this paper we present the results of exper-
iments comparing (a) rich syntactic and se-
mantic feature sets and (b) big context win-
dows, for the TempEval time expression and
event segmentation and classification tasks.
We show that it is possible for models using
only lexical features to approach the perfor-
mance of models using rich syntactic and se-
mantic feature sets.

1 Introduction

TempEval-3 Temporal Annotation Task (UzZaman
et al., 2012) has three subtasks:

A Time expression extraction and classification -
extract time expressions from input text, and de-
termine the type and normalised value for each
extracted time expression.

B Event extraction and classification - extract event
mentions from input text, and determine the class,
tense and aspect features for each extracted event.

C Temporal link identification - identify and cate-
gorise temporal links between events in the same
or consecutive sentences, events and time expres-
sions in the same sentence, and events and the
document creation time of the input text.

Here we report results for the first two tasks.
Previous TempEval competitions have shown that

rich syntactic and semantic feature sets can lead to
good performance on event and time expression ex-
traction and classification tasks (e.g. (Llorens et al.,

Type Files EVENT TIMEX
AQUAINT gold 73 4431 579
TimeBank gold 183 6698 1243
TE3-Silver silver 2452 81329 12739

Table 1: Frequency of event and time expressions in the
text portions of the TempEval-3 data sets

2010; UzZaman and Allen, 2010)). In this work, we
show that with large windows of context, it is pos-
sible for models using only lexical features to ap-
proach the performance of models using rich syn-
tactic and semantic feature sets.

2 Data

Using the gold and silver data distributed by the
TempEval-3 task organizers (see Table 1), we pro-
cessed each input file with the Stanford CoreNLP
(Stanford Natural Language Processing Group,
2012) and SENNA (Collobert et al., 2011) open-
source NLP tools. From the Stanford CoreNLP
tools we obtained a tokenization of the input text,
the lemma and part of speech (POS) tag for each
token, and dependency and constituency parses for
each sentence. From SENNA, we obtained a seman-
tic role labelling for each sentence.

3 Approach

We were curious to explore the tradeoff between ad-
ditional context on the one hand, and additional lay-
ers of representation on the other, for the event and
time expression extraction tasks. Researchers have
investigated the impacts of different sets of features
(Adafre and de Rijke, 2005; Angeli et al., 2012;
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Feature type Features Used in
Lexical 1 token ATT1,

ATT2, ATT3
Lexical 2 lemma ATT1, ATT2
Part of speech POS tag ATT1, ATT2
Dependency governing verb, governing verb POS, governing preposition,

phrase tag, path to root of parse tree, head word, head word lemma,
head word POS

ATT1, ATT2

Constituency
parse

governing verb, governing verb POS, governing preposition,
phrase tag, path to root of parse tree

ATT1, ATT2

Semantic role semantic role label, semantic role labels along path to root of parse
tree

ATT1

Table 2: Features used in our models

Tag type Tags
time expression extraction tags B DATE, B DURATION, B SET, B TIME, I DATE,

I DURATION, I SET, I TIME, O
Event expression extraction tags B ACTION, B ASPECTUAL, B ACTION, B OCCURRENCE,

B PERCEPTION, B REPORTING, B STATE, O
Event tense FUTURE, INFINITIVE, PAST, PASTPART, PRESENT, PRES-

PART, NONE, O
Event aspect PROGRESSIVE, PREFECTIVE PROGRESSIVE, PERFEC-

TIVE, NONE, O
Event polarity NEG, POS
Event modality ’D, CAN, CLOSE, COULD, DELETE, HAVE TO, HAVE TO,

LIKELIHOOD, MAY, MIGHT, MUST, NONE, O, POSSIBLE,
POTENTIAL, SHOULD, SHOULD HAVE TO, TO, UNLIKELY,
UNTIL, WOULD, WOULD HAVE TO

Table 3: Tags assigned by our classifiers for TempEval-3 tasks A and B

Rigo and Lavelli, 2011). In particular, (Rigo and
Lavelli, 2011) also examined performance based on
different sizes of n-grams in a small scale (n=1,3).

In this work, we intended to systematically inves-
tigate the performance of various models with differ-
ent layers of representation (based on much larger
sets of rich syntactic/semantic features) as well as
additional context. For each time expression/event
segmentation/classification task, we trained twelve
models exploring these two dimensions, three of
which we submitted for TempEval-3.
Additional layers of representation We
trained three types of model: (ATT1) STAN-
FORD+SENNA, (ATT2) STANFORD and (ATT3)
WORDS ONLY. The basic features used in each
type of model are given in Table 2: ATT1 models

include lexical, syntactic and semantic features,
ATT2 models include only lexical and syntactic
features, and ATT3 models include only lexical
features. For the ATT1 models we had 18 basic
features per token, for the ATT2 models we had 16
basic features per token, and for the ATT3 models
we had one basic feature per token.

Additional context We experimented with context
windows of 0, 1, 3, and 7 words preceding and fol-
lowing the token to be labeled (i.e. window sizes of
1, 3, 7, and 15). For each window size, we trained
ATT1, ATT2 and ATT3 models. The ATT1 mod-
els had 18 basic features per token in the context
window, for up to 15 tokens, so up to 270 basic fea-
tures for each token to be labeled. The ATT2 mod-
els had 16 basic features per token in the context
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window, so up to 240 basic features for each token
to be labeled. The ATT3 models had 1 basic feature
per token in the context window, so up to 15 basic
features for each token to be labeled.
Model training For event extraction and classifica-
tion, time expression extraction and classification,
and event feature classification, we used the machine
learning toolkit LLAMA (Haffner, 2006). LLAMA
encodes multiclass classification problems using bi-
nary MaxEnt classifiers to increase the speed of
training and to scale the method to large data sets.
We also used a front-end to LLAMA that builds un-
igram, bigram and trigram extended features from
basic features; for example, from the basic feature
“go there today”, it would build the features “go”,
“there”, “today”, “go there”, “there today”, and “go
there today”. We grouped our basic features (see Ta-
ble 2) by type rather than by token, and the LLAMA
front-end then produced ngram features. We chose
LLAMA primarily because of the proven power
of the ngram feature-extraction front-end for NLP
tasks.

4 Event and Time Expression Extraction

For event and time expression extraction, we trained
BIO classifiers. A BIO classifier tags each input to-
ken as either Beginning, In, or Out of an event/time
expression. Our classifier for events simultaneously
assigns a B, I or O to each token, and classifies the
class of the event for tokens that Begin or are In an
event. Our time expression classifier simultaneously
assigns a B, I, or O to each token, and classifies the
type of the time expression for tokens that Begin or
are In a time expression (see Table 3).

A BIO model may sometimes be inconsistent; for
example, a token may be labeled as Inside a segment
of a particular type, while the previous token may
be labeled as Out of any segment. We considered
the two most likely labels for each token (as long as
each had likelihood at least 0.9), choosing the one
most consistent with the context.

5 Event Feature Classification

We determined the event features for each extracted
event using four additional classifiers, one each for
tense, aspect, polarity and modality. These classi-
fiers were trained only on tokens identified as part of

event expressions. Since the event expressions were
single words for all but a few (erroneous) cases in the
silver data, for determining the event features, we
used the same features as before, with the single ad-
dition of the event class (during testing, we used the
dynamically assigned event class from the event seg-
mentation classifier). As before, we experimented
with ATT1, ATT2, and ATT3 models. TempEval-
3 only includes evaluation of tense and aspect fea-
tures, so we only report for those. The tags assigned
by each classifier are listed in Table 3.

6 Time Normalization

To compute TIMEX3 standard based values for
extracted time expressions, we used the TIMEN
(Llorens et al., 2012) and TRIOS (UzZaman and
Allen, 2010) time normalizers. Values from the
normalizers were validated in post-processing (e.g.
“T2445” is invalid) and, when the normalizers re-
turned different non-nil values, TIMEN’s values
were selected without further reasoning. Time nor-
malization was out of scope in our research for this
evaluation, but it remains as part of our future work.

7 Results and Discussion

Our results for event segmentation/classification on
the TempEval-3 test data are provided in Table 4.
The absence of semantic features causes only small
changes in F1. The absence of syntactic features
causes F1 to drop slightly (less than 2.5% for all
but the smallest window size), with recall decreasing
while precision improves somewhat. Attribute F1 is
also impacted minimally by the absence of semantic
features, and about 2-5% by the absence of syntactic
features for all but the smallest window size.1

Our results for time expression extraction and
classification on the TempEval-3 test data are pro-
vided in Table 5. Here, the performance drops more
in the absence of semantic and syntactic features;
however, there is an interaction between length of
time expression and performance drop which we
may be able to ameliorate in future work by han-
dling consistency issues in the BIO time expression
extraction model better.

1In Tables 4 and 5, we present results that are slightly dif-
ferent from our submission due to a minor fix in our models by
removing some redundant feature values used twice.
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Features Window size F1 P R Class Tense Aspect
STANFORD+SENNA 15 (ATT1) 81.16 81.49 80.83 71.60 59.62 73.76

7 81.08 81.74 80.43 71.49 59.05 73.78
3 80.35 81.23 79.49 71.41 58.67 73.17
1 80.94 80.77 81.10 72.37 58.06 73.71

STANFORD 15 (ATT2) 80.86 81.02 80.70 71.05 59.10 73.34
7 81.30 81.90 80.70 71.57 59.01 74.14
3 80.87 81.58 80.16 71.94 58.96 73.70
1 80.78 80.72 80.83 71.80 57.47 73.41

WORDS ONLY 15 (ATT3) 78.58 81.95 75.47 69.5 55.27 70.76
7 78.40 82.21 74.93 69.14 55.54 70.27
3 78.14 82.44 74.26 69.39 52.75 70.38
1 73.55 79.78 68.23 66.33 44.94 63.15

Table 4: Event extraction results (F1, P and R, strict match); feature classification results (attribute F1)

Features Window size F1 P R Type Value
STANFORD+SENNA 15 (ATT1) 80.17 (85.95) 93.27 (100) 70.29 (75.36) 77.69 65.29

7 76.99 (83.68) 91.09 (99.01) 66.67 (72.46) 75.31 64.44
3 75.52 (83.82) 88.35 (98.06) 65.94 (73.19) 75.52 63.07
1 66.12 (83.27) 75.70 (95.33) 58.70 (73.91) 72.65 59.59

STANFORD 15 (ATT2) 78.69 (85.25) 90.57 (98.11) 69.57 (75.36) 76.23 65.57
7 78.51 (84.30) 91.35 (98.08) 68.84 (73.91) 76.03 63.64
3 78.19 (84.77) 90.48 (98.10) 68.84 (74.64) 75.72 64.20
1 67.48 (83.74) 76.85 (95.37) 60.14 (74.64) 73.17 59.35

WORDS ONLY 15 (ATT3) 72.34 (80.85) 87.63 (97.94) 61.59 (68.84) 74.04 60.43
7 72.34 (80.85) 87.63 (97.94) 61.59 (67.84) 74.04 59.57
3 74.48 (82.85) 88.12 (98.02) 64.49 (71.74) 75.31 61.09
1 44.62 (82.87) 49.56 (92.04) 40.58 (75.36) 70.92 39.84

Table 5: Time expression extraction results (F1, P and R, strict match with relaxed match in parentheses); attribute F1
for type and value features

A somewhat surprising finding is that both event
and time expression extraction are subject to rela-
tively tight constraints from the lexical context. We
were surprised by how well the ATT3 (WORDS

ONLY) models performed, especially in terms of
precision. We were also surprised that the words
only models with window sizes of 3 and 7 performed
as well as the models with a window size of 15. We
think these results are promising for “big data” text
analytics, where there may not be time to do heavy
preprocessing of input text or to train large models.

8 Future Work

For us, participation in TempEval-3 is a first step
in developing a temporal understanding component

for text analytics and virtual agents. We now in-
tend to appy our best performing models to this task.
In future work, we plan to evaluate our initial re-
sults with larger data sets (e.g., cross validation on
the tempeval training data) and experiment with hy-
brid/ensemble methods for performing time expres-
sion and temporal link extraction.
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Abstract

This paper presents the second round of the
task on Cross-lingual Textual Entailment for
Content Synchronization, organized within
SemEval-2013. The task was designed to pro-
mote research on semantic inference over texts
written in different languages, targeting at the
same time a real application scenario. Par-
ticipants were presented with datasets for dif-
ferent language pairs, where multi-directional
entailment relations (“forward”, “backward”,
“bidirectional”, “no entailment”) had to be
identified. We report on the training and test
data used for evaluation, the process of their
creation, the participating systems (six teams,
61 runs), the approaches adopted and the re-
sults achieved.

1 Introduction

The cross-lingual textual entailment task (Mehdad et
al., 2010) addresses textual entailment (TE) recog-
nition (Dagan and Glickman, 2004) under the new
dimension of cross-linguality, and within the new
challenging application scenario of content synchro-
nization. Given two texts in different languages, the
cross-lingual textual entailment (CLTE) task con-
sists of deciding if the meaning of one text can be
inferred from the meaning of the other text. Cross-
linguality represents an interesting direction for re-
search on recognizing textual entailment (RTE), es-
pecially due to its possible application in a vari-
ety of tasks. Among others (e.g. question answer-
ing, information retrieval, information extraction,
and document summarization), multilingual content

synchronization represents a challenging application
scenario to evaluate CLTE recognition components
geared to the identification of sentence-level seman-
tic relations.

Given two documents about the same topic writ-
ten in different languages (e.g. Wikipedia pages),
the content synchronization task consists of au-
tomatically detecting and resolving differences in
the information they provide, in order to produce
aligned, mutually enriched versions of the two docu-
ments (Monz et al., 2011; Bronner et al., 2012). To-
wards this objective, a crucial requirement is to iden-
tify the information in one page that is either equiv-
alent or novel (more informative) with respect to the
content of the other. The task can be naturally cast
as an entailment recognition problem, where bidi-
rectional and unidirectional entailment judgements
for two text fragments are respectively mapped into
judgements about semantic equivalence and novelty.
The task can also be seen as a machine translation
evaluation problem, where judgements about se-
mantic equivalence and novelty depend on the pos-
sibility to fully or partially translate a text fragment
into the other.

The recent advances on monolingual TE on the
one hand, and the methodologies used in Statisti-
cal Machine Translation (SMT) on the other, offer
promising solutions to approach the CLTE task. In
line with a number of systems that model the RTE
task as a similarity problem (i.e. handling similar-
ity scores between T and H as features contributing
to the entailment decision), the standard sentence
and word alignment programs used in SMT offer
a strong baseline for CLTE (Mehdad et al., 2011;
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Figure 1: Example of SP-EN CLTE pairs.

Mehdad et al., 2012). However, although repre-
senting a solid starting point to approach the prob-
lem, similarity-based techniques are just approx-
imations, open to significant improvements com-
ing from semantic inference at the multilingual
level (e.g. cross-lingual entailment rules such as
“perro”→“animal”). Taken in isolation, similarity-
based techniques clearly fall short of providing an
effective solution to the problem of assigning direc-
tions to the entailment relations (especially in the
complex CLTE scenario, where entailment relations
are multi-directional). Thanks to the contiguity be-
tween CLTE, TE and SMT, the proposed task pro-
vides an interesting scenario to approach the issues
outlined above from different perspectives, and of-
fers large room for mutual improvement.

Building on the success of the first CLTE evalua-
tion organized within SemEval-2012 (Negri et al.,
2012a), the remainder of this paper describes the
second evaluation round organized within SemEval-
2013. The following sections provide an overview
of the datasets used, the participating systems, the
approaches adopted, the achieved results, and the
lessons learned.

2 The task

Given a pair of topically related text fragments (T1
and T2) in different languages, the CLTE task con-
sists of automatically annotating it with one of the
following entailment judgements (see Figure 1 for
Spanish/English examples of each judgement):

• bidirectional (T1→T2 & T1←T2): the two

fragments entail each other (semantic equiva-
lence);

• forward (T1→T2 & T16←T2): unidirectional
entailment from T1 to T2;

• backward (T16→T2 & T1←T2): unidirectional
entailment from T2 to T1;

• no entailment (T16→T2 & T16←T2): there is
no entailment between T1 and T2 in either di-
rection;

In this task, both T1 and T2 are assumed to be
true statements. Although contradiction is relevant
from an application-oriented perspective, contradic-
tory pairs are not present in the dataset.

3 Dataset description

The CLTE-2013 dataset is composed of four CLTE
corpora created for the following language combi-
nations: Spanish/English (SP-EN), Italian/English
(IT-EN), French/English (FR-EN), German/English
(DE-EN). Each corpus consists of 1,500 sentence
pairs (1,000 for training and 500 for test), balanced
across the four entailment judgements.

In this year’s evaluation, as training set we used
the CLTE-2012 corpus1 that was created for the
SemEval-2012 evaluation exercise2 (including both
training and test sets). The CLTE-2013 test set was
created from scratch, following the methodology de-
scribed in the next section.

3.1 Data collection and annotation
To collect the entailment pairs for the 2013 test set
we adopted a slightly modified version of the crowd-
sourcing methodology followed to create the CLTE-
2012 corpus (Negri et al., 2011). The main differ-
ence with last year’s procedure is that we did not
take advantage of crowdsourcing for the whole data
collection process, but only for part of it.

As for CLTE-2012, the collection and annotation
process consists of the following steps:

1. First, English sentences were manually ex-
tracted from Wikipedia and Wikinews. The se-
lected sentences represent one of the elements
(T1) of each entailment pair;

1http://www.celct.it/resources.php?id page=CLTE
2http://www.cs.york.ac.uk/semeval-2012/task8/
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2. Next, each T1 was modified in various ways
in order to obtain a corresponding T2. While
in the CLTE-2012 dataset the whole T2 cre-
ation process was carried out through crowd-
sourcing, for the CLTE-2013 test set we crowd-
sourced only the first phase of T1 modification,
namely the creation of paraphrases. Focusing
on the creation of high quality paraphrases, we
followed the crowdsourcing methodology ex-
perimented in Negri et al. (2012b), in which
a paraphrase is obtained through an itera-
tive modification process of an original sen-
tence, by asking workers to introduce meaning-
preserving lexical and syntactic changes. At
each round of the iteration, new workers are
presented with the output of the previous iter-
ation in order to increase divergence from the
original sentence. At the end of the process,
only the more divergent paraphrases according
to the Lesk score (Lesk, 1986) are selected. As
for the second phase of T2 creation process,
this year it was carried out by expert annota-
tors, who followed the same criteria used last
year for the crowdsourced tasks, i.e. i) remove
information from the input (paraphrased) sen-
tence and ii) add information from sentences
surrounding T1 in the source article;

3. Each T2 was then paired to the original T1, and
the resulting pairs were annotated with one of
the four entailment judgements. In order to re-
duce the correlation between the difference in
sentences’ length and entailment judgements,
only the pairs where the difference between the
number of words in T1 and T2 (length diff ) was
below a fixed threshold (10 words) were re-
tained.3 The final result is a monolingual En-
glish dataset annotated with multi-directional
entailment judgements, which are well dis-
tributed over length diff values ranging from 0
to 9;

4. In order to create the cross-lingual datasets,
each English T1 was manually translated into

3Such constraint has been applied in order to focus as much
as possible on semantic aspects of the problem, by reduc-
ing the applicability of simple association rules such as IF
length(T1)>length(T2) THEN T1→T2.

four different languages (i.e. Spanish, German,
Italian and French) by expert translators;

5. By pairing the translated T1 with the cor-
responding T2 in English, four cross-lingual
datasets were obtained.

To ensure the good quality of the datasets, all the
collected pairs were cross-annotated and filtered to
retain only those pairs with full agreement in the
entailment judgement between two expert annota-
tors. The final result is a multilingual parallel en-
tailment corpus, where T1s are in 5 different lan-
guages (i.e. English, Spanish, German, Italian, and
French), and T2s are in English. It is worth men-
tioning that the monolingual English corpus, a by-
product of our data collection methodology, will be
publicly released as a further contribution to the re-
search community.

3.2 Dataset statistics

As described in section 3.1, the methodology fol-
lowed to create the training and test sets was the
same except for the crowdsourced tasks. This al-
lowed us to obtain two datasets with the same bal-
ance across the entailment judgements, and to keep
under control the distribution of the pairs for differ-
ent length diff values in each language combination.

Training Set. The training set is composed of
1,000 CLTE pairs for each language combina-
tion, balanced across the four entailment judge-
ments (bidirectional, forward, backward, and
no entailment). As shown in Table 1, our data col-
lection procedure led to a dataset where the major-
ity of the pairs falls in the +5 -5 length diff range
for each language pair (67.2% on average across the
four language pairs). This characteristic is partic-
ularly relevant as our assumption is that such data
distribution makes entailment judgements based on
mere surface features such as sentence length inef-
fective, thus encouraging the development of alter-
native, deeper processing strategies.

Test Set. The test set is composed of 500 entail-
ment pairs for each language combination, balanced
across the four entailment judgements. As shown
in Table 2, also in this dataset the majority of the
collected entailment pairs is uniformly distributed
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(a) SP-EN (b) IT-EN

(c) FR-EN (d) DE-EN

Figure 2: Pair distribution in the 2013 test set: total number of pairs (y-axis) for different length diff values (x-axis).

SP-EN IT-EN FR-EN DE-EN
Forward 104 132 121 179
Backward 202 182 191 123
No entailment 163 173 169 174
Bidirectional 175 199 193 209
ALL 644 686 674 685

% (out of 1,000) 64.4 68.6 67.4 68.5

Table 1: Training set pair distribution within the -5/+5
length diff range.

in the [-5,+5] length diff range (68.1% on average
across the four language pairs).

However, comparing training and test set for
each language pair, it can be seen that while the
Spanish-English and Italian-English datasets are ho-
mogeneous with respect to the length diff feature,
the French-English and German-English datasets
present noticeable differences between training and
test set. These figures show that, despite the consid-
erable effort spent to produce comparable training

SP-EN IT-EN FR-EN DE-EN
backward 82 89 82 102
bidirectional 89 92 90 106
forward 69 78 76 98
no entailment 71 80 59 100
ALL 311 339 307 406

% (out of 500) 62.2 67.8 61.4 81.2

Table 2: Test set pair distribution within the -5/+5
length diff range.

and test sets, the ideal objective of a full homogene-
ity between the datasets for these two languages was
difficult to reach.

Complete details about the distribution of the
pairs in terms of length diff for the four cross-
lingual corpora in the test set are provided in Figure
2. Vertical bars represent, for each length diff value,
the proportion of pairs belonging to the four entail-
ment classes.

28



4 Evaluation metrics and baselines

Evaluation results have been automatically com-
puted by comparing the entailment judgements re-
turned by each system with those manually assigned
by human annotators in the gold standard. The met-
rics used for systems’ ranking is accuracy over the
whole test set, i.e. the number of correct judge-
ments out of the total number of judgements in the
test set. Additionally, we calculated precision, re-
call, and F1 measures for each of the four entail-
ment judgement categories taken separately. These
scores aim at giving participants the possibility to
gain clearer insights into their system’s behaviour on
the entailment phenomena relevant to the task.

To allow comparison with the CLTE-2012 re-
sults, the same three baselines were calculated on the
CLTE-2013 test set for each language combination.
The first one is the 0.25 accuracy score obtained by
assigning each test pair in the balanced dataset to
one of the four classes. The other two baselines con-
sider the length difference between T1 and T2:

• Composition of binary judgements (Bi-
nary). To calculate this baseline an SVM
classifier is trained to take binary en-
tailment decisions (“YES”, “NO”). The
classifier uses length(T1)/length(T2) and
length(T2)/length(T1) as features respectively
to check for entailment from T1 to T2 and vice-
versa. For each test pair, the unidirectional
judgements returned by the two classifiers are
composed into a single multi-directional judge-
ment (“YES-YES”=“bidirectional”, “YES-
NO”=“forward”, “NO-YES”=“backward”,
“NO-NO”=“no entailment”);

• Multi-class classification (Multi-class). A
single SVM classifier is trained with the same
features to directly assign to each pair one of
the four entailment judgements.

Both the baselines have been calculated with the
LIBSVM package (Chang and Lin, 2011), using de-
fault parameters. Baseline results are reported in Ta-
ble 3.

Although the four CLTE datasets are derived from
the same monolingual EN-EN corpus, baseline re-
sults present slight differences due to the effect of

translation into different languages. With respect to
last year’s evaluation, we can observe a slight drop
in the binary classification baseline results. This
might be due to the fact that the length distribution
of examples is slightly different this year. How-
ever, there are no significant differences between the
multi-class baseline results of this year in compar-
ison with the previous round results. This might
suggest that multi-class classification is a more ro-
bust approach for recognizing multi-directional en-
tailment relations. Moreover, both baselines failed
in capturing the “no-entailment” examples in all
datasets (F1no−entailment = 0).

SP-EN IT-EN FR-EN DE-EN
1-class 0.25 0.25 0.25 0.25
Binary 0.35 0.39 0.37 0.39
Multi-class 0.43 0.44 0.42 0.42

Table 3: Baseline accuracy results.

5 Submitted runs and results

Like in the 2012 round of the CLTE task, partici-
pants were allowed to submit up to five runs for each
language combination. A total of twelve teams reg-
istered for participation and downloaded the train-
ing set. Out of them, six4 submitted valid runs.
Five teams produced submissions for all the four
language combinations, while one team participated
only in the DE-EN task. In total, 61 runs have been
submitted and evaluated (16 for DE-EN, and 15 for
each of the other language pairs).

Accuracy results are reported in Table 4. As can
be seen from the table, the performance of the best
systems is quite similar across the four language
combinations, with the best submissions achieving
results in the 43.4-45.8% accuracy interval. Simi-
larly, also average and median results are close to
each other, with a small drop on DE-EN. This drop
might be explained by the difference between the
training and test set with respect to the length diff
feature. Moreover, the performance of DE-EN auto-
matic translation might affect approaches based on
“pivoting”, (i.e. addressing CLTE by automatically
translating T1 in the same language of T2, as de-
scribed in Section 6).

4Including the task organizers.
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System name SP-EN IT-EN FR-EN DE-EN
altn run1* 0.428 0.432 0.420 0.388
BUAP run1 0.364 0.358 0.368 0.322
BUAP run2 0.374 0.358 0.364 0.318
BUAP run3 0.380 0.358 0.362 0.316
BUAP run4 0.364 0.388 0.392 0.350
BUAP run5 0.386 0.360 0.372 0.318
celi run1 0.340 0.324 0.334 0.342
celi run2 0.342 0.324 0.340 0.342
ECNUCS run1 0.428 0.426 0.438 0.422
ECNUCS run2 0.404 0.420 0.450 0.436
ECNUCS run3 0.408 0.426 0.458 0.432
ECNUCS run4 0.422 0.416 0.436 0.452
ECNUCS run5 0.392 0.402 0.442 0.426
SoftCard run1 0.434 0.454 0.416 0.414
SoftCard run2 0.432 0.448 0.426 0.402
umelb run1 − − − 0.324
Highest 0.434 0.454 0.458 0.452
Average 0.404 0.404 0.401 0.378
Median 0.428 0.426 0.420 0.369
Lowest 0.342 0.324 0.340 0.324

Table 4: CLTE-2013 accuracy results (61 runs) over the
4 language combinations. Highest, average, median and
lowest scores are calculated considering only the best run
for each team (*task organizers’ system).

Compared to the results achieved last year, shown
in Table 5, a sensible decrease in the highest scores
can be observed. While in CLTE-2012 the top sys-
tems achieved an accuracy well above 0.5 (with a
maximum of 0.632 in SP-EN), the results for this
year are far below such level (the peak is now at
45,8% for FR-EN). A slight decrease with respect
to 2012 can also be noted for average performances.
However, it’s worth remarking the general increase
of the lowest and median scores, which are less sen-
sitive to isolate outstanding results achieved by sin-
gle teams. This indicates that a progress in CLTE
research has been made building on the lessons
learned after the first round of the initiative.

To better understand the behaviour of each sys-
tem, Table 6 provides separate precision, recall, and
F1 scores for each entailment judgement, calculated
over the best runs of each participating team. In
contrast to CLTE-2012, where the “bidirectional”
and “no entailment” categories consistently proved
to be more problematic than “forward” and “back-
ward” judgements, this year’s results are more ho-
mogeneous across the different classes. Neverthe-
less, on average, the classification of “bidirectional”
pairs is still worse for three language pairs (SP-EN,
IT-EN and FR-EN), and results for “no entailment”

are lower for two of them (SP-EN and DE-EN).

SP-EN IT-EN FR-EN DE-EN
Highest 0.632 0.566 0.570 0.558
Average 0.440 0.411 0.408 0.408
Median 0.407 0.350 0.365 0.363
Lowest 0.274 0.326 0.296 0.296

Table 5: CLTE-2012 accuracy results. Highest, average,
median and lowest scores are calculated considering only
the best run for each team.

As regards the comparison with the baselines,
this year’s results confirm that the length diff -based
baselines are hard to beat. More specifically, most
of the systems are slightly above the binary classi-
fication baseline (with the exception of the DE-EN
dataset where only two systems out of six outper-
formed it), whereas for all the language combina-
tions the multi-class baseline was beaten only by the
best participating system.

This shows that, despite the effort in keeping the
distribution of the entailment classes uniform across
different length diff values, eliminating the correla-
tion between sentence length and correct entailment
decisions is difficult. As a consequence, although
disregarding semantic aspects of the problem, fea-
tures considering length information are quite ef-
fective in terms of overall accuracy. Such features,
however, perform rather poorly when dealing with
challenging cases (e.g. “no-entailment”), which are
better handled by participating systems.

6 Approaches

A rough classification of the approaches adopted by
participants can be made along two orthogonal di-
mensions, namely:

• Pivoting vs. Cross-lingual. Pivoting meth-
ods rely on the automatic translation of one of
the two texts (either single words or the en-
tire sentence) into the language of the other
(typically English) in order perform monolin-
gual TE recognition. Cross-lingual methods
assign entailment judgements without prelim-
inary translation.

• Composition of binary judgements vs.
Multi-class classification. Compositional ap-
proaches map unidirectional (“YES”/“NO”)
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SP-EN
Forward Backward No entailment Bidirectional

System name P R F1 P R F1 P R F1 P R F1
altn full spa-eng 0.509 0.464 0.485 0.440 0.264 0.330 0.464 0.416 0.439 0.357 0.568 0.438
BUAP spa-eng run5 0.446 0.360 0.398 0.521 0.296 0.378 0.385 0.456 0.418 0.300 0.432 0.354
celi spa-eng run2 0.396 0.352 0.373 0.431 0.400 0.415 0.325 0.328 0.327 0.245 0.288 0.265
ECNUCS spa-eng run1 0.458 0.432 0.444 0.533 0.320 0.400 0.406 0.416 0.411 0.380 0.544 0.447
SoftCard spa-eng run1 0.462 0.344 0.394 0.619 0.480 0.541 0.418 0.472 0.444 0.325 0.440 0.374
AVG. 0.454 0.390 0.419 0.509 0.352 0.413 0.400 0.418 0.408 0.321 0.454 0.376

IT-EN
Forward Backward No entailment Bidirectional

System name P R F1 P R F1 P R F1 P R F1
altn full ita-eng 0.448 0.376 0.409 0.417 0.344 0.377 0.512 0.496 0.504 0.374 0.512 0.432
BUAP ita-eng run4 0.418 0.328 0.368 0.462 0.384 0.419 0.379 0.440 0.407 0.327 0.400 0.360
celi ita-eng run1 0.288 0.256 0.271 0.395 0.408 0.402 0.336 0.304 0.319 0.279 0.328 0.301
ECNUCS ita-eng run1 0.422 0.456 0.438 0.592 0.336 0.429 0.440 0.440 0.440 0.349 0.472 0.401
SoftCard ita-eng run1 0.514 0.456 0.483 0.612 0.480 0.538 0.392 0.464 0.425 0.364 0.416 0.388
AVG. 0.418 0.374 0.394 0.496 0.390 0.433 0.412 0.429 0.419 0.339 0.426 0.376

FR-EN
Forward Backward No entailment Bidirectional

System name P R F1 P R F1 P R F1 P R F1
altn full fra-eng 0.405 0.392 0.398 0.420 0.296 0.347 0.500 0.440 0.468 0.381 0.552 0.451
BUAP fra-eng run4 0.407 0.472 0.437 0.431 0.376 0.402 0.379 0.376 0.378 0.352 0.344 0.348
celi fra-eng run2 0.394 0.344 0.368 0.364 0.376 0.370 0.352 0.352 0.352 0.263 0.288 0.275
ECNUCS fra-eng run3 0.422 0.432 0.427 0.667 0.352 0.461 0.514 0.432 0.470 0.383 0.616 0.472
SoftCard fra-eng run2 0.477 0.416 0.444 0.556 0.400 0.465 0.412 0.432 0.422 0.335 0.456 0.386
AVG. 0.421 0.411 0.415 0.488 0.360 0.409 0.431 0.406 0.418 0.343 0.451 0.386

DE-EN
Forward Backward No entailment Bidirectional

System name P R F1 P R F1 P R F1 P R F1
altn full deu-eng 0.432 0.408 0.420 0.378 0.272 0.316 0.445 0.392 0.417 0.330 0.480 0.391
BUAP deu-eng run4 0.364 0.344 0.354 0.389 0.280 0.326 0.352 0.352 0.352 0.317 0.424 0.363
celi deu-eng run1 0.346 0.352 0.349 0.414 0.424 0.419 0.351 0.264 0.301 0.272 0.328 0.297
ECNUCS deu-eng run4 0.429 0.432 0.430 0.611 0.352 0.447 0.415 0.392 0.403 0.429 0.632 0.511
SoftCard deu-eng run1 0.511 0.368 0.428 0.527 0.384 0.444 0.417 0.400 0.408 0.317 0.504 0.389
umelb deu-eng run1 0.323 0.320 0.321 0.240 0.184 0.208 0.362 0.376 0.369 0.347 0.416 0.378
AVG. 0.401 0.371 0.384 0.426 0.316 0.360 0.390 0.363 0.375 0.335 0.464 0.389

Table 6: Precision, recall and F1 scores, calculated for each team’s best run for all the language combinations.

entailment decisions taken separately into sin-
gle judgements (similar to the Binary baseline
in Section 4). Methods based on multi-class
classification directly assign one of the four en-
tailment judgements to each test pair (similar to
our Multi-class baseline).

In contrast with CLTE-2012, where the combina-
tion of pivoting and compositional methods was the
option adopted by the majority of the approaches,
this year’s solutions do not show a clear trend. Con-
cerning the former dimension, participating systems
are equally distributed in cross-lingual and pivoting
methods relying on external automatic translation
tools. Regarding the latter dimension, in addition
to compositional and multi-class strategies, also al-
ternative solutions that leverage more sophisticated
meta-classification strategies have been proposed.

Besides the recourse to MT tools (e.g. Google
Translate), other tools and resources used by partic-
ipants include: WordNet, word alignment tools (e.g.
Giza++), part-of-speech taggers (e.g. Stanford POS
Tagger), stemmers (e.g. Snowball), machine learn-
ing libraries (e.g. Weka, SVMlight), parallel corpora
(e.g. Europarl), and stopword lists. More in detail:

ALTN [cross-lingual, compositional] (Turchi
and Negri, 2013) adopts a supervised learning
method based on features that consider word align-
ments between the two sentences obtained with
GIZA++ (Och et al., 2003). Binary entailment
judgements are taken separately, and combined into
final CLTE decisions.

BUAP [pivoting, multi-class and meta-
classifier] (Vilariño et al., 2013) adopts a pivoting
method based on translating T1 into the language of
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T2 and vice versa (using Google Translate5). Sim-
ilarity measures (e.g. Jaccard index) and features
based on n-gram overlap, computed at the level of
words and part of speech categories, are used (either
alone or in combination) by different classification
strategies including: multi-class, a meta-classifier
(i.e. combining the output of 2/3/4-class classifiers),
and majority voting.

CELI [cross-lingual, meta-classifier]
(Kouylekov, 2013) uses dictionaries for word
matching, and a multilingual corpus extracted
from Wikipedia for term weighting. A variety of
distance measures implemented in the RTE system
EDITS (Kouylekov and Negri, 2010; Negri et
al., 2009) are used to extract features to train a
meta-classifier. Such classifier combines binary
decisions (“YES”/“NO”) taken separately for each
of the four CLTE judgements.

ECNUCS [pivoting, multi-class] (Jiang and
Man, 2013) uses Google Translate to obtain the En-
glish translation of each T1. After a pre-processing
step aimed at maximizing the commonalities be-
tween the two sentences (e.g. abbreviation replace-
ment), a number of features is extracted to train
a multi-class SVM classifier. Such features con-
sider information about sentence length, text sim-
ilarity/difference measures, and syntactic informa-
tion.

SoftCard [pivoting, multi-class] (Jimenez et al.,
2013) after automatic translation with Google Trans-
late, uses SVMs to learn entailment decisions based
on information about the cardinality of: T1, T2, their
intersection and their union. Cardinalities are com-
puted in different ways, considering tokens in T1 and
T2, their IDF, and their similarity.

Umelb [cross-lingual, pivoting, compositional]
(Graham et al., 2013) adopts both pivoting and
cross-lingual approaches. For the latter, GIZA++
was used to compute word alignments between the
input sentences. Word alignment features are used
to train binary SVM classifiers whose decisions are
eventually composed into CLTE judgements.

7 Conclusion

Following the success of the first round of the Cross-
lingual Textual Entailment for Content Synchroniza-

5http://translate.google.com/

tion task organized within SemEval-2012, a second
evaluation task has been organized within SemEval-
2013. Despite the decrease in the number of partic-
ipants (six teams - four less than in the first round
- submitted a total of 61 runs) the new experience
is still positive. In terms of data, a new test set
has been released, extending the old one with 500
new CLTE pairs. The resulting 1,500 cross-lingual
pairs, aligned over four language combinations (in
addition to the monolingual English version), and
annotated with multiple entailment relations, repre-
sent a significant contribution to the research com-
munity and a solid starting point for further develop-
ments.6 In terms of results, in spite of a significant
decrease of the top scores, the increase of both me-
dian and lower results demonstrates some encour-
aging progress in CLTE research. Such progress is
also demonstrated by the variety of the approaches
proposed. While in the first round most of the
teams adopted more intuitive and “simpler” solu-
tions based on pivoting (i.e. translation of T1 and
T2 in the same language) and compositional entail-
ment decision strategies, this year new ideas and
more complex solutions have emerged. Pivoting and
cross-lingual approaches are equally distributed, and
new classification methods have been proposed. Our
hope is that the large room for improvement, the in-
crease of available data, and the potential of CLTE
as a way to address complex NLP tasks and applica-
tions will motivate further research on the proposed
problem.
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chanical Turk.

Matteo Negri, Milen Kouylekov, Bernardo Magnini,
Yashar Mehdad, and Elena Cabrio. 2009. Towards ex-
tensible textual entailment engines: the edits package.
In AI* IA 2009: Emergent Perspectives in Artificial In-
telligence, pages 314–323. Springer.

Matto Negri, Luisa Bentivogli, Yashar Mehdad, Danilo
Giampiccolo, and Alessandro Marchetti. 2011. Di-
vide and Conquer: Crowdsourcing the Creation of
Cross-Lingual Textual Entailment Corpora. Proceed-
ings of the 2011 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2011).

Matteo Negri, Alessandro Marchetti, Yashar Mehdad,
Luisa Bentivogli, and Danilo Giampiccolo. 2012a.
Semeval-2012 Task 8: Cross-lingual Textual Entail-
ment for Content Synchronization. In Proceedings of
the 6th International Workshop on Semantic Evalua-
tion (SemEval 2012).

Matteo Negri, Yashar Mehdad, Alessandro Marchetti,
Danilo Giampiccolo, and Luisa Bentivogli. 2012b.
Chinese Whispers: Cooperative Paraphrase Acqui-
sition. In Proceedings of the Eight International
Conference on Language Resources and Evaluation
(LREC12), volume 2, pages 2659–2665.

F. Och, H. Ney, F. Josef, and O. H. Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics.

Marco Turchi and Matteo Negri. 2013. ALTN: Word
Alignment Features for Cross-Lingual Textual Entail-
ment. In Proceedings of the 7th International Work-
shop on Semantic Evaluation (SemEval 2013).

Darnes Vilariño, David Pinto, Saul León, Yuridiana
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Abstract

In this paper we describe our system submit-
ted for evaluation in the CLTE-SemEval-2013
task, which achieved the best results in two
of the four data sets, and finished third in av-
erage. This system consists of a SVM clas-
sifier with features extracted from texts (and
their translations SMT) based on a cardinality
function. Such function was the soft cardinal-
ity. Furthermore, this system was simplified
by providing a single model for the 4 pairs
of languages obtaining better (unofficial) re-
sults than separate models for each language
pair. We also evaluated the use of additional
circular-pivoting translations achieving results
6.14% above the best official results.

1 Introduction

The Cross-Lingual Textual Entailment (CLTE) task
consists in determining the type of directional en-
tailment (i.e. forward, backward, bidirectional or
no-entailment) between a pair of texts T1 and T2,
each one written in different languages (Negri et al.,
2013). The texts and reference annotations for this
task were obtained through crowdsourcing applied
to simpler sub-tasks (Negri et al., 2011). CLTE has
as main applications content synchronization and
aggregation in different languages (Mehdad et al.,
2012; Duh et al., 2013). We participated in the first
evaluation of this task in 2012 (Negri et al., 2012),
achieving third place on average among 29 partici-
pating systems (Jimenez et al., 2012).

Since in the CLTE task text pairs are in different
languages, in our system, all comparisons made be-
tween two texts imply that one of them was written

by a human and the other is a translation provided by
statistical machine translation (SMT). Our approach
is based on an SVM classifier (Cortes and Vapnik,
1995) whose features were cardinalities combined
with similarity scores. That system was motivated
by the fact that most text similarity functions are
symmetric, e.g. Edit Distance (Levenshtein, 1966),
longest common sub-sequence (Hirschberg, 1977),
Jaro-Winkler similarity (Winkler, 1990), cosine sim-
ilarity (Salton et al., 1975). Thus, the use of these
functions as only resource seems counter-intuitive
since CLTE task is asymmetric for the forward and
backward entailment classes.

Moreover, cardinality is the central component of
the resemblance coefficients such as Jaccard, Dice,
overlap, etc. For instance, if T1 and T2 are texts
represented as bag of words, it is only necessary to
know the cardinalities |T1|, |T2| and |T1 ∩ T2| to ob-
tain a similarity score using a resemblance coeffi-
cient such as the Dice’s coefficient (i.e. 2 · |T1 ∩
T2|/(|T1| + |T2|)). Therefore, the idea is to use the
individual cardinalities to enrich a set of features ex-
tracted from texts.

Cardinality gives a rough idea of the amount of
information in a collection of elements (i.e. words)
providing the number of different elements therein.
That is, in a collection of elements whose majority
are repetitions contains less information than a col-
lection whose elements are mostly different. How-
ever, the classical sets cardinality is a rigid mea-
sure as do not take account the degree of similarity
among the elements. Unlike the sets cardinality, soft
cardinality (Jimenez et al., 2010) uses the similari-
ties among the elements providing a more flexible
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measurement of the amount of information in a col-
lection. In the 2012 CLTE evaluation campaign, it
was noted that the soft cardinality overcame classi-
cal cardinality in the task at hand. All the models
used in our participation and proposed in this paper
are based on the soft cardinality. A brief descrip-
tion of the soft cardinality is presented in Section 2,
along with a description of the functions used to pro-
vide the similarities between words. Besides, the set
of features that are derived from all pairs of texts and
their cardinalities are presented in Section 3.

Section 4 provides a detailed description for each
of the 4 models (one for each language pair) used
to get the predictions submitted for evaluation. In
Section 5 a simplified-multilingual model is tested
with several word-similarity functions and circular-
pivoting translations.

In sections 6 and 7 a brief discussion of the results
and conclusions of our participation in this evalua-
tion campaign are presented.

2 Soft Cardinality

The soft cardinality (Jimenez et al., 2010) of a col-
lection of words T is calculated with the following
expression:

|T |′ =
n∑
i=1

wi

 n∑
j=1

sim(ti, tj)
p

−1

(1)

Having T ={t1, t2, . . . , tn}; wi ≥ 0; p ≥ 0; 1 >
sim(x, y) ≥ 0, x 6= y; and sim(x, x) = 1. The
parameter p controls the degree of "softness" of the
cardinality (the larger the “harder”). The coefficients
wi are weights associated with each word (or term)
t, which can represent the importance or informative
character of each word (e.g. idf weights). The func-
tion sim is a word-similarity function. Three such
functions are considered in this paper:

Q-grams: each word ai is represented as a col-
lection of character q-grams (Kukich, 1992). In-
stead of single length q-grams, a combination of
a range of lengths q1 to q2 was used. Next,
a couple of words are compared with the fol-
lowing resemblance coefficient: sim(ti, tj) =

|ti∩tj |+bias
α·max(|ti|,|tj |)+(1−α)·min(|ti|,|tj |) . The parameters of
this word-similarity function are q1, q2, α and bias.

Group 1: basic cardinalities
#1 |T1|′ #4 |T1 ∪ T2|′
#2 |T2|′ #5 |T1 − T2|′
#3 |T1 ∩ T2|′ #6 |T2 − T1|′

Group 2: asymmetrical ratios
#7 |T1∩T2|′/|T1|′ #8 |T1∩T2|′/|T2|′

Group 3: similarity and arithmetical* scores
#9 |T1∩T2|′/|T1∪T2|′ #10 2·|T1∩T2|′

|T1|′+|T2|′

#11 |T1∩T2|′/
√
|T1|′·|T2|′ #12 |T!∩T2|′

min[|T1|′,|T2|′]

#13 |T1∩T2|′+|T1|′+|T2|′
2·|T1|′·|T2|′ #14* |T1|′ · |T2|′

Table 1: Set of features derived from texts T1 and T2

Edit-Distance: a similarity score for a pair of
words can be obtained from their Edit Distance
(Levenshtein, 1966) by normalizing and converting
distance to similarity with the following expression:
sim(ti, tj) = 1− EditDistance(ti,tj)

max[len(ti),len(tj)]
.

Jaro-Winkler: this measure is based on the Jaro
(1989) similarity, which is given by this expression
Jaro(ti, tj) = 1

3

(
c

len(ti)
+ c

len(tj)
+ c−m

c

)
, where c

is the number of characters in common within a slid-
ing window of length max[len(ti),len(tj)]

2 −1. To avoid
division by 0, when c = 0 then Jaro(ti, tj) = 0. The
number of transpositions m is obtained sorting the
common characters according to their occurrence
in each of the words and counting the number of
non-matching characters. Winkler (1990) proposed
an extension to this measure taking into account
the common prefix length l through this expression:
sim(ti, tj) = Jaro(ti, tj) + l

10 (1− Jaro(ti, tj)).

3 Features from Cardinalities

For a pair of texts T1 and T2 represented as bags
of words three basic soft cardinalities can be cal-
culated: |T1|′, |T2|′ and |T1 ∪ T2|′. The soft car-
dinality of their union is calculated using the con-
catenation of T1 and T2. More additional features
can be derived from these three basic features, e.g.
|T1∩T2|′ = |T1|′+|T2|′−|T1∪T2|′ and |T1−T2|′ =
|T1|′− |T1 ∩ T2|′. The complete set of features clas-
sified into three groups are shown in Table 1.

4 Submitted Runs Description

The data for the 2013 CLTE task consists of 4 data
sets (spa-eng, ita-eng, fra-eng and deu-eng) each
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Data set q1 q2 α bias

deu-eng 2 2 0.5 0.0
fra-eng 2 3 0.5 0.0
ita-eng 2 4 0.6 0.0
spa-eng 1 3 0.5 0.1

Table 2: Parameters of the q-grams word-similarity func-
tion for each language pair

with 1,000 pairs of texts for training and 500 for
testing. For each pair of texts T1 and T2 written
in two different languages, two translations are pro-
vided using the Google’s translator1. Thus, T t1 is a
translation of T1 into the language of T2 and T t2 is
a translation of T2 into the language of T1. Using
these pivoting translations, two pairs of texts can be
compared: T1 with T t2 and T t1 with T2.

Then all training and testing texts and their trans-
lations were pre-processed with the following se-
quence of actions: i) text strings were tokenized,
ii) uppercase characters are converted into lower-
case equivalents, iii) stop words were removed, iv)
punctuation marks were removed, and v) words were
stemmed using the Snowball2 multilingual stem-
mers provided by the NLTK Toolkit (Loper and
Bird, 2002). Then every stemmed word is tagged
with its idf weight (Jones, 2004) calculated with the
complete collection of texts and translations in the
same language.

Five instances of the soft cardinality are provided
using 1, 2, 3, 4 and 5 as values of the parameter
p. Therefore, the total number of features for each
pair of texts is the multiplication of the number of
features in the feature set (i.e. 14, see Table 1) by
the number of soft cardinality functions (5) and by 2,
corresponding to the two pairs of comparable texts.
That is, 14× 5× 2 = 140 features.

The sim function used was q-grams, whose pa-
rameters were adjusted for each language pair.
These parameters, which are shown in Table 2, were
obtained by manual exploration using the training
data.

Four vector data sets for training (one for each
language pair) were built by extracting the 140 fea-
tures from the 1,000 training instances and using

1https://translate.google.com
2http://snowball.tartarus.org

ECNUCS-team’s system
spa-eng ita-eng fra-eng deu-eng average

run4 0.422 0.416 0.436 0.452 0.432
run3 0.408 0.426 0.458 0.432 0.431

SOFTCARDINALITY-team’s system
spa-eng ita-eng fra-eng deu-eng average

run1 0.434 0.454 0.416 0.414 0.430
run2 0.432 0.448 0.426 0.402 0.427

Table 3: Official results for our system and the top per-
forming system ECNUCS (accuracies)

their gold-standard annotations as class attribute.
Predictions for the 500 test cases were obtained
through a SVM classifier trained with each data set.
For the submitted run1, this SVM classifier used a
linear kernel with its complexity parameter set to its
default value C = 1. For the run2, this parameter
was adjusted for each pair of languages with the fol-
lowing values: Cspa−eng = 2.0, Cita−eng = 1.5,
Cfra−eng = 2.3 and Cdeu−eng = 2.0. The imple-
mentation of the SVM used is that which is available
in WEKA v.3.6.9 (SMO) (Hall et al., 2009). Official
results for run1, run2 and best accuracies obtained
among all participant systems are shown in Table 3.

5 A Single Multilingual Model

This section presents the results of our additional ex-
periments in search for a simplified model and in
turn to respond to the following questions: i) Can
one simplified-multilingual model overcome the ap-
proach presented in Section 4? ii) Does using addi-
tional circular-pivoting translations improve perfor-
mance? and iii) Do other word-similarity functions
work better than the q-grams measure?

First, it is important to note that the approach
described in Section 4 used only patterns discov-
ered in cardinalities. This means, that no language-
dependent features was used, with the exception of
the stemmers. Therefore, we wonder whether the
patterns discovered in a pair of languages can be use-
ful in other language pairs. To answer this question,
a single prediction model was built by aggregating
instances from each of the vector data sets into one
data set with 4,000 training instances. Afterward,
this model was used to provide predictions for the
2,000 test cases.
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Moreover, customization for each pair of lan-
guages in the word-similarity function, which is
show in Table 2, was set on the following unique set
of parameters: q1 = 1, q2 = 3, α = 0.5, bias = 0.0.
Thus, the words are compared using q-grams and
the Dice coefficient. In addition to the measure of
q-grams, two "off-the-shelf" measures were used as
nonparametric alternatives, namely: Edit Distance
(Levenshtein, 1966) and the Jaro-Winkler similarity
(Winkler, 1990).

In another attempt to simplify this model, we
evaluated the predictive ability of each of the three
groups of features shown in Table 1. The combi-
nation of groups 2 and 3, consistently obtained bet-
ter results when the evaluation with 10 fold cross-
validation was used in the training data. This result
was consistent with the simple training versus test
data evaluation. The sum of all previous simplifica-
tions significantly reduced the number of parameters
and features in comparison with the model described
in Section 4. That is, only one SVM and 4 parame-
ters, namely: α, bias, q1 and q2.

Besides, the additional use of circular-pivoting
translations was tested. In the original model, for
every pair of texts (T1, T2) their pivot translations
(T t1 , T t2) were provided allowing the calculation of
|T1 ∪ T t2| and |T t1 ∪ T2|. Translations T t1 and T t2 can
also be translated back to their original languages
obtaining T tt1 and T tt2 . These additional transla-
tions in turn allows the calculation of |T tt1 ∪ T t2|
and |T t1 ∪ T tt2 |. This procedure can be repeated
again to obtain T ttt1 and T ttt2 , which in turn provides
|T1 ∪ T ttt2 |, |T ttt1 ∪ T2|, |T tt1 ∪ T ttt2 | and |T ttt1 ∪ T tt2 |.
The original feature set is denoted as t. The extended
feature sets using double-pivoting translations and
triple-pivot translations are denoted respectively as
tt and ttt.

The results obtained with this simplified model
using single, double and triple pivot translations are
shown in Table 4. The first column indicates the
word-similarity function used by the soft cardinal-
ity and the second column indicates the number of
pivoting translations.

6 Discussion

In spite of the customization of the parameter C in
the run2, the run1 obtained better results than run2

Soft C. #t spa-e ita-e fra-e deu-e avg.
Ed.Dist. t 0.444 0.450 0.440 0.410 0.436

Ed.Dist. tt 0.452 0.464 0.434 0.432 0.446

Ed.Dist. ttt 0.464 0.468 0.440 0.424 0.449

Jaro-W. t 0.422 0.450 0.426 0.406 0.426

Jaro-W. tt 0.430 0.456 0.444 0.400 0.433

Jaro-W. ttt 0.426 0.458 0.430 0.430 0.436

q-grams t 0.428 0.456 0.456 0.432 0.443

q-grams tt 0.436 0.478 0.444 0.430 0.447

q-grams ttt 0.452 0.474 0.464 0.442 0.458

Table 4: Single-multilingual model results (accuracies)

(see Table 3). This result indicates that the simpler
model produced better predictions in unseen data.

It is also important to note that two of the three
multilingual systems proposed in Section 5 achieved
higher scores than the best official results (see rows
containing “t” in Table 4). This indicates that the
proposed simplified model is able to discover pat-
terns in the cardinalities of a pair of languages and
project them into the other language pairs.

Regarding the use of additional circular-pivoting
translations, Table 4 shows that t was overcome on
average by tt and tt by ttt in all cases of the three
sets of results. The relative improvement obtained
by comparing t versus ttt for each group was 3.0% in
Edit Distance, 2.3% for Jaro-Winkler and 3.4% for
the q-gram measure. This same trend holds roughly
for each language pair.

7 Conclusions

We described the SOFTCARDINALITY system
that participated in the SemEval CLTE evaluation
campaign in 2013, obtaining the best results in data
sets spa-eng and ita-eng, and achieving the third
place on average. This result was obtained using
separate models for each language pair. It was also
concluded that a single-multilingual model outper-
forms that approach. Besides, we found that the
use of additional pivoting translations provide bet-
ter results. Finally, the measure based on q-grams of
characters, used within the soft cardinality, resulted
to be the best option among other measures of word
similarity. In conclusion, the soft cardinality method
used in combination with SMT and SVM classifiers
is a competitive method for the CLTE task.
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Abstract

This paper describes the SemEval-2013 Task
5: “Evaluating Phrasal Semantics”. Its first
subtask is about computing the semantic simi-
larity of words and compositional phrases of
minimal length. The second one addresses
deciding the compositionality of phrases in a
given context. The paper discusses the impor-
tance and background of these subtasks and
their structure. In succession, it introduces the
systems that participated and discusses evalu-
ation results.

1 Introduction

Numerous past tasks have focused on leveraging the
meaning of word types or words in context. Exam-
ples of the former are noun categorization and the
TOEFL test, examples of the latter are word sense
disambiguation, metonymy resolution, and lexical
substitution. As these tasks have enjoyed a lot suc-
cess, a natural progression is the pursuit of models
that can perform similar tasks taking into account
multiword expressions and complex compositional
structure. In this paper, we present two subtasks de-
signed to evaluate such phrasal models:

a. Semantic similarity of words and compositional
phrases

b. Evaluating the compositionality of phrases in
context

For example, the first subtask addresses computing
how similar the word “valuation” is to the compo-
sitional sequence “price assessment”, while the sec-
ond subtask addresses deciding whether the phrase
”piece of cake” is used literally or figuratively in the
sentence “Labour was a piece of cake!”.

The aim of these subtasks is two-fold. Firstly,
considering that there is a spread interest lately in
phrasal semantics in its various guises, they provide
an opportunity to draw together approaches to nu-
merous related problems under a common evalua-
tion set. It is intended that after the competition,
the evaluation setting and the datasets will comprise
an on-going benchmark for the evaluation of these
phrasal models.

Secondly, the subtasks attempt to bridge the
gap between established lexical semantics and full-
blown linguistic inference. Thus, we anticipate that
they will stimulate an increased interest around the
general issue of phrasal semantics. We use the no-
tion of phrasal semantics here as opposed to lexi-
cal compounds or compositional semantics. Bridg-
ing the gap between lexical semantics and linguis-
tic inference could provoke novel approaches to cer-
tain established tasks, such as lexical entailment and
paraphrase identification. In addition, it could ul-
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timately lead to improvements in a wide range of
applications in natural language processing, such
as document retrieval, clustering and classification,
question answering, query expansion, synonym ex-
traction, relation extraction, automatic translation,
or textual advertisement matching in search engines,
all of which depend on phrasal semantics.

The remainder of this paper is structured as fol-
lows: Section 2 presents details about the data
sources and the variety of sources applicable to the
task. Section 3 discusses the first subtask, which
is about semantic similarity of words and compo-
sitional phrases. In subsection 3.1 the subtask is
described in detail together with some information
about its background. Subsection 3.2 discusses the
data creation process and subsection 3.3 discusses
the participating systems and their results. Section 4
introduces the second subtask, which is about eval-
uating the compositionality of phrases in context.
Subsection 4.1 explains the data creation process for
this subtask. In subsection 4.2 the evaluation statis-
tics of participating systems are presented. Section
5 is a discussion about the conclusions of the entire
task. Finally, in section 6 we summarize this presen-
tation and discuss briefly our vision about challenges
in distributional semantics.

2 Data Sources & Methodology

Data instances of both subtasks are drawn from the
large-scale, freely available WaCky corpora (Baroni
et al., 2009). The resource contains corpora in 4 lan-
guages: English, French, German and Italian. The
English corpus, ukWaC, consists of 2 billion words
and was constructed by crawling to the .uk domain
of the web and using medium-frequency words from
the BNC as seeds. The corpus is part-of-speech
(PoS) tagged and lemmatized using the TreeTagger
(Schmid, 1994). The French corpus, frWaC, con-
tains 1.6 billion word corpus and was constructed
by web-crawling the .fr domain and using medium-
frequency words from the Le Monde Diplomatique
corpus and basic French vocabulary lists as seeds.
The corpus was PoS tagged and lemmatized with
the TreeTagger. The French corpus, deWaC, con-
sists of 1.7 billion word corpus and was constructed
by crawling the .de domain and using medium-
frequency words from the SudDeutsche Zeitung cor-

pus and basic German vocabulary lists as seeds. The
corpus was PoS tagged and lemmatized with the
TreeTagger. The Italian corpus, itWaC, is a 2 billion
word corpus constructed from the .it domain of the
web using medium-frequency words from the Re-
pubblica corpus and basic Italian vocabulary lists as
seeds. The corpus was PoS tagged with the Tree-
Tagger, and lemmatized using the Morph-it! lexicon
(Zanchetta and Baroni, 2005). Several versions of
the WaCky corpora, with various extra annotations
or modifications are also available1.

We ensured that data instances occur frequently
enough in the WaCky corpora, so that participat-
ing systems could gather statistics for building dis-
tributional vectors or other uses. As the evalua-
tion data only contains very small annotated sam-
ples from freely available web documents, and the
original source is provided, we could provide them
without violating copyrights.

The size of the WaCky corpora is suitable for
training reliable distributional models. Sentences
are already lemmatized and part-of-speech tagged.
Participating approaches making use of distribu-
tional methods, part-of-speech tags or lemmas, were
strongly encouraged to use these corpora and their
shared preprocessing, to ensure the highest possi-
ble comparability of results. Additionally, this had
the potential to considerably reduce the workload of
participants. For the first subtask, data were pro-
vided in English, German and Italian and for the sec-
ond subtask in English and German.

The range of methods applicable to both subtasks
was deliberately not limited to any specific branch of
methods, such as distributional or vector models of
semantic compositionality. We believe that the sub-
tasks can be tackled from different directions and we
expect a great deal of the scientific benefit to lie in
the comparison of very different approaches, as well
as how these approaches can be combined. An ex-
ception to this rule is the fact that participants in the
first subtask were not allowed to use directly defini-
tions extracted from dictionaries or lexicons. Since
the subtask is considered fundamental and its data
were created from online knowledge resources, sys-
tems using the same tools to address it would be of
limited use. However, participants were allowed to

1WaCky website: wacky.sslmit.unibo.it

40



use other information residing in dictionaries, such
as Wordnet synsets or synset relations.

Participating systems were allowed to attempt one
or both subtasks, in one or all of the languages sup-
ported. However, it was expected that systems per-
forming well at the first basic subtask would pro-
vide a good starting point for dealing with the sec-
ond subtask, which is considered harder. Moreover,
language-independent models were of special inter-
est.

3 Subtask 5a: Semantic Similarity of
Words and Compositional Phrases

The aim of this subtask is to evaluate the compo-
nent of a semantic model that computes the simi-
larity between word sequences of different length.
Participating systems are asked to estimate the se-
mantic similarity of a word and a short sequence of
two words. For example, they should be able to fig-
ure out that contact and close interaction are similar
whereas megalomania and great madness are not.

This subtask addresses a core problem, since sat-
isfactory performance in computing the similarity of
full sentences depends on similarity computations
on shorter sequences.

3.1 Background and Description

This subtask is based on the assumption that we
first need a basic set of functions to compose the
meaning of two words, in order to construct more
complex models that compositionally determine the
meaning of sentences, as a second step. For compo-
sitional distributional semantics, the need for these
basic functions is discussed in Mitchell and Lapata
(2008). Since then, many models have been pro-
posed for addressing the task (Mitchell and Lapata,
2010; Baroni and Zamparelli, 2010; Guevara, 2010),
but still comparative analysis is in general based on
comparing sequences that consist of two words.

As in Zanzotto et al. (2010), this subtask proposes
to compare the similarity of a 2-word sequence and
a single word. This is important as it is the basic
step to analyse models that can compare any word
sequences of different length.

The development and testing set for this subtask
were built based on the idea described in Zanzotto
et al. (2010). Dictionaries were used as sources of

contact/[kon-takt]

1. the act or state of touching;
a touching or meeting, as of
two things or people.

2. close interaction

3. an acquaintance, colleague,
or relative through whom a
person can gain access to
information, favors, influ-
ential people, and the like.

Figure 1: The definition of contact in a sample dictionary

positive training examples. Dictionaries are natural
repositories of equivalences between words under
definition and sequences of words used for defining
them. Figure 1 presents the definition of the word
contact, from which the pair (contact, close interac-
tion) can be extracted. Such equivalences extracted
from dictionaries can be seen as natural and unbi-
ased data instances. This idea opens numerous op-
portunities:

• Since definitions in dictionaries are syntacti-
cally rich, we are able to create examples for
different syntactic relations.

• We have the opportunity to extract positive ex-
amples for languages for which dictionaries
with sufficient entries are available.

Negative examples were generated by matching
words under definition with randomly chosen defin-
ing sequences. In the following subsection, we pro-
vide details about the application of this idea to build
the development and testing set for subtask 5a.

3.2 Data Creation
Data for this subtask were provided in English, Ger-
man and Italian. Pairs of words under definitions and
defining sequences were extracted from the English,
German and Italian part of Wiktionary, respectively.
In particular, for each language, all Wiktionary en-
tries were downloaded and part-of-speech tagged us-
ing the Genia tagger (Tsuruoka et al., 2005). In
succession, definitions that start with noun phrases
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Language Train set Test set Total

English 5,861 3,907 9,768
German 1,516 1,010 2,526
Italian 1,275 850 2,125

German - no names 1,101 733 1,834

Table 1: Quantitative characteristics of the datasets

were kept, only. For the purpose of extracting word
and sequence pairs for this subtask, we consider as
noun phrases, sequences that consist of adjectives
or noun and end with a noun. In cases where the
extracted noun phrase was longer than two words,
the right-most two sequences were kept, since in
most cases noun phrases are governed by their right-
most component. Subsequently, we discarded in-
stances whose words occur too infrequently in the
WaCky corpora (Baroni et al., 2009) of each lan-
guage. WaCky corpora are available freely and are
large enough for participating systems to extract dis-
tributional statistics. Taking the numbers of ex-
tracted instances into account, we set the frequency
thresholds at 10 occurrences for English and 5 for
German and Italian.

Data instances extracted following this process
were then checked by a computational linguist. Can-
didate pairs in which the definition sequence was not
judged to be a precise and adequate definition of the
word under definition were discarded. These cases
were very limited and mostly account for shortcom-
ings of the very simple pattern used for extraction.
For example, the pair (standard, transmission vehi-
cle) coming from the definition of “standard” as “A
manual transmission vehicle” was discarded. Simi-
larly in German, the pair (Fremde (Eng. stranger),
weibliche Person (Eng. female person)) was dis-
carded. “Fremde”, which is of female grammat-
ical genre, was defined as “weibliche Person, die
man nicht kennt (Eng. female person, one does not
know)”. In Italian, the pair (paese (Eng. land, coun-
try, region), grande estensione (Eng. large tract))
was discarded, since the original definition was
“grande estensione di terreno abitato e generalmente
coltivato (Eng. large tract of land inhabited and cul-
tivated in general)”.

The final data sets were divided into training and

held-out testing sets, according to a 60% and 40%
ratio, respectively. The first three rows of table 1
present the numbers of the train and test sets for the
three languages chosen. It was identified that a fair
percentage of the German instances (approximately
27%) refer to the definitions of first names or family
names. This is probably a flaw of the German part of
Wiktionary. In addition, the pattern used for extrac-
tion happens to apply to the definitions of names.
Name instances were discarded from the German
data set to produce the data set described in the last
row of table 1.

The training set was released approximately 3
months earlier than the test data. Instances in both
set ware annotated as positive or negative. Test set
annotations were not released to the participants, but
were used for evaluation, only.

3.3 Results
Participating systems were evaluated on their ability
to predict correctly whether the components of each
test instance, i.e. word-sequence pair, are semanti-
cally similar or distinct. Participants were allowed
to use or ignore the training data, i.e. the systems
could be supervised or unsupervised. Unsupervised
systems were allowed to use the training data for de-
velopment and parameter tuning. Since this is a core
task, participating systems were not be able to use
dictionaries or other prefabricated lists. Instead, they
were allowed to use distributional similarity models,
selectional preferences, measures of semantic simi-
larity etc.

Participating system responses were scored in
terms of standard information retrieval measures:
accuracy (A), precision (P), recall (R) and F1 score
(Radev et al., 2003). Systems were encouraged to
submit at most 3 solutions for each language, but
submissions for fewer languages were accepted.

Five research teams participated. Ten system runs
were submitted for English, one for German (on data
set: German - no names) and one for Italian. Table 2
illustrates the results of the evaluation process. The
teams of (HsH) (Wartena, 2013), CLaC (Siblini and
Kosseim, 2013), UMCC DLSI-(EPS) (Dávila et al.,
2013), and ITNLP, the Harbin Institute of Technol-
ogy, approached the task in a supervised way, while
MELODI (Van de Cruys et al., 2013) participated
with two unsupervised approaches. Interestingly,
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Language Rank Participant Id run Id A R P rej. R rej. P F1

1 HsH 1 .803 .752 .837 .854 .775 .792
3 CLaC 3 .794 .707 .856 .881 .750 .774
2 CLaC 2 .794 .695 .867 .893 .745 .771
4 CLaC 1 .788 .638 .910 .937 .721 .750

English 5 MELODI lvw .748 .614 .838 .882 .695 .709
6 UMCC DLSI-(EPS) 1 .724 .613 .787 .834 .683 .689
7 ITNLP 3 .703 .501 .840 .904 .645 .628
8 MELODI dm .689 .481 .825 .898 .634 .608
9 ITNLP 1 .663 .392 .857 .934 .606 .538
10 ITNLP 2 .659 .427 .797 .891 .609 .556

German 1 HsH 1 .825 .765 .870 .885 .790 .814

Italian 1 UMCC DLSI-(EPS) 1 .675 .576 .718 .774 .646 .640

Table 2: Task 5a: Evaluation results. A, P, R, rej. and F1 stand for accuracy, precision, recall, rejection and F1 score,
respectively.

these approaches performed better than some super-
vised ones for this experiment. Below, we sum-
marise the properties of participating systems.

(HsH) (Wartena, 2013) used distributed similarity
and especially random indexing to compute similar-
ities between words and possible definitions, under
the hypothesis that a word and its definition are dis-
tributionally more similar than a word and an arbi-
trary definition. Considering all open-class words,
context vectors over the entire WaCky corpus were
computed for the word under definition, the defining
sequence, its component words separately, the ad-
dition and multiplication of the vectors of the com-
ponent words and a general context vector. Then,
various similarity measures were computed on the
vectors, including an innovative length-normalised
version of Jensen-Shannon divergence. The similar-
ity values are used to train a Support Vector Machine
(SVM) classifier (Cortes and Vapnik, 1995).

The first approach (run 1) of CLaC (Siblini and
Kosseim, 2013) is based on a weighted semantic
network to measure semantic relatedness between
the word and the components of the phrase. A
PART classifier is used to generate a partial decision
trained on the semantic relatedness information of
the labelled training set. The second approach uses
a supervised distributional method based on words
frequently occurring in the Web1TB corpus to cal-
culate relatedness. A JRip classifier is used to gen-

erate rules trained on the semantic relatedness infor-
mation of the training set. This approach was used
in conjunction with the first one as a backup method
(run 2). In addition, features generated by both ap-
proaches were used to train the JRIP classifier col-
lectively (run 3).

The first approach of MELODI (Van de Cruys
et al., 2013), called lvw, uses a dependency-based
vector space model computed over the ukWaC cor-
pus, in combination with Latent Vector Weighting
(Van de Cruys et al., 2011). The system computes
the similarity between the first noun and the head
noun of the second phrase, which was weighted ac-
cording to the semantics of the modifier. The second
approach, called dm, used a dependency-based vec-
tor space model, but, unlike the first approach, disre-
garded the modifier in the defining sequence. Since
both systems are unsupervised, the training data was
used to train a similarity threshold parameter, only.

UMCC DLSI-(EPS) (Dávila et al., 2013) locates
the synsets of words in data instances and computes
the semantic distances between each synset of the
word under definition and each synsets of the defin-
ing sequence words. In succession, a classifier is
trained using features based on distance and Word-
Net relations.

The first attempt of ITNLP (run 1) consisted of an
SVM classifier trained on semantic similarity com-
putations between the word under definition and
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the defining sequence in each instance. Their sec-
ond attempt also uses an SVM, however trained on
WordNet-based similarities. The third attempt of
ITNLP is a combination of the previous two; it com-
bines their features to train an SVM classifier.

4 Subtask 5b: Semantic Compositionality
in Context

An interesting sub-problem of semantic composi-
tionality is to decide whether a target phrase is used
in its literal or figurative meaning in a given con-
text. For example “big picture” might be used lit-
erally as in Click here for a bigger picture or figura-
tively as in To solve this problem, you have to look at
the bigger picture. Another example is “old school”
which can also be used literally or figuratively: He
will go down in history as one of the old school, a
true gentlemen. vs. During the 1970’s the hall of the
old school was converted into the library.

Being able to detect whether a phrase is used lit-
erally or figuratively is e.g. especially important for
information retrieval, where figuratively used words
should be treated separately to avoid false positives.
For example, the example sentence He will go down
in history as one of the old school, a true gentle-
men. should probably not be retrieved for the query
“school”. Rather, the insights generated from sub-
task 5a could be utilized to retrieve sentences using
a similar phrase such as “gentleman-like behavior”.
The task may also be of interest to the related re-
search fields of metaphor detection and idiom iden-
tification.

There were no restrictions regarding the array of
methods, and the kind of resources that could be
employed for this task. In particular, participants
were allowed to make use of pre-fabricated lists of
phrases annotated with their probability of being
used figuratively from publicly available sources, or
to produce these lists from corpora. Assessing how
well the phrase suits its context might be tackled
using e.g. measures of semantic relatedness as well
as distributional models learned from the underlying
corpus.

Participants of this subtask were provided with
real usage examples of target phrases. For each us-
age example, the task is to make a binary decision
whether the target phrase is used literally or figu-

ratively in this context. Systems were tested in two
different disciplines: a known phrases task where all
target phrases in the test set were contained in the
training, and an unknown phrases setting, where all
target phrases in the test set were unseen.

4.1 Data Creation

The first step in creating the corpus was to compile
a list of phrases that can be used either literally or
metaphorically. Thus, we created an initial list of
several thousand English idioms from Wiktionary by
listing all entries under the category ENGLISH ID-
IOMS using the JWKTL Wiktionary API (Zesch et
al., 2008). We manually filtered the list removing
most idioms that are very unlikely to be ever used
literally (anymore), e.g. to knock on heaven’s door.
For each of the resulting list of phrases, we extracted
usage contexts from the ukWaC corpus (Baroni et
al., 2009). Each usage context contains 5 sentences,
where the sentence with the target phrase appears in
a randomized position. Due to segmentation errors,
some usage contexts actually might contain less than
5 sentences, but we manually filtered all usage con-
texts where the remaining context was insufficient.
This was done in the final cleaning step where we
also manually removed (near) duplicates, obvious
spam, encoding problems etc.

The target phrases in context were annotated for
figurative, literal, both or impossible to tell usage,
using the CrowdFlower2 crowdsourcing annotation
platform. We used about 8% of items as “gold”
items for quality assurance, and had each example
annotated by three crowdworkers. The task was
comparably easy for crowdworkers, who reached
90%-94% pairwise agreement, and 95% success on
the gold items. About 5% of items with low agree-
ment and marked as impossible were removed. Ta-
ble 3 summarizes the quantitative characteristics of
all datasets resulting from this process. We took care
in sampling the data as to keep similar distributions
across the training, development and testing parts.

4.2 Results

Training and development datasets were made avail-
able in advance, test data was provided during the
evaluation period without labels. System perfor-

2www.crowdflower.com
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Task Dataset # Phrases # Items Items per phrase # Liter. # Figur. # Both

known
train 10 1,424 68–188 702 719 3
dev 10 358 17–47 176 181 1
test 10 594 28–78 294 299 1

unseen
train 31 1,114 4–75 458 653 3
dev 9 342 4–74 141 200 1
test 15 518 8–73 198 319 1

Table 3: Quantitative characteristics of the datasets

Rank System Run Accuracy

1 IIRG 3 .779
2 UNAL 2 .754
3 UNAL 1 .722
5 IIRG 1 .530
4 Baseline MFC - .503
6 IIRG 2 .502

Table 4: Task 5b: Evaluation results for the known
phrases setting

Rank System Run Accuracy

1 UNAL 1 .668
2 UNAL 2 .645
3 Baseline MFC - .616
4 CLaC 1 .550

Table 5: Task 5b: Evaluation results for the unseen
phrases setting

mance was measured in accuracy. Since all partic-
ipants provided classifications for all test items, the
accuracy score is equivalent to precision/recall/F1.
Participants were allowed to enter up to three dif-
ferent runs for evaluation. We also provide baseline
accuracy scores, which are obtained by always as-
signing the most frequent class (figurative).

Table 4 provides the evaluation results for the
known phrases task, while Table 5 ranks participants
for the unseen phrases task. As expected, the un-
seen phrases setting is much harder than the known
phrases setting, as for unseen phrases it is not possi-
ble to learn lexicalised contextual clues. In both set-
tings, the winning entries were able to beat the MFC
baseline. While performance in the known phrases

setting is close to 80% and thus acceptable, the gen-
eral task of recognizing the literal or figurative use of
unseen phrases remains very challenging, with only
a small improvement over the baseline. We refer to
the system descriptions for more details on the tech-
niques used for this subtask: UNAL (Jimenez et al.,
2013), IIRG (Byrne et al., 2013) and CLaC (Siblini
and Kosseim, 2013).

5 Task Conclusions

In this section, we further discuss the findings and
conclusion of the evaluation challenge in the task of
“Phrasal Semantics”.

Looking at the results of both subtasks, one ob-
serves that the maximum performance achieved is
higher for the first than the second subtask. For
this comparison to be fair, trivial baselines should be
taken into account. A system randomly assigning an
output value would be on average 50% correct in the
first subtask, since the numbers of positive and neg-
ative instances in the testing set are equal. Similarly,
a system assigning the most frequent class, i.e. the
figurative use of any phrase, would be 50.3% and
61.6% accurate in the second subtask for seen and
unseen test instances, respectively. It should also be
noted that the testing instances in the first subtask
are unseen in the respective training set. As a result,
in terms of baselines, the second subtask on unseen
data (Table 5) should be considered easier than the
first subtask (Table 2). However, the best perform-
ing systems achieved much higher accuracy in the
first than in the second subtask. This contradiction
confirms our conception that the first subtask is less
complex than the second.

In the first subtask, it is evident that no method
performs much better or much worse than the others.
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Although the participating systems have employed a
wide variety of approaches and tools, the difference
between the best and worst accuracy achieved is
relatively limited, in particular approximately 14%.
Even more interestingly, unsupervised approaches
performed better than some supervised ones. This
observation suggests that no “golden recipe” has
been identified so far for this task. Thus, probably
different processing tools take advantage of different
sources of information. It is a matter of future re-
search to identify these sources and the correspond-
ing tools, and then develop hybrid methods of im-
proved performance.

In the second subtask, the results of evaluation
on known phrases are much higher than on unseen
phrases. This was expected, as for unseen phrases it
is not possible to learn lexicalised contextual clues.
Thus, the second subtask has succeeded in identify-
ing the complexity threshold up to which the cur-
rent state-of-the-art can address the computational
problem. Further than this threshold, i.e. for unseen
phrases, current systems have not yet succeeded in
addressing it. In conclusion, the difficulty in eval-
uating the compositionality of previously unseen
phrases in context highlights the overall complexity
of the second subtask.

6 Summary and Future Work

In this paper we have presented the 5th task of Se-
mEval 2013, “Evaluating Phrasal Semantics”, which
consists of two subtasks: (1) semantic similarity of
words and compositional phrases, and (2) compo-
sitionality of phrases in context. The former sub-
task, which focussed on the first step of composing
the meaning of phrases of any length, is less com-
plex than the latter subtask, which considers the ef-
fect of context to the semantics of a phrase. The
paper presents details about the background and im-
portance of these subtasks, the data creation process,
the systems that took part in the evaluation and their
results.

In the future, we expect evaluation challenges on
phrasal semantics to progress towards two direc-
tions: (a) the synthesis of semantics of sequences
longer than two words, and (b) aiming to improve
the performance of systems that determine the com-
positionality of previously unseen phrases in con-

text. The evaluation results of the first task sug-
gest that state-of-the-art systems can compose the
semantics of two word sequences with a promising
level of success. However, this task should be seen
as the first step towards composing the semantics
of sentence-long sequences. As far as subtask 5b
is concerned, the accuracy achieved by the partici-
pating systems on unseen testing data was low, only
slightly better than the most frequent class baseline,
which assigns the figurative use to all test phrases.
Thus, the subtask cannot be considered well ad-
dressed by the state-of-the-art and further progress
should be sought.
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Abstract

This paper describes the approach of the
Hochschule Hannover to the SemEval 2013
Task Evaluating Phrasal Semantics. In or-
der to compare a single word with a two word
phrase we compute various distributional sim-
ilarities, among which a new similarity mea-
sure, based on Jensen-Shannon Divergence
with a correction for frequency effects. The
classification is done by a support vector ma-
chine that uses all similarities as features. The
approach turned out to be the most successful
one in the task.

1 Introduction

The task Evaluating Phrasal Semantics of the 2013
International Workshop on Semantic Evaluation
(Manandhar and Yuret, 2013) consists of two sub-
tasks. For the first subtask a list of pairs consisting
of a single word and a two word phrase are given.
For the English task a labeled list of 11,722 pairs
was provided for training and a test set with 3,906
unlabeled examples. For German the training set
contains 2,202 and the test set 732 pairs. The system
should be able to tell whether the two word phrase
is a definition of the single word or not. This task
is somewhat different from the usual perspective of
finding synonyms, since definitions are usually more
general than the words they define.

In distributional semantics words are represented
by context vectors and similarities of these con-
text vectors are assumed to reflect similarities of
the words they represent. We compute context vec-
tors for all words using the lemmatized version of

the Wacky Corpora for English (UKWaC, approxi-
mately 2,2 billion words) and German (DeWaC, 1,7
billion words) (Baroni et al., 2009). For the phrases
we compute the context vectors as well directly on
the base of occurrences of that phrase, as well as
by construction from the context vectors of the two
components. For the similarities between the vec-
tors we use Jensen-Shannon divergence (JSD) and
cosine similarity. Since the JSD is extremely depen-
dent on the number of occurrences of the words, we
define a new similarity measure that corrects for this
dependency. Since none of the measures gives satis-
factory results, we use all measures to train a support
vector machine that classifies the pairs.

The remainder of this paper is organized as fol-
lows. We start with an overview of related work. In
section 3 we discuss the dependence of JSD on word
frequency and introduce a new similarity measure.
Section 4 then describes the system. The results are
given in section 5 and are discussed in section 6.

2 Related Work

Though distributional similarity has widely been
studied and has become an established method to
find similar words, there is no consensus on the way
the context of a word has to be defined and on the
best way to compute the similarity between two con-
texts. In the most general definitions the context of
a word consists of a number of words and their re-
lation to the given word (Grefenstette, 1992; Curran
and Moens, 2002). In the following we will only
consider the simplest case in which there is only one
relation: the relation of being in the same sentence.
Each word can be represented by a so called con-
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text vector in a high dimensional word space. Since
these vectors will be sparse, often dimensionality re-
duction techniques are applied. In the present pa-
per we use random indexing, introduced by Karlgren
and Sahlgren (2001) and Sahlgren (2005) to reduce
the size of the context vectors.

The way in which the context vectors are con-
structed also determines what similarity measures
are suited. For random indexing Görnerup and Karl-
gren (2010) found that best results are obtained us-
ing L1-norm or Jensen-Shannon divergence (JSD).
they also report that these measures highly correlate.
We could confirm this in a preliminary experiment
and therefore only use JSD in the following.

Recently, the question whether and how an ap-
propriate context vector for a phrase can be de-
rived from the context vectors of its components
has become a central issue in distributional seman-
tics (Clark and Pulman, 2007; Mitchell and Lap-
ata, 2008; Widdows, 2008; Clarke et al., 2008). It
is not yet clear which way of combining the vec-
tors of the components is best suited for what goals.
Giesbrecht (2010) and Mitchell and Lapata (2008)
e.g. find that for noun-noun compounds the prod-
uct of context vectors (corresponding to the intersec-
tion of contexts) and more complex tensor products
give best results, while Guevara (2011) obtains best
results for adjective-noun phrases with addition of
vectors (corresponding to union of contexts). Since
we do not (yet) have a single best similarity mea-
sure to distinguish definitions from non-definitions,
we use a combination of similarity measures to train
a model as e.g. also was done by Bär et al. (2012).

3 Frequency Dependency Correction of
Jensen-Shannon Divergence

Weeds et al. (2004) observed that in tasks in which
related words have to be found, some measures pre-
fer words with a frequency similar to that of the tar-
get word while others prefer high frequent words,
regardless of the frequency of the target word. Since
Görnerup and Karlgren (2010) found that L1-norm
and JSD give best results for similarity of random
index vectors, we are especially interested in JSD.
The JSD of two distributions p and q is given by

JSD(p, q) = 1
2D(p||12p+ 1

2q)+ 1
2D(q||12p+ 1

2q) (1)

where D(p||q) = Σip(i) log p(i)
log q(i) is the Kullback-

Leibler divergence. We will follow the usual termi-
nology of context vectors. However, we will always
normalize the vectors, such that they can be inter-
preted as probability mass distributions. According
to Weeds et al. (2004) the JSD belongs to the cat-
egory of distance measures that tends to give small
distances for highly frequent words. In Wartena et
al. (2010) we also made this observation and there-
fore we added an additional constraint on the selec-
tion of keywords that should avoid the selection of
too general words. In the present paper we try to ex-
plicitly model the dependency between the JSD and
the number of occurrences of the involved words.
We then use the difference between the JSD of the
co-occurrence vectors of two words and the JSD ex-
pected on the base of the frequency of these words
as a similarity measure. In the following we will use
the dependency between the JSD and the frequency
of the words directly. In (Wartena, 2013) we model
the JSD instead as a function of the number of non
zero values in the context vectors. The latter depen-
dency can be modeled by a simpler function, but did
not work as well with the SemEval data set.

Given two words w1 and w2 the JSD of their con-
text vectors can be modeled as a function of the min-
imum of the number of occurrences of w1 and w2.
Figure 3 shows the JSD of the context vectors of the
words of the training set and the context vector of
the definition phrase. In this figure the JSD of the
positive and the negative examples is marked with
different marks. The lower bound of the negative
examples is roughly marked by a (red) curve, that is
defined for context vectors c1 and c2 for words w1

and w2, respectively, by

JSDexp(c1, c2) = a +
1

n̂b + c
(2)

where n̂ = min(n(w1), n(w2)) with n(w) the num-
ber of occurrences of w in the corpus and with a,
b and c constants that are estimated for each set of
word pairs. For the pairs from the English training
and test set the values are: a = 0.15, b = 0.3 and
c = 0.5. Experiments on the training data showed
that the final results are not very dependent on the
exact values of these constants.

Finally, our new measure is simply defined by

JSDnorm(p, q) = JSD(p, q)− JSDexp(p, q). (3)
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Figure 1: JSD (y-axis) of all pairs in the English training set versus the number of occurrences of the definition phrase
(x-axis) in the UkWaC-Corpus. The positives examples are marked by a +, the negative examples by a ×. Most
positive examples are hidden behind the negative ones. The solid (red) line gives the expected JSD.

4 System Description

The main assumption for our approach is, that a
word and its definition are distributionally more sim-
ilar than a word and an arbitrary definition. We use
random indexing to capture distributional properties
of words and phrases. Since similarity measures for
random index vectors have biases for frequent or in-
frequent pairs, we use a combination of different
measures. For the two-word definition phrases we
can either estimate the context vector on the base of
the two words that make up the phrase, or compute it
directly from occurrences of the whole phrase in the
corpus. The latter method has the advantage of being
independent of assumptions about semantic compo-
sition, but might have the problem that it is based
on a few examples only. Thus we use both distribu-
tions, and also include the similarities between the
single word and each of the words of the definition.

4.1 Distributions
Consider a pair (w, d) with w a word and d a defi-
nition consisting of two words: d = (d1, d2). Now
for each of the words w, d1, d2 and the multiword
d we compute context vectors using the random in-
dexing technique. The context vectors are computed
over the complete Wacky corpus. The context used
for a word are all open-class words (i.e. Noun, Verb,
Adjective, Adverb, etc. but not Auxiliary, Pronoun,
etc.) in a sentence. Each word is represented by a

random index vector of 10 000 dimensions in which
8 random positions have a non-zero value. The ran-
dom vectors of all words in all contexts are summed
up to construct context vectors (with length 10 000),
denoted vw, vd, vd1 , vd2 . In many cases there are
only very few occurrences of d, making the context
vector vd very unreliable. Thus we also compute the
vectors vadd

d = vd1 + vd2 and vmult
d = vd1 · vd2 . Fi-

nally, we also compute the general context vector (or
background distribution) vgen which is the context
vector obtained by aggregating all used contexts.

4.2 Similarities
Table 1 gives an overview of the similarities com-
puted for the context vector vw. In addition we also
compute D(vw||vgen), D(vd||vgen), D(vd1 ||vgen),
D(vd2 ||vgen). The original intuition was that the def-
inition of a word is usual given as a more general
term or hypernym. It turned out that this is not the
case. However, in combination with other features
these divergences proved to be useful for the ma-
chine learning algorithm. Finally, we also use the
direct (first-order) co-occurrence between w and d
by computing the ratio between the probability with
which we expect w and d to co-occur in one sentence
if they would be independent, and the real probabil-
ity of co-occurrence found in the corpus:

co-occurrence-ratio(w, d) =
p(w, d)

p(w) · p(d)
(4)
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Table 1: Similarity measures used to compute the simi-
larity of a context vector of some word to various context
vectors for a phrase d = (d1, d2).

vd vd1 vd2 vadd
d vmult

d

jsd X X X X
jsd-norm X X X X
cossim X X

Table 2: Results for English and German (no names
dataset). Results on train sets are averaged results from
10-fold cross validation. Results on the test set are the
official task results.

AUC Accuracy F-Measure
Train English 0.88 0.80 0.79
Test English - 0.80 0.79
Train German 0.90 0.83 0.82
Test German - 0.83 0.81

where p(w, d) is the probability that w and d are
found in the same sentence, and p(w), with w a word
or phrase, the probability that a sentence contains w.

For the computation of JSDnorm(vw, vadd
d ) we

need the number of occurrences on which vadd
d is

based. As an estimate for this number we use
max(n(d1), n(d2)). The constants a, b and c in
equation 2 are set to the following values: for
all cases a = 0.15; for JSDnorm(vw, vd) we let
b = 0.3 and c = 0.5; for JSDnorm(vw, vd1) and
JSDnorm(vw, vd2) we let b = 0.35 and c = −0.1; for
JSDnorm(vw, vadd

d ) we let b = 0.4 and c = −0.1. For
the German subtask a = 0.28 and slightly different
values for b and c were used to account for slightly
different frequency dependencies.

4.3 Combining Similarities
The 15 attributes for each pair obtained in this way
are used to train a support vector machine (SVM)
using LibSVM (Chang and Lin, 2011). Optimal pa-
rameters for the SVM were found by grid-search and
10-fold cross validation on the training data.

5 Results

In Table 2 the results are summarized. Since the
task can also be seen as a ranking task, we include
the Area Under the ROC-Curve (AUC) as a classi-
cal measure for ranking quality. We can observe that
the results are highly stable between training set and

Table 3: Results for English train set (average from 10-
fold cross validation) using one feature

feature Accuracy AUC
jsd(vw, vd) 0.50 0.57
jsdnorm(vw, vd) 0.59 0.70
jsd(vw, vd1) 0.54 0.63
jsdnorm(vw, vd1) 0.61 0.69
jsd(vw, vd2) 0.57 0.65
jsdnorm(vw, vd2) 0.63 0.71
jsd(vw, vadd

d ) 0.59 0.67
jsdnorm(vw, vadd

d ) 0.66 0.74
cossim(vw, vadd

d ) 0.69 0.76
cossim(vw, vmult

d ) 0.62 0.71
co-occ-ratio(w, d) 0.61 0.71

test set and across languages. Table 3 gives the re-
sults that are obtained on the training set using one
feature. We can observe that the normalized versions
of the JSD always perform better than the JSD itself.
Furthermore, we see that for the composed vectors
the cosine performs better than the normalized JSD,
while it performs worse than JSD for the other vec-
tors (not displayed in the table). This eventually can
be explained by the fact that we have to estimate the
number of contexts for the calculation of jsdexp.

6 Conclusion

Though there are a number of ad-hoc decisions in
the system the approach was very successful and
performed best in the SemEval task on phrasal se-
mantics. The main insight from the development
of the system is, that there is not yet a single best
similarity measure to compare random index vec-
tors. The normalized JSD turns out to be a useful
improvement of the JSD but is problematic for con-
structed context vectors, the formula in equation (2)
is rather ad hoc and the constants are just rough esti-
mates. The formulation in (Wartena, 2013) might be
a step in the right direction, but also there we are still
far away from a unbiased similarity measure with a
well founded theoretical basis.

Finally, it is unclear, what is the best way to rep-
resent a phrase in distributional similarity. Here we
use three different vectors in parallel. It would be
more elegant if we had a way to merge context vec-
tors based on direct observations of the phrase with
a constructed context vector.
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Abstract

This paper describes a temporal expression
identification and normalization system, Man-
TIME, developed for the TempEval-3 chal-
lenge. The identification phase combines
the use of conditional random fields along
with a post-processing identification pipeline,
whereas the normalization phase is carried out
using NorMA, an open-source rule-based tem-
poral normalizer. We investigate the perfor-
mance variation with respect to different fea-
ture types. Specifically, we show that the use
of WordNet-based features in the identifica-
tion task negatively affects the overall perfor-
mance, and that there is no statistically sig-
nificant difference in using gazetteers, shal-
low parsing and propositional noun phrases
labels on top of the morphological features.
On the test data, the best run achieved 0.95
(P), 0.85 (R) and 0.90 (F1) in the identifica-
tion phase. Normalization accuracies are 0.84
(type attribute) and 0.77 (value attribute). Sur-
prisingly, the use of the silver data (alone or in
addition to the gold annotated ones) does not
improve the performance.

1 Introduction

Temporal information extraction (Verhagen et al.,
2007; Verhagen et al., 2010) is pivotal for many Nat-
ural Language Processing (NLP) applications such
as question answering, text summarization and ma-
chine translation. Recently the topic aroused in-
creasing interest also in the medical domain (Sun et
al., 2013; Kovaćević et al., 2013).

Following the work of Ahn et al. (2005), the
temporal expression extraction task is now conven-

tionally divided into two main steps: identification
and normalization. In the former step, the effort
is concentrated on how to detect the right bound-
ary of temporal expressions in the text. In the nor-
malization step, the aim is to interpret and repre-
sent the temporal meaning of the expressions using
TimeML (Pustejovsky et al., 2003) format. In the
TempEval-3 challenge (UzZaman et al., 2012) the
normalization task is focused only on two temporal
attributes: type and value.

2 System architecture

ManTIME mainly consists of two components, one
for the identification and one for the normalization.

2.1 Identification

We tackled the problem of identification as a se-
quencing labeling task leading to the choice of Lin-
ear Conditional Random Fields (CRF) (Lafferty et
al., 2001). We trained the system using both human-
annotated data (TimeBank and AQUAINT corpora)
and silver data (TE3Silver corpus) provided by the
organizers of the challenge in order to investigate the
importance of the silver data.

Because the silver data are far more numerous
(660K tokens vs. 95K), our main goal was to rein-
force the human-annotated data, under the assump-
tion that they are more informative with respect to
the training phase. Similarly to the approach pro-
posed by Adafre and de Rijke (2005), we developed
a post-processing pipeline on top of the CRF se-
quence labeler to boost the results. Below we de-
scribe each component in detail.
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2.1.1 Conditional Random Fields
The success of applying CRFs mainly depends on

three factors: the labeling scheme (BI, BIO, BIOE
or BIOEU), the topology of the factor graph and
the quality of the features used. We used the BIO
format in all the experiments performed during this
research. The factor graph has been generated us-
ing the following topology: (w0), (w−1), (w−2),
(w+1), (w+2), (w−2∧w−1), (w−1∧w0), (w0∧w+1),
(w−1∧w0∧w+1), (w0∧w+1∧w+2), (w+1∧w+2),
(w−2 ∧w−1 ∧w0), (w−1 ∧w+1) and (w−2 ∧w+2).

The system tokenizes each document in the cor-
pus and extracts 94 features. These belong to the
following four disjoint categories:

• Morphological: This set includes a compre-
hensive list of features typical of Named En-
tity Recognition (NER) tasks, such as the word
as it is, lemma, stem, pattern (e.g. ’Jan-2003’:
’Xxx-dddd’), collapsed pattern (e.g. ’Jan-
2003’: ’Xx-d’), first 3 characters, last 3 charac-
ters, upper first character, presence of ’s’ as last
character, word without letters, word without
letters or numbers, and verb tense. For lemma
and POS tags we use TreeTagger (Schmid,
1994). Boolean values are included, indicating
if the word is lower-case, alphabetic, digit, al-
phanumeric, titled, capitalized, acronym (cap-
italized with dots), number, decimal number,
number with dots or stop-word. Additionally,
there are features specifically crafted to han-
dle temporal expressions in the form of regu-
lar expression matching: cardinal and ordinal
numbers, times, dates, temporal periods (e.g.
morning, noon, nightfall), day of the week, sea-
sons, past references (e.g. ago, recent, before),
present references (e.g. current, now), future
references (e.g. tomorrow, later, ahead), tem-
poral signals (e.g. since, during), fuzzy quan-
tifiers (e.g. about, few, some), modifiers, tem-
poral adverbs (e.g. daily, earlier), adjectives,
conjunctions and prepositions.

• Syntactic: Chunks and propositional noun
phrases belong to this category. Both are
extracted using the shallow parsing software
MBSP1.

1http://www.clips.ua.ac.be/software/mbsp-for-python

• Gazetteers: These features are expressed us-
ing the BIO format because they can include
expressions longer than one word. The inte-
grated gazetteers are: male and female names,
U.S. cities, nationalities, world festival names
and ISO countries.

• WordNet: For each word we use the number of
senses associated to the word, the first and the
second sense name, the first 4 lemmas, the first
4 entailments for verbs, the first 4 antonyms,
the first 4 hypernyms and the first 4 hyponyms.
Each of them is defined as a separate feature.

The features mentioned above have been com-
bined in 4 different models:

• Model 1: Morphological only

• Model 2: Morphological + syntactic

• Model 3: Morphological + gazetteers

• Model 4: Morphological + gazetteers + Word-
Net

All the experiments have been carried out using
CRF++ 0.572 with parameters C = 1, η = 0.0001
and L2-regularization function.

2.1.2 Model selection
The model selection was performed over the

entire training corpus. Silver data and human-
annotated data were merged, shuffled at sentence-
level (seed = 490) and split into two sets: 80% as
cross-validation set and 20% as real-world test set.
The cross-validation set was shuffled 5 times, and
for each of these, the 10-fold cross validation tech-
nique was applied.

The analysis is statistically significant (p =
0.0054 with ANOVA test) and provides two impor-
tant outcomes: (i) the set of WordNet features nega-
tively affects the overall classification performance,
as suggested by Rigo et al. (2011). We believe this is
due to the sparseness of the labels: many tokens did
not have any associated WordNet sense. (ii) There
is no statistically significant difference among the
first three models, despite the presence of apparently
important information such as chunks, propositional

2https://code.google.com/p/crfpp/
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Figure 1: Differences among models using 5x10-fold
cross-validation

noun phrases and gazetteers. The Figure 1 shows the
box plots for each model.

In virtue of this analysis, we opted for the smallest
feature set (Model 1) to prevent overfitting.

In order to get a reliable estimation of the perfor-
mance of the selected model on the real world data,
we trained it on the entire cross-validation set and
tested it against the real-word test set. The results
for all the models are shown in the following table:

System Pre. Rec. Fβ=1

Model 1 83.20 85.22 84.50
Model 2 83.57 85.12 84.33
Model 3 83.51 85.12 84.31
Model 4 83.15 84.44 83.79

Precision, Recall and Fβ=1 score are computed
using strict matching.

The models used for the challenge have been
trained using the entire training set.

2.1.3 Post-processing identification pipeline
Although CRFs already provide reasonable per-

formance, equally balanced in terms of precision
and recall, we focused on boosting the baseline per-
formance through a post-processing pipeline. For
this purpose, we introduced 3 different modules.

Probabilistic correction module averages the
probabilities from the trained CRFs model with the
ones extracted from human-annotated data only. For
each token, we extracted: (i) the conditional proba-

bility for each label to be assigned (B, I or O), and
(ii) the prior probability of the labels in the human-
annotated data only. The two probabilities are aver-
aged for every label of each token. The list of tokens
extracted in the human-annotated data was restricted
to those that appeared within the span of temporal
expressions at least twice. The application of this
module in some cases has the effect of changing the
most likely label leading to an improvement of re-
call, although its major advantage is making CRFs
predictions less strict.

BIO fixer fixes wrong label sequences. For the
BIO labeling scheme, the sequence O-I is necessar-
ily wrong. We identified B-I as the appropriate sub-
stitution. This is the case in which the first token
has been incorrectly annotated (e.g. “Three/O days/I
ago/I ./O” is converted into “Three/B days/I ago/I
./O”). We also merged close expressions such as B-
B or I-B, because different temporal expressions are
generally divided at least by a symbol or a punctu-
ation character (e.g. “Wednesday/B morning/B” is
converted into “Wednesday/B morning/I”).

Threshold-based label switcher uses the prob-
abilities extracted from the human-annotated data.
When the most likely label (in the human-annotated
data) has a prior probability greater than a certain
threshold, the module changes the CRFs predicted
label to the most likely one. This leads to force
the probabilities learned from the human-annotated
data.

Through repeated empirical experiments on a
small sub-set of the training data, we found an
optimal threshold value (0.87) and an optimal se-
quence of pipeline components (Probabilistic cor-
rection module, BIO fixer, Threshold-based label
switcher, BIO fixer).

We analyzed the effectiveness of the post-
processing identification pipeline using a 10-fold
cross-validation over the 4 models. The difference
between CRFs and CRFs + post-processing pipeline
is statistically significant (p = 3.51 × 10−23 with
paired T-test) and the expected average increment is
2.27% with respect to the strict Fβ=1 scores.

2.2 Normalization
The normalization component is an updated version
of NorMA (Filannino, 2012), an open-source rule-
based system.
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# Training data Identification Normalization Overall
Strict matching Lenient matching Accuracy

run (post-processing) Pre. Rec. Fβ=1 Pre. Rec. F̃β=1 Type Value score
1 Human&Silver (no) 78.57 63.77 70.40 97.32 78.99 87.20 88.99 77.06 67.20
2 Human&Silver (yes) 79.82 65.94 72.22 97.37 80.43 88.10 87.38 75.68 66.67
3 Human (no) 76.07 64.49 69.80 94.87 80.43 87.06 87.39 77.48 67.45
4 Human (yes) 78.86 70.29 74.33 95.12 84.78 89.66 86.31 76.92 68.97
5 Silver (no) 77.68 63.04 69.60 97.32 78.99 87.20 88.99 77.06 67.20
6 Silver (yes) 81.98 65.94 73.09 98.20 78.99 87.55 90.83 77.98 68.27

Table 1: Performance on the TempEval-3 test set.

3 Results and Discussion

We submitted six runs as combinations of different
training sets and the use of the post-processing iden-
tification pipeline. The results are shown in Table 1
where the overall score is computed as multiplica-
tion between lenient Fβ=1 score and the value accu-
racy.

In all the runs, recall is lower than precision. This
is an indication of a moderate lexical difference be-
tween training data and test data. The relatively low
type accuracy testifies the normalizer’s inability to
recognize new lexical patterns. Among the correctly
typed temporal expressions, there is still about 10%
of them for which an incorrect value is provided.
The normalization task is proved to be challenging.

The training of the system by using human-
annotated data only, in addition to the post-
processing pipeline, provided the best results, al-
though not the highest normalization accuracy. Sur-
prisingly, the silver data do not improve the per-
formance, both when used alone or in addition
to human-annotated data (regardless of the post-
processing pipeline usage).

The post-processing pipeline produces the high-
est precision when applied to the silver data only.
In this case, the pipeline acts as a reinforcement of
the human-annotated data. As expected, the post-
processing pipeline boosts the performance of both
precision and recall. We registered the best improve-
ment with the human-annotated data.

Due to the small number of temporal expressions
in the test set (138), further analysis is required to
draw more general conclusions.

4 Conclusions

We described the overall architecture of ManTIME,
a temporal expression extraction pipeline, in the
context of TempEval-3 challenge.

This research shows, in the limits of its general-
ity, the primary and exhaustive importance of mor-
phological features to the detriment of syntactic fea-
tures, as well as gazetteer and WordNet-related ones.
In particular, while syntactic and gazetteer-related
features do not affect the performance, WordNet-
related features affect it negatively.

The research also proves the use of a post-
processing identification pipeline to be promising
for both precision and recall enhancement.

Finally, we found out that the silver data do not
improve the performance, although we consider the
test set too small for this result to be generalizable.

To aid replicability of this work, the system
code, machine learning pre-trained models, statis-
tical validation details and an online DEMO are
available at: http://www.cs.man.ac.uk/

˜filannim/projects/tempeval-3/
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Abstract

We describe FSS-TimEx, a module for the

recognition and normalization of temporal ex-

pressions we submitted to Task A and B of

the TempEval-3 challenge. FSS-TimEx was

developed as part of a multilingual event ex-

traction system, Nexus, which runs on top of

the EMM news processing engine. It consists

of finite-state rule cascades, using minimalis-

tic text processing stages and simple heuris-

tics to model the relations between events and

temporal expressions. Although FSS-TimEx

is already deployed within an IE application

in the medical domain, we found it useful to

customize its output to the TimeML standard

in order to have an independent performance

measure and guide further developments.

1 Introduction

The FSS-TimEx (Finite State-based Shallow Time

Extractor) system participating in TempEval-3 is in-

tegrated in the event extraction engine Nexus (Tanev

et al., 2008), developed at the EC’s Joint Research

Center for extracting event information from on-line

news articles gathered by the Europe Media Mon-

itor (EMM) news aggregation and analysis family

of applications(Steinberger et al., 2009). Nexus is

highly multilingual1 and easily portable across do-

mains through semi-automatic learning of lexical re-

sources. In the domain of epidemiological surveil-

lance, the event extraction task required a particu-

larly deep temporal information analysis, in order to

1Currently, it covers English, French, Italian, Spanish, Por-

tuguese, Turkish, Russian, Arabic.

detect temporal relations among event reports and

mitigate the classical event duplication problem. As

an example, from a report like:

The overall death toll has risen to 160

since the beginning of the year, after 2

patients in Gulu and 2 in Masindi died on
Tue 5 Dec 2000.

a system might be prevented to wrongly sum up the

two victim counts (160+4) only if it is made aware of

the inclusion relation between the first time interval

and the date, which in turn implies normalizing the

two temporal expressions.

Currently, FSS-TimEx is deployed for French,

English and Italian and extensions are foreseen for

further languages. Given such requirements for mul-

tilinguality, we developed FSS-TimEx using a lin-

guistically light-weight approach, applying shallow

processing modules only. On the other hand, as we

need to extract highly structured information out of

the detected temporal expressions, to be used in the

subsequent normalization phase, we mostly opted

for a rule-based approach, using finite-state gram-

mar cascades, rather than machine learning meth-

ods. Nonetheless, some of the required lexicons

were semi-automatically learned.

In our participation in Tasks A and B of the

TempEval-3, we experimented with adapting an ex-

isting timex recognition module for the English lan-

guage, to Spanish.

We first describe our system in 2,3 and 4, then in

5 we show and shortly discuss the results for Task

A and Task B, and conclude with some thoughts on

prospective developments.
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2 System Modules

The system makes use of cascades of finite-state

grammar rules applied to the output of a set of shal-

low text processing modules.

Text Processing Modules. These include tok-

enization, sentence splitting, domain-specific dictio-

nary look-up and morphological analysis, which are

all part of the CORLEONE (Core Linguistic Entity

Online Extraction) engine (Piskorski, 2008). Mor-

phological analysis purely consists of matching text

tokens over full-form entries of a dictionary from the

MULTEXT project (Erjavec, 2004), which encodes

rich morphological features in a cross-lingual stan-

dard. Consequently, no PoS-tagging or parsing is

performed upstream of the extraction grammars.

Finite-State Grammar Engine. We use the Ex-

PRESS finite-state grammar engine (Piskorski,

2007). Grammars in the ExPRESS formalism con-

sist of cascades of pattern-action rules, whose left-

hand side (LHS) are regular expressions over flat

feature structures (FFS) and the right-hand side

(RHS) consists of a list of FFS (see Figure 1 be-

low for an example). Variable binding from LHS to

RHS, as well as string processing and Boolean op-

erators on the RHS, allow to impose relatively com-

plex constraints in the form of Boolean-valued pred-

icates.

Weakly-supervised Learning of Lexical Re-
sources. In order to determine the Class feature

for the event extraction task, we experimented with

using a language-independent method for weakly-

supervised lexical acquisition. The algorithm takes

as input a small set of seed terms, an unannotated

text corpus and a parameter for the number of boot-

strapping iterations: it then learns a ranked list of

further terms, which are likely to belong to the same

class, based on distributional n-gram features and

term clustering (Tanev et al., in press). Although

manual post-filtering is required, output term accu-

racy is reasonably high, and very high for top ranked

terms.

3 Event and Event Feature Detection
(Task B)

Although Nexus is a high precision event extraction

system, we have not deployed it to model the event

detection task. The reason is that Nexus is cus-

tomized to recognize a number of highly domain-

specific event types (e.g. Armed Conflict,

Earthquake,Terrorist Attack) and will

necessarily perform low in recall given the general,

domain-independent definition of events in Task

B. Instead, we tentatively used a small set of

language-dependent finite-state rules to model verb

phrase structure. Rules take as input MULTEXT

morphological tokens and detect verb phrases along

with a number of VP features, including Tense,

which is used by the temporal normalizer to ground

event modifying temporal expressions (see 4.2).

Class attribute was encoded in the morphologi-

cal dictionary by using the output of the machine

learning method sketched above: for each TimeML

Event Class (Pustejovsky et al., 2003), we provided

seed verb forms for all of its sub-classes, performed

multi-class learning, and used the main Class label

to annotate the union of output forms in the lexicon,

after some manual cleaning.

The OCCURRENCE class was used as the default

Class value for event verb forms, and it was overrid-

den whenever a more specific event Class value was

present2.

We do not cover event nominal forms, as after

some tests event referring and non-event referring

noun classes appeared too difficult to tell apart by

machine learning methods. Consequently, we ex-

pect system recall in Task B to be heavily limited.

4 Temporal Expressions (Task A)

FSS-TimEx’s temporal expression processing con-

sists of two stages.

In the Recognition phase, temporal expressions

are detected and segmented in text and a more ab-

stract representation of them is filled for further

processing. Local parsing of timexes is performed

by a cascade of hand-coded, partially language-

dependent finite-state grammar rules using the Ex-

PRESS engine, resulting in an intermediate fea-

2Otherwise, we chose randomly among alternative values of

Class-ambiguous event expressions.
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rule :> ( (lex & [TYPE:"temp_signal", SURFACE:#signal, NORMALIZED:"INCLUDED"]
| lex & [TYPE:"temp_signal", NORMALIZED:"DURING"])

lex & [TYPE:"quantifier", NORMALIZED:#mod]? determiner?
lex & [TYPE:"temp_mod", OP:#op, REF_TYPE:#ref_type]
( (lex & [TYPE: "numeral", NORMALIZED:#amount1]
lex & [TYPE: "numeral", NORMALIZED:#amount2]?)

| token & [TYPE: "any_natural_number", SURFACE:#amount1]
lex & [TYPE:"time_unit", NUM:"p", GRAN:#gran]):x
-> x: period & [DIR:#op,REF_TYPE:#ref_type,MOD:#mod,GRAN:#gran,QUANT:#amount,SIGNAL:#signal]
& #amount := ConcForSum(#amount1,#amount2).

Figure 1: Sample recognition rule

ture structure-like representation, which is subse-

quently used by a language-independent Normaliza-

tion stage to compute exact values of the time ex-

pressions, according to the TimeML standard.

We judge that such a strict coupling of recognition

and normalization is better achieved through feature

extraction rules than by deploying two separate pro-

cesses3.

4.1 Recognizing Temporal Expressions

A cascade of around 90 rules is deployed for the En-

glish language. These comprise lower-level rules, in

charge of modelling language constructions in the

target language, and typization rules that check the

attribute configuration of lower-level rule output and

return a corresponding structure, typed according to

an intermediate annotation type set, exporting all at-

tribute values relevant for normalization.

As an example, the rule shown in Figure1 detects

single-boundary period expressions (e.g. in the pre-
vious four weeks or during the next five days).

Notice that the rule output type is the non

TimeML-compliant period (i.e. an anchored time

duration). This is an intermediate annotation type

which is subsequently converted into a TimeML

type (Duration) during the Normalization phase.

The temporal lexicon referenced by the gram-

mar contains around 300 entries for the English lan-

guage, classified into as many as 24 types, each de-

scribed by a small attribute list. Sample entries from

the English lexicon are listed in Figure 2.

This lexicon structure (types and attributes) was

applied as such to the Spanish language; lexicon

population was manually done in one day of work,

by first translating lexical triggers (e.g. day, month

3This architecture is very close to the one proposed by the

ITA-Chronos system (Negri, 2007).

monday | TYPE:day_name | NORMALIZED:Monday
weeks | TYPE:time_unit | GRAN:week | NUM:p
night | TYPE:day_period_name | NORMALIZED:NI
ago | TYPE:temp_adv | OP:- | REF_TYPE:speaker
last | TYPE:temp_mod | OP:- | REF_TYPE:speaker
since | TYPE:temp_signal | NORMALIZED:BEGIN
early | TYPE:mod | NORMALIZED:START

Figure 2: Sample lexicon entries

names, numerals) and then gathering more func-

tional entries (temporal adverbs, modifiers, etc.) by

running test rules on large corpora. It turned out that,

by using a parallel lexicon structure, we could re-

duce the cross-lingual re-arrangement of extraction

rules for the Spanish grammar, minimizing the work

cost to only 2 days, excluding fine tuning.

4.2 Normalization

Normalization is a fully language-independent pro-

cess, working with calendar representations of tem-

poral expressions4 built out of the output feature

structures from the Recognition phase. It comprises

two sub-processes:

Anchor selection. First, anchor selection deter-

mines and maintains a reference time for relative

timex resolution, starting by using the Article Cre-

ation Date and updating it along the resolution pro-

cess according to a simple search heuristic: select

the closest preceding resolved timex with a compat-

ible level of granularity. We experimented with two

alternative settings for this, one restricting the search

to timexes within the same sentence, the other span-

ning over the whole article text: we noticed a sys-

tematic gain in normalization accuracy with the for-

mer setting and we used it for Task A.

4The normalization is entirely implemented in Java code.
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Timex-Event mapping. For certain timex

classes5 we need to resort to Tense information

from event-referring verb phrases in order to dis-

ambiguate between future and past interpretation.

For this purpose, a simple, syntax-free heuristic is

implemented to compute a mapping from each time

expression onto the event it modifies, which just

uses a weighted token distance metric, promoting

events preceding the timex over those following it.

Finally, calendar arithmetic is used to resolve and

normalize the value of relative timexes.

5 Results6

5.1 Temporal Expression Extraction
For English, our system scored in the middle range

over all participant systems on relaxed match F1

measure. Strict match figures are not indicative: in-

deed, temporal signals (like on in on Friday) were

systematically included in the extracted extent, con-

trary to the TIMEX3 tag specification, because this

is required by finite-state parsing of the IE system

with which FSS-TimEx was integrated.

Compared to the best performing system (BestEN

in Table1), our approach mainly suffered from rela-

tively low recall. Although such a rate of false neg-

atives can be expected from a rule-based approach,

in our case it was mostly due to two main “bugs” in

the normalization code: first, in the process of tun-

ing system output types to TimeML, we erroneously

discarded date expressions introduced by temporal

signals, like in from now; secondly, we do not nor-

malize single adverbial expressions (currently), al-

though they are detected by grammar rules.

We outperformed in Precision the best F1 system.

Many false positives were all coming from a single

article, where the word season in flu season was sys-

tematically annotated as an event in the gold stan-

dard. This kind of context-based inference seems to

be out of reach for our rule-based, local parsing ap-

proach.

The major flaw in porting the system to Span-

ish language was a 28% Recall drop. Main types

5E.g. what we refer to as relativeTime or

relativeOffset, like on Thursday and this weekend, re-

spectively.
6Results were obtained in 1.89 and 1.97 seconds of com-

putation time respectively for English and Spanish data, on an

Intel Core i3 M380 2.53GHz processor.

of false negatives included fuzzy expressions (e.g.

hace tiempo), and compositional expressions.

Performance in timex classification and normal-

ization still falls behind top scoring systems. Finite-

state techniques can only parse local constructions,

greedily consuming as long text spans as possible:

therefore we systematically miss clausal relations

like in: The day before Raymond Roth was pulled
where we wrongly parsed a fully specified, relative

timex The day before. Similar cases resulted at the

same time in incorrect Type assignment, like in

Two years after his brain-cancer diagnosis where

we wrongly detect a Date type expression (Two
years after).

Inaccurate event Tense attribute extraction

sometimes caused wrong timex Value normaliza-

tion. One noticeable source of such an error is re-

ported speech, which temporarily changes the dis-

course utterance time and that we do not attempt

to model in our anchor selection procedure. Inter-

estingly, we noticed that even in cases when both

timex-event mapping, and event Tense were cor-

rect,Value normalization was not. For example, in:

Northern Ireland’s World Cup qualifier with Russia
has been postponed until 15:00 GMT Saturday, one

can see that a shallow approach like ours, with no ac-

cess to lexico-semantic knowledge, cannot pick up

the implicit future tense interpretation of the event

verb.

5.2 Event and Event Attribute Extraction
Results for Spanish (Table 2) show that a small set

of rules were sufficient to detect event verbal expres-

sions with high precision. The task was much harder

for English, where morphological derivation is less

often marked and given that we were not performing

any PoS disambiguation.

Our main aim for Task B exercise was evaluating

the performance of semi-automatic methods for verb

classification, and to see how much verb tense in-

formation could help normalizing time expressions.

Class attribute performance is rather poor, even

considering that 7% of false hits in English were due

to a bug in the MULTEXT lexicon causing the fre-

quent form said not to be annotated as REPORTING
event. A high rate of overlapping occurs among

verb classes, causing our attempt to “lexicalize” the

Class attribute, rather than trying to compute it
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Recognition Normalization
Relaxed Strict Value Type

System F1 P R F1 P R F1 A F1 A

EN 0.85 0.90 0.80 0.49 0.52 0.46 0.58 0.68 0.69 0.81

BestEN 0.90 0.89 0.91 0.79 0.78 0.80 0.78 0.86 0.80 0.88

ES 0.65 0.86 0.52 0.49 0.65 0.39 0.50 0.77 0.62 0.95

BestES 0.90 0.96 0.84 0.85 0.90 0.80 0.85 0.94 0.87 0.97

Table 1: Performance of Temporal Expression Extraction and Normalization.

Recognition Class Tense
System F1 P R F1 A F1 A

EN 0.65 0.63 0.67 0.43 0.66 0.39 0.60

BestEN 0.81 0.81 0.81 0.72 0.89 0.60 0.73

ES 0.58 0.90 0.42 0.26 0.45 0.49 0.84

BestES 0.89 0.92 0.86 0.85 0.96 0.87 0.98

Table 2: Performance of Event and Event Attribute Extraction.

from context features of verb instances, to be unfea-

sible. Tense attribute performance7 was too low to

draw any conclusion on its impact on the Normal-

ization task. However, for Spanish its accuracy (A

in Figure 2) was higher and yet this did not result in

increased timex Value scores8.

6 Conclusion

The main positive outcome of our participation in

TempEval-3 was that we were able to build a system

with acceptable performance on Task A for Span-

ish, after a relatively quick adaptation from an ex-

isting English system. Recall was the bottleneck

of such an experiment, while precision figures did

not drop significantly, and Normalization accuracy

even increased for Spanish9, suggesting that a devel-

oper may be able to iteratively add language-specific

rules so as to reduce false negatives, without endan-

gering overall system precision.

A major flaw of our finite-state, local parsing ap-

proach is in recognizing event-anchored time ex-

pressions. In order to address this, our timex recog-

nition rules must be further tuned to the TimeML

7Tense figures are unofficial, as we did not manage to ex-

port this attribute value because of a bug in the submitted sys-

tem. However, we were able to reproduce the evaluation on a

fixed system.
8We do not have independent performance figures of the

timex-event mapping, although this mechanism was invariable

across the two languages.
9Due to low F1 for timex entity extraction.

standard in order to fully isolate temporal signals,

and event detection recall must be significantly in-

creased so as to cover event nominalizations. The

detection of event referring expressions according

to the general, context-independent definition in

TimeML is not our main research target, however

we plan to use statistical classification methods to

increase the performance on this task as this is a

prerequisite to achieve a reliable evaluation of our

event-timex mapping heuristic. Event Tense extrac-

tion should be increased with the same purpose.
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Abstract 

In this paper, we present the JUCSE system, 
designed for the TempEval-3 shared task. The 
system extracts events and temporal infor-
mation from natural text in English. We have 
participated in all the tasks of TempEval-3, 
namely Task A, Task B & Task C. We have 
primarily utilized the Conditional Random 
Field (CRF) based machine learning tech-
nique, for all the above tasks. Our system 
seems to perform quite competitively in Task 
A and Task B. In Task C, the system’s per-
formance is comparatively modest at the ini-
tial stages of system development. We have 
incorporated various features based on differ-
ent lexical, syntactic and semantic infor-
mation, using Stanford CoreNLP and Wordnet 
based tools. 

1 Introduction 

Temporal information extraction has been a popu-
lar and interesting research area of Natural Lan-
guage Processing (NLP) for quite some time. 
Generally, a lot of events are described in a variety 
of newspaper texts, stories and other important 
documents where the different events described 
happen at different time instants. The temporal 
location and ordering of these events are either 
specified or implied. Automatic identification of 
time expressions and events and annotation of 
temporal relations constitute an important task in 

text analysis. These are also important in a wide 
range of NLP applications that include temporal 
question answering, machine translation and doc-
ument summarization.  

A lot of research in the area of temporal infor-
mation extraction has been conducted on multiple 
languages, including English and several European 
languages. The TimeML was first developed in 
2002 in an extended workshop called TERQAS 
(Time and Event Recognition for Question An-
swering Systems) and, in 2003, it was further de-
veloped in the context of the TANGO workshop 
(TimeML Annotation Graphical Organizer). Since 
then most of the works in this research arena have 
been conducted in English. The variety of works 
include TimeML (Pustejovsky et al., 2003), the 
development of a temporally annotated corpus 
Time-Bank (Pustejovsky et al., 2003), the temporal 
evaluation challenges TempEval-1 (Verhagen et 
al., 2007), TempEval-2 (Pustejovsky and Verha-
gen, 2010). In the series of Message Understanding 
Conferences (MUCs) that started from 1987 and 
the Sheffield Temporal Annotation scheme 
(STAG) (Setzer &Gaizauskas, 2000) the  aim  was 
to identify events in news text and determine their 
relationship with points on a temporal line. 

In the series of TempEval evaluation exercises, 
TempEval-1 was the first one where the focus was 
on identification of three types of temporal rela-
tion: relation between an event and a time expres-
sion in the same sentence, relation between an 
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event and the document creation time, and relation 
between two main events in consecutive sentences. 

 TempEval-2 was a follow up to TempEval-1 
and consisted of six subtasks rather than three. It 
added (i) identification of time expressions and 
determination of values of the attributes TYPE and 
VAL (ii) identification of event expressions and 
determination of its attribute values. It included the 
previous three relation tasks from TempEval-1 and 
an additional task of annotating temporal relation 
between a pair of events where one subordinates 
the other.  

We have participated in all three tasks of 
TempEval-3- Task A, Task B and Task C. A com-
bination of CRF based machine learning and rule 
based techniques has been adopted for temporal 
expression extraction and determination of attrib-
ute values of the same   (Task A). We have used a 
CRF based technique for event extraction (Task 
B), with the aid of lexical, semantic and syntactic 
features. For determination of event attribute val-
ues we have used simple rule based techniques. 
Automatic annotation of temporal relation between 
event-time in the same sentence, event-DCT rela-
tions, mainevent-mainevent relations in consecu-
tive sentences and subevent-subevent relations in 
the same sentences has been introduced as a new 
task (Task-C) in the TempEval-3 exercise. We 
have adopted a CRF based technique for the same 
as well. 

2 The JU_CSE System Approach  

The JU_CSE system for the TempEval-3 shared 
task uses mainly a Conditional Random Field 
(CRF) machine learning approach to achieve Task 
A, Task B & Task C. The workflow of our system 
is illustrated in Figure 1. 

2.1 Task A: Temporal Expression Identifica-
tion and Normalization 

Temporal Expression Identification: 

 We have used CRF++ 0.571, an open source im-
plementation of the Conditional Random Field 
(CRF) machine learning classifier for our experi-
ments. CRF++ templates have been used to capture 
the relation between the different features in a se-
quence to identify temporal expressions. Temporal 
                                                        
1 http://crfpp.googlecode.com/svn/trunk/doc/index.html 

expressions mostly appear as multi-word entities 
such as “the next three days”. Therefore the use of 
CRF classifier that uses context information of a 
token seemed most appropriate.  

 Initially, all the sentences have been changed to 
a vertical token-by-token level sequential structure 
for temporal expressions representation by a B-I-O 
encoding, using a set of mostly lexical features. In 
this encoding of temporal expression, “B” indi-
cates the ‘beginning of sequence’, “I” indicates a 
token inside a sequence and “O” indicates an out-
side word. We have carefully chosen the features 
list based on the several entities that denote month 
names, year, weekdays, various digit expressions 
(day, time, AM, PM etc.) In certain temporal ex-
pression patterns (several months, last evening) 
some words (several, last) act as modifiers to the 
following words that represent the time expression. 
Temporal expressions include time expression 
modifiers, relative days, periodic temporal set, 
year-eve day, month name with their short pattern 
forms, season of year, time of day, decade list and 
so on. We have used the POS information of each 
token as a feature. We have carefully accounted for 
a simple intuition revelation that most temporal 
expressions contain some tokens conveying the 
“time” information while others possibly convey-
ing the “quantity” of time. For example, in the ex-
pression “next three days”, “three” quantifies 
“days”. Following are the different temporal ex-
pressions lists that have been utilized: 

 
 A list of time expression modifiers: this, 

mid, recent, earlier, beginning, late etc. 
 A list of relative days: yesterday, tomor-

row etc. 
 A list of periodic temporal set: hourly, 

nightly etc. 
 A list of year eve day: Christmas Day, 

Valentine Day etc. 
 A list of month names with their short pat-

tern forms: April, Apr. etc. 
 A list of season of year: spring, winter etc. 
 A list of time of day: morning, afternoon, 

evening etc. 
 A list of decades list: twenties, thirties etc. 
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Raw Text: 
For his part, Fidel Castro is the ultimate political 
survivor. People have predicted his demise so 
many times, and the US has tried to hasten it on 
several occasions. Time and again, he endures.  

 Tokenize with Stanford CoreNLP 
 Obtain POS tags of tokens 
 Extract features from tokens 
 Identify the features for event annotation and 

temporal annotation separately 

 
CRF  

 

Event & 
Time 

 Features 

Tag EV
EN

T 
tokens 

Tag 
TIMEX3 

tokens 

. 
       For………  OTHERS 

  nearly ……….. TIMEX3 
       forty…. …  TIMEX3 

years…….. TIMEX3 
. 
. 

 

. 
People………  OTHERS 
have ………..   OTHERS 

      predicted …. …  EVENT 
his ………….. OTHERS 

. 

. 

Annotated Text 
 
For his part, Fidel Castro is the ultimate political survivor. 
People have <EVENT class="I_ACTION" 
eid="e1">predicted</EVENT> his <EVENT 
class="OCCURRENCE" eid="e2">demise</EVENT> so 
many times, and the US has <EVENT class="I_ACTION" 
eid="e3">tried</EVENT> to <EVENT 
class="OCCURRENCE" eid="e4">hasten</EVENT> it on 
several occasions. 

D
eterm

ine 
Event 
C

lass 

CoreNLP 
for “type” 
& “velue” 

<MAKEINSTANCE eiid="ei1” eventID="e1" pos="VERB" 
tense="PRESENT" aspect="PERFECTIVE" polarity="POS" /> 
 
<MAKEINSTANCE eiid="ei2” eventID="e2" pos="NOUN" 
tense="PRESENT" aspect="PERFECTIVE" polarity="POS" /> 
 
<MAKEINSTANCE eiid="ei3” eventID="e3" pos="VERB" 
tense="PRESENT" aspect="PERFECTIVE" polarity="POS" /> 

R
ule based approach to obtain tense, as-
pect, polarity, m

odality etc. for events 

 

Enlist entity pairs with features 
<mainevent-mainevent> 

<event-event> 
<event-dct>  

<event-time> 
 

 
CRF  

 

Temporal Relations: 
 
<TLINK lid="l1" relType="BEFORE" 
eventInstanceID="ei1" relatedTo-
Time="t0" /> 
 
<TLINK lid="l2" relType="BEFORE" 
eventInstanceID="ei2" relatedToEven-
tInstance="ei1" /> 

Figure 1.The JU_CSE System Architecture 
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Determination of Normalized value and type 
of Temporal Expressions: 

 Temporal expressions in documents are generally 
defined with the type and value attributes. All the 
temporal expressions can be differentiated into 
three types (i) explicit (ii) relative and (iii) implicit 
temporal expressions. For example, the expression 
“October 1998” refers to a specific month of the 
year which can be normalized without any addi-
tional information. On the other hand, the relative 
expression “yesterday” can’t be normalized with-
out the knowledge of a corresponding reference 
time. The reference time can either be a temporal 
expression or the Document Creation Time marked 
in the document. Consider the following piece of 
text: “Yesterday was the 50th independence of In-
dia”. The First Independence Day of India is 15th 
august 1947.” Here “Yesterday” can be normal-
ized as “15-08-1997”. It may be noted that infor-
mation such as “First Independence Day of India” 
can be directly accessed from the timestamp calen-
dar, through the metadata of a document. The third 
type of temporal expressions includes implicit ex-
pressions such as names of festival days, birthdays 
and holidays or events. These expressions are 
mapped to available calendar timeline to find out 
their normalized values. 

 
Temporal 
Expression 

Type Value 

A couple of 
years 

 

DURATION P2Y 

October DATE “1997-10” 

Every day SET P1D 

2 P.M. TIME 2013-02-01T14:00 

Now DATE PRESENT_REF" 

Table 1: TimeML normalized type and value attributes 
for temporal expressions 
 

We have implemented a combined technique us-
ing our handcrafted rules and annotations given by 
the Stanford CoreNLP tool to determine the ‘type’-
s and ‘value’-s. Four types TIME, DATE, 
DURATION and SET of temporal expressions are 
defined in the TimeML framework. Next, we have 
evaluated the normalized value of temporal expres-
sions using Document Creation Time (DCT) from 

the documents.  In this way, values of different 
dates have been inferred e.g. last year, Monday, 
and today. 

2.2 Task B: Extraction of Event Words and 
Determination of Event Attribute Values  

Event Extraction 

In our evaluation framework, we have used the 
Stanford CoreNLP tool extensively to tokenize, 
lemmatize, named-entity annotate and part-of-
speech tag the text portions of the input files. For 
event extraction, the features have been considered 
at word level, where each word has its own set of 
features. The general features used to train our 
CRF model are: 

Morphological Features: Event words are rep-
resented mostly as verbs and nouns. The major 
problem is detecting the events having non-verbal 
PoS labels. Linguistically, non-verbal wordforms 
are derived from verbal wordforms. Various inflec-
tional and derivational morphological rules are 
involved in the process of evolving from verbal to 
non-verbal wordforms. We have used a set of 
handcrafted rules to identify the suffixes such as (‘-
ción’, ‘-tion’ or ‘-ion’), i.e., the morphological 
markers of word token, where Person, Location 
and Organization words are not considered. The 
POS and lemma, in a 5-window (-2, +2), has been 
used for event extraction. 

Syntactic Feature: Different event words no-
tions are contained in the sentences such as: verb-
noun combinations structure, the complements of 
aspectual prepositional phrases (PPs) headed by 
prepositions and a particular type of complex 
prepositions. These notions are captured to be used 
as syntactic features for event extraction. 

WordNet Feature: The RiTa Wordnet2 package 
has been effectively used to extract different prop-
erties of words, such as Synonyms, Antonyms, 
Hypernyms, & Hyponyms, Holonyms, Meronyms, 
Coordinates, & Similars, Nominalizations, Verb-
Groups, & Derived-terms. We have used these 
Wordnet properties in the training file for the CRF 
in the form of binary features for verbs and nouns 
indicating if  the words like “act”, ”activity”, ”phe-
nomenon” etc. occur  in different relations of the 
Wordnet ontology. 

                                                        
2 http://www.rednoise.org/rita/wordnet/documentation/ 
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Features using Semantic Roles: We use Se-
mantic Role Label (SRL) (Gildea et el, 2002; Pra-
dhan et al, 2004; Gurevich et al, 2006) to identify 
different useful features for event extraction. For 
each predicate in a sentence acting as event word, 
semantic roles extract all constituents; determine 
their arguments (agent, patient, etc.) and adjuncts 
(locative, temporal, etc.). Some of the other fea-
tures like predicate, voice and verb sub-
categorization are shared by all the nodes in the 
tree. In the present work, we use predicate as an 
event.  Semantic roles can be used to detect the 
events that are nominalizations of verbs such as 
agreement for agree or construction for construct.  
Event nominalizations often share the same seman-
tic roles as verbs, and often replace them in written 
language. Noun words, morphologically derived 
from verbs, are commonly defined as deverbal 
nouns. Event and result nominalizations constitute 
the bulk of deverbal nouns. The first class refers to 
an event/activity/process, with the nominal ex-
pressing this action (e.g., killing, destruction etc.). 
Nouns in the second class describe the result or 
goal of an action (e.g., agreement, consensus etc.). 
Many nominals denote both the event and result 
(e.g., selection). A smaller class is agent/patient 
nominalizations that are usually identified by suf-
fixes such as -er, -or etc., while patient nominaliza-
tions end with -ee, -ed (e.g. employee).   

Object information of Dependency Relations 
(DR): We have developed handcrafted rules to 
identify features for CRF training, based on the 
object information present in the dependency rela-
tions of parsed sentences. Stanford Parser (de 
Marneffe et al., 2006), a probabilistic lexicalized 
parser containing 45 different Part-of-Speech 
(PoS) tags of Penn Treebank is used to get the 
parsed sentences with dependency relations. The 
dependency relations are found out for the predi-
cates “dobj” so that the direct object related com-
ponents in the “dobj” predicate is considered as the 
feature for the event expression. Initially the input 
sentences are passed to the dependency parser3.  
From the parsed output verb noun combination 
direct object (dobj) dependency relations are ex-
tracted. These dobj relations basically inform us 
that direct object of a VP is the noun phrase which 
is the (accusative) object of the verb; the direct 
object of a clause is the direct object of the VP 
                                                        
3 http://nlp.stanford.edu:8080/parser/ 

which is the predicate of that clause. Within the 
dobj relation governing verb word and dependent 
noun words are acting as important features for 
event identification when dependent word is not 
playing any role in other dependency relation 
(nsubj, prep_of, nn ,etc.) of the sentence. 

 
In this way, we have set list of word tokens and 

its features to train the recognition model. Then the 
model will give to each word one of the valid la-
bels.  

Determination of various Event Attribute 
Values: 

Values of different event attributes have been 
computed as follows: 

Class: Identification of the class of an event has 
been done using a simple, intuitive, rule based ap-
proach. Here too, the hypernym list of an event 
token from RitaWordnet has been deployed to de-
termine the class of the respective event. In this 
case, OCCURRENCE has been considered the de-
fault class. 

Tense, Aspect, POS: These three attributes are 
the obligatory attributes of MAKEINSTANCE 
tags. To determine the tense, aspect and polarity of 
an event, we have used the “parse” annotator in 
CoreNLP. We annotated each sentence with the 
Stanford dependency relations using the above an-
notator. Thereafter various specific relations were 
used to determine the tense, aspect and POS of an 
event token, with another rule based approach. For 
example, in the phrase “has been abducted”, the 
token “been” appears as the dependent in an “aux” 
relation with the event token “abducted”; and 
hence the aspect “PERFECTIVE” is inferred. The 
value “NONE” has been used as the default value 
for both tense and aspect. 

Polarity and Modality: Polarity of event tokens 
are determined using Stanford dependency rela-
tions too; here the “neg” relation. To determine the 
modality we search for modal words in “aux” rela-
tions with the event token. 

2.3 Task C: Temporal Relation Annotation 

We have used the gold-standard TimeBank fea-
tures for events and times for training the CRF. In 
the present work, we mainly use the various com-
binations of the following features:  

68



 
(i)  Part of Speech (POS) 
(ii)  Event Tense 
(iii)  Event Aspect 
(iv)  Event Polarity 
(v)  Event Modality 
(vi)  Event Class 
(vii)       Type of temporal expression 
(vii)  Event Stem 
(viii)  Document Creation Time (DCT). 

 
The following subsections describe how various 

temporal relations are computed. 

Event-DCT 

We take the combined features of every event pre-
sent in the text and the DCT for this purpose. 
 

Derived Features: We have identified different 
types of context based syntactic features which are 
derived from text to distinguish the different types 
of temporal relations. In this task, following fea-
tures help us to identify the event-DCT relations, 
specially “AFTER” temporal relations: 
(i)Modal Context: Whether or not the event word 
has one of the modal context words like- will, 
shall, can, may, or any of their variants (might, 
could, would, etc.).In the sentence: “The entire 
world will [EVENT see] images of the Pope in Cu-
ba”. Here “will” context word helps us to deter-
mine event-DCT relation ‘AFTER’. 
(ii)Preposition Context: Any prepositions preced-
ing an event or time expression. We consider an 
example:”Children and invalids would be permit-
ted to [EVENT leave] Iraq”. Here the preposition 
to helps us to determine event-DCT relation 
‘AFTER’. The same principle goes for time too: in 
the expressions on Friday and for nearly forty 
years, the prepositions on and for governs the time.  
(iii)Context word before or after temporal expres-
sion: context words like before, after, less than, 
greater than etc. help us to determine event-time 
temporal relation identification. Consider an ex-
ample: “After ten years of [EVENT boom] ….” 

Event-Time 

Derived Features: We extract all events from eve-
ry sentence. For every temporal expression in a 
sentence, we pair an event in the sentence with the 

former so that the temporal relation can be deter-
mined. 

Similar to annotation of event-DCT relations, 
here too, we have identified different types of con-
text based temporal expression features which are 
derived from text to distinguish the different types 
of temporal relations. In this task, the following 
features help us to distinguish between event and 
time relations, specially “AFTER” and “BEFORE” 
temporal relations. The following features are de-
rived from text. 
(i)Type of temporal expression: Represents the 
temporal relationship holding between events, 
times, or between an event and a time of the event.   
(ii)Temporal signal: Represents temporal preposi-
tions “on” (on this coming Sunday) and slightly 
contribute to the overall score of classifiers 
(iii)Temporal Expression in the target sentence: 
Takes the values greater than, less than, equal or 
none. These values contribute to the overall score 
of classifiers. 

Mainevent-Mainevent and Subevent-
Subevent 

The task demands that the main event of every sen-
tence be determined. As a heuristic decision, we 
have assumed that the first event that appears in a 
sentence is its main event. We pair up main events 
(if present) from consecutive sentences and use 
their combined features to determine their temporal 
relation. For the events belonging to a single sen-
tence, we take into account the combined features 
of all possible pairs of sentential events. 
   
Derived Features: We have identified different 
types of context based syntactic features which are 
derived from text to distinguish the different types 
of temporal relations. 
(i)Relational context: If a relation holding be-
tween the previous event and the current event is 
“AFTER”, the current one is in the past. This in-
formation helps us to identify the temporal relation 
between the current event and successive event. 
(ii)Modal Context: Whether or not the event word 
has one of the context words like, will, shall, can, 
may, or any of their variants (might, could, would, 
etc.).  The verb and auxiliaries governing the next 
event play as an important feature in event-event 
temporal relation identification.   
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(iii)Ordered based context: In event-event rela-
tion identification, when EVENT-1, EVENT-2, 
and EVENT-3 are linearly ordered, then we have 
assigned true/false as feature value from tense and 
aspect shifts in this ordered pair.  
(iv) Co-reference  based feature: We have used 
co-referential features as derived feature using our 
in-house system based on Standford CoreNLP tool, 
where two event words within or outside one sen-
tence are referring to the same event, i.e. two event 
words co-refer in a discourse.  
(v)Event-DCT relation based feature: We have 
included event-document creation times (DCT) 
temporal relation types as feature of event-event 
relation identification. 
(ii) Preposition Context: Any prepositions before 
the event or time, we consider an exam-
ple:”Children and invalids would be permitted to 
[EVENT leave] Iraq”. Here the preposition to 
helps us determine the event-DCT relation 
‘AFTER’.  
(vi) Context word before or after temporal ex-
pression: Context words like before, after, less 
than, greater than help us determine event- event 
temporal relations .We consider an example:”After 
ten years of [EVENT boom] ….” 
(vii)Stanford parser based clause boundaries 
features: The two consecutive sentences are first 
parsed using Stanford dependency parser and then 
clause boundaries are identified. Then, considering 
the prepositional context and tense verb of the 
clause, temporal relations are identified where all 
temporal expressions are situated in the same 
clause.  
 
 

3 Results and Evaluation 

For the extraction of time expressions and events 
(tasks A and B), precision, recall and F1-score 
have been used as evaluation metrics, using the 
following formulae: 

 
precision (P) = tp/(tp + fp) 
recall (R) = tp/(tp + fn) 
F-measure = 2 *(P * R) / (P + R). 

 
Where, tp is the number of tokens that are part of 
an extent in keys and response, fp is the number of 
tokens that are part of an extent in the response but 
not in the key, and fn is the number of tokens that 
are part of an extent in the key but not in the re-
sponse. Additionally attribute accuracies computed 
according to the following formulae have also been 
reported. 

 
Attr. Accuracy = Attr. F1 / Entity Extraction F1  
Attr. R = Attr. Accuracy * Entity R 
Attr. P = Attr. Accuracy * Entity P 

 
Performance in task C is judged with the aid of the 
Temporal Awareness score proposed by UzZaman 
and Allen (2011) 

The JU_CSE system was evaluated on the TE-3 
platinum data. Table 2 reports JU_CSE’s perfor-
mance in timex extraction Task A. Under the re-
laxed match scheme, the F1-score stands at 
86.38% while the strict match scheme yields a F1-
score of 75.41%. As far as TIMEX attributes are 
concerned, the F1-scores are 63.81% and 73.15% 
for value and type respectively.  

 
Timex Extraction Timex Attribute 

F1 P R Strict F1 Strict P Strict R Value 
F1 

Type 
F1 

Value 
Accuracy 

Type 
Accuracy 

86.38 93.28 80.43 75.49 81.51 70.29 63.81 73.15 73.87 84.68 
Table 2:JU_CSE system’s TE-3 Results on Timex Task A 

 
 

 
 

Event Extraction Event Attribute 

F1 P R Class 
F1 

Tense 
F1 

Aspect 
F1 

Class 
Accuracy 

Tense 
Accuracy 

Aspect 
Accuracy 

78.57 80.85 76.41 52.65 58.58 72.09 67.01 74.56 91.75 
Table 3:JU_CSE system’s TE-3 Results on Event Task B 
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Table 3 reports the system’s performance in 

event extraction (Task B) on TE-3 platinum da-
ta. F1-score for event extraction is 78.57%. At-
tribute F1-scores are 52.65%, 58.58% and 
72.09% for class, tense and aspect respectively.  

In both entities extraction tasks recall is nota-
bly lower than precision. The F1-scores for 
event attributes are modest given that the attrib-
utes were computed using handcrafted rules. 
However, the handcrafted approach can be treat-
ed as a good baseline to start with. Normaliza-
tion is proved to be a challenging task. 
 

Task F1 P R 
Task-ABC 24.61 19.17 34.36 

Task-C 26.41 21.04 35.47 

Task-C-relation-only 34.77 35.07 34.48 

 
Table 4: JU_CSE system’s TE-3 Temporal Aware-
ness results on Task ABC, TaskC-only & TaskC-

relation-only 
 
 
Table 4 presents the Temporal Awareness F1-

score for TaskABC, TaskC and TaskC-relation-
only. For TaskC-only evaluation, the event and 
timex annotated data was provided and one had 
to identify the TLINKs and classify the temporal 
relations. In the TaskC-relation-only version the 
timex and event annotations including their at-
tributes as well as TLINKs were provided save 
the relation classes. Only the relation classes had 
to be determined. The system yielded a temporal 
awareness F1-score of 24.6% for TaskABC, 
26.41% for TaskC-only and 34.77% for TaskC-
relation-only version. 
 

4 Conclusions and Future Directions 

  
In this paper, we have presented the JU_CSE 
system for the TempEval-3 shared task. Our sys-
tem in TempEval-3 may be seen upon as an im-
provement over our earlier endeavor in 
TempEval-2. We have participated in all tasks of 
the TempEval-3 exercise. We have incorporated 
a CRF based approach in our system for all 
tasks. The JU_CSE system for temporal infor-

mation extraction is currently undergoing a lot 
of extensive experimentation. The one reported 
in this article seemingly has a significant scope 
of improvement. Preliminarily, the results yield-
ed are quite competitive and encouraging. Event 
extraction and Timex extraction F1-scores at 
78.58% and 86.38% encourage us to further de-
velop our CRF based scheme. We expect better 
results with additional features and like to con-
tinue our experimentations with other semantic 
features for the CRF classifier. Our rule-based 
approach for event attribute determination how-
ever yields modest F1-scores- 52.65% & 
58.58% for class and tense. We intend to explore 
other machine learning techniques for event at-
tribute classification. We also intend to use parse 
tree based approaches for temporal relation an-
notation. 
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Abstract

This paper describes a complete event/time
ordering system that annotates raw text with
events, times, and the ordering relations be-
tween them at the SemEval-2013 Task 1. Task
1 is a unique challenge because it starts from
raw text, rather than pre-annotated text with
known events and times. A working system
first identifies events and times, then identifies
which events and times should be ordered, and
finally labels the ordering relation between
them. We present a split classifier approach
that breaks the ordering tasks into smaller de-
cision points. Experiments show that more
specialized classifiers perform better than few
joint classifiers. The NavyTime system ranked
second both overall and in most subtasks like
event extraction and relation labeling.

1 Introduction

The SemEval-2013 Task 1 (TempEval-3) contest is
the third instantiation of an event ordering challenge.
However, it is the first to start from raw text with
the challenge to create an end-to-end algorithm for
event ordering. Previous challenges included the in-
dividual aspects of such a system, including event
extraction, timex extraction, and event/time ordering
(Verhagen et al., 2007; Verhagen et al., 2010). How-
ever, neither task was dependent on the other. This
paper presents NavyTime, a system inspired partly
by this previous breakup of the tasks. We focus on
breaking up the event/time ordering task further, and
show that 5 classifiers yield better performance than
the traditional 3 (or even 1).

The first required steps to annotate a document are
to extract its events and time expressions. This pa-
per describes a new event extractor with a rich set of
contextual features that is a top performer for event
attributes at Tempeval-3. We then explore additions
to SUTime, a top rule-based extractor for time ex-
pressions (Chang and Manning, 2012). However,
the core challenge is to link these extracted events
and times together. We describe new models for
these difficult tasks: (1) identifying ordered pairs,
and (2) labeling the ordering relations.

Relation identification is rarely addressed in the
literature. Given a set of events, which pairs of
events are temporally related? Almost all previous
work assumes we are given the pairs, and the task
is to label the relation (before, after, etc.). Raw
text presents a new challenge: extract the relevant
pairs before labeling them. We present some of the
first results that compare rule-based approaches to
trained probabilistic classifiers. These are the first
such comparisons to our knowledge.

Finally, after relation identification, we label re-
lations between the pairs. This is the traditional
event ordering task, although we now start from
noisy pairs. Our main contribution is to build in-
dependent classifiers for intra-sentence event/time
pairs. We show improved performance when train-
ing these split classifiers. NavyTime’s approach is
highly competitive, achieving 2nd place in relation
labeling (and overall).

2 Dataset

All models are developed on the TimeBank (Puste-
jovsky et al., 2003) and AQUAINT corpora (Mani
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et al., 2007). These labeled newspaper articles have
fueled many years of event ordering research. Time-
Bank includes 183 documents and AQUAINT in-
cludes 73. The annotators of each were given dif-
ferent guidance, so they provide unique distributions
of relations. Development of the algorithms in this
paper were solely on 10-fold cross validation on the
union of the two corpora.

The SemEval-2013 Task 1 (TempEval-3) provides
unseen raw text to then evaluate the final systems.
Final results are from this set of unseen newspaper
articles. They were annotated by a different set of
people who annotated TimeBank and AQUAINT.

3 Event Extraction

The first stage to processing raw text is to extract
the event mentions. We treat this as a binary classi-
fication task, classifying each token as either event
or not-event. Events are always single tokens in the
TimeBank/AQUAINT corpora, so a document with
n tokens requires n classifications. Further, each
event is marked up with its tense, aspect, and class.

We used a maximum entropy classification
framework based on the lexical and syntactic con-
text of the target word. The same features are used
to first identify events (binary decision), and then
three classifiers are trained for the tense, aspect, and
class. The following features were used:

Token N-grams: Standard n-gram context that
includes the target token (1,2,3grams), as well as
the unigrams and bigrams that occur directly before
and after the target token.
Part of Speech n-grams: The POS tag of the target,
and the bigram and trigram ending with the target.
Lemma: The lemmatized token in WordNet.
WordNet-Event: A binary feature, true if the token
is a descendent of the Event synset in WordNet.
Parse Path: The tree path from the token’s leaf
node to the root of the syntactic parse tree.
Typed Dependencies: The typed dependency triple
of any edge that begins or ends with the target.

We used 10-fold cross validation on the combined
corpora of TimeBank and AQUAINT to develop the
above features, and then trained one classifier on the
entire dataset. Our approach was the 2nd best event
extraction system out of 8 submission sites on the

unseen test set from TempEval-3. Detailed results
are given in Figure 1.

Results on event attribute extraction were also
good (Figure 1). We again ranked 2nd best in both
Tense and Aspect. Only with the Class attribute did
we fare worse (4th of 8). We look forward to com-
paring approaches to see why this particular attribute
was not as successful.

4 Temporal Expression Extraction

As with event extraction, time expressions need to
be identified from the raw text. Recent work on time
extraction has suggested that rule-based approaches
outperform others (Chang and Manning, 2012), so
we adopted the proven SUTime system for this task.
SUTime is a rule-based system that extracts phrases
and normalizes them to a TimeML time. However,
we improved it with some TimeBank specific rules.

We observed that the phrases ’a year ago’ and ’the
latest quarter’ were often inconsistent with standard
TimeBank annotations. These tend to involve fiscal
quarters, largely due to TimeBank’s heavy weight on
the financial genre. For these phrases, we first deter-
mine the current fiscal quarter, and adjust the nor-
malized time to include the quarter, not just the year
(e.g., 2nd quarter of 2012, rather than just 2012).
Further, the generic phrase ’last year’ should nor-
malize to just a year, and not include a more specific
month or quarter. We added rules to strip off months.

SUTime was the best system for time extraction,
and our usage matched its performance as one would
hope. Full credit goes to SUTime, and its extraction
is not a contribution of this paper. However, Navy-
Time outperformed SUTime by over 3.5 F1 points
on time normalization. Our additional rulebank ap-
pears to have helped significantly, allowing Navy-
Time to be the 2nd best in this category behind Hei-
delTime. We recommend users to use either Heidel-
Time or SUTime with the NavyTime rulebank.

5 Temporal Relation Extraction

After events and time expressions are identified, it
remains to create temporal links between them. A
temporal link is an ordering relation that occurs in
four possible entity pairings: event-event, event-
time, time-time, and event-DCT (DCT is the doc-
ument creation time).
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Event Extraction F1
ATT-1 81.05
NavyTime 80.30
KUL 79.32
cleartk-4 & cleartk-3 78.81
ATT-3 78.63
JU-CSE 78.62
KUL-TE3RunABC 77.11
Temp:ESAfeature 68.97
FSS-TimEx 65.06
Temp:WordNetfeature 63.90

Class Attribute

System Class F1
ATT 71.88
KUL 70.17
cleartk 67.87
NavyTime 67.48
Temp:ESA 54.55
JU-CSE 52.69
Temp:WNet 50.00
FSS-TimEx 42.94

Tense and Aspect Attributes

System Tense F1 Aspect F1
cleartk 62.18 70.40
NavyTime 61.67 72.43
ATT 59.47 73.50
JU-CSE 58.62 72.14
KUL 49.70 63.20

not all systems participated

Figure 1: Complete event rankings on all subtasks scored by F1. Extraction is token span matching.

It is unrealistic to label all possible pairs in a doc-
ument. Many event/time pairs have ambiguous or-
derings, and others are simply not labeled by the an-
notators. We propose a two-stage approach where
we first identify likely pairs (relation identification),
and then independently decide what specific order-
ing relation holds between them (relation labeling).

5.1 Relation Identification

TempEval-3 defined the set of possible relations to
exist in particular configurations: (1) any pairs in
the same sentence, (2) event-event pairs of main
events in adjacent sentences, and (3) event-DCT
pairs. However, the training and test corpora do not
follow these rules. Many pairs are skipped to save
human effort. This task is thus a difficult balance be-
tween labeling all true relations, but also matching
the human annotators. We tried two approaches to
identifying pairs: rule-based, and data-driven learn-
ing.

Rule-Based: We extract all event-event and event-
time pairs in the same sentence if they are adjacent
to each other (no intervening events or times). We
also extract main event pairs of adjacent sentences.
We identify main events by finding the highest VP
in the parse tree.

Data-Driven: This approach treats it as a bi-
nary classification task. Given a pair of enti-
ties, determine if they are ordered or not-ordered.
We condense the training corpora’s TLINK rela-
tions into ordered, and label all non-labeled pairs
as not-ordered. We tried a variety of classifiers
for each event/time pair type: (1) intra-sentence
event-event, (2) intra-sentence event-time, (3) inter-

Event-Event Features
Token, lemma, wordnet synset
POS tag n-grams surrounding events
Syntactic tree dominance
Linear order in text
Does another event appear in between?
Parse path from e1 to e2
Typed dependency path from e1 to e2

Event-Time Features
Event POS, token, lemma, wordnet synset
Event tense, aspect, and class
Is time a day of the week?
Entire time phrase
Last token in time phrase
Does time end the sentence?
Bigram of event token and time token
Syntactic tree dominance
Parse path from event to time
Typed dependency path from event to time

Event-DCT Feature
Event POS, token, lemma, wordnet synset
Event tense, aspect, and class
Bag-of-words unigrams surrounding the event

Figure 2: Features in the 3 types of classifiers.

sentence event-event, and (4) event-DCT.
The data-driven features are shown in Figure 2.

After labeling pairs of entities, the ordered pairs are
then labeled with specific relations, described next.

5.2 Relation Labeling
This is the traditional ordering task. Given a set
of entity pairs, label each with a temporal relation.
TempEval-3 uses the full set of 12 relations.

Traditionally, ordering research trains a single
classifier for all event-event links, and a second for
all event-time links. We experimented with more
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UTTime Best 56.45
NavyTime (TimeBank+AQUAINT) 46.83
NavyTime (TimeBank) 43.92
JU-CSE Best 34.77

Table 1: Task Crel, F1 scores of relation labeling.

specific classifiers, observing that two events in the
same sentence share a syntactic context that does not
exist between two events in different sentences. We
must instead rely on discourse cues and word seman-
tics for the latter. We thus propose using different
classifiers to learn better feature weights for these
unique contexts. Splitting into separate classifiers is
largely unexplored on TimeBank, and just recently
applied to a medical domain (Xu et al., 2013).

We train two MaxEnt classifiers for event-event
links (inter and intra-sentence), and two for event-
time links. The event-DCT links also have their own
classifier for a total of 5 classifiers. We use the same
features (Figure 2) as in relation identification.

5.3 Experiments and Results

All models were created by using 10-fold cross val-
idation on TimeBank+AQUAINT. The best model
was then trained on the entire set. Features seen
only once were trimmed from training. The relation
labeling confidence threshold was set to 0.3. Final
results are reported on the held out test set provided
by SemEval-2013 Task 1 (TempEval-3).

Our first experiments focus on relation labeling.
This is a simpler task than identification in that we
start with known pairs of entities, and the task is to
assign a label to them (Task C-relation at SemEval-
2013 Task 1). Table 1 gives the results. Our system
initially ranked second with 46.83.

The next task is both relation identification and
relation labeling combined (Task C). This is unfor-
tunately a task that is difficult to define. Without a
completely labeled graph of events and times, it is
not about true extraction, but matching human la-
beling decisions that were constrained by time and
effort. We experimented with rule-based vs data-
driven extractors. We held our relation labeling
model constant, and swapped different identification
models in and out. Our best configuration was eval-
uated on test. Results are shown in Table 2. Navy-
Time is the third best performer.

Finally, the full task from raw text requires all

cleartk Best 36.26
UTTime-5 34.90
NavyTime (TimeBank+AQUAINT) 31.06
JU-CSE Best 26.41
NavyTime (TimeBank) 25.84
KUL 24.83

Table 2: Task C, F1 scores of relation ID and labeling.

cleartk Best 30.98
NavyTime (TimeBank+AQUAINT) 27.28
JU-CSE 24.61
NavyTime (TimeBank) 21.99
KUL 19.01

Table 3: Task ABC, Extraction and labeling raw text.

stages of this paper, starting from event and tem-
poral extraction, then applying relation ID and la-
beling. Results are shown in Table 3. Our system
ranked 2nd of 4 systems.

Our best performing setup uses trained classi-
fiers for relation identification of event-event and
event-DCT links, but deterministic rules for event-
time links (Sec 5.1). It then uses trained classi-
fiers for relation labeling of all pair types. Train-
ing with TimeBank+AQUAINT outperformed just
TimeBank. The split classifier approach for intra
and inter-sentence event-event relations also outper-
formed a single event-event classifier. We cannot
give more specific results due to space constraints.

6 Discussion

Our system was 2nd in most of the subtasks and
overall (Task ABC). Split-classifiers for inter and
intra-sentence pairs are beneficial. Syntactic fea-
tures help event extraction. Compared to cleartk,
NavyTime was better in event and time extraction
individually, but worse overall. Our approach to re-
lation identification is likely the culprit.

We urge future work to focus on relation identifi-
cation. Event and time performance is high, and re-
lation labeling is covered in the literature. For iden-
tification, it is not clear that TimeBank-style corpora
are appropriate for evaluation. Human annotators do
not create connected graphs. How can we evaluate
systems that do? Do we want systems that mimic
imperfect, but testable human effort? Accurate eval-
uation on raw text requires fully labeled test sets.
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Abstract

We analyze the performance of SUTIME, a
temporal tagger for recognizing and normal-
izing temporal expressions, on TempEval-3
Task A for English. SUTIME is available as
part of the Stanford CoreNLP pipeline and can
be used to annotate documents with temporal
information. Testing on the TempEval-3 eval-
uation corpus showed that this system is com-
petitive with state-of-the-art techniques.

1 Introduction

The importance of modeling temporal information
is increasingly apparent in natural language appli-
cations, such as information extraction and ques-
tion answering. Extracting temporal information re-
quires the ability to recognize temporal expressions,
and to convert them from text to a normalized form
that is easy to process. Temporal tagging systems
are designed to address this problem. In this paper,
we evaluate the performance of the SUTIME (Chang
and Manning, 2012) rule-based temporal tagging
system.

We evaluate the performance of SUTIME on ex-
tracting temporal information in TempEval-3 (Uz-
Zaman et al., 2013), which requires systems to auto-
matically annotate documents with temporal infor-
mation using TimeML (Pustejovsky et al., 2003).
The TempEval-3 training data contains gold human
annotated data from TimeBank, AQUAINT, and a
new dataset of silver data automatically annotated
using a combination of TipSem (Llorens et al., 2010)
and TRIOS (UzZaman and Allen, 2010), two of the

best performing systems from TempEval-2 (Verha-
gen et al., 2010).

2 System Description

We use the Stanford CoreNLP1 pipeline with SU-
TIME to identify and normalize TIMEX32 ex-
pressions. SUTIME is incorporated into Stanford
CoreNLP as part of the Named Entity Recognition
annotator. For TempEval-3, we use the standard set
of rules provided with SUTIME. Since SUTIME can
also recognize temporal expressions whose values
are not specified by TIMEX3, we ran SUTIME in
a TIMEX3 compatible mode.3

2.1 SUTime
SUTIME is a rule-based temporal tagger built on
regular expression patterns over tokens. Tempo-
ral expressions are bounded in their complexity, so
many of them can be captured using finite automata.
As shown by systems such as FASTUS (Hobbs et
al., 1997), a cascade of finite automata can be very
effective at extracting information from text. With
SUTIME, we follow a similar staged strategy of
(i) building up patterns over individual words to
find numerical expressions; then (ii) using patterns
over words and numerical expressions to find sim-
ple temporal expressions; and finally (iii) forming
composite patterns over the discovered temporal ex-
pressions.

SUTIME recognizes Time, Duration, Interval,
and Set according to the TIMEX3 specification. In

1nlp.stanford.edu/software/corenlp.shtml
2www.timeml.org
3sutime.restrictToTimex3 = true
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addition, it recognizes nested time expressions and
duration ranges. To achieve this it uses a temporal
pattern language defined over tokens (a regular ex-
pression language for expressing how tokenized text
should be mapped to temporal objects). SUTIME is
built on top of TOKENSREGEX,4 a generic frame-
work included in Stanford CoreNLP for definining
patterns over text and mapping to semantic objects.
With TOKENSREGEX we have access to any anno-
tations provided by the Stanford CoreNLP system,
such as the part-of-speech tag or the lemma. The full
specification of the pattern language is available at
nlp.stanford.edu/software/sutime.shtml.

To recognize temporal expressions, SUTIME ap-
plies three types of rules, in the following order: 1)
text regex rules: mappings from simple regular ex-
pressions over characters or tokens to temporal rep-
resentations; 2) compositional rules: mappings from
regular expressions over chunks (both tokens and
temporal objects) to temporal representations and
3) filtering rules: in which ambiguous expressions
that are likely to not be temporal expressions are re-
moved from the list of candidates (such as fall and
spring by themselves). The compositional rules are
applied repeatedly until the final list of time expres-
sions stablizes.

After all the temporal expressions have been rec-
ognized, each temporal expression is associated with
a temporal object. Each temporal object is resolved
with respect to the reference date using heuristic
rules. In this step, relative times are converted to
an absolute time, and composite time objects are
simplified as much as possible. The final resolution
of relative temporal expressions is currently limited
due to the usage of simple hard-coded rules (e.g. rel-
ative to document date with local context inform-
ing before and after heuristics). Finally, SUTIME

will take the internal time representation and pro-
duce a TIMEX3 annotation for each temporal ex-
pression. SUTIME currently only handles English.
It can however, be extended to other languages by
creating sets of rules for additional languages.

3 Evaluation

We evaluated SUTIME’s performance on the
TempEval-3 Task A for English. Task A consists

4nlp.stanford.edu/software/tokensregex.shtml

of determining the extent of time expressions as de-
fined by the TimeML TIMEX3 tag, as well as pro-
viding normalized attributes for type and value. Ex-
tracted temporal expressions from the system and
the gold are matched, and precision, recall, and F1

are computed. For the evaluation of extents, there
are two metrics: a relaxed match score for identi-
fying a matching temporal expression, and a strict
match that requires the text to be matched exactly.
For example, identifying the twentieth century when
the gold is twentieth centry will give a relaxed match
but not a strict match. For the type and value at-
tributes, an accuracy and a measure of the F1 with
respect to the relaxed match is given.

We compare SUTIME’s performance with several
other top systems on the English TempEval-3 Task
A. We also include TIPSem which was used to cre-
ate the silver data for TempEval-3 as a baseline. Of
the systems that prepared multiple runs, we selected
the best performing run to report. Table 1 gives the
results for these systems on the TempEval-3 evalu-
ation set. Interestingly, NavyTime which uses SU-
TIME for Task A, actually did better than SUTIME

in the value normalization and is effectively the 2nd
best system in Task A. The performance of Navy-
Time is otherwise identical to SUTIME. In Navy-
Time the normalization was tuned to the TimeBank
annotation whereas the SUTIME submission was
untuned. SUTIME has the highest recall in discov-
ering temporal expressions. It also has the high-
est overall relaxed F1, slightly higher than Heidel-
Time (Strötgen and Gertz, 2010) (cleartk had the
highest strict F1 of 82.71). Not surprisingly, the sys-
tem used to generate the silver data, TIPSem, had
the highest precision when extracting temporal ex-
pressions. For normalization, HeidelTime had the
overall best performance on value and type. Both
SUTIME and HeidelTime are rule-based, indicating
the effectiveness of using rules for this domain. An-
other top performing system, ManTime used condi-
tional random fields, a machine learning approach,
for identifying temporal expressions and rules for
normalization.
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Identification Normalization
Relaxed Strict Value Type

System F1 P R F1 P R F1 Accuracy F1 Accuracy
SUTime 90.32 89.36 91.30 79.57 78.72 80.43 67.38 74.60 80.29 88.90

NavyTime 90.32 89.36 91.30 79.57 78.72 80.43 70.97 78.58 80.29 88.90
HeidelTime 90.30 93.08 87.68 81.34 83.85 78.99 77.61 85.95 82.09 90.91
ManTime 89.66 95.12 84.78 74.33 78.86 70.29 68.97 76.92 77.39 86.31
TIPSem 84.90 97.20 75.36 81.63 93.46 72.46 65.31 76.93 75.92 89.42

Table 1: TempEval-3; English Platinum Test set.

4 Error Analysis

Given the small size of the platinum data set, we
were able to perform thorough error analysis of the
errors made by SUTIME on the data set.

Table 2 shows the number of temporal expres-
sions marked by the evaluation script as being in-
correct. The errors can be grouped into three broad
categories: i) those proposed by the system but not
in the gold (relaxed precision errors), ii) those in the
gold but not identified by the system (relaxed recall
errors), and iii) temporal expressions with the wrong
value (and sometimes type) normalization.

Of the 14 precision errors, many of the temporal
expressions suggested by the system are reasonable.
For instance, current is identified by the system. A
few of the errors are not actual temporal expres-
sions. For example, in the phrase British Summer
Time, Summer was identified as a temporal expres-
sion which is not correct.

Given SUTime’s high recall, only a few temporal
expressions in the gold are not found by the system.
In most cases, the temporal expressions missed by
SUTIME do not have a well defined value associated
with them (e.g. “digital age”, “each season”).

Performance using the strict match metric is not
as good as some other systems. SUTIME was
derived from GUTime (Mani, 2004) and focuses
on matching longer time expressions as per ear-
lier guidelines. Thus it is less conformant to the
more current TimeML guidelines of having minimal
blocks. For instance, SUTIME treats 2009-2010 as
a range, whereas the gold standard treats it as two
separate dates. This results in an incorrect value nor-
malization and a recall error.

We now examine the cases where the SUTIME

normalization differed from the gold. Table 3 shows
a further breakdown of these errors.

Error type Count
System not in gold (precision) 14

Gold not in system (recall) 12
Wrong value 32

Table 2: Summary of errors made by SUTIME on the
platinum data set

Error type Count
Value incorrectly resolved wrt to DCT 7

Value should not be resolved wrt to DCT 5
DURATION resolved to DATE 6

DATE misidentified as DURATION 3
Wrong granularity 4

Wrong normalization for set 2
Different normalization 3

Other 2

Table 3: Break down of value errors made by SUTime on
the platinum data set

One weakness of SUTIME is that temporal ex-
pressions are always resolved with respect to the
document creation time (DCT). While this heuris-
tic works fairly well in most cases, and SUTime can
achieve reasonable performance, there are obvious
limitations with this approach. For instance, some-
times it is more appropriate to resolve the tempo-
ral expression with respect to nearby dates or events
in the text. As an example, in the test document
CNN 20130322 1003 there is the sentence Call me
Sunday night at 8 PM at the resort that is part of
an email of an unknown date. In this case, SUTIME

still attempts to resolve the temporal expression Sun-
day night at 8 PM using the document creation time
which is incorrect.

There can be inherent ambiguity as to which time
point a time expression refers to. For instance, given
a reference date of 2011-09-19, a Monday, it is un-

80



clear whether Friday refers to 2011-09-16 or 2011-
09-23. SUTIME will normally resolve to the closest
date/time with respect to the reference date. SU-
TIME also has some rules that will use the verb tense
of the surrounding words to attempt to resolve the
ambiguity. For instance, if a verb close to the tem-
poral expression has a POS tag of VBD (past tense
verb) then the expression will be resolved so that it
occurs before the document date.

Most of the type errors are due to confusions be-
tween DATE and DURATION. Often SUTIME will
attempt to resolve a DURATION as a DATE. For
instance, given the phrase “the following decade”,
SUTIME will attempt to resolve that as a DATE with
value 202X (using a DCT of 2013-03-22). While
this can be desirable in some cases, this is not what
the gold annotation contains: type of DURATION
and value of P1DE. In some other cases, SUTIME

misidentifies DURATION as a DATE. For instance,
it lacks rules to parse the 3:07:35 in finishing in
3:07:35 as a duration.

Another problem faced by SUTIME is in figuring
out the correct granularity to use. Given a document
date of 2013-03-22, it will identify two years ago as
being 2011-03-22. However, since these expressions
indicate a less precise date, the gold annotation is a
simple 2011.

SUTIME also provided the wrong normalization
for SET in several cases. For the expression every
morning, SUTIME reported a value of TMO when
the gold annotation was XXXX-XX-XXTMO. In
other cases, SUTIME offered an alternative normal-
ization, for instance, a value of 19XX for the 20th
century instead of just 19. And PTXM instead of
PXM for minutes. In this case, the PTXM is more
correct as the T is required by ISO-8601 to differ-
entiate between M for month, and M for minutes.
The remaining errors are due to lacking rules such
as SUTIME’s inability to handle time zones in cer-
tain cases.

5 Discussion

As a rule-based system, SUTIME is limited by the
coverage of its rule set for the different types of
temporal expressions it can recognize. Many of the
errors in SUTIME can be resolved by adding more
rules to the system.

One key to improving the normalization of the
value is to have better resolution of ambiguous tem-
poral expressions. Identifying when temporal ex-
pressions should not be resolved using the document
creation time, and how the temporal expression re-
lates to other temporal expressions or events within
the document is also critical. This suggests that nor-
malization can benefit from being able to perform
TempEval-3 Task C well.

Another approach to improving the system would
be to provide different modes of use: a mode for end
users that would like complex temporal expressions
to be identified, or a mode for more basic temporal
expressions that can be used as input for other tem-
poral systems. Allowing for nested TIMEXes would
also benefit the system’s performance. For example,
2009-2010 should be a range, with a nested timex
for 2009 and 2010.

Another interesting direction to explore would
be to evaluate the performance of SUTIME on do-
mains other than current news. Since SUTIME also
supports temporal expressions such as holidays and
more distant dates such as 400 B.C., it would be in-
teresting to see how well SUTIME can extract these
different types of temporal expressions.

6 Conclusion

We have evaluated SUTIME by participating in
TempEval-3 Task A and have shown that it is a
competitive system for extracting time expressions.
By providing it as part of the Stanford CoreNLP
pipeline, we hope that it can be easily used as a basic
component for building temporally aware systems.
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Abstract

This paper describes a system for temporal
processing of text, which participated in the
Temporal Evaluations 2013 campaign. The
system employs a number of machine learning
classifiers to perform the core tasks of: identi-
fication of time expressions and events, recog-
nition of their attributes, and estimation of
temporal links between recognized events and
times. The central feature of the proposed sys-
tem is temporal parsing – an approach which
identifies temporal relation arguments (event-
event and event-timex pairs) and the semantic
label of the relation as a single decision.

1 Introduction

Temporal Evaluations 2013 (TempEval-3) is
the third iteration of temporal evaluations (after
TempEval-1 (Verhagen et al., 2007) and TempEval-
2 (Verhagen et al., 2010)) which addresses the
task of temporal information processing of text. In
contrast to the previous evaluation campaigns where
the temporal relation recognition task was simpli-
fied by restricting grammatical context (events in
adjacent sentences, events and times in the same
sentences) and proposed relation pairs, TempEval-3
does not set any context in which temporal re-
lations have to be identified. Thus, for temporal
relation recognition the challenges consist of: first,
detecting a pair of events, or an event and a time
that constitutes a temporal relation; and, second,
determining what semantic label to assign to the
proposed pair. Moreover, TempEval-3 proposes the
task of end-to-end temporal processing in which

events and times, their attributes and relations have
to be identified from a raw text input.

In this paper we present a data-driven approach
to all-around temporal processing of text. A num-
ber of machine-learning detectors were designed to
recognize temporal “markables” (events and times)
and their attributes. The key feature of our approach
is that argument pairs, as well as relations between
them, are jointly estimated without specifying in ad-
vance the context in which these pairs have to occur.

2 Our Approach

2.1 Timex Processing

2.1.1 Timex Recognition and Normalization
The proposed method for timex recognition im-

plements a supervised machine learning approach
that processes each chunk-phrase derived from the
parse tree. Time expressions are detected by the
model as phrasal chunks in the parse with their cor-
responding spans. In addition, the model is boot-
strapped by substitutions of temporal triggers with
their synonyms learned by the Latent Words Lan-
guage Model (Deschacht et al., 2012) as described in
(Kolomiyets et al., 2011). We implemented a logis-
tic regression model that makes use of the following
features:

• the head word of the phrase and its POS tag;
• all tokens and POS tags in the phrase as a bag

of words;
• the word-shape representation of the head word

and the entire phrase, e.g. Xxxxx 99 for the
expression April 30;
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• the condensed word-shape representation for
the head word and the entire phrase, e.g. X(x)
(9) for the expression April 30;

• the concatenated string of the syntactic types of
the children of the phrase in the parse tree;

• the depth in the parse tree.

In addition, we considered a special label for sin-
gle tokens of time expressions. In this way, we
detect parts of temporal expressions if they cannot
be found in the chunk-based fashion. In detail, if
a token is recognized as part of a timex and satis-
fies the pre-condition on its POS tag, we employ a
“look-behind” rule for the phrasal chunk to match
the begin token of the temporal expression. The le-
gitimate start POS tags are determiners, adjectives,
and cardinals. Another set of rules specifies unsuit-
able timexes, such as single cardinals with values
outside predefined ranges of day-of-month, month-
of-year and year numbers.

Normalization of temporal expressions is a pro-
cess of estimating standard temporal values and
types for temporal expressions. Due to a large vari-
ance of expressions denoting the same date and
vagueness in language, rule-based approaches are
usually employed for the normalization task, and our
implementation is a rule-based system. The nor-
malization procedure is the same as described in
(Kolomiyets and Moens, 2010), which participated
in TempEval-2.

2.2 Event Processing

The proposed method to event recognition imple-
ments a supervised machine learning approach that
classifies every single token in the input sentence as
an event instance of a specific semantic type. We im-
plemented a logistic regression model with features
largely derived from the work of Bethard and Martin
(2006):

• the token, its lemma, coarse and fine-grained
POS tags, token’s suffixes and affixes;

• token’s hypernyms and derivations in Word-
Net;

• the grammatical class of the chunk, in which
the token occurs;

• the lemma of the governing verb of the token;
• phrasal chunks in the contextual window;

• the light verb feature for the governing verb;
• the polarity of the token’s context;
• the determiner of the token and the sentence’s

subject;

In addition, we classify the tense attribute for the
detected event by applying a set of thirteen hand-
crafted rules.

2.3 Temporal Relation Processing
Temporal relation recognition is the most difficult
task of temporal information processing, as it re-
quires recognitions of argument pairs, and subse-
quent classifications of relation types. Our ap-
proach employs a shift-reduce parsing technique,
which treats each document as a dependency struc-
ture of annotations labeled with temporal relations
(Kolomiyets et al., 2012). On the one hand, the ad-
vantage of the model is that the relation arguments
and the relation between them are extracted as a sin-
gle decision of a statistical classification model. On
the other hand, such a decision is local and might
not lead to the optimal global solution1. The follow-
ing features for deterministic shift-reduce temporal
parsing are employed:

• the token, its lemma, suffixes, coarse and fine-
grained POS tags;

• the governing verb, its POS tag and suffixes;
• the sentence’s root verb, its lemma and POS

tag;
• features for a prepositional phrase occurrence,

and domination by an auxiliary or modal verb;
• features for the presence of a temporal signal in

the chunk and co-occurrence in the same sen-
tence;

• a feature indicating if the sentence root verb
lemmas of the arguments are the same;

• the temporal relation between the argument and
the document creation time (DCT) (see below);

• a feature indicating if one argument is labeled
as a semantic role of the other;

• timex value generation pattern (e.g. YYYY-MM
for 2013-02, or PXY for P5Y) and timex
granularity (e.g. DAY-OF-MONTH for Friday,
MONTH-OF-YEAR for February etc.);

1For further details on the deterministic temporal parsing
model we refer the reader to (Kolomiyets et al., 2012).
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Training Test P R F1

TimeBank

TimeBank
10-fold

0.907 0.99 0.947

AQUAINT 0.755 0.972 0.850
Silver 0.736 0.963 0.834

AQUAINT
TimeBank 0.918 0.986 0.951
AQUAINT

10-fold
0.795 0.970 0.874

Silver 0.746 0.959 0.851

Silver
TimeBank 0.941 0.976 0.958
AQUAINT 0.822 0.955 0.883

Silver 10-fold 0.798 0.944 0.865

Table 1: Results for timex detection in different corpora.

As one of the features above provides information
about the temporal relation between the argument
and the DCT, we employ an interval-based algebra
to classify relations between timexes and the DCT.
In case the argument is an event, we use a simple
logistic regression classifier with the following fea-
tures:

• the event token, its lemma, coarse and fine-
grained POS tags;

• tense, polarity, modality and aspect attributes;
• the token’s suffixes;
• the governing verb, its POS tag, tense and the

grammatical class of the chunk, in which the
event occurs;

• preceding tokens of the chunk;

3 Results

3.1 Pre-Evaluation Results

The following results are obtained by 10-fold cross-
validations and corpus cross-validations with re-
spect to the evaluation criteria and metrics used in
TempEval-2. Tables 1 and 2 present the results for
the timex recognition and normalization tasks (Task
A), and, Tables 3 and 4 present the results for the
event recognition task (Task B).

As can be seen from the pre-evaluation results, the
most accurate classification of timexes on all cor-
pora in terms of F1 score is achieved for the model
trained on the Silver corpus. As for timex normaliza-
tion, the performances on TimeBank and the Silver

Test Corpus Type Acc. Value Acc.
TimeBank 0.847 0.742
AQUAINT 0.852 0.714

Silver 0.853 0.739

Table 2: Results for normalization in different corpora.

Training Test P R F1

TimeBank

TimeBank
10-fold

0.82 0.641 0.72

AQUAINT 0.864 0.649 0.741
Silver 0.888 0.734 0.804

AQUAINT
TimeBank 0.766 0.575 0.657
AQUAINT

10-fold
0.900 0.776 0.836

Silver 0.869 0.755 0.808

Silver
TimeBank 0.827 0.717 0.768
AQUAINT 0.906 0.807 0.854

Silver 10-fold 0.916 0.888 0.902

Table 3: Results for event detection in different corpora.

Training Test Class Acc.

TimeBank
TimeBank 10-fold 0.691

AQUAINT 0.717
Silver 0.804

AQUAINT
TimeBank 0.620

AQUAINT 10-fold 0.830
Silver 0.794

Silver
TimeBank 0.724
AQUAINT 0.829

Silver 10-fold 0.900

Table 4: Results for event classification in different cor-
pora.

corpus are not very different for type and value accu-
racies. Similarly, we observe the tendency for a bet-
ter performance on larger datasets with an exception
for 10-fold cross-validation using the AQUAINT
corpus.

3.2 Evaluation Results
For the official evaluations we submitted three runs
of the system, one of which addresses Tasks A
and B (timex and event recognition)2, one (KUL-

2During the official evaluation period, this run was re-
submitted with no changes in the output together with KUL-
TE3RunABC, which led to duplicate evaluation results known
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Run Relaxed Evaluation

P R F1 Rank
KULRun-1 0.929 0.769 0.836 21/23

KUL-
TE3RunABC

0.921 0.754 0.829 22/23

Run Strict Evaluation

P R F1 Rank
KULRun-1 0.77 0.63 0.693 22/23

KUL-
TE3RunABC

0.814 0.667 0.733 15/23

Table 5: Results for the timex detection task.

TE3RunABC) provides a full temporal informa-
tion processing pipeline (Task ABC), and the one
for Task C only (KUL-TaskC). For KULRun-1 we
employed the recognition models described above,
all trained on the aggregated corpus comprising
all three available training corpora in the evalua-
tions. For KUL-TE3RunABC we also trained the
markable recognition models on the aggregated cor-
pus, but the event recognition output was slightly
changed in order to merge multiple consequent
events of the same semantic class into a single multi-
token event. The temporal dependency parsing
model was trained on the TimeBank and AQUAINT
corpora only, with a reduced set of relation labels.
This decision was motivated by the time constraints
and the training time needed. The final relation la-
bel set contains the following temporal relation la-
bels: BEFORE, AFTER, DURING, DURING INV,
INCLUDES and IS INCLUDED. Below we present
the obtained results for each task separately. The re-
sults for Task A are presented in Tables 5 and 6, for
Task B in Tables 7 and 8, and, for Task ABC and
Task-C-only in Table 9. It is worth mentioning that
for Task B the aspect value was provided as NONE,
thus this evaluation criterion is not representative for
our system.

4 Conclusion

For TempEval-3 we proposed a number of statisti-
cal and rule-based approaches. For Task A we em-
ployed a logistic regression classifier whose output

as KULRun-1 and KULRun-2. Further in the paper, we refer to
this run as simply to KULRun-1.

Run Rank

KULRun-1

F1

Value Type
18/23

0.629 0.741
Accuracy

Value Type
14/23

0.752 0.886

KUL-
TE3RunABC

F1

Value Type
19/23

0.621 0.733
Accuracy

Value Type
15/23

0.750 0.885

Table 6: Results for the timex normalization task.

Run P R F1 Rank
KULRun-1 0.807 0.779 0.792 5/15

KUL-
TE3RunABC

0.776 0.765 0.77 12/15

Table 7: Results for the event detection task.

Run Rank

KULRun-1

F1

Class Tense Aspect
3/15

0.701 n.a. n.a.
Accuracy

Class Tense Aspect
3/15

0.884 n.a. n.a.

KUL-
TE3RunABC

F1

Class Tense Aspect
5/15

0.687 0.497 0.632
Accuracy

Class Tense Aspect
1/15

0.891 0.644 0.82

Table 8: Results for the event attribute recognition task.

Run P R F1 Rank
KUL-

TE3RunABC
0.18 0.202 0.191 8/8

KUL-TaskC 0.234 0.265 0.248 10/13

Table 9: Results for Tasks ABC (end-to-end processing)
and C (gold entities are given).

was augmented by a small number of hand-crafted
rules to increase the recall. For the temporal ex-
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pression normalization subtask we employed a rule-
based system which estimates the attribute values for
the recognized timexes. For Task B we proposed
a logistic regression classifier which processes in-
put tokens and classifies them as event instances of
particular semantic classes. The optional tense at-
tribute was estimated by a number of manually de-
signed rules. For the most difficult tasks, Task ABC
and Task C, we proposed a dependency parsing tech-
nique that jointly learns from data what arguments
constitute a temporal relation and what the temporal
relation label is. Due to evaluation time constraints
and the time needed to model training, we reduced
the set of relation labels and trained the model on
two small annotated corpora.

The evaluations evidenced that the use of larger
annotated data sets did not improve the timex recog-
nition performance as it was expected from the pre-
evaluations. Interestingly, we did not observe the ex-
pected improvement in terms of recall, as it was the
case in the pre-evaluations. Yet, the timex normal-
ization performance levels in the official evaluations
were slightly higher than in the pre-evaluations. In
contrast to timex recognition, the use of a large an-
notated corpus improved the results for event recog-
nition. The pilot implementation of a temporal
parser for newswire articles showed the lowest per-
formance in the evaluations for Task ABC, but still
provided decent results for Task C. One of the ad-
vantages of the proposed temporal parser is that the
parser selects arguments for a temporal relation and
classifies it at the same time. The decision is drawn
by a statistical model trained on the annotated data,
that is, the parser does not consider any particular
predefined grammatical context in which the relation
arguments have to be found. Another weak point of
the parser is that it requires a large volume of high-
quality annotations and long training times. The last
two facts made it impossible to fully evaluate the
proposed temporal parsing model, and we will fur-
ther investigate the effectiveness of the model.
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Abstract

In this paper, we present a system, UTTime,
which we submitted to TempEval-3 for Task
C: Annotating temporal relations. The sys-
tem uses logistic regression classifiers and ex-
ploits features extracted from a deep syntactic
parser, including paths between event words in
phrase structure trees and their path lengths,
and paths between event words in predicate-
argument structures and their subgraphs. UT-
Time achieved an F1 score of 34.9 based
on the graphed-based evaluation for Task C
(ranked 2nd) and 56.45 for Task C-relation-
only (ranked 1st) in the TempEval-3 evalua-
tion.

1 Introduction

Temporal annotation is the task of identifying tem-
poral relationships between pairs of temporal enti-
ties, namely temporal expressions and events, within
a piece of text. The temporal relationships are im-
portant to support other NLP applications such as
textual entailment, document summarization, and
question answering. The temporal annotation task
consists of several subtasks, including temporal ex-
pression extraction, event extraction, and temporal
link identification and relation classification.

In TempEval-3, there are three subtasks of the
temporal annotation process offered, i.e., Task A:
Temporal expression extraction and normalization,
Task B: Event extraction, and Task C: Annotating
temporal relations. This paper presents a system
to handle Task C. Based on the annotated data pro-
vided, this subtask requires identifying pairs of tem-
poral entities and classifying the pairs into one of the

14 relation types according to TimeML (Pustejovsky
et al., 2005), i.e., BEFORE, AFTER, IMMEDIATELY BE-

FORE, IMMEDIATELY AFTER, INCLUDES, IS INCLUDED,

DURING, DURING INVERSE, SIMULTANEOUS, IDENTITY,

BEGINS, BEGUN BY, END, and ENDED BY.

The motivation behind our work is to utilize syn-
tactic and semantic relationships between a pair of
temporal entities in the temporal relation classifica-
tion task, since we believe that these relationships
convey the temporal relation. In addition to general
features, which are easily extracted from sentences
(e.g., part of speech tags, lemmas, synnonyms), we
use features extracted using a deep syntactic parser.
The features from the deep parser can be divided into
two groups: features from phrase structure trees and
features from predicate-argument structures. These
features are only applicable in the case that the tem-
poral entities appear in the same sentence, so we use
only the general features for inter-sentence relations.

Predicate-argument structure expresses semantic
relations between words. This information can be
extracted from a deep syntactic parser. Features
from predicate-argument structures can capture im-
portant temporal information (e.g., prepositions of
time) from sentences effectively.

The remaining part of this paper is organized as
follows. We explain our approach in detail in Sec-
tion 2 and then show the evaluation and results in
Section 3. Finally, we conclude with directions for
future work in Section 4.

2 Approach

Our system, UTTime, is based on a supervised ma-
chine learning approach. UTTime performs two
tasks; TLINK identification and classification. In
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other words, UTTime identifies pairs of temporal en-
tities and classifies these pairs into temporal relation
types.

2.1 TLINK identification

A pair of temporal entities that have a temporal rela-
tion is called a TLINK. The system first determines
which pairs of temporal entities are linked by using
a ruled-based approach as a baseline approach.

All the TempEval-3’s possible pairs of temporal
entities are extracted by a set of simple rules; pairs
of temporal entities that satisfy one of the following
rules are considered as TLINKs.

• Event and document creation time

• Events in the same sentence

• Event and temporal expression in the same sen-
tence

• Events in consecutive sentences

2.2 TLINK classification

Each TLINK is classified into a temporal relation
type. We use a machine learning approach for the
temporal relation classification. Two L2-regularized
logistic regression classifiers, LIBLINEAR (Fan et
al., 2008), are used; one for event-event TLINKs,
and another one for event-time TLINKs. In addition
to general features at different linguistic levels, fea-
tures extracted by a deep syntactic parser are used.

The general features we employed are:

• Event and timex attributes

All attributes associated with events (class,
tense, aspect, modality, and polarity) and
temporal expressions (type, value, func-
tionInDocument, and temporalFunction) are
used. For event-event TLINKs, we also use
tense/class/aspect match, tense/class/aspect bi-
grams as features (Chambers et al., 2007).

• Morphosyntactic information

Words, part of speech tags, lemmas within a
window before/after event words are extracted
using Stanford coreNLP (Stanford NLP Group,
2012).

• Lexical semantic information

Figure 1: Phrase structure tree

Synonyms of event word tokens from WordNet
lexical database (Fellbaum, 1998) are used as
features.

• Event-Event information

For event-event TLINKs, we use
same sentence feature to differentiate pairs
of events in the same sentence from pairs of
events from different sentences (Chambers et
al., 2007).

In the case that temporal entities of a particu-
lar TLINK are in the same sentence, we extract
two new types of sentence-level semantic informa-
tion from a deep syntactic parser. We use the Enju
parser (Miyao and Tsujii, 2008). It analyzes syn-
tactic/semantic structures of sentences and provides
phrase structures and predicate-argument structures.
The features we extract from the deep parser are

• Paths between event words in the phrase struc-
ture tree, and up(↑)/down(↓) lengths of paths.

We use 3-grams of paths as features instead of
full paths since these are too sparse. An ex-
ample is shown in Figure 1. In this case, the
path between the event words, estimates and
worth, is VBZ↑, VX↑, VP↑, VP↑, VP, PP↓, PX↓, IN↓.
The 3-grams of the path are, therefore, {VBZ↑-

VX↑-VP↑, VX↑-VP↑-VP↑, VP↑-VP↑-VP, VP↑-VP-PP↓,

VP-PP↓-PX↓, PP↓-PX-↓-IN↓}. The up/down path
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Figure 2: Predicate argument structure

lengths are 4 (VBZ↑, VX↑, VP↑, VP↑) and 3 (PP↓,

PX↓, IN↓) respectively.

• Paths between event words in predicate-
argument structure, and their subgraphs.

For the previous example, we can express the
relations in predicate-argument structure repre-
sentation as

– verb arg12: estimate (she, properties)
– prep arg12: worth (estimate, dollars)

In this case, the path between the event words,
estimates and worth, is←prep arg12:arg1. That
is, the type of the predicate worth is prep arg12
and it has estimate as the first argument (arg1).
The path from estimate to worth is in reverse
direction (←).

The next example sentence, John saw mary be-
fore the meeting, gives an idea of a more com-
plex predicate-argument structure as shown
in Figure 2. The path between the event
words, saw and meeting is ←prep arg12:arg1,
prep arg12:arg2.

We use (v, e, v) and (e, v, e) tuples of the
edges and vertices on the path as features.
For example, in Figure 2, the (v,e,v) tuples
are (see, ←prep arg12:arg1, before) and (be-
fore, prep arg12:arg2, meeting). In the same
way, the (e,v,e) tuple is (←prep arg12:arg1,
before, prep arg12:arg2). The subgraphs
of (v, e, v) and (e, v, e) tuples are also
used, including (see, ←prep arg12:arg1,
*), (*, ←prep arg12:arg1, before), (*,
←prep arg12:arg1, *), (*, prep arg12:arg2,
meeting), (before, prep arg12:arg2, *), (*,
prep arg12:arg2, *), (*, before, prep arg12:arg2),
(←prep arg12:arg1, before, *), (*, before, *).

From the above example, the features from pred-
icate argument structure can properly capture the

preposition before. It can also capture a preposi-
tion from a compound sentence such as John met
Mary before he went back home. The path between
the event words met and went are (←conj arg12:arg1,
conj arg12:arg2) and the (v, e, v) and (e, v, e)
tuples are (met, ←conj arg12:arg1, before), (before,
conj arg12:arg2, went), and (←prep arg12:arg1, be-
fore, prep arg12:arg2).

2.3 Hybrid approach
The rule-based approach described in Section 2.1
produces many unreasonable and excessive links.
We thus use a machine learning approach to filter
out those unreasonable links by training the model
in Section 2.2 with an additional relation type, UN-
KNOWN, for links that satisfy the rules in Section
2.1 but do not appear in the training data.

In this way, for Task C, we first extract all the links
that satisfy the rules and classify the relation types of
those links. After classifying temporal relations, we
remove the links that are classified as UNKNOWN.

3 Evaluation

The scores are calculated by the graph-based eval-
uation metric proposed by UzZaman and Allen
(2011). We trained the models with TimeBank and
AQUAINT corpora. We also trained our models on
the training set with inverse relations. The perfor-
mance analysis is based on 10-fold cross validation
on the development data.

3.1 Task C
In Task C, a system has to identify appropriate tem-
poral links and to classify each link into one tempo-
ral relation type. For Task C evaluation, we compare
the results of the models trained with and without the
features from the deep parser. The results are shown
in Table 1. The rule-based approach gives a very low
precision.

3.2 Task C-relation-only
Task C-relation-only provides a system with all the
appropriate temporal links and only needs the sys-
tem to classify the relation types. Since our goal is to
exploit the features from the deep parser, in Task C-
relation-only, we measured the contribution of those
features to temporal relation classification in Table
2.
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Features F1 P R
gen. (rule) 22.51 14.32 52.58
gen. + ph. + pas. (rule) 22.61 14.30 54.01
gen. + ph. + pas. (hyb.) 33.52 36.23 31.19
gen. + ph. + pas. (hyb. + inv.) 39.53 37.56 41.70

Table 1: Result of Task C. (rule: rule-based approach,
hyb.: hybrid approach, gen.: general features, ph.:phrase
structure tree features, pas.:predicate-argument structure
features, and inv.: Inverse relations are used for training.)

Features F1 P R
gen. 64.42 64.59 64.25
gen. + ph. 65.24 65.42 65.06
gen. + pas. 66.40 66.55 66.25
gen. + ph. + pas. 66.39 66.55 66.23
gen. + ph. + pas. (inv.) 65.30 65.39 65.20

Table 2: Result of Task C-relation-only. (gen.:
general features, ph.:phrase structure tree features,
pas.:predicate-argument structure features, and inv.: In-
verse relations are used for training.)

The predicate-argument-structure features con-
tributed to the improvement more than those of
phrase structures in both precision and recall. The
reason is probably that the features from phrase
structures that we used did not imply a temporal re-
lation of events in the sentence. For instance, the
sentence “John saw Mary before the meeting” gives ex-
actly the same path as of the sentence “John saw Mary
after the meeting”.

3.3 Results on test data

Tables 3 and 4 show the results on the test data,
which were manually annotated and provided by the
TempEval-3 organizer. We also show the scores of
the other systems in the tables. For the evaluation
on the test data, we used the models trained with
general features, phrase structure tree features, and
predicate-argument structure features.

UTTime-5 ranked 2nd best in Task C. Interest-
ingly, training the models with inverse relations im-
proved the system only when using the hybrid ap-
proach. This means that the inverse relations did not
improve the temporal classification but helped the
system filter out unreasonable links (UNKNOWN)
in the hybrid approach. As expected, the ruled-based
approach got a very high recall score at the expense
of precision. UTTime-1, although it achieved the F1

Approach F1 P R
rule (UTTime-1) 24.65 15.18 65.64
rule + inv (UTTime-3) 24.28 15.1 61.99
hyb. (UTTime-4) 28.81 37.41 23.43
hyb. + inv. (UTTime-5) 34.9 35.94 33.92
cleartk 36.26 37.32 35.25
NavyTime 31.06 35.48 27.62
JU-CSE 26.41 21.04 35.47
KUL-KULTaskC 24.83 23.35 26.52

Table 3: Result of Tack C on test data. (rule: rule-based
approach, hyb.: hybrid approach, and inv.: Inverse rela-
tions are used for training.)

Approach F1 P R
gen. + ph. + pas. (UTTime-1) 56.45 55.58 57.35
gen. + ph. + pas. (UTTime-2) 54.26 53.2 55.36
gen. + ph. + pas. (inv.) (UTTime-3) 54.7 53.85 55.58
NavyTime 46.83 46.59 47.07
JU-CSE 34.77 35.07 34.48

Table 4: Result of Task C-relation-only on test data.
(gen.: general features, ph.:phrase structure tree features,
pas.:predicate-argument structure features, and inv.: In-
verse relations are used for training.)

score of only 24.65, got the highest recall among all
the systems.

For Task C-relation-only, we achieved the highest
F1 score, precision, and recall. UTTime-2 basically
had the same models as that of UTTime-1, but we
put different weights for each relation type. The re-
sults show that using the weights did not improve
the score in graph-based evaluation.

4 Conclusion

The system, UTTime, identifying temporal links and
classifying temporal relation, is proposed. The links
were identified based on the rule-based approach
and then some links were filtered out by a classi-
fier. The filtering helped improve the system consid-
erably. For the relation classification task, the fea-
tures extracted from phrase structures and predicate-
argument structures were proposed, and the features
improved the classification in precision, recall, and
F-score.

In future work, we hope to improve the classifica-
tion performance by constructing timegraphs (Miller
and Schubert, 1999), so that the system can use in-
formation from neighbor TLINKs as features.
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Abstract 

This paper describes the specifications and 

results of UMCC_DLSI-(EPS) system, which 

participated in the first Evaluating Phrasal 

Semantics of SemEval-2013. Our supervised 

system uses different kinds of semantic 

features to train a bagging classifier used to 

select the correct similarity option. Related to 

the different features we can highlight the 

resource WordNet used to extract semantic 

relations among words and the use of different 

algorithms to establish semantic similarities. 

Our system obtains promising results with a 

precision value around 78% for the English 

corpus and 71.84% for the Italian corpus. 

1 Introduction 

It is well known finding words similarity, even 

when it is lexical or semantic can improve 

entailment recognition and paraphrase 

identification; and ultimately lead to improvements 

in a wide range of applications in Natural 

Language Processing (NLP). Several areas like 

question answering, query expansion, information 

retrieval, and many others, depend on phrasal 

semantics (PS). PS, is concerned with how the 

meaning of a sentence is composed both from the 

meaning of the constituent words, and from extra 

meaning contained within the structural 

organization of the sentence itself (Dominey, 

2005). 

The aim of SemEval 2013 competition is also 

discovering similarity, specifically in Evaluating 

Phrasal Semantics (EPS). The goal of this task is to 

evaluate how well systems can judge the semantic 

similarity of a word and a short sequence of words. 

That is, given a set of pairs of this type; classify it 

on negative (if the meaning of the word is 

semantically different to the meaning of the 

sequence) or positive (if the meaning of the 

sequence, as a whole, is semantically close to the 

meaning of the word).  

Based on this, we developed a system capable to 

detect if two phrases are semantically close. 

The rest of this paper, specifically section 2 is a 

brief Related Work. Section 3 describes the system 

architecture and our run. Continuing with section 4 

we describe the training phase. Following that, 

section 5 presents the results and discussion for our 

Machine Learning System. Finally we conclude 

and propose our future works (Section 6). 

2 Related Work 

There have been many WordNet-based similarity 

measures, among other highlights the work of 

researchers like (Budanitsky and Hirst, 2006; 

Leacock and Chodorow, 1998; Mihalcea et al., 

2006; Richardson et al., 1994). 

On the other hand, WordNet::Similarity1 

(Pedersen et al., 2004) has been used by other 

researchers in an interesting array of domains. 

WordNet::Similarity implements measures of 

similarity and relatedness between a pair of 

concepts (or synsets2) based on the structure and 

content of WordNet. According to (Pedersen et al., 

2004), three of the six measures of similarity are 

based on the information content of the least 

                                                      
1http://sourceforge.net/projects/wn-similarity/ 
2 A group of English words into sets of synonyms. 
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common subsumer (LCS). These measures include 

res (Resnik, 1995), lin (Lin, 1998), and jcn (Jiang 

and Conrath, 1997). 

Pursuant to Pedersen, there are three other 

similarity measures based on path lengths between 

a pair of concepts: lch (Leacock and Chodorow, 

1998), wup (Wu and Palmer, 1994), and path. 

Our proposal differs from those of 

WordNet::Similarity and other measures of 

similarity in the way we selected the relevant 

WordNet relations (see section 3.2 for detail). 

Unlike others, our measure assign weight to 

WordNet relations (any we consider relevant) 

depending to the place they occupy in the 

minimum path and the previously visited relations. 

Besides these, the novelty of our approach is 

using the weights as a function of semantic 

relations in a minimal distance path and also the 

method we used to arrive to those weight functions 

or rules. 

3 System Architecture and description of 

the run 

As we can see in Figure 1 our run begin with the 

pre-processing of SemEval 2013’s training set. 

Every sentence pair is tokenized, lemmatized and 

POS-tagged using Freeling 2.2 tool (Atserias et al., 

2006). Afterwards, several methods and algorithms 

are applied in order to extract all features for our 

Machine Learning System (MLS). The system 

trains the classifier using a model based on 

bagging (using JRip3). The training corpus has 

been provided by SemEval-2013 competition, in 

concrete by the EPS task. As a result, we obtain a 

trained model capable to detect if one phrase 

implies other. Finally, we test our system with the 

SemEval 2013 test set (see Table 2 with the results 

of our run). The following section describes the 

features extraction process. 

3.1 Description of the features used in the 

Machine Learning System 

In order to detect entailment between a pair of 

phrases, we developed an algorithm that searches a 

semantic distance, according to WordNet (Miller et 

al., 1990), between each word in the first phrase 

with each one in the second phrase. 

We used four features which intend to measure 

the level of proximity between both sentences: 

                                                      
3 JRip is an inference and rules-based learner. 

 The minimum distance to align the first 

phrase with the second (MinDist). See section 

3.2 for details. 

 The maximal distance to align the first phrase 

with the second (MaxDist). 

 The average of all distances results to align 

the first phrase with the second one. 

(AverageDistance). 

 The absolute relative error of all distances 

results to align the first phrase with the 

second respect to the average of them. 

 
Figure 1. System Architecture. 

Other features included are the most frequent 

relations contained in the shorted path of the 

minimum distance; result to align the first phrase 

with the second one. Following table shows the 

relations selected as most frequent. 

A weight was added to each of them, according 

to the place it occupy in the shortest path between 

two synsets. The shortest path was calculated using 

Breadth -First-Search algorithm (BFS) (Cormen et 

al., 2001). 

In addition, there is one feature that takes into 

account any other relationship that is not 

previously considered. 

Finally, as a result we obtain 22 features from 

this alignment method. 

Semeval 2013 test 

set

…

Pre-Processing (using Freeling 2.2)

Tokenizing Lemmatizing POS Tagging

Run 1 Bagging Classifier (JRip)

Feature Extraction

MinDistance MaxDistance error …

Training set from 

Semeval 2013

Pre-Processing (using Freeling 2.2)

Tokenizing Lemmatizing POS Tagging

Feature Extraction

MinDistance MaxDistance error

Supervised Model

Training process (using Weka)

Bagging Classifier (JRip)

Paraphrases Detection
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Relation Weight (𝑾 function) 

Antonym 1000 

Synonym 0 

Hyponym/ Hypernym 

100 if exist an antonym 

before, 30 if exist other 

relation before (except 

synonym, hyponym, 

hypernym), 5 otherwise. 

Meber_Holonym/ 

PartHolonym 

100 if exist an antonym 

before, 20 if exist a 

hyponym or a hypernym,10 

otherwise. 

Cause/ Entailment 
100 if exist an antonym 

before, 2 otherwise. 

Similar_To 
100 if exist an antonym 

before, 3 otherwise. 

Attribute 
100 if exist an antonym 

before, 8 otherwise. 

Also_See 
100 if exist an antonym 

before, 10 otherwise. 

Derivationaly_Related_Form 
100 if exist an antonym 

before, 5 otherwise. 

Domain_Of_Synset_Topic 
100 if exist an antonym 

before, 13 otherwise. 

Domain_Of_Synset_Usage 
100 if exist an antonym 

before, 60 otherwise. 

Member_Of_Domain_Topic 
100 if exist an antonym 

before, 13 otherwise. 

Member_Of_Domain_Usage 
100 if exist an antonym 

before, 60 otherwise. 

Other 100 

Table 1. Most frequents relations with their weight. 

3.2 Semantic Distance 

As aforementioned, our distance depends on 

calculating the similarity between sentences, based 

on the analysis of WordNet relations, and we only 

took into account the most frequent ones. When 

searching the shortest path between two WordNet 

synsets, frequents relations were considered the 

ones extracted according to the analysis made in 

the training corpus, provided by SemEval-2013. 

The distance between two synsets is calculated 

with the relations found; and simply it is the sum 

of the weights assigned to each connection. 

𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑃(𝑃, 𝑄) =  𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑆(𝑃𝑋, 𝑄𝑌), ∀ (𝑋, 𝑌) (1) 

𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑆(𝑋, 𝑌) = 𝑀𝑖𝑛(𝑋𝑖 , 𝑌𝑗), ∀(𝑖, 𝑗) (2) 

𝑀𝑖𝑛(𝑋𝑖; 𝑌𝑗) = ∑ 𝑊(𝑅𝑒𝑙(𝐿[𝑘], 𝐿[𝑘 + 1]))

𝑘=𝑚

𝑘=0

 (3) 

𝐿 = 𝐵𝐹𝑆(𝑋𝑖; 𝑌𝑗) (4) 

Where 𝑖 and 𝑗 represents the i-th and j-th sense of 

the word; P and Q represents words collections; 𝑃𝑋 

is the X-th word of 𝑃; 𝑄𝑌 is the Y-th word of 𝑄; 

𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑃 obtains a value that represents a 

minimal semantic distance across WordNet (Miller 

et al., 2006) resource (this resource is involved into 

the integrator resource, ISR-WN (Gutiérrez et al., 

2011a; 2010a); 𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑆  the minimal semantic 

distance between two words; 𝑀𝑖𝑛 represents the 

minimal semantic distance between two senses 

collections; 𝐿 is a collection of synsets that 

represents the minimal path between two synsets 

using BFS; 𝑅𝑒𝑙 obtains semantic relation types 

between two synsets; W is a functions that apply 

the rules described in Table 1. The maximum and 

average distance is calculated in a similar fashion 

but using the maximum and average instead of the 

minimum. 

3.3 Semantic Alignment 

First, the two sentences are pre-processed with 

Freeling 2.2 and the words are classified according 

to their parts-of-speech. Then, all senses of every 

word are taken and treated as a group. Distance 

between two groups will be the minimal distance 

(described in 3.1) between senses of any pair of 

words belonging to the group. 

In the example of Figure 2, Dist=280 is selected 

for the pair “Balance-Culture” (minimal cost).  

Following the explanation on section 3.1 we 

extract the features guided to measure the level of 

proximity between both sentences. 

 
Figure 2. Distance between “Balance” and “Culture”. 

A maximum and average distance is calculated in a 

similar fashion, but using the maximum and 

average instead of the minimum. 

4 Description of the training phase 

For the training process, we used a supervised 

learning framework (based on Weka4), including 

all the training set (positive and negative instances) 

as a training corpus. We conduct several 

experiments in order to select the correct classifier, 

the best result being obtained with a model based 

on bagging (using JRip algorithm). Finally, we 

used 10-fold cross validation technique with the 

selected classifier, obtaining a classification value 

of 73.21%. 

                                                      
4 http://prdownloads.sourceforge.net/weka/ 

Lemma: Balance

Sense 1

Sense 2

Lemma: Culture

Sense 1

Sense 2

3350

1030 280

880

Dist=280
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5 Results and discussion 

EPS task of SemEval-2013 offered many official 

measures to rank the systems. Some of them are 

the following: 

o F-Measure (FM): Correct Response (CR), 

Instances correctly classified, True positives 

(TP), Instances correctly classified as 

positive. False Positives (FP), Instances 

incorrectly classified as positive, True 

Negatives (TN), Instances correctly 

classified as negative, False Negatives (FN), 

Instances incorrectly classified as negative. 

Corpus FM CR TP FP TN FN 

English 0.6892 2826 1198 325 1628 755 

Italian 0.6396 574 245 96 329 180 

Table 2. Official SemEval 2013 results. 

The behavior of our system, for English and 

Italian corpus is shown in Table 2. 

The only thing that changes to process the 

Italian corpus is that Freeling is used as input to 

identify Italian words and it returns the English 

WN synsets. The process continues in the same 

way as English. 

Figure 3: Semantic Distance distribution between 

negative and positive instances.  

As shown in Table 2, our main drawback is to 

classify positive instances. Sometimes, the distance 

between positive phrases is very far. This is due to 

the relations found in the minimum path are very 

similar to the one found in other pairs of negatives 

instances; this can be the cause of our MLS 

classifies them as negatives (see Figure 3). 

Figure 3 shows a distributional graphics that 

take a sample of 200 negative and positive 

instances. The graphics illustrate how close to zero 

value the positive instances are, while the 

negatives are far away from this value. However, 

in the approximate range between 80 and 200, we 

can see values of positive and negative instances 

positioning together. This can be the cause that our 

MLS misclassified some positive instances as 

negative. 

6 Conclusion and future work 

This paper introduced a new framework for EPS, 

which depends on the extraction of several features 

from WordNet relations. We have conducted the 

semantic features extraction in a multidimensional 

context using the resource ISR-WN(Gutiérrez et 

al., 2010a). 

Our semantic distance provides an appealing 

approach for dealing with phrasal detection based 

on WordNet relation. Our team reached the sixth 

position of ten runs for English corpus, with a 

small difference of 0.07 points compared to the 

best results with respect to accuracy parameter. 

Despite the problems caused by poorly selected 

positive instances, our distance (labeled as Our) 

obtained very similar results to those obtained by 

the best team (labeled as First5), which indicates 

that our work is well underway (see Table 3 for 

details). 

Team accuracy recall precision 

First 0.802611 0.751664 0.836944128 

Our 0.723502 0.613415 0.786605384 

Table 3. Comparative results (English corpus). 

It is important to remark that our system has 

been the only competitor to evaluate Italian texts. 

It has been possible due to our system include 

Freeling in the preprocessing stage. 

Our future work will aim to resolve instances 

misclassified by our algorithm. In addition, we will 

introduce lexical substitutions (synonyms) to 

expand the corpus, we will also apply conceptual 

semantic similarity using relevant semantic trees 

(Gutiérrez et al., 2010b; Gutiérrez et al., 2011b). 
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Abstract

In this paper we present our system for the
SemEval 2013 Task 5a on semantic similar-
ity of words and compositional phrases. Our
system uses a dependency-based vector space
model, in combination with a technique called
latent vector weighting. The system computes
the similarity between a particular noun in-
stance and the head noun of a particular noun
phrase, which was weighted according to the
semantics of the modifier. The system is en-
tirely unsupervised; one single parameter, the
similarity threshold, was tuned using the train-
ing data.

1 Introduction

In the course of the last two decades, vector space
models have gained considerable momentum for se-
mantic processing. Initially, these models only dealt
with individual words, ignoring the context in which
these words appear. More recently, two different but
related approaches emerged that take into account
the interaction between different words within a par-
ticular context. The first approach aims at building a
joint, compositional representation for larger units
beyond the individual word level (e.g., the com-
posed, semantic representation of the noun phrase
crispy chips). The second approach, different but re-
lated to the first one, computes the specific meaning
of a word within a particular context (e.g. the mean-
ing of the noun bank in the context of the adjective
bankrupt).

In this paper, we describe our system for the Sem-
Eval 2013 Task 5a: semantic similarity of words and

compositional phrases – which follows the latter ap-
proach. Our system uses a dependency-based vector
space model, in combination with a technique called
latent vector weighting (Van de Cruys et al., 2011).
The system computes the similarity between a par-
ticular noun instance and the head noun of a par-
ticular noun phrase, which was weighted according
to the semantics of the modifier. The system is en-
tirely unsupervised; one single parameter, the simi-
larity threshold, was tuned using the training data.

2 Related work

In recent years, a number of methods have been de-
veloped that try to capture the compositional mean-
ing of units beyond the individual word level within
a distributional framework. One of the first ap-
proaches to tackle compositional phenomena in a
systematic way is Mitchell and Lapata’s (2008) ap-
proach. They explore a number of different mod-
els for vector composition, of which vector addition
(the sum of each feature) and vector multiplication
(the elementwise multiplication of each feature) are
the most important. Baroni and Zamparelli (2010)
present a method for the composition of adjectives
and nouns. In their model, an adjective is a linear
function of one vector (the noun vector) to another
vector (the vector for the adjective-noun pair). The
linear transformation for a particular adjective is rep-
resented by a matrix, and is learned automatically
from a corpus, using partial least-squares regression.
Coecke et al. (2010) present an abstract theoretical
framework in which a sentence vector is a function
of the Kronecker product of its word vectors, which
allows for greater interaction between the different
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word features. And Socher et al. (2012) present a
model for compositionality based on recursive neu-
ral networks.

Closely related to the work on compositionality
is research on the computation of word meaning in
context. Erk and Padó (2008, 2009) make use of
selectional preferences to express the meaning of
a word in context. And Dinu and Lapata (2010)
propose a probabilistic framework that models the
meaning of words as a probability distribution over
latent factors. This allows them to model contex-
tualized meaning as a change in the original sense
distribution.

Our work takes the latter approach of computing
word meaning in context, and is described in detail
below.

3 Methodology

Our method uses latent vector weighting (Van de
Cruys et al., 2011) in order to compute a se-
mantic representation for the meaning of a word
within a particular context. The method relies
upon a factorization model in which words, together
with their window-based context features and their
dependency-based context features, are linked to la-
tent dimensions. The factorization model allows us
to determine which dimensions are important for a
particular context, and adapt the dependency-based
feature vector of the word accordingly. The mod-
ified feature vector is then compared to the target
noun feature vector with the cosine similarity func-
tion.

This following sections describe our model in
more detail. In section 3.1, we describe non-
negative matrix factorization – the factorization
technique that our model uses. Section 3.2 describes
our way of combining dependency-based context
features and window-based context features within
the same factorization model. Section 3.3, then, de-
scribes our method of computing the meaning of a
word within a particular context.

3.1 Non-negative Matrix Factorization

Our latent model uses a factorization technique
called non-negative matrix factorization (Lee and
Seung, 2000) in order to find latent dimensions. The
key idea is that a non-negative matrix A is factorized

into two other non-negative matrices, W and H

Ai× j ≈Wi×kHk× j (1)

where k is much smaller than i, j so that both in-
stances and features are expressed in terms of a few
components. Non-negative matrix factorization en-
forces the constraint that all three matrices must be
non-negative, so all elements must be greater than or
equal to zero.

Using the minimization of the Kullback-Leibler
divergence as an objective function, we want to find
the matrices W and H for which the divergence
between A and WH (the multiplication of W and
H) is the smallest. This factorization is carried
out through the iterative application of update rules.
Matrices W and H are randomly initialized, and the
rules in 2 and 3 are iteratively applied – alternating
between them. In each iteration, each vector is ade-
quately normalized, so that all dimension values sum
to 1.

Haµ ←Haµ

∑i Wia
Aiµ

(WH)iµ

∑k Wka
(2)

Wia←Wia
∑µ Haµ

Aiµ
(WH)iµ

∑v Hav
(3)

3.2 Combining syntax and context words

Using an extension of non-negative matrix fac-
torization (Van de Cruys, 2008), it is possible
to jointly induce latent factors for three different
modes: nouns, their window-based context words,
and their dependency-based context features. The
intuition is that the window-based context words
inform us about broad, topical similarity, whereas
the dependency-based features get at a tighter,
synonym-like similarity. As input to the algo-
rithm, two matrices are constructed that capture the
pairwise co-occurrence frequencies for the different
modes. The first matrix contains co-occurrence fre-
quencies of words cross-classified by dependency-
based features, and the second matrix contains co-
occurrence frequencies of words cross-classified by
words that appear in the word’s context window.
NMF is then applied to the two matrices, and the
separate factorizations are interleaved (i.e. matrix
W, which contains the nouns by latent dimensions,
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is shared between both factorizations). A graphical
representation of the interleaved factorization algo-
rithm is given in figure 1. The numbered arrows in-
dicate the sequence of the updates.

=

W

=

U

I

V

K

I

A
nouns x

dependencies

B
nouns x

context words

I

HK

U

3

2

1

4

GK

V

Figure 1: A graphical representation of the interleaved
NMF

When the factorization is finished, the three dif-
ferent modes (words, window-based context words
and dependency-based context features) are all rep-
resented according to a limited number of latent fac-
tors.

The factorization that comes out of the NMF

model can be interpreted probabilistically (Gaussier
and Goutte, 2005; Ding et al., 2008). More specifi-
cally, we can transform the factorization into a stan-
dard latent variable model of the form

p(wi,d j) =
K

∑
z=1

p(z)p(wi|z)p(d j|z) (4)

by introducing two K×K diagonal scaling matrices
X and Y, such that Xkk = ∑i Wik and Ykk = ∑ j Hk j.
The factorization WH can then be rewritten as

WH = (WX−1X)(YY−1H)

= (WX−1)(XY)(Y−1H)
(5)

such that WX−1 represents p(wi|z), (Y−1H)T rep-
resents p(d j|z), and XY represents p(z). Using
Bayes’ theorem, it is now straightforward to deter-
mine p(z|d j).

p(z|d j) =
p(d j|z)p(z)

p(d j)
(6)

3.3 Meaning in Context

3.3.1 Overview
Using the results of the factorization model de-

scribed above, we can now adapt a word’s feature
vector according to the context in which it appears.
Intuitively, the context of the word (in our case,
the dependency-based context feature that acts as an
adjectival modifier to the head noun) pinpoint the
important semantic dimensions of the particular in-
stance, creating a probability distribution over latent
factors. The required probability vector, p(z|d j), is
yielded by our factorization model. This probabil-
ity distribution over latent factors can be interpreted
as a semantic fingerprint of the passage in which the
target word appears. Using this fingerprint, we can
now determine a new probability distribution over
dependency features given the context.

p(d|d j) = p(z|d j)p(d|z) (7)

The last step is to weight the original probability
vector of the word according to the probability vec-
tor of the dependency features given the word’s con-
text, by taking the pointwise multiplication of prob-
ability vectors p(d|wi) and p(d|d j).

p(d|wi,d j) = p(d|wi) · p(d|d j) (8)

Note that this final step is a crucial one in our
approach. We do not just build a model based on
latent factors, but we use the latent factors to de-
termine which of the features in the original word
vector are the salient ones given a particular context.
This allows us to compute an accurate adaptation of
the original word vector in context.

3.3.2 Example
Let us exemplify the procedure with an example.

Say we want to compute the distributionally similar
words to the noun instrument within the phrases (1)
and (2), taken from the task’s test set:

(1) musical instrument

(2) optical instrument

First, we extract the context feature for both in-
stances, in this case C1 = {musicalad j} for phrase
(1), and C2 = {opticalad j} for phrase (2). Next, we
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look up p(z|C1) and p(z|C2) – the probability distri-
butions over latent factors given the context – which
are yielded by our factorization model. Using these
probability distributions over latent factors, we can
now determine the probability of each dependency
feature given the different contexts – p(d|C1) and
p(d|C2) (equation 7).

The former step yields a general probability dis-
tribution over dependency features that tells us how
likely a particular dependency feature is given the
context that our target word appears in. Our last step
is now to weight the original probability vector of
the target word (the aggregate of dependency-based
context features over all contexts of the target word)
according to the new distribution given the context
in which the target word appears (equation 8).

We can now return to our original matrix A and
compute the top similar words for the two adapted
vectors of instrument given the different contexts,
which yields the results presented below.

1. instrumentN , C1: percussion, flute, violin,
melody, harp

2. instrumentN , C2: sensor, detector, amplifier,
device, microscope

3.4 Implementational details
Our model has been trained on the UKWaC cor-
pus (Baroni et al., 2009). The corpus has been
part of speech tagged and lemmatized with Stan-
ford Part-Of-Speech Tagger (Toutanova and Man-
ning, 2000; Toutanova et al., 2003), and parsed with
MaltParser (Nivre et al., 2006) trained on sections
2-21 of the Wall Street Journal section of the Penn
Treebank extended with about 4000 questions from
the QuestionBank1, so that dependency triples could
be extracted.

The matrices needed for our interleaved NMF fac-
torization are extracted from the corpus. Our model
was built using 5K nouns, 80K dependency relations,
and 2K context words2 (excluding stop words) with
highest frequency in the training set, which yields
matrices of 5K nouns × 80K dependency relations,
and 5K nouns × 2K context words.

1http://maltparser.org/mco/english_parser/

engmalt.html
2We used a fairly large, paragraph-like window of four sen-

tences.

model accuracy precision recall F1

dist .69 .83 .48 .61
lvw .75 .84 .61 .71

Table 1: Results of the distributional model (dist) and la-
tent vector weighting model (lvw) on the SemEval task
5a

The interleaved NMF model was carried out using
K = 600 (the number of factorized dimensions in the
model), and applying 100 iterations. The interleaved
NMF algorithm was implemented in Matlab; the pre-
processing scripts and scripts for vector computation
in context were written in Python.

The model is entirely unsupervised. The only pa-
rameter to set, the cosine similarity threshold φ , is
induced from the training set. We set φ = .049.

4 Results

Table 1 shows the evaluation results of the simple
distributional model (which only takes into account
the head noun) and our model that uses latent vector
weighting. The results indicate that our model based
on latent vector weighting performs quite a bit bet-
ter than a standard dependency-based distributional
model. The lvw model attains an accuracy of .75 –
a 6% improvement over the distributional model –
and an F-measure of .71 – a 10% improvement over
the distributional model.

5 Conclusion

In this paper we presented an entirely unsuper-
vised system for the assessment of the similarity of
words and compositional phrases. Our system uses a
dependency-based vector space model, in combina-
tion with latent vector weighting. The system com-
putes the similarity between a particular noun in-
stance and the head noun of a particular noun phrase,
which was weighted according to the semantics of
the modifier. Using our system yields a substantial
improvement over a simple dependency-based dis-
tributional model, which only takes the head noun
into account.
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Abstract

This paper describes the IIRG 1 system en-
tered in SemEval-2013, the 7th International
Workshop on Semantic Evaluation. We partic-
ipated in Task 5 Evaluating Phrasal Semantics.
We have adopted a token-based approach to
solve this task using 1) Naı̈ve Bayes methods
and 2) Word Overlap methods, both of which
rely on the extraction of syntactic features. We
found that the word overlap method signifi-
cantly out-performs the Naı̈ve Bayes methods,
achieving our highest overall score with an ac-
curacy of approximately 78%.

1 Introduction

The Phrasal Semantics task consists of two related
subtasks. Task 5A requires systems to evaluate
the semantic similarity of words and compositional
phrases. Task 5B requires systems to evaluate the
compositionality of phrases in context. We partici-
pated in Task 5B and submitted three runs for eval-
uation, two runs using the Naı̈ve Bayes Machine
Learning Algorithm and a Word Overlap run using
a simple bag-of-words approach.

Identifying non-literal expressions poses a major
challenge in NLP because they occur frequently and
often exhibit irregular behavior by not adhering to
grammatical constraints. Previous research in the
area of identifying literal/non-literal use of expres-
sions includes generating a wide range of different
features for use with a machine learning prediction
algorithm. (Li and Sporleder, 2010) present a system

1Intelligent Information Retrieval Group

involving identifying the global and local contexts of
a phrase. Global context was determined by look-
ing for occurrences of semantically related words
in a given passage, while local context focuses on
the words immediately preceding and following the
phrase. Windows of five words at each side of the
target were taken as features. More syntactic fea-
tures were also used, including details of nodes from
the dependency tree of each example. The system
produced approximately 90% accuracy when tested,
for both idiom-specific and generic models. It was
found that the statistical features (global and local
contexts) performed well, even on unseen phrases.
(Katz and Giesbrecht, 2006) found that similarities
between words in the expression and its context indi-
cate literal usage. This is comparable to (Sporleder
and Li, 2009), which used cohesion-based classi-
fiers based on lexical chains and graphs. Unsu-
pervised approaches to classifying idiomatic use in-
clude clustering (Fazly et al., 2009), which classified
data based on semantic analyzability (whether the
meaning of the expression is similar to the mean-
ings of its parts) and lexical and syntactic flexibility
(measurements of how much variation exists within
the expression).

2 Task 5B

In Task 5B, participants were required to make a
binary decision as to whether a target phrase is used
figuratively or literally within a given context. The
phrase “drop the ball” can be used figuratively, for
example in the sentence
We get paid for completing work, so we’ve designed
a detailed workflow process to make sure we don’t

103



drop the ball.
and literally, for example in the sentence
In the end, the Referee drops the ball with the
attacking player nearby.

In order to train systems, participants were given
training data consisting of approximately 1400 text
snippets (one or more sentences) containing 10 tar-
get phrases, together with real usage examples sam-
pled from the WaCky (Baroni et al., 2009) corpora.
The number of examples and distribution of figura-
tive and literal instances varied for each phrase.

Participants were allowed to submit three runs for
evaluation purposes.

2.1 Approach

The main assumption for our approach is that tokens
preceding and succeeding the target phrase might in-
dicate the usage of the target phrase, i.e. whether the
target phrase is being used in a literal or figurative
context. Firstly, each text snippet was processed us-
ing the Stanford Suite of Core NLP Tools2 to to-
kenise the snippet and produce part-of-speech tags
and lemmas for each token.

During the training phase, we identified and ex-
tracted a target phrase boundary for each of the tar-
get phrases. A target phrase boundary consists of a
window of tokens immediately before and after the
target phrase. The phrase boundaries identified for
the first two runs were restricted to windows of one,
i.e. the token immediately before and after the target
phrase were extracted, tokens were also restricted to
the canonical form.

For example, the target phrase boundary iden-
tified for the snippet: “The returning team will
drop the ball and give you a chance to recover .” is
as follows:

before:will
after:and

and the target phrase boundary identified for
the snippet: “Meanwhile , costs are going
through the roof .” is as follows:

before:go
after:.

2http://nlp.stanford.edu/software

IIRG Training Runs
RunID Accuracy (%)
Run0 85.29
Run1 81.84
Run2 95.92

Table 1: Results of IIRG Training Runs

We then trained multiple Naı̈ve Bayes classifiers
on these extracted phrase boundaries. The first clas-
sifier was trained on the set of target phrase bound-
aries extracted from the entire training set of tar-
get phrases and usage examples (Run0); the sec-
ond classifier was trained on the set of target phrase
boundaries extracted from the entire training set of
target phrases and usage examples including the
phrase itself as a predictor variable (Run1); and a
set of target-phrase classifiers, one per target phrase,
were trained on the set of target phrase boundaries
extracted from each individual target phrase (Run2).

The results of the initial training runs can be
seen in Table 1. Although Run0 yielded very high
accuracy scores on the training data, outperforming
Run1, in practice this approach performed poorly
on unseen data and was biased towards a figurative
classification. We thus opted not to implement this
run in the testing phase and instead concentrated on
Run1 and Run2.

For our third submitted run, we adopted a word
overlap method which implemented a simple bag-
of-words approach. For each target phrase we cre-
ated a bag-of-words by selecting the canonical form
of all of the noun tokens in each corresponding train-
ing usage example. The frequency of occurrence
of each token within a given context was recorded
and each token was labeled as figurative or literal
depending on its frequency of occurrence within a
given context. The frequency of occurrence of each
token was also recorded in order to adjust the thresh-
old of token occurrences for subsequent runs. For
this run, Run3, the token frequency threshold was
set to 2, so that a given token must occur two or more
times in a given context to be added to the bag-of-
words.
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3 Results

System performance is measured in terms of accu-
racy. The results of the submitted runs can be seen
in Table 2.

Of the submitted runs, the Word Overlap method
(Run3) performed best overall. This approach was
also consistently good across all phrases, with scores
ranging from 70% to 80%, as seen in Table 3.

The classifiers trained on the canonical phrase
boundaries (Run1 and Run2) performed poorly on
unseen data. They were also biased towards a figura-
tive prediction. For several phrases they incorrectly
classified all literal expressions as figurative. They
were not effective at processing all of the phrases:
in Run1, some phrases had very high scores rela-
tive to the overall score (e.g. “break a leg”), while
others scored very poorly (e.g. “through the roof”).
In Run2, a similar effect was found. Interestingly,
even though separate classifiers were trained for
each phrase, the accuracy was lower than that of
Run1 in several cases (e.g. “through the roof”). This
may be a relic of the small, literally-skewed, train-
ing data for some of the phrases, or may suggest that
this approach is not suitable for those expressions.
The very high accuracy of the classifiers tested on a
subset of the training data may be attributed to over-
fitting. The approach used in Run1 and Run2 is un-
likely to yield very accurate results for the classifi-
cation of general data, due to the potential for many
unseen canonical forms of word boundaries.

3.1 Additional Runs

After the submission deadline, we completed some
additional runs, the results of which can be seen in
Table 4.

These runs were similar to Run1 and Run2, where
we used Naı̈ve Bayes Classifiers to train on ex-
tracted target phrase boundaries. However, for Run4
and Run5 we restricted the phrase boundaries to the
canonical form of the nearest verb (Run4) or nearest
noun (Run5) that was present in a bag-of-words.

We used the same bag-of-words created for Run3
for the noun-based bag-of-words, and this same ap-
proach was used to create the (canonical form) verb-
based bag-of-words. If there were no such verbs or
nouns present then the label NULL was applied. If
a phrase occurred at the start or end of a text snip-

pet this information was also captured. The Naı̈ve
Bayes classifiers were then trained using labels from
the following set of input labels: FIGURATIVE,
LITERAL, START, END or NULL, which indicate
the target phrase boundaries of the target phrases.

For example, the target phrase boundaries identi-
fied for the snippet: “Meanwhile , costs are going
through the roof .” for Run4 and Run5, respectively,
are as follows:

before:FIGURATIVE
after:END

where the FIGURATIVE label is the classification
of the token ‘going’ as indicated in the verb-based
bag-of-words, and

before:FIGURATIVE
after:END

where the FIGURATIVE label is the classification
of the token ‘costs’ as indicated in the noun-based
bag-of-words.

As in Run1 and Run2, an entire-set classifier and
individual target-phrase classifiers were trained for
both runs. These additional runs performed well,
yielding high accuracy results and significantly out-
performing Run1 and Run2.

The Run4 classifiers did not perform compara-
tively well across all phrases. In particular, the target
phrase “break a leg”, had very low accuracy scores,
possibly because the training data for the phrase was
small and contained mostly literal examples. The
ranges of phrase scores for the noun classification
runs (Run5) were similar to those of the Word Over-
lap runs. The results across each phrase were also
consistent, with no scores significantly lower than
the overall accuracy. Using target phrase boundaries
based on noun classifications may prove to yield rea-
sonable results when extended to more phrases, as
opposed to the erratic results found when using verb
classifications.

In both Run4 and Run5, very similar overall re-
sults were produced from both the entire-set and
target-phrase classifiers. In most cases, the run per-
formed poorly on the same phrases in both instances,
indicating that the approach may not be appropriate
for the particular phrase. For example, the verb clas-
sifications runs scored low accuracy for “drop the
ball”, while the noun classifications run was approx-
imately 80% accurate for the same phrase using both
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IIRG Submitted Runs (%)
RunID Overall

Accuracy
Precision
(Figurative)

Recall
(Figurative)

Precision
(Literal)

Recall
(Literal)

Run1 53.03 52.03 89.97 60.25 15.65
Run2 50.17 50.81 41.81 54.06 58.84
Run3 77.95 79.65 75.92 76.62 80.27

Table 2: Results of Runs Submitted to Sem-Eval 2013

IIRG Submitted Runs - Per Phrase Accuracy (%)
RunID At the

end
of the
day

Bread
and
butter

Break
a leg

Drop
the
ball

In the
bag

In the
fast
lane

Play
ball

Rub
it in

Through
the roof

Under
the
micro-
scope

Run1 68.92 57.89 40.00 40.82 43.42 67.86 52.63 66.67 64.94 33.33
Run2 45.95 38.16 83.33 57.14 48.68 75.00 46.05 56.67 29.87 62.82
Run3 75.68 82.89 73.33 83.67 72.37 75.00 78.95 60.00 80.52 83.33

Table 3: Results of Runs Submitted to Sem-Eval 2013 (per phrase)

IIRG Additional Runs - Accuracy (%)
RunID Entire-Set

Classifier
Target-Phrase
Classifier

Run4 64.81 65.99
Run5 75.25 76.60

Table 4: Accuracy of Additional Unsubmitted Runs

an entire-set and target-phrase classifier.

4 Conclusion

This is the first year we have taken part in the Se-
mantic Evaluation Exercises, participating in Task
5b, Evaluating Phrasal Semantics. Task 5B requires
systems to evaluate the compositionality of phrases
in context. We have adopted a token-based approach
to solve this task using 1) Naı̈ve Bayes methods
whereby target phrase boundaries were identified
and extracted in order to train multiple classifiers;
and 2) Word Overlap methods, whereby a simple
bag-of-words was created for each target phrase. We
submitted three runs for evaluation purposes, two
runs using Naı̈ve Bayes methods (Run1 and Run2)
and one run based on a Word Overlap approach
(Run3). The Word Overlap approach, which limited
each bag-of-words to using the canonical form of the
nouns in the text snippets, yielded the highest accu-
racy scores of all submitted runs, at approximately

78% accurate. An additional run (Run5), also us-
ing the canonical form of the nouns in the usage ex-
amples but implementing a Naı̈ve Bayes approach,
yielded similar results, almost 77% accuracy. The
approaches which were restricted to using the nouns
in the text snippets yielded the highest accuracy re-
sults, thus indicating that nouns provide important
contextual information for distinguishing literal and
figurative usage.

In future work, we will explore whether we can
improve the performance of the target phrase bound-
aries by experimenting with the local context win-
dow sizes. Another potential improvement might
be to examine whether implementing more sophisti-
cated strategies for selecting tokens for the bags-of-
words improves the effectiveness of the Word Over-
lap methods.
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Abstract

The measurement of phrasal semantic relat-
edness is an important metric for many nat-
ural language processing applications. In this
paper, we present three approaches for mea-
suring phrasal semantics, one based on a se-
mantic network model, another on a distribu-
tional similarity model, and a hybrid between
the two. Our hybrid approach achieved an F-
measure of 77.4% on the task of evaluating
the semantic similarity of words and compo-
sitional phrases.

1 Introduction

Phrasal semantic relatedness is a measurement of
how multiword expressions are related in meaning.
Many natural language processing applications
such as textual entailment, question answering, or
information retrieval require a robust measurement
of phrasal semantic relatedness. Current approaches
to address this problem can be categorized into three
main categories: those that rely on a knowledge
base and its structure, those that use the distribu-
tional hypothesis on a large corpus, and hybrid
approaches. In this paper, we propose supervised
approaches for comparing phrasal semantics that are
based on a semantic network model, a distributional
similarity model, and a hybrid between the two.
Those approaches have been evaluated on the task
of semantic similarity of words and compositional
phrases and on the task of evaluating the composi-
tionality of phrases in context.

2 Semantic Similarity of Words and
Compositional Phrases

The semantic similarity of words and compositional
phrases is the task of evaluating the similarity of a
word and a short phrase of two or more words; for
example, the word Interview and the phrase Formal
Meeting. In the next section we present our seman-
tic network model for computing phrasal semantic
relatedness between a word and a phrase, followed
by a distributional similarity model, that we evalu-
ate on the task of semantic similarity of words and
compositional phrases.

2.1 Semantic Network Model
Knowledge-based approaches to semantic related-
ness use the features of the knowledge base to mea-
sure the relatedness. One of most frequently used
semantic network is the Princeton’s WordNet (Fell-
baum, 1998) which groups words into synonyms
sets (called synsets) and includes 26 semantic rela-
tions between those synsets, including: hypernymy,
hyponymy, meronymy, entailment . . .
To measure relatedness, most of those approaches
rely on the structure of the semantic network, such
as the semantic link path, depth (Leacock and
Chodorow, 1998; Wu and Palmer, 1994), direction
(Hirst and St-Onge, 1998), or type (Tsatsaronis et
al., 2010). Our phrasal semantic relatedness ap-
proach is inspired from those methods. However,
our approach is based on the idea that the combi-
nation of the least costly types of relations that re-
late one concept to a set of concepts are a suitable
indicator of their semantic relatedness. The type
of relations considered includes not only the hy-
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Figure 1: Example of the semantic network around the word car.

ponym/hypernym relations but also all 26 available
semantic relations found in WordNet in addition to
relations extracted from each of the eXtended Word-
Net (Harabagiu et al., 1999) synset’s logical form.

To implement our idea, we created a weighted and
directed semantic network based on the relations of
WordNet and eXtended WordNet. We used Word-
Net’s words and synsets as the nodes of the network.
Each word is connected by an edge to its synsets,
and each synset is in turn connected to other synsets
based on the semantic relations included in Word-
Net. In addition each synset is connected by a la-
beled edge to the predicate arguments that are ex-
tracted from the eXtended WordNet synset’s logical
form. Every synset in the eXtended WordNet is re-
lated to a logical form, which contains a set of pred-
icate relations that relates the synset to set of words.
Each predicate in this representation is added as an
edge to the graph connecting the synset to a word.
For example, Figure 1 shows part of the semantic
network created around the word car. In this graph,
single-line ovals represent words, while double-line
ovals represent synsets.

To compute the semantic relatedness between
nodes in the semantic network, it is necessary to take
into consideration the semantic relation involved be-
tween two nodes. Indeed, WordNet’s 26 semantic
relations are not equally distributed nor do they con-
tribute equally to the semantic relatedness between
concept. In order to indicate the contribution of each
relation, we have classified them into seven cate-
gories: Similar, Hypernym, Sense, Predicate, Part,
Instance, and Other. By classifying WordNet’s re-
lations into these classes, we are able to weight

the contribution of a relation based on the class it
belongs to, as opposed to assigning a contributory
weight to each relations. The weights were assigned
by manually comparing the semantic features of a
set of concepts that are related by a specific seman-
tic relations. Table 1 shows the seven semantic cat-
egories that we defined, their corresponding weight,
and the relations they include. For example the cat-
egory Similar includes WordNet’s relations of en-
tailment, cause, verb group, similar to, participle of
verb, antonym, and pertainym. This class of rela-
tions has the most common semantic features when
comparing two concepts related with any of those
relations and hence was assigned the lowest weight1

of 1. All the 26 relations in the table are the ones
found in WordNet, for the exception of the predicate
(and inverse predicate) relations which are the predi-
cate relations extracted from the eXtended WordNet.
This can be seen in Figure 1, for example, where the
word car is related to the word Engine with the Pred-
icate relation extracted from the eXtended WordNet
logical form and more specifically the predicate pro-
pel by.

The computation of semantic relatedness be-
tween a word and a compositional phrase is then
the combination of weights of the shortest weighted
path2 in the weighted semantic network between
that word and every word in that phrase, normalized
by the maximum path cost.

1The weight can be seen as the cost of traversing an edge;
hence a lower weight is assigned to a highly contributory rela-
tion.

2The shortest path is based on an implementation of Dijk-
stras graph search algorithm (Dijkstra, 1959)
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Category Weight Semantic Relations in WordNet or xWordnet
Similar 1 similar to, pertainym, participle of verb, entailment, cause,

antonym, verb group
Hypernym 2 hypernym, instance hypernym, derivationally related
Sense 4 lemma-synset
Predicate 6 predicate (extracted from Extended WordNet)
Part 8 holonym (instance, member, substance), meronym (instance,

member, substance), inverse predicate (extracted from Extended
WordNet)

Instance 10 hyponym, instance hyponym
Other 12 attribute, also see, domain of synset (topic, region, usage), member

of this domain (topic, region, usage)

Table 1: Relations Categories and Corresponding Weights.

Figure 2 shows an extract of the network involv-
ing the words Interview and the phrase Formal Meet-
ing. For the shortest path from Interview to Formal,
the word Interview is connected with a Sense rela-
tion to the synset #107210735 [Interview]. As in-
dicated in Table 1, the weight of this relation is de-
fined as 4, This synset is connected to the synset Ex-
amination through a Hypernym relation type with a
weight of 2, which is connected to the word Formal
with a predicate (IS) relation of weight 6. Overall,
the sum of the shortest path from Interview to For-
mal Meeting is hence equal to the sum of the edges
shown in Figure 1 (4+2+6+4+6+4+6 = 32). By nor-
malizing the sum to the maximum, In our approach,
24 is maximum path cost after which we assume
that two words are not related (which we assume to
be traversing two times maximum weighted path, 2
* maximum path weight of 12) and 8 is the mini-
mum number of edges between 2 words (which is
equal to traversing from the word to itself, 2 * sense
weight of 4)). Taking into consideration the number
of words in the phrase, the semantic relatedness will
be (24*2 - (32-8*2))/24*2 = 66.7%. In the next sec-
tion, we will introduce our distributional similarity
model.

2.2 Distributional Similarity Model

Distributional similarity models rely on the distribu-
tional hypothesis (Harris, 1954) to represent a word
by its context in order to compare word semantics.
There are various approach for the selection, repre-

sentation, and comparison of contextual data. Most
use the vector space model to represent the context
as dimensions in a vector space, where the feature
are frequency of co-occurrence of the context words,
and the comparison is usually the cosine similar-
ity. To go beyond lexical semantics and to repre-
sent phrases, a compositional model is created, some
use the addition or multiplication of vectors such
as Mitchell and Lapata (2008), or the use of tensor
product to account for word order as in the work of
Widdows (2008), or a more complex model as the
work of Grefenstette and Sadrzadeh (2011). In our
model, we are inspired by those various work, and
more specifically by the work of Mitchell and Lapata
(2008). The compositional model is based on phrase
words vectors addition, where each vector is com-
posed of the collocation pointwise mutual informa-
tion of the word up to a window of 3 words left and
right of the main word. The corpus used to collect
the features and their frequencies is the Web 1TB
corpus (Brants and Franz, 2006). For the Interview
to Formal Meeting example, the vector of the word
interview is first created from the corpus of the top
1000 words collocating interview between the win-
dow of 1 to 3 words with their frequencies. A similar
vector is created for the word Formal and the word
Meeting, the vector representing Formal Meeting is
then the addition of vector Formal to vector Meet-
ing. The comparison of vector Interview to vector
Formal Meeting is then the cosine of both vectors.
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2.3 Evaluation

We evaluated our approaches for word-phrase se-
mantic relatedness on the SemEval task of evalu-
ating phrasal semantics, and more specifically on
the sub-task of evaluating the semantic similarity
between words and phrases. The task provided an
English dataset of 15,628 word-phrases, 60% an-
notated for training and 40% for testing, with the
goal of classifying each word-phrase as either pos-
itive or negative. To transform the semantic relat-
edness measure to a semantic similarity classifica-
tion one, we first calculated the semantic relatedness
of each word-phrase in the training set, and used
JRip, WEKA’s (Witten et al., 1999) implementation
of Cohen’s RIPPER rule learning algorithm (Cohen
and Singer, 1999), in order to learn a set of rules that
can differentiate between a positive semantic simi-
larity and a negative one. The classifier resulted in
rules for the semantic network model based related-
ness that could be summarized as follows: If the se-
mantic relatedness of the word-phrase is over 61%
then the similarity is positive, otherwise it is nega-
tive. So for the example Interview - Formal meeting,
which resulted in a semantic relatedness of 66.7% in
the semantic network approach, it will be classified
positively by the generated rule. This method was
our first submitted test run to this task, which re-
sulted in a recall of 63.79%, a precision of 91.01%,
and an F-measure of 75.00% on the testing set.

For the second run, we trained the distributional
similarity model using the same classifier. This re-
sulted with the following rule that could be summa-
rized as follows: If the semantic relatedness of the
word-phrase is over 40% then the similarity is pos-
itive, otherwise it is negative. It was obvious from
the training set that the semantic network model
was more accurate than the distributional similarity
model, but the distributional model had more cover-
age. So for our second submitted test run, we used
the semantic network approach as the main result,
but used the distributional model as a backup ap-
proach if one of the words in the phrase was not
available in WordNet, thus combining the precision
and coverage of both approaches. This method re-
sulted in a recall of 69.48%, a precision of 86.70%,
and an F-measure of 77.14% on the testing set.

For the last run, we used the same classifier

but this time we training it using two features:
the semantic network model relatedness measure
(SN), and the distributional similarity model (DS).
This training resulted in a set of rules that could
be summarized as follows: if SN > 61% then the
similarity is positive, else if DS > 40% then the
similarity is also positive, and lastly if SN > 53%
and DS > 31% then also in this case the similarity
is positive, otherwise the similarity is negative. This
was our third submitted test run, which resulted a
recall of 70.66%, a precision of 85.55%, and an
F-measure of 77.39% on the testing set.

3 Semantic Compositionality in Context

The semantic compositional in context is the task of
evaluating if a phrase is used literally or figuratively
in context. For example, the phrase big picture is
used literally in the sentence Click here for a bigger
picture and figuratively in To solve this problem, you
have to look at the bigger picture.
Our approach for this task is a supervised ap-
proached based on two main components: first, the
availability of the phrases most frequent collocating
expressions in a large corpus, and more specifically
the top 1000 phrases by frequency in Web 1TB cor-
pus (Brants and Franz, 2006). For example, for the
phrase big picture, we collect the top 1000 phrases
that come before and after the phrase in a corpus,
those includes look at the, see the, understand the
..... If the context contain any of those phrase, then
this component returns 1, indicating that the phrase
is most probably used figuratively. The intuition is
that, the use of phrases figuratively is more frequent
than their use in a literal meaning, and hence the
most frequent use will be collocated with phrases
that indicate this use.
The second component, is the phrase compositional-
ity. We calculate the semantic relatedness using the
semantic network model relatedness measure, that
was explained in Section 2.1, between the phrase
and the first content word before it and after it. The
intuition here is that the semantic relatedness of the
figurative use of the phrase to its context should be
different than the relatedness to its literal use. So
for the example, the phrase old school in the con-
text he is one of the old school versus the hall of
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Figure 2: Shortest Path Between the Word Interview and the Phrase Formal Meeting.

the old school, we can notice that hall will be more
related to old school than the word one. This compo-
nent will result in two features: the relatedness to the
word before the phrase (SRB) and the relatedness to
word after the phrase in context (SRA).

To combine both componenets, we evaluated our
approaches on the data set presented by the Se-
mEval task of evaluating phrasal semantics, and
more specifically on the sub task of evaluating se-
mantic compositionality in context. The data set
contains a total of 1114 training instances, and 518
test instances. We use the training data and com-
puted the three features (Frequent Collocation (FC),
Semantic Relatedness word Before (SRB), and Se-
mantic Relatedness word After (SRA), and used
JRip, WEKA’s (Witten et al., 1999) implementation
of Cohen’s RIPPER rule learning algorithm (Cohen
and Singer, 1999) to learn a set of rule that differen-
tiate between a figurative and literal phrase use. This
method resulted in a set of rules that can be summa-
rized as follows: if FC is equal to 0 and SRB < 75%
then it is used literally in this context, else if FC is
equal to 0 and SRA < 75% then it is is also used lit-
erally, otherwise it is used figuratively. This method
resulted in an accuracy of 55.01% on the testing set.

4 Conclusion

In this paper we have presented state of the art
word-phrase semantic relatedness approaches that
are based on a semantic network model, a distribu-
tional model, and a combination of the two. The

novelty of the semantic network model approach is
the use of the sum of the shortest path between a
word and a phrase from a weighted semantic net-
work to calculate word-phrase semantic relatedness.
We evaluated the approach on the SemEval task of
evaluating phrasal semantics, once in a supervised
standalone configuration, another with a backup dis-
tributional similarity model, and last in a hybrid con-
figuration with the distributional model. The hy-
brid model achieved the highest f-measure in those
three configuration of 77.4% on the task of evaluat-
ing the semantic similarity of words and composi-
tional phrases. We also evaluated this approach on
the subtask of evaluating the semantic composition-
ality in context with less success, and an accuracy of
of 55.01%.
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Abstract

In this paper we describe the system used to
participate in the sub task 5b in the Phrasal Se-
mantics challenge (task 5) in SemEval 2013.
This sub task consists in discriminating lit-
eral and figurative usage of phrases with
compositional and non-compositional mean-
ings in context. The proposed approach is
based on part-of-speech tags, stylistic features
and distributional statistics gathered from the
same development-training-test text collec-
tion. The system obtained a relative improve-
ment in accuracy against the most-frequent-
class baseline of 49.8% in the “unseen con-
texts” (LexSample) setting and 8.5% in “un-
seen phrases” (AllWords).

1 Introduction

The Phrasal Semantics task-5b in SemEval 2013
consisted in the discrimination of literal of figura-
tive usage of phrases in context (Korkontzelos et al.,
2013). For instance, the occurrence in a text of the
phrase “a piece of cake” can be used whether to re-
fer to something that is pretty easy or to an actual
piece of cake. The motivation for this task is that
such discrimination could improve the quality and
performance of other tasks like machine translation
and information retrieval.

This problem has been studied in the past. Lin
(1999) observed that the distributional characteris-
tics of the literal and figurative usage are different.
Katz and Giesbrecht (2006) showed that the similar-
ities among contexts are correlated with their literal
or figurative usage. Birke and Sarkar (2006) clus-

tered literal and figurative contexts using a word-
sense-disambiguation approach. Fazly et al. (2009)
showed that literal and figurative usages are related
to particular syntactical forms. Sporleder and Li
(2009) showed that for a particular phrase the con-
texts of its literal usages are more cohesive than
those of its figurative usages. Inspired by these
works and in a new observation, we proposed a set or
features based on cohesiveness, syntax and stylom-
etry (Section 2), which are used to train a machine
learning classifier.

The cohesiveness between a phrase an its context
can be measured aggregating the relatedness of the
context words against the target phrase. This cohe-
siveness should be high for phrases used literally.
Conversely, figurative usages can occur in a large
variety of contexts implying low cohesiveness. For
instance, the cohesiveness of the phrase “a piece of
cake” against context words such as “coffee”, “birth-
day” and “bakery” should be high. The distribu-
tional measures used to obtain the needed related-
ness scores and the proposed measures of cohesive-
ness are presented in subsection 2.1.

Moreover, we observed a stylistic trend in the
training data set. That is, figurative usage tends to
occur later in the document in comparison with the
literal usage. Consequently, a small set of features
that exploits this particular observation is proposed
in subsection 2.2.

Fazly et al. (2009) showed that idiomatic phrases
composed of a verb and a noun (e.g. “break a leg”)
differ from their literal usages in the use of some
syntactic structures. For instance, idiomatic phrases
are less flexible in the use of determiners, pluraliza-
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tion and passivization. In order to capture that no-
tion in a simple way, a set of features form a part-
of-speech tagger was included in the feature set (see
subsection 2.3).

In Section, additional details of the proposed sys-
tem are provided jointly with the obtained official
results. Finally, in sections 4 and 5 a brief discus-
sion of the results and some concluding remarks are
presented.

2 Features

Each instance of the training and test sets consist of a
short document d where one or more occurrences of
its target phase pd are annotated. For each particular
phrase p, several instances are provided correspond-
ing to literal or figurative usages. In this section, the
set of features that was extracted from each instance
to provide a vectorial representation is presented.

2.1 Cohesiveness Features

Let’s start with some definitions borrowed from the
information retrieval field: D is a collection of doc-
uments, df(w) is the number of documents in D
where the word w occurs (document frequency),
df(w ∧ pd) is the number of documents where w
and a target phrase pd co-occur, tf(w, d) is the num-
ber of occurrences of w in a document d ∈ D (term
frequency), and idf(w) = log2

df(w)
|D| is the inverse

document frequency of w (Jones, 2004).
A simple distributional measure of relatedness be-

tween w and p can be obtained with the following
ratio:

R(w, p) =
df(w ∧ pd)

df(w)
(1)

Pointwise mutual information (PMI) (Church and
Hanks, 1990) is another distributional measure that
can be used for measuring the relatedness of w and
p. The probabilities needed for its calculation can be
obtained by maximum likelihood estimation (MLE):
P (w) ≈ df(w)

|D| , P (pd) ≈ df(pd)
|D| and P (w ∧ pd) ≈

df(w∧pd)
|D| .
Thus, PMI is given by this expression:

PMI(w, pd) = log2

(
P (w ∧ pd)

P (w) · P (pd)

)
(2)

F1:
∑

w∈d′ R(w, pd)

F2:
∑

w∈d′ tf(w, d)

F3:
∑

w∈d′ idf(w)

F4:
∑

w∈d′ PMI(w, pd)

F5:
∑

w∈d′ NPMI(w, pd)

F6:
∑

w∈d′ (tf(w, d) · R(w, pd))

F7:
∑

w∈d′ (idf(w) · R(w, pd))

F8
∑

w∈d′ (R(w, pd) · PMI(w, pd))

F9:
∑

w∈d′ (R(w, pd) ·NPMI(w, pd))

F10:
∑

w∈d′ (tf(w, d) · idf(w))

F11:
∑

w∈d′ (tf(w, pd) · PMI(w, pd))

F12:
∑

w∈d′ (tf(w, pd) ·NPMI(w, pd))

F13:
∑

w∈d′ (idf(w) · PMI(w, pd))

F14:
∑

w∈d′ (idf(w) ·NPMI(w, pd))

F15:
∑

w∈d′ (PMI(w, pd) ·NPMI(w, pd))

F16:
∑

w∈d′ (tf(w, d) · idf(w) · R(w, pd))

F17:
∑

w∈d′ (tf(w, d) · R(w, pd) · PMI(w, pd))

F18:
∑

w∈d′ (tf(w, d) · R(w, pd) ·NPMI(w, pd))

F19:
∑

w∈d′ (tf(w, d) · idf(w) · PMI(w, pd))

F20:
∑

w∈d′ (tf(w, d) · idf(w) ·NPMI(w, pd))

Table 1: Cohesiveness features

Furthermore, the scores obtained through eq. 2
can be normalized in the interval [+2,0] with the fol-
lowing expression:

NPMI(w, pd) =
PMI(w, pd)

− log2(P (w ∧ pd))
+ 1 (3)

A measure of the cohesiveness between a docu-
ment d against its target phrase pd, can be obtained
by aggregating the pairwise relatedness scores be-
tween all the words in d and pd. For instance, us-
ing eq. 1 that measure is

∑
w∈d′ R(w, pd), where d′

is the set of different words in d. The equations 1,
2 and 3 can be used as weights associated to each
word, which can also be combined among them and
with tf and idf weights. Such weight combinations
produce measures that can be used as cohesiveness
features for a document. The set of 20 features ob-
tained using this approach is shown in Table 1.

2.2 Stylistic Features
The set of stylistic features related to the document
length, vocabulary size and relative position of the
occurrence of the target phrase in a document is
shown in Table 2.
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F21: Relative position of pd in d

F22: Document length in characters
F23: Document length in tokens
F24: Number of different words

Table 2: Stylistic features

2.3 Syntactic Features

The features F25 to F67 correspond to the set of 43
part-of-speech tags of the NLTK English POS tag-
ger (Loper and Bird, 2002). Each feature contains
the frequency of occurrence of each POS-tag in a
document d.

3 Experimental Setup and Results

The data provided for this task consists of two data
sets LexSample and AllWords, which are divided
into development, training and test sets. Neverthe-
less, we considered a single training set aggregat-
ing the development and training parts from both
data sets for a total of 3,230 instances. Each train-
ing instance has a class label whether “literally” or
“figuratively” depending on the usage or the tar-
get phrase. Similarly, the aggregated test set con-
tains 1,112 instances, but with unknown values in
the class attribute.

Firstly, the syntactic features for each text were
obtained using the POS tagger included in the NLTK
v.2.0.4 (Loper and Bird, 2002). Secondly, all texts
were preprocessed by tokenizing, lowecasing, stop-
word removing, punctuation removing and stem-
ming using the Porter’s algorithm (1980). This pre-
processed version of the texts was used to obtain the
remaining cohesiveness and stylistic features. The
resulting vectorial data set was used to produce the
predictions labeled “UNAL.RUN1” through a Lo-
gistic classifier (Cessie and Houwelingen, 1992).
The implementation used for this classifier was the
included in WEKA v.3.6.9 (Hall et al., 2009). The
accuracies obtained by the different feature groups
in the training set using 10-fold cross validation are
shown in Table 3. The last column shows the per-
centage of relative improvement of different feature
sets combinations from the most frequent class base-
line to our best system using all features.

The predictions labeled “UNAL.RUN2” were ob-
tained with the same vectorial data set but adding

Features Accuracy % improv.

All features 0.7272 100.0%
Cohesiveness+Syntactic 0.7034 87.1%
Cohesiveness 0.6833 76.2%
Syntactic 0.6229 43.5%
Stylistic 0.5492 3.5%
Baseline MFC 0.5427 0.0%

Table 3: Results by group of features in the training set
using 10-fold cross validation

System LexSample AllWords Both

UNAL.RUN1 0.7222 0.6680 0.6970
UNAL.RUN2 0.7542 0.6448 0.7032
Baseline MFC 0.5034 0.6158 0.5558
Best SemEval’13 0.7795 0.6680 0.7276
# test instances 594 518 1,112

Table 4: Official results in the test set (accuracy)

as a nominal feature the target phrase of each in-
stance. The official results obtained by both sub-
mitted runs are shown in Table 4. Note that official
results in the test set are reported separately for the
data sets LexSample and AllWords. The LexSample
test set contains instances whose target phrases were
seen in the training set (i.e. unseen contexts). Un-
like LexSample, AllWords contains instances whose
target phrases were unseen in the training set (i.e.
unseen phrases).

4 Discussion

As it was expected, the results obtained in the “un-
seen context” setting were consistently better than
in “unseen phrases”. This result suggests that the
discrimination of literal and figurative usage heavily
depends on particular idiomatic phrases. This can
also be confirmed by the best accuracy obtained by
RUN2 compared with RUN1 in LexSample. Clearly,
the classifier used in RUN2 exploited the identifica-
tion of the phrase to leverage a priori information
about the phrase such as the most frequent usage.

Another factor that could undermine the results in
the “unseen phrases” setting is the low number of in-
stances per phrase in the AllWords test set, roughly a
third in comparison with LexSample. Given that the
effectiveness of the cohesiveness features depends
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on the number of documents where the idiomatic
phrase occurs, the predictions for this test set relied
mainly on the less effective features, namely syn-
tactic and stylistic features (see Table 3). However,
this problem could be alleviated obtaining the distri-
butional statistics from a large corpus with enough
occurrences of the unseen phrases.

Besides it is important to note, that in spite of the
low individual contribution of the stylistic features
to the overall accuracy (3.5%), when these are com-
bined with the remaining features they provide an
improvement of 12.9% (see Table 3).

5 Conclusions

We participated in the Phrasal Semantics sub task 5b
in SemEval 2013. Our system proved the effective-
ness of the use of cohesiveness, stylistic and syn-
tactic features for discriminating literal from figura-
tive usage of idiomatic phrases. The most-frequent-
class baseline was overcame by 49.8% in the “un-
seen contexts” setting (LexSample) and 8.5% in “un-
seen phrases” (AllWords).
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Abstract

This paper presents our approach used for
cross-lingual textual entailment task (task 8)
organized within SemEval 2013. Cross-
lingual textual entailment (CLTE) tries to de-
tect the entailment relationship between two
text fragments in different languages. We
solved this problem in three steps. Firstly,
we use a off-the-shelf machine translation
(MT) tool to convert the two input texts into
the same language. Then after performing a
text preprocessing, we extract multiple feature
types with respect to surface text and gram-
mar. We also propose novel feature types
regarding to sentence difference and seman-
tic similarity based on our observations in the
preliminary experiments. Finally, we adopt a
multiclass SVM algorithm for classification.
The results on the cross-lingual data collec-
tions provided by SemEval 2013 show that (1)
we can build portable and effective systems
across languages using MT and multiple ef-
fective features; (2) our systems achieve the
best results among the participants on two test
datasets, i.e., FRA-ENG and DEU-ENG.

1 Introduction

The Cross-lingual Textual Entailment (CLTE) task
in SemEval 2013 consists in detecting the entail-
ment relationship between two topic-related text
fragments (usually called T(ext) and H(ypothesis))
in different languages, which is a cross-lingual ex-
tension of TE task in (Dagan and Glickman, 2004).
We say T entails H if the meaning of H can be in-
ferred from the meaning of T. Mehdad et al. (2010b)
firstly proposed this problem within a new challeng-
ing application scenario, i.e., content synchroniza-

tion. In consideration of the directionality, the task
needs to assign one of the following entailment judg-
ments to a pair of sentences (1) forward: unidirec-
tional entailment from T to H; (2) backward: unidi-
rectional entailment from H to T; (3) bidirectional:
the two fragments entail each other (i.e., semantic
equivalence); (4) non-entailment: there is no entail-
ment between T and H.

During the last decades, many researchers and
communities have paid a lot of attention to resolve
the TE detection (e.g., seven times of the Rec-
ognizing Textual Entailment Challenge, i.e., from
RTE1 to RET7, have been held) since identifying
the relationship between two sentences is at the core
of many NLP applications, such as text summa-
rization (Lloret et al., 2008) or question answer-
ing (Harabagiu and Hickl, 2006). For example,
in text summarization, a redundant sentence should
be omitted from the summary if this sentence can
be entailed from other expressions in the summary.
CLTE extends those tasks with lingual dimension-
ality, where more than one language is involved.
Although it is a relatively new task, a basic solu-
tion has been provided in (Mehdad et al., 2010b),
which brings the problem back to monolingual sce-
nario using MT to translate H into the language of
T. The promising performance indicates the poten-
tialities of such a simple approach which integrates
MT and monolingual TE algorithms (Castillo, 2011;
Jimenez et al., 2012; Mehdad et al., 2010a).

In this work, we regard CLTE as a multiclass clas-
sification problem, in which multiple feature types
are used in conjunction with a multiclass SVM clas-
sifier. Specifically, our approach can be divided
into three steps. Firstly, following (Esplà-Gomis
et al., 2012; Meng et al., 2012), we use MT to
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bridge the gap of language differences between T
and H. Secondly, we perform a preprocessing pro-
cedure to maximize the similarity of the two text
fragments so as to make a more accurate calcula-
tion of surface text similarity measures. Besides sev-
eral features described in previous work (Malakasi-
otis, 2009; Esplà-Gomis et al., 2012), we also pro-
pose several novel features regarding to sentence dif-
ference and semantic similarity. Finally, all these
features are combined together and serves as input
of a multiclass SVM classifier. After analyzing of
the results obtained in preliminary experiments, we
also cast this problem as a hierarchical classification
problem.

The remainder of the paper is organized as fol-
lows. Section 2 describes different features used in
our systems. Section 3 presents the system settings
including the datasets and preprocessing. Section 4
shows the results of different systems on different
language pairs. Finally, we conclude this paper with
future work in Section 5.

2 Features

In this section, we will describe a variety of feature
types used in our experiments.

2.1 Basic features

The BC feature set consists of length measures on
variety sets including |A|, |B|, |A−B|, |B−A|, |A∪
B|, |A ∩ B|, |A|/|B| and |B|/|A|, where A and B
represent two texts, and the length of set is the num-
ber of non-repeated elements in this set. Once we
view the text as a set of words, A−B means the set
of words found in A but not in B, A ∪ B means the
set of words found in either A or B and A∩B means
the set of shared words found in both A and B.

Given a pair of texts, i.e., <T,H>, which are in
different languages, we use MT to translate one of
them to make them in the same language. Thus,
we can get two pairs of texts, i.e., <Tt,H> and
<T,H t>. We apply the above eight length measures
to the two pairs, resulting in a total of 16 features.

2.2 Surface Text Similarity features

Following (Malakasiotis and Androutsopoulos,
2007), the surface text similarity (STS) feature set
contains nine similarity measures:

Jaccard coefficient: It is defined as |A∩B|
|A∪B| , where

|A ∩ B| and |A ∪ B| are as in the BC.
Dice coefficient: Defined as 2∗|A∩B|

|A|+|B| .
Overlap coefficient: This is the following quantity,
Overlap(A,B) = |A∩B|

|A| .
Weighted overlap coefficient: We assign the tf*idf
value to each word in the sentence to distinguish
the importance of different words. The weighted
overlap coefficient is defined as follows:

WOverlap(A,B) =

∑
wi∈A∩B Wwi∑

wi∈A Wwi

,

where Wwi is the weight of word wi.
Cosine similarity: cos(−→x ,−→y ) =

−→x ·−→y
‖−→x ‖·‖−→y ‖ , where

−→x and −→y are vectorial representations of texts (i.e.
A and B) in tf ∗ idf schema.
Manhattan distance: Defined as M(−→x ,−→y ) =
n∑

i=1
|xi − yi|.

Euclidean distance: Defined as E(−→x ,−→y ) =√
n∑

i=1
(xi − yi)2.

Edit distance: This is the minimum number of op-
erations needed to transform A to B. We define an
operation as an insertion, deletion or substitution of
a word.
Jaro-Winker distance: Following (Winkler and
others, 1999), the Jaro-Winkler distance is a mea-
sure of similarity between two strings at the word
level.

In total, we can get 11 features in this feature set.

2.3 Sematic Similarity features

Almost every previous work used the surface texts
or exploited the meanings of words in the dictio-
nary to calculate the similarity of two sentences
rather than the actual meaning in the sentence. In
this feature set (SS), we introduce a latent model
to model the semantic representations of sentences
since latent models are capable of capturing the
contextual meaning of words in sentences. We
used weighted textual matrix factorization (WTMF)
(Guo and Diab, 2012) to model the semantics of
the sentences. The model factorizes the original
term-sentence matrix X into two matrices such that
Xi,j ≈ P T

∗,iQ∗,j , where P∗,i is a latent semantics
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vector profile for word wi and Q∗,j is the vector pro-
file that represents the sentence sj . The weight ma-
trix W is introduced in the optimization process in
order to model the missing words at the right level
of emphasis. We propose three similarity measures
according to different strategies:
wtw: word-to-word based similarity defined as

sim(A,B) = lg

∑
wi∈A Wwi ·maxwj∈B(P∗,i,P∗,j)

∑
wi∈A Wwi

.

wts: word-to-sentence based similarity defined as

sim(A,B) = lg

∑
wi∈A Wwi ·P∗,i·Q∗,k

∑
wi∈A Wwi

.

sts: sentence-to-sentence based similarity defined as
sim(A,B) = lg (Q∗,i · Q∗,j).

Also we calculate the cosine similarity, Euclidean
and Manhattan distance, weighted overlap coeffi-
cient using those semantics vectors, resulting in 10
features.

2.4 Sentence Difference features

Most of those above measures are symmetric and
only a few are asymmetric, which means they may
not be very suitable for the task that requires dealing
with directional problems. We solve this problem by
introducing sentence difference measures.

We observed that many entailment relationships
between two sentences are determined by only tiny
parts of the sentences. As a result, the similarity of
such two sentences by using above measures will be
close to 1, which may mislead the classifier. Fur-
thermore, almost all similarity measures in STS are
symmetric, which means the same similarity has no
help to distinguish the different directions. Based on
the above considerations, we propose a novel sen-
tence difference (SD) feature set to discover the dif-
ferences between two sentences and tell the classi-
fier the possibility the entailment should not hold.

The sentence difference features are extracted as
follows. Firstly, a word in one sentence is consid-
ered as matched if we can find the same word in the
other sentence. Then we find all matched words and
count the number of unmatched words in each sen-
tence, resulting in 2 features. If one sentence has
no unmatched words, we say that this sentence can
be entailed by the other sentence. That is, we can
infer the entailment class through the number of un-
matched words. We regard this label as our third
feature type. Secondly, different POS types of un-
matched words may have different impacts on the

classification, therefore we count the number of un-
matched words in each sentence that belong to a
small set of POS tags (here consider only NN, JJ,
RB, VB and CD tags), which produces 10 features,
resulting in a total of 13 sentence difference features.

2.5 Grammatical Relationship features

The grammatical relationship feature type (GR) is
designed to capture the grammatical relationship be-
tween two sentences. We first replace the words in a
sentence with their part-of-speech (POS) tags, then
apply the STS measures on this new “sentence”.

In addition, we use the Stanford Parser to get the
dependency information represented in a form of re-
lation units (e.g. nsubj(example, this)). We calculate
the BC measures on those units and the overlap co-
efficients together with the harmonic mean of them.
Finally, we get 22 features.

2.6 Bias features

The bias features (BS) are to check the differences
between two sentences in certain special aspects,
such as polarity and named entity. We use a method
based on subjectivity of lexicons (Loughran and Mc-
Donald, 2011) to get the polarity of a sentence by
simply comparing the numbers of positive and neg-
ative words. If the numbers are the same, then we
set the feature to 1, otherwise -1. Also, we check
whether one sentence entails the other using only
the named entity information. We consider four cat-
egories of named entities, i.e., person, organization,
location, number, which are recognized by using the
Stanford NER toolkit. We set the feature to 1 if the
named entities in one sentence are found in the other
sentence, otherwise -1. As a result, this feature set
contains 9 features.

3 Experimental Setting

We evaluated our approach using the data sets
provided in the task 8 of SemEval 2013 (Ne-
gri et al., 2013). The data sets consist of a
collection of 1500 text fragment pairs (1000 for
training consisting of training and test set in Se-
mEval 2012 and 500 for test) in each language
pair. Four different language pairs are provided:
German-English, French-English, Italian-English
and Spanish-English. See (Negri et al., 2013) for
more detailed description.
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3.1 Preprocess

We performed the following text preprocessing.
Firstly, we employed the state-of-the-art Statistical
Machine Translator, i.e., Google translator, to trans-
late each pair of texts <T,H> into <Tt,H> and
<T,H t>, thus they were in the same language. Then
we extracted all above described feature sets from
the pair <T t,H> (note that <T,Ht> are also used
in BC), so the below steps were mainly operated on
this pair. After that, all sentences were tokenized
and lemmatized using the Stanford Lemmatizer and
all stop words were removed, followed by the equiv-
alent replacement procedure. The replacement pro-
cedure consists of the following 3 steps:
Abbreviative replacement. Many phrases or orga-
nizations can be abbreviated to a set of capitalized
letters, e.g. “New Jersey” is usually wrote as “NJ”
for short. In this step, we checked every word whose
length is 2 or 3 and if it is the same as the “word”
consisting of the first letters of the successive words
in another sentence, then we replaced it by them.
Semantic replacement. We observed that although
some lemmas in H and T were in the different forms,
they actually shared the same meaning, e.g. “hap-
pen” and “occur”. Here, we focused on replacing a
lemma in one sentence with another lemma in the
other sentence if they were: 1) in the same syn-
onymy set; or 2) gloss-related. Two lemmas were
gloss-related if a lemma appeared in the gloss of the
other. For example, the gloss of “trip” is “a jour-
ney for some purpose” (WordNet 2.1 was used for
looking up the synonymy and gloss of a lemma), so
the lemma “journey” is gloss-related with “trip”. No
word sense disambiguation was performed and all
synsets for a particular lemma were considered.
Context replacement. The context of a lemma
is defined as the non-stopword lemmas around it.
Given two text fragments, i.e., T. ...be erroneously
label as a “register sex offender.” and H. ...be mis-
takenly inscribe as a “register sex offender”., af-
ter the semantic replacement, we can recognize the
lemma “erroneously” was replaceable by “mistak-
enly”. However, WordNet 2.1 cannot recognize the
lemmas “label” and “inscribe” which can also be
replaceable. To address this problem, we simply as-
sumed that two lemmas surrounded by the same con-
text can be replaceable as well. In the experiments,

we set the window size of context replacement as 3.
This step is the foundation of the extraction of

the sentence different features and can also allevi-
ate the imprecise similarity measure problem exist-
ing in STS caused by the possibility of the lemmas
in totally different forms sharing the same sense.

3.2 System Configuration

We selected 500 samples from the training data as
development set (i.e. test set in SemEval 2012) and
performed a series of preliminary experiments to
evaluate the effectiveness of different feature types
in isolation and also in different combinations. Ac-
cording to the results on the development set, we
configured five different systems on each language
pair as our final submissions with different feature
types and classification strategies. Table1 shows the
five configurations of those systems.

System Feature Set Description
1 all flat, SVM
2 best feature sets flat, SVM
3 best feature sets flat, Majority Voting

4 best feature sets
flat, only 500 instances
for train, SVM

5 best feature sets hierarchical, SVM

Table 1: System configurations using different strategies
based on the results of preliminary experiments.

Among them, System 1 serves as a baseline that
used all features and was trained using a flat SVM
while System 2 used only the best feature combi-
nations. In our preliminary experiments, different
language pairs had different best feature combina-
tions (showed in Table 2). In System 3 we per-
formed a majority voting strategy to combine the
results of different algorithm (i.e. MaxEnt, SVM,
liblinear) to further improve performance. System
4 is a backup system that used only the training set
in SemEval 2012 to explore the influence of the dif-
ferent size of train set. Based on the analysis of the
preliminary results on development set, we also find
that the misclassification mainly occur between the
class of backward and others. So in System 5, we
adopted hierarchical classification technique to filter
out backward class in the first level using a binary
classifier and then conducted multi-class classifica-
tion among the remaining three classes.
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We used a linear SVM with the trade-off parame-
ter C=1000 (also in liblinear). The parameters in SS
are set as below: the dimension of sematic space is
100, the weight of missing words is 100 and the reg-
ularization factor is 0.01. In the hierarchical classifi-
cation, we use the liblinear (Fan et al., 2008) to train
a binary classifier and SVM for a multi-class classi-
fier with the same parameters in other Systems.

4 Results and discussion

Table 2 lists the final results of our five systems on
the test samples in terms of four language pairs. The
best feature set combinations for different language
pairs are also shown. The last two rows list the re-
sults of the best and runner-up team among six par-
ticipants, which is released by the organizers.

From this table, we have some interesting find-
ings.

Firstly, the feature types BC and SD appear in all
best feature combinations. This indicates that the
length and sentence difference information are good
and effective label indicators.

Secondly, based on the comparison between Sys-
tem 1 and System 2, we find that the behavior of the
best feature sets of different language pairs on test
and development datasets is quite different. Specif-
ically, the best feature set performs better on FRA-
ENG and DEU-ENG data sets than the full feature
set. However, the full feature set performs the best
on SPA-ENG and ITA-ENG data sets. The reason
may be the different distribution properties of test
and development data sets.

Thirdly, although the only difference between
System 2 and System 4 is the size of training sam-
ples, System 4 trained on a small number of training
instances even makes a 1.6% improvement in accu-
racy over System 2 on DEU-ENG data set. This
is beyond our expectation and it indicates that the
CLTE may not be sensitive to the size of data set.

Fourthly, by adopting a majority voting scheme,
System 3 achieves the best results on two data sets
among five systems and obtains 45.8% accuracy on
FRA-ENG which is the best result among all partic-
ipants. This indicates the majority voting strategy is
a effective way to boost the performance.

Fifthly, System 5 which adopts hierarchical clas-
sification technique fails to make further improve-

ment. But it still outperforms the runner-up system
in this task on FRA-ENG and DEU-ENG. We spec-
ulate that the failure of System 5 may be caused by
the errors sensitive to hierarchical structure in hier-
archical classification.

In general, our approaches obtained very good
results on all the language pairs. On FRA-ENG
and DEU-ENG, we achieved the best results among
the 16 systems with the accuracy 45.8% and 45.3%
respectively and largely outperformed the runner-
up. The results on SPA-ENG and ITA-ENG were
also promising, achieving the second and third place
among the 16 systems.

5 Conclusion

We have proposed several effectively features con-
sisting of sentence semantic similarity and sentence
difference, which work together with other features
presented by the previous work to solve the cross-
lingual textual entailment problem. With the aid
of machine translation, we can handle the cross-
linguality. We submitted five systems on each lan-
guage pair and obtained the best result on two data
sets, i.e., FRA-ENG and DEU-ENG, and ranked the
2nd and the 3rd on other two language pairs respec-
tively. Interestingly, we find some simple feature
types like BC and SD are good class indicators and
can be easily acquired. In future work, we will in-
vestigate the discriminating power of different fea-
ture types in the CLTE task on different languages.

Acknowledgements

The authors would like to thank the organizers and
reviewers for this interesting task and their helpful
suggestions and comments, which improves the fi-
nal version of this paper. This research is supported
by grants from National Natural Science Foundation
of China (No.60903093), Shanghai Pujiang Talent
Program (No.09PJ1404500), Doctoral Fund of Min-
istry of Education of China (No. 20090076120029)
and Shanghai Knowledge Service Platform Project
(No. ZF1213).

References

Julio Javier Castillo. 2011. A wordnet-based seman-
tic approach to textual entailment and cross-lingual

122



System SPA-ENG ITA-ENG FRA-ENG DEU-ENG
1 0.428 0.426 0.438 0.422
2 0.404 0.420 0.450 0.436
3 0.408 0.426 0.458 0.432
4 0.422 0.416 0.436 0.452
5 0.392 0.402 0.442 0.426

Best
feature set

BC+STS+SS
+GR+SD

BC+SD+SS
+GR+BS

SD+BC+STS
BC+STS+SS

+BS+SD

Best 0.434 0.454 0.458 0.452
runner-up 0.428 0.432 0.426 0.414

Table 2: The accuracy results of our systems on different language pairs released by the organizer.

textual entailment. International Journal of Machine
Learning and Cybernetics, 2(3):177–189.

Ido Dagan and Oren Glickman. 2004. Probabilistic tex-
tual entailment: Generic applied modeling of language
variability. In Proceedings of the PASCAL Workshop
on Learning Methods for Text Understanding and Min-
ing.
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Montréal, Canada, 7-8 June.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui
Wang, and Chih-Jen Lin. 2008. Liblinear: A library
for large linear classification. The Journal of Machine
Learning Research, 9:1871–1874.

Weiwei Guo and Mona Diab. 2012. Modeling sentences
in the latent space. In Proceedings of the 50th Annual
Meeting of the Association for Computational Linguis-
tics.

Sanda Harabagiu and Andrew Hickl. 2006. Methods for
using textual entailment in open-domain question an-
swering. In Proceedings of the 21st International Con-
ference on Computational Linguistics and 44th Annual
Meeting of the Association for Computational Linguis-
tics, pages 905–912, Sydney, Australia, July.

Sergio Jimenez, Claudia Becerra, and Alexander Gel-
bukh. 2012. Soft cardinality+ ml: Learning adaptive
similarity functions for cross-lingual textual entail-
ment. In Proceedings of the 6th International Work-
shop on Semantic Evaluation (SemEval 2012).

Elena Lloret, Oscar Ferrández, Rafael Munoz, and
Manuel Palomar. 2008. A text summarization ap-
proach under the influence of textual entailment. In
Proceedings of the 5th International Workshop on
Natural Language Processing and Cognitive Science
(NLPCS 2008), pages 22–31.

Tim Loughran and Bill McDonald. 2011. When is a
liability not a liability? textual analysis, dictionaries,
and 10-ks. The Journal of Finance, 66(1):35–65.

Prodromos Malakasiotis and Ion Androutsopoulos.
2007. Learning textual entailment using svms and
string similarity measures. In Proceedings of the ACL-
PASCAL Workshop on Textual Entailment and Para-
phrasing, pages 42–47.

Prodromos Malakasiotis. 2009. Paraphrase recognition
using machine learning to combine similarity mea-
sures. In Proceedings of the ACL-IJCNLP 2009 Stu-
dent Research Workshop, pages 27–35.

Yashar Mehdad, Alessandro Moschitti, and Fabio Mas-
simo Zanzotto. 2010a. Syntactic/semantic structures
for textual entailment recognition. In Human Lan-
guage Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for
Computational Linguistics, pages 1020–1028.

Yashar Mehdad, Matteo Negri, and Marcello Federico.
2010b. Towards cross-lingual textual entailment. In
Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the As-
sociation for Computational Linguistics, pages 321–
324, Los Angeles, California, June.

Fandong Meng, Hao Xiong, and Qun Liu. 2012. Ict:
A translation based method for cross-lingual textual
entailment. In Proceedings of the Sixth International
Workshop on Semantic Evaluation (SemEval 2012),
pages 715–720, Montréal, Canada, 7-8 June.
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Abstract

This paper describes the evaluation of differ-
ent kinds of textual features for the Cross-
Lingual Textual Entailment Task of SemEval
2013. We have counted the number ofN -
grams for three types of textual entities (char-
acter, word and PoS tags) that exist in the
pair of sentences from which we are inter-
ested in determining the judgment of textual
entailment. Difference, intersection and dis-
tance (Euclidian, Manhattan and Jaccard) of
N -grams were considered for constructing a
feature vector which is further introduced in
a support vector machine classifier which al-
lows to construct a classification model. Five
different runs were submitted, one of them
considering voting system of the previous four
approaches. The results obtained show a per-
formance below the median of six teams that
have participated in the competition.

1 Introduction

The cross-lingual textual entailment (CLTE), re-
cently proposed by (Mehdad et al., 2012) and
(Mehdad et al., 2011), is an extension of the tex-
tual entailment task (Dagan and Glickman, 2004).
Formally speaking, given a pair of topically related
text fragments (T1 and T2 which are assumed to
be TRUE statements) written in different languages,
the CLTE task consists of automatically annotating
it with one of the following entailment judgments:

• bidirectional (T1 → T2 & T1 ← T2): the two
fragments entail each other (semantic equiva-
lence);

• forward (T1 → T2 & T1 8 T2): unidirec-
tional entailment fromT1 to T2;

• backward (T1 9 T2 & T1 ← T2): unidirec-
tional entailment fromT2 to T1;

• no entailment (T19 T2 & T1 8 T2): there
is no entailment betweenT1 and T2 in both
directions;

The Cross-lingual datasets evaluated were avail-
able for the following language combinations (T1-
T2):

• Spanish-English (SPA-ENG)

• German-English (DEU-ENG)

• Italian-English (ITA-ENG)

• French-English (FRA-ENG)

In this paper we describe the evaluation of differ-
ent features extracted from each pair of topically re-
lated sentences.N -grams of characters, words and
PoS tags were counted with the aim of constructing
a representative vector for each judgment entailment
(FORWARD, BACKWARD, BI-DIRECTIONAL or
NO-ENTAILMENT). The resulting vectors were
fed into a supervised classifier based on Support
Vector Machines (SVM)1 which attempted to con-
struct a classification model. The description of the
features and the vectorial representation is given in
Section 2. The obtained results are shown and di-
cussed in Section 3. Finally, the findings of this
work are given in Section 4.

1We have employed the implementation of the Weka tool
(Hall et al., 2009).
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2 Experimental Setup

We have considered the task as a classification prob-
lem using the pivot approach. Thus, we have trans-
lated2 each pair to their corresponding language in
order to have two pairs of sentences written in the
same language. LetPair(T1, T2) be the origi-
nal pair of topically related sentences. Then, we
have obtained the English translation ofT1, de-
noted byT3, which will be aligned withT2. On
the other hand, we have translatedT2 to the other
language (Spanish, German, Italian or French), de-
noted byT4, which will be aligned withT1. The
two pairs of sentences,Pair(T2, T3) (English) and
Pair(T1, T4) (other language), are now written in
the same language, and we can proceed to calculate
the textual features we are interested in.

The features used to represent both sentences are
described below:

• N -grams of characters, withN = 2, · · · , 5.

• N -grams of words, withN = 2, · · · , 4.

• N -grams of PoS tags, withN = 2, · · · , 4.

• Euclidean measure between each pair of sen-
tences (Pair(T1, T4) andPair(T2, T3)).

• Manhattan measure between each pair of sen-
tences (Pair(T1, T4) andPair(T2, T3)).

• Jaccard coefficient, expanding English terms in
both sentences,T2 and T3, with their corre-
sponding synonyms (none disambiguation pro-
cess was considered).

The manner we have used the above mentioned
features is described in detail in the following sub-
sections.

2.1 Approach 1: Difference operator

For each pair of sentences written in the same lan-
guage, this approach counts the number ofN -grams
that occur in the first sentence (for instanceT1), and
do not occur in the second sentence (for instance
T4) and viceversa. Formally speaking, the values
obtained are

−−−→
Pair(T1, T2) = {D1, D2, · · · , Dk},

with D1 = |T1 − T4|, D2 = |T4 − T1|, D3 =

2For this purpose we have used Google Translate

Table 1: Classes considered in the composition of binary
classifiers

Class 1 Class 2
BACKWARD OTHER
BI-DIRECTIONAL OTHER
FORWARD OTHER
NO-ENTAILMENT OTHER
BACKWARD & BI-DIRECTIONAL OTHER
BACKWARD & FORWARD OTHER
BACKWARD & NO-ENTAILMENT OTHER
BI-DIRECTIONAL & NO-ENTAILMENT OTHER
FORWARD & BI-DIRECTIONAL OTHER
FORWARD & NO-ENTAILMENT OTHER

|T2 − T3|, D4 = |T3 − T2|, · · ·. This vector is
calculated for all the possible values ofN for each
type of N -gram, i.e., character, word and PoS tag.
The cardinality of

−−−→
Pair(T1, T2) will be 34, that is,

16 values when theN -grams of characters are con-
sidered, 12 values with wordN -grams, and 6 values
when the PoS tagN -grams are used.

The vectors obtained are labeled with the corre-
sponding tag in order to construct a training dataset
which will be further used to feed a multiclass clas-
sifier which constructs the final classification model.
In this case, the system will directly return one of the
four valid entailment judgments (i.e. forward, back-
ward, bidirectional, noentailment).

2.2 Approach 2: Difference and Intersection
operators

This approach enriches the previous one, by adding
the intersection between the two sentences of each
pair. In a sense, we have considered all the features
appearing in the pair of sentences. In this case, the
total number of features extracted, i.e., the cardinal-
ity of the

−−−→
Pair(T1, T2) vector is 51.

2.3 Approach 3: Metaclassifier

In this approach, we have constructed a system
which is a composition of different binary classifica-
tion models. The binary judgments were constructed
considering the classes shown in Table 1.

The approach 2 was also considered in this com-
position generating a total of 11 models. 10 of them
are based on the features used by Approach 1, and
the last one is based on the features used by Ap-
proach 2. The result obtained is a vector which tells
whether or not a pair is judged to have some kind of
textual entailment or not (the OTHER class). This
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vector is then labeled with the correct class obtained
from the gold standard (training corpus) for auto-
matically obtaining a decision tree which allows us
to determine the correct class. Thus, the different
outputs of multiple classifiers are then introduced to
another supervised classifier which constructs the fi-
nal classification model.

2.4 Approach 4: Distances measures

This approach is constructed by adding five distance
values to the Approach 2. These values are calcu-
lated as follows :

• The Euclidean distance betweenT2 and T3,
and betweenT1 andT4. We have used the fre-
quency of each word for constructing a repre-
sentative vector of each sentence.

• The Manhattan distance betweenT2 andT3,
and betweenT1 andT4. We have used the fre-
quency of each word for constructing a repre-
sentative vector of each sentence.

• A variant of the Jaccard’s Coefficient that con-
sider synonyms (Carrillo et al., 2012). Since we
have only obtained synonyms for the English
language, this measure was only calculated be-
tweenT2 andT3.

Therefore, the total number of features of the
−−−→
Pair(T1, T2) vector is 56.

2.5 Approach 5: Voting system

With the results of the previous four models, we pre-
pared a voting system which uses the majority crite-
rion (3 of 4).

3 Experimental results

The results obtained in the competition are presented
and discussed in this section. First, we describe the
training and test corpus, and thereafter, the results
obtained with the different approaches submitted.

3.1 Dataset

In order to train the different approaches already dis-
cussed, we have constructed a training corpus made
up of two datasets: the training data provided by the
task organizers the task 8 of SemEval 2013 (Negri
et al., 2013), and the test dataset together with the

gold standard of CLTE task of SemEval 2012 (Ne-
gri et al., 2011). Thus, the training corpus contains
4000 sentence pairs. The test set provided in the
competition contains 2000 sentence pairs. The cor-
pus is balanced, with 1000 pairs for each language
in the training dataset, whereas, 500 pairs are given
in the test set for each language (see Table 2).

Table 2: Description of the dataset
Languages Training Test
SPA-ENG 1000 500
DEU-ENG 1000 500
ITA-ENG 1000 500
FRA-ENG 1000 500
Total 4000 2000

3.2 Results

In Table 3 we can see the results obtained by each
one of the five approaches we submitted to the com-
petition. Each approach has been labeled with the
prefix “BUAP-R” for indicating the approach used
by each submitted run. For instance, the BUAP-R1
run corresponds to the approach 1 described in the
previous section. As can be seen, the behavior of the
five approaches is quite similar, which we consider
it is expected because the underlying methodology
employed is almost the same for all the approaches.
With exception of the pair of sentences written in
SPA-ENG in which the best approach was obtained
by the BUAP-R5 run, the approach 4 outperformed
the other appproaches. We believe that this has been
a result of introducing measures of similarity be-
tween the two sentences and their translations. In
this table it is also reported the Highest, Average,
Median and Lowest values of the competition. The
results we obtained are under the Median but outper-
formed the results of two teams in the competition.

With the purpose of analyzing the behavior of the
approach 4 in each one of the entailment judgments,
we have provided the results obtained in Table 4.
There we can see that the BACKWARD class is the
easiest one for being predicted, independently of the
language. The second easiest class is FORWARD,
followed by NO-ENTAILMENT. Also we can see
that the BI-DIRECTIONAL class is the one that pro-
duce more confusion, thus leading to obtain a lower
performance than the other ones.
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Table 3: Overall statistics obtained in the Task-8 of Se-
mEval 2013

SPA- ITA- FRA- DEU-
RUN ENG ENG ENG ENG
Highest 0.434 0.454 0.458 0.452
Average 0.393 0.393 0.401 0.375
Median 0.392 0.402 0.416 0.369
Lowest 0.340 0.324 0.334 0.316
BUAP-R1 0.364 0.358 0.368 0.322
BUAP-R2 0.374 0.358 0.364 0.318
BUAP-R3 0.380 0.358 0.362 0.316
BUAP-R4 0.364 0.388 0.392 0.350
BUAP-R5 0.386 0.360 0.372 0.318

Table 4: Statistics of the approach 4, detailed by entail-
ment judgment

ENTAILMENT SPA- ITA- FRA- DEU-
JUDGEMENT ENG ENG ENG ENG
BACKWARD 0.495 0.462 0.431 0.389
FORWARD 0.374 0.418 0.407 0.364
NO-ENTAILMENT 0.359 0.379 0.379 0.352
BI-DIRECTIONAL 0.277 0.327 0.352 0.317

4 Conclusions

Five different approaches for the Cross-lingual Tex-
tual Entailment for the Content Synchronization task
of Semeval 2013 are reported in this paper. We used
several features for determining the textual entail-
ment judgment between two textsT1 andT2 (writ-
ten in two different languages). The approach 4
proposed, which employed lexical similarity and se-
mantic similarity in English language only was the
one that performed better. As future work, we would
like to include more distance metrics which allow to
extract additional features of the pair of sentences
topically related.
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Abstract

We present a supervised learning approach to
cross-lingual textual entailment that explores
statistical word alignment models to predict
entailment relations between sentences writ-
ten in different languages. Our approach
is language independent, and was used to
participate in the CLTE task (Task#8) or-
ganized within Semeval 2013 (Negri et al.,
2013). The four runs submitted, one for
each language combination covered by the test
data (i.e. Spanish/English, German/English,
French/English and Italian/English), achieved
encouraging results. In terms of accuracy,
performance ranges from 38.8% (for Ger-
man/English) to 43.2% (for Italian/English).
On the Italian/English and Spanish/English
test sets our systems ranked second among
five participants, close to the top results (re-
spectively 43.4% and 45.4%).

1 Introduction

Cross-lingual textual entailment (CLTE) is an ex-
tension of the Textual Entailment task (Dagan and
Glickman, 2004) that consists in deciding, given
two texts T and H written in different languages
(respectively called text and hypothesis), if H can
be inferred from T (Mehdad et al., 2010). In the
case of SemEval 2013, the task is formulated as
a multi-class classification problem in which there
are four possible relations between T and H: for-
ward (T → H), backward (T ← H), bidirectional
(T ↔ H) and “no entailment”.

Targeting the identification of semantic equiva-
lence and information disparity between topically

related sentences, CLTE recognition can be seen as a
core task for a number of cross-lingual applications.
Among others, multilingual content synchronization
has been recently proposed as an ideal framework
for the exploitation of CLTE components and the in-
tegration of semantics and machine translation (MT)
technology (Mehdad et al., 2011; Mehdad et al.,
2012b; Bronner et al., 2012; Monz et al., 2011).

In the last few years, several methods have been
proposed for CLTE. These can be roughly divided
in two main groups (Negri et al., 2012): i) those us-
ing a pivoting strategy by translating H into the lan-
guage of T and then using monolingual TE compo-
nents1, and those directly using cross-lingual strate-
gies. Among this second group, several sources of
cross-lingual knowledge have been used, such as
dictionaries (Kouylekov et al., 2012; Perini, 2012),
phrase and paraphrase tables (Mehdad et al., 2012a),
GIZA++ (Och and Ney, 2003) word alignment mod-
els (Wäschle and Fendrich, 2012), MT of sub-
segments (Esplà-Gomis et al., 2012), or semantic
Wordnets (Castillo, 2011).

In this work we propose a CLTE detection method
based on a new set of features using word align-
ment as a source of cross-lingual knowledge. This
set, which is richer than the one by (Wäschle and
Fendrich, 2012), is aimed not only at grasping infor-
mation about the proportion of aligned words, but
also about the distribution of the alignments in both

1In the first CLTE evaluation round at Semeval 2012, for
instance, the system described in (Meng et al., 2012) used the
open source EDITS system (Kouylekov and Negri, 2010; Negri
et al., 2009) to calculate similarity scores between monolingual
English pairs.
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H and T . This set of features is later used by two
support vector machine (SVM) classifiers for detect-
ing CLTE separately in both directions (T → H and
T ← H). We use the combined output of both clas-
sifiers for performing the CLTE detection.

The paper is organized as follows: Section 2
describes the features used and the classification
method; Section 3 explains the experimental frame-
work and the results obtained for the different
language-pair sets; finally, the conclusions obtained
from the results are summarised in Section 4.

2 ALTN System

In our approach we have implemented a system
based on supervised learning. It takes an unlabeled
sentence pair as input (T and H) and labels it au-
tomatically with one of the possible four valid en-
tailment relations. The architecture is depicted in
Figure 1.

A key component to our approach is the word
alignment model. In a preprocessing step it is
trained on a set of parallel texts for the target lan-
guage pair. Next, different features based on the
word alignment are extracted. Taking the features
and the target language pair labels as input, a su-
pervised learning algorithm is run to fit a model to
the data. The last step is to use the model to au-
tomatically label unseen instances with entailment
relations.

2.1 Features

What characterizes our submission is the use of
word alignment features to capture entailment rela-
tions. We extract the following features from a word
alignment model for a given sentence pair (all fea-
tures are calculated for both T and H):

• proportion of aligned words in the sentence
(baseline);

• number of unaligned sequences of words nor-
malized by the length of the sentence;

• length of the longest sequence of aligned words
normalized by the length of the sentence;

• length of the longest sequence of unaligned
words normalized by the length of the sentence;

Figure 1: System architecture

• average length of the aligned word sequences;

• average length of the unaligned word se-
quences;

• position of the first unaligned word normalized
by the length of the sentence;

• position of the last unaligned word normalized
by the lenght of the sentence;

• proportion of aligned n-grams in the sentence
(n varying from 1 to 5).

These features are language independent as they
are obtained from statistical models that take as in-
put a parallel corpus. Provided that there exist paral-
lel data for a given language pair, the only constraint
in terms of resources, the adoption of these features
makes our approach virtually portable across lan-
guages with limited effort.

2.2 CLTE Model

Our CLTE model is composed by two supervised bi-
nary classifiers that predict whether there is entail-
ment between the T and H . One classifier checks
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for forward entailment (T → H) and the other
checks for backward entailment (T ← H). The out-
put of both classifiers is combined to form the four
valid entailment decisions:

• forward and backward classifier output true:
“bidirectional” entailment;

• forward is true and backward is false:
“forward” entailment;

• forward is false and backward is true:
“backward” entailment;

• both forward and backward output false: “no
entailment” relation.

Both binary classifiers were implemented using
the SVM implementation of Weka (Hall et al.,
2009).

3 Experiments

In our submission we experimented with three stan-
dard word alignment algorithms: the hidden Markov
model (HMM) (Vogel et al., 1996) and IBM models
3 and 4 (Brown et al., 1993). They are implemented
in the MGIZA++ package (Gao and Vogel, 2008).
Building on a probabilistic lexical model to establish
mappings between words in two languages, these
models compute alignments between the word po-
sitions in two input sentences S1 and S2. The mod-
els are trained incrementally: HMM is the base for
IBM model 3, which is the base for IBM model 4.
To train our models, we used 5 iterations of HMM,
and 3 iterations of IBM models 3 and 4.

Word alignments produced by these models are
asymmetric (S1 → S2 6= S2 → S1). To cope
with this, different heuristics (Koehn et al., 2005)
have been proposed to obtain symmetric alignments
from two asymmetric sets (S1 ↔ S2). We ex-
perimented with three symmetrization heuristics,
namely: union, intersection, and grow-diag-final-
and, a more complex symmetrization method which
combines intersection with some alignments from
the union.

To train the word alignment models we used
the Europarl parallel corpus (Koehn, 2005) con-
catenated with the News Commentary corpus2 for

2http://www.statmt.org/wmt11/
translation-task.html#download

three language pairs: English-German (2,079,049
sentences), English-Spanish (2,123,036 sentences),
English-French (2,144,820 sentences). For English-
Italian we only used the parallel data available in Eu-
roparl (1,909,115 sentences) since this language pair
is not covered by the News Commentary corpus.

For our submitted run the SVM classifiers were
trained using the whole training set. Such dataset
consists of 1,000 pairs for each of the four language
combinations, resulting from a concatenation of the
training and test sets used for the first round of eval-
uation at SemEval 2012 (Negri et al., 2012; Negri et
al., 2011). We have set a polynomial kernel with pa-
rameters empirically estimated on the training set:
C = 2.0, and d = 1. After some preliminary ex-
periments we have concluded that the HMM model
in conjunction with the intersection symmetrization
provides the best results.

Our results, calculated over the 500 test pairs pro-
vided for each language combination, are presented
in Table 3. As can be seen from the table, our system
consistently outperforms the best average run of all
participants and is the second best system for Span-
ish/English and Italian/English. For the other two
languages, French/English and German/English, it
is the 3rd best system with a larger distance from top
results. The motivations for such lower results, cur-
rently under investigation, might be related to lower
performance in terms of word alignment, the core
of our approach. The first step of our analysis will
hence address, and in case try to cope with, signifi-
cant differences in word alignment performance af-
fecting results.

Overall, considering the small distance from top
results, and the fact that our approach does not re-
quire deep linguistic processing to be reasonably ef-
fective for any language pair for which parallel cor-
pora are available, our results are encouraging and
motivate further research along such direction.

4 Conclusion

In this paper we presented the participation of the
Fondazione Bruno Kessler in the Semeval 2013
Task#8 on Cross-lingual Textual Entailment for
Content Synchronization. To identify entailment re-
lations between texts in different languages, our sys-
tem explores the use of word alignment features
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Features / Language pair German/English Spanish/English French/English Italian/English
Avg best runs 0.378 0.404 0.407 0.405
ALTN 0.388 0.428 0.420 0.432
Best system 0.452 0.434 0.458 0.454

Table 1: Accuracy results for the language pairs evaluated for the average of the best runs of the participating systems,
our submission and the best systems.

within a supervised learning setting. In our ap-
proach, word alignment models obtained by statis-
tical methods from parallel corpora leverage infor-
mation about the number, the proportion, and the
distribution of aligned terms in the input sentences.
In terms of accuracy results over the SemEval 2013
CLTE test data, performance ranges from 38.8%
(for German/English) to 43.2% (for Italian/English).
On the Italian/English and Spanish/English test sets
our systems ranked second among five participants,
close to the top results (respectively 43.4% and
45.4%). Such results suggest that the use of word
alignment models to capture sentence-level seman-
tic relations in different language settings represents
a promising research direction.
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Montréal, Canada.

132



Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Seventh International Workshop on Semantic
Evaluation (SemEval 2013), pages 133–137, Atlanta, Georgia, June 14-15, 2013. c©2013 Association for Computational Linguistics

Umelb: Cross-lingual Textual Entailment with Word Alignment and String
Similarity Features

Yvette Graham Bahar Salehi Timothy Baldwin
Department of Computing and Information Systems

The University of Melbourne
{ygraham,bsalehi,tbaldwin}@unimelb.edu.au

Abstract

This paper describes The University of Mel-
bourne NLP group submission to the Cross-
lingual Textual Entailment shared task, our
first tentative attempt at the task. The ap-
proach involves using parallel corpora and au-
tomatic word alignment to align text fragment
pairs, and statistics based on unaligned words
as features to classify items as forward and
backward before a compositional combination
into the final four classes, as well as exper-
iments with additional string similarity fea-
tures.

1 Introduction

Cross-lingual Textual Entailment (CLTE) (Negri et
al., 2012) proposes the task of automatically iden-
tifying the kind of relation that exists between pairs
of semantically-related text fragments written in two
distinct languages, a variant of the traditional Rec-
ognizing Textual Entailment (RTE) task (Bentivogli
et al., 2009; Bentivogli et al., 2010). The task tar-
gets the cross-lingual content synchronization sce-
nario proposed in Mehdad et al. (2010, 2011). Com-
positional classification can be used by training two
distinct binary classifiers for forward and backward
entailment classification, before combining labels
into the four final entailment categories that now in-
clude bidirectional and no entailment labels. The
most similar previous work to this work is the cross-
lingual approach of the FBK system (Mehdad et
al., 2012) from Semeval 2012 (Negri et al., 2012),
in which the entailment classification is obtained

without translating T1 into T2 for the Spanish–
English language pair. We apply the cross-lingual
approach to German–English and instead of cross-
lingual matching features, we use Giza++ (Och et
al., 1999) and Moses (Koehn et al., 2007) to auto-
matically word align text fragment pairs to compute
statistics of unaligned words. In addition, we in-
clude some additional experiments using string sim-
ilarity features.

2 Compositional Classification

Given a pair of topically related fragments, T1 (Ger-
man) and T2 (English), we automatically annotate it
with one of the following entailment labels: bidi-
rectional, forward, backward, no entailment. We
take the compositional approach and separately train
a forward, as well as a backward binary classifier.
Each classifier is run separately on the set of text
fragment pairs to produce two binary labels for for-
ward and backward entailment. The two sets of la-
bels are logically combined to produce a final clas-
sification for each test pair of forward, backward,
bidirectional or no entailment.

3 Word Alignment Features

The test set of topically-related text fragments, T1
(German) and T2 (English) were added to Europarl
German–English parallel text (Koehn, 2005) and
Giza++ was used for automatic word alignment in
both language directions. Moses (Koehn et al.,
2007) was then used for symmetrization with the
grow diag final and algorithm. This produces a
many-to-many alignment between the words of the

133



German, T1, and English, T2, with words also re-
maining unaligned.

The following features are computed for each test
pair feature scores for the forward classifier:

• A1: count of unaligned words in T2

• A2: count of words comprised soley of digits
in T2 not in T1

• A3: count of unaligned words in T2 with low
probability of appearing unaligned in Europarl
(with threshold p=0.11)

The number of words in T2 (English) that are not
aligned with anything in T1 (German) should pro-
vide an indication that, for example, the English text
fragment contains information not present in the cor-
responding German text fragment and subsequently
evidence against the presence of forward entailment.
We there include the feature, A1, that is simply a
count of unaligned words in English T2. In addi-
tion, we hypothesize that the absence of a number
from T2 may be a more significant missing element
of T2 from T1. We therefore include as a feature
the count of tokens comprised of digits in T2 that
are not also present in T1. The final word align-
ment feature attempts to refine A1, by distinguishing
words that are rarely unaligned in German–English
translations. Statistics are computed for every lexi-
cal item from German–English Europarl translations
to produce a lexical unalignment probability, com-
puted for each lexical item based on its relative fre-
quency in the corpus when it is not aligned to any
other word.

The backward classifier uses the same features but
computed for each test pair on counts of unaligned
T1 words.

4 Results

Results for several combinations of features are
shown in Table 1 when the system is trained on
the 500-pair development set training corpus and
tested on the 500-pair held-out development test set
(DEV), in addition to results for feature combina-
tions when trained on the entire 1000-pair develop-
ment data and tested on the held-out 500-pair gold

standard (TEST) (Negri et al., 2011), when the sys-
tem is evaluated as two separate binary forward and
backward classifiers (2-CLASS) as well as the final
evaluation including all four entailment classes (4-
CLASS). The highest accuracy is achieved by the
classifier using the single feature of counts of un-
aligned words, A1, of 34.6%. As two separate bi-
nary classifiers, the alignment features, A1+A2+A3,
achieve a relatively high accuracy of 74.0% for for-
ward with somewhat less accurate for backward
(65.8%) classification (both over the DEV data).
When combined to the final four CLTE classes, how-
ever, accuracy drops significantly to an overall accu-
racy of 50% (also over DEV). A main cause is inac-
curate labeling of no entailment gold standard test
pairs, as the most severe decline is for recall of test
pairs for this label (38.4%).

Accuracy on the development set for the word
alignment features, A1+A2+A3, compared to the
test set shows a sever decline, from 50% to 32%. On
the test data, however, a main cause of inaccuracy
is that backward gold standard test pairs, although
achieving close accuracy to forward when evaluated
as binary classifiers, are inaccurately labeled in the
4-class evaluation, as recall for backward drops to
only 18.4% for this label.

Another insight revealed for the alignment fea-
tures, A1+A2+A3, in the 4-class evaluation is that
when run on the development set, the classes for-
ward and backward achieve significantly higher
f-scores compared to no entailment. However,
the contrary is observed for the test data, as
no entailment achieve higher results than both uni-
directional classes. This appears at first to be a
somewhat counter-intuitive result, but in this case,
the system is simply better at predicting forward and
backward when no entailment exists for a translation
pair compared to when a unidirectional entailment is
present.

4.1 String Similarity Features

In addition to the word alignment features, subse-
quent to submitting results to the shared task, we
have carried out additional experiments using string
similarity features, based on our recent success in
apply string similarity to both the estimation of com-
positionality of MWEs (Salehi and Cook, to appear)
and also the estimation of similarity between short
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2-CLASS 4-CLASS
Acc. Prec Recall F1 Acc. Prec Recall F1

D
E

V
A1 + A2 + A3

bwrd 65.80 63.12 76.00 68.96 50.00 bwrd 54.80 59.20 56.90
fwrd 74.00 72.22 78.00 75.00 fwrd 54.80 45.60 49.80

none 50.50 38.40 43.60
bidir 42.80 56.80 48.80

S1 + S2 + S3

bwrd 58.20 57.75 61.20 59.42 27.40 bwrd 14.30 0.80 1.50
fwrd 47.00 47.17 50.00 59.42 fwrd 0.00 0.00 0.00

none 30.70 39.70 39.70
bidir 25.60 52.80 34.50

T
E

ST

A1

bwrd 57.00 58.54 48.00 52.75 34.60 bwrd 25.50 19.20 21.90
fwrd 58.40 58.75 56.40 57.55 fwrd 34.90 36.00 35.40

none 36.70 48.80 41.90
bidir 38.70 34.40 36.40

A2

bwrd 50.00 0.00 0.00 0.00 33.60 bwrd 24.70 18.40 21.10
fwrd 51.60 50.85 95.20 66.29 fwrd 34.70 34.40 34.50

none 36.90 38.40 37.60
bidir 35.30 43.20 38.80

A3

bwrd 54.80 55.61 47.60 51.29 34.20 bwrd 32.70 26.40 29.20
fwrd 61.20 61.57 59.60 60.57 fwrd 33.30 34.40 33.90

none 36.90 46.40 41.10
bidir 32.70 29.60 31.10

A1+A2

bwrd 57.60 57.72 56.80 57.26 33.60 bwrd 24.70 18.40 21.10
fwrd 59.80 58.84 65.20 61.86 fwrd 34.70 34.40 34.50

none 36.90 38.40 37.60
bidir 35.30 43.20 38.80

A1+A3

bwrd 57.20 57.96 52.40 55.04 33.00 bwrd 26.60 20.00 22.80
fwrd 58.60 58.05 62.00 59.96 fwrd 31.90 34.40 33.10

none 36.70 40.80 38.60
bidir 34.80 36.80 35.80

A2+A3

bwrd 54.80 55.83 46.00 50.44 33.40 bwrd 32.30 25.60 28.60
fwrd 61.00 61.70 58.00 59.79 fwrd 32.80 33.60 33.20

none 34.90 46.40 39.90
bidir 32.70 28.00 30.20

A1 + A2 + A3

bwrd 57.60 57.72 56.80 57.26 32.00 bwrd 24.00 18.40 20.80
fwrd 59.20 58.39 64.00 61.07 fwrd 32.30 32.00 32.10

none 36.20 37.60 36.90
bidir 34.70 41.60 37.80

S1 + S2 + S3

bwrd 53.20 53.77 45.60 49.35 26.00 bwrd 20.00 1.50 29.50
fwrd 48.60 48.36 41.20 44.49 fwrd 16.70 0.80 31.50

none 28.00 63.20 38.80
bidir 23.70 39.20 29.50

A1 + A2 + A3 + S1

bwrd 57.40 58.30 52.00 54.97 33.00 bwrd 27.60 19.20 22.60
fwrd 59.80 58.84 65.20 61.86 fwrd 29.80 33.60 31.60

none 38.20 41.60 39.80
bidir 34.60 37.60 36.00

A1 + A2 + A3 + S2

bwrd 57.80 58.52 53.60 55.95 32.60 bwrd 26.70 19.20 22.30
fwrd 59.60 58.70 64.80 61.60 fwrd 30.70 33.60 32.10

none 37.30 40.00 38.60
bidir 33.80 37.60 35.60

A1 + A2 + A3 +S3

bwrd 58.20 58.51 56.40 57.44 32.80 bwrd 24.70 19.20 21.60
fwrd 59.60 58.82 64.00 61.30 fwrd 32.00 32.80 32.40

none 37.40 39.20 38.30
bidir 34.70 40.00 37.20

Table 1: Cross-lingual Textual Entailment Results for Word alignment Features and String Similarity Measures, A1
= count of unaligned words in T2, A2 = count of unaligned numbers in T2, A3 = count of unaligned words in T2
with unaligned probability < 0.11, S1 = Number of matched words in the aligned sequence given by Smith-Waterman
algorithm, S2 = Penalty of aligning sentences using Smith-Waterman algorithm, S3 = Levenshtein distance between
the sentences
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texts in the *SEM 2013 Shared Task (Gella et al.,
to appear). Using the alignments, we replace each
English word with its corresponding word in Ger-
man. The resulting German sentence is compared
with the actual one using string similarity measures.
As the structure of both English and German sen-
tences are usually SVO, we hypothesize that when
there is no entailment between the two given sen-
tences, the newly-made German sentence and the
original German sentence will differ a lot in word
order.

In order to compare the two German sentences,
we use the Levenshtein (Levenshtein, 1966) and the
Smith-Waterman (Smith and Waterman, 1981) al-
gorithm. The Levenshtein algorithm measures the
number of world-level edits to change one sentence
into another. The edit operators consist of insertion
and deletion. We consider substitution as two edits
(combination of insertion and deletion) based on the
findings of Baldwin (2009).

We also use Smith-Waterman (SW) algorithm,
which was originally developed to find the most sim-
ilar region between two proteins. The algorithm
looks for the longest common substring, except that
it permits small numbers of penalized editions con-
sisting of insertion, deletion and substitution. We
call the best found substring the ‘SW aligned se-
quence’. In this experiment, we consider the number
of matched words and the number of penalties in the
SW aligned sequence as features.

Results for the string similarity features are shown
in Table 1. Since the string similarity feature scores
do not take the entailment direction into account,
i.e. there is a single set of feature scores for each
text fragment pair as there is no distinction between
forward and backward entailment, and they are not
suited for standalone use in compositional classifica-
tion. We do, however, include these scores in Table
1 to illustrate how with the compositional approach
using the same set of features for forward and back-
ward ultimately results in a classification of test pairs
as either bidirectional or no entailment.

When individual string similarity features are
added to the word alignment features, minor gains in
accuracy are achieved over the word alignment fea-
tures alone, +1% for S1, +0.6% for S2 and +0.8%
for S3 (= Levenstein).

5 Possible Additions: Dictionary Features

We hypothesize that when there is no entailment be-
tween the two sentences, the aligner may not accu-
rately align words. An on-line dictionary contain-
ing lemmatized words, such as Panlex (Baldwin and
Colowick, 2010), could be used to avoid errors in
such cases. Dictionary-based feature scores based
on the presence or absence of alignments in the dic-
tionary could then be applied.

6 Conclusions

This paper describes a compositional cross-lingual
approach to CLTE with experiments carried out
for the German-English language pair. Our results
showed that in the first stages of binary classification
as forward and backward, the word alignment fea-
tures alone achieved good accuracy but when com-
bined suffer severely. Accuracy of the approach
using word alignment features could benefit from
a more directional multi-class classification as op-
posed to the compositional approach we used. In
addition, results showed minor increases in accuracy
can be achieved using string similarity measures.
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Abstract

In this paper, we describe SemEval-2013 Task
4: the definition, the data, the evaluation and
the results. The task is to capture some of the
meaning of English noun compounds via para-
phrasing. Given a two-word noun compound,
the participating system is asked to produce
an explicitly ranked list of its free-form para-
phrases. The list is automatically compared
and evaluated against a similarly ranked list
of paraphrases proposed by human annota-
tors, recruited and managed through Ama-
zon’s Mechanical Turk. The comparison of
raw paraphrases is sensitive to syntactic and
morphological variation. The “gold” ranking
is based on the relative popularity of para-
phrases among annotators. To make the rank-
ing more reliable, highly similar paraphrases
are grouped, so as to downplay superficial dif-
ferences in syntax and morphology. Three
systems participated in the task. They all beat
a simple baseline on one of the two evalua-
tion measures, but not on both measures. This
shows that the task is difficult.

1 Introduction

A noun compound (NC) is a sequence of nouns
which act as a single noun (Downing, 1977), as in
these examples: colon cancer, suppressor protein,
tumor suppressor protein, colon cancer tumor sup-
pressor protein, etc. This type of compounding is
highly productive in English. NCs comprise 3.9%
and 2.6% of all tokens in the Reuters corpus and the
British National Corpus (BNC), respectively (Bald-
win and Tanaka, 2004).

The frequency spectrum of compound types fol-
lows a Zipfian distribution (Ó Séaghdha, 2008), so
many NC tokens belong to a “long tail” of low-
frequency types. More than half of the two-noun
types in the BNC occur exactly once (Kim and Bald-
win, 2006). Their high frequency and high produc-
tivity make robust NC interpretation an important
goal for broad-coverage semantic processing of En-
glish texts. Systems which ignore NCs may give up
on salient information about the semantic relation-
ships implicit in a text. Compositional interpretation
is also the only way to achieve broad NC coverage,
because it is not feasible to list in a lexicon all com-
pounds which one is likely to encounter. Even for
relatively frequent NCs occurring 10 times or more
in the BNC, static English dictionaries provide only
27% coverage (Tanaka and Baldwin, 2003).

In many natural language processing applications
it is important to understand the syntax and seman-
tics of NCs. NCs often are structurally similar,
but have very different meaning. Consider caffeine
headache and ice-cream headache: a lack of caf-
feine causes the former, an excess of ice-cream – the
latter. Different interpretations can lead to different
inferences, query expansion, paraphrases, transla-
tions, and so on. A question answering system may
have to determine whether protein acting as a tumor
suppressor is an accurate paraphrase for tumor sup-
pressor protein. An information extraction system
might need to decide whether neck vein thrombosis
and neck thrombosis can co-refer in the same doc-
ument. A machine translation system might para-
phrase the unknown compound WTO Geneva head-
quarters as WTO headquarters located in Geneva.
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Research on the automatic interpretation of NCs
has focused mainly on common two-word NCs. The
usual task is to classify the semantic relation under-
lying a compound with either one of a small number
of predefined relation labels or a paraphrase from an
open vocabulary. Examples of the former take on
classification include (Moldovan et al., 2004; Girju,
2007; Ó Séaghdha and Copestake, 2008; Tratz and
Hovy, 2010). Examples of the latter include (Nakov,
2008b; Nakov, 2008a; Nakov and Hearst, 2008; But-
nariu and Veale, 2008) and a previous NC paraphras-
ing task at SemEval-2010 (Butnariu et al., 2010),
upon which the task described here builds.

The assumption of a small inventory of prede-
fined relations has some advantages – parsimony and
generalization – but at the same time there are lim-
itations on expressivity and coverage. For exam-
ple, the NCs headache pills and fertility pills would
be assigned the same semantic relation (PURPOSE)
in most inventories, but their relational semantics
are quite different (Downing, 1977). Furthermore,
the definitions given by human subjects can involve
rich and specific meanings. For example, Down-
ing (1977) reports that a subject defined the NC
oil bowl as “the bowl into which the oil in the en-
gine is drained during an oil change”, compared to
which a minimal interpretation bowl for oil seems
very reductive. In view of such arguments, linguists
such as Downing (1977), Ryder (1994) and Coulson
(2001) have argued for a fine-grained, essentially
open-ended space of interpretations.

The idea of working with fine-grained para-
phrases for NC semantics has recently grown in pop-
ularity among NLP researchers (Butnariu and Veale,
2008; Nakov and Hearst, 2008; Nakov, 2008a). Task
9 at SemEval-2010 (Butnariu et al., 2010) was de-
voted to this methodology. In that previous work,
the paraphrases provided by human subjects were
required to fit a restrictive template admitting only
verbs and prepositions occurring between the NC’s
constituent nouns. Annotators recruited through
Amazon Mechanical Turk were asked to provide
paraphrases for the dataset of NCs. The gold stan-
dard for each NC was the ranked list of paraphrases
given by the annotators; this reflects the idea that a
compound’s meaning can be described in different
ways, at different levels of granularity and capturing
different interpretations in the case of ambiguity.

For example, a plastic saw could be a saw made
of plastic or a saw for cutting plastic. Systems par-
ticipating in the task were given the set of attested
paraphrases for each NC, and evaluated according to
how well they could reproduce the humans’ ranking.

The design of this task, SemEval-2013 Task 4,
is informed by previous work on compound anno-
tation and interpretation. It is also influenced by
similar initiatives, such as the English Lexical Sub-
stitution task at SemEval-2007 (McCarthy and Nav-
igli, 2007), and by various evaluation exercises in
the fields of paraphrasing and machine translation.
We build on SemEval-2010 Task 9, extending the
task’s flexibility in a number of ways. The restric-
tions on the form of annotators’ paraphrases was re-
laxed, giving us a rich dataset of close-to-freeform
paraphrases (Section 3). Rather than ranking a set of
attested paraphrases, systems must now both gener-
ate and rank their paraphrases; the task they perform
is essentially the same as what the annotators were
asked to do. This new setup required us to innovate
in terms of evaluation measures (Section 4).

We anticipate that the dataset and task will be of
broad interest among those who study lexical se-
mantics. We believe that the overall progress in the
field will significantly benefit from a public-domain
set of free-style NC paraphrases. That is why our
primary objective is the challenging endeavour of
preparing and releasing such a dataset to the re-
search community. The common evaluation task
which we establish will also enable researchers to
compare their algorithms and their empirical results.

2 Task description

This is an English NC interpretation task, which ex-
plores the idea of interpreting the semantics of NCs
via free paraphrases. Given a noun-noun compound
such as air filter, the participating systems are asked
to produce an explicitly ranked list of free para-
phrases, as in the following example:

1 filter for air
2 filter of air
3 filter that cleans the air
4 filter which makes air healthier
5 a filter that removes impurities from the air
. . .
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Such a list is then automatically compared and
evaluated against a similarly ranked list of para-
phrases proposed by human annotators, recruited
and managed via Amazon’s Mechanical Turk. The
comparison of raw paraphrases is sensitive to syn-
tactic and morphological variation. The ranking
of paraphrases is based on their relative popular-
ity among different annotators. To make the rank-
ing more reliable, highly similar paraphrases are
grouped so as to downplay superficial differences in
syntax and morphology.

3 Data collection

We used Amazon’s Mechanical Turk service to
collect diverse paraphrases for a range of “gold-
standard” NCs.1 We paid the workers a small fee
($0.10) per compound, for which they were asked to
provide five paraphrases. Each paraphrase should
contain the two nouns of the compound (in sin-
gular or plural inflectional forms, but not in an-
other derivational form), an intermediate non-empty
linking phrase and optional preceding or following
terms. The paraphrasing terms could have any part
of speech, so long as the resulting paraphrase was a
well-formed noun phrase headed by the NC’s head.

We gave the workers feedback during data col-
lection if they appeared to have misunderstood the
nature of the task. Once raw paraphrases had been
collected from all workers, we collated them into a
spreadsheet, and we merged identical paraphrases
in order to calculate their overall frequencies. Ill-
formed paraphrases – those violating the syntactic
restrictions described above – were manually re-
moved following a consensus decision-making pro-
cedure; every paraphrase was checked by at least
two task organizers. We did not require that the
paraphrases be semantically felicitous, but we per-
formed minor edits on the remaining paraphrases if
they contained obvious typos.

The remaining well-formed paraphrases were
sorted by frequency separately for each NC. The
most frequent paraphrases for a compound are as-
signed the highest rank 0, those with the next-
highest frequency are given a rank of 1, and so on.

1Since the annotation on Mechanical Turk was going slowly,
we also recruited four other annotators to do the same work,
following exactly the same instructions.

Total Min / Max / Avg

Trial/Train (174 NCs)
paraphrases 6,069 1 / 287 / 34.9
unique paraphrases 4,255 1 / 105 / 24.5

Test (181 NCs)
paraphrases 9,706 24 / 99 / 53.6
unique paraphrases 8,216 21 / 80 / 45.4

Table 1: Statistics of the trial and test datasets: the total
number of paraphrases with and without duplicates, and
the minimum / maximum / average per noun compound.

Paraphrases with a frequency of 1 – proposed for
a given NC by only one annotator – always occupy
the lowest rank on the list for that compound.

We used 174+181 noun-noun compounds from
the NC dataset of Ó Séaghdha (2007). The trial
dataset, which we initially released to the partici-
pants, consisted of 4,255 human paraphrases for 174
noun-noun pairs; this dataset was also the training
dataset. The test dataset comprised paraphrases for
181 noun-noun pairs. The “gold standard” contained
9,706 paraphrases of which 8,216 were unique for
those 181 NCs. Further statistics on the datasets are
presented in Table 1.

Compared with the data collected for the
SemEval-2010 Task 9 on the interpretation of noun
compounds, the data collected for this new task have
a far greater range of variety and richness. For ex-
ample, the following (selected) paraphrases for work
area vary from parsimonious to expansive:

• area for work
• area of work
• area where work is done
• area where work is performed
• . . .
• an area cordoned off for persons responsible for

work
• an area where construction work is carried out
• an area where work is accomplished and done
• area where work is conducted
• office area assigned as a work space
• . . .
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4 Scoring

Noun compounding is a generative aspect of lan-
guage, but so too is the process of NC interpretation:
human speakers typically generate a range of possi-
ble interpretations for a given compound, each em-
phasizing a different aspect of the relationship be-
tween the nouns. Our evaluation framework reflects
the belief that there is rarely a single right answer
for a given noun-noun pairing. Participating systems
are thus expected to demonstrate some generativity
of their own, and are scored not just on the accu-
racy of individual interpretations, but on the overall
breadth of their output.

For evaluation, we provided a scorer imple-
mented, for good portability, as a Java class. For
each noun compound to be evaluated, the scorer
compares a list of system-suggested paraphrases
against a “gold-standard” reference list, compiled
and rank-ordered from the paraphrases suggested
by our human annotators. The score assigned to
each system is the mean of the system’s performance
across all test compounds. Note that the scorer re-
moves all determiners from both the reference and
the test paraphrases, so a system is neither punished
for not reproducing a determiner or rewarded for
producing the same determiners.

The scorer can match words identically or non-
identically. A match of two identical words Wgold

and Wtest earns a score of 1.0. There is a partial
score of (2 |P | / (|PWgold| + |PWtest|))2 for a
match of two words PWgold and PWtest that are
not identical but share a common prefix P , |P | > 2,
e.g., wmatch(cutting, cuts) = (6/11)2 = 0.297.

Two n-grams Ngold = [GW1, . . . , GWn] and
Ntest = [TW1, . . . , TWn] can be matched if
wmatch(GWi, TWi) > 0 for all i in 1..n. The
score assigned to the match of these two n-grams is
then

∑
i wmatch(GWi, TWi). For every n-gram

Ntest = [TW1, . . . , TWn] in a system-generated
paraphrase, the scorer finds a matching n-gram
Ngold = [GW1, . . . , GWn] in the reference para-
phrase Paragold which maximizes this sum.

The overall n-gram overlap score for a reference
paraphrase Paragold and a system-generated para-
phrase Paratest is the sum of the score calculated
for all n-grams in Paratest, where n ranges from 1
to the size of Paratest.

This overall score is then normalized by dividing
by the maximum value among the n-gram overlap
score for Paragold compared with itself and the n-
gram overlap score for Paratest compared with it-
self. This normalization step produces a paraphrase
match score in the range [0.0 – 1.0]. It punishes a
paraphrase Paratest for both over-generating (con-
taining more words than are found in Paragold)
and under-generating (containing fewer words than
are found in Paragold). In other words, Paratest

should ideally reproduce everything in Paragold,
and nothing more or less.

The reference paraphrases in the “gold standard”
are ordered by rank; the highest rank is assigned to
the paraphrases which human judges suggested most
often. The rank of a reference paraphrase matters
because a good participating system will aim to re-
produce the top-ranked “gold-standard” paraphrases
as produced by human judges. The scorer assigns
a multiplier of R/(R + n) to reference paraphrases
at rank n; this multiplier asymptotically approaches
0 for the higher values of n of ever lower-ranked
paraphrases. We choose a default setting of R = 8,
so that a reference paraphrase at rank 0 (the highest
rank) has a multiplier of 1, while a reference para-
phrase at rank 5 has a multiplier of 8/13 = 0.615.

When a system-generated paraphrase Paratest is
matched with a reference paraphrase Paragold, their
normalized n-gram overlap score is scaled by the
rank multiplier attaching to the rank of Paragold rel-
ative to the other reference paraphrases provided by
human judges. The scorer automatically chooses the
reference paraphrase Paragold for a test paraphrase
Paratest so as to maximize this product of normal-
ized n-gram overlap score and rank multiplier.

The overall score assigned to each system for
a specific compound is calculated in two differ-
ent ways: using isomorphic matching of suggested
paraphrases to the “gold-standard’s” reference para-
phrases (on a one-to-one basis); and using non-
isomorphic matching of system’s paraphrases to the
“gold-standard’s” reference paraphrases (in a poten-
tially many-to-one mapping).

Isomorphic matching rewards both precision and
recall. It rewards a system for accurately reproduc-
ing the paraphrases suggested by human judges, and
for reproducing as many of these as it can, and in
much the same order.
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In isomorphic mode, system’s paraphrases are
matched 1-to-1 with reference paraphrases on a first-
come first-matched basis, so ordering can be crucial.

Non-isomorphic matching rewards only preci-
sion. It rewards a system for accurately reproducing
the top-ranked human paraphrases in the “gold stan-
dard”. A system will achieve a higher score in a non-
isomorphic match if it reproduces the top-ranked hu-
man paraphrases as opposed to lower-ranked human
paraphrases. The ordering of system’s paraphrases
is thus not important in non-isomorphic matching.

Each system is evaluated using the scorer in both
modes, isomorphic and non-isomorphic. Systems
which aim only for precision should score highly
on non-isomorphic match mode, but poorly in iso-
morphic match mode. Systems which aim for pre-
cision and recall will face a more substantial chal-
lenge, likely reflected in their scores.

A naı̈ve baseline
We decided to allow preposition-only paraphrases,
which are abundant in the paraphrases suggested
by human judges in the crowdsourcing Mechanical
Turk collection process. This abundance means that
the top-ranked paraphrase for a given compound is
often a preposition-only phrase, or one of a small
number of very popular paraphrases such as used for
or used in. It is thus straightforward to build a naı̈ve
baseline generator which we can expect to score
reasonably on this task, at least in non-isomorphic
matching mode. For each test compound M H,
the baseline system generates the following para-
phrases, in this precise order: H of M, H in M, H
for M, H with M, H on M, H about M, H has M, H to
M, H used for M, H used in M.

This naı̈ve baseline is truly unsophisticated. No
attempt is made to order paraphrases by their corpus
frequencies or by their frequencies in the training
data. The same sequence of paraphrases is generated
for each and every test compound.

5 Results

Three teams participated in the challenge, and all
their systems were supervised. The MELODI sys-
tem relied on semantic vector space model built
from the UKWAC corpus (window-based, 5 words).
It used only the features of the right-hand head noun
to train a maximum entropy classifier.

Team isomorphic non-isomorphic
SFS 23.1 17.9
IIITH 23.1 25.8
MELODI-Primary 13.0 54.8
MELODI-Contrast 13.6 53.6
Naive Baseline 13.8 40.6

Table 2: Results for the participating systems; the base-
line outputs the same paraphrases for all compounds.

The IIITH system used the probabilities of the
preposition co-occurring with a relation to identify
the class of the noun compound. To collect statis-
tics, it used Google n-grams, BNC and ANC.

The SFS system extracted templates and fillers
from the training data, which it then combined with
a four-gram language model and a MaxEnt reranker.
To find similar compounds, they used Lin’s Word-
Net similarity. They further used statistics from the
English Gigaword and the Google n-grams.

Table 2 shows the performance of the partici-
pating systems, SFS, IIITH and MELODI, and the
naı̈ve baseline. The baseline shows that it is rela-
tively easy to achieve a moderately good score in
non-isomorphic match mode by generating a fixed
set of paraphrases which are both common and
generic: two of the three participating systems,
SFS and IIITH, under-perform the naı̈ve baseline
in non-isomorphic match mode, but outperform it
in isomorphic mode. The only system to surpass
this baseline in non-isomorphic match mode is the
MELODI system; yet, it under-performs against the
same baseline in isomorphic match mode. No par-
ticipating team submitted a system which would out-
perform the naı̈ve baseline in both modes.

6 Conclusions

The conclusions we draw from the experience of or-
ganizing the task are mixed. Participation was rea-
sonable but not large, suggesting that NC paraphras-
ing remains a niche interest – though we believe it
deserves more attention among the broader lexical
semantics community and hope that the availabil-
ity of our freeform paraphrase dataset will attract a
wider audience in the future.
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We also observed a varied response from our an-
notators in terms of embracing their freedom to gen-
erate complex and rich paraphrases; there are many
possible reasons for this including laziness, time
pressure and the fact that short paraphrases are often
very appropriate paraphrases. The results obtained
by our participants were also modest, demonstrating
that compound paraphrasing is both a difficult task
and a novel one that has not yet been “solved”.
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Abstract

This paper describes the system submitted
by the MELODI team for the SemEval-2013
Task 4: Free Paraphrases of Noun Compounds
(Hendrickx et al., 2013). Our approach com-
bines the strength of an unsupervised distri-
butional word space model with a supervised
maximum-entropy classification model; the
distributional model yields a feature represen-
tation for a particular compound noun, which
is subsequently used by the classifier to induce
a number of appropriate paraphrases.

1 Introduction

Interpretation of noun compounds is making explicit
the relation between the component nouns, for in-
stance that running shoes are shoes used in running
activities, while leather shoes are made from leather.
The relations can have very different meanings, and
existing work either postulates a fixed set of rela-
tions (Tratz and Hovy, 2010) or relies on appropri-
ate descriptions of the relations, through constrained
verbal paraphrases (Butnariu et al., 2010) or uncon-
strained paraphrases as in the present campaign. The
latter is much simpler for annotation purposes, but
raises difficult challenges involving not only com-
pound interpretation but also paraphrase evaluation
and ranking.

In terms of constrained verbal paraphrases
Wubben (2010), for example, uses a supervised
memory-based ranker using features from the
Google n-gram corpus as well as WordNet. Nulty
and Costello (2010) rank paraphrases of compounds
according to the number of times they co-occurred

with other paraphrases for other compounds. They
use these co-occurrences to compute conditional
probabilities estimating is-a relations between para-
phrases. Li et al. (2010) provide a hybrid sys-
tem which combines a Bayesian algorithm exploit-
ing Google n-grams, a score which captures human
preferences at the tail distribution of the training
data, as well as a metric that captures pairwise para-
phrase preferences.

Our methodology consists of two steps. First,
an unsupervised distributional word space model is
constructed, which yields a feature representation
for a particular compound. The feature representa-
tion is then used by a maximum entropy classifier to
induce a number of appropriate paraphrases.

2 Methodology

2.1 Distributional word space model

In order to induce appropriate feature representa-
tions for the various noun compounds, we start by
constructing a standard distributional word space
model for nouns. We construct a co-occurrence
matrix of the 5K most frequent nouns1 by the 2K

most frequent context words2, which occur in a win-
dow of 5 words to the left and right of the target
word. The bare frequencies of the word-context ma-
trix are weighted using pointwise mutual informa-
tion (Church and Hanks, 1990).

Next, we compute a joint, compositional repre-
sentation of the noun compound, combining the se-

1making sure all nouns that appear in the training and test
set are included

2excluding the 50 most frequent context words as stop words
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mantics of the head noun with the modifier noun. To
do so, we make use of a simple vector-based multi-
plicative model of compositionality, as proposed by
Mitchell and Lapata (2008). In order to compute the
compositional representation of a compound noun,
this model takes the elementwise multiplication of
the vectors for the head noun and the modifier noun,
i.e.

pi = uivi

for each feature i. The resulting features are used as
input to our next classification step.

We compare the performance of the abovemen-
tioned compositional model with a simpler model
that only takes into account the semantics of the
head noun. This model only uses the context fea-
tures for the head noun as input to our second clas-
sification step. This means that the model only takes
into account the semantics of the head noun, and ig-
nores the semantics of the modifier noun.

2.2 Maximum entropy classification
The second step of our paraphrasing system consists
of a supervised maximum entropy classification ap-
proach. Training vectors for each noun compound
from the training set are constructed according to
the approach described in the previous section. The
(non-zero) context features yielded by the first step
are used as input for the maximum entropy classi-
fier, together with the appropriate paraphrase labels
and the label counts (used to weight the instances),
which are extracted from the training set.

We then deploy the model in order to induce a
probability distribution over the various paraphrase
labels. Every paraphrase label above a threshold φ is
considered an appropriate paraphrase. Using a por-
tion of held-out training data (20%), we set φ = 0.01
for our official submission. In this paper, we show a
number of results using different thresholds.

2.3 Set of paraphrases labels
For our classification approach to work, we need to
extract an appropriate set of paraphrase labels from
the training data. In order to create this set, we
substitute the nouns that appear in the training set’s
paraphrases by dummy variables. Table 1 gives an
example of three different paraphrases and the re-
sulting paraphrase labels after substitution. Note

that we did not apply any NLP techniques to prop-
erly deal with inflected words.

We apply a frequency threshold of 2 (counted over
all the instances), so we discard paraphrase labels
that appear only once in the training set. This gives
us a total of 285 possible paraphrase labels.

One possible disadvantage of this supervised ap-
proach is a loss of recall on unseen paraphrases. A
rough estimation shows that our set of training labels
accounts for only 25% of the similarly constructed
labels extracted from the test set. However, the most
frequently used paraphrase labels are present in both
training and test set, so this does not prevent our
system to come up with a number of suitable para-
phrases for the test set.

2.4 Implementational details

All frequency co-occurrence information has been
extracted from the ukWaC corpus (Baroni et al.,
2009). The corpus has been part of speech tagged
and lemmatized with Stanford Part-Of-Speech Tag-
ger (Toutanova and Manning, 2000; Toutanova et
al., 2003). Distributional word space algorithms
have been implemented in Python. The maximum
entropy classifier was implemented using the Maxi-
mum Entropy Modeling Toolkit for Python and C++
(Le, 2004).

3 Results

Table 2 shows the results of the different systems in
terms of the isomorphic and non-isomorphic evalu-
ation measures defined by the task organizers (Hen-
drickx et al., 2013). For comparison, we include a
number of baselines. The first baseline assigns the
two most frequent paraphrase labels (Y of X, Y for
X) to each test instance; the second baseline assigns
the four most frequent paraphrase labels (Y of X, Y
for X, Y on X, Y in X); and the third baseline assigns
all of the possible 285 paraphrase labels as correct
answer for each test instance.

For both our primary system (the multiplicative
model) and our contrastive system (the head noun
model), we vary the threshold used to select the final
set of paraphrases. A threshold φ = 0.01 results in
a smaller set of paraphrases, whereas a threshold of
φ = 0.001 results in a broad set of paraphrases. Our
official submission uses the former threshold.
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compound paraphrase paraphrase label

textile company company that makes textiles Y that makes Xs
textile company company that produces textiles Y that produces Xs
textile company company in textile industry Y in X industry

Table 1: Example of induced paraphrase labels

model φ isomorphic non-isomorphic

baseline (2) – .058 .808
baseline (4) – .090 .633
baseline (all) – .332 .200

multiplicative .01 .130 .548
.001 .270 .259

head noun .01 .136 .536
.001 .277 .302

Table 2: Results

First of all, we note that the different baseline
models are able to obtain substantial scores for the
different evaluation measures. The first two base-
lines, which use a limited number of paraphrase
labels, perform very well in terms of the non-
isomorphic evaluation measure. The third baseline,
which uses a very large number of candidate para-
phrase labels, gets more balanced results in terms of
both the isomorphic and non-isomorphic measure.

Considering our different thresholds, the results
of our models are in line with the baseline re-
sults. A larger threshold, which results in a smaller
number of paraphrase labels, reaches a higher non-
isomorphic score. A smaller threshold, which re-
sults in a larger number of paraphrase labels, gives
more balanced results for the isomorphic and non-
isomorphic measure.

There does not seem to be a significant difference
between our primary system (multiplicative) and our
contrastive system (head noun). For φ = 0.01, the
results of both models are very similar; for φ =
0.001, the head noun model reaches slightly better
results, in particular for the non-isomorphic score.

Finally, we note that our models do not seem to
improve significantly on the baseline scores. For
φ = 0.001, the results of our models seem somewhat
more balanced compared to the all baseline, but the

differences are not very large. In general, our sys-
tems (in line with the other systems participating in
the task) seem to have a hard time beating a num-
ber of simple baselines, in terms of the evaluation
measures defined by the task.

4 Conclusion

We have presented a system for producing free para-
phrases of noun compounds. Our methodology con-
sists of two steps. First, an unsupervised distribu-
tional word space model is constructed, which is
used to compute a feature representation for a par-
ticular compound. The feature representation is then
used by a maximum entropy classifier to induce a
number of appropriate paraphrases.

Although our models do seem to yield slightly
more balanced scores than the baseline models, the
differences are not very large. Moreover, there is
no substantial difference between our primary mul-
tiplicative model, which takes into account the se-
mantics of both head and modifier noun, and our
contrastive model, which only uses the semantics of
the head noun.
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Abstract

This paper presents an approach for gener-
ating free paraphrases of compounds (task 4
at SemEval 2013) by decomposing the train-
ing data into a collection of templates and
fillers and recombining/scoring these based on
a generative language model and discrimina-
tive MaxEnt reranking.

The system described in this paper achieved
the highest score (with a very small margin) in
the (default) isomorphic setting of the scorer,
for which it was optimized, at a disadvantage
to the non-isomorphic score.

1 Introduction

Compounds are an interesting phenomenon in nat-
ural language semantics as they normally realize a
semantic relation (between head and modifier noun)
that is both highly ambiguous as to the type of rela-
tion and usually nonambiguous as to the concepts it
relates (namely, those of the two nouns).

Besides inventory-based approaches, where the
relation is classified into a fixed number of relations,
many researchers have argued that the full variabil-
ity of the semantic relations inherent in compounds
is best captured with paraphrases: Lauer (1995) pro-
poses to use a preposition as a proxy for the meaning
of a compound. Finin (1980) and later Nakov (2008)
and others propose less restrictive schemes based on
paraphrasing verbs.

A previous SemEval task (task 9 in 2010; But-
nariu et al., 2009). The most successsful approaches
for this task such as Nulty and Costello (2010), Li

et al. (2010), and Wubben (2010), or the subse-
quent approach of Wijaya and Gianfortoni (2011),
all make efficient use of both the training data and
general evidence from WordNet or statistics derived
from large corpora. The paper of Li et al. men-
tions that solely inducing a global ranking of para-
phrasing verbs from the training data (looking which
verb is ranked higher in those cases where both were
considered for the same compound) yielded higher
scores than an unsupervised approach based on the
semantic resources, underlining the need to combine
training data and resources efficiently.

SemEval 2013 task 4 The present task on pro-
viding free paraphrases for noun compounds (Hen-
drickx et al., 2013) uses a dataset collected from Me-
chanical Turk workers asked to paraphrase a given
compound (without context). Prepositional, verbal,
and other paraphrases all occur in the data:

(1) a. bar for wine
b. bar that serves wine
c. bar where wine is sold
d. sweet vinegar made from wine

In the examples, the words of the compound (wine
bar and wine vinegar, respectively) are put in ital-
ics, and other content words in the paraphrase are
underlined.

It is clear that certain paraphrases (X for Y) will be
common across many compounds, whereas the ones
containing more lexical material will differ even be-
tween relatively similar compounds (consider wine
bar from the example, and liquor store, which al-
lows paraphrase c, but not paraphrase b).
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2 General Approach

The approach chosen in the SFS-TUE system is
based on first retrieving a number of similar com-
pounds, then extracting a set of building blocks (pat-
terns and fillers) from these compounds, recombin-
ing these building blocks, and finally ranking the
list of potential paraphrases. The final list is post-
processed by keeping only one variant of each set
of paraphrases that only differ in a determiner (e.g.,
‘strike from air’ and ‘strike from the air’) in order
to make a 1:1 mapping between system response and
gold standard possible.

As a first step, the system retrieves the most simi-
lar compounds from the training data.

This is achieved Lin’s wordnet similarity measure
(Lin, 1998) using the implementation in NLTK (Bird
et al., 2009). The similarity of two compounds X1Y1

and X2Y2 is calculated as

sC = min(sim(X1, X2), sim(Y1, Y2)) +

0.1 · (sim(X1, X2) + sim(Y1, Y2))

which represents a compromise between requiring
that both modifier and head are approximately sim-
ilar, and still giving a small boost to pairs that have
very high modifier similarity but low head similar-
ity, or vice versa. For training, the target compound
is excluded from the most-similar compounds list so
that candidate construction is only based on actual
neighbours.

The paraphrases for the most similar compound
entries (such as 2a) are broken down into templates
(2b) and fillers (2c), by replacing modifier and head
by X and Y , respectively, and other content words
by their part-of-speech tag.

(2) a. bar that serves wine
b. X that VBZ Y
c. VBZ:serve

Conversely, template fillers consist of all the ex-
tracted content words, categorized by their part-of-
speech. (Part-of-speech tags were assigned using the
Stanford POS tagger: Toutanova et al., 2003).

Both paraphrase templates and template fillers are
weighted by the product of the similarity value sC

between the target compound and the neighbour, and
the total frequency of occurrence in that neighbour’s

type examples
Y of Y of X (159) / Y of the X (59) / Y of a X (47)
Y for Y for X (114) / Y for the X (33)
Y VBZ Y that VBZ X (91)/ Y which VBZ X (45)
Y VBG Y VBG X (90) / Y VBG the X/ Y VBG with X
Y VBN Y VBN for X (82) / Y VBN by X (52)
Y in Y in X (31)
Y on Y on X (38)

Table 1: Most frequent paraphrase pattern types and pat-
tern instances

paraphrases. (For example, if Mechanical Turk par-
ticipants named “bar that sells wine” twice and “bar
that serves wine” once, the total frequency of “X
that VBZ Y ” would be three).

Paraphrase candidates are then constructed by
combining any paraphrase templates from a simi-
larity neighbour with any fillers matching the given
part-of-speech tag. The list of all candidates is cut
down to a shortlist of 512 paraphrase candidates.
These are subsequently ranked by assigning features
to each of the candidate paraphrases and scoring
them using weights learned in a maximum ranker
by optimizing a loss derived from the probability of
all candidates that have been mentioned at least two
times in the training set in proportion to the probabil-
ity of all candidates that are not part of the training
annotation for that compound at all. (Paraphrases
that were named only once are not used for the pa-
rameter estimation).

After scoring, determiners are removed from the
paraphrase string and duplicates are removed from
the list. The generated list is cut off to yield at most
60 items.

2.1 Data Sources

As sources of evidence in the fit (or lack thereof)
of a given verb (as a suspected template filler) with
the two target words of a compounds, we use data
derived from the fifth revision of the English Giga-
word1, tokenized, tagged and parsed with the RASP
parsing toolchain (Briscoe et al., 2006), and from
Google’s web n-gram dataset2.

1Robert Parker, David Graff, Junbo Kong, Ke Chen and
Kazuaki Maeda (2011): English Gigaword Fifth Edition.
LDC2011T07, Linguistic Data Consortium, Philadelphia.

2Thorsten Brants, Alex Franz (2006): Web 1T 5-gram Ver-
sion 1. LDC2006T13, Linguistic Data Consortium, Philadel-
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To reproduce very general estimates of linguis-
tic plausibility, we built a four-gram language model
based on the combined text of the English Gigaword
and the British National Corpus (Burnard, 1995),
using the KenLM toolkit (Heafield, 2011). On the
one hand, free paraphrases are quite unrestricted,
which means that the language model helps also in
the case of more exotic paraphrases such as (1d)
in the first section. On the other hand, many of
the more specialized aspects of plausibility such as
preposition attachment or selectional preferences for
subjects and direct objects can be cast as modeling
(smoothed) probabilities for a certain class of short
surface strings, for which an n-gram model is a use-
ful first approximation.

Using the grammatical relations extracted by the
RASP toolkit, we created a database of plausible
verb-subject and verb-object combinations, defined
as having a positive pointwise mutual information
score.

In a similar fashion, we used a list of verbs and
the morphg morphological realizer (Minnen et al.,
2001) to extract all occurrences of the patterns “N
PREP N”, “N PREP (DET) N” for noun-preposition-
noun combinations, and “N that VBZ” as well as “N
VBN by” for finding typical cases of an active or pas-
sive verb that modifies a given noun.

2.2 Ranking features
The following properties used to score each para-
phrase candidate (using weights learned by the Max-
Ent ranker):

• language model score lm
The score assigned by the 4-gram model
learned on the English Gigaword and the BNC.

• pattern type tp=type
The pattern type (usually the first two ‘interest-
ing’ tokens from the paraphrase template, i.e.,
filtering out determiners and auxiliaries). A list
of the most frequent pattern types can be found
in Table 1.

• pattern weight pat
The pattern weight as the sum of the (neighbour
similarity times number of occurrences) contri-
bution from each pattern template.

phia.

• linking preposition prep prep=type
This feature correlates occurring prepositions
(prep) to types of patterns, with the goal
of learning high feature weights for preposi-
tion/type combinations that fit well together.
The obvious example for this would be, e.g.,
that the of preposition pattern fits well with
Y of X paraphrases.

• absent preposition noprep=type
This feature is set when no X prep Y or similar
pattern could be found.

• subject preference (VBG, VBZ)
subj subj0, subj n that vbz

object preference (VBN)
obj dobj0, obj n vbn by
In cases of verbal paraphrases where the com-
pound head is the subject, we can directly
check for corpus evidence for the correspond-
ing subject-verb pattern. A similar check is
done for verb-object (or verb-patient) patterns
in the paraphrases that involve the head in a
passive construction.

• frequent/infrequent subject verb (VBG, VBZ)
subj verb, subj infrequent
Some verbs (belong, come, concern, consist,
contain, deal, give, have, involve, make, pro-
vide, regard, run, sell, show, use, work) oc-
cur frequent enough that we want to introduce
a (data-induced) bias towards or away from
them. Other verbs, which are more rare, are
treated as a single class in this regard (which
means that their goodness of fit is mostly rep-
resented through the language model and the
selectional preference models).

• frequent/infrequent object verb (VBN)
a similar distinction is made for a list of
verbs that often occur in passive form (ap-
pointed, associated, based, carried, caused,
conducted, designed, found, given, held, kept,
meant, needed, performed, placed, prepared,
produced, provided, related, taken)

• co-occurrence of filler with X (other patterns)
other POS cooc, other POS none
For pattern types where we cannot use one of
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System isomorphic non-isom.
SFS 0.2313 0.1795
IIITH 0.2309 0.2584
MELODI I 0.1300 0.5485
MELODI II 0.1358 0.5360
of+for baseline 0.0472 0.8294

Table 2: Official evaluation results + simple baseline

the selectional preference models, we use a
model akin to Pado&Lapata’s (2007) syntax-
based model that provides association scores
based on syntactic dependency arc distance.

3 Evaluation Results

The official evaluation results for the task are sum-
marized in Table 2. Two evaluation scores were
used:

• Isomorphic scoring maps system paraphrases
to (unmapped) paraphrases from the reference
dataset, and requires systems to produce the
full set of paraphrases gathered from Mechani-
cal Turk workers in order to get a perfect score.

• Nonisomorphic scoring scores each system
paraphrase with respect to the best match from
the reference dataset, and averages these scores
over all system paraphrases. A system that
performs well in nonisomorphic scoring does
not need to produce all paraphrases, but will
get punished for producing non-reliable para-
phrases.

As apparent from the table, systems either score well
on the isomorphic score (producing a large number
of paraphrases in order to get good coverage of the
range of expressions in the reference) or on the non-
isomorphic score (producing a smaller number of
paraphrases that are highly ranked in the reference).
The difference is also apparent in the case of a hy-
pothetical system that produces “Y for X” and and
“Y of X” as the paraphrase for any compound (e.g.
bar for wine and bar of wine for wine bar). Because
these paraphrases occur quite often as most frequent
responses, this would yield a high non-isomorphic
score, but an isomorphic score that is very low.

During system development, the relative quality
of system paraphrases for each compound was es-
timated using Maximum Average Precision (MAP)

Compound closest neighbour MAP Rmax

share holding withdrawal line 1.000 0.800
union power community life 1.000 0.750
truth value accounting treatment 1.000 0.750
amateur championship computer study 1.000 0.750
government authority unit manager 1.000 0.680
wine bar computer industry 0.000 0.040
mammoth task consumer benefit 0.000 0.040
obstacle course work area 0.000 0.040
operating system telephone system 0.000 0.000
deadweight burden divorce rate 0.000 0.000

Table 3: Best and worst compounds in cross-validation
on the training data

and the total achievable recall (Rmax) of the gen-
erated paraphrase list. Table 3 shows the MAP
score (for paraphrases that were listed at least two
times) and achievable recall (for all paraphrases).
These measures, unlike the official scores, do not
attempt to deal with paraphrase variants (e.g. dif-
ferent prepositions for a verbal paraphrase), but are
robust and simple enough to give an impression of
the quality of the system response.

As can be seen by looking at the achievable re-
call figures, it is not always the case that all refer-
ence paraphrases are in the list that is ranked by the
MaxEnt model. In the lower half of table 3, we see
that for these cases, the most-similar item selected
by the WordNet-based similarity measure is not very
close semantically; whether this is the only influ-
encing factor remains to be seen since some of the
best-ranked items in the upper half are also abstract
concepts with only-somewhat-close neighbours. Fu-
ture work would therefore have to cover both im-
provements to the similarity measure itself and to the
ranking mechanism used for the reranking of gener-
ated paraphrases.
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Abstract 

This paper presents a system for automatically 

generating a set of plausible paraphrases for a 

given noun compound and rank them in de-

creasing order of their usage represented by 

the confidence value provided by the human 

annotators. Our system implements a corpus-

driven probabilistic co-occurrence based 

model for predicting the paraphrases, that uses 

a seed list of paraphrases extracted from cor-

pus to predict other paraphrases based on their 

co-occurrences. The corpus study reveals that 

the prepositional paraphrases for the noun 

compounds are quite frequent and well cov-

ered but the verb paraphrases, on the other 

hand, are scarce, revealing the unsuitability of 

the model for standalone corpus-driven ap-

proach. Therefore, to predict other paraphras-

es, we adopt a two-fold approach: (i) 

Prediction based on Verb-Verb co-

occurrences, in case the seed paraphrases are 

greater than threshold; and (ii) Prediction 

based on Semantic Relation of NC, otherwise. 

The system achieves a comparabale score of 

0.23 for the isomorphic system while main-

taining a score of 0.26 for the non-isomorphic 

system. 

1 Introduction 

Semeval 2013 Task 4 (Hendrickx et. al., 2013), 

“Free Paraphrases of Noun Compounds” is a pa-

raphrase generation task that requires the system to 

generate multiple paraphrases for a given noun 

compound and rank them to the best approxima-

tion of the human rankings, represented by the cor-

responding confidence value. The task is an 

extension of Semeval 2010 Task 9 (Butnariu et al., 

2010), where the participants were asked to rank 

the set of given paraphrases for each noun com-

pound. Although the ranking task is quite distinct 

from the task of generating paraphrases, however, 

we have taken many insights from the systems de-

veloped for the ranking task, and have reported 

them appropriately in our system description. 

This paper describes a system for generating a 

ranked set of paraphrases for a given NC. A pa-

raphrase can be Prepositional, Verb or Verb + Pre-

positional. Since the prepositional paraphrases are 

easily available in the corpus while the occurrences 

of verb or verb+prep paraphrases is scarce, the task 

of paraphrasing becomes significant in finding out 

a method for predicting reliable paraphrases with 

verbs for a given NC. Our system implements a 

model that is based on co-occurrences of the pa-

raphrases and selects those paraphrases that have a 

higher probability of co-occurring with a set of 

extracted paraphrases which are referred to as Seed 

Paraphrases. Keeping the verb-paraphrase scarcity 

issue in mind, we develop a two-way model: (i) 

Model 1 is used when the seed paraphrases are 

considerable in number i.e., greater than the thre-

shold value. In this case, other verb paraphrases are 

predicted based on their co-occurrence with the set 

of extracted verb paraphrases. (ii) Model 2 is used 

when the size of the seed list falls below the thre-

shold value, in which case, we make use of the 

prepositional paraphrases to predict the relation of 

the noun compound and select verbs that mostly 

co-occur with that relation. Our system achieves an 

isomorphic score of 0.23 with a non-isomorphic of 

0.26 with the human generated paraphrases. The 

next section discusses the system.  

2 System Description 

This section of the paper describes each module of 

the system in detail. The first module of the system 
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talks about the Seed data extraction using corpus 

search. The next module uses the seed data for 

predicting more verbs that would be used in pa-

raphrasing. The third module uses these predicted 

verbs in template generation for generating NC 

Paraphrasing and the generated paraphrases are 

ranked in the last module. 

2.1 Seed Data Extraction Module 

We have relied mostly on the Google N-gram Cor-

pus for extracting the seed paraphrases. Google has 

publicly released their web data as n-grams, also 

known as Web-1T corpus, via the Linguistic Data 

Consortium (Brants and Franz, 2006). It contains 

sequences of n-terms that occur more than 40 times 

on the web. Since the corpus consists of raw data 

from the web, certain pre-processing steps are es-

sential before it can be used. We extract a set of 

POS templates from the training data, and general-

ize them enough to accommodate the legitimate 

paraphrases extracted from the corpus. The follow-

ing templates are used for extracting n-gram data: 

Head-Mod N-gram: This template includes both 

the head and the modifier in the same regular ex-

pression. A corresponding 5-gram template for a 

NC Amateur-Championship is shown in Table 1. 

Head <*> <*> 

<*>Mod 
championship conducted for the 

amateurs 

Head <*><*>  

Mod <*> 
championship for all amateur 

players 

Head <*>Mod 

<*><*> 
championship where amateur is 

competing 

Table 1: Templates for paraphrase extraction 

The paraphrases obtained from the above template 

are quite useful, but scarce. To overcome the issue 

of coverage of verb paraphrases, a loosely coupled 

analysis and representation of compounds can be 

employed, as suggested by (Li et.al, 2010). We 

retrieve the partial triplets from the n-gram corpus 

in the form of “Head Para” and “Para Modifier”. 

 

 

 

Head Template: Head <*> <*> 

Mod Template: <*> <*> Mod; <*> Mod <*> 

But the process of generating paraphrases from 

head and the modifier n-gram incorporates a huge 

amount of noise and produces a lot of irrelevant 

paraphrases. Therefore, these partial paraphrases 

are not directly used for generating the paraphrases 

but are instead used to diagnose the compatibility 

of the selected verb with the head and the modifier 

of the given NC in Section 2.2.2. We also extract 

paraphrases from ANC and BNC corpus. 

2.2 Verb Prediction Module 

This module is the heart of our system. It imple-

ments two models for predicting the verb paraph-

rases: a Verb Co-occurrence model and a Relation 

Prediction model. The decision of selection of 

model for verb prediction is based on the size of 

the seed list. If the number of seed paraphrases is 

above the threshold value, the verb co-occurrence 

model is used whereas the relation prediction mod-

el is used if it is below the threshold value. 

2.2.1 Verb Co-occurrence Model 

This model uses the seed paraphrases extracted 

from the corpus to predict other verb paraphrases 

by computing their co-occurrences. The model 

gains insights from the UCD-PN system (Nulty 

and Costello, 2010) which tries to identify a more 

general paraphrase by computing the co-

occurrence of a paraphrase with other paraphrases. 

But the task of generating paraphrases has two sub-

tle but significant differences: (i) The list of seed 

verb paraphrases for a given NC is usually small, 

with each seed verb having a corresponding proba-

bility of occurrence; and (ii) Not all the seed verbs 

have legitimate representation of the noun com-

pound. Our system incorporates these distinctions 

in the co-occurrence model discussed below. 

Using the training data at hand, we build a Verb-

Verb co-occurrence matrix, a 2-D matrix where 

each cell (i,j) represents the probability of occur-

rence of Vj when Vi has already occurred.  

𝑃 𝑉𝑗  𝑉𝑖 =
𝑃(𝑉𝑖 ,𝑉𝑗 )

𝑃(𝑉𝑖)
=

𝐶𝑜𝑢𝑛𝑡(𝑉𝑖 , 𝑉𝑗 )

𝐶𝑜𝑢𝑛𝑡(𝑉𝑖)
 

The verbs used in co-occurrence matrix are stored 

in a List A. Now, for a given test NC, the model 

extracts the seed list of verb paraphrases (referred 

as List B) from the corpus with their corresponding 

probabilities. The above model calculates a score 

for each verb in List A, by computing its co-

occurrence with the verbs in List B. 

𝑠𝑐𝑜𝑟𝑒𝑎∈𝐴 𝑉𝑎 =   𝑃 𝑉𝑎  𝑉𝑏 ∗ 𝑃(𝑉𝑏)

𝑏∈𝐵

 

(Head, Para, ?)  

(?, Para, Mod)  

(Head, Para, Mod)  
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The term 𝑃(𝑉𝑏) in the above equation represents 

the relative occurrence of the verb 𝑉𝑏  with the giv-

en NC. The relevance of this term becomes evident 

in the next model. The verbs achieving higher 

score are selected, suggesting a higher probability 

of co-occurrence with the seed verbs.  

2.2.2 Semantic Relation Prediction Model 

This module describes the second model of the 

two-way model, and is used by the system when 

the verbs extracted from the corpus are less than 

the threshold. In this model, we use prepositional 

paraphrases, having a pretty good coverage in the 

corpus, to predict the semantic relation of the com-

pound which helps us in predicting the other pa-

raphrases. The intuition behind using semantic 

class for predicting paraphrases is that they tend to 

capture the behavior of the noun compound and 

can be represented by general paraphrases.  

Noun Compound Relation Paraphrase Sel. 

Prep Verb 

Garden Party Location In, At Held 

Community Life Theme Of, In Made 

Advertising Agency Purpose For, Of, In Doing 

Table 2: Occurrence of Prepositional Paraphrases 

Relation Annotation: Since a supervised ap-

proach is used for identifying the semantic relation 

of the noun compound, we manually annotate the 

noun compounds with a semantic relation. We tag 

each noun compound with one semantic relation 

from the set used in (Moldovan et. al. 2004).  

Prep-Rel and Verb-Rel Co-occurrence: A Prep-

Rel co-occurrence matrix similar to Verb-Verb co-

occurrence matrix discussed in last subsection. 

This 2-D matrix consists of co-occurrence proba-

bilities between the prepositional paraphrases and 

the semantic relation of the compound, where each 

cell (i,j) represents the probability of occurrence of 

preposition Pj with relation Ri. This matrix is used 

as a model to identify semantic relation using pre-

positional paraphrases extracted from the corpus. 

The Verb-Relation co-occurrence matrix is used to 

predict the most co-occurring verbs with the identi-

fied relation. Each cell (i,j) in the matrix represents 

the probability of the verb Vj co-occurring with 

relation Ri. 

Relation Extraction: Research focusing on se-

mantic relation extraction has followed two direc-

tions: (i) Statistical approaches to using very large 

corpus (Berland and Charniak (1999); Hearst 

(1998)); and (ii) Ontology based approaches using 

hierarchical structure of wordnet (Moldovan et. al., 

2004). We employ a statistical model based on the 

Preposition-Relation co-occurrence for identifying 

the relation. The model is quite similar to the one 

used in Section 2.2, but it is here that the model 

reveals its actual power. Since two or more rela-

tions can be represented by same set of preposi-

tional paraphrases, as Theme and Purpose in Table 

2, it is important to take into account the probabili-

ties with which the extracted prepositions occur in 

the corpus. In Table 2, the NC Community Life 

(Theme) occurs frequently with preposition „of‟ 

whereas the NC Advertising Agency (Purpose) is 

mostly represented by preposition „for‟ in the cor-

pus. The term 𝑃(𝑃𝑝) in the equation below cap-

tures this phenomenon and classifies these two 

NCs in their respective classes. 

𝑠𝑐𝑜𝑟𝑒𝑟∈𝑅 𝑟 =   𝑃 𝑟 𝑃𝑝 ∗ 𝑃(𝑃𝑝)

𝑝∈𝑃

 

The relation with the highest score is selected as 

the semantic class of the noun compound. A set of 

verbs highly co-occurring with that class are se-

lected, and their compatibility with the correspond-

ing noun compound is judged from their 

occurrences with the partial head and the modifier 

paraphrases as discussed in Section 2.1. The above 

classifier performs moderately and classifies a giv-

en NC with 42.5% accuracy. We have also tried 

the Wordnet based Semantic Scattering model 

(Moldovan et. al., 2004), trained on a set of 400 

instances, but achieved an accuracy of 38%, the 

reason for which can be attributed to the small 

training set. Since the accuracy of identifying the 

correct relation is low, we select some paraphrases 

from the 2
nd

 most probable relation, as assigned by 

the probabilistic classifier.  

2.3 Paraphrase Generator Module  

After predicting a set of verb for a test noun com-

pound, we use the following templates to generate 

the paraphrases: 

a) Head VP Mod 

b) Head VP PP Mod 

c) Head [that|which] VP PP Mod 

The paraphrases that are extracted from the corpus 

are also cleaned using the POS templates extracted 

from the training data. 
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2.4 Paraphrase Ranker Module  

Motivated by the observations from Nulty and 

Costello (2010) that “people tend to use general, 

semantically light paraphrases more often than de-

tailed, semantically heavy ones”, we perform rank-

ing of the paraphrases in two steps: (i) Assigning 

different weights to different type of paraphrases, 

i.e. a light weight prepositional paraphrases achiev-

ing higher score than the verb paraphrases; and (ii) 

Ranking a more general paraphrase with the same 

category higher. A paraphrase A is more general 

that paraphrase B (Nulty and Costello, 2010) if 

𝑃 𝐴|𝐵 > 𝑃(𝐵|𝐴) 

For a list of paraphrases A generated for a given 

compound, each paraphrase b in that list is scored 

using the below eq., where more general paraph-

rase achieves a high score and is ranked higher. 

𝑠𝑐𝑜𝑟𝑒 𝑏 =   𝑃 𝑏 𝑎 

𝑎∈𝐴

 

The seed paraphrases extracted from the corpus are 

ranked higher than the predicted paraphrases. 

3 Algorithm  

This section presents the implementation of the 

overall system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

4 Results 

The set of generated paraphrases are evaluated on 

two metrics: a) Isomorphic; b) Non-isomorphic. In 

the isomorphic setting, the test paraphrase is 

matched to the closest reference paraphrases, but 

the reference paraphrase is removed from the set 

whereas in non-isomorphic setting, the reference 

paraphrase which is mapped to a test paraphrase 

can still be used for matching other test paraphras-

es. Table 3 presents the scores of the 3 participat-

ing teams who have submitted total of 4 systems.  

Systems Isomorphic Non-Isomorphic 

SFS 0.2313 0.1794 

IIITH 0.2309 0.2583 

MELODI-Pri 0.1298 0.5484 

MELODI-Cont 0.1357 0.536 
Table 3: Results of the submitted systems 

Our system achieves an isomorphic score of 0.23, 

just below the SFS system maintaining a score of 

0.26 for the non-isomorphic system. The two va-

riants of MELODI system get a high score for the 

non-isomorphic metric but low scores for isomor-

phic metric as compared to other systems. 

5 Conclusion 

We have described a system for automatically ge-

nerating a set of paraphrases for a given noun 

compound, based on the co-occurrences of the pa-

raphrases. The system describes an approach for 

handling those 38% cases (calculated for optimum 

threshold value) of NCs where it is not convenient 

to predict the verbs using their co-occurrences with 

the seed verbs, because the size of the seed list is 

below a threshold value. For other cases, the verb 

co-occurrence model is used to predict the verbs 

for NC paraphrasing. The optimum value of thre-

shold parameter investigated from experiments is 

found to be 3, showing that atleast 3 verb paraph-

rases are necessary to capture the concept of a NC. 

// Training Phase – Build Co-occurrence Matrices 

Verb_Co-occur = 2-D Matrix  

Prep-Rel_Co-occur = 2-D Matrix  

Verb-Rel_Co-occur = 2-D Matrix  

Verb_List = Verb List extracted from training corpus 

// Testing – Extract paraphrases with probabilities 

Ext_Verb = List of extracted verb paraphrase  

VProb = Probability of each Ext_Verb 

Ext_Prep = List of extracted prepositional paraphrases 

PProb = Probability of each Ext_Prep 

Prob_Verb = List // Verbs with their selection score 

Prob_Rel = List // Relations with their selection score 

Threshold = 3 // Verb threshold for two-way model 

if count( Ext_Verb ) > Threshold  

    Candidate_Verbs = {Verb_List } - { Ext_Verbs }      

    foreach Candidate_Verbs Vi : 

        Prob_Verb[Vi] = 0 

        foreach Ext_Verb Vj : 

            Prob_Verb[Vi] += Verb_Co-occur [Vi][Vj] *   

   VProb[Vj] 

else       

    foreach Prep-Rel_Co-occur as rel : 

        Prob_Rel[rel] = 0 

             

            

       foreach Ext_Prep as prep : 

           Prob_Rel[rel] += Prep-Rel_Co-occur[rel][prep]

              * PProb[prep]              

           Rel=select highestProb(Prob_Rel) 

           Prob_Verb = Verb-Rel_Co-occur[Rel] 

sort(Prob_Verb)  

Verb_Predicted = select top(N)   

Paraphrase = generate_paraphrase(verb_predicted) 

rank(Paraphrase) 
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Abstract

The goal of the Cross-lingual Word Sense Disam-
biguation task is to evaluate the viability of multilin-
gual WSD on a benchmark lexical sample data set.
The traditional WSD task is transformed into a mul-
tilingual WSD task, where participants are asked to
provide contextually correct translations of English
ambiguous nouns into five target languages, viz.
French, Italian, English, German and Dutch. We re-
port results for the 12 official submissions from 5
different research teams, as well as for the ParaSense
system that was developed by the task organizers.

1 Introduction

Lexical ambiguity remains one of the major prob-
lems for current machine translation systems. In
the following French sentence “Je cherche des idées
pour manger de l’avocat”1, the word “avocat” is
clearly referring to the fruit, whereas both Google
Translate2 as well as Babelfish3 translate the word
as “lawyer”. Although “lawyer” is a correct transla-
tion of the word “avocat”, it is the wrong translation
in this context. Other language technology applica-
tions, such as Question Answering (QA) systems or
information retrieval (IR) systems, also suffer from
the poor contextual disambiguation of word senses.
Word sense disambiguation (WSD) is still consid-
ered one of the most challenging problems within

1English translation: “I’m looking for ideas to eat avocado”.
2http://translate.google.com
3http://be.bing.com/translator/

language technology today. It requires the construc-
tion of an artificial text understanding as the sys-
tem should detect the correct word sense based on
the context of the word. Different methodologies
have been investigated to solve the problem; see for
instance Agirre and Edmonds (2006) and Navigli
(2009) for a detailed overview of WSD algorithms
and evaluation.

This paper reports on the second edition of
the “Cross-Lingual Word Sense Disambiguation”
(CLWSD) task, that builds further on the insights we
gained from the SemEval-2010 evaluation (Lefever
and Hoste, 2010b) and for which new test data were
annotated. The task is an unsupervised Word Sense
Disambiguation task for English nouns, the sense
label of which is composed of translations in dif-
ferent target languages (viz. French, Italian, Span-
ish, Dutch and German). The sense inventory is
built up on the basis of the Europarl parallel corpus;
all translations of a polysemous word were manu-
ally grouped into clusters, which constitute different
senses of that given word. For the test data, native
speakers assigned a translation cluster(s) to each test
sentence and gave their top three translations from
the predefined list of Europarl translations, in order
to assign weights to the set of gold standard transla-
tions.

The decision to recast the more traditional mono-
lingual WSD task into a cross-lingual WSD task was
motivated by the following arguments. Firstly, using
multilingual unlabeled parallel corpora contributes
to clearing the data acquisition bottleneck for WSD,
because using translations as sense labels excludes
the need for manually created sense-tagged corpora

158



and sense inventories such as WordNet (Fellbaum,
1998) or EuroWordNet (Vossen, 1998). Moreover,
as there is fairly little linguistic knowledge involved,
the framework can be easily deployed for a variety
of different languages. Secondly, a cross-lingual ap-
proach also deals with the sense granularity prob-
lem; finer sense distinctions are only relevant as far
as they get lexicalized in different translations of
the word. If we take the English word “head” as
an example, we see that this word is always trans-
lated as “hoofd” in Dutch (both for the “chief” and
for the ‘body part” sense of the word). At the same
time, the subjectivity problem is tackled that arises
when lexicographers have to construct a fixed set of
senses for a particular word that should fit all possi-
ble domains and applications. In addition, the use
of domain-specific corpora allows to derive sense
inventories that are tailored towards a specific tar-
get domain or application and to train a dedicated
CLWSD system using these particular sense inven-
tories. Thirdly, working immediately with transla-
tions instead of more abstract sense labels allows to
bypass the need to map abstract sense labels to cor-
responding translations. This makes it easier to inte-
grate a dedicated WSD module into real multilingual
applications such as machine translation (Carpuat
and Wu, 2007) or information retrieval (Clough and
Stevenson, 2004).

Many studies have already shown the validity of a
cross-lingual approach to Word Sense Disambigua-
tion (Brown et al., 1991; Gale and Church, 1993;
Ng et al., 2003; Diab, 2004; Tufiş et al., 2004;
Chan and Ng, 2005; Specia et al., 2007; Apidi-
anaki, 2009). The Cross-lingual WSD task con-
tributes to this research domain by the construction
of a dedicated benchmark data set where the am-
biguous words were annotated with the senses from
a multilingual sense inventory extracted from a par-
allel corpus. This benchmark data sets allows a de-
tailed comparison between different approaches to
the CLWSD task.

The remainder of this paper is organized as fol-
lows. Section 2 focuses on the task description and
briefly recapitalizes the construction of the sense in-
ventory and the annotation procedure of the test sen-
tences. Section 3 presents the participating systems
to the task, whereas Section 4 gives an overview of
the experimental setup and results. Section 5 con-

cludes this paper.

2 Task set up

The ”Cross-lingual Word Sense Disambiguation”
(CLWSD) task was organized for the first time in the
framework of SemEval-2010 (Lefever and Hoste,
2010b) and resulted in 16 submissions from five
different research teams. Many additional research
teams showed their interest and downloaded the trial
data, but did not manage to finish their systems in
time. In order to gain more insights into the com-
plexity and the viability of cross-lingual WSD, we
proposed a second edition of the task for SemEval-
2013 for which new test data were annotated.

The CLWSD task is an unsupervised Word Sense
Disambiguation task for a lexical sample of twenty
English nouns. The sense label of the nouns is com-
posed of translations in five target languages (viz.
Spanish, French, German, Italian and Dutch) and
the sense inventory is built up on the basis of the
Europarl parallel corpus4. This section briefly de-
scribes the data construction process for the task.
For a more detailed description of the gold stan-
dard creation and data annotation process, we refer
to Lefever and Hoste (2010a; 2010b).

2.1 Sense inventory
The starting point for the gold standard sense inven-
tory creation was the parallel corpus Europarl. We
selected six languages from Europarl (English and
the five target languages) and only considered the 1-
1 sentence alignments between English and the five
target languages5. In order to obtain the multilingual
sense inventory we:

1. performed word alignment on the parallel cor-
pus in order to find all possible translations for
our set of ambiguous focus nouns

2. clustered the resulting translations by meaning
and manually lemmatized all translations

The resulting sense inventory was then used to an-
notate the sentences in the test set that was devel-
oped for the SemEval-2013 CLWSD task.

4http://www.statmt.org/europarl/
5This six-lingual sentence-aligned subcor-

pus of Europarl can be downloaded from
http://lt3.hogent.be/semeval/.
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2.2 Test data
For the creation of the test data set, we manually se-
lected 50 sentences per ambiguous focus word from
the part of the ANC corpus that is publicly avail-
able6. In total, 1000 sentences were annotated us-
ing the sense inventory that was described in Sec-
tion 2.1. Three annotators per target language were
asked to first select the correct sense cluster and next
to choose the three contextually most appropriate
translations from this sense cluster. They could also
provide fewer translations in case they could not find
three good translations for this particular occurrence
of the test word. These translations were used to
(1) compose the set of gold standard translations per
test instance and (2) to assign frequency weights to
all translations in the gold standard (e.g. translations
that were chosen by all three annotators get a fre-
quency weight of 3 in the gold standard).

2.3 Evaluation tasks
Two subtasks were proposed for the Cross-lingual
WSD task: a best evaluation and an Out-of-five eval-
uation task. For the best evaluation, systems can
propose as many guesses as the system believes are
correct, but the score is divided by the number of
guesses. In case of the Out-of-five evaluation, sys-
tems can propose up to five guesses per test instance
without being penalized for wrong translation sug-
gestions. Both evaluation tasks are explained in
more detail in Section 4.1.

3 Systems

3.1 Systems participating to the official
CLWSD evaluation campaign

Five different research teams participated to the
CLWSD task and submitted up to three different
runs of their system, resulting in 12 different sub-
missions for the task. All systems took part in both
the best and the Out-of-five evaluation tasks. These
systems took very different approaches to solve the
task, ranging from statistical machine translation,
classification and sense clustering to topic model
based approaches.

The XLING team (Tan and Bond, 2013) submit-
ted three runs of their system for all five target lan-
guages. The first version of the system presents a

6http://www.americannationalcorpus.org/

topic matching and translation approach to CLWSD
(TnT run), where LDA is applied on the Europarl
sentences containing the ambiguous focus word in
order to train topic models. Each sentence in the
training corpus is assigned a topic that contains a
list of associated words with the topic. The topic
of the test sentence is then inferred and compared
to the matching training sentences by means of the
cosine similarity between the training and test vec-
tors. WordNet (WN) is used as a fallback in case
the system returns less than 5 answers. The second -
and best performing - flavor of the system (SnT run)
calculates the cosine similarity between the context
words of the test and training sentences. The out-
put of the system then contains the translation that
results from running word alignment on the focus
word in the training corpus. As a fallback, Word-
Net is again used. The WN senses are sorted by fre-
quency in the SemCor corpus and the correspond-
ing translation is selected from the aligned WordNet
in the target language. The third run of the system
(merged) combines the output from the other two
flavors of the system.

The LIMSI system (Apidianaki, 2013) applies an
unsupervised CLWSD method that was proposed in
(Apidianaki, 2009) for three target languages, viz.
Spanish, Italian and French. First, word alignment
is applied on the parallel corpus and three bilingual
lexicons are built, containing for each focus word
the translations in the three target languages. In a
next step, a vector is built for each translation of the
English focus word, using the cooccurrences of the
word in the sentences in which it gets this particu-
lar translation. A clustering algorithm then groups
the feature vectors using the Weighted Jaccard mea-
sure. New instances containing the ambiguous focus
word are then compared to the training feature vec-
tors and assigned to one of the sense clusters. In
case the highest-ranked translation in the cluster has
a score below the threshold, the system falls back to
the most frequent translation.

Two very well performing systems take a
classification-based approach to the CLWSD task:
the HLTDI and WSD2 systems. The HLTDI sys-
tem (Rudnick et al., 2013) performs word alignment
on the intersected Europarl corpus to locate train-
ing instances containing the ambiguous focus words.
The first flavor of the system (l1) uses a maxent clas-
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sifier that is trained over local context features. The
L2 model (l2 run) also adds translations of the fo-
cus word into the four other target languages to the
feature vector. To disambiguate new test instances,
these translations into the four other languages are
estimated using the classifiers built in the first ver-
sion of the system (l1). The third system run (mrf )
builds a Markov network of L1 classifiers in order to
find the best translation into all five target languages
jointly. The nodes of this network correspond to the
distribution produced by the L1 classifiers, while the
edges contain pairwise potentials derived from the
joint probabilities of translation labels occurring to-
gether in the training data.

Another classification-based approach is pre-
sented by the WSD2 system (van Gompel and
van den Bosch, 2013), that uses a k-NN classifier
to solve the CLWSD task. The first configuration
of the system (c1l) uses local context features for a
window of three words containing the focus word.
Parameters were optimized on the trial data. The
second flavor of the system (c1lN) uses the same
configuration of the system, but without parameter
optimization. The third configuration of the system
(var) is heavily optimized on the trial data, selecting
the winning configuration per trial word and evalua-
tion metric. In addition to the local context features,
also global bag-of-word context features are consid-
ered for this version of the system.

A completely different approach is taken by the
NRC-SMT system (Carpuat, 2013), that uses a sta-
tistical machine translation approach to tackle the
CLWSD task. The baseline version of the system
(SMTbasic) represents a standard phrase-based SMT
baseline, that is trained only on the intersected Eu-
roparl corpus. Translations for the test instances are
extracted from the top hypothesis (for the best eval-
uation) or from the 100-best list (for the Out-of-five
evaluation). The optimized version of the system
(SMTadapt2) is trained on the Europarl corpus and
additional news data, and uses mixture models that
are developed for domain adaptation in SMT.

In addition to the five systems that participated to
the official evaluation campaign, the organizers also
present results for their ParaSense system, which is
described in the following section.

3.2 ParaSense system

The ParaSense system (Lefever et al., 2013)
is a multilingual classification-based approach to
CLWSD. A combination of both local context in-
formation and translational evidence is used to dis-
criminate between different senses of the word, the
underlying hypothesis being that using multilingual
information should be more informative than only
having access to monolingual or bilingual features.
The local context features contain the word form,
lemma, part-of-speech and chunk information for a
window of seven words containing the ambiguous
focus word. In addition, a set of bag-of-words fea-
tures is extracted from the aligned translations that
are not the target language of the classifier. Per
ambiguous focus word, a list of all content words
(nouns, adjectives, adverbs and verbs) that occurred
in the linguistically preprocessed aligned transla-
tions of the English sentences containing this word,
were extracted. Each content word then corresponds
to exactly one binary feature per language. For the
construction of the translation features for the train-
ing set, we used the Europarl aligned translations.
As we do not dispose of similar aligned transla-
tions for the test instances for which we only have
the English test sentences at our disposal, we used
the Google Translate API7 to automatically gener-
ate translations for all English test instances in the
five target languages.

As a classifier, we opted for the k Nearest neigh-
bor method as implemented in TIMBL (Daelemans
and van den Bosch, 2005). As most classifiers can
be initialized with a wide range of parameters, we
used a genetic algorithm to optimize the parameter
settings for our classification task.

4 Results

4.1 Experimental set up

Test set The lexical sample contains 50 English
sentences per ambiguous focus word. All instances
were manually annotated per language, which re-
sulted in a set of gold standard translation labels per
instance. For the construction of the test dataset, we
refer to Section 2.

7http://code.google.com/apis/language/
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Evaluation metric The BEST precision and recall
metric was introduced by (McCarthy and Navigli,
2007) in the framework of the SemEval-2007 com-
petition. The metric takes into account the frequency
weights of the gold standard translations: transla-
tions that were picked by different annotators re-
ceived a higher associated frequency which is incor-
porated in the formulas for calculating precision and
recall. For the BEST precision and recall evaluation,
the system can propose as many guesses as the sys-
tem believes are correct, but the resulting score is
divided by the number of guesses. In this way, sys-
tems that output many guesses are not favored and
systems can maximize their score by guessing the
most frequent translation from the annotators. We
also calculate Mode precision and recall, where pre-
cision and recall are calculated against the transla-
tion that is preferred by the majority of annotators,
provided that one translation is more frequent than
the others.

The following variables are used for the BEST pre-
cision and recall formulas. Let H be the set of an-
notators, T the set of test words and hi the set of
translations for an item i ∈ T for annotator h ∈ H .
Let A be the set of words from T where the system
provides at least one answer and ai the set of guesses
from the system for word i ∈ A. For each i, we cal-
culate the multiset union (Hi) for all hi for all h ∈ H
and for each unique type (res) in Hi that has an as-
sociated frequency (freqres). Equation 1 lists the
BEST precision formula, whereas Equation 2 lists
the formula for calculating the BEST recall score:

Precision =

∑
ai:i∈A

∑
res∈ai

freqres

|ai|
|Hi|

|A|
(1)

Recall =

∑
ai:i∈T

∑
res∈ai

freqres

|ai|
|Hi|

|T |
(2)

Most Frequent translation baseline As a base-
line, we selected the most frequent lemmatized
translation that resulted from the automated word
alignment (GIZA++) for all ambiguous nouns in the
training data. This baseline is inspired by the most
frequent sense baseline often used in WSD evalu-

ations. The main difference between the most fre-
quent sense baseline and our baseline is that the lat-
ter is corpus-dependent: we do not take into account
the overall frequency of a word as it would be mea-
sured based on a large general purpose corpus, but
calculate the most frequent sense (or translation in
this case) based on our training corpus.

4.2 Experimental results
For the system evaluation results, we show preci-
sion and Mode precision figures for both evaluation
types (best and Out-of-five). In our case, precision
refers to the number of correct translations in rela-
tion to the total number of translations generated by
the system, while recall refers to the number of cor-
rect translations generated by the classifier. As all
participating systems predict a translation label for
all sentences in the test set, precision and recall will
give identical results. As a consequence, we do not
list the recall and Mode recall figures that are in this
case identical to the corresponding precision scores.

Table 1 lists the averaged best precision scores
for all systems, while Table 2 gives an overview
of the best Mode precision figures for all five tar-
get languages, viz. Spanish (Es), Dutch (Nl), Ger-
man (De), Italian (It) and French (Fr). We list scores
for all participating systems in the official CLWSD
evaluation campaign, as well as for the organiz-
ers’ system ParaSense, that is not part of the offi-
cial SemEval competition. The best results for the
best precision evaluation are achieved by the NRC-
SMTadapt2 system for Spanish and by the WSD2
system for the other four target languages, closely
followed by the HLTDI system. The latter two sys-
tems also obtain the best results for the best Mode
precision metric.

Table 3 lists the averaged Out-of-five precision
scores for all systems, while Table 4 gives an
overview of the Out-of-five Mode precision figures
for all five target languages, viz. Spanish (Es), Dutch
(Nl), German (De), Italian (It) and French (Fr). For
the Out-of-five evaluation, where systems are al-
lowed to generate up to five unique translations with-
out being penalized for wrong translations, again the
HLTDI and WSD2 systems obtain the best classifi-
cation performance.

Although the winning systems use different ap-
proaches (statistical machine translation and classi-
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fication algorithms), they have in common that they
only use a parallel corpus to extract disambiguating
information, and do not use external resources such
as WordNet. As a consequence, this makes the sys-
tems very flexible and language-independent. The
ParaSense system, that incorporates translation in-
formation from four other languages, outperforms
all other systems, except for the best precision met-
ric in Spanish, where the NRC-SMT system obtains
the overall best results. This confirms the hypothe-
sis that a truly multilingual approach to WSD, which
incorporates translation information from multiple
languages into the feature vector, is more effective
than only using monolingual or bilingual features.
A possible explanation could be that the differences
between the different languages that are integrated
in the feature vector enable the system to refine
the obtained sense distinctions. We indeed see that
the ParaSense system outperforms the classification-
based bilingual approaches which exploit similar in-
formation (e.g. training corpora and machine learn-
ing algorithms).

Es Nl De It Fr
Baseline

23.23 20.66 17.43 20.21 25.74
results for the HLTDI system

hltdi-l1 29.01 21.53 19.50 24.52 27.01
hltdi-l2 28.49 22.36 19.92 23.94 28.23
hltdi-mrf 29.36 21.61 19.76 24.62 27.46

results for the XLING system
merged 11.09 4.91 4.08 6.93 9.57
snt 19.59 9.89 8.13 12.74 17.33
tnt 18.60 7.40 5.29 10.70 16.48

results for the LIMSI system
limsi 24.70 21.20 24.56

results for the NRC-SMT system
basic 27.24
adapt2 32.16

results for the WSD2 system
c1l 28.40 23.14 20.70 25.43 29.88
c1lN 28.65 23.61 20.82 25.66 30.11
var 23.31 17.17 16.20 20.38 25.89

results for the PARASENSE system
31.72 25.29 24.54 28.15 31.21

Table 1: BEST precision scores averaged over all twenty
test words for Spanish (Es), Dutch (Nl), German (De),
Italian (It) and French (Fr).

Es Nl De It Fr
Baseline

27.48 24.15 15.30 19.88 20.19
results for the HLTDI system

hltdi-l1 36.32 25.39 24.16 26.52 21.24
hltdi-l2 37.11 25.34 24.74 26.65 21.07
hltdi-mrf 36.57 25.72 24.01 26.26 21.24

results for the XLING system
merged 24.31 8.54 5.82 7.54 11.63
snt 21.36 9.56 10.36 11.27 11.57
tnt 24.31 8.54 5.82 7.54 11.63

results for the LIMSI system
limsi 32.09 23.06 22.16

results for the NRC-SMT system
basic 32.28
adapt2 36.2

results for the WSD2 system
c1l 33.89 26.32 24.73 31.61 26.62
c1lN 33.70 27.96 24.27 30.67 25.27
var 27.98 18.74 21.74 20.69 16.71

results for the PARASENSE system
40.26 30.29 25.48 30.11 26.33

Table 2: BEST Mode precision scores averaged over all
twenty test words for Spanish (Es), Dutch (Nl), German
(De), Italian (It) and French (Fr).

Es Nl De It Fr
Baseline

53.07 43.59 38.86 42.63 51.36
results for the HLTDI system

hltdi-l1 61.69 46.55 43.66 53.57 57.76
hltdi-l2 59.51 46.36 42.32 53.05 58.20
hltdi-mrf 9.89 5.69 4.15 3.91 7.11

results for the XLING system
merged 43.76 24.30 19.83 33.95 38.15
snt 44.83 27.11 23.71 32.38 38.44
tnt 39.52 23.27 19.13 33.28 35.30

results for the LIMSI system
limsi 49.01 40.25 45.37

results for the NRC-SMT system
basic 37.98
adapt2 41.65

results for the WSD2 system
c1l 58.23 47.83 43.17 52.22 59.07
c1lN 57.62 47.62 43.24 52.73 59.80
var 55.70 46.85 41.46 51.18 59.19

Table 3: OUT-OF-FIVE precision scores averaged over all
twenty test words for Spanish (Es), Dutch (Nl), German
(De), Italian (It) and French (Fr).
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Es Nl De It Fr
Baseline

57.35 41.97 44.35 41.69 47.42
results for the HLTDI system

hltdi-l1 64.65 47.34 53.50 56.61 51.96
hltdi-l2 62.52 44.06 49.03 54.06 53.57
hltdi-mrf 11.39 5.09 3.14 3.87 7.79

results for the XLING system
merged 48.63 23.64 24.64 31.74 30.11
snt 50.04 27.30 30.57 29.17 32.45
tnt 44.96 22.98 23.54 29.61 28.02

results for the LIMSI system
limsi 51.41 47.21 39.54

results for the NRC-SMT system
basic 42.92
adapt2 45.38

results for the WSD2 system
c1l 63.75 45.27 50.11 54.13 57.57
c1lN 63.80 44.53 50.26 54.37 56.40
var 61.51 41.82 49.23 54.73 54.97

Table 4: OUT-OF-FIVE Mode precision scores averaged
over all twenty test words for Spanish (Es), Dutch (Nl),
German (De), Italian (It) and French (Fr).

In general, we notice that French and Spanish
have the highest scores, while Dutch and German
seem harder to tackle. Italian is situated some-
where in between the Romance and Germanic lan-
guages. This trend confirms the results that were ob-
tained during the first SemEval Cross-lingual WSD
task (Lefever and Hoste, 2010b). As pointed out af-
ter the first competition, the discrepancy between the
scores for the Romance and Germanic languages can
probably be explained by the number of classes (or
translations in this case) the systems have to choose
from. Germanic languages are typically charac-
terized by a very productive compounding system,
where compounds are joined together in one ortho-
graphic unit, which results in a much higher number
of different class labels. As the Romance languages
typically write compounds in separate orthographic
units, they dispose of a smaller number of different
translations for each ambiguous noun.

We can also notice large differences between the
scores for the individual words. Figure 1 illustrates
this by showing the best precision scores in Span-
ish for the different test words for the best run per
system. Except for some exceptions (e.g. coach in
the NRC-SMT system), most system performance

scores follow a similar curve. Some words (e.g.
match, range) are particularly hard to disambiguate,
while others obtain very high scores (e.g. mission,
soil). One possible explanation for the very good
scores for some words (e.g. soil) can be attributed
to a very generic translation which accounts for all
senses of the word even though there might be more
suitable translations for each of the senses depend-
ing on the context. Because the manual annota-
tors were able to select three good translations for
each test instance, the most generic translation is of-
ten part of the gold standard translations. This is
also reflected in the high baseline scores for these
words. For the words performing badly in most sys-
tems, an inspection of the training data properties
revealed two possible explanations for these poor
classification results. Firstly, there seems to be a
link with the number of training instances, corre-
sponding to the frequency of the word in the train-
ing corpus. Both for coach and match, two words
consistently performing bad in all systems, there are
very few training examples in the corpus (66 and
109 respectively). This could also explain why the
NRC-SMT system, that also uses additional paral-
lel data, achieves better results for coach than all
other systems. Secondly, the ambiguity or number
of valid translations per word in the training data
also seems to play a role in the classification results.
Both job and range appear very hard to classify cor-
rectly, and both words are very ambiguous, with no
fewer than 121 and 125 translations, respectively, to
choose from in Spanish.

5 Conclusion

The Cross-lingual Word Sense Disambiguation task
attempts to address three important challenges for
WSD, namely (1) the data acquisition bottleneck,
which is caused by the lack of manually created re-
sources, (2) the sense granularity and subjectivity
problem of the existing sense inventories and (3) the
need to make WSD more suited for practical appli-
cations. The task contributes to the WSD research
domain by the construction of a dedicated bench-
mark data set that allows to compare different ap-
proaches to the Cross-lingual WSD task.

The evaluation results lead to the following ob-
servations. Firstly, languages which make exten-
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Figure 1: Spanish best precision scores for all systems per ambiguous focus word.

sive use of single word compounds seem harder
to tackle, which can probably be explained by the
higher number of translations these classifiers have
to choose from. Secondly, we can notice large dif-
ferences between the performances of the individual
test words. For the words that appear harder to dis-
ambiguate, both the number of training instances as
well as the ambiguity of the word seem to play a role
for the classification performance. Thirdly, both the
ParaSense system as well as the two winning sys-
tems from the competition extract all disambiguat-
ing information from the parallel corpus and do not
use any external resources. As a result, these sys-
tems are very flexible and can be easily extended to
other languages and domains. In addition, the good
scores of the ParaSense system, that incorporates in-
formation from four additional languages, confirms
the hypothesis that a truly multilingual approach is
an effective way to tackle the CLWSD task.
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Abstract 

This paper describes the XLING system partici-

pation in SemEval-2013 Crosslingual Word 

Sense Disambiguation task. The XLING system 

introduces a novel approach to skip the sense 

disambiguation step by matching query sentenc-

es to sentences in a parallel corpus using topic 

models; it returns the word alignments as the 

translation for the target polysemous words. 

Although, the topic-model base matching under-

performed, the matching approach showed po-

tential in the simple cosine-based surface simi-

larity matching. 

1 Introduction 

This paper describes the XLING system, an un-

supervised Cross-Lingual Word Sense Disam-

biguation (CLWSD) system based on matching 

query sentence to parallel corpus using topic 

models. CLWSD is the task of disambiguating a 

word given a context by providing the most ap-

propriate translation in different languages 

(Lefever and Hoste, 2013).  

2 Background  

Topic models assume that latent topics exist in 

texts and each semantic topic can be represented 

with a multinomial distribution of words and 

each document can be classified into different 

semantic topics (Hofmann, 1999). Blei et al. 

(2003b) introduced a Bayesian version of topic 

modeling using Dirichlet hyper-parameters, La-

tent Dirichlet Allocation (LDA). Using LDA, a 

set of topics can be generated to classify docu-

ments within a corpus. Each topic will contain a 

list of all the words in the vocabulary of the cor-

pus where each word is assigned a probability of 

occurring given a particular topic. 

3 Approach 

We hypothesized that sentences with different 

senses of a polysemous word will be classified 

into different topics during the LDA process. By 

matching the query sentence to the training sen-

tences by LDA induced topics, the most appro-

priate translation for the polysemous word in the 

query sentence should be equivalent to transla-

tion of word in the matched training sentence(s) 

from a parallel corpus. By pursuing this ap-

proach, we escape the traditional mode of dis-

ambiguating a sense using a sense inventory. 

4 System Description 

The XLING_TnT system attempts the matching 

subtask in three steps (1) Topicalize: match-

ing the query sentence to the training sentences 

by the most probable topic. (2) Rank: the 

matching sentences were ranked according to 

the cosine similarity between the query and 

matching sentences. (3) Translate: provides 

the translation of the polysemous word in the 

matched sentence(s) from the parallel corpus.  

4.1 Preprocessing  

The Europarl version 7 corpus bitexts (English-

German, English-Spanish, English-French, Eng-

lish-Italian and English-Dutch) were aligned at 

word-level with GIZA++ (Och and Ney, 2003). 

The translation tables from the word-alignments 

were used to provide the translation of the poly-

semous word in the Translate step.  

The English sentences from the bitexts were 

lemmatized using a dictionary-based lemmatiz-
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er: xlemma1. After the lemmatization, English 

stopwords
2
 were removed from the sentences. 

The lemmatized and stop filtered sentences were 

used as document inputs to train the LDA topic 

model in the Topicalize step.  

Previously, topic models had been incorpo-

rated as global context features into a modified 

naive Bayes network with traditional WSD fea-

tures (Cai et al. 2007). We try a novel approach 

of integrating local context (N-grams) by using 

pseudo-word sentences as input for topic induc-

tion. Here we neither lemmatize or remove stops 

words.  For example: 

 

Original Europarl sentence: “Education and 

cultural policies are important tools for creating 

these values” 

 

Lemmatized and stopped: “education cultural 

policy be important tool create these values” 

 

Ngram pseudo-word: “education_and_cultural 

and_cultural_policies cultural_policies_are 

are_important_tools important_tools_for 

tools_for_creating for_creating_these creat-

ing_these_values” 

4.2 Topicalize and Match 

The Topicalize step of the system first (i) 

induced a list of topics and trained a topic model 

for each polysemous word using LDA, then (ii) 

allocated the topic with the highest probability 

to each training sentence. 

Finally, at evaluation, (iii) the query sentences 

were assigned the most probable topic inferred 

using the trained topic models. Then the training 

sentences allocated with the same topic were 

considered as matching sentences for the next 

Rank step.  

4.2.1 Topic Induction 

Topic models were trained using Europarl sen-

tences that contain the target polysemous words; 

one model per target word. The topic models 

were induced using LDA by setting the number 

of topics (#topics) as 50, and the alpha and beta 

                                                           
1  http://code.google.com/p/xlemma/ 
2  Using the Page and Article Analyzer stopwords from    

   http://www.ranks.nl/resources/stopwords.html 

hyper-parameters were symmetrically set at 

1.0/#topics. Blei et al. (2003) had shown that the 

perplexity plateaus when #topics ≥ 50; higher 

perplexity means more computing time needed 

to train the model. 

4.2.2 Topic Allocation 

Each sentence was allocated the most probable 

topic induced by LDA. An induced topic con-

tained a ranked list of tuples where the 2nd ele-

ment in each tuple is a word that associated with 

the topic, the 1st element is the probability that 

the associated word will occur given the topic. 

The probabilities are generatively output using 

Variational Bayes algorithm as described in 

Hoffman et al. (2010). For example: 

[(0.0208, 'sport'), (0.0172, 'however'), 

(0.0170, 'quite'), (0.0166, 'maritime'), 

(0.0133, 'field'), (0.0133, 'air-transport'), 

(0.0130, 'appear'), (0.0117, 'arrangement'), 

(0.0117, 'pertain'), (0.0111, 'supervision')] 

4.2.3 Topic Inference 

With the trained LDA model, we inferred the 

most probable topic of the query sentence. Then 

we extracted the top-10 sentences from the train-

ing corpus that shared the same top ranking top-

ic.  

The topic induction, allocation and inference 

were done separately on the lemmatized and 

stopped sentences and on the pseudo-word sen-

tence, resulting in two sets of matching sentenc-

es. Only the sentences that were in both sets of 

matches are considered for the Rank step. 

4.3 Rank 

Matched sentences from the Topicalize step 

were converted into term vectors. The vectors 

were reweighted using tf-idf and ranked accord-

ing to the cosine similarity with the query sen-

tences. The top five sentences were piped into 

the Translate step. 

4.4 Translate 

From the matching sentences, the Translate 

step simply checks the GIZA++ word alignment 

table and outputs the translation(s) of the target 

polysemous word. Each matching sentence, 
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could output more than 1 translation depending 

on the target word alignment. As a simple way 

of filtering stop-words from target European 

languages, translations with less than 4 charac-

ters were removed. This effectively distills misa-

ligned non-content words, such as articles, pro-

nouns, prepositions, etc. To simplify the lemma-

tization of Spanish and French plural noun suf-

fixes, the ‘-es’ and ‘-s’ are stemmed from the 

translation outputs.  

 The XLING_TnT system outputs one transla-

tion for each query sentence for the best result 

evaluation. It output the top 5 translations for the 

out-of-five evaluation. 

4.5 Fallback 

For the out-of-five evaluation, if the query re-

turned less than 5 answers, the first fallback
3
 

appended the lemma of the Most Frequent Sense 

(according to Wordnet) of the target polysemous 

word in their respective language from the Open 

Multilingual Wordnet.
4
 If the first fallback was 

insufficient, the second fallback appended the 

most frequent translation of the target polyse-

mous word to the queries’ responses. 

4.6 Baseline 

We also constructed a baseline for matching sen-

tences by cosine similarity between the lemmas 

of the query sentence and the lemmas of each 

English sentence in the training corpus.
5
 The 

baseline system is named XLING_SnT (Similar 

and Translate). The cosine similarity is calculat-

ed from the division of the vector product of the 

query and training sentence (i.e. numerator) by 

the root product of the vector’s magnitude 

squared. 

5 Results 

Tables 1 and 2 present the results for the XLING 

system for best and out-of-five evaluation. Our 

system did worse than the task’s baseline, i.e. 

the Most Frequent Translation (MFT) of the tar-

get word for all languages. Moreover the topic 

                                                           
3    Code sample for the fallback can be found at  

     http://goo.gl/PbdK7 
4    http://www.casta-net.jp/~kuribayashi/multi/ 
5  Code-snippet for the baseline can be found at  

     http://pythonfiddle.com/surface-cosine-similarity  

model based matching did worse than the cosine 

similarity matching baseline. The results show 

that matching on topics did not help. However, 

Li et al. (2010) and Anaya-Sanchez et al. (2007) 

had shown that pure topic model based unsuper-

vised system for WSD should perform a little 

better than Most Frequent Sense baseline in 

coarse-grain English WSD. Hence it was neces-

sary to perform error analysis and tweaking to 

improve the XLING system. 

 

BEST German Spanish French Italian Dutch 

SnT 

 

8.13  

(10.36) 
19.59 

(24.31) 
17.33 

(11.57) 
12.74 

(11.27) 
9.89 

(9.56) 

TnT 

 

5.28 

(5.82) 

18.60 

(24.31) 

16.48 

(11.63) 

10.70 

(7.54) 

7.40 

(8.54) 

MFT 

 

17.43 

(15.30) 

23.23 

(27.48) 

25.74 

(20.19) 

20.21 

(19.88) 

20.66 

(24.15) 
Table 1: Precision and (Mood) for the best evaluation 
 

OOF German Spanish French Italian Dutch 

SnT 

 

23.71 

(30.57) 
44.83 

(50.04) 
38.44 

(32.45) 

32.38 

(29.17) 
27.11 

(27.31) 

TnT 

 

19.13 

(23.54) 

39.52 

(44.96) 

35.3 

(28.02) 
33.28 

(29.61) 

23.27 

(22.98) 

MFT 

 

38.86 

(44.35) 

53.07 

(57.35) 

51.36 

(47.42) 

42.63 

(41.69) 

43.59 

(41.97) 
Table 2: Precision and (Mood) for the oof evaluation 

6 Error Analysis and Modifications 

Statistically, we could improve the robustness of 

the topic models in the Topicalize step by 

(i) tweaking the Dirichlet hyper-parameters to 

alpha = 50/#topics, beta = 0.01 as suggested by 

Wang et al. (2009). 

 

 BEST OOF 

 Precision Mood Precision Mood 

German 6.50 6.71 20.98 25.18 

Spanish 14.77 19.43 40.22 45.67 

French 10.79 7.95 31.26 23.37 

Italian 13.10 10.95 36.56 31.94 

Dutch 7.42 7.47 21.66 20.42 

Table 3: Evaluations on Hyper-parameter tweaks 

 

Although the hyperparameters tweaks improves 

the scores for German and Dutch evaluations it 

brings the overall precision and mood precision 

of the other three languages down. Since the 

documents from each language are parallel, this 
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suggests that there is some language-dependency 

for LDA’s hyperparameters. 

 By going through the individual queries and 

responses, several issues in the translate 

step need to be resolved to achieve higher preci-

sion; (i) German-English and Dutch-English 

word alignments containing compound words 

need to be segmented (e.g. kraftomnibusverkehr 

kraft omnibus verkehr) and realigned such that 

the target word coach only aligns to omnibus, 

(ii) lemmatization of Italian, German and Dutch 

is crucial is getting the gold answers of the task 

(e.g. XLING answers omnibussen while the gold 

answers allowed omnibus). The use of target 

language lemmatizers, such as TreeTagger 

(Schmid, 1995) would have benefited the sys-

tem. 

7 Discussion 

The main advantage of statistical language inde-

pendent approaches is the ability to scale the 

system in any possible language. However lan-

guage dependent processing remains crucial in 

building an accurate system, especially lemmati-

zation in WSD tasks (e.g. kraftomnibusverkehr). 

We also hypothesize that more context would 

have improved the results of using topics: dis-

ambiguating senses solely from sentential con-

text is artificially hard. 

8 Conclusion 

Our system has approached the CLWSD task in 

an unconventional way of matching query sen-

tences to parallel corpus using topic models. 

Given no improvement from hyper-parameter 

tweaks, it reiterates Boyd-Graber, Blei and 

Zhu’s (2007) assertion that while topic models 

capture polysemous use of words, they do not 

carry explicit notion of senses that is necessary 

for WSD. Thus our approach to match query 

sentences by topics did not perform beyond the 

MFT baseline in the CLWSD evaluation. 

However, the surface cosine baseline, with-

out any incorporation of any sense knowledge, 

had surprisingly achieved performance closer to 

MFT It provides a pilot platform for future work 

to approach the CLWSD as a vector-based doc-

ument retrieval task on parallel corpora and 

providing the translation from the word align-

ments. 
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Abstract

We present our entries for the SemEval-
2013 cross-language word-sense disambigua-
tion task (Lefever and Hoste, 2013). We
submitted three systems based on classifiers
trained on local context features, with some
elaborations. Our three systems, in increasing
order of complexity, were: maximum entropy
classifiers trained to predict the desired target-
language phrase using only monolingual fea-
tures (we called this system L1); similar clas-
sifiers, but with the desired target-language
phrase for the other four languages as features
(L2); and lastly, networks of five classifiers,
over which we do loopy belief propagation to
solve the classification tasks jointly (MRF).

1 Introduction

In the cross-language word-sense disambiguation
(CL-WSD) task, given an instance of an ambigu-
ous word used in a context, we want to predict the
appropriate translation into some target language.
This setting for WSD has an immediate application
in machine translation, since many words have mul-
tiple possible translations. Framing the resolution of
lexical ambiguities as an explicit classification task
has a long history, and was considered in early SMT
work at IBM (Brown et al., 1991). More recently,
Carpuat and Wu have shown how to use CL-WSD
techniques to improve modern phrase-based SMT
systems (Carpuat and Wu, 2007), even though the
language model and phrase-tables of these systems
mitigate the problem of lexical ambiguities some-
what.

In the SemEval-2013 CL-WSD shared task
(Lefever and Hoste, 2013), entrants are asked to

build a system that can provide translations for
twenty ambiguous English nouns, given appropri-
ate contexts – here the particular usage of the am-
biguous noun is called the target word. The five tar-
get languages of the shared task are Spanish, Dutch,
German, Italian and French. In the evaluation, for
each of the twenty ambiguous nouns, systems are to
provide translations for the target word in each of
fifty sentences or short passages. The translations
of each English word may be single words or short
phrases in the target language, but in either case,
they should be lemmatized.

Following the work of Lefever and Hoste (2011),
we wanted to make use of multiple bitext corpora
for the CL-WSD task. ParaSense, the system of
Lefever and Hoste, takes into account evidence from
all of the available parallel corpora. Let S be the set
of five target languages and t be the particular target
language of interest at the moment; ParaSense cre-
ates bag-of-words features from the translations of
the target sentence into the languages S−{t}. Given
corpora that are parallel over many languages, this
is straightforward at training time. However, at test-
ing time it requires a complete MT system for each
of the four other languages, which is computation-
ally prohibitive. Thus in our work, we learn from
several parallel corpora but require neither a locally
running MT system nor access to an online transla-
tion API.

We presented three systems in this shared task,
all of which were variations on the theme of a max-
imum entropy classifier for each ambiguous noun,
trained on local context features similar to those
used in previous work and familiar from the WSD
literature. The first system, L1 (“layer one”), uses
maximum entropy classifiers trained on local con-
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text features. The second system, L2 (“layer two”),
is the same as the L1 system, with the addition
of the correct translations into the other target lan-
guages as features, which at testing time are pre-
dicted with L1 classifiers. The third system, MRF
(“Markov random field”) uses a network of inter-
acting classifiers to solve the classification problem
for all five target languages jointly. Our three sys-
tems are all trained from the same data, which we
extracted from the Europarl Intersection corpus pro-
vided by the shared task organizers.

At the time of the evaluation, our simplest sys-
tem had the top results in the shared task for the
out-of-five evaluation for three languages (Spanish,
German, and Italian). However, after the evaluation
deadline, we fixed a simple bug in our MRF code,
and the MRF system then achieved even better re-
sults for the oof evaluation. For the best evaluation,
our two more sophisticated systems posted better re-
sults than the L1 version. All of our systems beat the
“most-frequent sense” baseline in every case.

In the following sections, we will describe our
three systems1, our training data extraction process,
the results on the shared task, and conclusions and
future work.

2 L1

The “layer one” classifier, L1, is a maximum en-
tropy classifier that uses only monolingual features
from English. Although this shared task is described
as unsupervised, the L1 classifiers are trained with
supervised learning on instances that we extract pro-
grammatically from the Europarl Intersection cor-
pus; we describe the preprocessing and training data
extraction in Section 5.

Having extracted the relevant training sentences
from the aligned bitext for each of the five lan-
guage pairs, we created training instances with local
context features commonly used in WSD systems.
These are described in Figure 1. Each instance is
assigned the lemma of the translation that was ex-
tracted from the training sentence as its label.

We trained one L1 classifier for each target lan-
guage and each word of interest, resulting in 20∗5 =

1Source is available at
http://github.iu.edu/alexr/semeval2013

• target word features
– literal word form
– POS tag
– lemma

• window unigram features (within 3 words)
– word form
– POS tag
– word with POS tag
– word lemma

• window bigram features (within 5 words)
– bigrams
– bigrams with POS tags

Figure 1: Features used in our classifiers

100 classifiers. Classifiers were trained with the
MEGA Model optimization package 2 and its corre-
sponding NLTK interface (Bird et al., 2009). Upon
training, we cache these classifiers with Python
pickles, both to speed up L1 experiments and also
because they are used as components of the other
models.

We combined the word tokens with their tags
in some features so that the classifier would not
treat them independently, since maximum entropy
classifiers learn a single weight for each feature.
Particularly, the “POS tag” feature is distinct from
the “word with tag” feature; for the tagged word
“house/NN”, the “POS tag” feature would be NN ,
and the “word with tag” feature is house NN .

3 L2

The “layer two” classifier, L2, is an extension to
the L1 approach, with the addition of multilingual
features. Particularly, L2 makes use of the trans-
lations of the target word into the four target lan-
guages other than the one we are currently trying to
predict. At training time, since we have the transla-
tions of each of the English sentences into the other
target languages, the appropriate features are ex-
tracted from the corresponding sentences in those
languages. This is the same as the process by which
labels are given to training instances, described in
Section 5. At testing time, since translations of the

2http://www.umiacs.umd.edu/˜hal/megam/
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es
de

nl

fr
it

Figure 2: The network structure used in the MRF
system: a complete graph with five nodes where
each node represents a variable for the translation
into a target language

test sentences are not given, we estimate the transla-
tions for the target word in the four other languages
using the cached L1 classifiers.

Lefever and Hoste (2011) used the Google Trans-
late API to translate the source English sentences
into the four other languages, and extracted bag-of-
words features from these complete sentences. The
L2 classifiers make use of a similar intuition, but
they do not rely on a complete MT system or an
available online MT API; we only include the trans-
lations of the specific target word as features.

4 MRF

Our MRF model builds a Markov network (often
called a “Markov random field”) of L1 classifiers
in an effort to find the best translation into all five
target languages jointly. This network has nodes
that correspond to the distributions produced by the
L1 classifiers, given an input sentence, and edges
with pairwise potentials that are derived from the
joint probabilities of target-language labels occur-
ring together in the training data. Thus the task of
finding the optimal translations into five languages
jointly is framed as a MAP (Maximum A Posteriori)
inference problem, where we try to maximize the
joint probability P (wfr, wes, wit, wde, wnl), given
the evidence of the features extracted from the
source-language sentence. The inference process is
performed using loopy belief propagation (Murphy
et al., 1999), which is an approximate but tractable

inference algorithm that, while it gives no guaran-
tees, often produces good solutions in practice.

The intuition behind using a Markov network for
this task is that, since we must make five decisions
for each source-language sentence, we should make
use of the correlations between the target-language
words. Correlations might occur in practice due to
cognates – the languages in the shared task are fairly
closely related – or they may simply reflect ambigu-
ities in the source language that are resolved in two
target languages.

So by building a Markov network in which all of
the classifiers can communicate (see Figure 2), we
allow nodes to influence the translation decisions of
their neighbors, but only proportionally to the cor-
relation between the translations that we observe in
the two languages.

We frame the MAP inference task as a minimiza-
tion problem; we want to find an assignment that
minimizes the sum of all of our penalty functions,
which we will describe next. First, we have a unary
function from each of the five L1 classifiers, which
correspond to nodes in the network. These func-
tions each assign a penalty to each possible label for
the target word in the corresponding language; that
penalty is simply the negative log of the probability
of the label, as estimated by the classifier.

Formally, a unary potential φi, for some fixed set
of features f and a particular language i, is a func-
tion from a label l to some positive penalty value.

φi(l) = −logP (Li = l|F = f)

Secondly, for each unordered pair of classifiers
(i, j) (i.e., each edge in the graph) there is a pairwise
potential function φ(i,j) that assigns a penalty to any
assignment of that pair of variables.

φ(i,j)(li, lj) = −logP (Li = li, Lj = lj)

Here by P (Li = li, Lj = lj), we mean the prob-
ability that, for a fixed ambiguous input word, lan-
guage i takes the label li and language j takes the
label lj . These joint probabilities are estimated from
the training data; we count the number of times
each pair of labels li and lj co-occurs in the train-
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ing sentences and divide, with smoothing to avoid
zero probabilities and thus infinite penalties.

When it comes time to choose translations, we
want to find a complete assignment to the five vari-
ables that minimizes the sum of all of the penal-
ties assigned by the φ functions. As mentioned ear-
lier, we do this via loopy belief propagation, using
the formulation for pairwise Markov networks that
passes messages directly between the nodes rather
than first constructing a cluster graph (Koller and
Friedman, 2009, §11.3.5.1).

As we are trying to compute the minimum-
penalty assignment to the five variables, we use the
min-sum version of loopy belief propagation. The
messages are mappings from the possible values
that the recipient node could take to penalty values.

At each time step, every node passes to each of
its neighbors a message of the following form:

δt
i→j(Lj) = min

li∈Li

[
φi(li) + φ(i,j)(li, lj)

+
∑

k∈S−{i,j}

δt−1
k→i(li)

]
By this expression, we mean that the message

from node i to node j at time t is a function from
possible labels for node j to scalar penalty values.
Each penalty value is determined by minimizing
over the possible labels for node i, such that we find
the label li that minimizes sum of the unary cost for
that label, the binary cost for li and lj taken jointly,
and all of the penalties in the messages that node i
received at the previous time step, except for the one
from node j.

Intuitively, these messages inform a given neigh-
bor about the estimate, from the perspective of the
sending node and what it has heard from its other
neighbors, of the minimum penalty that would be
incurred if the recipient node were to take a given
label. As a concrete example, when the nl node
sends a message to the fr node at time step 10, this
message is a table mapping from all possible French
translations of the current target word to their as-
sociated penalty values. The message depends on
three things: the function φnl (itself dependent on
the probability distribution output by the L1 classi-
fier), the binary potential function φ(nl,fr), and the

messages from es, it and de from time step 9. Note
that the binary potential functions are symmetric be-
cause they are derived from joint probabilities.

Loopy belief propagation is an approximate infer-
ence algorithm, and it is neither guaranteed to find
a globally optimal solution, nor even to converge
at all, but it does often find good solutions in prac-
tice. We run it for twenty iterations, which empir-
ically works well. After the message-passing iter-
ations, each node chooses the value that minimizes
the sum of the penalties from messages and from its
own unary potential function. To avoid accumulat-
ing very large penalties, we normalize the outgoing
messages at each time step and give a larger weight
to the unary potential functions. These normaliza-
tion and weighting parameters were set by hand, but
seem to work well in practice.

5 Training Data Extraction

For simplicity and comparability with previous
work, we worked with the Europarl Intersection
corpus provided by the task organizers. Europarl
(Koehn, 2005) is a parallel corpus of proceedings of
the European Parliament, currently available in 21
European languages, although not every sentence is
translated into every language. The Europarl Inter-
section is the intersection of the sentences from Eu-
roparl that are available in English and all five of the
target languages for the task.

In order to produce the training data for the classi-
fiers, we first tokenized the text for all six languages
with the default NLTK tokenizer and tagged the En-
glish text with the Stanford Tagger (Toutanova et
al., 2003). We aligned the untagged English with
each of the target languages using the Berkeley
Aligner (DeNero and Klein, 2007) to get one-to-
many alignments from English to target-language
words, since the target-language labels may be
multi-word phrases. We used nearly the default set-
tings for Berkeley Aligner, except that we ran 20
iterations each of IBM Model 1 and HMM align-
ment.

We used TreeTagger (Schmid, 1995) to lemma-
tize the text. At first this caused some confusion in
our pipeline, as TreeTagger by default re-tokenizes
input text and tries to recognize multi-word expres-
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sions. Both of these, while sensible behaviors, were
unexpected, and resulted in a surprising number of
tokens in the TreeTagger output. Once we turned off
these behaviors, TreeTagger provided useful lem-
mas for all of the languages.

Given the tokenized and aligned sentences, with
their part-of-speech tags and lemmas, we used
a number of heuristics to extract the appropriate
target-language labels for each English-language in-
put sentence. For each target word, we extracted a
sense inventory Vi from the gold standard answers
from the 2010 iteration of this task (Lefever and
Hoste, 2009). Then, for each English sentence that
contains one of the target words used as a noun,
we examine the alignments to determine whether
that word is aligned with a sense present in Vi , or
whether the words aligned to that noun are a sub-
sequence of such a sense. The same check is per-
formed both on the lemmatized and unlemmatized
versions of the target-language sentence. If we do
find a match, then that sense from the gold stan-
dard Vi is taken to be the label for this sentence.
While a gold standard sense inventory will clearly
not be present for general translation systems, there
will be some vocabulary of possible translations for
each word, taken from a bilingual dictionary or the
phrase table in a phrase-based SMT system.

If a label from Vi is not found with the align-
ments, but some other word or phrase is aligned
with the ambiguous noun, then we trust the output
of the aligner, and the lemmatized version of this
target-language phrase is assigned as the label for
this sentence. In this case we used some heuristic
functions to remove stray punctuation and attached
articles (such as d’ from French or nell’ from Ital-
ian) that were often left appended to the tokens by
the default NLTK English tokenizer.

We dropped all of the training instances with
labels that only occurred once, considering them
likely alignment errors or other noise.

6 Results

There were two settings for the evaluation, best and
oof. In either case, systems may present multiple
possible answers for a given translation, although
in the best setting, the first answer is given more

weight in the evaluation, and the scoring encour-
ages only returning the top answer. In the oof set-
ting, systems are asked to return the top-five most
likely translations. In both settings, the answers are
compared against translations provided by several
human annotators for each test sentence, who pro-
vided a number of possible target-language transla-
tions in lemmatized form, and more points are given
for matching the more popular translations given by
the annotators. In the “mode” variant of scoring,
only the one most common answer for a given test
sentence is considered valid. For a complete ex-
planation of the evaluation and its scoring, please
see the shared task description (Lefever and Hoste,
2013).

The scores for our systems3 are reported in Figure
3. In all of the settings, our systems posted some of
the top results among entrants in the shared task,
achieving the best scores for some evaluations and
some languages. For every setting and language,
our systems beat the most-frequent sense baseline,
and our best results usually came from either the L2
or MRF system, which suggests that there is some
benefit in using multilingual information from the
parallel corpora, even without translating the whole
source sentence.

For the best evaluation, considering only the
mode gold-standard answers, our L2 system
achieved the highest scores in the competition for
Spanish and German. For the oof evaluation, our
MRF system – with its post-competition bug fix –
posted the best results for Spanish, German and Ital-
ian in both complete and mode variants. Also, cu-
riously, our L1 system posted the best results in the
competition for Dutch in the oof variant.

For the best evaluation, our results were lower
than those posted by ParaSense, and in the stan-
dard best setting, they were also lower than those
from the c1lN system (van Gompel and van den
Bosch, 2013) and adapt1 (Carpuat, 2013). This,
combined with the relatively small difference be-
tween our simplest system and the more sophisti-
cated ones, suggests that there are many improve-
ments that could be made to our system; perhaps

3The oof scores for the MRF system reflect a small bug fix
after the competition.
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system es nl de it fr
MFS 23.23 20.66 17.43 20.21 25.74
best 32.16 23.61 20.82 25.66 30.11
PS 31.72 25.29 24.54 28.15 31.21
L1 29.01 21.53 19.5 24.52 27.01
L2 28.49 22.36 19.92 23.94 28.23

MRF 29.36 21.61 19.76 24.62 27.46

(a) best evaluation results: precision

system es nl de it fr
MFS 53.07 43.59 38.86 42.63 51.36
best 62.21 47.83 44.02 53.98 59.80
L1 61.69 46.55 43.66 53.57 57.76
L2 59.51 46.36 42.32 53.05 58.20

MRF 62.21 46.63 44.02 53.98 57.83

(b) oof evaluation results: precision

system es nl de it fr
MFS 27.48 24.15 15.30 19.88 20.19
best 37.11 27.96 24.74 31.61 26.62
PS 40.26 30.29 25.48 30.11 26.33
L1 36.32 25.39 24.16 26.52 21.24
L2 37.11 25.34 24.74 26.65 21.07

MRF 36.57 25.72 24.01 26.26 21.24

(c) best evaluation results: mode precision

system es nl de it fr
MFS 57.35 41.97 44.35 41.69 47.42
best 65.10 47.34 53.75 57.50 57.57
L1 64.65 47.34 53.50 56.61 51.96
L2 62.52 44.06 49.03 54.06 53.57

MRF 65.10 47.29 53.75 57.50 52.14

(d) oof evaluation results: mode precision

Figure 3: Task results for our systems. Scores in bold are the best result for that language and evaluation
out of our systems, and those in bold italics are the best posted in the competition. For comparison, we
also give scores for the most-frequent-sense baseline (“MFS”), ParaSense (“PS”), the system developed by
Lefever and Hoste, and the best posted score for competing systems this year (“best”).

we could integrate ideas from the other entries in
the shared task this year.

7 Conclusions and future work

Our systems had a strong showing in the compe-
tition, always beating the MFS baseline, achiev-
ing the top score for three of the five languages in
the oof evaluation, and for two languages in the
best evaluation when considering the mode gold-
standard answers. The systems that took into ac-
count evidence from multiple sources had better
performance than the one using monolingual fea-
tures: our top result in every language came from
either the L2 or the MRF classifier for both eval-
uations. This suggests that it is possible to make
use of the evidence in several parallel corpora in a
CL-WSD task without translating every word in a
source sentence into many target languages.

We expect that the L2 classifier could be im-
proved by adding features derived from more classi-
fiers and making use of information from many dis-
parate sources. We would like to try adding classi-

fiers trained on the other Europarl languages, as well
as completely different corpora. The L2 classifier
approach only requires that the first-layer classifiers
make some prediction based on text in the source
language. They need not be trained from the same
source text, depend on the same features, or even
output words as labels. In future work we will ex-
plore all of these variations. One could, for exam-
ple, train a monolingual WSD system on a sense-
tagged corpus and use this as an additional informa-
tion source for an L2 classifier.

There remain a number of avenues that we would
like to explore for the MRF system; thus far, we
have used the joint probability of two labels to set
the binary potentials. We would like to investigate
other functions, especially ones that do not incur
large penalties for rare labels, as the joint probabil-
ity of two labels that often co-occur but are both rare
will be low. Also, in the current system, the relative
weights of the binary potentials and the unary po-
tentials were set by hand, with a very small amount
of empirical tuning. We could, in the future, tune the
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weights with a more principled optimization strat-
egy, using a development set.

As with the L2 classifiers, it would be helpful in
the future for the MRF system to not require many
mutually parallel corpora for training – however, the
current approach for estimating the edge potentials
requires the use of bitext for each edge in the net-
work. Perhaps these correlations could be estimated
in a semi-supervised way, with high-confidence au-
tomatic labels being used to estimate the joint dis-
tribution over target-language phrases. We would
also like to investigate approaches to jointly disam-
biguate many words in the same sentence, since lex-
ical ambiguity is not just a problem for a few nouns.

Aside from improvements to the design of our
CL-WSD system itself, we want to use it in a practi-
cal system for translating into under-resourced lan-
guages. We are now working on integrating this
project with our rule-based MT system, L3 (Gasser,
2012). We had experimented with a similar, though
less sophisticated, CL-WSD system for Quechua
(Rudnick, 2011), but in the future, L3 with the inte-
grated CL-WSD system should be capable of trans-
lating Spanish to Guarani, either as a standalone
system, or as part of a computer-assisted translation
tool.
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Abstract

We describe the LIMSI system for the
SemEval-2013 Cross-lingual Word Sense Dis-
ambiguation (CLWSD) task. Word senses are
represented by means of translation clusters
in different languages built by a cross-lingual
Word Sense Induction (WSI) method. Our
CLWSD classifier exploits the WSI output for
selecting appropriate translations for target
words in context. We present the design of the
system and the obtained results.

1 Introduction

This paper describes the LIMSI system that partici-
pated in the Cross-Lingual Word Sense Disambigua-
tion (CLWSD) task of SemEval-2013. The goal of
CLWSD is to predict semantically correct transla-
tions for ambiguous words in context (Resnik and
Yarowsky, 2000; Carpuat and Wu, 2007; Apidi-
anaki, 2009). The CLWSD task of the SemEval-2013
evaluation campaign is a lexical sample task for En-
glish nouns and is divided into two subtasks: the
best subtask where systems are asked to provide a
unique good translation for words in context; the
out-of-five (oof) subtask where systems can propose
up to five semantically related translations for each
target word instance (Lefever and Hoste, 2013). The
CLWSD lexical sample contains 20 nouns and the
test set is composed of 50 instances per noun. Sys-
tem performance is evaluated by comparing the sys-
tem output to a set of gold standard annotations in
five languages: French, Spanish, Italian, Dutch and
German. Participating systems have to provide con-

textually appropriate translations for target words in
context in each or a subset of the target languages.

We apply the CLWSD method proposed by Apid-
ianaki (2009) to three bilingual tasks: English-
Spanish, English-French and English-Italian. The
method exploits the translation clusters generated in
the three target languages by a cross-lingual Word
Sense Induction (WSI) method. The WSI method
clusters the translations of target words in a parallel
corpus using source language context vectors. The
same vectors are exploited during disambiguation in
order to select the most appropriate translations for
new instances of the target words in context.

2 System Description

2.1 Translation clustering

Contrary to monolingual WSI methods which group
the instances of the words into clusters describ-
ing their senses, the cross-lingual WSI method used
here clusters the translations of words in a paral-
lel corpus. The corpus used for French consists
of the English-French parts of Europarl (version 7)
(Koehn, 2005) and of the JRC-Acquis corpus (Stein-
berger et al., 2006), joined together. For English-
Spanish and English-Italian we only use the corre-
sponding parts of Europarl. The corpora are first
tokenized and lowercased using the Moses scripts,
then lemmatized and tagged by part-of-speech (PoS)
using the TreeTagger (Schmid, 1994). Words in the
corpus are replaced by a lemma and PoS tag pair be-
fore word alignment, to resolve categorical ambigu-
ities in context. The corpus is aligned in both trans-
lation directions with GIZA++ (Och and Ney, 2000)
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Target word French Spanish Italian

range

{ensemble, diversité, palette,
nombre} {domaine} {portée}

{éventail, nombre, gamme, série,
ensemble}

{gama, serie, abanico,
diversidad, variedad, espectro,
conjunto} {cantidad, alcance,

àmbito, número, tipo, espectro,
rango} {amplitud}

{serie, gamma, spettro, numero,
ventaglio} {ampiezza, portata}

{settore, ambito}
{diversitá, fascia}

mood
{climat, atmosphère}, {esprit,

atmosphère, ambiance, humeur}
{opinion} {volonté} {attitude}

{clima, atmòsfera, ambiente}
{ànimo, sentimiento} {talante}

{ànimo, clima, ambiente}
{ànimo, humor, ambiente}

{clima} {atmosfera}
{chiarezza, predisposizione}
{opinione} {atteggiamento}

mission

{opération, mandat}
{délégation, commission}
{délégation, tâche, voyage,

opération}

{función, cometido, objetivo,
tarea} {viaje, tarea, delegación}
{tarea, mandato, cometido}

{mandato, obiettivo, compito,
mission, funzione, operazione,}
{viaggio, mission, commissione,

delegazione}

Table 1: Sense clusters generated by the WSI method in the three languages.

and three bilingual lexicons are built from the align-
ment results (one for each language pair) containing
intersecting alignments. The lexicons contain noun
translations of each English target word in the three
languages. We keep French translations that trans-
late the target words at least 10 times in the train-
ing corpus; for Spanish and Italian, where the corpus
was smaller, the translation frequency threshold was
set to 5.

For each translation Ti of a word w, we extract the
content words that occur in the same sentence as w
whenever it is translated by Ti. These constitute the
features of the vector built for the translation. Let N
be the number of features retained for each Ti from
the corresponding source contexts. Each feature Fj

(1 ≤ j ≤ N ) receives a total weight tw(Fj , Ti) de-
fined as the product of the feature’s global weight,
gw(Fj), and its local weight with that translation,
lw(Fj , Ti). The global weight of a feature Fj is a
function of the number Ni of translations (Ti’s) to
which Fj is related, and of the probabilities (pij) that
Fj co-occurs with instances of w translated by each
of the Ti’s:

gw(Fj) = 1−
∑

Ti
pij log(pij)

Ni
(1)

Each of the pij’s is computed as the ratio between
the co-occurrence frequency of Fj with w when
translated as Ti, denoted as cooc frequency(Fj , Ti),
and the total number of features (N ) seen with Ti:

pij =
cooc frequency(Fj , Ti)

N
(2)

The local weight lw(Fj , Ti) between Fj and Ti di-
rectly depends on their co-occurrence frequency:

lw(Fj , Ti) = log(cooc frequency(Fj , Ti)) (3)

The pairwise similarity of the translation vectors
is calculated using the Weighted Jaccard Coeffi-
cient (Grefenstette, 1994). The similarity score of
each translation pair is compared to a threshold lo-
cally defined for each w, which serves to distinguish
strongly related translations from semantically un-
related ones. The semantically related translations
of a word w are then grouped into clusters. Trans-
lation pairs with a score above the threshold form a
set of initial clusters that might be further enriched
with other translations through an iterative proce-
dure, provided that there are other translations that
are strongly related to the elements in the cluster.1

The clustering stops when all the translations of w
have been clustered and all their relations have been
checked. The algorithm performs a soft clustering
so translations might be found in different clusters.
Final clusters are characterized by global connectiv-
ity, meaning that all their elements are linked by per-
tinent relations. Table 1 gives examples of clusters
generated for CLWSD target words in the three lan-
guages. The clusters group translations carrying the
same sense and their overlaps describe relations be-
tween senses. The translation clusters serve as the
target words’ candidate senses from which one has
to be selected during disambiguation.

1The thresholding procedure and the clustering algorithm
are described in detail in Apidianaki and He (2010).
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Subtask Metric
Spanish French Italian

LIMSI Baseline
Best

system LIMSI Baseline
Best

system LIMSI Baseline
Best

system

Best P/R 24,7 23,23 32,16 24,56 25,73 30,11 21,2 20,21 25,66
Mode P/R 32,09 27,48 37,11 22,16 20,19 26,62 23,06 19,88 31,61

OOF P/R 49,01 53,07 61,69 45,37 51,35 59,8 40,25 42,62 53,57
Mode P/R 51,41 57,34 64,65 39,54 47,42 57,57 47,21 41,68 56,61

OOF P/R 98,6 - - 101,75 - - 90,23 - -
(dupl) Mode P/R 51,41 - - 39,54 - - 47,21 - -

Table 2: Results at the SemEval 2013 CLWSD task.

2.2 Word Sense Disambiguation
The vectors used for clustering the translations also
serve for disambiguating new instances of the tar-
get words in context. The new contexts are tok-
enized, lowercased, PoS tagged and lemmatized to
facilitate comparison with the vectors. We use the
features shared by each pair of clustered transla-
tions, or the vector corresponding to the translation
in an one-element cluster. If no CFs exist between
the new context and a pair of translations, WSD is
performed by comparing context information sep-
arately to the vector of each clustered translation.
Once the common features (CFs) between the vec-
tors and the new context are identified, a score is
calculated corresponding to the mean of the weights
of the CFs with the translations (weights assigned to
the features during WSI). In formula 4, CFj is the
set of CFs and NCF is the number of translations Ti

characterized by a CF.

wsd score =

∑NCF
i=1

∑
j w(Ti, CFj)

NCF · |CFj |
(4)

The cluster containing the highest ranked transla-
tion or translation pair is selected and assigned to
the new target word instance. If the translations are
present in more than one clusters, a new score is cal-
culated using equation 4 and by taking into account
the weights of the CFs with the other translations
(Ti’s) in the cluster.

3 Evaluation

Systems participating to the CLWSD task have to
provide the most plausible translation for a word
in context in the best subtask, and five semanti-
cally correct translations in oof. The baselines pro-

vided by the organizers are based on the output of
GIZA++ alignments on Europarl. The best base-
line corresponds to the most frequent translation of
the target word in the corpus and the oof baseline
to the five most frequent translations. Our CLWSD

system makes predictions in three languages for all
1000 test instances. If the selected cluster contains
five translations, all of them are proposed in the
oof subtask while if it is bigger, the five most fre-
quent translations are selected. In case of smaller
clusters, the best translation is repeated in the out-
put until reaching five suggestions. Duplicate sug-
gestions were allowed in previous cross-lingual Se-
mEval tasks as a means to boost translations with
high confidence (Mihalcea et al., 2010). However,
as in this year’s CLWSD task the oof system output
has been post-processed by the organizers to keep
only unique translations, the number of predictions
made by our system for some words has been signif-
icantly reduced. This has had a negative impact on
the oof results, as we will show in the next section.

For selecting best translations, each translation of
a target word w is scored separately by comparing its
vector to the new context. In case the highest-ranked
translation has a score lower than 1, the system falls
back to using the most frequent translation (MFT).
To note that frequency information differs from the
one used in the MFT baseline because words in our
corpus were replaced by a lemma and PoS tag pair
prior to alignment. The discrepancy is more ap-
parent in French where MFT is the most frequent
translation of the target word in the joint Europarl
and JRC-Acquis corpus. Five teams participated to
the CLWSD task with a varying number of systems:
twelve systems provided output for Spanish and ten
for French and Italian.
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4 Results

The results obtained by our system for the best
and oof evaluations in the three languages (Span-
ish, French and Italian) are presented in Table 2. We
contrast them with the baselines provided by the or-
ganizers and with the score of the system that per-
formed best in each subtask. Our system made sug-
gestions for all test instances, so recall (R) coincides
with precision (P). The baselines are quite challeng-
ing, as noted in Lefever and Hoste (2010), especially
the oof one which contains the five most frequent
Europarl translations. These often correspond to the
most frequent translations from different sense clus-
ters and cover multiple senses of the target word.

Our system outperforms the best baseline in all
languages except for French, where the best score
lies near below the baseline. This is not surprising
given that the training corpus for French is the joint
Europarl and JRC-Acquis corpus, which causes a
discrepancy between the selected best translations
and the baseline. The mode precision and recall
scores reflect the capacity of the system to predict
the translations that were most frequently selected
by the annotators for each instance and are thus con-
sidered as the most plausible ones. Our system out-
performs the mode best baselines for all languages.

In the oof task, the system has been penalized
by the elimination of duplicate translations from
the output after submission. In previous work, the
CLWSD system gave very good results when applied,
with some slight variations, to the out-of-ten subtask
of the SemEval-2010 Cross-Lingual Lexical Substi-
tution task where duplicates served to promote trans-
lations with high confidence (Mihalcea et al., 2010;
Apidianaki, 2011). Here, after the post-processing
step, oof suggestions contain in many cases less than
five translations which explains the low scores. In
Table 2 we provide oof results before and after post-
processing the output and show how the system was
affected by this change in evaluation. By boosting
plausible translations, precision and recall scores get
higher while mode scores are naturally not affected.2

As the other systems might have been impacted to
different extents by this change, we cannot estimate

2Precision scores might be inflated, as in the case of French,
because the credit for each item is not divided by the number of
predictions and the annotation frequencies are used.

how this affects the global system ranking.

5 Discussion and future work

We presented a CLWSD system that uses translation
clusters as candidate senses. Disambiguation is per-
formed by comparing the feature vectors that served
for clustering to the context of new target word in-
stances. We observe that the use of a bigger cor-
pus – as in the case of French – not only does not
help in this task but actually has a negative impact
on the results. This is due to the inclusion of transla-
tions that are not present in the gold standard (built
from Europarl) and to the discrepancy between most
frequent translations in the large corpus and the Eu-
roparl MFT baselines. This discrepancy affects all
three languages, as words in the training corpora
were replaced by lemma and PoS tag pairs prior to
alignment.

It is important to note that our CLWSD method ex-
ploits the output of another unsupervised semantic
analysis method (WSI) which groups the translations
into clusters. This is an important feature of the sys-
tem and affects the results in two ways. First, the
translation clusters of a word constitute its candi-
date senses from which the CLWSD method selects
the most appropriate one for a given context. This
means that no variation regarding the contents of a
cluster is permitted and that different instances are
tagged by the same set of translations, contrary to
the gold standard annotations which might, at the
same time, be very close and contain some varia-
tions. In the system output, this is the case only
when overlapping clusters are selected for different
instances. Moreover, given that the WSI method is
automatic and that the clusters are not manually val-
idated, the noise that might be introduced during
clustering is propagated and reflected in the disam-
biguation results. So, if a cluster contains one or
more noisy translations, these occur in the disam-
biguation output and naturally count as wrong pre-
dictions. However, in an application setting like
Machine Translation (MT), the translation clusters
could be filtered using information from the target
language context. Future work will focus on inte-
grating this method into MT systems and examining
ways for optimally taking advantage of CLWSD pre-
dictions in this context.
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Abstract

We present our system WSD2 which partic-
ipated in the Cross-Lingual Word-Sense Dis-
ambiguation task for SemEval 2013 (Lefever
and Hoste, 2013). The system closely resem-
bles our winning system for the same task in
SemEval 2010. It is based on k-nearest neigh-
bour classifiers which map words with local
and global context features onto their transla-
tion, i.e. their cross-lingual sense. The sys-
tem participated in the task for all five lan-
guages and obtained winning scores for four
of them when asked to predict the best trans-
lation(s). We tested various configurations of
our system, focusing on various levels of hy-
perparameter optimisation and feature selec-
tion. Our final results indicate that hyperpa-
rameter optimisation did not lead to the best
results, indicating overfitting by our optimisa-
tion method in this aspect. Feature selection
does have a modest positive impact.

1 Introduction

WSD2 is a rewrite and extension of our previous
system (van Gompel, 2010) that participated in the
Cross-Lingual Word Sense Disambiguation task in
SemEval 2010 (Lefever and Hoste, 2010). In WSD2
we introduce and test a new level of hyperparame-
ter optimisation. Unlike the previous occasion, we
participate in all five target languages (Dutch, Span-
ish, Italian, French, and German). The task presents
twenty polysemous nouns with fifty instances each
to be mapped onto normalised (lemmatised) transla-
tions in all languages. The task is described in detail
by Lefever and Hoste (2013).

Trial data is provided and has been used to op-
timise system parameters. Due to the unsupervised

nature of the task, no training data is provided. How-
ever, given that the gold standard of the task is based
exclusively on the Europarl parallel corpus (Koehn,
2005), we select that same corpus to minimise our
chances of delivering translations that the human
annotators preparing the test data could have never
picked.

Systems may output several senses per instance,
rather than producing just one sense prediction.
These are evaluated in two different ways. The scor-
ing type “best” expects that the system outputs the
sense it considers the most likely, or a number of
senses in the order of its confidence in these senses
being correct. Multiple guesses are penalised, how-
ever. In contrast, the scoring type “out of five” ex-
pects five guesses, in which each answer carries the
same weight. These metrics are more extensively
described in Mihalcea et al. (2010) and Lefever and
Hoste (2013).

2 System Description

The WSD2 system, like its predecessor, distributes
the task over word experts. Each word expert
is a k-nearest neighbour classifier specialising in
the disambiguation of a single of the twenty pro-
vided nouns. This is implemented using the Tilburg
Memory Based Learner (TiMBL) (Daelemans et al.,
2009). The classifiers are trained as follows: First
the parallel corpus which acts as training data is to-
kenised using Ucto (van Gompel et al., 2012), for
all five language pairs. Then, a word-alignment be-
tween sentence pairs in the Europarl training data
is established, for which we use GIZA++ (Och
and Ney, 2000). We use the intersection of both
translation directions, as we know the sense reposi-
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tory from which the human annotators preparing the
task’s test data can select their translations is created
in the same fashion.

Whilst the word alignment is computed on the ac-
tual word forms, we also need lemmas for both the
source language (English) as well as for all of the
five target languages. The English nouns in the test
data can be either singular or plural, and both forms
may occur in the input. Second, the target transla-
tions all have to be mapped to their lemma forms.
Moreover, to be certain we are dealing with nouns
in the source language, a Part-of-Speech tagger is
also required. PoS tagging and lemmatisation is con-
ducted using Freeling (Atserias et al., 2006) for En-
glish, Spanish and Italian; Frog (van den Bosch et
al., 2007) for Dutch, and TreeTagger (Schmid, 1994)
for German and French.

With all of this data generated, we then iterate
over all sentences in the parallel corpus and extract
occurrences of any of the twenty nouns, along with
the translation they are aligned to according to the
word alignment. We extract the words themselves
and compute the lemma and the part-of-speech tag,
and do the same for a specified number of words
to the left and to the right of the found occurrence.
These constitute the local context features.

In addition to this, global context features are ex-
tracted; these are a set of keywords per lemma and
per translation which are found occurring above cer-
tain occurrence thresholds at arbitrary positions in
the same sentence, as this is the widest context sup-
plied in the task data. The global context features
are represented as a binary bag-of-words model in
which the presence of each of the keywords that may
be indicative for a given mapping of the focus word
to a sense is represented by a boolean value. Such a
set of keywords is constructed for each of the twenty
nouns, per language.

The method used to extract these keywords (k)
is proposed by Ng and Lee (1996) and used also
by Hoste et al. (2002). Assume we have a focus
word f , more precisely, a lemma of one of the tar-
get nouns. We also have one of its aligned transla-
tions/senses s, also a lemma. We can now estimate
P (s|k), the probability of sense s, given a keyword
k. Let Ns,klocal. be the number of occurrences of a
possible local context word k with particular focus
word lemma-PoS combination and with a particular

sense s. Let Nklocal
be the number of occurrences

of a possible local context keyword k with a partic-
ular focus word-PoS combination regardless of its
sense. If we also take into account the frequency of
a possible keyword k in the complete training corpus
(Nkcorpus), we get:

P (s|k) =
Ns,klocal

Nklocal

(
1

Nkcorpus

) (1)

Hoste et al. (2002) select a keyword k for inclu-
sion in the bag-of-words representation if that key-
word occurs more than T1 times in that sense s, and
if P (s|k) ≥ T2. Both T1 and T2 are predefined
thresholds, which by default were set to 3 and 0.001
respectively. In addition, WSD2 and its predecessor
WSD1 contain an extra parameter which can be en-
abled to automatically adjust the T1 threshold when
it yields too many or too few keywords. The selec-
tion of bag-of-word features is computed prior to the
extraction of the training instances, as this informa-
tion is a prerequisite for the successful generation of
both training and test instances.

3 Feature and Hyperparameter
Optimisation

The size of the local context, the inclusion of global
context features, and the inclusion of syntactic fea-
tures are all features that can be selected, changed,
or disabled, allowing for a variety of combinations
to be tested. In addition, each word expert is a k-
nearest neighbour classifier that can take on many
hyperparameters beyond k. In the present study we
performed both optimisations for all word experts,
but the optimisations were performed independently
to reduce complexity: we optimised classifier hyper-
parameters on the basis of the training examples ex-
tracted from our parallel corpus, producing optimal
accuracy on each word-expert. We optimised fea-
ture selection on the basis of the trial data provided
for the task. As has been argued before (Hoste et al.,
2002), the joint search space of feature selection and
hyperparameters is prohibitively large. Our current
setup runs the risk of finding hyperparameters that
are not optimal for the feature selection in the sec-
ond optimisation step. Our final results indeed show
that only feature selection produced improved re-
sults. We choose the feature selection with the high-
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Figure 1: Average accuracy for different local context
sizes

est score on the trial set, for each of the nouns and
separately for both evaluation metrics in the task.

To optimise the choice of hyperparameters per
word expert, a heuristic parameter search algo-
rithm (van den Bosch, 2004)1 was used that imple-
ments wrapped progressive sampling using cross-
validation: it performs a large number of experi-
ments with many hyperparameter setting combina-
tions on small samples of training data, and then
progressively zooms in on combinations estimated
to perform well with larger samples of the training
data. As a control run we also trained word experts
with default hyperparameters, i.e. with k = 1 and
with all other hyperparameters at their default val-
ues as specified in the TiMBL implementation.

4 Experiments & Results

To assess the accuracy of a certain configuration of
our system as a whole, we take the average over all
word experts. An initial experiment on the trial data
explores the impact of different context sizes, with
hyperparameter optimisation on the classifiers. The
results, shown in Figure 1, clearly indicate that on
average the classifiers perform best with a local con-
text of just one word to the left and one to the right of
the word to be disambiguated. Larger context sizes
have a negative impact on average accuracy. These
tests include hyperparameter optimisation, but the
same trend shows without.

1http://ilk.uvt.nl/paramsearch/

BEST ES FR IT NL DE
baseline 19.65 21.23 15.17 15.75 13.16
plain 21.76 23.89 20.10 18.47 16.25
+lem (c1l) 21.88 23.93 19.90 18.61 16.43
+pos 22.09 23.91 19.95 18.02 15.37
lem+pos 22.12 23.61 19.82 18.18 15.48
glob.context 20.57 23.34 17.76 17.06 16.05
OUT-OF-5 ES FR IT NL DE
baseline 48.34 45.99 34.51 38.59 32.90
plain 49.81 50.91 42.30 41.74 36.86
+lem (c1l) 49.91 50.65 42.41 41.83 36.45
+pos 47.86 49.72 41.91 41.31 35.93
lem+pos 47.90 49.75 41.49 41.31 35.80
glob.ccontext 48.09 49.68 40.87 37.70 34.47

Table 1: Feature exploration on the trial data

BEST ES FR IT NL DE
c1lN 22.60 24.09 19.87 18.70 16.43
c1l 21.88 23.93 19.90 18.61 16.43
var 23.79 25.66 21.65 20.19 19.06
varN 23.90 25.65 21.52 19.92 18.96
OUT-OF-5 ES FR IT NL DE
c1lN 50.14 50.98 42.92 42.08 36.45
c1l 49.91 50.65 42.41 41.83 36.45
var 51.95 53.66 45.59 44.66 39.81
varN 52.91 53.61 45.92 44.32 39.40

Table 2: Results on the trial data

We submitted three configurations of our system
to the shared task, the maximum number of runs.
Adding lemma features to the local context win-
dow of three words proves beneficial in general, as
shown in Table 1. This is therefore the first configu-
ration we submitted (c1l). As second configuration
(c1lN) we submitted the same configuration with-
out parameter optimisation on the classifiers. Note
that neither of these include global context features.

The third configuration (var) we submitted in-
cludes feature selection, and selects per word ex-
pert the configuration that has the highest score on
the trial data, and thus tests all kinds of configura-
tions. Note that hyperparameter optimisation is also
enabled for this configuration. Due to the feature
selection on the trial data, we by definition obtain
the highest scores on this trial data, but this carries
the risk of overfitting. Results on the trial data are
shown in Table 2.

The hyperparameter optimisation on classifier ac-
curacy has a slightly negative impact, suggesting
overfitting on the training data. Therefore a fourth
configuration (varN) was tried later to indepen-
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dently assess the idea of feature selection, without
hyperparameter optimisation on the classifiers. This
proves to be a good idea. However, the fourth con-
figuration was not yet available for the actual com-
petition. This incidentally would have had no impact
on the final ranking between competitors. When we
run these systems on the actual test data of the shared
task, we obtain the results in Table 3. The best score
amongst the other competitors is mentioned in the
last row for reference, this is the HLTDI team (Rud-
nick et al., 2013) for all but Best-Spanish, which
goes to the NRC contribution (Carpuat, 2013).

BEST ES FR IT NL DE
baseline 23.23 25.74 20.21 20.66 17.42
c1l 28.40 29.88 25.43 23.14 20.70
c1lN 28.65 30.11 25.66 23.61 20.82
var 23.3 25.89 20.38 17.17 16.2
varN 29.05 30.15 24.90 23.57 21.98
best.comp 32.16 28.23 24.62 22.36 19.92
OUT-OF-5 ES FR IT NL DE
baseline 53.07 51.36 42.63 43.59 38.86
c1l 58.23 59.07 52.22 47.83 43.17
c1lN 57.62 59.80 52.73 47.62 43.24
var 55.70 59.19 51.18 46.85 41.46
varN 58.61 59.26 50.89 50.42 43.34
best.comp 61.69 58.20 53.57 46.55 43.66

Table 3: Results on the test set

A major factor in this task is the accuracy of lem-
matisation, and to lesser extent of PoS tagging. We
conducted additional experiments on German and
French without lemmatisation, tested on the trial
data. Results immediately fell below baseline.

Another main factor is the quality of the word
alignments, and the degree to which the found word
alignments correspond with the translations the hu-
man annotators could choose from in preparing the
gold standard. An idea we tested is, instead of rely-
ing on the mere intersection of word alignments, to
use a phrase-translation table generated by and for
the Statistical Machine Translation system Moses
(Koehn et al., 2007), which uses the grow-diag-final
heuristic to extract phrase pairs. This results in more
phrases, and whilst this is a good idea for MT, in
the current task it has a detrimental effect, as it cre-
ates too many translation options and we do not have
an MT decoder to discard ineffective options in this
task. The grow-diag-final heuristic incorporates un-
aligned words to the end of a translation in the trans-

lation option, a bad idea for CLWSD.

5 Conclusion

In this study we have taken parameter optimisation
one step further compared to our previous research
(van Gompel, 2010), namely by selecting system pa-
rameters per word expert from the best configura-
tions on the trial data. Optimising the hyperparam-
eter of the classifiers on the training data proves to
have a slightly negative effect, especially when com-
bined with the selection of features. This is likely
due to the fact that feature selection was performed
after hyperparameter optimisation, causing certain
optimisations to be rendered ineffective.

We can furthermore uphold the conclusion from
previous research that including lemma features is
generally a good idea. As to the number of local
context features, we observed that a context size of
one feature to the left, and one to the right, has the
best overall average accuracy. Eventually, due to
our feature selection without hyperparameter opti-
misation on the classifier not being available yet at
the time of submission, our simplest system c1lN
emerged as best in the contest.

When asked to predict the best translation(s), our
system comes out on top for four out of five lan-
guages; only for Spanish we are surpassed by two
competitors. Our out-of-five predictions win for two
out of five languages, and are fairly close the the best
competitor for the others, except again for Spanish.

We assumed independence between hyperparam-
eter optimisation and feature selection, where the
former was conducted using cross-validation on the
training data rather than on the development set. As
this independence assumption is a mere simplifi-
cation to reduce algorithmic complexity, future re-
search could focus on a more integrated approach
and test hyperparameter optimisation of the classi-
fiers on the trial set which may produce better scores.

The WSD2 system is available as open-source un-
der the GNU Public License v3. It is implemented
in Python (van Rossum, 2006) and can be obtained
from http://github.com/proycon/wsd22. The experi-
mental data and results are included in the git repos-
itory as well.

2git commit f10e796141003d8a2fbaf8c463588a6d7380c05e
represents a fair state of the system at the time of submission
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Abstract

This paper describes the NRC submission to
the Spanish Cross-Lingual Word Sense Dis-
ambiguation task at SemEval-2013. Since this
word sense disambiguation task uses Spanish
translations of English words as gold annota-
tion, it can be cast as a machine translation
problem. We therefore submitted the output of
a standard phrase-based system as a baseline,
and investigated ways to improve its sense dis-
ambiguation performance. Using only local
context information and no linguistic analy-
sis beyond lemmatization, our machine trans-
lation system surprisingly yields top precision
score based on the best predictions. However,
its top 5 predictions are weaker than those
from other systems.

1 Introduction

This paper describes the systems submitted by the
National Research Council Canada (NRC) for the
Cross-Lingual Word Sense Disambiguation task at
SemEval 2013 (Lefever and Hoste, 2013). As in
the previous edition (Lefever and Hoste, 2010), this
word sense disambiguation task asks systems to dis-
ambiguate English words by providing translations
in other languages. It is therefore closely related to
machine translation. Our work aims to explore this
connection between machine translation and cross-
lingual word sense disambiguation, by providing a
machine translation baseline and investigating ways
to improve the sense disambiguation performance of
a standard machine translation system.

Machine Translation (MT) has often been used
indirectly for SemEval Word Sense Disambiguation

(WSD) tasks: as a tool to automatically create train-
ing data (Guo and Diab, 2010, for instance) ; as
a source of parallel data that can be used to train
WSD systems (Ng and Chan, 2007; van Gompel,
2010; Lefever et al., 2011); or as an application
which can use the predictions of WSD systems de-
veloped for SemEval tasks (Carpuat and Wu, 2005;
Chan et al., 2007; Carpuat and Wu, 2007). This Se-
mEval shared task gives us the opportunity to com-
pare the performance of machine translation systems
with other submissions which use very different ap-
proaches. Our goal is to provide machine transla-
tion output which is representative of state-of-the-art
approaches, and provide a basis for comparing its
strength and weaknesses with that of other systems
submitted to this task. We submitted two systems to
the Spanish Cross-Lingual WSD (CLWSD) task:

1. BASIC, a baseline machine translation system
trained on the parallel corpus used to define the
sense inventory;

2. ADAPT, a machine translation system that has
been adapted to perform better on this task.

After describing these systems in Sections 2 and
3, we give an overview of the results in Section 4.

2 BASIC: A Baseline Phrase-Based
Machine Translation System

We use a phrase-based SMT (PBSMT) architec-
ture, and set-up our system to perform English-to-
Spanish translation. We use a standard SMT system
set-up, as for any translation task. The fact that this
PBSMT system is intended to be used for CLWSD
only influences data selection and pre-processing.
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2.1 Model and Implementation

In order to translate an English sentence e into Span-
ish, PBSMT first segments the English sentence into
phrases, which are simply sequences of consecutive
words. Each phrase is translated into Spanish ac-
cording to the translations available in a translation
lexicon called phrase-table. Spanish phrases can be
reordered to account for structural divergence be-
tween the two languages. This simple process can
be used to generate Spanish sentences, which are
scored according to translation, reordering and lan-
guage models learned from parallel corpora. The
score of a Spanish translation given an English input
sentence e segmented into J phrases is defined as
follows: score(s, e) =

∑
i

∑
j λilog(φi(sj , ej)) +

λLMφLM (s)

Detailed feature definitions for phrase-based SMT
models can be found in Koehn (2010). In our sys-
tem, we use the following standard feature functions
φ to score English-Spanish phrase pairs:

• 4 phrase-table scores, which are conditional
translation probabilities and HMM lexical
probabilities in both directions translation di-
rections (Chen et al., 2011)

• 6 hierarchical lexicalized reordering scores,
which represent the orientation of the current
phrase with respect to the previous block that
could have been translated as a single phrase
(Galley and Manning, 2008)

• a word penalty, which scores the length of the
output sentence

• a word-displacement distortion penalty, which
penalizes long-distance reorderings.

In addition, fluency of translation is ensured by a
monolingual Spanish language model φLM , which
is a 5-gram model with Kneser-Ney smoothing.

Phrase translations are extracted based on IBM-
4 alignments obtained with GIZA++ (Och and Ney,
2003). The λ weights for these features are learned
using the batch lattice-MIRA algorithm (Cherry and
Foster, 2012) to optimize BLEU-4 (Papineni et al.,
2002) on a tuning set. We use PORTAGE, our inter-
nal PBSMT decoder for all experiments. PORTAGE
uses a standard phrasal beam-search algorithm with

cube pruning. The main differences between this
set-up and the popular open-source Moses system
(Koehn et al., 2007), are the use of hierarchical re-
ordering (Moses only supports non-hierarchical lex-
icalized reordering by default) and smoothed trans-
lation probabilities (Chen et al., 2011).

As a result, disambiguation decisions for the
CLWSD task are based on the following sources of
information:

• local source context, represented by source
phrases of length 1 to 7 from the translation and
reordering tables

• local target context, represented by the 5-gram
language model.

Each English sentence in the CLWSD task is
translated into Spanish using our PBSMT system.
We keep track of the phrasal segmentation used to
produce the translation hypothesis and identify the
Spanish translation of the English word of interest.
When the English word is translated into a multi-
word Spanish phrase, we output the Spanish word
within the phrase that has the highest IBM1 transla-
tion probability given the English target word.

For the BEST evaluation, we use this process
on the top PBSMT hypothesis to produce a single
CLWSD translation candidate. For the Out-Of-Five
evaluation, we produce up to five CLWSD transla-
tion candidates from the top 1000 PBSMT transla-
tion hypotheses.

2.2 Data and Preprocessing
Training the PBSMT system requires a two-step pro-
cess with two distinct sets of parallel data.

First, the translation, reordering and language
models are learned on a large parallel corpus, the
training set. We use the sentence pairs extracted
from Europarl by the organizers for the purpose of
selecting translation candidates for the gold annota-
tion. Training the SMT system on the exact same
parallel corpus ensures that the system “knows” the
same translations as the human annotators who built
the gold standard. This corpus consists of about
900k sentence pairs.

Second, the feature weights λ in the PBSMT are
learned on a smaller parallel corpus, the tuning set.
This corpus should ideally be drawn from the test
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domain. Since the CLWSD task does not provide
parallel data in the test domain, we construct the
tuning set using corpora publicly released for the
WMT2012 translation task1. Since sentences pro-
vided in the trial data appeared to come from a wide
variety of genres and domains, we decided to build
our tuning set using data from the news-commentary
domain, rather then the more narrow Europarl do-
main used for training. We selected the top 3000
sentence pairs from the WMT 2012 development
test sets, based on their distance to the CLWSD
trial and test sentences as measured by cross-entropy
(Moore and Lewis, 2010).

All Spanish and English corpora were processed
using FreeLing (Padró and Stanilovsky, 2012).
Since the CLWSD targets and gold translations
are lemmatized, we lemmatize all corpora. While
FreeLing can provide a much richer linguistic anal-
ysis of the input sentences, the PBSMT sytem only
makes use of their lemmatized representation. Our
systems therefore contrast with previous approaches
to CLWSD (van Gompel, 2010; Lefever et al., 2011,
for instance), which use richer sources of informa-
tion such as part-of-speech tags.

3 ADAPT: Adapting the MT system to the
CLWSD task

Our ADAPT system simply consists of two modifi-
cations to the BASIC PBSMT system.

First, it uses a shorter maximum English phrase
length. Instead of learning a translation lexicons for
phrases of length 1 to 7 as in the BASIC system,
the ADAPT system only uses phrases of length 1
and 2. While this dramatically reduces the amount
of source side context available for disambiguation,
it also reduces the amount of noise due to incorrect
word alignments. In addition, there is more evidence
to estimate reliable translation probabilities for short
phrase, since they tend to occur more frequently than
longer phrases.

Second, the ADAPT system is trained on larger
and more diverse data sets. Since MT systems are
known to perform better when they can learn from
larger amounts of relevant training data, we augment
our training set with additional parallel corpora from
the WMT-12 evaluations. We learn translation and

1http://www.statmt.org/wmt12/translation-task.html

reordering models for (1) the Europarl subset used
by the CLWSD organizers (900k sentence pairs, as
in the BASIC system), and (2) the news commen-
tary corpus from WMT12 (which comprises 150k
sentence pairs). For the language model, we use the
Spanish side of these two corpora, as well as that of
the full Europarl corpus from WMT12 (which com-
prises 1.9M sentences). Models learned on different
data sets are combined using linear mixtures learned
on the tuning set (Foster and Kuhn, 2007).

We also attempted other variations on the BASIC
system which were not as successful. For instance,
we tried to update the PBSMT tuning objective to be
better suited to the CLWSD task. When producing
translation of entire sentences, the PBSMT system
is expected to produce hypotheses that are simulta-
neously fluent and adequate, as measured by BLEU
score. In contrast, CLWSD measures the adequacy
of the translation of a single word in a given sen-
tence. We therefore attempted to tune for BLEU-
1, which only uses unigram precision, and therefore
focuses on adequacy rather than fluency. However,
this did not improve CLWSD accuracy.

4 Results

Table 1 gives an overview of the results per tar-
get word for both systems, as measured by all of-
ficial metrics (see Lefever and Hoste (2010) for a
detailed description.) According to the BEST Pre-
cision scores, the ADAPT system outperforms the
BASIC system for almost all target words. Using
only the dominant translation picked by the human
annotators as a reference (Mode), the precision for
BEST scores yield more heterogeneous results. This
is not surprising since the ADAPT system uses more
heterogeneous training data, which might make it
harder to learn a reliable estimate of a single domi-
nant translation. When evaluating the precision out
of the top 5 candidates (OOF), all systems improve,
indicating that PBSMT systems can usually produce
some correct alternatives to their top hypothesis.

Table 2 lets us compare the average performance
of the BASIC and ADAPT systems with other par-
ticipating systems. The ADAPT system surprisingly
yields the top performance based on the Precision
BEST evaluation setting, suggesting that, even with
relatively poor models of context, a PBSMT sys-
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Precision: Best Best Best Mode Best Mode OOF OOF OOF Mode OOF Mode
Systems: BASIC ADAPT BASIC ADAPT BASIC ADAPT BASIC ADAPT
coach 22.30 60.10 13.64 59.09 38.30 66.30 31.82 63.64
education 36.07 38.01 73.08 84.62 42.36 42.80 84.62 84.62
execution 41.07 41.07 32.00 32.00 41.57 41.57 36.00 36.00
figure 23.43 29.02 33.33 37.04 31.15 36.12 37.04 44.44
job 13.45 24.26 0.00 37.23 26.52 37.57 27.27 54.55
letter 35.35 37.23 66.67 64.10 37.22 41.20 66.67 66.67
match 15.07 16.53 2.94 2.94 20.70 20.90 5.88 8.82
mission 67.98 67.98 85.29 85.29 67.98 67.98 85.29 85.29
mood 7.18 8.97 0.00 0.00 26.99 29.90 11.11 11.11
paper 31.33 44.59 29.73 40.54 50.45 55.61 45.95 51.35
post 32.26 33.72 23.81 19.05 50.67 53.28 57.14 42.86
pot 34.20 36.63 35.00 32.50 36.12 37.13 32.50 25.00
range 5.41 7.56 10.00 0.00 10.39 17.47 10.00 20.00
rest 20.91 23.44 12.00 8.00 27.44 25.89 16.00 16.00
ring 15.87 10.10 18.92 10.81 42.80 43.14 48.65 45.95
scene 15.86 23.42 43.75 62.50 38.35 37.53 81.25 81.25
side 24.63 33.14 13.04 17.39 36.84 44.03 21.74 39.13
soil 43.88 43.63 66.67 66.67 51.73 57.15 66.67 66.67
strain 24.00 26.24 35.71 35.71 38.37 36.58 42.86 35.71
test 34.45 37.51 50.00 28.57 43.61 40.86 50.00 28.57
Average 27.24 32.16 32.28 36.20 37.98 41.65 42.92 45.38

Table 1: Precision scores by target word for the BASIC and ADAPT systems

Precision: Best Best Mode OOF OOF Mode
System
Best 32.16 37.11 61.69 57.35
ADAPT 32.16 36.20 41.65 45.38
BASIC 27.24 32.28 37.98 42.92
Baseline 23.23 27.48 53.07 64.65

Table 2: Overview of official results: comparison of
the precision scores of the ADAPT and BASIC sys-
tems with the best system according to each metric
and with the official baseline

tem can succeed in learning useful disambiguating
information for its top candidate. Despite the prob-
lems stemming from learning good dominant trans-
lations from heterogeneous data, ADAPT ranks near
the top using the Best Mode metric. The rankings in
the out-of-five settings are strikingly different: the
difference between BEST and OOF precisions are
much smaller for BASIC and ADAPT than for all
other participating systems (including the baseline.)
This suggests that our PBSMT system only succeeds
in learning to disambiguate one or two candidates
per word, but does not do a good job of a estimating

the full translation probability distribution of a word
in context. As a result, there is potentially much to
be gained from combining PBSMT systems with the
approaches used by other systems, which typically
use richer feature representation and context mod-
els. Further exploration of the role of context in PB-
SMT performance and a comparison with dedicated
classifiers trained on the same word-aligned parallel
data can be found in (Carpuat, 2013).

5 Conclusion

We have described the two systems submitted by
the NRC to the Cross-Lingual Word Sense Disam-
biguation task at SemEval-2013. We used phrase-
based machine translation systems trained on lem-
matized parallel corpora. These systems are unsu-
pervised and do not use any linguistic analysis be-
yond lemmatization. Disambiguation decisions are
based on the local source context available in the
phrasal translation lexicon and the target n-gram
language model. This simple approach gives top
performance when measuring the precision of the
top predictions. However, the top 5 predictions are
interestingly not as good as those of other systems.
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(Carpuat, 2013)
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Abstract

In this paper we describe our Semeval-2013
task on Word Sense Induction and Dis-
ambiguation within an end-user application,
namely Web search result clustering and diver-
sification. Given a target query, induction and
disambiguation systems are requested to clus-
ter and diversify the search results returned by
a search engine for that query. The task en-
ables the end-to-end evaluation and compari-
son of systems.

1 Introduction

Word ambiguity is a pervasive issue in Natural Lan-
guage Processing. Two main techniques in compu-
tational lexical semantics, i.e., Word Sense Disam-
biguation (WSD) and Word Sense Induction (WSI)
address this issue from different perspectives: the
former is aimed at assigning word senses from a pre-
defined sense inventory to words in context, whereas
the latter automatically identifies the meanings of a
word of interest by clustering the contexts in which
it occurs (see (Navigli, 2009; Navigli, 2012) for a
survey).

Unfortunately, the paradigms of both WSD and
WSI suffer from significant issues which hamper
their success in real-world applications. In fact, the
performance of WSD systems depends heavily on
which sense inventory is chosen. For instance, the
most popular computational lexicon of English, i.e.,
WordNet (Fellbaum, 1998), provides fine-grained
distinctions which make the disambiguation task
quite difficult even for humans (Edmonds and Kil-
garriff, 2002; Snyder and Palmer, 2004), although

disagreements can be solved to some extent with
graph-based methods (Navigli, 2008). On the other
hand, although WSI overcomes this issue by allow-
ing unrestrained sets of senses, its evaluation is par-
ticularly arduous because there is no easy way of
comparing and ranking different representations of
senses. In fact, all the proposed measures in the lit-
erature tend to favour specific cluster shapes (e.g.,
singletons or all-in-one clusters) of the senses pro-
duced as output. Indeed, WSI evaluation is actually
an instance of the more general and difficult problem
of evaluating clustering algorithms.

Nonetheless, many everyday tasks carried out by
online users would benefit from intelligent systems
able to address the lexical ambiguity issue effec-
tively. A case in point is Web information retrieval, a
task which is becoming increasingly difficult given
the continuously growing pool of Web text of the
most wildly disparate kinds. Recent work has ad-
dressed this issue by proposing a general evaluation
framework for injecting WSI into Web search result
clustering and diversification (Navigli and Crisa-
fulli, 2010; Di Marco and Navigli, 2013). In this
task the search results returned by a search engine
for an input query are grouped into clusters, and di-
versified by providing a reranking which maximizes
the meaning heterogeneity of the top ranking results.

The Semeval-2013 task described in this paper1

adopts the evaluation framework of Di Marco and
Navigli (2013), and extends it to both WSD and WSI
systems. The task is aimed at overcoming the well-
known limitations of in vitro evaluations, such as
those of previous SemEval tasks on the topic (Agirre

1http://www.cs.york.ac.uk/semeval-2013/task11/
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and Soroa, 2007; Manandhar et al., 2010), and en-
abling a fair comparison between the two disam-
biguation paradigms. Key to our framework is the
assumption that search results grouped into a given
cluster are semantically related to each other and
that each cluster is expected to represent a specific
meaning of the input query (even though it is possi-
ble for more than one cluster to represent the same
meaning). For instance, consider the target query
apple and the following 3 search result snippets:

1. Apple Inc., formerly Apple Computer, Inc., is...

2. The science of apple growing is called pomology...

3. Apple designs and creates iPod and iTunes...

Participating systems were requested to produce a
clustering that groups snippets conveying the same
meaning of the input query apple, i.e., ideally {1, 3}
and {2} in the above example.

2 Task setup

For each ambiguous query the task required partic-
ipating systems to cluster the top ranking snippets
returned by a search engine (we used the Google
Search API). WSI systems were required to iden-
tify the meanings of the input query and cluster the
snippets into semantically-related groups according
to their meanings. Instead, WSD systems were re-
quested to sense-tag the given snippets with the ap-
propriate senses of the input query, thereby implic-
itly determining a clustering of snippets (i.e., one
cluster per sense).

2.1 Dataset
We created a dataset of 100 ambiguous queries.
The queries were randomly sampled from the AOL
search logs so as to ensure that they had been used in
real search sessions. Following previous work on the
topic (Bernardini et al., 2009; Di Marco and Navigli,
2013) we selected those queries for which a sense
inventory exists as a disambiguation page in the En-
glish Wikipedia2. This guaranteed that the selected
queries consisted of either a single word or a multi-
word expression for which we had a collaboratively-
edited list of meanings, including lexicographic and
encyclopedic ones. We discarded all queries made

2http://en.wikipedia.org/wiki/Disambiguation page

Figure 1: An example of search result for the apple query,
including: page title, URL and snippet.

query length 1 2 3 4
AOL logs 45.89 40.98 10.98 2.32
our dataset 40.00 40.00 15.00 5.00

Table 1: Percentage distribution of AOL query lengths
(first row) vs. the queries sampled for our task (second
row).

up of > 4 words, since the length of the great ma-
jority of queries lay in the range [1, 4]. In Table
1 we compare the percentage distribution of 1- to
4-word queries in the AOL query logs against our
dataset of queries. Note that we increased the per-
centage of 3- and 4-word queries in order to have
a significant coverage of those lengths. Anyhow,
in both cases most queries contained from 1 to 2
words. Note that the reported percentage distribu-
tions of query length is different from recent statis-
tics for two reasons: first, over the years users have
increased the average number of words per query in
order to refine their searches; second, we selected
only queries which were either single words (e.g.,
apple) or multi-word expressions (e.g., mortal kom-
bat), thereby discarding several long queries com-
posed of different words (such as angelina jolie ac-
tress).

Finally, we submitted each query to Google
search and retrieved the 64 top-ranking results re-
turned for each query. Therefore, overall the dataset
consists of 100 queries and 6,400 results. Each
search result includes the following information:
page title, URL of the page and snippet of the page
text. We show an example of search result for the
apple query in Figure 1.

2.2 Dataset Annotation

For each query q we used Amazon Mechani-
cal Turk3 to annotate each query result with the

3https://www.mturk.com
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most suitable sense. The sense inventory for q
was obtained by listing the senses available in the
Wikipedia disambiguation page of q augmented
with additional options from the classes obtained
from the section headings of the disambiguation
page plus the OTHER catch-all meaning. For in-
stance, consider the apple query. We show its disam-
biguation page in Figure 2. The sense inventory for
apple was made up of the senses listed in that page
(e.g., MALUS, APPLE INC., APPLE BANK, etc.)
plus the set of generic classes OTHER PLANTS AND

PLANT PARTS, OTHER COMPANIES, OTHER FILMS,
plus OTHER.

For each query we ensured that three annotators
tagged each of the 64 results for that query with
the most suitable sense among those in the sense
inventory (selecting OTHER if no sense was appro-
priate). Specifically, each Turker was provided with
the following instructions: “The goal is annotating
the search result snippets returned by Google for a
given query with the appropriate meaning among
those available (obtained from the Wikipedia disam-
biguation page for the query). You have to select
the meaning that you consider most appropriate”.
No constraint on the age, gender and citizenship of
the annotators was imposed. However, in order to
avoid random tagging of search results, we provided
3 gold-standard result annotations per query, which
could be shown to the Turker more than once during
the annotation process. In the case (s)he failed to
annotate the gold items, the annotator was automat-
ically excluded.

2.3 Inter-Annotator Agreement and
Adjudication

In order to determine the reliability of the Turkers’
annotations, we calculated the individual values of
Fleiss’ kappa κ (Fleiss, 1971) for each query q and
then averaged them:

κ =

∑
q∈Q κq

|Q|
, (1)

where κq is the Fleiss’ kappa agreement of the three
annotators who tagged the 64 snippets returned by
the Google search engine for the query q ∈ Q, and
Q is our set of 100 queries. We obtained an average
value of κ = 0.66, which according to Landis and

Figure 2: The Wikipedia disambiguation page of Apple.

Koch (1977) can be seen as substantial agreement,
with a standard deviation σ = 0.185.

In Table 2 we show the agreement distribution
of our 6400 snippets, distinguishing between full
agreement (3 out of 3), majority agreement (2 out of
3), and no agreement. Most of the items were anno-
tated with full or majority agreement, indicating that
the manual annotation task was generally doable for
the layman. We manually checked all the cases of
majority agreement, correcting only 7.92% of the
majority adjudications, and manually adjudicated
all the snippets for which there was no agreement.
We observed during adjudication that in many cases
the disagreement was due to the existence of sub-
tle sense distinctions, like between MORTAL KOM-
BAT (VIDEO GAME) and MORTAL KOMBAT (2011
VIDEO GAME), or between THE DA VINCI CODE

and INACCURACIES IN THE DA VINCI CODE.
The average number of senses associated with

the search results of each query was 7.69
(higher than in previous datasets, such as AMBI-
ENT4+MORESQUE5, which associates 5.07 senses

4http://credo.fub.it/ambient
5http://lcl.uniroma1.it/moresque
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Full agr. Majority Disagr.
% snippets 66.70 25.85 7.45

Table 2: Percentage of snippets with full agreement, ma-
jority agreement and full disagreement.

per query on average).

3 Scoring

Following Di Marco and Navigli (2013), we eval-
uated the systems’ outputs in terms of the snippet
clustering quality (Section 3.1) and the snippet di-
versification quality (Section 3.2). Given a query
q ∈ Q and the corresponding set of 64 snippet re-
sults, let C be the clustering output by a given system
and let G be the gold-standard clustering for those
results. Each measure M(C,G) presented below is
calculated for the query q using these two cluster-
ings. The overall results on the entire set of queries
Q in the dataset is calculated by averaging the val-
ues of M(C,G) obtained for each single test query
q ∈ Q.

3.1 Clustering Quality
The first evaluation concerned the quality of the
clusters produced by the participating systems.
Since clustering evaluation is a difficult issue, we
calculated four distinct measures available in the lit-
erature, namely:

• Rand Index (Rand, 1971);

• Adjusted Rand Index (Hubert and Arabie,
1985);

• Jaccard Index (Jaccard, 1901);

• F1 measure (van Rijsbergen, 1979).

The Rand Index (RI) of a clustering C is a mea-
sure of clustering agreement which determines the
percentage of correctly bucketed snippet pairs across
the two clusterings C and G. RI is calculated as fol-
lows:

RI(C,G) =
TP + TN

TP + FP + FN + TN
, (2)

where TP is the number of true positives, i.e., snip-
pet pairs which are in the same cluster both in C and

H
HHH

HHG
C

C1 C2 · · · Cm Sums

G1 n11 n12 · · · n1m a1

G2 n21 n22 · · · n2m a2
...

...
...

. . .
...

...
Gg ng1 ng2 · · · ngm ag

Sums b1 b2 · · · bm N

Table 3: Contingency table for the clusterings G and C.

G, TN is the number of true negatives, i.e., pairs
which are in different clusters in both clusterings,
and FP and FN are, respectively, the number of false
positives and false negatives. RI ranges between 0
and 1, where 1 indicates perfect correspondence.

Adjusted Rand Index (ARI) is a development of
Rand Index which corrects the RI for chance agree-
ment and makes it vary according to expectaction:

ARI(C,G) =
RI(C,G)− E(RI(C,G))

maxRI(C,G)− E(RI(C,G))
.

(3)
where E(RI(C,G)) is the expected value of the RI.
Using the contingency table reported in Table 3 we
can quantify the degree of overlap between C and G,
where nij denotes the number of snippets in com-
mon between Gi and Cj (namely, nij = |Gi ∩ Cj |),
ai and bj represent, respectively, the number of snip-
pets inGi and Cj , andN is the total number of snip-
pets, i.e., N = 64. Now, the above equation can be
reformulated as:

ARI(C,G)=

∑
ij (nij

2 )−[
∑

i (
ai
2 )

∑
j (bj

2 )]/(N
2 )

1
2 [

∑
i (

ai
2 )+

∑
j (bj

2 )]−[
∑

i (
ai
2 )

∑
j (bj

2 )]/(N
2 )

.

(4)
The ARI ranges between −1 and +1 and is 0

when the index equals its expected value.
Jaccard Index (JI) is a measure which takes into

account only the snippet pairs which are in the same
cluster both in C and G, i.e., the true positives (TP),
while neglecting true negatives (TN), which are the
vast majority of cases. JI is calculated as follows:

JI(C,G) =
TP

TP + FP + FN
. (5)

Finally, the F1 measure calculates the harmonic
mean of precision (P) and recall (R). Precision de-
termines how accurately the clusters of C represent
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the query meanings in the gold standard G, whereas
recall measures how accurately the different mean-
ings in G are covered by the clusters in C. We follow
Crabtree et al. (2005) and define the precision of a
cluster Cj ∈ C as follows:

P (Cj) =
|Cs

j |
|Cj |

, (6)

whereCs
j is the intersection betweenCj ∈ C and the

gold cluster Gs ∈ G which maximizes the cardinal-
ity of the intersection. The recall of a query sense s
is instead calculated as:

R(s) =
|
⋃

Cj∈Cs Cs
j |

ns
, (7)

where Cs is the subset of clusters of C whose ma-
jority sense is s, and ns is the number of snippets
tagged with query sense s in the gold standard. The
total precision and recall of the clustering C are then
calculated as:

P =

∑
Cj∈C P (Cj)|Cj |∑

Cj∈C |Cj |
; R =

∑
s∈S R(s)ns∑

s∈S ns

(8)
where S is the set of senses in the gold standard G
for the given query (i.e., |S| = |G|). The two values
of P and R are then combined into their harmonic
mean, namely the F1 measure:

F1(C,G) =
2PR

P +R
. (9)

3.2 Clustering Diversity
Our second evaluation is aimed at determining the
impact of the output clustering on the diversifica-
tion of the top results shown to a Web user. To
this end, we applied an automatic procedure for flat-
tening the clusterings produced by the participating
systems to a list of search results. Given a clus-
tering C = (C1, C2, . . . , Cm), we add to the ini-
tially empty list the first element of each cluster Cj

(j = 1, . . . ,m); then we iterate the process by se-
lecting the second element of each cluster Cj such
that |Cj | ≥ 2, and so on. The remaining elements re-
turned by the search engine, but not included in any
cluster of C, are appended to the bottom of the list
in their original order. Note that systems were asked
to sort snippets within clusters, as well as clusters
themselves, by relevance.

Since our goal is to determine how many differ-
ent meanings are covered by the top-ranking search
results according to the output clustering, we used
the measures of S-recall@K (Subtopic recall at rank
K) and S-precision@r (Subtopic precision at recall
r) (Zhai et al., 2003).

S-recall@K determines the ratio of different
meanings for a given query q in the top-K results
returned:

S-recall@K =
|{sense(ri) : i ∈ {1, . . . ,K}}|

g
,

(10)
where sense(ri) is the gold-standard sense associ-
ated with the i-th snippet returned by the system,
and g is the total number of distinct senses for the
query q in our gold standard.

S-precision@r instead determines the ratio of dif-
ferent senses retrieved for query q in the first Kr

snippets, where Kr is the minimum number of top
results for which the system achieves recall r. The
measure is defined as follows:

S-precision@r =
| ∪Kr

i=1 sense(ri)|
Kr

. (11)

3.3 Baselines

We compared the participating systems with two
simple baselines:

• SINGLETONS: each snippet is clustered as a
separate singleton cluster (i.e., |C| = 64).

• ALL-IN-ONE: all snippets are clustered into a
single cluster (i.e., |C| = 1).

These baselines are important in that they make
explicit the preference of certain quality measures
towards clusterings made up with a small or large
number of clusters.

4 Systems

5 teams submitted 10 systems, out of which 9 were
WSI systems, while 1 was a WSD system, i.e., us-
ing the Wikipedia sense inventory for performing
the disambiguation task. All systems could exploit
the information provided for each search result, i.e.,
URL, page title and result snippet. WSI systems
were requested to use unannotated corpora only.
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System URLs Snippets Wikipedia YAGO Hierarchy Distr. Thesaurus Other

W
SI

HDP-CLUSTERS-LEMMA X X
HDP-CLUSTERS-NOLEMMA X X
DULUTH.SYS1.PK2 X
DULUTH.SYS7.PK2 X
DULUTH.SYS9.PK2 Gigaword
UKP-WSI-WP-LLR2 X X X WaCky
UKP-WSI-WP-PMI X X X WaCky
UKP-WSI-WACKY-LLR X X X WaCky
SATTY-APPROACH1 X

WSD RAKESH X DBPedia

Table 4: Resources used for WSI/WSD.

We asked each team to provide information about
their systems. In Table 4 we report the resources
used by each system. The HDP and UKP systems
use Wikipedia as raw text for sampling word counts;
DULUTH-SYS9-PK2 uses the first 10,000 paragraphs
of the Associated Press wire service data from the
English Gigaword Corpus (Graff, 2003, 1st edition),
whereas DULUTH-SYS1-PK2 and DULUTH-SYS7-
PK2 both use the snippets for inducing the query
senses. Finally, the UKP systems were the only ones
to retrieve the Web pages from the corresponding
URLs and exploit them for WSI purposes. They
also use WaCky (Baroni et al., 2009) and a distri-
butional thesaurus obtained from the Leipzig Cor-
pora Collection6 (Biemann et al., 2007). SATTY-
APPROACH1 just uses snippets.

The only participating WSD system, RAKESH,
uses the YAGO hierarchy (Suchanek et al., 2008) to-
gether with DBPedia abstracts (Bizer et al., 2009).

5 Results

We show the results of RI and ARI in Table 5. The
best performing systems are those from the HDP

team, with considerably higher RI and ARI. The
next best systems are SATTY-APPROACH1, which
uses only the words in the snippets, and the only
WSD system, i.e., RAKESH. SINGLETONS perform
well with RI, but badly when chance agreement is
taken into account.

As for F1 and JI, whose values are shown in Table
6, the two HDP systems again perform best in terms
of F1, and are on par with UKP-WSI-WACKY-LLR in
terms of JI. The third best approach in terms of F1
is again SATTY-APPROACH1, which however per-

6http://corpora.uni-leipzig.de/

System RI ARI

W
SI

HDP-CLUSTERS-LEMMA 65.22 21.31
HDP-CLUSTERS-NOLEMMA 64.86 21.49
SATTY-APPROACH1 59.55 7.19
DULUTH.SYS9.PK2 54.63 2.59
DULUTH.SYS1.PK2 52.18 5.74
DULUTH.SYS7.PK2 52.04 6.78
UKP-WSI-WP-LLR2 51.09 3.77
UKP-WSI-WP-PMI 50.50 3.64
UKP-WSI-WACKY-LLR 50.02 2.53

WSD RAKESH 58.76 8.11

B
L SINGLETONS 60.09 0.00

ALL-IN-ONE 39.90 0.00

Table 5: Results for Rand Index (RI) and Adjusted Rand
Index (ARI), sorted by RI.

forms badly in terms of JI. The SINGLETONS base-
line clearly obtains the best F1 performance, but the
worst JI results. The ALL-IN-ONE baseline outper-
forms all other systems with the JI measure, because
TN are not considered, which favours large clusters.

To get more insights into the performance of the
various systems, we calculated the average number
of clusters per clustering produced by each system
and compared it with the gold standard average. We
also computed the average cluster size, i.e., the aver-
age number of snippets per cluster. The statistics are
shown in Table 7. Interestingly, the best performing
systems are those with the cluster number and aver-
age number of clusters closest to the gold standard
ones. This finding is also confirmed by Figure 3,
where we draw each system according to its average
values regarding cluster number and size: again the
distance from the gold standard is meaningful.

We now move to the diversification perfor-
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System JI F1

W
SI

UKP-WSI-WACKY-LLR 33.94 58.26
HDP-CLUSTERS-NOLEMMA 33.75 68.03
HDP-CLUSTERS-LEMMA 33.02 68.30
DULUTH.SYS1.PK2 31.79 56.83
UKP-WSI-WP-LLR2 31.77 58.64
DULUTH.SYS7.PK2 31.03 58.78
UKP-WSI-WP-PMI 29.32 60.48
DULUTH.SYS9.PK2 22.24 57.02
SATTY-APPROACH1 15.05 67.09

WSD RAKESH 30.52 39.49

B
L SINGLETONS 0.00 100.00

ALL-IN-ONE 39.90 54.42

Table 6: Results for Jaccard Index (JI) and F1 measure.

System # cl. ACS
GOLD STANDARD 7.69 11.56

W
SI

HDP-CLUSTERS-LEMMA 6.63 11.07
HDP-CLUSTERS-NOLEMMA 6.54 11.68
SATTY-APPROACH1 9.90 6.46
UKP-WSI-WP-PMI 5.86 30.30
DULUTH.SYS7.PK2 3.01 25.15
UKP-WSI-WP-LLR2 4.17 21.87
UKP-WSI-WACKY-LLR 3.64 32.34
DULUTH.SYS9.PK2 3.32 19.84
DULUTH.SYS1.PK2 2.53 26.45

WSD RAKESH 9.07 2.94

Table 7: Average number of clusters (# cl.) and average
cluster size (ACS).

5

10

15

20

25

30

35

40

2 4 6 8 10 12

a
v
e
ra

g
e
 n

u
m

b
e
r 

o
f 
c
lu

s
te

rs

average cluster size (ACS)

gold-standard

hdp-lemma

hdp-nolemma

sys1.pk2

sys7.pk2

sys9.pk2

rakesh

satty-approach1

ukp-wsi-wacky-llr

ukp-wsi-wp-llr2

ukp-wsi-wp-pmi

Figure 3: Average cluster size (ACS) vs. average number
of clusters.

mance, calculated in terms of S-recall@K and S-
precision@r, whose results are shown in Tables 8

System
K

5 10 20 40

W
SI

HDP-CL.-NOLEMMA 50.80 63.21 79.26 92.48
HDP-CL.-LEMMA 48.13 65.51 78.86 91.68
UKP-WACKY-LLR 41.19 55.41 68.61 83.90
UKP-WP-LLR2 41.07 53.76 68.87 85.87
UKP-WP-PMI 40.45 56.25 68.70 84.92
SATTY-APPROACH1 38.97 48.90 62.72 82.14
DULUTH.SYS7.PK2 38.88 53.79 70.38 86.23
DULUTH.SYS9.PK2 37.15 49.90 68.91 83.65
DULUTH.SYS1.PK2 37.11 53.29 71.24 88.48

WSD RAKESH 46.48 62.36 78.66 90.72

Table 8: S-recall@K.

System
r

50 60 70 80

W
SI

HDP-CL.-LEMMA 48.85 42.93 35.19 27.62
HDP-CL.-NOLEMMA 48.18 43.88 34.85 29.30
UKP-WP-PMI 42.83 33.40 26.63 22.92
UKP-WACKY-LLR 42.47 31.73 25.39 22.71
UKP-WP-LLR2 42.06 32.04 26.57 22.41
DULUTH.SYS1.PK2 40.08 31.31 26.73 24.51
DULUTH.SYS7.PK2 39.11 30.42 26.54 23.43
DULUTH.SYS9.PK2 35.90 29.72 25.26 21.26
SATTY-APPROACH1 34.94 26.88 23.55 20.40

WSD RAKESH 48.00 39.04 32.72 27.92

Table 9: S-precision@r.

and 9, respectively. Here we find that, again, the
HDP team obtains the best performance, followed by
RAKESH. We note however that not all systems op-
timized the order of clusters and cluster snippets by
relevance.

We also graph the diversification performance
trend of S-recall@K and S-precision@r in Fig-
ures 4 and 5 for K = 1, . . . , 25 and r ∈
{40, 50, . . . , 100}.

6 Conclusions and Future Directions

One of the aims of the SemEval-2013 task on Word
Sense Induction & Disambiguation within an End
User Application was to enable an objective compar-
ison of WSI and WSD systems when integrated into
Web search result clustering and diversification. The
task is a hard one, in that it involves clustering, but
provides clear-cut evidence that our end-to-end ap-
plication framework overcomes the limits of previ-
ous in-vitro evaluations. Indeed, the systems which
create good clusters and better diversify search re-
sults, i.e., those from the HDP team, achieve good
performance across all the proposed measures, with
no contradictory evidence.
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Figure 5: S-precision@r.

Our annotation experience showed that the
Wikipedia sense inventory, augmented with our
generic classes, is a good choice for semantically
tagging search results, in that it covers most of the
meanings a Web user might be interested in. In fact,
only 20% of the snippets was annotated with the
OTHER class.

Future work might consider large-scale multilin-
gual lexical resources, such as BabelNet (Navigli
and Ponzetto, 2012), both as sense inventory and for

performing the search result clustering and diversi-
fication task.
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Abstract

The Duluth systems that participated in task
11 of SemEval–2013 carried out word sense
induction (WSI) in order to cluster Web search
results. They relied on an approach that repre-
sented Web snippets using second–order co–
occurrences. These systems were all imple-
mented using SenseClusters, a freely available
open source software package.

1 Introduction

The goal of task 11 of SemEval–2013 was to clus-
ter Web search results (Navigli and Vannella, 2013).
The test data consisted of the top 64 Google results
for each of 100 potentially ambiguous queries, for a
total of 6,400 test instances. The Web snippets re-
turned for each query were clustered and evaluated
separately, with an overall evaluation score provided
for each system.

The problem of Web page clustering is one of
the use cases envisioned for SenseClusters (Peder-
sen and Kulkarni, 2007; Pedersen, 2010a), a freely
available open source software package developed
at the University of Minnesota, Duluth starting in
2002. It supports first and second–order clustering
of contexts using both co–occurrence matrices (Pu-
randare and Pedersen, 2004; Kulkarni and Pedersen,
2005) and Latent Semantic Analysis (Landauer and
Dumais, 1997).

SenseClusters has participated in various forms at
different SenseEval and SemEval shared tasks, in-
cluding SemEval-2007 (Pedersen, 2007), SemEval-
2010 (Pedersen, 2010b) and also in an i2b2 clinical
medicine task (Pedersen, 2006).

2 Duluth System

While we refer to three Duluth systems (sys1, sys7,
and sys9), in reality these are all variations of the
same overall system. All three are based on second–
order context clustering as provided in SenseClus-
ters. The query terms are treated exactly like any
other word in the snippets, which is calledheadless
clustering in SenseClusters.

2.1 Common aspects to all systems

The input to sys1, sys7, and sys9 consists of 64
Web search snippets, each approximately 25 words
in length. All text was converted to upper case prior
to processing. The goal was to group the 64 snip-
pets for each query into k distinct clusters, where k
was automatically determined by the PK2 method of
SenseClusters (Pedersen and Kulkarni, 2006a; Ped-
ersen and Kulkarni, 2006b). Each discovered clus-
ter represents a different underlying meaning of the
given query term that resulted in those snippets be-
ing returned. Word sense induction was carried out
separately on the Web snippets associated with each
query term, meaning that the algorithm was run 100
times and clustered 64 Web page snippets each time.

In second–order context clustering, the words in
a context (i.e., Web snippet) to be clustered are re-
placed by vectors that are derived from some cor-
pus of text. The corpora used are among the main
differences in the Duluth systems. Once the words
in a context are replaced by vectors, those vectors
are averaged together to create a new representa-
tion of the context. That representation is said to
be second–orderbecause each word is represented
by its direct or first order co–occurrences, and simi-
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larities between words in the same Web snippet are
captured by the set of words that mutually co–occur
with them.

If car is represented by the vector[motor, mag-
azine, insurance], and if life is represented by the
vector[sentence, force, insurance], thencar andlife
are said to be second–order co-occurrences because
they both occur withinsurance. A second–order co-
occurrence can capture more indirect relationships
between words, and so these second–order connec-
tions tend to be more numerous and more subtle
than first–order co–occurrences (which would re-
quire thatcar and life co–occur near or adjacent to
each other in a Web snippet to establish a relation-
ship).

The co-occurrence matrix is created by finding bi-
grams that occur more than a given number of times
(this varies per system) and have a log-likelihood ra-
tio greater than 3.84.1 Then, the first word in a bi-
gram is represented in the rows of the matrix, the
second word is represented in the columns. The
value in the corresponding cell is the log-likelihood
score. This matrix is therefore not symmetric, and
has different entries forold ageandage old. Also,
any bigram that includes one or two stop words (e.g.,
to fire, running to, for the) will be excluded and not
included in the co-occurrence matrix and will not be
included in the overall sample count used for com-
puting the log–likelihood ratio. To summarize then,
words in a Web snippet are represented by the words
with which they occur in bigrams, where the context
word is the first word in the bigram, and the vector
is the set of words that follow it in bigrams.

Once the co–occurrence matrix is created, it may
be optionally reduced by Singular Value Decompo-
sition. The result of this will be a matrix with the
same number of rows prior to SVD, but a reduced
number of columns. The goal of SVD is to com-
press together columns of words with similar co–
occurrence patterns, and thereby reduce the size and
noisiness of the data. Whether the matrix is reduced
or not, then each word in each snippet to be clustered
is replaced by a vector from that matrix. A word is

1This value corresponds with a p-value of 0.05 when testing
for significance, meaning that bigrams with log-likelihood at
least equal to 3.84 have at least a 95% chance of having been
drawn from a population where their co-occurrence is not by
chance.

replaced by the row in the co-occurrence matrix to
which it corresponds. Any words that do not have
an entry in the co-occurrence matrix will not be rep-
resented. Then, the contexts are clustered using the
method of repeated bisections (Zhao and Karypis,
2004), where the number of clusters is automatically
discovered using the PK2 method.

2.2 Differences among systems

The main difference among the systems was the cor-
pora used to create their co-occurrence matrices.

The smallest corpus was used by sys7, which sim-
ply treated the 64 snippets returned by each query
as the corpus for creating a co–occurrence matrix.
Thus, each query term had a unique co-occurrence
matrix that was created from the Web snippets re-
turned by that query. This results in a very small
amount of data per query (approx. 25 words/snip-
pet * 64 snippets = 1600 words), and so bigrams
were allowed to have up to three intervening words
that were skipped (in order to increase the number
of bigrams used to create the co–occurrence ma-
trix). Bigrams were excluded if they only occurred 1
time, had a log–likelihood ratio of less than 3.84, or
were made up of one or two stop words. Even with
this more flexible definition of bigram, the resulting
co–occurrence matrices were still quite small. The
largest resulting co–occurrence matrix for any query
was 221 x 222, with 602 non–zero values (meaning
there were 602 different bigrams used as features).
The smallest of the co-occurrence matrices was 102
x 113 with 242 non–zero values. Given these small
sizes, SVD was not employed in sys7.

sys1 and sys9 used larger corpora, and therefore
required bigrams to be made up of adjacent words
that occurred 5 or more times, had log–likelihood
ratio scores of 3.84 or above, and contained no stop
words. Rather than having a different co–occurrence
matrix for each query, sys1 and sys9 created a single
co-occurrence matrix for all queries.

In sys1, all the Web snippet results for all 100
queries were combined into a single corpus. Thus,
the co–occurrence matrix was based on bigram fea-
tures found in a corpus of 6,400 Web snippets that
consisted of approximately 160,000 words. This
resulted in a co–occurrence matrix of size 771 x
952 with 1,558 non–zero values prior to SVD. After
SVD the matrix was 771 x 90, and all cells had non-
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zero values (as a result of SVD). Note that if there
are less than 3,000 columns in a co-occurrence ma-
trix, the columns are reduced down to 10% of their
original size. If there are more than 3,000 columns
then it is reduced to 300 dimensions. This follows
recommendations for SVD given for Latent Seman-
tic Analysis (Landauer and Dumais, 1997).

Rather than using task data, sys9 uses the first
10,000 paragraphs of Associated Press newswire
(APW) that appear in the English Gigaword corpus
(1st edition) (Graff and Cieri, 2003). This created
a corpus of approximately 3.6 million words which
resulted in a co-occurrence matrix prior to SVD of
9,853 x 10,995 with 43,199 non-zero values. After
SVD the co–occurrence matrix was 9,853 by 300.

3 Results

Various measures were reported by the task organiz-
ers, including F1 (F1-13), the Rand Index (RI), the
Adjusted Rand Index (ARI), and the Jaccard Coeffi-
cient. More details can be found in (Di Marco and
Navigli, 2013).

In addition we computed the paired F-Score (F-
10) (Artiles et al., 2009) as used in the 2010 Se-
mEval word sense induction task (Manandhar et al.,
2010) and the F-Measure (F-SC), which is provided
by SenseClusters. This allows for the comparison of
results from this task with the 2010 task and various
results from SenseClusters.

The organizers also provided scores for S-recall
and S-precision (Zhai et al., 2003), however for
these to be meaningful the results for each cluster
must be output in ranked order. The Duluth sys-
tems did not make a ranking distinction among the
instances in each cluster, and so these scores are not
particularly meaningful for the Duluth systems.

3.1 Comparisons to Baselines

Table 1 includes the results of the three submitted
Duluth systems, plus numerous baselines.RandX
designates a random baseline where senses were as-
signed by randomly assigning a value between 1 and
X. In word sense induction, the labels assigned to
discovered clusters are arbitrary, so a random base-
line is a convenient sanity check.MFS replicates the
most frequent sense baseline from supervised learn-
ing by simply assigning all instances for a word to

a single cluster. This is sometimes also known as
the “all–in–one” baseline.Gold are the evaluation
results when the gold standard data is provided as
input (and compared to itself).

The various baselines give us a sense of the char-
acteristics of the different evaluation measures, and
a few points emerge. We have argued previously
(Pedersen, 2010a) that any evaluation measure used
for word sense induction needs to be able to ex-
pose random baselines and distinguish them from
more systematic results. By this standard a number
of measures are found to be lacking. In SemEval–
2010 we demonstrated that the V-Measure (Rosen-
berg and Hirschberg, 2007) had an overwhelming
bias towards systems that produce larger numbers of
clusters – as a result it scored random baselines that
generated larger number of clusters (like Rand25
and Rand50) very highly.

The Rand Index (RI), which does not correct
for chance agreement, also scores random baselines
higher than both non–random systems and MFS.
The Adjusted Rand Index (ARI) corrects for chance
and scores random systems near 0, but it also scores
MFS near 0. According to ARI, random systems
and MFS perform at essentially the same level. This
is a troublesome tendency when evaluating word
sense induction systems, since MFS is often consid-
ered a reasonable baseline that provides useful re-
sults. Many words have relatively skewed distribu-
tions where they are mostly used in one sense, and
this is exactly what is approximated by MFS.

Of the measures included in Table 1, the paired
FScore (F-10), the F-Measure (F-SC), and the Jac-
card Coefficient provide results that seem most ap-
propriate for word sense induction. This is because
these measures score random baselines lower than
MFS, and that RandX scores lower than RandY,
when (X > Y). The paired FScore (F-10) and the
Jaccard Coefficient arrived at similar results, where
Rand50 received an extremely low score, and MFS
scored the highest. The F-measure (F-SC) had a
similar profile, except that the decline in evaluation
scores as X grows in RandX is somewhat less.

The paired F-Score (F-10), the F-Measure (F-SC),
and F1 (F1-13) all score MFS at approximately 54%,
which is intuitively appealing since that is the per-
centage of instances correctly clustered if all in-
stances are placed into a single cluster. However, in
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Table 1: Experimental Results
System F-10 F-SC Jaccard F1-13 RI ARI clusters size
sys1 46.53 46.90 31.79 56.83 52.18 5.75 2.5 26.5
sys7 45.89 44.03 31.03 58.78 52.04 6.78 3.0 25.2
sys9 35.56 37.21 22.24 57.02 54.63 2.59 3.3 19.8
Rand2 41.49 42.86 26.99 54.89 50.06 -0.04 2.0 32.0
Rand5 25.17 31.28 14.52 56.73 56.13 0.12 5.0 12.8
Rand10 15.05 28.71 8.18 59.67 58.10 0.02 10.0 6.4
Rand25 7.01 26.78 3.63 66.89 59.24 -0.15 23.2 2.8
Rand50 4.07 25.97 2.00 76.19 59.73 0.10 35.9 1.8
MFS 54.06 54.42 39.90 54.42 39.90 0.0 1.0 64.0
Gold 100.00 100.00 100.00 100.00 100.00 99.0 7.7 11.6

other cases these measures begin to diverge. F1 (F1-
13) tends to score random baselines even higher than
MFS, and Rand50 gets a higher score than Rand2,
which is somewhat counter intuitive. In fact accord-
ing to F1 (F1-13), Rand50 would have been the top
ranked system in task 11. It appears that F1 (F1-
13) is strongly influenced by cluster purity, but does
not penalize a system for creating too many clusters.
Thus, as the number of clusters increases, F1 (F1-
13) will consistently improve since smaller clusters
are nearly always more pure than larger ones.

Interestingly enough, the Rand Index (RI) and the
Jaccard Coefficient both score MFS at 39%. This
number does not have an intuitively appealing inter-
pretation, and thereafter RI and Jaccard diverge. RI
scores random baselines higher than MFS, whereas
the Jaccard Coefficient takes the more reasonable
path of scoring random baselines well below MFS.

3.2 Duluth Systems Evaluation

The FScore (F-10), F-Measure (F-SC), and Jaccard
Coefficient result in a comparable and consistent
view of the system results. sys1 was found to be the
most accurate, followed closely by sys7. All three
measures showed that sys9 lagged considerably.

While all three systems relied on second–order
co-occurrences, sys7 used the least amount of data,
while sys9 used the most. This shows that better re-
sults can be obtained using the Web snippets to be
clustered as the source of the co–occurrence data (as
sys1 and sys7 did) rather than larger amounts of pos-
sibly less relevant text (as sys9 did).

Each of these systems created a roughly compara-

ble number of clusters (on average, per query term,
shown in the column labeledclusters). sys7 created
2.53, while sys9 created 3.01, and sys1 found 3.32.
The average number of web snippets in the discov-
ered clusters (shown in the column labeledsize) are
likewise somewhat consistent: sys1 was the largest
at 26.5, sys7 had 25.2, and sys9 was the smallest
with 19.8. The gold standard found an average of
7.7 queries per cluster and 11.6 snippets per cluster.

After the competition sys1 and sys9 were run
without SVD. There was no significant difference in
results with or without SVD. This is consistent with
previous work that found SVD had relatively little
impact in name discrimination experiments (Peder-
sen et al., 2005).

4 Conclusions

sys7 achieved the best results by using very small
co-occurrence matrices of approximately one to two
hundred rows and columns. While small, this data
was most relevant to the task since it was made up of
the Web snippets to be clustered. sys1 increased the
size of the co–occurrence matrix to 771 x 96 by us-
ing all of the test data, but saw no increase in perfor-
mance. sys9 used the largest corpus, which resulted
in a co–occurrence matrix of 9,853 x 300, and had
the poorest results of the Duluth systems.

Sixty–four instances is a small amount of data for
clustering. In future we will augment each query
with additional unannotated web snippets that will
be discarded after clustering. Hopefully the core 64
instances that remain will be clustered more effec-
tively given the cushion provided by the extra data.
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Abstract

The aim of this paper is to perform Word
Sense induction (WSI); which clusters web
search results and produces a diversified list of
search results. It describes the WSI system de-
veloped for Task 11 of SemEval - 2013. This
paper implements the idea of monotone sub-
modular function optimization using greedy
algorithm.

1 Introduction

Two different types of systems were submitted un-
der Task 11 of SemEval - 2013 (Roberto Navigli and
Daniele Vannella, 2013). The two system types are
WSI (Word Sense Induction) and WSD (Word Sense
Disambiguation). WSD is the task of automatically
associating meaning with words. In WSD the pos-
sible meanings for a given word are drawn from an
existing sense inventory. In contrast, WSI aims at
automatically identifying the meanings of a given
word from raw text. A WSI system will be asked to
identify the meaning of the input query and cluster
the search results into semantically-related groups
according to their meanings. Instead, a WSD sys-
tem will be requested to sense-tag the above search
results with the appropriate senses of the input query
and this, again, will implicitly determine a clustering
of snippets (i.e., one cluster per sense).

∗This system was designed and submitted in the com-
petition SemEval-2013 under task 11 : Evaluating Word
Sense Induction & Disambiguation within An End-User
Application (Roberto Navigli and Daniele Vannella2013).
http://www.cs.york.ac.uk/semeval-2013/.

Our system implements the idea given in (Jin-
grui He and Hanghang Tong and Qiaozhu Mei and
Boleslaw Szymanski, 2012). This developed sys-
tem uses the concept of submodularity. The task
is treated as a submodular function maximization
which has its benefits. On the one hand, there exists
a simple greedy algorithm for monotone submod-
ular function maximization where the solution ob-
tained is guaranteed to be almost as good as the best
possible solution according to an objective. More
precisely, the greedy algorithm is a constant factor
approximation to the cardinality constrained version
of the problem, so that the approximate soultion is
in the bound of (1 − 1/e) of optimal solution. It is
also important to note that this is a worst case bound,
and in most cases the quality of the solution ob-
tained will be much better than this bound suggests.
In our system, monotone submodular objective of
(Jingrui He and Hanghang Tong and Qiaozhu Mei
and Boleslaw Szymanski, 2012) was implemented
to find the top k simultaneously relevant and diver-
sified list of search results. Once these top k results
are obtained, they are used as centroids to form clus-
ters by classifying each of remaining search results
to one of the centroid with maximum similarity, pro-
ducing k clusters. Those results which are not simi-
lar to any of the centroids are either put in a different
cluster or are assigned to cluster with highest simi-
larity.

2 Background on Submodularity

Our system uses the concept of submodularity.
Given a set of objects V = v1, ..., vn and a function
F : 2V → R that returns a real value for any subset
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S ⊆ V . The function F is said to be submodular if
it satisfies the property of diminishing returns, i.e.,
A ⊆ B ⊆ V \ v, a submodular function F must sat-
isfy F (A + v) − F (A) ≥ F (B + v) − F (B). A
set function F is monotone nondecreasing if ∀A ⊆
B,F (A) ≥ F (B). A monotone nondecreasing sub-
modular function is referred to as monotone sub-
modular.

We need to find the subset of bounded size
|S| ≤ k that maximizes the function F , e.g.
argmaxS⊆V F (S). In general, this operation is in-
tractable. As shown in (G.L. Nemhauser and L.A.
Wolsey, 1978), if function F is monotone submod-
ular, then a simple greedy algorithm finds an ap-
proximate solution which is guaranteed to be within
(1− 1/e) ∼ 0.63 of optimal solution. Many proper-
ties of submodular functions are common with con-
vex and concave functions (L. Lovász, 1983). One
of those is that they are closed under a number of
common combination operations such as summa-
tion, certain compositions, restrictions etc.

Previous work on submodularity is in (Hui Lin
and Jeff Bilmes, 2011) where a monotone submodu-
lar objective is maximized using a greedy algorithm
for document summarization. The objective func-
tion is:

F (S) = L(S) + λR(S)

where L(S) measures the coverage of summary
set S to the document V and R(S) measures di-
versity in S, which are properties of a good sum-
mary. λ ≥ 0 is trade-off coefficient. V represents
all the sentences (or other linguistic units) in a docu-
ment (or document collection). AlsoL(S) andR(S)
are monotone submodular functions. This work was
again extended in (Hui Lin and Jeff A. Bilmes, 2012)
where the submodular objective is itself a weighted
combination of several submodular functions, where
the weights are learnt in a max-margin setting. This
work also demonstrates the use of this idea for doc-
ument summarization.

3 System Description

The system works in 2 stages:

1. The first stage produces top k diversified and
relevant set of search results.

2. The second stage forms k clusters of search re-
sults treating top k results as centroids.

The problem of finding top k diversified and rele-
vant search results is posed as an optimization prob-
lem. This optimization function has the property
of diminishing returns and monotonicity, which is
a monotone submodular function. This enables
to design a scalable, greedy algorithm to find the
(1 − 1/e) near-optimal solution. The optimization
function is taken from (Jingrui He and Hanghang
Tong and Qiaozhu Mei and Boleslaw Szymanski,
2012) and presented below.

Objective Function : The aim is to find a subset
T of k search results which optimizes the objective
function.

argmax|T |=k w
∑
i∈T

qiri −
∑

i,j∈T

riSijrj

where, T is the subset of search results. q = S.r is
a nx1 vector. Intuitively, its ith element qi measures
the importance of ith search result. To be specific,
if xi is similar to many search results that are highly
relevant to the query, it is more important than the
search results whose neighbours are less relevant. S
is a nxn similarity matrix between search results. r
is a nx1 relevance vector of search results to query.
w is a regularization parameter which defines trade-
off between two terms.

The first term of the objective function measures
the total weighted relevance of T with respect to
query. It favours relevant search results from big
clusters. In other words, if two search results are
equally relevant to the query, one from a big cluster
and the other isolated, by using weighted relevance,
it prefers the former.

The second term measures the similarity among
the search results within T such that it penalizes the
selection of multiple relevant search results that are
very similar to each other. By including this term in
the objective function, we try to find a set of search
results which are highly relevant to the query and
also dissimilar to each other.

As the objective function is monotone submodu-
lar, the greedy algorithm finds the top k search re-
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sults (i.e. near optimal solution) with approximation
guarantee of (1− 1/e).

The second stage performs clustering using re-
sults of previous stage. The top k search results out-
put by the previous stage are treated as centroids and
the remaining search results are assigned to the cen-
troid with the maximum similarity.

4 Experimental Results

The implemented system was tested on data given
by SemEval - 20131(Roberto Navigli and Daniele
Vannella, 2013). Data contains 100 queries, each
with 64 search results. Each search result contains
title, url and snippet.

Only title and snippet information was used. The
relevance between query and a search result is cal-
culated using weighted Jaccard. Cosine similarity is
used to calculate the similarity between search re-
sults using only title and snippet. It was just bag of
words (i.e. unigram) approach and no other prepro-
cessing of data was done. In the first stage, system
produces top 10 diversified search results which are
then used as centroids to form 10 clusters. Those
results which are not similar to any of the centroids
are put in a different cluster, sometimes resulting in
11 clusters.

The evaluation method required : (i) to rank the
search results within each cluster according to the
confidence with which they belong to that cluster,
(ii) to rank the clusters according to their diversity.

The cluster ranking is kept same as the rank of
their centroids in top 10 results returned in first stage
of the system.

Also search results within each cluster are then
ranked by their average similarity to rest of the
search results in the same cluster, in descending or-
der with respect to the ranking score. The ranking
score of search result xi in cluster C is calculated as
below, which is used in our system :

score(xi) =
1

|C| − 1

∑
j:j∈C,i6=j

Sij

1http://www.cs.york.ac.uk/semeval-
2013/task11/index.php?id=data

The other way of ranking search results within a
cluster can be ranking by their relevance to the
query. In that case, it depends on how good the
relevance scores are. This ranking affects the abil-
ity of the system to diversify search results, i.e.,
Subtopic Recall@K and Subtopic Precision@r mea-
sures. The clustering quality is measured by mea-
sures of Rand Index (RI), Adjusted Rand Index
(ARI), F1-measure (F1) and Jaccard Index (JI). All
these evaluation metrics used are described in (An-
tonio Di Marco and Roberto Navigli, 2013). All
the given evaluation metric values are obtained for
the described data using the java evaluator provided
by SemEval - 2013 (Roberto Navigli and Daniele
Vannella, 2013). Our system’s evaluation measures
along with other systems, submitted in SemEval -
2013 are shown in tables 1, 2 and 3. Our system’s
name is task11-satty-approach1.

The clustering quality was found to be good as
indicated by F1 and RI while scoring low for ARI,
JI. In terms of diversification of search results, it did
not perform that well indicating that either ranking
of search results within each cluster or cluster rank-
ing or both were not that good.

5 Conclusion

In this paper Word Sense Induction was imple-
mented on web search clustering. The developed
system evaluated with respect to different evaluation
metrics. The system’s clustering quality was found
to be good while its ability to diversify search re-
sults was not that good. Better ranking of clusters as
well as ranking of search results within each cluster
can improve the system’s ability to diversify search
results.

The similarity score between search results were
calculated using only title and snippet, but it can also
be evaluated by fetching whole document. Since the
relevance score of each search result to the query
was not available, it was calculated by considering
occurrence frequency of query words in search re-
sults (i.e. title and snippet). If a better relevance
score were available by the search engine, the sys-
tem might have performed better. These two aspects
can be tested in further work.
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System Type F1 ARI RI Jaccard
Avg. No.

of
Clusters

Avg.
Cluster

Size

hdp-clusters-lemma WSI 0.683 0.2131 0.6522 0.3302 6.63 11.0756
hdp-clusters-nolemma WSI 0.6803 0.2149 0.6486 0.3375 6.54 11.6803
task11-satty-approach1 WSI 0.6709 0.0719 0.5955 0.1505 9.9 6.4631
task11-ukp-wsi-wp-pmi WSI 0.6048 0.0364 0.505 0.2932 5.86 30.3098
task11.duluth.sys7.pk2 WSI 0.5878 0.0678 0.5204 0.3103 3.01 25.1596
task11-ukp-wsi-wp-llr2 WSI 0.5864 0.0377 0.5109 0.3177 4.17 21.8702
task11-ukp-wsi-wacky-

llr
WSI 0.5826 0.0253 0.5002 0.3394 3.64 32.3434

task11.duluth.sys9.pk2 WSI 0.5702 0.0259 0.5463 0.2224 3.32 19.84
task11.duluth.sys1.pk2 WSI 0.5683 0.0574 0.5218 0.3179 2.53 26.4533

rakesh WSD 0.3949 0.0811 0.5876 0.3052 9.07 2.9441
singleton 1.0000 0.0000 0.6009 0.0000 64.0000 1.0000
allinone 0.5442 0.0000 0.3990 0.3990 1.0000 64.0000

gold 1.0000 0.9900 1.0000 1.0000 7.6900 11.5630

Table 1: The best result for each column is presented in boldface. singleton and allinone are baseline systems and
gold is the theoretical upper-bound for the task. WSI : Word Sense Induction, WSD : Word Sense Disambiguation

System Type K=5 K=10 K=20 K=40 K=60
hdp-clusters-nolemma WSI 0.508 0.6321 0.7926 0.9248 0.9821

hdp-clusters-lemma WSI 0.4813 0.6551 0.7886 0.9168 0.9856
task11-ukp-wsi-wacky-

llr
WSI 0.4119 0.5541 0.6861 0.839 0.9691

task11-ukp-wsi-wp-llr2 WSI 0.4107 0.5376 0.6887 0.8587 0.983
task11-ukp-wsi-wp-pmi WSI 0.4045 0.5625 0.687 0.8492 0.978
task11-satty-approach1 WSI 0.3897 0.489 0.6272 0.8214 0.9745
task11.duluth.sys7.pk2 WSI 0.3888 0.5379 0.7038 0.8623 0.9844
task11.duluth.sys9.pk2 WSI 0.3715 0.499 0.6891 0.8365 0.9734
task11.duluth.sys1.pk2 WSI 0.3711 0.5329 0.7124 0.8848 0.9849

rakesh WSD 0.4648 0.6236 0.7866 0.9072 0.9903

Table 2: S-recall@K for different values of K averaged over 100 queries.
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System Type r=0.5 r=0.6 r=0.7 r=0.8 r=0.9
hdp-clusters-lemma WSI 0.4885 0.4293 0.3519 0.2762 0.2376

hdp-clusters-nolemma WSI 0.4818 0.4388 0.3485 0.293 0.2485
task11-ukp-wsi-wp-pmi WSI 0.4283 0.334 0.2663 0.2292 0.2039
task11-ukp-wsi-wacky-

llr
WSI 0.4247 0.3173 0.2539 0.2271 0.1849

task11-ukp-wsi-wp-llr2 WSI 0.4206 0.3204 0.2657 0.2241 0.1858
task11.duluth.sys1.pk2 WSI 0.4008 0.3131 0.2673 0.2451 0.2177
task11.duluth.sys7.pk2 WSI 0.3911 0.3042 0.2654 0.2343 0.1995
task11.duluth.sys9.pk2 WSI 0.359 0.2972 0.2526 0.2126 0.1951
task11-satty-approach1 WSI 0.3494 0.2688 0.2355 0.204 0.1736

rakesh WSD 0.48 0.3904 0.3272 0.2792 0.2394

Table 3: S-precision@r for different values of r averaged over 100 queries.
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Abstract

In this paper, we describe the UKP Lab sys-
tem participating in the Semeval-2013 task
“Word Sense Induction and Disambiguation
within an End-User Application”. Our ap-
proach uses preprocessing, co-occurrence ex-
traction, graph clustering, and a state-of-the-
art word sense disambiguation system. We
developed a configurable pipeline which can
be used to integrate and evaluate other com-
ponents for the various steps of the complex
task.

1 Introduction

The task “Evaluating Word Sense Induction and
Word Sense Disambiguation in an End-User Ap-
plication” of SemEval-2013 (Navigli and Vannella,
2013) aims at an extrinsic evaluation scheme for
WSI to overcome the difficulties inherent to WSI
evaluation. The task requires building a WSI sys-
tem and combining it with a WSD step to assign the
induced sentences to example instances.

Word sense disambiguation (WSD) is the task
of determining the correct meaning for an ambigu-
ous word from its context. WSD algorithms usu-
ally choose one sense out of a given set of possible
senses for each word. A resource that enumerates
possible senses for each word is called a sense in-
ventory. Manually created inventories come usually
in form of lexical semantic resources, such as Word-
Net or more specifically created inventories such as
OntoNotes (Hovy et al., 2006).

Word sense induction (WSI) on the other hand
aims to create such an inventory from a corpus in

an unsupervised manner. For each word that should
be disambiguated, a WSI algorithm creates a set of
context clusters that will be used to define and de-
scribe the senses.

We build our system upon the open-source DKPro
framework 1 and a corresponding WSD component
(upcoming).

Input for the task comes as two files. One contains
the search queries, also referred as topics. Sense in-
duction will be performed for each of those topics.
The second file contains 6400 entries from the re-
sult pages of a search engine. Each entry consists of
the title, a snippet and the URL of the corresponding
web page.

2 Related Work

One of the early approaches to WSI (Schütze, 1998)
maps words into a vector space and represents
word contexts as vector-sums and use cosine vec-
tor similarity, clustering is performed by expectation
maximization (EM) clustering. Dorow and Wid-
dows (2003) use the BNC to build a co-occurrence
graph for nouns, based on a co-occurrence fre-
quency threshold. They perform Markov cluster-
ing on this graph. Pantel and Lin (2002) proposes
a clustering approach called clustering by commit-
tee (CBC). This algorithm first selects the words
with the highest similarity based on mutual infor-
mation and then builds groups of highly connected
words called committees. It then iteratively assigns
the remaining words to one of the committee clus-
ters by comparing them to the averaged the com-

1http://code.google.com/p/dkpro-core-asl/
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mittee feature vectors. This exploits the assumption
that two or more words together disambiguate each
other, Bordag (2006) extends on this idea by using
word triples to form non-ambiguous seed-clusters.
Many approaches use a variety of graph clustering
algorithms for WSI: Others (Klapaftis and Manand-
har, 2010) use hierarchical agglomerative clustering
on hierarchical random graphs created from word
co-occurrences. Di Marco and Navigli (2013) use
word sense induction for web search result cluster-
ing. They introduce a maximum spanning tree al-
gorithm that operates on co-occurrence graphs built
from large corpora, such as ukWaC (Baroni et al.,
2009). The system by Pedersen (2010) employs
clustering first- and second-order co-occurrences as
well as singular value decomposition on the co-
occurrence matrix, which is clustered using repeated
bisections. Jurgens (2011) employ a graph-based
community detection algorithm on a co-occurrence
graph. Distributional approaches for WSI include
LSA Apidianaki and Van de Cruys (2011) or LDA
(Brody and Lapata, 2009).

3 Our Approach

Our system consists of two independent parts. The
first is a batch process that creates database con-
taining co-occurrence statistics derived from a back-
ground corpus. The second is the actual WSI and
WSD pipeline doing the result clustering. Both parts
include identical preprocessing steps for segmenta-
tion and lemmatization.

The pipeline (Figure 1) first performs Word Sense
Induction, resulting in an induced sense inventory.
A WSD algorithm then uses this inventory to dis-
ambiguate all instances of the search query within a
web-page. A majority voting finally assigns a sense
to each result-snippet.

The sense induction algorithm is based on graph
clustering on a co-occurrence graph, similar to the
approach by Di Marco and Navigli (2013). Our ap-
proach differs from previous work in the way we
perform a greedy search for additional context and
how it combines WSI with an advanced WSD step
using lexical expansions. Moreover, we consider
our generic UIMA-based WSD and WSI system as
a useful basis for experimentation and evaluation of
WSI systems.

# words # co-occurrences
Wikipedia 3,011,397 96,979,920
ukWaC 8,687,711 441,005,478

Table 1: Size of co-occurrence databases

3.1 Preprocessing

The pipeline first reads topics and snippets. If the
web-page can be downloaded at the URL that cor-
responds to the result, it is cleaned by an HTML
parser and the plain text is appended to the snippet.
As further steps we segment and lemmatize the in-
put. We apply the same preprocessing to snippets,
queries and the corpora.

3.2 Co-occurrence Extraction

We calculate the log-likelihood ratio (LLR) (Dun-
ning, 1993) and point-wise mutual information
(PMI) (Church and Hanks, 1990) of a word pair co-
occurring at sentence level using a modified version
of the collocation statistics implemented in Apache
Mahout 2. Even when sorting the co-occurrences by
PMI, we employ a minimum support cut-off based
on the LLR, which is based on significance. All
pairs with a log-likelihood ratio < 1 are discarded.
This value is lower than the significance level of 3̃.8
we found in the literature, but because in the ex-
pand step (see algorithm 2) we require more than
two words to co-occur with the target word, we used
a lower value. We use the English Wikipedia 3 and
ukWaC (Baroni et al., 2009) as background corpus.
Table 1 gives an overview about the obtained co-
occurrence pairs.

3.3 Clustering Algorithm

The algorithm is a two-step approach that first cre-
ates an initial clustering of a graph G = (V,E)
and then improves this clustering in a second step.
The initial step (Algorithm 1) starts by retrieving the
top n = 150 most similar terms for the target word
by querying the co-occurrence database we created
in section 3.2. These represent vertices in a graph.
We then construct 4 a minimum spanning tree (mst)

2http://mahout.apache.org
3Dump from April 2011
4For all of our graph operations, we employ the igraph li-

brary for R, http://igraph.sf.net
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Figure 1: WSI and WSD Pipeline

by inserting edges {vi, vj} from the co-occurrence
database. The weight w({vi, vj}) of each edge is
set to the inverse of the used similarity measure
dist (LLR or PMI) between those terms. The min-
imum spanning tree then is cut into subtrees be it-
eratively removing the edge with the highest edge-
betweenness (Freeman, 1977) (betweeness) until
the size of the largest component of G falls below
a threshold Sinitial.

Algorithm 1 initialClusters
V (G0)← top n most similar words to target word
w(vi, vj)← dist(termi, termj)
G← mst(G0)
V (G)← V (G) \ vtarget

while max(|C(G)|) > Sintitial do
E(G)← E(G) \ arg maxe(betweeness(e))

end while

The resulting partitioning of the graph is the start-
ing point for the second phase of the algorithm,
which we call expand/join step (Algorithm 2). Dur-
ing this step, the algorithm looks iteratively at all
clusters Csmall of size s smaller than Smax = 9 (de-
termined empirically), starting with the largest ones.
From each of these clusters, it constructs a query
to the co-occurrence database, retrieving all terms
that significantly co-occur together with all terms in
the respective cluster (querys) and with the target
word (E). This list of terms is then compared to
all clusters Clarge with |C| > s . If the normalized
intersection between one of those Clarge is above a
threshold t = 0.3 (determined empirically), we as-
sume that the Csmall represents the same sense as
the Clarge and merge those clusters. If this is not the
case for any of the larger clusters, we assume that
Csmall represents a sense of its own extend the clus-

ter by adding edges between vertices representing
the expansion terms and Csmall.

Algorithm 2 expandJoin
Require: G is a minimum spanning forest

for s = Smax → 1 do
for all Csmall(G), |Csmall| = s do

E ← querys(v1, .., vi)
for all Clarge ∈ G, |Clarge| > s do

if |Clarge ∩ E|/|Clarge| > t then
Clarge ← Clarge ∪ Csmall

else
Csmall ← Csmall ∪ E

end if
end for

end for
end for

3.4 Word Sense Disambiguation

We use the DKPro WSD framework, which imple-
ments various WSD algorithms, with the same sys-
tem configuration as reported by Miller et al. (2012).
It uses a variant of the Simplified Lesk Algorithm
(Kilgarriff et al., 2000). This algorithm measures
the overlap between a words context and the tex-
tual descriptions of senses within a machine read-
able dictionary, such as WordNet. The senses that
have been induced in the previous step are provided
to the framework as a sense inventory. Instead of
using sense descriptions, we now compute the over-
lap between the sense clusters and the context of
the target word. The WSD system expands both
the word context and the sense clusters with syn-
onyms from a distributional thesaurus (DT), similar
to Lin (1998). The DT has been created from 10M
dependency-parsed sentences of English newswire
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Run F1 ARI RI JI # clusters avg cl. size
wacky-llr 0.5826 0.0253 0.5002 0.3394 3.6400 32.3434
wp-llr 0.5864 0.0377 0.5109 0.3177 4.1700 21.8702
wp-pmi 0.6048 0.0364 0.5050 0.2932 5.8600 30.3098

Table 2: Results for the submitted runs

from the Leipzig Corpora Collection (Biemann et
al., 2007) for word similarity5. Besides knowledge-
based WSD, the DT also has been successfully used
for improving the performance of semantic text sim-
ilarity (Bär et al., 2012). The WSD component dis-
ambiguates each instance of the search query within
the snippet and web page individually.

4 Results

The clustering was evaluated using four different
metrics as described by Di Marco and Navigli
(2013). The Rand index and its chance-adjusted
variant ARI are common cluster evaluation metrics.
The adjusted rand index gives special weight to less
frequent senses. The Jaccard index (JI) disregards
the cases where two results are assigned to differ-
ent clusters in the gold standard, therefore it is less
sensitive to the granularity of the clustering. The
F1-Measure gives more attention to the individual
clusters and how they cover the topics in the gold
standard.

We submitted several runs for different config-
urations of the co-occurrence extraction (Table 2).
Between runs, we did not modify the configuration
of the sense induction or disambiguation step. The
first run used collocations extracted from ukWaC
scored by LLR metric (wacky-llr), and two others
used Wikipedia as background corpus. One of the
WP-based runs used PMI as association metric (wp-
pmi), the other one used LLR (wp-llr). The run on
the larger ukWaC corpus scored best with regard to
the Jaccard measure, but worst in the adjusted Rand
index measure. We attribute low scores for ARI to
the fact that our system did not induce certain less
frequent senses, resulting in small average number
of clusters. The coarse grained clusters however,
have been assigned quite well by our WSD system,
as shown by relatively high Jaccard Index. For the

5The software used to create the DT is available from
http://www.jobimtext.org

WP-based runs, the clustering based on PMI pro-
duced more clusters and therefore scored higher on
the F1 measure than the LLR-based run. From an
exploratory analysis of the created clusters, we as-
sume that the WP-based runs have a higher chance
to find more rare senses in this specific task, since
the gold standard was also based on Wikipedia dis-
ambiguation pages.

5 Conclusion

We presented our word sense induction and dis-
ambiguation pipeline for search result clustering.
Our contribution is a sense induction algorithm that
incrementally retrieves more context from a co-
occurrence database and the integration of WSI and
WSD into a UIMA-based pipeline for easy experi-
mentation. The system scored best with regard to
Jaccard similarity of clusters, while performing low
especially with the adjusted rand index. We assume
that our sense granularity was too low for this task
and failed to create clusters for rare senses. This
could be improved by making the merge phase of
the induction algorithm less eager. Furthermore,
increasing the size of the background corpus, e.g.
by combining the both corpora that have been used
could increase the size of the context clusters espe-
cially for rare senses, which should further improve
the performance in these cases. We attribute the
good results with regard to the F1 and Jaccard mea-
sures also to our state-of-the-art word sense disam-
biguation step and the use of the distributional the-
saurus.
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Abstract

This paper describes our system for Task 11
of SemEval-2013. In the task, participants
are provided with a set of ambiguous search
queries and the snippets returned by a search
engine, and are asked to associate senses with
the snippets. The snippets are then clus-
tered using the sense assignments and sys-
tems are evaluated based on the quality of the
snippet clusters. Our system adopts a pre-
existing Word Sense Induction (WSI) method-
ology based on Hierarchical Dirichlet Process
(HDP), a non-parametric topic model. Our
system is trained over extracts from the full
text of English Wikipedia, and is shown to per-
form well in the shared task.

1 Introduction

The basic premise behind research on word sense
disambiguation (WSD) is that there exists a static,
discrete set of word senses that can be used to la-
bel distinct usages of a given word (Agirre and Ed-
monds, 2006; Navigli, 2009). There are various pit-
falls underlying this premise, including: (1) what
sense inventory is appropriate for a particular task
(given that sense inventories can vary considerably
in their granularity and partitioning of word usages)?
(2) given that word senses tend to take the form of
prototypes, is discrete labelling a felicitous represen-
tation of word usages, especially for non-standard
word usages? (3) how should novel word usages be
captured under this model? and (4) given the rapid
pace of language evolution on real-time social me-
dia such as Twitter and Facebook, is it reasonable

to assume a static sense inventory? Given this back-
drop, there has been a recent growth of interest in the
task of word sense induction (WSI), where the word
sense representation for a given word is automati-
cally inferred from a given data source, and word
usages are labelled (often probabilistically) accord-
ing to that data source. While WSI has considerable
appeal as a task, intrinsic cross-comparison of WSI
systems is fraught with many of the same issues as
WSD (Agirre and Soroa, 2007; Manandhar et al.,
2010), leading to a move towards task-based WSI
evaluation, such as in Task 11 of SemEval-2013, ti-
tled “Evaluating Word Sense Induction & Disam-
biguation within an End-User Application”.

This paper presents the UNIMELB system entry to
SemEval-2013 Task 11. Our method is based heav-
ily on the WSI methodology proposed by Lau et
al. (2012) for novel word sense detection. Largely
the same methodology was also applied to SemEval-
2013 Task 13 on WSI (Lau et al., to appear).

2 System Description

Our system is based on the WSI methodology pro-
posed by Lau et al. (2012) for the task of novel word
sense detection. The core machinery of our sys-
tem is driven by a Latent Dirichlet Allocation (LDA)
topic model (Blei et al., 2003). In LDA, the model
learns latent topics for a collection of documents,
and associates these latent topics with every docu-
ment in the collection. A topic is represented by
a multinomial distribution of words, and the asso-
ciation of topics with documents is represented by a
multinomial distribution of topics, with one distribu-
tion per document. The generative process of LDA
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for drawing word w in document d is as follows:

1. draw latent topic z from document d;

2. draw word w from the chosen latent topic z.

The probability of selecting word w given a doc-
ument d is thus given by:

P (w|d) =
T∑

z=1

P (w|t = z)P (t = z|d).

where t is the topic variable, and T is the number of
topics.

The number of topics, T , is a parameter in LDA,
and the model tends to be highly sensitive to this set-
ting. To remove the need for parameter tuning over
development data, we make use of a non-parametric
variant of LDA, in the form of a Hierarchical Dirich-
let Process (HDP: Teh et al. (2006)). HDP learns the
number of topics based on data, and the concentra-
tion parameters γ and α0 control the variability of
topics in the documents (for details of HDP please
refer to the original paper, Teh et al. (2006)).

To apply HDP in the context of WSI, the latent
topics are interpreted as the word senses, and the
documents are usages that contain the target word of
interest (or search query in the case of Task 11). That
is, given a search query (e.g. Prince of Persia), a
“document” in our application is a sentence/snippet
containing the target word. In addition to the bag of
words surrounding the target word, we also include
positional context word information, as used in the
original methodology of Lau et al. (2012). That is,
we introduce an additional word feature for each of
the three words to the left and right of the target
word. An example of the topic model features for
a context sentence is given in Table 1.

2.1 Background Corpus and Preprocessing

As part of the task setup, we were provided with
snippets for each search query, constituting the doc-
uments for the topic model for that query (each
search query is topic-modelled separately). Our sys-
tem uses only the text of the snippets as features, and
ignores the URL information. The text of the snip-
pets is tokenised and lemmatised using OpenNLP
and Morpha (Minnen et al., 2001).

As there are only 64 snippets for each query in
the test dataset, which is very small by topic mod-
elling standards, we turn to English Wikipedia to
expand the data, by extracting all context sentences
that contain the search query in the full collection
of Wikipedia articles.1 Each extracted usage is a
three-sentence context containing the search query:
the original sentence that contains the actual usage
and its preceding and succeeding sentences. The
extraction of usages from Wikipedia significantly
increases the amount of information for the topic
model to learn the senses for the search queries. To
give an estimate: for very ambiguous queries such
as queen we extracted almost 150,000 usages from
Wikipedia; for most queries, however, this number
tends to be a few thousand usages.

To summarise, for each search query we apply the
HDP model to the combined collection of the 64
snippets and the extracted usages from Wikipedia.
The topic model learns the senses/topics for all
documents in the collection, but we only use the
sense/topic distribution for the 64 snippets as they
are the documents that are evaluated in the shared
task.

Our English Wikipedia collection is tokenised and
lemmatised using OpenNLP and Morpha (Minnen et
al., 2001). The search queries provided in the task,
however, are not lemmatised. Two approaches are
used to extract the usages of search queries from
Wikipedia:

HDP-CLUSTERS-LEMMA Search queries are lem-
matised using Morpha (Minnen et al., 2001),
and both the original and lemmatised forms are
used for extraction;2

HDP-CLUSTERS-NOLEMMA Search queries are
not lemmatised and only their original forms
are used for extraction.

1The Wikipedia dump was retrieved on November 28th
2009.

2Morpha requires the part-of-speech (POS) of a given word,
which is determined by the majority POS aggregated over all of
that word’s occurrences in Wikipedia.
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Search query dogs
Context sentence Most breeds of dogs are at most a few hundred years old
Bag-of-word features most, breeds, of, are, at, most, a, few, hundred, years, old
Positional word features most #-3, breeds #-2, of #-1, are #1, at #2, most #3

Table 1: An example of topic model features.

System F1 ARI RI JI Avg. No. of Avg. Cluster
Clusters Size

HDP-CLUSTERS-LEMMA 0.6830 0.2131 0.6522 0.3302 6.6300 11.0756
HDP-CLUSTERS-NOLEMMA 0.6803 0.2149 0.6486 0.3375 6.5400 11.6803
TASK11.DULUTH.SYS1.PK2 0.5683 0.0574 0.5218 0.3179 2.5300 26.4533
TASK11.DULUTH.SYS7.PK2 0.5878 0.0678 0.5204 0.3103 3.0100 25.1596
TASK11.DULUTH.SYS9.PK2 0.5702 0.0259 0.5463 0.2224 3.3200 19.8400
TASK11-SATTY-APPROACH1 0.6709 0.0719 0.5955 0.1505 9.9000 6.4631
TASK11-UKP-WSI-WACKY-LLR 0.5826 0.0253 0.5002 0.3394 3.6400 32.3434
TASK11-UKP-WSI-WP-LLR2 0.5864 0.0377 0.5109 0.3177 4.1700 21.8702
TASK11-UKP-WSI-WP-PMI 0.6048 0.0364 0.5050 0.2932 5.8600 30.3098
RAKESH 0.3949 0.0811 0.5876 0.3052 9.0700 2.9441
SINGLETON 1.0000 0.0000 0.6009 0.0000 64.0000 1.0000
ALLINONE 0.5442 0.0000 0.3990 0.3990 1.0000 64.0000
GOLD 1.0000 0.9900 1.0000 1.0000 7.6900 11.5630

Table 2: Cluster quality results for all systems. The best result for each column is presented in boldface. SINGLETON
and ALLINONE are baseline systems and GOLD is the theoretical upper-bound for the task.

3 Experiments and Results

Following Lau et al. (2012), we use the default pa-
rameters (γ = 0.1 and α0 = 1.0) for HDP.3 For each
search query, we apply HDP to induce the senses,
and a distribution of senses is produced for each
“document” in the model. As the snippets in the test
dataset correspond to the documents in the model
and evaluation is based on “hard” clusters of snip-
pets, we assign a sense to each snippet based on the
sense (= topic) which has the highest probability for
that snippet.

The task requires participants to produce a ranked
list of snippets for each induced sense, based on the
relative fit between the snippet and the sense. We in-
duce the ranking based on the sense probabilities as-
signed to the senses, such that snippets that have the
highest probability of the induced sense are ranked
highest, and snippets with lower sense probabilities

3Our implementation can be accessed via https://
github.com/jhlau/hdp-wsi.

are ranked lower.
Two classes of evaluation are used in the shared

task:

1. cluster quality measures: Jaccard Index (JI),
RandIndex (RI), Adjusted RandIndex (ARI)
and F1;

2. diversification of search results: Subtopic Re-
call@K and Subtopic Precision@r.

Details of the evaluation measures are described in
Navigli and Vannella (2013).

The idea behind the second form of evaluation
(i.e. diversification of search results) is that search
engine results should cluster the results based on
senses (of the query term in the documents) given an
ambiguous query. For example, if a user searches for
apple, the search engine may return results related to
both the computer brand sense and the fruit sense of
apple. Given this assumption, the best WSI/WSD
system is the one that can correctly identify the di-
versity of senses in the snippets.
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Figure 1: Subtopic Recall@K for all participating systems.

Cluster quality, subtopic recall@K and subtopic
precision@r results for all systems entered in the
task are presented in Table 2, Figure 1 and Figure 2,
respectively.

In terms of cluster quality, our systems
(HDP-CLUSTERS-LEMMA and HDP-CLUSTERS-
NOLEMMA) consistently outperform the other teams
for all measures except for the Jaccard Index (where
we rank second and third, by a narrow margin). The
average number of induced clusters and the average
cluster size of our systems are similar to those
of the gold standard system (GOLD), indicating
that our systems are learning an appropriate sense
granularity.

In terms of diversification of search results, our
systems perform markedly better than most teams,
other than RAKESH which trails closely behind our
systems (despite a relatively low ranking in terms of
the cluster quality evaluation). Overall, the results
are encouraging and our system performs very well
over the task.

4 Discussion and Conclusion

Our system adopts the WSI system proposed in Lau
et al. (2012) with no parameters tuned for this task,

and performs very well over it. Parameter tuning and
exploiting URL information in the snippets could
potentially boost the system performance further.
Other background corpora (such as news articles)
could also be used to increase the size of the training
data. We leave these ideas for future work.

Inspecting the difference between the HDP-
CLUSTERS-LEMMA and HDP-CLUSTERS-
NOLEMMA approaches, only 6 out of the 100
lemmas have a lemmatised form which differs from
the original query composition: pods (pod), ten
commandments (ten commandment), guild wars
(guild war), stand by me (stand by i), sisters of
mercy (sister of mercy) and lord of the flies (lord of
the fly). In most cases, including the lemmatised
query results in the extraction of additional useful
usages, e.g. using only the original form lord of
the flies would extract no usages from Wikipedia
(because this corpus has itself been lemmatised).
In other cases, however, including the lemmatised
forms results in many common noun usages, e.g.
the number of usages of the lemmatised pod is
significantly greater than that of the original form
pods (which corresponds to proper noun usages in
the lemmatised corpus), resulting in senses being
induced only for common noun usages of pods. The
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Figure 2: Subtopic Precision@r for all participating systems.

advantages and disadvantages of both approaches
are reflected in the results: performance is mixed
and no one method clearly outperforms the other.

To conclude, we apply a topic model-based WSI
methodology to the task of web result clustering, us-
ing English Wikipedia as an external resource for ex-
tracting additional usages. Our system is completely
unsupervised and requires no annotated resources,
and appears to perform very well on the task.
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Abstract

This paper presents the SemEval-2013 task on
multilingual Word Sense Disambiguation. We
describe our experience in producing a mul-
tilingual sense-annotated corpus for the task.
The corpus is tagged with BabelNet 1.1.1,
a freely-available multilingual encyclopedic
dictionary and, as a byproduct, WordNet 3.0
and the Wikipedia sense inventory. We present
and analyze the results of participating sys-
tems, and discuss future directions.

1 Introduction

Word Sense Disambiguation (WSD), the task of au-
tomatically assigning predefined meanings to words
occurring in context, is a fundamental task in com-
putational lexical semantics (Navigli, 2009; Navigli,
2012). Several Senseval and SemEval tasks have
been organized in the past to study the performance
and limits of disambiguation systems and, even
more importantly, disambiguation settings. While
an ad-hoc sense inventory was originally chosen for
the first Senseval edition (Kilgarriff, 1998; Kilgarriff
and Palmer, 2000), later tasks (Edmonds and Cot-
ton, 2001; Snyder and Palmer, 2004; Mihalcea et
al., 2004) focused on WordNet (Miller et al., 1990;
Fellbaum, 1998) as a sense inventory. In 2007 the
issue of the fine sense granularity of WordNet was
addressed in two different SemEval disambiguation
tasks, leading to the beneficial creation of coarser-
grained sense inventories from WordNet itself (Nav-
igli et al., 2007) and from OntoNotes (Pradhan et al.,
2007).

In recent years, with the exponential growth of
the Web and, consequently, the increase of non-
English speaking surfers, we have witnessed an up-
surge of interest in multilinguality. SemEval-2010
tasks on cross-lingual Word Sense Disambiguation
(Lefever and Hoste, 2010) and cross-lingual lexi-
cal substitution (Mihalcea et al., 2010) were orga-
nized. While these tasks addressed the multilin-
gual aspect of sense-level text understanding, they
departed from the traditional WSD paradigm, i.e.,
the automatic assignment of senses from an existing
inventory, and instead focused on lexical substitu-
tion (McCarthy and Navigli, 2009). The main factor
hampering traditional WSD from going multilingual
was the lack of a freely-available large-scale multi-
lingual dictionary.

The recent availability of huge collaboratively-
built repositories of knowledge such as Wikipedia
has enabled the automated creation of large-scale
lexical knowledge resources (Hovy et al., 2013).
Over the past few years, a wide-coverage multi-
lingual “encyclopedic” dictionary, called BabelNet,
has been developed (Navigli and Ponzetto, 2012a).
BabelNet1 brings together WordNet and Wikipedia
and provides a multilingual sense inventory that cur-
rently covers 6 languages. We therefore decided to
put the BabelNet 1.1.1 sense inventory to the test
and organize a traditional Word Sense Disambigua-
tion task on a given English test set translated into 4
other languages (namely, French, German, Spanish
and Italian). Not only does BabelNet enable mul-
tilinguality, but it also provides coverage for both
lexicographic (e.g., apple as fruit) and encyclopedic

1http://babelnet.org
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meanings (e.g., Apple Inc. as company). In this pa-
per we describe our task and disambiguation dataset
and report on the system results.

2 Task Setup

The task required participating systems to annotate
nouns in a test corpus with the most appropriate
sense from the BabelNet sense inventory or, alter-
natively, from two main subsets of it, namely the
WordNet or Wikipedia sense inventories. In contrast
to previous all-words WSD tasks we did not focus
on the other three open classes (i.e., verbs, adjec-
tives and adverbs) since BabelNet does not currently
provide non-English coverage for them.

2.1 Test Corpus

The test set consisted of 13 articles obtained from
the datasets available from the 2010, 2011 and 2012
editions of the workshop on Statistical Machine
Translation (WSMT).2 The articles cover different
domains, ranging from sports to financial news.

The same article was available in 4 different lan-
guages (English, French, German and Spanish). In
order to cover Italian, an Italian native speaker man-
ually translated each article from English into Ital-
ian, with the support of an English mother tongue
advisor. In Table 1 we show for each language the
number of words of running text, together with the
number of multiword expressions and named enti-
ties annotated, from the 13 articles.

2.2 Sense Inventories

2.2.1 BabelNet inventory
To semantically annotate all the single- and multi-

word expressions, as well as the named entities, oc-
curring in our test corpus we used BabelNet 1.1.1
(Navigli and Ponzetto, 2012a). BabelNet is a mul-
tilingual “encyclopedic dictionary” and a semantic
network currently covering 6 languages, namely:
English, Catalan, French, German, Italian and Span-
ish. BabelNet is obtained as a result of a novel inte-
gration and enrichment methodology. This resource
is created by linking the largest multilingual Web en-
cyclopedia – i.e., Wikipedia – to the most popular
computational lexicon – i.e., WordNet 3.0. The inte-
gration is performed via an automatic mapping and

2http://www.statmt.org/wmt12/

by filling in lexical gaps in resource-poor languages
with the aid of Machine Translation (MT).

Its lexicon includes lemmas which denote both
lexicographic meanings (e.g., balloon) and ency-
clopedic ones (e.g., Montgolfier brothers). The
basic meaning unit in BabelNet is the Babel
synset, modeled after the WordNet synset (Miller
et al., 1990; Fellbaum, 1998). A Babel synset
is a set of synonyms which express a concept
in different languages. For instance, { Globus
aerostàticCA, BalloonEN, AérostationFR, BallonDE,
Pallone aerostaticoIT, . . . , Globo aerostáticoES } is
the Babel synset for the balloon aerostat, where the
language of each synonym is provided as a subscript
label. Thanks to their multilingual nature, we were
able to use Babel synsets as interlingual concept tags
for nouns occurring within text written in any of the
covered languages.

2.2.2 WordNet and Wikipedia inventories
Since BabelNet 1.1.1 is a superset of the Word-

Net 3.0 and Wikipedia sense inventories,3 once text
is annotated with Babel synsets, it turns out to
be annotated also according to either WordNet or
Wikipedia, or both. In fact, in order to induce the
WordNet annotations, one can restrict to those lex-
ical items annotated with Babel synsets which con-
tain WordNet senses for the target lemma; similarly,
for Wikipedia, we restrict to those items tagged with
Babel synsets which contain Wikipedia pages for the
target lemma.

2.3 BabelNet sense inventory validation
Because BabelNet is an automatic integration of
WordNet and Wikipedia, the resulting Babel synsets
may contain WordNet and Wikipedia entries about
different meanings of the same lemma. The under-
lying cause is a wrong mapping between the two
original resources. For instance, in BabelNet 1.1
the WordNet synset { arsenic, As, atomic number
33 } was mapped to the Wikipedia page AS (RO-
MAN COIN), and therefore the same Babel synset
mixed the two meanings.

In order to avoid an inconsistent semantic tag-
ging of text, we decided to manually check all the
mappings in BabelNet 1.1 between Wikipedia pages

3For version 1.1.1 we used the English Wikipedia database
dump from October 1, 2012.
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Language Instances Single- Multiword Named Mean senses Mean senses
words expressions Entities per instance per lemma

BabelNet

English 1931 1604 127 200 1.02 1.09
French 1656 1389 89 176 1.05 1.15
German 1467 1267 21 176 1.00 1.05
Italian 1706 1454 211 41 1.22 1.27
Spanish 1481 1103 129 249 1.15 1.19

Wikipedia

English 1242 945 102 195 1.15 1.16
French 1039 790 72 175 1.18 1.14
German 1156 957 21 176 1.07 1.08
Italian 1977 869 85 41 1.20 1.18
Spanish 1103 758 107 248 1.11 1.10

WordNet

English 1644 1502 85 57 1.01 1.10

Table 1: Statistics for the sense annotations of the test set.

and WordNet senses involving lemmas in our En-
glish test set for the task. Overall, we identified 8306
synsets for 978 lemmas to be manually checked. We
recruited 8 annotators in our research group and as-
signed each lemma to two annotators. Each anno-
tator was instructed to check each Babel synset and
determine whether any of the following three opera-
tions was needed:

• Delete a mapping and separate the WordNet
sense from the Wikipedia page (like in the ar-
senic vs. AS (ROMAN COIN) example above);

• Add a mapping between a WordNet sense and a
Wikipedia page (formerly available as two sep-
arate Babel synsets);

• Merge two Babel synsets which express the
same concept.

After disagreement adjudication carried out by
the first author, the number of delete, add and merge
operations was 493, 203 and 43, respectively, for a
total of 739 operations (i.e., 8.8% of synsets cor-
rected). As a result of our validation of BabelNet
1.1, we obtained version 1.1.1, which is currently
available online.

2.4 Sense Annotation

To ensure high quality annotations, the annotation
process was completed in three phases. Because
BabelNet is a superset of both the WordNet and
Wikipedia sense inventories, all annotators used the
BabelNet 1.1.1 sense inventory for their respective
language. These BabelNet annotations were then
projected into WordNet and Wikipedia senses. An-
notation was performed by one native speaker each
for English, French, German and Spanish and, for
Italian, by two native speakers who annotated dif-
ferent subsets of the corpus.

In the first phase, each annotator was instructed
to inspect each instance to check that (1) the lemma
was tagged with the correct part of speech, (2) lem-
mas were correctly annotated as named entity or
multiword expressions, and (3) the meaning of the
instance’s lemma had an associated sense in Ba-
belNet. Based on these criteria, annotators removed
dozens of instances from the original data.

In the second phase, each instance in the En-
glish dataset was annotated using BabelNet senses.
To reduce the time required for annotation in the
other languages, the sense annotations for the En-
glish dataset were then projected onto the other four
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Language Projected Valid Invalid
instances projections projections

French 1016 791 225
German 592 373 219
Italian 1029 774 255
Spanish 911 669 242

Table 2: Statistics when using the English sense an-
notations to project the correct sense of a lemma in
another language of the sentence-aligned test data.

languages using the sense translation API of Babel-
Net (Navigli and Ponzetto, 2012d). The projection
operated as follows, using the aligned sentences in
the English and non-English texts. For an instance
in the non-English text, all of the senses for that in-
stance’s lemma were compared with the sense an-
notations in the English sentence. If any of that
lemma’s senses was used in the English sentence,
then that sense was selected for the non-English
instance. The matching procedure operates at the
sentence-aligned level because the instances them-
selves are not aligned; i.e., different languages have
different numbers of instances per sentence, which
are potentially ordered differently due to language-
specific construction. Ultimately, this projection la-
beled approximately 50-70% of the instances in the
other four languages. Given the projected senses,
the annotators for the other four languages were then
asked to (1) correct the projected sense labels and
(2) annotate those still without senses.4 These anno-
tations were recorded in text in a stand-off file; no
further annotation tools were used.

The resulting sense projection proved highly use-
ful for selecting the correct sense. Table 2 shows
the number of corrections made by the annotators
to the projected senses, who changed only 22-37%
of the labels. While simple, the projection method
offers significant potential for generating good qual-
ity sense-annotated data from sentence-aligned mul-
tilingual text.

In the third phase, an independent annotator re-
viewed the labels for the high-frequency lemmas for

4During the second phase, annotators were also allowed
to add and remove instances that were missed during the first
phase, which resulted in small number of changes.

all languages to check for systematic errors and dis-
cuss possible changes to the labeling. This review
resulted in only a small number of changes to less
than 5% of the total instances, except for German
which had a slightly higher percentage of changes.

Table 1 summarizes the sense annotation statis-
tics for the test set. Annotators were allowed to use
multiple senses in the case of ambiguity, but en-
couraged to use a single sense whenever possible.
In rare cases, a lemma was annotated with senses
from a different lemma. For example, WordNet does
not contain a sense for “card” that corresponds to
the penalty card meaning (as used in sports such
as football). In contrast, BabelNet has a sense for
“penalty card” from Wikipedia which, however, is
not mapped to the lemma “card”. In such cases,
we add both the closest meaning from the original
lemma (e.g., the rectangual piece of paper sense in
WordNet) and the most suitable sense that may have
a different lemma form (e.g., PENALTY CARD).

Previous annotation studies have shown that,
when a fine-grained sense inventory is used, annota-
tors will often label ambiguous instances with multi-
ple senses if allowed (Erk and McCarthy, 2009; Jur-
gens and Klapaftis, 2013). Since BabelNet is a com-
bination of a fine-grained inventory (WordNet) and
contains additional senses from Wikipedia, we ana-
lyzed the average number of BabelNet sense anno-
tations per instance, shown in column six of Table 1.
Surprisingly, Table 1 suggests that the rate of mul-
tiple sense annotation varies significantly between
languages.

BabelNet may combine multiple Wikipedia pages
into a single BabelNet synset. As a result, when
Wikipedia is used as a sense inventory, instances are
annotated with all of the Wikipedia pages associated
with each BabelNet synset. Indeed, Table 1 shows a
markedly increased multi-sense annotation rate for
three languages when using Wikipedia.

As a second analysis, we considered the observed
level of polysemy for each of the unique lemmas.
The last column of Table 1 shows the average num-
ber of different senses seen for each lemma across
the test sets. In all languages, often only a single
sense of a lemma was used. Because the test set is
constructed based on topical documents, infrequent
lemmas mostly occurred within a single document
where they were used with a consistent interpreta-
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tion. However, we note that in the case of lem-
mas that were only seen with a single sense, this
sense does not always correspond to the most fre-
quent sense as seen in SemCor.

3 Evaluation

Task 12 uses the standard definitions of precision
and recall for WSD evaluation (see, e.g., (Navigli,
2009)). Precision measures the percentage of the
sense assignments provided by the system that are
identical to the gold standard; Recall measures the
percentage of instances that are correctly labeled by
the system. When a system provides sense labels
for all instances, precision and recall are equivalent.
Systems using BabelNet and WordNet senses are
compared against the Most Frequent Sense (MFS)
baseline obtained by using the WordNet most fre-
quent sense. For the Wikipedia sense inventory, we
constructed a pseudo-MFS baseline by selecting (1)
the Wikipedia page associated with the highest rank-
ing WordNet sense, as ranked by SemCor frequency,
or (2) when no synset for a lemma was associ-
ated with a WordNet sense, the first Wikipedia page
sorted using BabelNet’s ordering criteria, i.e., lexi-
cographic sorting. We note that, in the second case,
this procedure frequently selected the page with the
same name as the lemma itself. For instance, the
first sense of Dragon Ball is the cartoon with title
DRAGON BALL, followed by two films (DRAGON

BALL (1990 FILM) and DRAGON BALL EVOLU-
TION).

Systems were scored separately for each sense in-
ventory. We note that because the instances in each
test set are filtered to include only those that can
be labeled with the respective inventory, both the
Wikipedia and WordNet test sets are subsets of the
instances in the BabelNet test set.

4 Participating Systems

Three teams submitted a total of seven systems for
the task, with at least one participant attempting
all of the sense inventory and language combina-
tions. Six systems participated in the WSD task
with BabelNet senses; two teams submitted four sys-
tems using WordNet senses; and one team submitted
three systems for Wikipedia-based senses. Notably,
all systems used graph-based approaches for sense

disambiguation, either using WordNet or BabelNet’s
synset graphs. We summarize the teams’ systems as
follows.

DAEBAK! DAEBAK! submitted one system
called PD (Peripheral Diversity) based on BabelNet
path indices from the BabelNet synset graph. Us-
ing a ±5 sentence window around the target word,
a graph is constructed for all senses of co-occurring
lemmas following the procedure proposed by Nav-
igli and Lapata (2010). The final sense is selected
based on measuring connectivity to the synsets of
neighboring lemmas. The MFS is used as a backoff
strategy when no appropriate sense can be picked
out.

GETALP GETALP submitted three systems, two
for BabelNet and one for WordNet, all based on
the ant-colony algorithm of (Schwab et al., 2012),
which uses the sense inventory network structure
to identify paths connecting synsets of the target
lemma to the synsets of other lemmas in context.
The algorithm requires setting several parameters
for the weighting of the structure of the context-
based graph, which vary across the three systems.
The BN1 system optimizes its parameters from the
trial data, while the BN2 and WN1 systems are
completely unsupervised and optimize their param-
eters directly from the structure of the BabelNet and
WordNet graphs.

UMCC-DLSI UMCC-DLSI submitted three
systems based on the ISR-WN resource (Gutiérrez
et al., 2011), which enriches the WordNet se-
mantic network using edges from multiple lexical
resources, such as WordNet Domains and the
eXtended WordNet. WSD was then performed
using the ISR-WN network in combination with
the algorithm of Gutiérrez (2012), which is an
extension of the Personalized PageRank algorithm
for WSD (Agirre and Soroa, 2009) which includes
senses frequency. The algorithm requires initial-
izing the PageRank algorithm with a set of seed
synsets (vertices) in the network; this initialization
represents the key variation among UMCC’s three
approaches. The RUN-1 system performs WSD
using all noun instances from the sentence context.
In contrast, the RUN-2 works at the discourse level
and initializes the PageRank using the synsets of all
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Team System English French German Italian Spanish

DAEBAK! PD 0.604 0.538 0.591 0.613 0.600
GETALP BN-1 0.263 0.261 0.404 0.324 -
GETALP BN-2 0.266 0.257 0.400 0.324 0.371
UMCC-DLSI RUN-1 0.677 0.605 0.618 0.657 0.705
UMCC-DLSI RUN-2 0.685 0.605 0.621 0.658 0.710
UMCC-DLSI RUN-3 0.680 - - - -

MFS 0.665 0.453 0.674 0.575 0.645

Table 3: System performance, reported as F1, for all five languages in the test set when using BabelNet
senses. Top performing systems are marked in bold.

nouns in the document. Finally, the RUN-3 system
initializes using all words in the sentence.

5 Results and Discussion

All teams submitted at least one system using the
BabelNet inventory, shown in Table 3. The UMCC-
DLSI systems were consistently able to outperform
the MFS baseline (a notoriously hard-to-beat heuris-
tic) in all languages except German. Additionally,
the DAEBAK! system outperformed the MFS base-
line on French and Italian. The UMCC-DLSI RUN-
2 system performed the best for all languages. No-
tably, this system leverages the single-sense per dis-
course heuristic (Yarowsky, 1995), which uses the
same sense label for all occurrences of a lemma in a
document.

UMCC-DLSI submitted the only three sys-
tems to use Wikipedia-based senses. Table 4 shows
their performance. Of the three sense inventories,
Wikipedia had the most competitive MFS baseline,
scoring at least 0.694 on all languages. Notably,
the Wikipedia-based system has the lowest recall of
all systems. Despite having superior precision to the
MFS baseline, the low recall brought the resulting
F1 measure below the MFS.

Two teams submitted four total systems for Word-
Net, shown in Table 5. The UMCC-DLSI RUN-2
system was again the top-performing system, under-
scoring the benefit of using discourse information in
selecting senses. The other two UMCC-DLSI sys-
tems also surpassed the MFS baseline. Though still
performing worse than the MFS baseline, when us-
ing the WordNet sense graph, the GETALP system
sees a noticeable improvement of 0.14 over its per-
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Figure 1: F1 measure according to the degree of
instance polysemy, reported when at least ten in-
stances have the specified polysemy.

formance on English data when using the WordNet
sense graph.

The disambiguation task encompasses multiple
types of entities. Therefore, we partitioned the Ba-
belNet test data according to the type of instance be-
ing disambiguated; Table 6 highlights the results per
instance type, averaged across all languages.5 Both
multiword expressions and named entities are less
polysemous, resulting in a substantially higher MFS
baseline that no system was able to outperform on
the two classes. However, for instances made of a
single term, both of the UMCC-DLSI systems were
able to outperform the MFS baseline.

BabelNet adds many Wikipedia senses to the ex-
isting WordNet senses, which increases the poly-

5We omit the UMCC-DLSI Run-3 system from analysis, as
it participated in only a single language.
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English French German Italian Spanish

Team System Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

UMCC-DLSI RUN-1 0.619 0.484 0.543 0.817 0.480 0.605 0.758 0.460 0.572 0.785 0.458 0.578 0.773 0.493 0.602
UMCC-DLSI RUN-2 0.620 0.487 0.546 0.815 0.478 0.603 0.769 0.467 0.581 0.787 0.463 0.583 0.778 0.502 0.610
UMCC-DLSI RUN-3 0.622 0.489 0.548 - - - - - - - - - - - -

MFS 0.860 0.753 0.803 0.698 0.691 0.694 0.836 0.827 0.831 0.833 0.813 0.823 0.830 0.819 0.824

Table 4: The F1 measure for each system across all five languages in the test set when using Wikipedia-based
senses.

Team System Precision Recall F1

GETALP WN-1 0.406 0.406 0.406
UMCC-DLSI RUN-1 0.639 0.635 0.637
UMCC-DLSI RUN-2 0.649 0.645 0.647
UMCC-DLSI RUN-3 0.642 0.639 0.640

MFS 0.630 0.630 0.630

Table 5: System performance when using WordNet senses. Top performing systems are marked in bold.

Team System Single term Multiword expression Named Entity

DAEBAK! PD 0.502 0.801 0.910
GETALP BN-1 0.232 0.724 0.677
GETALP BN-2 0.235 0.740 0.656
UMCC-DLSI RUN-1 0.582 0.806 0.865
UMCC-DLSI RUN-2 0.584 0.809 0.864

MFS 0.511 0.853 0.920

Table 6: System F1 per instance type, averaged across all submitted languages, with the highest system
scores in bold.

English French German Italian Spanish

Team System Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

DAEBAK PD 0.769 0.364 0.494 0.747 0.387 0.510 0.762 0.307 0.438 0.778 0.425 0.550 0.778 0.450 0.570
GETALP BN-2 0.793 0.111 0.195 0.623 0.130 0.215 0.679 0.124 0.210 0.647 0.141 0.231 0.688 0.177 0.282
UMCC-DLSI RUN-1 0.787 0.421 0.549 0.754 0.441 0.557 0.741 0.330 0.457 0.796 0.461 0.584 0.830 0.525 0.643
UMCC-DLSI RUN-2 0.791 0.419 0.548 0.760 0.436 0.554 0.746 0.332 0.460 0.799 0.453 0.578 0.837 0.530 0.649

Table 7: System performance when the system’s annotations are restricted to only those senses that it also
uses in the aligned sentences of at least two other languages.

semy of most instances. As a further analysis, we
consider the relationship between the polysemy of
an instance’s target and system performance. In-
stances were grouped according to the number of
BabelNet senses that their lemma had; following,
systems were scored on each grouping. Figure 1
shows the performance of the best system from each

team on each polysemy-based instance grouping,
with a general trend of performance decay as the
number of senses increases. Indeed, all systems’
performances are negatively correlated with the de-
gree of polysemy, ranging from -0.401 (UMCC-
DLSI RUN-1) to -0.654 (GETALP BN-1) when
measured using Pearson’s correlation. All systems’
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correlations are significant at p < 0.05.

Last, we note that all systems operated by sense-
annotating each language individually without tak-
ing advantage of either the multilingual structure of
BabelNet or the sentence alignment of the test data.
For example, the sense projection method used to
create the initial set of multilingual annotations on
our test data (cf. Table 2) suggests that the sense
translation API could be used as a reliable source for
estimating the correctness of an annotation; specifi-
cally, given the sense annotations for each language,
the translation API could be used to test whether the
sense is also present in the aligned sentence in the
other languages.

Therefore, we performed a post-hoc analysis of
the benefit of multilingual sense alignment using the
results of the four systems that submitted for all lan-
guages in BabelNet. For each language, we filter
the sense annotations such that an annotation for an
instance is retained only if the system assigned the
same sense to some word in the aligned sentence
from at least two other languages.

Table 7 shows the resulting performance for the
four systems. As expected, the systems exhibit sig-
nificantly lower recall due to omitting all language-
specific instances. However, the resulting precision
is significantly higher than the original performance,
shown in Table 3. Additionally, we analyzed the set
of instances reported for each system and confirmed
that the improvement is not due to selecting only
monosemous lemmas. Despite the GETALP system
having the lower performance of the four systems
when all instances are considered, the system ob-
tains the highest precision for the English dataset.
Furthermore, the UMCC-DLSI systems still obtain
moderate recall, while enjoying 0.106-0.155 abso-
lute improvements in precision across all languages.
While the resulting F1 is lower due to a loss of recall,
we view this result as a solid starting point for other
methods to sense-tag the remaining instances. Over-
all, these results corroborate previous studies sug-
gesting that highly precise sense annotations can be
obtained by leveraging multiple languages (Navigli
and Ponzetto, 2012b; Navigli and Ponzetto, 2012c).

6 Conclusion and Future Directions

Following recent SemEval efforts with word senses
in multilingual settings, we have introduced a new
task on multilingual WSD that uses the recently
released BabelNet 1.1.1 sense inventory. Using a
data set of 13 articles in five languages, all nomi-
nal instances were annotated with BabelNet senses.
Because BabelNet is a superset of WordNet and
Wikipedia, the task also facilitates analysis in those
sense inventories.

Three teams submitted seven systems, with all
systems leveraging the graph-based structure of
WordNet and BabelNet. Several systems were able
to outperform the competitive MFS baseline, except
in the case of Wikipedia, but current performance
leaves significant room for future improvement. In
addition, we believe that future research could lever-
age sense parallelism available in sentence-aligned
multilingual corpora, together with enriched infor-
mation available in future versions of BabelNet. All
of the resources for this task, including the newest
1.1.1 version of BabelNet, were released on the task
website.6
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Abstract

This article presents the GETALP system for
the participation to SemEval-2013 Task 12,
based on an adaptation of the Lesk measure
propagated through an Ant Colony Algorithm,
that yielded good results on the corpus of Se-
meval 2007 Task 7 (WordNet 2.1) as well as
the trial data for Task 12 SemEval 2013 (Ba-
belNet 1.0). We approach the parameter es-
timation to our algorithm from two perspec-
tives: edogenous estimation where we max-
imised the sum the local Lesk scores; exoge-
nous estimation where we maximised the F1
score on trial data. We proposed three runs
of out system, exogenous estimation with Ba-
belNet 1.1.1 synset id annotations, endoge-
nous estimation with BabelNet 1.1.1 synset id
annotations and endogenous estimation with
WordNet 3.1 sense keys. A bug in our imple-
mentation led to incorrect results and here, we
present an amended version thereof. Our sys-
tem arrived third on this task and a more fine
grained analysis of our results reveals that the
algorithms performs best on general domain
texts with as little named entities as possible.
The presence of many named entities leads the
performance of the system to plummet greatly.

1 Introduction

Out team is mainly interested in Word Sense Disam-
biguation (WSD) based on semantic similarity mea-
sures. This approach to WSD is based on a local
algorithm and a global algorithm. The local algo-
rithm corresponds to a semantic similarity measure
(for example (Wu and Palmer, 1994), (Resnik, 1995)

or (Lesk, 1986)), while the global algorithm propa-
gates the values resulting from these measures at the
level of a text, in order to disambiguate the words
that compose it. For two years, now, our team has
focussed on researching global algorithms. The lo-
cal algorithm we use, a variant of the Lesk algo-
rithm that we have evaluated with several global al-
gorithms (Simulated Annealing (SA), Genetic Al-
gorithms (GA) and Ant Colony Algorithms (ACA))
(Schwab et al., 2012; Schwab et al., 2013), has
shown its robustness with WordNet 3.0. For the
present campaign, we chose to work with an ant
colony based global algorithms that has proven its
efficiency (Schwab et al., 2012; Tchechmedjiev et
al., 2012).

Presently, for this SemEval 2013 Task 12 (Nav-
igli et al., 2013), the objective is to disambiguate a
set of target words (nouns) in a corpus of 13 texts
in 5 Languages (English, French, German, Italian,
Spanish) by providing, for each sense the appropri-
ate sense labels. The evaluation of the answers is
performed by comparing them to a gold standard
annotation of the corpus in all 5 languages using
three possible sense inventories and thus sense tags:
BabelNet 1.1.1 Synset ids (Navigli and Pozetto,
2012), Wikipedia page names and Wordnet sense
keys (Miller, 1995).

Our ant colony algorithm is a stochastic algorithm
that has several parameters that need to be selected
and tuned. Choosing the values of the parameters
based on linguistic criteria remains an open and dif-
ficult problem, which is why we wanted to autom-
atize the parameter search process. There are two
ways to go about this process: exogenous estima-
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tion, when the parameter values are selected so as
to maximise the F-score on a small training anno-
tated corpus and then used to disambiguate another
corpus (weakly supervised); endogenous estimation,
when the parameters are chosen so as to maximise
the global similarity score on a text or corpus (unsu-
pervised). Our first experiment and system run con-
sists in tuning the parameters on the trial corpus of
the campaign and running the system with the Ba-
belNet sense inventory. Our second and third exper-
iments consist in endogenous parameter estimation,
the first using BabelNet as a sense inventory and the
second using WordNet. Unfortunately, the presence
of an implementation issue prevented us from ob-
taining scores up to par with the potential of our sys-
tem and thus we will present indicative results of the
performance of the system after the implementation
issue was fixed.

2 The GETALP System: Propagation of a
Lesk Measure through an Ant Colony
Algorithm

In this section we will first describe the local al-
gorithm we used, followed by a quick overview of
global algorithms and our own Ant Colony Algo-
rithm.

2.1 The Local Algorithm: a Lesk Measure

Our local algorithm is a variant of the Lesk Algo-
rithm (Lesk, 1986). Proposed more than 25 years
ago, it is simple, only requires a dictionary and no
training. The score given to a sense pair is the num-
ber of common words (space separated strings) in
the definition of the senses, without taking into ac-
count neither the word order in the definitions (bag-
of-words approach), nor any syntactic or morpho-
logical information. Variants of this algorithm are
still today among the best on English-language texts
(Ponzetto and Navigli, 2010).

Our local algorithm exploits the links provided by
WordNet: it considers not only the definition of a
sense but also the definitions of the linked senses
(using all the semantic relations for WordNet, most
of them for BabelNet) following (Banerjee and Ped-
ersen, 2002), henceforth referred asExtLesk1 Con-

1All dictionaries and Java implementations of all algorithms
of our team can be found on our WSD page

trarily to Banerjee, however, we do not consider
the sum of squared sub-string overlaps, but merely
a bag-of-words overlap that allows us to generate
a dictionary from WordNet, where each word con-
tained in any of the word sense definitions is indexed
by a unique integer and where each resulting defini-
tion is sorted. Thus we are able to lower the compu-
tational complexity fromO(mn) toO(m), wherem
and n are the respective length of two definitions and
m ≥ n. For example for the definition: "Some kind
of evergreen tree", if we say that Some is indexed by
123, kind by 14, evergreen by 34, and tree by 90,
then the indexed representation is {14, 34, 90, 123}.

2.2 Global Algorithm : Ant Colony Algorithm

We will first review the principles pertaining to
global algorithms and then a more detailed account
of our Ant Colony algorithm.

2.2.1 Global algorithms, Global scores and
Configurations

A global algorithm is a method that allows to
propagate a local measure to a whole text in or-
der to assign a sense label to each word. In the
similarity-based WSD perspective, the algorithms
require some fitness measure to evaluate how good
a configuration is. With this in mind, the score
of the selected sense of a word can be expressed
as the sum of the local scores between that sense
and the selected senses of all the other words of a
context. Hence, in order to obtain a fitness value
(global score) for the whole configuration, it is
possible to simply sum the scores for all selected
senses of the words of the context: Score(C) =∑m

i=1

∑m
j=iExtLesk(wi,C[i], wj,C[j]).

For a given text, the chosen configuration is
the one which maximizes the global score among
the evaluated ones. The simplest approach is the
exhaustive evaluation of sense combinations (BF),
used for example in (Banerjee and Pedersen, 2002),
that assigns a score to each word sense combination
in a given context (window or whole text) and se-
lects the one with the highest score. The main is-
sue with this approach is that it leads to a combi-

http://getalp.imag.fr/WSD and more specifically for
SemEval 2013 Task 12 on the following page
http://getalp.imag.fr/static/wsd/
GETALP-WSD-ACA/
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natorial explosion in the length of the context win-
dow or text. The number of combinations is indeed∏|T |

i=1(|s(wi)|), where s(wi) is the set of possible
senses of word i of a text T . For this reason it is
very difficult to use the BF approach on an analy-
sis window larger than a few words. In our work,
we consider the whole text as context. In this per-
spective, we studied several methods to overcome
the combinatorial explosion problem.

2.2.2 Complete and Incomplete Approaches
Several approximation methods can be used in or-

der to overcome the combinatorial explosion issue.
On the one hand, complete approaches try to reduce
dimensionality using pruning techniques and sense
selection heuristics. Some examples include: (Hirst
and St-Onge, 1998), based on lexical chains that re-
strict the possible sense combinations by imposing
constraints on the succession of relations in a taxon-
omy (e.g. WordNet); or (Gelbukh et al., 2005) that
review general pruning techniques for Lesk-based
algorithms; or yet (Brody and Lapata, 2008) who
exploit distributional similarity measures extracted
from corpora (information content).

On the other hand, incomplete approaches gen-
erally use stochastic sampling techniques to reach a
local maximum by exploring as little as necessary
of the search space. Our present work focuses on
such approaches. Furthermore, we can distinguish
two possible variants:
• local neighbourhood-based approaches (new

configurations are created from existing con-
figurations) among which are some approaches
from artificial intelligence such as genetic al-
gorithms or optimization methods such as sim-
ulated annealing;
• constructive approaches (new configurations

are generated by iteratively adding new ele-
ments of solutions to the configuration under
construction), among which are for example
ant colony algorithms.

2.2.3 Principle of our Ant Colony Algorithm
In this section, we briefly describe out Ant Colony

Algorithm so as to give a general idea of how it op-
erates. However, readers are strongly encouraged
to read the detailed papers (Schwab et al., 2012;
Schwab et al., 2013) for a more detailed description

of the system, including examples of how the graph
is built, of how the algorithm operates step by step
as well all pseudo code listing.

Ant colony algorithms (ACA) are inspired from
nature through observations of ant social behavior.
Indeed, these insects have the ability to collectively
find the shortest path between their nest and a source
of food (energy). It has been demonstrated that
cooperation inside an ant colony is self-organised
and allows the colony to solve complex problems.
The environment is usually represented by a graph,
in which virtual ants exploit pheromone trails de-
posited by others, or pseudo-randomly explore the
graph. ACAs are a good alternative for the resolu-
tion of optimization problems that can be encoded
as graphs and allow for a fast and efficient explo-
ration on par with other search heuristics. The main
advantage of ACAs lies in their high adaptivity to
dynamically changing environments. Readers can
refer to (Dorigo and Stützle, 2004) or (Monmarché,
2010) for a state of the art.

In this article we use a simple hierarchical graph
(text, sentence, word) that matches the structure of
the text and that exploits no external linguistic infor-
mation. In this graph we distinguish two types of
nodes: nests and plain nodes. Following (Schwab et
al., 2012), each possible word sense is associated to
a nest. Nests produce ants that move in the graph in
order to find energy and bring it back to their mother
nest: the more energy is brought back by ants, the
more ants can be produced by the nest in turn. Ants
carry an odour (a vector) that contains the words of
the definition of the sense of its mother nest. From
the point of view of an ant, a node can be: (1) its
mother nest, where it was born; (2) an enemy nest
that corresponds to another sense of the same word;
(3) a potential friend nest: any other nest; (4) a plain
node: any node that is not a nest. Furthermore, to
each plain node is also associated an odour vector of
a fixed length that is initially empty.

Ant movement is function of the scores given by
the local algorithm, of the presence of energy, of the
passage of other ants (when passing on an edge ants
leave a pheromone trail that evaporates over time)
and of the nodes’ odour vectors (ants deposit a part
of their odour on the nodes they go through). When
an ant arrives onto the nest of another word (that cor-
responds to a sense thereof), it can either continue its
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exploration or, depending on the score between this
nest and its mother nest, decide to build a bridge be-
tween them and to follow it home. Bridges behave
like normal edges except that if at any given time the
concentration of pheromone reaches 0, the bridge
collapses. Depending on the lexical information
present and the structure of the graph, ants will fa-
vor following bridges between more closely related
senses. Thus, the more closely related the senses of
the nests are, the more bridges between them will
contribute to their mutual reinforcement and to the
sharing of resources between them (thus forming
meta-nests); while the bridges between more dis-
tant senses will tend to fade away. We are thus able
to build interpretative paths (possible interpretations
of the text) through emergent behaviour and to sup-
press the need to use a complete graph that includes
all the links between the senses from the start (as is
usually the case with classical graph-based optimi-
sation approaches).

Through the emergence of interpretative paths,
sense pairs that are closer semantically benefit from
an increased ant traffic and thus tend to capture most
of the energy of the system at a faster pace, thus
favouring a faster convergence over an algorithm
that uses a local neighbourhood graph (nodes are
senses interconnected so as to represent all sense
combinations in a context window) without sacrific-
ing the quality of the results.

The selected answers correspond, for each word
to the nest node with the highest energy value. The
reason for this choice over using the pheromone con-
centration is that empirically, the energy level bet-
ter correlates with the actual F1 scores. In turn, the
global Lesk score of a selected sense combination
correlates even better with the F1 score, which is
why, we keep the sense combinations resulting from
each iteration of the algorithm (highest energy nests
at each iteration) and select the one with the highest
global Lesk score as the final solution.

2.3 Parameters
This version of our ant algorithm has seven param-
eters (ω, Ea, Emax, E0, δv, δ, LV ) which have an
influence on the emergent phenomena in the system:
• The maximum amount of energy an ant can

carry, Emax and Ea the amount of energy an
ant can take on a node, influences how much

an ant explores the environment. Ants cannot
go back through an edge they just crossed and
have to make circuits to come back to their nest
(if the ant does not die before that). The size
of the circuits depend on the moment the ants
switch to return mode, hence on Emax.
• The evaporation rate of the pheromone between

cycles (δ) is one of the memories of the sys-
tem. The higher the rate is, the least the trails
from previous ants are given importance and
the faster interpretative paths have to be con-
firmed (passed on) by new ants in order not to
be forgotten by the system.
• The initial amount of energy per node (E0)

and the ant life-span (ω) influence the number
of ants that can be produced and therefore the
probability of reinforcing less likely paths.
• The odour vector length (Lv) and the propor-

tion of odour components deposited by an ant
on a plain node (δV ) are two dependent param-
eters that influence the global system memory.
The higher the length of the vector, the longer
the memory of the passage of an ant is kept. On
the other hand, the proportion of odour compo-
nents deposited has the opposite effect.

Given the lack of an analytical way of determin-
ing the optimal parameters of the ant colony al-
gorithm, they have to be estimated experimentally,
which is detailed in the following section.

3 Acquisition of Parameter Values

The algorithms we are interested in have a certain
number of parameters that need tuning in order to
obtain the best possible score on the evaluation cor-
pus. There are three possible approaches:

• Make an educated guess about the value ranges
based on a priori knowledge about the dynam-
ics of the algorithm;
• Test manually (or semi-manually) several com-

binations of parameters that appear promising
and determine the influence of making small
adjustments to the values ;
• Use a learning algorithm to automate acquisi-

tion of parameters values. We present that ap-
proach in the following part.
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3.1 Automated Parameter Estimation

Two methods can be used to automatically acquire
parameters. The first one consists in maximizing
the F-score on an sense-annotated corpus (weak ap-
proach) while the second one consist in maximizing
the global Lesk score (unsupervised approach).

3.1.1 Generalities
Both approaches are based on the same principle

(Tchechmedjiev et al., 2012). We use a simulated
annealing algorithm (Laarhoven and Aarts, 1987)
combined with a non-parametric statistical (Mann-
Whitney-U test (Mann and Whitney, 1947)) test with
a p-value adapted for multiple comparisons through
False Discovery Rate control (FDR) (Benjamini and
Hochberg, 1995). The estimation algorithm oper-
ates on all the parameters of the ant colony algo-
rithm described above and attempts to maximise the
objective function (Global score, F1). The reason
why we need to use a statistical test and FDR rather
than using the standard SA algorithm, is that the
Ant Colony Algorithm is stochastic in nature and
requires tuning to be performed over the distribu-
tion of possible answers for a given set of param-
eter values. Indeed, there is no guarantee that the
value resulting from one execution is representative
at all of the distribution. The exact nature of the dis-
tribution of answers is unknown and thus we take
a sampling of the distribution as precise as can be
afforded. Thus, we require the statistical test to as-
certain the significance between the scores for two
parameter configurations.

3.1.2 Exogenous parameter tuning
If we have a sense-annotated corpus at our dis-

posal, it is possible to directly use the F1 value ob-
tained by the system on this reference to tune the
parameters of the systems so as to maximise said F1
score. The main issues that arise from such meth-
ods are the fact that gold standards are expensive to
produce and that there is no guarantee on the gen-
erality of the contents of the gold standard. Thus,
in languages with little resources we may be un-
able to obtain a gold standard and in the case one
is available, there is a potentially strong risk of over
fitting. Furthermore due to the nature of the train-
ing, taking training samples in a random order for
cross-validation becomes tricky. This is why we also

want to test another method that can tune the pa-
rameters without using labelled examples. For the
evaluation, we estimated parameters on the F1 score
on the test corpus for English and French (the only
ones available). We used the parameters estimated
for English for our English results for our first sys-
tem run GETALP-BN1 and the French parameters
for the results on French, German, Italian, Spanish.

For English we found: ω = 26, Ea =
14, Emax = 3, E0 = 34, δv = 0.9775, δ =
0.3577, LV = 25.

For French: ω = 19, Ea = 9, Emax = 3, E0 =
32, δv = 0.9775, δ = 0.3577, LV = 25.

3.1.3 Endogenous parameter tuning
In the context of the evaluation campaign, the ab-

sence of an example gold standard on the same ver-
sion of the resource (synset id mismatch between
BabelNet 1.0 and 1.1.1 2) made dubious the prospect
of using parameters estimated from a gold standard.
Consequently, we set out to investigate the relation
between the F1 score of the gold standard and the
Global Lesk Score of successive solutions through-
out the execution of the algorithm.

We observed that the Lesk score is highly corre-
lated to the F1 score and can be used as an estimator
thereof. The main quality criterion being the dis-
criminativeness of the Lesk score compared to the
F1 score (average ratio between the number of pos-
sible F1 score values for a single Lesk score value),
for which the correlation is a possible indicator. We
make the hypothesis based on the correlation that for
a given specific local measure, the global score will
be an adequate estimator of the F1 score. Our sec-
ond system run GETALP-WSD-BN2 is based on the
endogenous parameter estimation. We will not list
all the parameters here, as there is a different set of
parameters for each text and each language.

3.2 Voting
In previous experiment, as can be expected, we have
observed a consistent rise the F1 score when apply-
ing a majority vote method on the output of several
executions (Schwab et al., 2012). Consequently we
followed the same process here, and for all the runs
of our system we performed 100 executions and ap-
plied a majority vote (For each word, our of all se-

2http://lcl.uniroma1.it/babelnet/
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lected senses, take the one that has been selected the
most over all the executions) on all 100 answer files.
The result of this process is a single answer file and
comes with the advantage of greatly reducing the
variability of the answers. Say this voting process
is repeated over and over again 100 times, then the
standard deviation of F1 scores around the mean is
much smaller. Thus, we also have a good solutions
to the problem of selecting the answer that yields the
highest score, without actually having access to the
gold standard.

4 Runs for SemEval 2013 task 12

In this section we will describe the various runs we
performed in the context of Task 12. We will first
present our methodologies relating to the BabelNet
tagged gold standard followed by the methodologies
relating to the WordNet tagged gold standard.

4.1 BabelNet Gold Standard Evaluation

In the context of the BabelNet gold standard evalu-
ation, we need to tag the words of the corpus with
BabelNet synset ids. Due to the slow speed of re-
trieving Babel synsets and extracting glosses, espe-
cially in the context of our extended Lesk Approach,
we pre-generate a dictionary for each language that
contains entries for each word of the corpus and then
for each possible sense (as per BabelNet). In the
short time allotted for the competition, we restrict
ourselves to building dictionaries only for the words
of the corpus, but the process described can be ap-
plied to pre-generate a dictionary for the whole of
BabelNet.

Each BabelNet synset for a word is considered as
a possible sense in the dictionary. For each synset
we retrieve the Babel senses and retain the ones that
are in the appropriate language. Then, we retrieve
the Glosses corresponding to each selected sense
and combine them in as the definition correspond-
ing to that particular BabelNet synset. Furthermore,
we also retrieve certain of the related synsets and
repeat the same process so as to add the related def-
initions to the BabelNet synset being considered. In
our experiments on the test corpus, we determined
that what worked best (i.e. English and French)
was to use only relations coming from WordNet, all
the while excluding the r, gdis, gmono relation

added by BabelNet. We observed a similar increase
in disambiguation quality with the Degree (Navigli
and Lapata, 2010) algorithm implementation that
comes with BabelNet. The r relation correspond to
the relations in BabelNet extracted from Wikipedia,
whereas gdis and gmono corresponds to relation
created using a disambiguation algorithm (respec-
tively for monosemous and polysemous words).

4.2 WordNet Gold Standard Evaluation
In the context of the WordNet gold standard evalua-
tion, we initially thought the purpose would be to an-
notate the corpus in all five languages with WordNet
sense keys through alignments extracted from Ba-
belNet. As a consequence, we exploited BabelNet
as a resource, merely obtaining WordNet sense keys
through the main senses expressed in BabelNet, that
correspond to WordNet synsets. Although we were
able to produce annotations for all languages, as it
turns out, the WordNet evaluation was merely aimed
at evaluating monolingual systems that do not sup-
port BabelNet at all. For reference, we subsequently
generated a dictionary from WordNet only, to gauge
the performance of our system on the evaluation as
intended by the organisers.

5 Results

We will first present the general results pertaining
to Task 12, followed by a more detailed analysis on
a text by text basis, as well as the comparison with
results obtained on the Semeval 2007 WSD task in
terms of specific parts of speech.

5.1 General Results for Semeval-2013 Task 12
Important: implementation issue during the
evaluation period During the evaluation period,
we had an implementation issue, where a parameter
that limited the size of definition was not disabled
properly. As a consequence, when we experimented
to determine the appropriate relations to consider
for the context expansion of the glosses, we arrived
at the experimental conclusion that using all rela-
tions worked best. However, since it was already the
case with WordNet (Schwab et al., 2011), we read-
ily accepted that our experimental conclusion was
indeed correct. The issue was indirectly resolved
as an unforeseen side effect of another hot-fix ap-
plied shortly before the start of the evaluation period.
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Given that we were not aware of the presence of a
limitation on the definition length before the hot-fix,
we performed all the experiments under an incorrect
hypothesis which led us to an incorrect conclusion,
that itself led to the results we obtained for the cam-
paign. Indeed, with no restrictions on the size of the
definition, our official results for this task were con-
sistently inferior to the random baseline across the
board. After a thorough analysis of our runs we ob-
served that the sum of local measures (global lesk
score) that correlated inversely with the gold stan-
dard F1 score, the opposite of what it should have
been. We immediately located and corrected this
bug when we realized what had caused these bad
results that did not correspond at all with what we
obtained on the test corpus. After the fix, we strictly
ran the same experiment without exploiting the gold
standard, so as to obtain the results we would have
obtained had the bug not been present in the first
place.

Run Lang. P R F1 MFS
BN1 EN 58.3 58.3 58.3 65.6

FR 48.3 48.2 48.3 50.1
DE 52.3 52.3 52.3 68.6
ES 57.6 57.6 57.6 64.4
IT 52.6 52.5 52.6 57.2

BN2 EN 56.8 56.8 56.8 65.6
FR 48.3 48.2 48.3 50.1
DE 51.9 51.9 51.9 68.6
ES 57.8 57.8 57.8 64.4
IT 52.8 52.8 52.8 57.2

WN1 EN 51.4 51.4 51.4 63.0

Table 1: Results after fixing the implementation is-
sue for all three of our runs, compared to the Most
Frequent Sense baseline (MFS).

We can see in Table 1, that after the removal of
the implementation issues, the scores become more
competitive and meaningful compared to the other
system, although we remain third of the evalua-
tion campaign. We can observe that there is no
large difference between the exogenous results (us-
ing a small annotated corpus) and endogenous re-
sults. Except for the English corpus where there is
a 2% increase. The endogenous estimation, since it

is performed on a text by text basis is much slower
and resource consuming. Given that the exogenous
estimation offers slightly better results and that it re-
quires very little annotated data, we can conclude
that in most cases the exogenous estimation will be
much faster to obtain.

5.2 A more detailed analysis

In this section we will first make a more detailed
analysis for each text on the English corpus, by look-
ing where our algorithm performed best. We restrict
ourselves on one language for this analysis for the
sake of brevity. As we can see in Table 2, the re-
sults can vary greatly depending on the text (within
a twofold range). The system consistently performs
better on texts from the general domain (T 4, 6, 10),
often beating the first sense baseline. For more spe-
cialized texts, however, (T 2, 7, 8, 11, 12, 13) the
algorithm performs notably lower than the baseline.
The one instance where the algorithm truly fails, is
when the text in question contains many ambigu-
ous entities. Indeed for text 7, which is about foot-
ball, many of the instance words to disambiguate are
the names of players and of clubs. Intuitively, this
behaviour is understandable and can be mainly at-
tributed to the local Lesk algorithm. Since we use
glosses from the resource, that mostly remain in the
general domain, a better performance in matching
texts is likely. As for named entities, the Lesk algo-
rithm is mainly meant to capture the similarity be-
tween concepts and it is much more difficult to dif-
ferentiate two football players from a definition over
concepts (often more general).

To further outline the strength of our approach, we
need to look back further at a setting with all parts
of speech being considered, namely Task 7 from Se-
mEval 2007. As can be seen in Table 3, even though
for adjectives and adverbs the system is slightly be-
low the MFS (respectively), it has a good perfor-
mance compared to graph based WSD approaches
that would be hindered by the lack of taxonomical
relations. For verbs the performance is lower as is
consistently observed with WSD algorithms due to
the high degree of polysemy of verbs. For example,
in the case of Degree (Navigli and Pozetto, 2012),
nouns are the part of speech for which the system
performs the best, while the scores for other parts of
speech are somewhat lower. Thus, we can hypoth-
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Text Descr. Len. F1 MFS Diff.
1 Gen. Env. 228 61.4 68.9 -7.5
2 T. Polit. 84 51.2 66.7 -15.5
3 T. Econ. 84 52.4 56.0 - 3.6
4 News. Gen. 119 58.8 58.0 0.8
5 T. Econ. 74 39.2 36.5 2.7
6 Web Gen. 210 67.1 64.3 2.8
7 T. Sport. 190 34.2 60.5 -26.3
8 Sci. 153 63.4 67.3 -3.9
9 Geo. Econ. 190 63.2 74.2 -11
10 Gen. Law. 160 61.9 61.9 0
11 T. Sport. 125 56.8 64.0 -7.2
12 T. Polit. 185 64.3 73.0 -8.7
13 T. Econ. 130 68.5 72.6 -4.1

Table 2: Text by text F1 scores compared to the
MFS baseline for the English corpus (T.= Trans-
lated, Gen.= General, Env.= Environment, Polit.=
Politics, Econ.= Economics, Web= Internet, Sport.=
Sports, Geo.= Geopolitics, Sci.= Science).

A P.O.S. F1 MFS F1 Diff
1108 Noun 79.42 77.4 +1.99
591 Verb 74.78 75.3 -0.51
362 Adj. 82.66 84.3 -1.59
208 Adv. 86.95 87.5 -0.55

2269 All 79.42 78.9 +0.53

Table 3: Detailed breakdown of F1 score per part
of speech category for Semeval-2007 Task 7, over
results resulting from a vote over 100 executions

esise that using a different local measure depending
on the part of speech may constitute an interesting
development while allowing a return to a more gen-
eral all-words WSD task where all parts of speech
are considered, even when the resource does not of-
fer taxonomical relation for the said parts of speech.

6 Conclusions & Perspectives

In this paper, we present a method based on a
Lesk inspired local algorithm and a global algorithm
based on ant colony optimisation. An endogenous
version (parameter estimation based on the maximi-
sation of the F-score on an annotated corpus) and
an exogenous version (parameter estimation based
on the maximisation of the global Lesk score on

the corpus) of the latter algorithm do not exhibit a
significant difference in terms of the F-score of the
result. After a more detailed analysis on a text by
text basis, we found that the algorithm performs best
on general domain texts with as little named enti-
ties as possible (around or above the MFS baseline).
For texts of more specialized domain the algorithm
consistently performs below the MFS baseline, and
for texts with many named entities, the performance
plummets greatly slightly above the level of a ran-
dom selection. We also show that with our Lesk
measure the system is best suited for WSD in a more
general setting with all parts of speech, however in
the context of just nouns, it is not the most suitable
local measure. As we have seen from the other sys-
tems, graph based local measures may be the appro-
priate answer to reach the level of the best systems
on this task, however it is important not to dismiss
the potential of other approaches. The quality of the
results depend on the global algorithm, however they
are also strongly bounded by the local measure con-
sidered. Our team, is headed towards investigating
local semantic similarity measures and towards ex-
ploiting multilingual features so as to improve the
disambiguation quality.
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Abstract 

This work introduces a new unsupervised 

approach to multilingual word sense 

disambiguation. Its main purpose is to 

automatically choose the intended sense 

(meaning) of a word in a particular context for 

different languages. It does so by selecting the 

correct Babel synset for the word and the 

various Wiki Page titles that mention the 

word. BabelNet contains all the output 

information that our system needs, in its Babel 

synset. Through Babel synset, we find all the 

possible Synsets for the word in WordNet. 

Using these Synsets, we apply the 

disambiguation method Ppr+Freq to find what 

we need. To facilitate the work with WordNet, 

we use the ISR-WN which offers the 

integration of different resources to WordNet. 

Our system, recognized as the best in the 

competition, obtains results around 69% of 

Recall. 

1 Introduction 

Word Sense Disambiguation (WSD) focuses on 

resolving the semantic ambiguity of a given word.  

This is an important task in Natural Language 

Processing (NLP) because in many applications, 

such as Automatic Translation, it is essential to 

know the exact meaning of a word in a given 

context. In order to solve semantic ambiguity, 

different systems have been developed. However, 

we can categorize them in two main groups: 

supervised and unsupervised systems. The 

supervised ones need large quantity of hand-tagged 

data in order to gather enough information to build 

rules, train systems, and so on. Unsupervised 

systems, on the other hand, do not need such a 

large amount of hand-tagged datasets. This means 

that, when there aren’t enough corpora to train the 

systems, an unsupervised system is a good option. 

A sub-task of WSD is Multilingual Word Sense 

Disambiguation (MWSD) (Navigli et al., 2013) 

that aims at resolving ambiguities in different 

languages. 

In a language, there are words that have only one 

sense (or meaning), but in other languages, the 

same words can have different senses. For 

example, “patient” is a word that in English can be 

either a noun or an adjective, but in German, it 

only has one sense - “viz” (a person that needs 

treatment). This shows that the information 

obtained by combining two languages can be more 

useful for WSD because the word senses in each 

language can complement each other. For it to be 

useful, MWSD needs a multilingual resource that 

contains different languages, such as BabelNet 

(Navigli and Ponzetto, 2010; 2012) and 

EuroWordNet (Vossen, 1998). 
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As the preferred disambiguation method, we 

decided to use the Ppr+Freq (Personalized Page 

Rank combined with Frequencies of senses)  

(Gutiérrez, 2012) method because, among 

unsupervised systems, graph-based methods have 

obtained more promising results.  

It is worth mentioning the relevant approaches 

used by the scientific community to achieve 

promising results. One approach used is structural 

interconnections, such as Structural Semantic 

Interconnections (SSI), which create structural 

specifications of the possible senses for each word 

in a context (Navigli and Velardi, 2005). The other 

approaches used are “Exploring the integration of 

WordNet” (Miller et al., 1990), FrameNet (Laparra 

et al., 2010) and those using Page-Rank such as 

(Sinha and Mihalcea, 2007) and (Agirre and Soroa, 

2009). 

The aforementioned types of graph based 

approaches have achieved relevant results in both 

the SensEval-2 and SensEval-3 competitions (see 

Table 1). 

Algorithm Recall 

TexRank (Mihalcea, 2005)  54.2% 

(Sinha and Mihalcea, 2007) 56.4% 

(Tsatsaronis et al., 2007) 49.2% 

Ppr (Agirre and Soroa, 2009) 58.6% 

Table 1. Relevant WSD approaches. Recall measure is 

calculated recalls using SensEval-2 (English All Word 

task) guidelines over. 

Experiments using SensEval-2 and SensEval-3 

corpora suggest that Ppr+Freq (Gutiérrez, 2012) 

can lead to better results by obtaining over 64% of 

Recall. Therefore we selected Ppr+Freq as the 

WSD method for our system. 

The key proposal for this work is an 

unsupervised algorithm for MWSD, which uses an 

unsupervised method, Ppr+Freq, for semantic 

disambiguation with resources like BabelNet (as 

sense inventory only) (Navigli and Ponzetto, 2010) 

and ISR-WN (as knowledge base) (Gutiérrez et al., 

2011a; 2010a). 

ISR-WN was selected as the default knowledge 

base because of previous NLP research, which 

included: (Fernández et al., 2012; Gutiérrez et al., 

2010b; Gutiérrez et al., 2012; 2011b; 2011c; 

2011d), which achieved relevant results using ISR-

WN as their knowledge base. 

2 System architecture  

By using one of BabelNet (BN) features, our 

technique begins by looking for all the Babel 

synsets (Bs) linked to the lemma of each word in 

the sentence that we need to disambiguate.  

Through the Bs offsets, we can get its 

corresponding WordNet Synset (WNS), which 

would be retrieved from WordNet (WN) using the 

ISR-WN resource. As a result, for each lemma, we 

have a WordNet Synset List (WNSL) from which 

our Word Sense Disambiguation method obtains 

one WNS as the correct meaning. 

Our WSD method consists of applying a 

modification of the Personalizing PageRank (Ppr) 

algorithm (Agirre and Soroa, 2009), which 

involves the senses frequency. More specifically, 

the key proposal is known as Ppr+Freq (see 

Section 2.3).  

Given a set of WNSLs of WNSL, as words 

window, we applied the Synsets ranking method, 

Ppr+Freq, which ranks in a descending order, the 

Synsets of each lemma according to a calculated 

factor of relevance. The first Synset (WNS) of 

each WNSL (the most relevant) is established as 

the correct one and its associated Babel synset (Bs) 

is also tagged as correct. To determine the Wiki 

Page Titles (WK), we examine the WIKI 

(Wikipedia pages) and WIKIRED (Wikipedia 

pages redirections) in the correct Babel synset 

obtained. 

Figure 1 shows a general description of our 

system that is made up of the following steps: 

I. Obtaining lemmas  

II. Obtaing WN Synset of selected lemmas  

III. Applying Ppr+Freq method  

IV. Assigning Synset, Babel synset and Wiki 

page title 

Note that ISR-WN contains WN as its nucleus. 

This allows linking both resources, BabelNet and 

ISR-WN.
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Figure 1. General process description taking as instance a sentence provided by the trial dataset. 

 

2.1 Obtaining lemmas  

For each input sentence, we extract the labeled 

lemmas. As an example, for the sentence, “The 

struggle against the drug lords in Colombia will be 

a near thing,” the selected lemmas are: “struggle,” 

“drug_lord,” “Colombia”, and “near_thing.” 

 
Figure 2. Obtaining synset of lemmas. 

 

2.2 Obtaing WN Synset of selected lemmas  

For each lemma obtained in the previous section, 

we look through BabelNet to recover the Bs that 

contains the lemma among its labels. When BSs 

are mapped to WN, we use the ISR-WN resource 

to find the corresponding Synset. Since a lemma 

can appear in a different Bs, it can be mapped with 

several WNS. Thus, we get a Synset list for each 

lemma in the sentence. In case the lemma does not 

have an associated Bs, its list would be empty. An 

example of this step is shown on Figure 2. 

2.3 Applying Ppr+Freq method 

In the above case, Ppr+Freq modifies the “classic” 

Page Rank approach instead of assigning the same 

weight for each sense of WN in the disambiguation 

graph (𝐺𝐷). 

The PageRank (Brin and Page, 1998) 

adaptation, Ppr , which was popularized by (Agirre 

IV . Assigning Synset, Babel Synset and Wiki page title

“ The struggle against the drug lords in Colombia will be a near thing .”

struggle drug_lord Colombia near_thing

Wikipedia WordNet BabelNet ISR-WN

WordNet
(WN)

SUMO

WN-Domain WN-Affect

SemanticClass eXtended WN3.0

eXtended WN1.7

struggle%1:04:01:: drug_lord%1:18:00:: colombia%1:15:00:: near_thing%1:04:00::

bn:00009079n bn:00028876n bn:00020697n bn:00057109n

-- Drug_Lord Colombia --

I. Obtaing lemmas

II. Obtaining Synset of selected lemmas

III. Applying Ppr+Freq method

WN key

BS

WK

struggle drug_lord Colombia near_thing

struggle

bn:00074762n wn:00587514n

bn:00009079n wn:00739796n

bn:00009080n wn:00901980n

drug_lord bn:00028876n wn:09394468n

colombia

bn:00020697n wn:08196765n

bn:02051949n

bn:02530766n

near_thing bn:00057109n wn:00193543n

Sentence lemmas 

Babel synset 

WordNet synset 
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and Soroa, 2009) in Word Sense Disambiguation 

thematic, and which has obtained relevant results, 

was an inspiration to us in our work. The main idea 

behind this algorithm is that, for each edge 

between 𝑣i and 𝑣j in graph 𝐺, a vote is made from 

𝑣i to 𝑣j. As a result, the relevance of 𝑣j is 

increased. 

On top of that, the vote strength from 𝑖 to 𝑗 

depends on 𝑣𝑖′𝑠 relevance. The philosophy behind 

it is that, the more important the vertex is, the more 

strength the voter would have. Thus, PageRank is 

generated by applying a random walkthrough from 

the internal interconnection of 𝐺, where the final 

relevance of 𝑣𝑖  represents the random walkthrough 

probability over 𝐺, and ending on 𝑣𝑖. 

Ppr+Freq includes the existent semantic and 

frequency patterns of each sense of the word to 

disambiguate while finding a way to connect each 

one of these words in a knowledge base. 

The new graph-based approach of WSD 

generates a graph of disambiguated words for each 

input sentence. For that reason, it is necessary to 

classify the word senses according to the other 

words that compose the context. The general 

method is shown in Figure 3. This method is 

divided into three steps: 

I. Creation of a disambiguation graph 

II. Application of Ppr+Freq in the generated 

graph 

III. Selection of the correct answer 

Creation of a disambiguation graph: In the first 

step, a disambiguation graph is built by means of a 

Breath First Search (BFS) over the “super” graph 

composed by all the resources integrated into ISR-

WN. The components involved in this process are: 

WordNet, SUMO (Zouaq et al., 2009) WordNet 

Domains (Magnini and Cavaglia, 2000) WordNet 

Affects (Strapparava and Valitutti, 2004) Semantic 

Classes (Izquierdo et al., 2007) and eXtended 

WordNet (XWN) relations (Moldovan and Rus, 

2001). This search aims to recover all senses 

(nodes), domain labels (from WordNet Domain 

and WordNet Affects), SUMO categories, and 

Semantic Classes labels through the shortest path 

between every pair of senses in the WNSL set 

associated with the input sentence. Using ISR-WN 

as the KB, through experimentation, we obtained 

the shortest paths with a length of five edges. For a 

better understanding of this process, see (Gutiérrez, 

2012). 

Application of Ppr+Freq in the generated 

graph: In the second step, we use the weighted 

Personalized PageRank. Here, all the vertices from 

vector 𝑣 in 𝐺𝐷 are initialized with the value  
1

𝑁
 ; 

where 𝑁 is the number of nodes in 𝐺𝐷. On the 

other hand, the vertices that represent word senses 

in the analyzed sentence are not initialized with 

this value. Instead, they are initialized with values 

in the range [0…1], which are associated to their 

occurrence frequency in SemCor1 (Corpus and 

sense frequencies knowledge). In the last step, 

after applying the Ppr+Freq algorithm over 𝐺𝐷, we 

get a representative vector which contains ISR-WN 

nodes in 𝐺𝐷 sorted in a descending order by a 

ranking score computed by this algorithm. For a 

better description, see (Gutiérrez, 2012). 

Selection of the correct answer: As the correct 

sense, we take the highest ranked sense of each 

target word involved in this vector. Note that 

domain labels, SUMO categories, semantic class 

labels, and affect labels are ranked too. They could 

be used in the future to determine relevant 

conceptualizations that would be useful for text 

classification and more. 

In our system, we assume the following 

configuration: dumping factor 𝑐 = 0.85 and like in 

(Agirre and Soroa, 2009) we used 30 iterations. A 

detailed explanation about PageRank algorithm 

can be found in (Agirre and Soroa, 2009). 

Table 2 shows an example that analyzes the 

Synset for each word in the sentence and also 

shows how the higher ranked Synsets of the target 

words are selected as the correct ones. For a 

detailed explanation of Ppr+Freq, see (Gutiérrez, 

2012). 

2.4 Assigning Synset, Babel synset and Wiki 

Pages 

In this step, English is handled differently from 

other languages because WordNet Synsets are 

available only for English. The following sections 

explain how we proceed in each case. Once the 

Synsets list is obtained for each lemma in section 

2.3, selecting the correct answer for the lemma is 

all that’s left to do. 

                                                      
1 http://www.cse.unt.edu/~rada/downloads.html 
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Figure 3. General process of WSD with Ppr+Freq. 

2.4.1 English 

Given a lemma, we go through its Synset list from 

beginning to end looking for the first Synset that 

contains a key2 for the lemma. If such Synset 

exists, it is designated as the Synset for the lemma. 

Otherwise, no Synset is assigned. 

As already explained, each Synset in the list is 

connected to a Bs. Therefore, the lemma linked 

with the correct WNS selected in the previous step, 

is chosen as the correct lemma. In case no Synsets 

were designated as the correct ones, we take the 

first Bs in BN, which contains the lemma among 

its labels.  

To determine the Wiki pages titles (WK) we 

examine the WIKIRED and WIKI labels in the 

correct Bs selected in the preceding step. This 

search is restricted only to labels corresponding to 

the analyzed language and discriminating upper 

and lower case letters. Table 2 shows some sample 

results of the WSD process. 

Lemma struggle drug_lord 

WNS 00739796n 09394468n 

WN key struggle%1:04:01:: drug_lord%1:18:00:: 

Bs bn:00009079n bn:00028876n 

WK - Drug_Lord 

Lemma colombia near_thing 

WNS 08196765n 00193543n 

WN key colombia%1:15:00:: near_thing%1:04:00:: 
Bs bn:00020697n bn:00057109n 

WK Colombia - 

Table 2 : Example of English Language. 

                                                      
2A sense_key is the best way to represent a sense in 

semantic tagging or other systems that refer to WordNet 

senses. sense_key’s are independent of WordNet sense 

numbers and synset_offset’s, which vary between versions of 

the database. 

2.4.2 Other languages  

For this scenario, we introduce a change in the first 

step discussed in the previous section. The reason 

is that the Synsets do not contain any keys in any 

other language than English. Thus, the correct 

Synset for the lemma is the first in the Synset list 

for the lemma obtained, as described, in section 

2.3. 

3 Results 

We tested three versions (runs) of the proposed 

approach and evaluated them through a trial 

dataset provided by Task123 of Semeval-2013 

using babelnet-1.0.1. Table 3 shows the result for 

each run. Note that the table results were 

calculated with the traditional WSD recall 

measure, being this measure which has ranked 

WSD systems on mostly Semeval competitions. 

On the other hand, note that our precision and 

recall results are different because the coverage is 

not 100%. See Table 5. 

 English French 

Runs WNS Bs WK Bs WK 

Run1 0.70 0.71 0.77 0.59 0.85 

Run2 0.70 0.71 0.78 0.60 0.85 

Run3 0.69 0.70 0.77 - - 

Table 3 : Results of runs with trial recall values. 

As can be noticed on Table 3, results of different 

versions do not have big differences, but in 

general, Run2 achieves the best results; it’s better 

                                                      
3 http://www.cs.york.ac.uk/semeval-2013/task12 

ISR-WN footballer#1 | cried#9 | winning#3

footballer | cry | winning

Lemmas

“The footballer cried when winning”

Disambiguation

Graph

(0,9)

Footballer#1

(0,3)

cry#7

(0,4)

cry#9

(0,2)

cry#10

(0,2)

cry#11

(0,2)

cry#12

(0,2)

winning#1

(0,3)

winning#3

Creating GD

Ppr+Freq

Selecting senses
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than Run1 in the WK with a 78% in English and 

Bs with 60% in French. The best results are in the 

WK in French with a value of 85%. 

Since we can choose to include different 

resources into ISR-WN, it is important to analyze 

how doing so would affect the results. Table 4 

shows comparative results for Run 2 of a trial 

dataset with BabelNet version 1.1.1. 

As can be observed in Table 4, the result does not 

have a significant change even though we used the 

ISR-WN with all resources.  

A better analysis of Ppr+Freq in, as it relates to 

the influence of each resource involved in ISR-WN 

(similar to Table 4 description) assessing 

SensEval-2 and SensEval-3 dataset, is shown in 

(Gutiérrez, 2012). There are different resource 

combinations showing that only XWN1.7 and all 

ISR-WN resources obtain the highest performance. 

Other analysis found in (Gutiérrez, 2012) evaluates 

the influence of adding the sense frequency for 

Ppr+Freq.  

By excluding the Factotum Domain, we obtain 

the best result in Bs 54% for French (only 1% 

more than the version used in the competition). 

The other results are equal, with a 69% in WNS, 

66% in Bs, 64% in WK for English, and 69% in 

WK for French. 

        English French 

WN Domains Sumo Affect Factotum 

Domain 

SemanticClass XWN3.0 XWN1.7 WNS Bs WK Bs WK 

X X X X X X X X 0.69 0.66 0.64 0.53 0.69 

X X  X X X X X 0.69 0.66 0.64 0.53 0.69 

X    X X X X 0.68 0.65 0.64 0.52 0.69 

X X X X  X X X 0.69 0.66 0.64 0.54 0.69 

X X X X  X  X 0.68 0.65 0.65 0.53 0.69 

Table 4. Influence of different resources that integrate ISR-WN in our technique. 

    Wikipedia BabelNet WordNet 

System Language Precision Recall F-score Precision Recall F-score Precision Recall F-score 

MFS DE 0.836 0.827 0.831 0.676 0.673 0.686 - - - 

  EN 0.86 0.753 0.803 0.665 0.665 0.656 0.63 0.63 0.63 

  ES 0.83 0.819 0.824 0.645 0.645 0.644 - - - 

  FR 0.698 0.691 0.694 0.455 0.452 0.501 - - - 

  IT 0.833 0.813 0.823 0.576 0.574 0.572 - - - 

Run1 DE 0.758 0.46 0.572 0.619 0.617 0.618 - - - 

  EN 0.619 0.484 0.543 0.677 0.677 0.677 0.639 0.635 0.637 

  ES 0.773 0.493 0.602 0.708 0.703 0.705 - - - 

  FR 0.817 0.48 0.605 0.608 0.603 0.605 - - - 

  IT 0.785 0.458 0.578 0.659 0.656 0.657 - - - 

Run2 DE 0.769 0.467 0.581 0.622 0.62 0.621 - - - 

  EN 0.62 0.487 0.546 0.685 0.685 0.685 0.649 0.645 0.647 

  ES 0.778 0.502 0.61 0.713 0.708 0.71 - - - 

  FR 0.815 0.478 0.603 0.608 0.603 0.605 - - - 

  IT 0.787 0.463 0.583 0.659 0.657 0.658 - - - 

Run3 EN 0.622 0.489 0.548 0.68 0.68 0.68 0.642 0.639 0.64 

Table 5. Results of Runs for Task12 of semeval-2013 using the test dataset. 
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3.1 Run1 

In this Run, WNSLs consist of all the target words 

involved in each sentence. This run is applied at 

the sentence level. The results for the competition 

are shown in Table 5. For this Run, the best result 

was obtained for Spanish with a 70.3% in Bs and 

49.3% in WK of Recall. As we can see, for Run1 
the precision is high for Wikipedia disambiguation, 

obtaining for French the best result of the ranking. The 

low Recall in Wikipedia is due to the exact mismatching 

of labels between our system output and the gold 

standard. This fact, affects the rest of our runs. 

3.2 Run2 

In this Run, WNSLs consist of all the target words 

involved in each domain. We can obtain the target 

words because the training and test dataset contain 

the sentences grouped by topics.  For instance, for 

English, 13 WNSLs are established. This Run is 

applied at the corpora level. The results for the 

competition are shown in Table 5. It is important to 

emphasize that our best results ranked our 

algorithm as first place among all proposed 

approaches for the MWSD task. 

For this run, the best Recall was obtained for 

Spanish with a 70.8% in Bs and 50.2% in WK. 

This Run also has the best result of the three runs. 

For the English competition, it ended up with a 

64.5% in WNS, 68.5% in Bs, and 48.7% in WK. 

This Run obtained promising results, which took 

first place in the competition. It also had better 

results than that of the First Sense (Most Frequent 

Sense) baseline in Bs results for all languages, 

except for German. In Bs, it only obtained lower 

results in German with a 62% of Recall for our 

system and 67.3% for the First Sense baseline. 

3.3 Run3 

In this run, WNSLs consist of all the words 

included in each sentence. This run uses target 

words and non-target words of each sentence, as 

they are applied to the sentence level. The results 

for the competition are shown in Table 5.  

As we can see, the behavior of this run is similar 

to the previous runs. 

4 Conclusions and Future work  

The above results suggest that our proposal is a 

promising approach. It is also important to notice 

that a richer knowledgebase can be built by 

combining different resources such as BabelNet 

and ISR-WN, which can lead to an improvement 

of the results. Notwithstanding, our system has 

been recognized as the best in the competition, 

obtaining results around 70% of Recall. 

According to the Task12 results4, only the 

baseline Most Frequent Sense (MFS) could 

improve our scores in order to achieve better WK 

and German (DE) disambiguation. Therefore, we 

plan to review this point to figure out why we 

obtained better results in other categories, but not 

for this one. At the same time, further work will 

use the internal Babel network to run the Ppr+Freq 

method in an attempt to find a way to enrich the 

semantic network obtained for each target sentence 

to disambiguate. On top of that, we plan to 

compare Ppr (Agirre and Soroa, 2009) with 

Ppr+Freq using the Task12 dataset. 

Availability of our Resource 

In case researchers would like to use our resource, 

it is available at the GPLSI5 home page or by 

contacting us via email. 
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Abstract

We introduce Peripheral Diversity (PD) as a
knowledge-based approach to achieve multi-
lingual Word Sense Disambiguation (WSD).
PD exploits the frequency and diverse use
of word senses in semantic subgraphs de-
rived from larger sense inventories such as
BabelNet, Wikipedia, and WordNet in order
to achieve WSD. PD’s f -measure scores for
SemEval 2013 Task 12 outperform the Most
Frequent Sense (MFS) baseline for two of
the five languages: English, French, German,
Italian, and Spanish. Despite PD remain-
ing under-developed and under-explored, it
demonstrates that it is robust, competitive, and
encourages development.

1 Introduction

By reading out aloud “A minute is a minute divi-
sion of time” (Nelson, 1976), we can easily make
the distinction between the two senses of the homo-
graph minute. For a machine this is a complex task
known as Word Sense Disambiguation (WSD). Task
12 of SemEval 2013 (Navigli et al., 2013) calls for a
language-independent solution to WSD that utilises
a multilingual sense inventory.

Supervised approaches to WSD have dominated
for some time now (Màrquez et al., 2007). Homo-
graphs such as minute are effortlessly disambiguated
and more polysemous words such as bar or line
can also be disambiguated with reasonable compe-
tence (Agirre and Edmonds, 2007). However our ap-
proach is purely knowledge-based and employs se-
mantic graphs. This allows us to avoid the notorious

predicament Gale et al. (1992) name the information
bottleneck, in which supervised approaches fail to be
portable across alternative languages and domains
if the annotated corpora do not exist. Conversely,
knowledge-based approaches for WSD are usually
applicable to all words in unrestricted text (Mihal-
cea, 2007). It is this innate scalability that moti-
vates us to pursue knowledge-based approaches. Re-
gardless of whether sense inventories can maintain
knowledge-richness as they grow, their continued re-
finement by contributors is directly beneficial.

Knowledge-based approaches that employ se-
mantic graphs increasingly rival leading supervised
approaches to WSD. They can beat a Random or
LESK (Lesk, 1986) baseline (see Mihalcea (2005),
Navigli and Lapata (2007), Sinha and Mihalcea
(2007), Navigli and Lapata (2010)) and can com-
pete with or even beat the Most Frequent Sense
(MFS) baseline in certain contexts which is by no
means an easy task (see Navigli et al. (2007), Eneko
Agirre and Aitor Soroa (2009), Navigli and Ponzetto
(2012a)).

2 Methodology

PD is a framework for knowledge-based WSD ap-
proaches that employ semantic graphs. However be-
fore we can elaborate we must first cover the funda-
mental resources it is built upon.

2.1 Fundamental Resource Definitions
2.1.1 Lemma Sequences

At a glance across the text of any language, we ab-
sorb meaning and new information through its lexi-
cal composition. Depending on the length of text
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we are reading, we could interpret it as one of many
structural subsequences of writing such as a para-
graph, excerpt, quote, verse, sentence, among many
others. LetW = (wa, ..., wb) be this subsequence of
words, which we will utilise as a sliding window for
PD. Again let W = (w1, ..., wm) be the larger body
of text of length m, such as a book, newspaper, or
corpus of text, that our sliding window of length b−a
moves through.

In SemEval Task 12 on Multilingual Word Sense
Disambiguation all words are lemmatised, which is
the process of unifying the different inflected forms
of a word so they can be analysed as a consolidated
lemma (or headword). Therefore words (or lexemes)
such as runs and ran are all mapped to their unifying
lemma run1.

To express this, let `w : W → L be a many-
to-one mapping from the sequence of words W to
the sequence of lemmas L, in which (wa, ..., wb) 7→
(`wa , ..., `wb

) = (`a, ..., `b). To give an example
from the test data set2, the word sequenceW = (And,
it, ’s, nothing, that, runs, afoul, of, ethics, rules,
.) maps to the lemma sequence L = (and, it, be,
nothing, that, run, afoul, of, ethic, rule, .). In or-
der to complete this SemEval task we disambiguate
a large sequence of lemmas L = (`1, ..., `m), via our
lemma-based sliding window L = (`a, ..., `b).

2.1.2 Synsets
Each lemma `i ∈ L may refer up to k senses in

S(`i) = {si,1, si,2, ..., si,k} = S . Furthermore each
sense si,j ∈ S maps to a set of unique concepts in
the human lexicon. To clarify let us consider one
of the earliest examples of modern ambiguity taken
from Bar-Hillel’s (1960) critique of Machine Trans-
lation: W = (The, box, was, in, the, pen, .). The
sense of pen could be either a) a certain writing uten-
sil or b) an enclosure where small children can play,
therefore {senclosure, sutensil} ⊂ S(`pen) = S. Humans
can easily resolve the ambiguity between the pos-
sible senses of pen by accessing their own internal
lexicon and knowledge of the world they have built
up over time.

In the same vein, when accessing sense invento-
ries such as BabelNet, WordNet (Fellbaum, 1998),

1While all words are lemmatised, this task strictly focuses
on the WSD of noun phrases.

2This is sentence d010.s014 in the English test data set.

and Wikipedia which are discrete representations of
the human lexicon, we refer to each sense si,j ∈ S
as a synset. Depending on the sense inventory the
synset belongs to, it may contain alternative or trans-
lated lexicalisations, glosses, links to other semantic
resources, among a collection of semantically de-
fined relations to other synsets.

2.1.3 Subgraphs
PD makes use of subgraphs derived from a di-

rected graph G = (V, E) that can be crafted from
a sense inventory, such as BabelNet, WordNet, or
Wikipedia. We construct subgraphs using the Babel-
Net API which accesses BabelNet3 and Babel synset
paths4 indexed into Apache Lucene5 to ensure speed
of subgraph construction. This process is described
in Navigli and Ponzetto (2012a) and demonstrated
in Navigli and Ponzetto (2012b). Our formalisation
of subgraphs is adapted into our own notation from
the original papers of Navigli and Lapata (2007) and
Navigli and Lapata (2010). We refer the reader to
these listed sources if they desire an extensive ex-
planation of our subgraph construction as we have
built PD on top of the same code base therefore we
do not deviate from it.

For a given lemma sequence L = (`i, ..., `n) and
directed graph G = (V, E) we construct our sub-
graph GL = (VL, EL) in two steps:

1. Initialize VL :=
⋃n

i=1 S(`i) and EL := ∅.

2. For each node v ∈ VL, we perform a depth-
first search (DFS) of G, such that, every time
we encounter a node v′ ∈ VL (v′ 6= v) along a
path v, v1, ..., vk, v

′ of length ≤ L in G, we add
all intermediate nodes and edges on the path
from v to v′, i.e., VL := VL ∪ {v1, ..., vk} and
EL := EL ∪ {{v, v1}, ..., {vk, v

′}}.

2.2 Interpretation of Problem

For the lemmatisation of any word wi 7→ `i :
wi ∈ W, `i ∈ L, we must estimate the most ap-
propriate synset si,∗ ∈ S(`i) = {si,1, si,2, ..., si,k}.
Our system associates a PD score φ(si,j) for each

3BabelNet 1.1.1 API & Sense Inventory - http://lcl.
uniroma1.it/babelnet/download.jsp

4BabelNet 1.0.1 Paths - http://lcl.uniroma1.it/
babelnet/data/babelnet_paths.tar.bz2

5Apache Lucene - http://lucene.apache.org
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si,j ∈ S(`i) by taking GL as input. We estimate
si,∗, the most appropriate sense for `i, by ŝi,∗ =
arg maxsi,j∈S(`i) φ(si,j). It’s worth noting here that
GL ensures the estimation of ŝi,∗ is not an indepen-
dent scoring rule, since GL embodies the context sur-
rounding `i via our sliding lemma-based window L.

2.3 Peripheral Diversity Framework
PD is built on the following two ideas that are ex-
plained in the following subsections:

1. For a subgraph derived from one lone lemma
`i, in which no other lemmas can provide con-
text, the synset si,j ∈ G`i that has the largest
and most semantically diverse set of peripheral
synset nodes is assumed to be the MFS for `i.

2. For a larger subgraph derived from a sliding
lemma window L, in which other lemmas can
provide context, the synset si,j ∈ GL that ob-
serves the largest increase in size and semantic
diversity of its peripheral synset nodes is esti-
mated to be si,∗, the most appropriate synset for
lemma `i.

Therefore PD is merely a framework that exploits
these two assumptions. Now we will go through the
process of estimating si,∗ for a given lemma `i.

2.3.1 Pairwise Semantic Dissimilarity
First, for each synset si,j ∈ S, we need to acquire

a set of its peripheral synsets. We do this by travel-
ling a depth of up to d (stopping if the path ends),
then adding the synset we reach to our set of periph-
eral synsets P≤d = {sj,1, sj,2, ..., sj,k′}.

Next for every pair of synsets v and v′ that are
not direct neighbours in P≤d such that v 6= v′,
we calculate their Pairwise Semantic Dissimilarity
(PSD) δ(v, v′) which we require for a synset’s
PD score. To generate our results for this task we
have used the complement to Cosine Similarity,
commonly known as the Cosine Distance as our
PSD measure:

δ(v, v′) =

1−
(

|O(v)∩O(v′)|√
|O(v)|

√
|O(v′)|

)
, if |O(v)||O(v′)| 6= 0

1, otherwise,

where O(v) is the outgoing (out-neighbouring)
synsets for v ∈ P≤d, and |O(v)| denotes the number
of elements in O(v).

2.3.2 Peripheral Diversity Score

Once we have PSD scores for every permitted
pairing of v and v′, we have a number of ways to
generate our φ(si,j) values. To generate our results
for this task, we chose to score synsets on the sum
of their minimum PSD values, which is expressed
formally below:
φ(si,j) =

∑
v∈P≤d(si,j)

min
v′ 6=v

v′∈P≤d(si,j)

δ(v, v′)

The idea is that this summing over the peripheral
synsets in P≤d(si,j) accounts for how frequently
synset si,j is used, then each increment in size is
weighted by a peripheral synset’s minimumal PSD
across all synsets in P≤d(si,j). Therefore periph-
eral set size and semantic diversity are rewarded
simultaneously by φ. To conclude, the final esti-
mated synset sequence for a given lemma sequence
(`1, ..., `m) based on φ is (ŝ1,∗, ŝ2,∗, ..., ŝm,∗).

2.3.3 Strategies, Parameters, & Filters

Wikipedia’s Did You Mean? We account for de-
viations and errors in spelling to ensure lemmas
have the best chance of being mapped to a synset.
Absent synsets in subgraph GL will naturally de-
grade system output. Therefore if `i 7→ ∅,
we make an HTTP call to Wikipedia’s Did you
mean? and parse the response for any alternative
spellings. For example in the test data set6 the
misspelt lemma: “feu de la rampe” is corrected to
“feux de la rampe”.

Custom Back-off Strategy As back-off strate-
gies7 have proved useful in (Navigli and Ponzetto,
2012a) and (Navigli et al., 2007), we designed our
own back-off strategy. In the event our system pro-
vides a null result, the Babel synset si,j ∈ S(`i) =
S with the most senses associated with it will be
chosen with preference to its region in BabelNet
such that WIKIWN �WN �WIKI.

6Found in sentence d001.s002.t005 in the French test
data set.

7In the event the WSD technique fails to provide an answer,
a back-off strategy provides one for the system to output.
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Input Parameters We set our sliding window
length (b− a) to encompass 5 sentences at a time, in
which the step size is also 5 sentences. For subgraph
construction the maximum lengthL = 3. Finally we
set our peripheral search depth d = 3.

Filters For the purposes of reproducibility only
we briefly mention two filters we apply to our sub-
graphs that ship with the BabelNet API. We re-
move WordNet contributed domain relations with
the ILLEGAL POINTERS filter and apply the
SENSE SHIFTS filter. For more information on
these filters we suggest the reader consult the Ba-
belNet API documentation.

3 Results & Discussion

3.1 Results of SemEval Submission

Language DAEBAK! MFSBaseline +/-
DE German 59.10 68.60 -9.50
EN English 60.40 65.60 -5.20
ES Spanish 60.00 64.40 -4.40
FR French 53.80 50.10 +3.70
IT Italian 61.30 57.20 +4.10

Mean 58.92 61.18 -2.26

Table 1: DAEBAK! vs MFS Baseline on BabelNet

As can be seen in Table 1, the results of our single
submission were varied and competitive. The worst
result was for German in which our system fell be-
hind the MFS baseline by a margin of 9.50. Again
for French and Italian we exceeded the MFS base-
line by a margin of 3.70 and 4.10 respectively. Our
Daebak back-off strategy contributed anywhere be-
tween 1.12% (for French) to 2.70% (for Spanish) in
our results, which means our system outputs a re-
sult without the need for a back-off strategy at least
97.30% of the time. Overall our system was slightly
outperformed by the MFS baseline by a margin of
2.26. Overall PD demonstrated to be robust across
a range of European languages. With these prelimi-
nary results this surely warrants further investigation
of what can be achieved with PD.

3.2 Exploratory Results
The authors observed some inconsistencies in the
task answer keys across different languages as Ta-
ble 2 illustrates. For each Babel synset ID found in

the answer key, we record where its original source
synsets are from, be it Wikipedia (WIKI), WordNet
(WN), or both (WIKIWN).

Language WIKI WN WIKIWN
DE German 43.42% 5.02% 51.55%
EN English 10.36% 32.11% 57.53%
ES Spanish 30.65% 5.40% 63.94%
FR French 40.81% 6.55% 52.64%
IT Italian 38.80% 7.33% 53.87%

Table 2: BabelNet Answer Key Breakdown

This is not a critical observation but rather an
empirical enlightenment on the varied mechanics
of different languages and the amount of devel-
opment/translation effort that has gone into the
contributing subparts of BabelNet: Wikipedia and
WordNet. The heterogeneity of hybrid sense inven-
tories such as BabelNet creates new obstacles for
WSD, as seen in (Medelyan et al., 2013) it is diffi-
cult to create a disambiguation policy in this context.
Future work we would like to undertake would be to
investigate the heterogenous nature of BabelNet and
how this affects various WSD methods.

4 Conclusion & Future Directions

To conclude PD has demonstrated in its early stages
that it can perform well and even outperform the
MFS baselines in certain experimental contexts.
Furthermore it leaves a lot left to be explored in
terms of what this approach is capable of via adjust-
ing subgraph filters, strategies, and input parameters
across both heterogenous and homogenous semantic
graphs.
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Abstract

Many NLP applications require information
about locations of objects referenced in text,
or relations between them in space. For ex-
ample, the phrase a book on the desk contains
information about the location of the object
book, as trajector, with respect to another ob-
ject desk, as landmark. Spatial Role Label-
ing (SpRL) is an evaluation task in the infor-
mation extraction domain which sets a goal
to automatically process text and identify ob-
jects of spatial scenes and relations between
them. This paper describes the task in Se-
mantic Evaluations 2013, annotation schema,
corpora, participants, methods and results ob-
tained by the participants.

1 Introduction

Spatial Role Labeling at SemEval-2013 is the sec-
ond iteration of the task, which was initially in-
troduced at SemEval-2012 (Kordjamshidi et al.,
2012a). The second iteration extends the previous
work with an additional training corpus, which con-
tains besides “static” spatial relations, annotated mo-
tions. Motion detection is a novel task for annotating
trajectors (objects, which are moving), landmarks
(spatial context in which the motion is performed),
motion indicators (lexical triggers which signals tra-
jector’s motion), paths (a path along which the mo-
tion is performed), directions (absolute or relative
directions of trajector’s motion) and distances (a
distance as a product of motion). For annotating
motions the existing annotation scheme has been
adapted with additional markables which are, all to-
gether, described below.

2 Spatial Annotation Schema

In this Section we describe the annotation format of
spatial markables in text, and annotation guidelines
for the annotators.

2.1 Spatial Annotation Format
Building upon the previous work, we used the no-
tions of trajectors, landmarks and spatial indicators
as introduced by Kordjamshidi et al. (2010). In ad-
dition, we further expanded the set of spatial roles
labels with motion indicators, paths, directions and
distances to capture fine-grained spatial semantics of
static spatial relations (as the ones which do not in-
volve motions), and to accommodate dynamic spa-
tial relations (the ones which do involve motions).

2.1.1 Static Spatial Relations and their Roles
Static spatial relations are defined as relations be-

tween still objects, whereas one object plays a cen-
tral role in the spatial scene, which is called tra-
jector, and the second one plays a secondary role,
and it is called landmark. In language, a spatial re-
lation between two objects is usually implemented
by a preposition (in, on, at, etc.) or a prepositional
phrase (on top of, inside of, etc.).

A static spatial relation is defined as a tuple that
contains a trajector, a landmark and a spatial indica-
tor. In the annotation schema, these annotations are
defined as follows:

Trajector: Trajector is a spatial role label as-
signed to a word or a phrase that denotes a central
object of a spatial scene. For example:

• [Trajector a lake] in the forest
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• [Trajector a flag] on top of the building

Landmark: Landmark is a spatial role label as-
signed to a word or a phrase that denotes a secondary
object of a spatial scene, to which a possible spatial
relation (as between two objects in space) can be es-
tablished. For example:

• a lake in [Landmark the forest]

• a flag on top of [Landmark the building]

Spatial Indicator: Spatial Indicator is a spatial
role label assigned to a word or a phrase that sig-
nals a spatial relation between objects (trajectors and
landmarks) of a spatial scene. For example:

• a lake [Sp indicator in] the forest

• a flag] [Sp indicator on top of ] the building

Spatial Relation: Spatial Relation is a relation
that holds between spatial markables in text as, e.g.,
between a trajector and a landmark and triggered by
a spatial indicator. In spatial information theory the
relations and properties are usually grouped into the
domains of topological, directional, and distance re-
lations and also shape (Stock, 1998). Three semantic
classes for spatial relations were proposed:

• Region. This type refers to a region of space
which is always defined in relation to a land-
mark, e.g., the interior or exterior. For exam-
ple:

a lake in the forest =⇒ 〈Region, [Sp indicator

in], [Trajector a lake], [Landmark the forest]〉

• Direction. This relation type denotes a direc-
tion along the axes provided by the different
frames of reference, in case the trajector of mo-
tion is not characterized in terms of its relation
to the region of a landmark. For example:

a flag on top of the building =⇒ 〈Direction,
[Sp indicator on top of ], [Trajector a flag],
[Landmark the building]〉

• Distance. Type Distance states information
about the spatial distance of the objects and
could be a qualitative expression, such as close,
far or quantitative, such as 12 km. For example:

the kids are close to the blackboard =⇒
〈Distance, [Distance close], [Trajector the kids],
[Landmark the blackboard]〉

2.1.2 Dynamic Spatial Relations

In addition to static spatial relations and their
roles, SpRL-2013 introduces new spatial roles to
capture dynamic spatial relations which involve
motions. Let us demonstrate this with the following
example:

(1) In Brazil coming from the North-East I
stepped into the small forest and followed down a
dried creek.

The text above describes a motion, and the reader
can identify a number of concepts which are pecu-
liar for motions: there is an object whose location
is changing, the motion is performed in a specific
spatial context, with a specific direction, and with a
number of locations related to the object’s motion.

There has been an enormous effort in formalizing
and annotating motions in natural language. While
annotating motions was out of scope for the previ-
ous SpRL task and SpatialML (Mani et al., 2010),
the most recent work on the Dynamic Interval Tem-
poral Logic (DITL) (Pustejovsky and Moszkowicz,
2011) presents a framework for modeling motions
as a change of state, which adapts linguistic back-
ground considering path constructions and manner-
of-motion constructions. On this basis the Spa-
tiotemporal Markup Language (STML) has been in-
troduced for annotating motions in natural language.
In STML, a motion is treated as a change of location
over time, while differentiating between a number
of spatial configurations along the path. Being well-
defined for the formal representations of motion and
reasoning, in which representations either take ex-
plicit reference to temporal frames or reify a spatial
object for a path, all the previous work seems to be
difficult to apply in practice when annotating mo-
tions in natural language. It can be attributed to pos-
sible vague descriptions of path in natural language
when neither clear temporal event ordering, nor dis-
tinction between the start, end or intermediate path
point can be made.

In SpRL-2013, we simplify the previously intro-
duced notion of path in order to provide practical
motion annotations. For dynamic spatial relations
we introduce the following roles:
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Trajector: Trajector is a spatial role label as-
signed to a word or a phrase which denotes an object
which moves, starts, interrupts, resumes a motion, or
is forcibly involved in a motion. For example:

• ... coming from the North-East [Trajector I]
stepped into ...

Motion Indicator: Motion indicator is a spatial
role label assigned to a word or a phrase which sig-
nals a motion of the trajector along a path. In Exam-
ple (1), a number of motion indicators can be identi-
fied:

• ... [Motion coming] from the North-East I
[Motion stepped into] ... and [Motion followed
down] ...

Path: Path is a spatial role label assigned to a word
or phrase that denotes the path of the motion as the
trajector is moving along, starting in, arriving in or
traversing it. In SpRL-2013, as opposite to STML,
the notion of path does not have the temporal dimen-
sion, thus whenever the motion is performed along a
path, for which either a start, an intermediate, an end
path point, or an entire path can be identified in text,
they are labeled as path. In Example (1), a number
of path labels can be identified:

• ... coming [Path from the North-East] I stepped
into [Path the small forest] and followed down
[Path a dried creek].

Landmark: The notion of path should not be con-
fused with landmarks. For spatial annotations, land-
mark has been introduced as a spatial role label for
a secondary object of the spatial scene. Being of
great importance for static spatial relations, in dy-
namic spatial relations, landmarks are used to cap-
ture a spatial context of a motion as for example:

• In [Landmark Brazil] coming from the North-
East ...

Distance: In contrast to the previous SpRL anno-
tation standard, in which distances and directions
have been uniformly treated as signals, in SpRL-
2013 if the motion is performed for a certain dis-
tance, and such a distance is mentioned in text, the
corresponding textual span is labeled as distance.

Distance is a spatial role label assigned to a word
or a phrase that denotes an absolute or relative dis-
tance of motion, or the distance between a trajector
and a landmark in case of a static spatial scene. For
example:

• [Distance 25 km]

• [Distance about 100 m]

• [Distance not far away]

• [Distance 25 min by car]

Direction: Additionally, if the motion is per-
formed in a certain (absolute or relative) direction,
and such a direction is mentioned in text, the corre-
sponding textual span is annotated as direction. Di-
rection is a spatial role label assigned to a word or
a phrase that denotes an absolute or relative direc-
tion of motion, or a spatial arrangement between a
trajector and a landmark. For example:

• [Direction the North-West]

• [Direction northwards]

• [Direction west]

• [Direction the left-hand side]

Spatial Relation: Similarly to static spatial rela-
tions, dynamic spatial relations are annotated by re-
lations that hold between a number of spatial roles.
The major difference to static spatial relations is the
mandatory motion indicator1. For example:

• In Brazil coming from the North-East I ...
=⇒ 〈Direction, [Sp indicator In], [Trajector I],
[Landmark Brazil], [Motion coming],[Path from
the North-East]〉

• ... I stepped into the small forest and ...
=⇒ 〈Direction, [Trajector I], [Motion stepped
into],[Path the small forest]〉

• ... I [...] and followed down a dried creek.
=⇒ 〈Direction, [Trajector I], [Motion followed
down],[Path a dried creek]〉

1All dynamic spatial relations were annotated with type Di-
rection.
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Corpus Files Sent. TR LM SI MI Path Dir Dis Relation

IAPR TC-12
Training 1 600 716 661 670 - - - - 765

Evaluation 1 613 872 743 796 - - - - 940
Confluence
Project

Training 95 1422 1701 1037 879 1039 945 223 307 2105
Evaluation 22 367 497 316 247 305 240 37 87 598

Table 1: Corpus statistics for SpRL-2013 with respect to annotated spatial roles (trajectors (TR), landmarks (LM),
spatial indicators (SI), motion indicators (MI), paths (Path), directions (Dir) and distances (Dis)) and spatial relations.

3 Corpora

The data for the shared task comprises two different
corpora.

3.1 IAPR TC-12 Image Benchmark Corpus

The first corpus is a subset of the IAPR TC-12 image
benchmark corpus (Grubinger et al., 2006). It con-
tains 613 text files that include 1213 sentences in to-
tal, and represents an extension of the dataset previ-
ously used in (Kordjamshidi et al., 2011). The orig-
inal corpus was available free of charge and without
copyright restrictions. The corpus contains images
taken by tourists with descriptions in different lan-
guages. The texts describe objects, and their abso-
lute and relative positions in the image. This makes
the corpus a rich resource for spatial information,
however, the descriptions are not always limited to
spatial information. Therefore, they are less domain-
specific and contain free explanations about the im-
ages. For training we released 600 sentences (about
50% of the corpus), and used remaining 613 sen-
tences for evaluations.

3.2 Confluence Project Corpus

The second corpus comes from the Confluence
project that targets the description of locations sit-
uated at each of the latitude and longitude inte-
ger degree intersection in the world. This corpus
contains user-generated content produced by, some-
times, non-native English speakers. We gathered the
content by keeping the original orthography and for-
mating. In addition, we stored the URLs of the de-
scriptions and extracted the coordinates of the de-
scribed confluence point, which might be interest-
ing for further research. In total, the entire corpus
contains 117 files with 1789 sentences (about 40,000
tokens). For training we released 95 annotated files
with 1422 sentences, 2105 annotated relations in to-

tal. For evaluation we used 22 annotated files with
367 sentences. The statistics on both corpora are
provided in Table 1.

3.3 Data Format

One important change to the data was made in
SpRL-2013. In contrast to SpRL-2012, where spa-
tial roles were annotated over “head words” whose
indexes were part of unique identifiers, in SpRL-
2013 we switched to span-based annotations. More-
over, in order to provide a single data format for
the task, we transformed SpRL-2012 data into span-
based annotations, in course of which, we identified
a number of annotation errors and made further im-
provements for about 50 annotations.

For annotating the Confluence Project corpus we
used a freely available annotation tool MAE created
by Amber Stubbs (Stubbs, 2011). The resulting data
format uses the same annotation tags as in SpRL-
2012, but each role annotation refers to a character
offset in the original text2. Spatial relations are com-
posed of references to annotations by their unique
identifiers. Similarly to SpRL-2012, we allowed
annotators to provide non-consuming annotations,
where entity mentions, for which spatial roles can
be identified, are omitted in text but necessary for a
spatial relation triggered by either a spatial indicator
or a motion indicator. Two spatial roles are eligible
for non-consuming annotations: trajectors and land-
marks.

4 Tasks Descriptions

For the sake of consistency with SpRL-2012, in
SpRL-2013 we proposed the following tasks:

2Due to paper length constraints we omit the BNF specifica-
tions for spatial roles and relations. For further data format in-
formation we refer the reader to the task description web page:
www.cs.york.ac.uk/semeval-2013/task3/
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• Task A: Identification of markable spans for
three types of spatial annotations such as tra-
jector, landmark and spatial indicator.

• Task B: Identification of tuples (triplets) that
connect trajectors, landmarks and spatial indi-
cators identified in Task A into spatial relations.
That is, identification of spatial relations with
three markables connected, and without se-
mantic relation classification.

• Task C: Identification of markable spans for all
spatial annotations such as trajector, landmark,
spatial indicator, motion indicator, path, direc-
tion and distance.

• Task D: Identification of n-tuples that connect
spatial markables identified in Task C into spa-
tial relations. That is, identification of spatial
relations with as many participating mark-
ables as possible, and without semantic rela-
tion classification.

• Task E: Semantic classification of spatial rela-
tions identified in Task D.

5 Evaluation Criteria and Metrics

System outputs were evaluated against the gold
annotations, which had to conform to the role’s
Backus-Naur form. For Tasks A and C, the system
annotations are spatial roles: spans of text associated
with spatial role types. A system annotation of a
role is considered correct if it has a minimal overlap
of one character with a gold annotation and matches
the role type of the gold annotation. For Tasks B and
D, the system annotations are spatial relation tuples
(of length 3 in task B, of length 3 to 5 in Task D) of
references to markable annotations. A system anno-
tation of a spatial relation tuple is considered correct
if it is of the same length as the gold annotation, and
if each spatial role in the system tuple matches each
role in the gold tuple. A spatial role estimated by a
system is considered correct if it matches a gold ref-
erence when having the same character offsets and
markable types (strict evaluation settings). In ad-
dition we introduced relaxed evaluation settings, in
which a minimal overlap of one character between
a system and a gold markable references is required
for a positive match under condition that the roles

match. For Task E, the system annotations are spa-
tial relation tuples of length 3 to 5, along with re-
lation type labels. A system annotation of a spatial
relation is considered correct if the spatial relation
tuple is correct under the evaluation of Task D and
the relation type of the system relation is the same
as the relation type of the gold relation.

Systems were evaluated for each of the tasks in
terms of precision (P), recall (R) and F1-score which
are defined as follows:

Precision =
tp

tp + fp
(1)

Recall =
tp

tp + fn
(2)

where tp is the number of true positives (the num-
ber of instances that are correctly found), fp is the
number of false positives (number of instances that
are predicted by the system but not a true instance),
and fn is the number of false negatives (missing re-
sults).

F1 = 2 · Precision ·Recall

Precision + Recall
(3)

6 System Description and Evaluation
Results

UNITOR. The UNITOR-HMM-TK system ad-
dressed Tasks A,B and C (Bastianelli et al., 2013).

In Tasks A and C, roles are labeled by a sequence-
based classifier: each word in a sentence is classi-
fied with respect to the possible spatial roles. An
approach based on the SVM-HMM learning algo-
rithm, formulated in (Tsochantaridis et al., 2006),
was used. It is in line with other methods based
on sequence-based classifier for Spatial Role La-
beling, such as Conditional Random Fields (Kord-
jamshidi et al., 2011), and the same SVM-HMM
learning algorithm (Kordjamshidi et al., 2012b).
UNITOR’s labeling approach has been inspired by
the work in (Croce et al., 2012), where an SVM-
HMM learning algorithm has been applied to the
classical FrameNet-based Semantic Role Labeling.
The main contribution of the proposed approach is
the adoption of shallow grammatical features instead
of the full syntax of the sentence, in order to avoid
over-fitting on the training data. Moreover, lexical
information has been generalized through the use
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Run Task Evaluation Label P R F1-score

UNITOR.Run1.1
Task A relaxed

TR 0.684 0.681 0.682
LM 0.741 0.835 0.785
SI 0.967 0.889 0.926

Task B
relaxed Relation 0.551 0.391 0.458
strict Relation 0.431 0.306 0.358

UNITOR.Run1.2
Task A relaxed

TR 0.682 0.493 0.572
LM 0.801 0.560 0.659
SI 0.968 0.585 0.729

Task B
relaxed Relation 0.551 0.391 0.458
strict Relation 0.431 0.306 0.358

UNITOR.Run2.1

Task A relaxed
TR 0.565 0.317 0.406
LM 0.661 0.476 0.554
SI 0.612 0.481 0.538

Task C relaxed

TR 0.565 0.317 0.406
LM 0.662 0.476 0.554
SI 0.609 0.479 0.536
MI 0.892 0.294 0.443

Path 0.775 0.295 0.427
Dir 0.312 0.229 0.264
Dis 0.946 0.331 0.490

Table 2: Results of UNITOR for SpRL-2013 tasks (Task A, B and C).

of Word Space – a Distributional Model of Lexi-
cal Semantics derived from the unsupevised anal-
ysis of an unlabeled large-scale corpus (Sahlgren,
2006). Similarly to the approaches demonstrated
in SpRL-2012, the proposed approach first classi-
fies spatial and motion indicators, then, using these
outcomes further spatial roles are determined. For
classifying indicators, the classifier makes use of
lexical and grammatical features like lemmas, part-
of-speech tags and lexical context representations.
The remaining spatial roles are estimated by another
classifier additionally employing the lemma of the
indicator, distance and relative position to the indi-
cator, and the number of tokens composing the indi-
cator as features.

In Task B, all roles found in a sentence for Task A
are combined to generate candidate relations, which
are verified by a Support Vector Machine (SVM)
classifier. As the entire sentence is informative
to determine the proper conjunction of all roles, a
Smoothed Partial Tree Kernel (SPTK) within the
classifier that enhances both syntactic and lexical in-
formation of the examples was applied (Croce et al.,

2011). This is a convolution kernel that measures the
similarity between syntactic structures, which are
partially similar and whose nodes can be different,
but are, nevertheless, semantically related. Each ex-
ample is represented as a tree-structure which is di-
rectly derived from the sentence dependency parse,
and thus allows for avoiding manual feature engi-
neering as in contrast to the work of Roberts and
Harabagiu (2012). In the end, the similarity score
between lexical nodes is measured by the Word
Space model.

UNITOR submitted two runs for the IAPR TC-
12 Image benchmark corpus (we refer to them
as to UNITOR.Run1.1 and UNITOR.Run1.2) and
one run for the Confluence Project corpus (UN-
ITOR.Run2.1), based on the models individually
trained on the different corpora. The difference
between UNITOR.Run1.1 and UNITOR.Run1.2 is
that for UNITOR.Run1.1 the results are obtained for
all spatial roles (also the ones that have no spatial
relation), and UNITOR.Run1.2 only provided the
roles for which also spatial relations were identified.
The results are presented in Table 2.
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Although, not directly comparable to the results in
SpRL-2012, one may observe some common trends.
First, similarly to the previous findings, the perfor-
mance for recognition of landmarks and spatial in-
dicators (Task A) on the IAPR TC-12 Image bench-
mark corpus is better than trajectors (F1-scores of
0.785, 0.926 and 0.682 respectively), and spatial in-
dicators is the “easiest” spatial role to recognize (F1-
score of 0.926).

In contrast, spatial role labeling on the Confluence
Project corpus performs worse than on the IAPR
TC-12 Image benchmark corpus (with F1-scores of
0.406, 0.538 and 0.554 for trajectors, spatial indica-
tors and landmarks respectively). Interestingly, the
performance for landmarks is generally higher than
for trajectors, which is in line with previous findings
in SpRL-2012. The performance drop on the new
corpus can be attributed to more complex text and
descriptions, whereas multiple roles can be identi-
fied for the same span (for example, a path which
spans over trajectors, landmarks and spatial indica-
tors). For the new spatial roles of motion indicators,
paths, directions and distances, the performance lev-
els are overall higher than for trajectors with an ex-
ception of directions. Yet, the precision levels for
new roles is much higher than the recall (0.892 vs.
0.294 for motion indicators, 0.775 vs. 0.295 for
paths and 0.946 vs. 0.331 for distances). Directions
turned out to be the most difficult role to classify
(0.312, 0.229 and 0.264 for P , R and F1-score re-
spectively).

7 Conclusion

In this paper we described an evaluation task on Spa-
tial Role Labeling in the context of Semantic Evalu-
ations 2013. The task sets a goal to automatically
process text and identify objects of spatial scenes
and relations between them. Building largely upon
the previous evaluation campaign, SpRL-2012, in
SpRL-2013 we introduced additional spatial roles
and relations for capturing motions in text. In ad-
dition, a new annotated corpus for spatial roles (in-
cluding annotated motions) was produced and re-
leased to the participants. It comprises a set of 117
files with about 40,000 tokens in total.

With the registered number of 10 participants and
the final number of submissions (only one) we can

conclude that spatial role labeling is an interesting
task within the research community, however some-
times underestimated in its complexity. Our further
steps in promoting spatial role labeling will be a de-
tailed description of the annotation scheme and an-
notation guidelines, analysis of the corpora and ob-
tained results.
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Abstract

We present the results of the Joint Student
Response Analysis and 8th Recognizing Tex-
tual Entailment Challenge, aiming to bring to-
gether researchers in educational NLP tech-
nology and textual entailment. The task of
giving feedback on student answers requires
semantic inference and therefore is related to
recognizing textual entailment. Thus, we of-
fered to the community a 5-way student re-
sponse labeling task, as well as 3-way and 2-
way RTE-style tasks on educational data. In
addition, a partial entailment task was piloted.
We present and compare results from 9 partic-
ipating teams, and discuss future directions.

1 Introduction

One of the tasks in educational NLP systems is pro-
viding feedback to students in the context of exam
questions, homework or intelligent tutoring. Much
previous work has been devoted to the automated

scoring of essays (Attali and Burstein, 2006; Sher-
mis and Burstein, 2013), error detection and correc-
tion (Leacock et al., 2010), and classification of texts
by grade level (Petersen and Ostendorf, 2009; Shee-
han et al., 2010; Nelson et al., 2012). In these appli-
cations, NLP methods based on shallow features and
supervised learning are often highly effective. How-
ever, for the assessment of responses to short-answer
questions (Leacock and Chodorow, 2003; Pulman
and Sukkarieh, 2005; Nielsen et al., 2008a; Mohler
et al., 2011) and in tutorial dialog systems (Graesser
et al., 1999; Glass, 2000; Pon-Barry et al., 2004; Jor-
dan et al., 2006; VanLehn et al., 2007; Dzikovska et
al., 2010) deeper semantic processing is likely to be
appropriate.

Since the task of making and testing a full edu-
cational dialog system is daunting, Dzikovska et al.
(2012) identified a key subtask and proposed it as a
new shared task for the NLP community. Student
response analysis (henceforth SRA) is the task of
labeling student answers with categories that could
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Example 1 QUESTION You used several methods to separate and identify the substances in mock rocks. How did you
separate the salt from the water?

REF. ANS. The water was evaporated, leaving the salt.
STUD. ANS. The water dried up and left the salt.

Example 2 QUESTION Georgia found one brown mineral and one black mineral. How will she know which one is harder?
REF. ANS. The harder mineral will leave a scratch on the less hard mineral. If the black mineral is harder, the

brown mineral will have a scratch.
STUD. ANS. The harder will leave a scratch on the other.

Figure 1: Example questions and answers

help a full dialog system to generate appropriate and
effective feedback on errors. System designers typi-
cally create a repertoire of questions that the system
can ask a student, together with reference answers
(see Figure 1 for an example). For each student an-
swer, the system needs to decide on the appropriate
tutorial feedback, either confirming that the answer
was correct, or providing additional help to indicate
how the answer is flawed and help the student im-
prove. This task requires semantic inference, for ex-
ample, to detect when the student answers are ex-
plaining the same content but in different words, or
when they are contradicting the reference answers.

Recognizing Textual Entailment (RTE) is a se-
ries of highly successful challenges used to evalu-
ate tasks related to semantic inference, held annually
since 2005. Initial challenges used examples from
information retrieval, question answering, machine
translation and information extraction tasks (Dagan
et al., 2006; Giampiccolo et al., 2008). Later chal-
lenges started to explore the applicability and im-
pact of RTE technology on specific application set-
tings such as Summarization and Knowledge Base
Population (Bentivogli et al., 2009; Bentivogli et al.,
2010; Bentivogli et al., 2011). The SRA Task offers
a similar opportunity.

We therefore organized a joint challenge at
SemEval-2013, aiming to bring together the educa-
tional NLP and the semantic inference communities.
The goal of the challenge is to compare approaches
for student answer assessment and to evaluate the
methods typically used in RTE on data from educa-
tional applications.

We present the corpus used in the task (Section
2) and describe the Main task, including educational
NLP and textual entailment perspectives and data set
creation (Section 3). We discuss evaluation metrics

and results in Section 4. Section 5 describes the Pi-
lot task, including data set creation and evaluation
results. Section 6 presents conclusions and future
directions.

2 Student Response Analysis Corpus

We used the Student Response Analysis corpus
(henceforth SRA corpus) (Dzikovska et al., 2012)
as the basis for our data set creation. The corpus
contains manually labeled student responses to ex-
planation and definition questions typically seen in
practice exercises, tests, or tutorial dialogue.

Specifically, given a question, a known correct
‘reference answer’ and a 1- or 2-sentence ‘student
answer’, each student answer in the corpus is label-
led with one of the following judgments:

• ‘Correct’, if the student answer is a complete
and correct paraphrase of the reference answer;

• ‘Partially correct incomplete’, if it is a par-
tially correct answer containing some but not
all information from the reference answer;

• ‘Contradictory’, if the student answer explicitly
contradicts the reference answer;

• ‘Irrelevant’ if the student answer is talking
about domain content but not providing the
necessary information;

• ‘Non domain’ if the student utterance does not
include domain content, e.g., “I don’t know”,
“what the book says”, “you are stupid”.

The SRA corpus consists of two distinct subsets:
BEETLE data, based on transcripts of students in-
teracting with BEETLE II tutorial dialogue system
(Dzikovska et al., 2010), and SCIENTSBANK data,
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based on the corpus of student answers to assess-
ment questions collected by Nielsen et al. (2008b).

The BEETLE corpus consists of 56 questions in
the basic electricity and electronics domain requir-
ing 1- or 2- sentence answers, and approximately
3000 student answers to those questions. The SCI-
ENTSBANK corpus contains approximately 10,000
answers to 197 assessment questions in 15 different
science domains (after filtering, see Section 3.3)

Student answers in the BEETLE corpus were man-
ually labeled by trained human annotators using a
scheme that straightforwardly mapped into SRA an-
notations. The annotations in the SCIENTSBANK

corpus were converted into SRA labels from a sub-
stantially more fine-grained scheme by first auto-
matically labeling them using a set of question-
specific heuristics and then manually revising them
according to the class definitions (Dzikovska et al.,
2012). We further filtered and transformed the cor-
pus to produce training and test data sets as dis-
cussed in the next section.

3 Main Task

3.1 Educational NLP perspective

The 5-way SRA task focuses on associating student
answers with categorical labels that can be used in
providing tutoring feedback. Most NLP research on
short answer scoring reports agreement with a nu-
meric score (Leacock and Chodorow, 2003; Pulman
and Sukkarieh, 2005; Mohler et al., 2011), which
is a potential contrast with our task. However, the
majority of the NLP work makes use of underlying
representations in terms of concepts, so the 5-way
task is still likely to mesh well with the available
technology. Research on tutorial dialog has empha-
sized generic methods that use latent semantic anal-
ysis or other machine learning methods to determine
when text strings express similar concepts (Hu et al.,
2003; Jordan et al., 2004; VanLehn et al., 2007; Mc-
Carthy et al., 2008). Most of these methods, like
the NLP methods, (with the notable exception of
(Nielsen et al., 2008a)), are however strongly depen-
dent on domain expertise for the definitions of the
concepts. In educational applications, there would
be great value in a system that could operate more
or less unchanged across a range of domains and
question-types, requiring only a question text and a

reference answer supplied by the instructional de-
signers. Thus, the 5-way classification task at Se-
mEval was set up to evaluate the feasibility of such
answer assessment, either by adapting the existing
educational NLP methods to the categorical labeling
task or by employing the RTE approaches.

3.2 RTE perspective and 2- and 3-way Tasks
According to the standard definition of Textual En-
tailment, given two text fragments called Text (T)
and Hypothesis (H), it is said that T entails H if, typ-
ically, a human reading T would infer that H is most
likely true (Dagan et al., 2006).

In a typical answer assessment scenario, we ex-
pect that a correct student answer would entail the
reference answer, while an incorrect answer would
not. However, students often skip details that are
mentioned in the question or may be inferred from
it, while reference answers often repeat or make ex-
plicit information that appears in or is implied from
the question, as in Example 2 in Figure 1. Hence, a
more precise formulation of the task in this context
considers the entailing text T as consisting of both
the original question and the student answer, while
H is the reference answer.

We carried out a feasibility study to check how
well the entailment judgments in this formulation
align with the annotated response assessment, by an-
notating a sample of the data used in the SRA task
with entailment judgments. We found that some an-
swers labeled as “correct” implied inferred or as-
sumed pieces of information not present in the text.
These reflected the teachers’ assessment of student
understanding but would not be considered entailed
from the traditional RTE perspective. However, we
observed that in most such cases, a substantial part
of the hypothesis was still implied by the text. More-
over, answers assigned labels other than “correct”
were always judged as “not entailed”.

Overall, we concluded that the correlation be-
tween assessment judgments of the two types was
sufficiently high to consider an RTE approach. The
challenge for the textual entailment community was
to address the answer assessment task at varying
levels of granularity, using textual entailment tech-
niques, and explore how well these techniques can
help in this real-world educational setting.

In order to make the setup more similar to pre-
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vious RTE tasks, we introduced 3-way and 2-way
versions of the task. The data for those tasks were
obtained by automatically collapsing the 5-way la-
bels. In the 3-way task, the systems were required to
classify the student answer as either (i) correct; (ii)
contradictory; or (iii) incorrect (combining the cat-
egories partially correct but incomplete, irrelevant
and not in the domain from the 5-way classification).

In the two-way task, the systems were required to
classify the student answer as either correct or in-
correct (combining the categories contradictory and
incorrect from the 3-way classification)

3.3 Data Preparation and Training Data
In preparation of the task four of the organizers ex-
amined all questions in the SRA corpus, and decided
that to remove some of the questions to make the
dataset more uniform.

We observed two main issues. First, a num-
ber of questions relied on external material, e.g.,
charts and graphs. In some cases, the information
in the reference answer was sufficient to make a rea-
sonable assessment of student answer correctness,
but in other cases the information contained in the
questions was deemed insufficient and the questions
were removed.

Second, some questions in the SCIENTSBANK

dataset could have multiple possible correct an-
swers, e.g., a question asking for any example out
of two or more unrelated possibilities. Such ques-
tions were also removed as they do not align well
with the RTE perspective.

Finally, parts of the data were re-checked for re-
liability. In BEETLE data, a second manual annota-
tion pass was carried out on a subset of questions
to check for consistency. In SCIENTSBANK, we
manually re-checked the test data. The automatic
conversion from the original SCIENTSBANK anno-
tations into SRA labels was not perfectly accurate
(Dzikovska et al., 2012). We did not have the re-
sources to check the entire data set. However, four of
the organizers jointly hand-checked approximately
100 examples to establish consensus, and then one
organizer hand-checked all of the test data set.

3.4 Test Data
We followed the evaluation methodology of Nielsen
et al. (2008a) for creating the test data. Since our

goal is to support systems that generalize across
problems and domains (see Section 3.1), we created
three distinct test sets:

1. Unseen answers (UA): a held-out set to assess
system performance on the answers to ques-
tions contained in the training set (for which
the system has seen example student answers).
It was created by setting aside a subset if ran-
domly selected learner answers to each ques-
tion included in the training data set.

2. Unseen questions (UQ): a test set to assess
system performance on responses to previously
unseen questions but which still fall within the
application domains represented in the training
data. It was created by holding back all student
answers to a subset of randomly selected ques-
tions in each dataset.

3. Unseen domains (UD): a domain-independent
test set of responses to topics not seen in the
training data, available only in the SCIENTS-
BANK dataset. It was created by setting aside
the complete set of questions and answers from
three science modules from the fifteen modules
in the SCIENTSBANK data.

The final label distribution for train and test data
is shown in Table 1.

4 Main Task Results

4.1 Participants
The participants were invited to submit up to three
runs in any combination of the tasks. Nine teams
participated in the main task, most choosing to at-
tempt all subtasks (5-way, 3-way and 2-way), with
1 team entering only the 5-way and 1 team entering
only the 2-way task.

At least 6 (CNGL, CoMeT, CU, BIU, EHUALM,
LIMSI) of the 9 systems used some form of syn-
tactic processing, in most cases going beyond parts
of speech to dependencies or constituency structure.
CNGL emphasized this as an important aspect of the
system. At least 5 (CoMeT, CU, EHUALM, ETS
UKP) of the 9 systems used a system combination
approach, with several components feeding into a
final decision made by some form of stacked clas-
sifier. The majority of the systems used some kind
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label BEETLE SCIENTSBANK

train (%) UA UQ Test-Total (%) train (%) UA UQ UD Test-Total (%)
correct 1665 (0.42) 176 344 520 (0.41) 2008 (0.40) 233 301 1917 2451 (0.42)
pc inc 919 (0.23) 112 172 284 (0.23) 1324 (0.27) 113 175 986 1274 (0.22)
contra 1049 (0.27) 111 244 355 (0.28) 499 (0.10) 58 64 417 539 (0.09)
irrlvnt 113 (0.03) 17 19 36 (0.03) 1115 (0.22) 133 193 1222 1548 (0.27)
non dom 195 (0.05) 23 40 63 (0.05) 23 (0.005) 3 0 20 23 (0.004)
incorr-3way 1227 (0.31) 152 231 383 (0.30) 2462 (0.495) 249 368 2228 2845 (0.49)
incorr-2way 2276 (0.58) 263 475 538 (0.59) 2961 (0.596) 307 432 2645 3384 (0.58)

Table 1: Label distribution. Percentages in parentheses. UA, UQ, UD correspond to individual test sets.

of measure of text-to-text similarity, whether the in-
spiration was LSA, MT measures such as BLEU
or in-house methods. These methods were em-
phasized as especially important by Celi, ETS and
SOFTCARDINALITY. These impressions are based
on short summaries sent to us by the participants
prior to the availability of the full system descrip-
tions. Check the individual system papers for detail.

4.2 Evaluation Metrics

For each evaluation data set (test set), we computed
the per-class precision, recall and F1 score. We also
computed three main summary metrics: accuracy,
macro-average F1 and weighted average F1.

Accuracy is the overall percentage of correctly
classified examples.

Macroaverage is the average value of each met-
ric (precision, recall, F1) across classes, without
taking class size into account. It is defined as
1/Nc

∑
c metric(c), where Nc is the number of

classes (2, 3, or 5 depending on the task). Note
that in the 5-way SCIENTSBANK dataset the ‘non-
domain’ class is severely underrepresented, with
only 23 examples out of 4335 total (see Table 1).
Therefore, we calculated macro-averaged P/R/F1

over only 4 classes (i.e. excluding the ‘non-domain’
class) for SCIENTSBANK 5-way data.

Weighted Average (or simply weighted) is the
average value for each metric weighted by class size,
defined as 1/N

∑
c |c| ∗ metric(c) where N is the

total number of test items and |c| is the number of
items labeled as c in gold-standard data.1

1This metric is called microaverage in (Dzikovska et al.,
2012). However, microaverage is used to define a different
metric in tasks where more than one label can be associated
with each data item (Tsoumakas et al., 2010). therefore, we use
weighted average to match the terminology used by the Weka
toolkit. The micro-average precision, recall and F1 computed

In general, macro-averaging favors systems that
perform well across all classes regardless of class
size. Accuracy and weighted average prefer systems
that perform best on the largest number of examples,
favoring higher performance on the most frequent
classes. In practice, only a small number of the sys-
tems were ranked differently by the different met-
rics. We discuss this further in Section 4.7. Results
for all metrics are available online, and this paper
focuses on two metrics for brevity: weighted and
macro-average F1 scores.

4.3 Results

The evaluation results for all metrics and all partic-
ipant runs are provided online.2 The tables in this
paper present the F1 scores for the best system runs.
Results are shown separately for each test set (TS),
with the simple mean over the five TSs reported in
the final column.

We used two baselines: the majority (most fre-
quent) class baseline and a lexical overlap baseline
described in detail in (Dzikovska et al., 2012). The
performance of the baselines is presented jointly
with system scores in the results tables.

For each participant, we report the single run with
the best average TS performance, identified by the
subscript in the run title, with the exception of ETS.
With all other participants, there was almost always
one run that performed best for a given metric on all
the TSs. In the small number of cases where another
run performed best on a given TS, we instead report
that value and indicate its run with a subscript (these
changes never resulted in meaningful changes in the
performance rankings). ETS, on the other hand, sub-

using the multi-label metric are all equal and mathematically
equivalent to accuracy.

2http://bit.ly/11a7QpP
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Dataset: BEETLE SCIENTSBANK

Run UA UQ UA UQ UD Mean
CELI1 0.423 0.386 0.372 0.389 0.367 0.387
CNGL2 0.547 0.469 0.266 0.297 0.294 0.375
CoMeT1 0.675 0.445 0.598 0.299 0.252 0.454
EHUALM2 0.566 0.4163 0.5253 0.446 0.437 0.471
ETS1 0.552 0.547 0.535 0.487 0.447 0.514
ETS2 0.705 0.614 0.625 0.356 0.434 0.547
LIMSIILES1 0.505 0.424 0.419 0.456 0.422 0.445
SoftCardinality1 0.558 0.450 0.537 0.492 0.471 0.502
UKP-BIU1 0.448 0.269 0.590 0.3972 0.407 0.418
Median 0.552 0.445 0.535 0.397 0.422 0.454
Baselines:
Lexical 0.483 0.463 0.435 0.402 0.396 0.436
Majority 0.229 0.248 0.260 0.239 0.249 0.245

Table 2: Five-way task weighted-average F1

mitted results for systems that were substantially dif-
ferent from one another, with performance varying
from being the top rank to nearly the lowest. Hence,
it seemed more appropriate to report two separate
runs.3 In the rest of the discussion system is used to
refer to a row in the tables as just described.

Systems with performance that was not statisti-
cally different from the best results for a given TS
are all shown in bold (significance was not cal-
culated for the TS mean). Systems with perfor-
mance statistically better than the lexical baseline
are displayed in italics. Statistical significance tests
were conducted using approximate randomization
test (Yeh, 2000) with 10,000 iterations; p ≤ 0.05
was considered statistically significant.

4.4 Five-way Task

The results for the five-way task are shown in Tables
2 and 3.

Comparison to baselines All of the systems per-
formed substantially better than the majority class
baseline (“correct” for both BEETLE and SCIENTS-
BANK), on average exceeding it on the TS mean by
0.21 on the weighted F1 and 0.24 on the macro-
average F1. Six systems outperformed the lexical
baseline on the mean TS results for the weighted
F1 and five for the macro-average F1. Nearly all
of the top results on a given TS (shown in bold in
the tables) were statistically better than correspond-
ing lexical baselines according to significance tests

3In a small number of cases, ETS’s third run performed
marginally better, see full results online.

Dataset: BEETLE 5way SCIENTSBANK 4way
Run UA UQ UA UQ UD Mean
CELI1 0.315 0.300 0.278 0.286 0.269 0.270
CNGL2 0.431 0.382 0.252 0.262 0.239 0.274
CoMeT1 0.569 0.300 0.551 0.201 0.151 0.312
EHUALM2 0.526 0.3703 0.4473 0.353 0.340 0.382
ETS1 0.444 0.461 0.467 0.372 0.334 0.377
ETS2 0.619 0.552 0.581 0.274 0.339 0.428
LIMSIILES1 0.327 0.280 0.335 0.361 0.337 0.308
SoftCardinality1 0.455 0.436 0.474 0.384 0.375 0.389
UKP-BIU1 0.423 0.285 0.560 0.3252 0.348 0.364
Median 0.444 0.370 0.467 0.325 0.337 0.367
Baselines:
Lexical 0.424 0.414 0.375 0.329 0.311 0.333
Majority 0.114 0.118 0.151 0.146 0.148 0.129

Table 3: Five-way task macro-average F1

(indicated by italics in the tables).

Comparing UA and UQ/UD performance The
BEETLE UA (BUA) and SCIENTSBANK UA (SUA)
test sets represent questions with example answers
in training data, while the UQ and UD test sets repre-
sent transfer performance to new questions and new
domains respectively.

The top performers on UA test sets were CoMeT1

and ETS2, with the addition of UKP-BIU1 on SUA.
However, there was not a single best performer on
UQ and UD sets. ETS2 performed statistically bet-
ter than all other systems on BEETLE UQ (BUQ),
but it performed statistically worse than the lexical
baseline on SCIENTSBANK UQ (SUQ), resulting in
no overlap in the top performing systems on the two
UQ test sets. SoftCardinality1 performed statisti-
cally better than all other systems on SUD and was
among the three or four top performers on SUQ, but
was not a top performer on the other three TSs, gen-
erally not performing statistically better than the lex-
ical baseline on the BEETLE TSs.

Group performance The two UA TSs had more
systems that performed statistically better than the
lexical baseline (generally six systems) than did the
UQ TSs where on average only two systems per-
formed statistically better than the lexical baseline.
Over twice as many systems outperformed the lexi-
cal baseline on UD as on the UQ TSs. The top per-
forming systems according to the macro-average F1

were nearly identical to the top performing systems
according to the weighted F1.
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4.5 Three-way Task

The results for the three-way task are shown in Ta-
bles 4 and 5.

Comparison to baselines All of the systems per-
formed substantially better than the majority base-
line (“correct” for BEETLE and “incorrect” for SCI-
ENTSBANK), on average exceeding it on the TS
mean by 0.28 on the weighted F1 and 0.31 on the
macro-average F1. Five of the eight systems out-
performed the lexical baseline on the mean TS re-
sults for the weighted F1 and five on the macro-
average F1, and all top systems outperformed the
lexical baseline with statistical significance.

Comparing UA and UQ/UD performance The top
performers on both BUA and SUA were CoMeT1

and ETS2. As for the 5-way task there was no single
best performer for UQ and UD sets, and no overlap
in top performing systems on BUQ and SUQ test
sets, with ETS2 being the top performer on BUQ,
but statistically worse than the baseline on SUQ
and SUD. On the weighted F1, SoftCardinality1

performed statistically better than all other systems
on SUD and was among the two statistically best
systems on SUQ, but was not a top performer on
BUQ or BUA/SUA TSs. On the macro-average F1,
UKP-BIU1 became one of the statistically best per-
formers on all SCIENTSBANK TSs but, along with
SoftCardinality1, never performed statistically bet-
ter than the lexical baseline on the BEETLE TSs.

Group performance With the exception of SUA,
only around two systems performed statistically bet-
ter than the lexical baseline on each TS. The top per-
forming systems were nearly the same according to
the weighted F1 and the macro-average F1.

4.6 Two-way Task

The results for the two-way task are shown in Ta-
ble 6. Because the labels are roughly balanced in
the two-way task, the results on the weighted and
macro-average F1 are very similar and the top per-
forming systems are identical. Hence this section
will focus only on the macro-average F1.

As in the previous tasks, all of the systems per-
formed substantially better than the majority base-
line (“incorrect” for all sets), on average exceeding
it on the TS mean by 0.25 on the weighted F1 and
0.30 on the macro-average F1. However, just four of

Dataset: BEETLE SCIENTSBANK

Run UA UQ UA UQ UD Mean
CELI1 0.519 0.463 0.500 0.555 0.534 0.514
CNGL2 0.592 0.471 0.383 0.367 0.360 0.435
CoMeT1 0.728 0.488 0.707 0.522 0.550 0.599
ETS1 0.619 0.542 0.603 0.631 0.600 0.599
ETS2 0.723 0.597 0.709 0.537 0.505 0.614
LIMSIILES1 0.587 0.454 0.532 0.553 0.564 0.538
SoftCardinality1 0.616 0.451 0.647 0.634 0.620 0.594
UKP-BIU1 0.472 0.313 0.670 0.573 0.5772 0.521
Median 0.604 0.467 0.625 0.554 0.557 0.566
Baselines:
Lexical 0.578 0.500 0.523 0.520 0.554 0.535
Majority 0.229 0.248 0.260 0.239 0.249 0.245

Table 4: Three-way task weighted-average F1

Dataset: BEETLE SCIENTSBANK

Run UA UQ UA UQ UD Mean
CELI1 0.494 0.441 0.373 0.412 0.415 0.427
CNGL2 0.567 0.450 0.330 0.308 0.311 0.393
CoMeT1 0.715 0.466 0.640 0.380 0.404 0.521
ETS1 0.592 0.521 0.477 0.459 0.439 0.498
ETS2 0.710 0.585 0.643 0.389 0.367 0.539
LIMSIILES1 0.563 0.431 0.404 0.409 0.429 0.447
SoftCardinality1 0.596 0.439 0.555 0.469 0.486 0.509
UKP-BIU1 0.468 0.333 0.620 0.458 0.487 0.473
Median 0.580 0.446 0.516 0.411 0.422 0.485
Baselines:
Lexical 0.552 0.477 0.405 0.390 0.416 0.448
Majority 0.191 0.197 0.201 0.194 0.197 0.196

Table 5: Three-way task macro-average F1

the nine systems in the two-way task outperformed
the lexical baseline on the mean TS results. In fact,
the average performance fell below the lexical base-
line. The differences in the macro-average F1 be-
tween the top results on a SCIENTSBANK TS and
the corresponding lexical baselines were all statis-
tically significant. Two of the top results on BUA
were not statistically better than the lexical base-
line, and all systems performed below the baseline
on BUQ.

4.7 Discussion

All of the systems consistently outperformed the
most frequent class baseline. Beating the lexical
overlap baseline proved to be more challenging, be-
ing achieved by just over half of the results with
about half of those being statistically significant im-
provements. This underscores the fact that there is
still a considerable opportunity to improve student
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Dataset: BEETLE SCIENTSBANK

Run UA UQ UA UQ UD Mean
CELI1 0.640 0.656 0.588 0.619 0.615 0.624
CNGL2 0.800 0.666 0.5911 0.561 0.556 0.635
CoMeT1 0.833 0.695 0.768 0.579 0.670 0.709
CU1 0.778 0.689 0.603 0.638 0.673 0.676
ETS1 0.802 0.720 0.705 0.688 0.683 0.720
ETS2 0.833 0.702 0.762 0.602 0.543 0.688
LIMSIILES1 0.723 0.641 0.583 0.629 0.648 0.645
SoftCardinality1 0.774 0.635 0.715 0.737 0.705 0.713
UKP-BIU1 0.608 0.481 0.726 0.669 0.6662 0.630
Median 0.778 0.666 0.705 0.629 0.666 0.676
Baselines:
Lexical 0.788 0.725 0.617 0.630 0.650 0.682
Majority 0.375 0.367 0.362 0.371 0.367 0.368

Table 6: Two-way task macro-average F1

response assessment systems.
The set of top performing systems on the

weighted F1 for a given TS were also always in the
top on the macro-average F1, but a small number of
additional systems joined the top performing set on
the macro-average F1. Specifically, one, three, and
two results joined the top set in the five-way, three-
way, and two-way tasks, respectively. In principle,
the metrics could differ substantially, because of the
treatment of minority classes, but in practice they
rarely did. Only one pair of participants swap adja-
cent TS mean rankings on the macro-average F1 rel-
ative to the weighted F1 on the two-way task. On the
five-way task, two pairs swap rankings and another
participant moved up two positions in the ranking,
ending at the median value.

Most (28/34) rank changes were only one position
and most (21/34) were in positions at or below the
median ranking. In the five-way task, a pair of sys-
tems, UKP-BIU1 and ETS1, had a meaningful per-
formance rank swap on the macro-average F1 rela-
tive to the weighted F1 on the UD test set. Specifi-
cally, UKP-BIU1 moved up four positions from rank
6, where it was not statistically better than the lexical
baseline, to the second best performance.

Not surprisingly, performance on UA was sub-
stantially higher than on UQ and UD, since the UA
is the only set which contains questions with exam-
ple answers in training data. Performance on BUA
was usually better than performance on SUA, most
likely because BUA contains more similar questions
and answers, focusing on a single science area, Elec-

tricity and Magnetism, compared to 12 distinct sci-
ence topics in SUA). In addition, the BEETLE study
participants may have used simpler language, since
they were aware that they were talking to a computer
system instead of writing down answers for human
teachers to assess as in SCIENTSBANK.

Performance on BUQ versus SUQ was much
more varied, presumably since there was no direct
training data for either TS. For the five-way task, the
best performance on the weighted F1 measure for
BUQ is 0.09 below the best result for BUA and the
analogous decrease from SUA to SUQ is 0.13, with
an additional 0.02 drop on SUD. On the two-way
task, the best weighted F1 for BUQ drops 0.11 from
the best BUA value, but the decrease from SUA to
SUQ is just 0.03, with another 0.03 drop to SUD.
While the drop in performance is fairly similar from
BUA to BUQ on all tasks and either metric, the de-
crease from SUA to SUQ seems to potentially be
dependent on the task, ranging from 0.13 on the five-
way task to 0.08 on the three-way task and 0.03 on
the two-way task.

5 Pilot Task on Partial Entailment

The SCIENTSBANK corpus was originally devel-
oped to assess student answers at a very fine-grained
level and contains additional annotations that break
down the answers into “facets”, or low-level con-
cepts and relationships connecting them (hence-
forth, SCIENTSBANK Extra). This annotation aims
to support educational systems in recognizing when
specific parts of a reference answer are expressed
in the student answer, even if the reference answer
is not entailed as a whole (Nielsen et al., 2008b).
The task of recognizing such partial entailment rela-
tionships may also have various uses in applications
such as summarization or question answering, but it
has not been explored in previous RTE challenges.

Therefore, we proposed a pilot task on partial en-
tailment, in which systems are required to recognize
whether the semantic relation between specific parts
of the Hypothesis is expressed by the Text, directly
or by implication, even though entailment might not
be recognized for the Hypothesis as a whole, based
on the SCIENTSBANK facet annotation.

Each reference answer in SCIENTSBANK data is
broken down into facets, where a facet is a triplet
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consisting of two key terms (both single words and
multi-words, e.g. carbon dioxide, each other, burns
out) and a relation linking them, as shown in Figure
2. The student answers were then annotated with
regards to each reference answer facet in order to
indicate whether the facet was (i) expressed, either
explicitly or by assumption or easy inference; (ii)
contradicted; or (iii) left unaddressed. Considering
the SCIENTSBANK reference answers as Hypothe-
ses, the facets capture their atomic components, and
facet annotations may correspond to the judgments
on the sub-parts of the H which are entailed by T.

We carried out a feasibility study to explore this
idea and to verify how well the facet annotations
align with traditional entailment judgments. We
focused on the reference answer facets labeled in
the gold standard annotation as Expressed or Unad-
dressed. The working hypothesis was that Expressed
labels assigned in SCIENTSBANK annotations cor-
responded to Entailed judgments in traditional tex-
tual entailment annotations, while Unaddressed la-
bels corresponded to No-entailment judgments.

Similarly to the feasibility study reported in Sec-
tion 3.2, we concluded that the correspondence be-
tween educational labels and entailment judgments
was not perfect due to the difference in educational
and textual entailment perspectives. Nevertheless,
the two classes of assessment appeared to be suffi-
ciently well correlated so as to offer a good testbed
for partial entailment in a natural setting.

5.1 Task Definition
Given (i) a text T, made up of a Question and a Stu-
dent Answer; (ii) a hypothesis H, i.e. the Reference
Answer for that question and (iii) a facet, i.e. a pair
of key terms in H, the task consists of determining
whether T expresses, either directly or by implica-
tion, the same relationship between the facet words
as in H. In other words, for each of H’s facets the
system assign one of the following judgments: Ex-
pressed, if the Student Answer expresses the same
relationship between the meaning of the facet terms
as in H; Unaddressed, if it does not.

Consider the example shown in Figure 2. For
facet 3, the system must decide whether the same re-
lation between the two terms ‘contains’ and ‘seeds’
in H (the reference answer) is expressed, explicitly
or implicitly, in T (the combination of question and

student response). If the student answer is ‘The part
of a plant you are observing is a fruit if it has seeds.’,
the answer to the question is ‘yes’ and the correct
judgment is ‘Expressed’. But if the student says
‘My rule is has to be sweet.’, T does not express
the same semantic relationship between ‘contains’
and ‘seeds’ exhibited in H, thus the correct judgment
is ‘Unaddressed’. Note that even though this is an
exercise in textual entailment, student response as-
sessment labels were used instead of traditional en-
tailment judgments, due to the partial mismatch be-
tween the two assessment classes found in the feasi-
bility study.

5.2 Dataset

We used a subset of the SCIENTSBANK Extra cor-
pus (Nielsen et al., 2008b) with the same problem-
atic questions filtered out as the main task (see Sec-
tion 3.3). We further filtered out all the student
answer facets which were labeled other than ‘Ex-
pressed’ or ‘Unaddressed’ in the gold standard an-
notation; the facets in which the relationship be-
tween the two key terms, as classified in the manual
annotation, proved to be problematic to define and
judge, namely Topic, Agent, Root, Cause, Quanti-
fier, Neg; and inter-propositional facets, i.e. facets
that expressed relations between higher-level propo-
sitions. Finally, the facet relations were removed
from the dataset, leaving the relationship between
the two facet terms unspecified so as to allow a more
fuzzy approach to the inference problem posed by
the exercise.

We used the same training/test split as reported in
Section 3.4. The training set created from the Train-
ing SCIENTSBANK Extra corpus contains 13,145
reference answer facets, 5,939 of which were la-
beled as ‘Expressed’ in the student answers and
7,206 as ‘Unaddressed’. The Test set was created
from the SCIENTSBANK Extra unseen data and is
divided into the same subsets as the main task (Un-
seen Answers, Unseen Questions and Unseen Do-
mains). It contains 16,263 facets total, with 5,945
instances labeled as ‘Expressed’, and 10,318 labeled
as ‘Unaddressed’.

5.3 Evaluation Metrics and Baselines

The metrics used in the Pilot task were the same as in
the Main task, i.e. Overall Accuracy, Macroaverage
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QUESTION: What is your ”rule” for deciding if the part of a plant you are observing is a fruit?
REFERENCE ANSWER: If a part of the plant contains seeds, that part is the fruit.
FACET 1: Relation NMod of Term1 part Term2 plant
FACET 2: Relation Theme Term1 contains Term2 part
FACET 3: Relation Material Term1 contains Term2 seeds
FACET 4: Relation Be Term1 fruit Term2 part

Figure 2: Example of facet annotations supporting the partial entailment task

Run UA UQ UD UA UQ UD
Weighted Averaged Macro Average

Run1 0.756 0.71 0.76 0.7370 0.686 0.755
Run 2 0.782 0.765 0.816 0.753 0.73 0.804
Run 3 0.744 0.733 0.77 0.719 0.7050 0.761
Baseline 0.54 0.547 0.478 0.402 0.404 0.384

Table 7: Weighted-average and macro-average F1 scores
(UA: Unseen Answers; UQ: Unseen Questions; UD Un-
seen Domains)
.

and Weighted Average Precision, Recall and F1, and
computed as described in Section 4.2. We used only
a majority class baseline, which labeled all facets
as ‘Unaddressed’. Its performance is presented in
Section 5.4 jointly with the system results.

5.4 Participants and results

Only one participant, UKP-BIU, participated in the
Partial Entailment Pilot task. The UKP-BIU system
is a hybrid of two semantic relationship approaches,
namely (i) computing semantic textual similarity
by combining multiple content similarity measures
(Bär et al., 2012), and (ii) recognizing textual en-
tailment with BIUTEE (Stern and Dagan, 2011).
The two approaches are combined by generating in-
dicative features from each one and then applying
standard supervised machine learning techniques to
train a classifier. The system used several lexical-
semantic resources as part of the BIUTEE entail-
ment system, together with SCIENTSBANK depen-
dency parses and ESA semantic relatedness indexes
from Wikipedia.

The team submitted the maximum allowed of 3
runs. Table 7 shows Weighted Average and Macro
Average F1 scores respectively, also for the major-
ity baseline. The system outperformed the majority
baseline on both metrics. The best performance was
observed on Run 2, with the highest results on the
Unseen Domains test set.

6 Conclusions and Future Work

The Joint Student Response Analysis and 8th Rec-
ognizing Textual Entailment challenge has proven
to be a useful, interdisciplinary task using a realis-
tic dataset from the educational domain. In almost
all cases the best systems significantly outperformed
the lexical overlap baseline, sometimes by a large
margin, showing that computational linguistics ap-
proaches can contribute to educational tasks. How-
ever, the lexical baseline was not trivial to beat, par-
ticularly in the 2-way task. These results are consis-
tent with similar findings in previous RTE exercises.
Moreover, there is still significant room for improve-
ment in the absolute scores, reflecting the interesting
challenges that both educational data and RTE tasks
present to computational linguistics.

The educational setting places new stresses on
semantic inference technology because the educa-
tional notion of ‘Expressed’ and the RTE notion of
‘Entailed’ are slightly different. This raises the ed-
ucational question of whether RTE can work in this
setting, and the RTE question of whether this set-
ting is meaningful for evaluating RTE system per-
formance. The experimental results suggests that the
answer to both questions is ‘yes’, a significant find-
ing for both educators and RTE technologists going
forward.

The Pilot task, aimed at exploring notions of par-
tial entailment, so far not explored in the series of
RTE challenges, has proven to be an interesting,
though challenging exercise. The novelty of the
task, namely performing textual entailment not on a
pair of full texts, but between a text and a hypothesis
consisting of a pair of words, may have represented
a more complex task than expected for some textual
entailment engines. Despite this, the encouraging
results obtained by the team which carried out the
exercise has shown that this partial entailment task
is worthy of further investigation.
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and F. d’Alché Buc, editors, Machine Learning Chal-
lenges, volume 3944 of Lecture Notes in Computer
Science. Springer.

Myroslava O. Dzikovska, Johanna D. Moore, Natalie
Steinhauser, Gwendolyn Campbell, Elaine Farrow,
and Charles B. Callaway. 2010. Beetle II: a system

for tutoring and computational linguistics experimen-
tation. In Proc. of ACL 2010 System Demonstrations,
pages 13–18.

Myroslava O. Dzikovska, Rodney D. Nielsen, and Chris
Brew. 2012. Towards effective tutorial feedback for
explanation questions: A dataset and baselines. In
Proc. of 2012 Conference of NAACL: Human Lan-
guage Technologies, pages 200–210.

Danilo Giampiccolo, Hoa Trang Dang, Bernardo
Magnini, Ido Dagan, Elena Cabrio, and Bill Dolan.
2008. The fourth PASCAL recognizing textual entail-
ment challenge. In Proceedings of Text Analysis Con-
ference (TAC) 2008, Gaithersburg, MD, November.

Michael Glass. 2000. Processing language input in the
CIRCSIM-Tutor intelligent tutoring system. In Pa-
pers from the 2000 AAAI Fall Symposium, Available
as AAAI technical report FS-00-01, pages 74–79.

A. C. Graesser, K. Wiemer-Hastings, P. Wiemer-
Hastings, and R. Kreuz. 1999. Autotutor: A simu-
lation of a human tutor. Cognitive Systems Research,
1:35–51.

Xiangen Hu, Zhiqiang Cai, Max Louwerse, Andrew Ol-
ney, Phanni Penumatsa, and Art Graesser. 2003. A
revised algorithm for latent semantic analysis. In Pro-
ceedings of the 18th International Joint Conference on
Artificial intelligence (IJCAI’03), pages 1489–1491,
San Francisco, CA, USA. Morgan Kaufmann Publish-
ers Inc.

Pamela W. Jordan, Maxim Makatchev, and Kurt Van-
Lehn. 2004. Combining competing language under-
standing approaches in an intelligent tutoring system.
In Proc. of Intelligent Tutoring Systems Conference,
pages 346–357.

Pamela Jordan, Maxim Makatchev, Umarani Pap-
puswamy, Kurt VanLehn, and Patricia Albacete.
2006. A natural language tutorial dialogue system for
physics. In Proc. of 19th Intl. FLAIRS conference,
pages 521–527.

Claudia Leacock and Martin Chodorow. 2003. C-rater:
Automated scoring of short-answer questions. Com-
puters and the Humanities, 37(4):389–405.

Claudia Leacock, Martin Chodorow, Michael Gamon,
and Joel R. Tetreault. 2010. Automated Grammati-
cal Error Detection for Language Learners. Synthesis
Lectures on Human Language Technologies. Morgan
& Claypool Publishers.

Philip M. McCarthy, Vasile Rus, Scott A. Crossley,
Arthur C. Graesser, and Danielle S. McNamara. 2008.
Assessing forward-, reverse-, and average-entailment
indices on natural language input from the intelligent
tutoring system, iSTART. In Proc. of 21st Intl. FLAIRS
conference, pages 165–170.

Michael Mohler, Razvan Bunescu, and Rada Mihalcea.
2011. Learning to grade short answer questions using

273



semantic similarity measures and dependency graph
alignments. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies, pages 752–762, Port-
land, Oregon, USA, June. Association for Computa-
tional Linguistics.

Jessica Nelson, Charles Perfetti, David Liben, and
Meredith Liben. 2012. Measures of text difficulty:
Testing their predictive value for grade levels and stu-
dent performance. Technical report, Student Achieve-
ment Partners. http://www.ccsso.org/
Documents/2012/Measures%20ofText%
20Difficulty_fina%l.2012.pdf.

Rodney D. Nielsen, Wayne Ward, and James H. Martin.
2008a. Learning to assess low-level conceptual under-
standing. In Proc. of 21st Intl. FLAIRS Conference,
pages 427–432.

Rodney D. Nielsen, Wayne Ward, James H. Martin, and
Martha Palmer. 2008b. Annotating students’ under-
standing of science concepts. In Proceedings of the
Sixth International Language Resources and Evalua-
tion Conference, (LREC08), Marrakech, Morocco.

Sarah Petersen and Mari Ostendorf. 2009. A machine
learning approach to reading level assessment. Com-
puter, Speech and Language, 23(1):89–106.

Heather Pon-Barry, Brady Clark, Karl Schultz, Eliza-
beth Owen Bratt, and Stanley Peters. 2004. Advan-
tages of spoken language interaction in dialogue-based
intelligent tutoring systems. In Proc. of ITS-2004 Con-
ference, pages 390–400.

Stephen G Pulman and Jana Z Sukkarieh. 2005. Au-
tomatic short answer marking. In Proceedings of the
Second Workshop on Building Educational Applica-
tions Using NLP, pages 9–16, Ann Arbor, Michigan,
June. Association for Computational Linguistics.

Kathryn M. Sheehan, Irene Kostin, Yoko Futagi, and
Michael Flor. 2010. Generating automated text com-
plexity classifications that are aligned with targeted
text complexity standards. Technical Report RR-10-
28, Educational Testing Service.

Mark D. Shermis and Jill Burstein, editors. 2013. Hand-
book on Automated Essay Evaluation: Current Appli-
cations and New Directions. Routledge.

Asher Stern and Ido Dagan. 2011. A confidence
model for syntactically-motivated entailment proofs.
In Recent Advances in Natural Language Process-
ing (RANLP 2011), pages 455–462, Hissar, Bulgaria,
September.

Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vla-
havas. 2010. Mining multi-label data. In Oded
Maimon and Lior Rokach, editors, Data Mining
and Knowledge Discovery Handbook, pages 667–685.
Springer US.

Kurt VanLehn, Pamela Jordan, and Diane Litman. 2007.
Developing pedagogically effective tutorial dialogue
tactics: Experiments and a testbed. In Proc. of SLaTE
Workshop on Speech and Language Technology in Ed-
ucation, Farmington, PA, October.

Alexander Yeh. 2000. More accurate tests for the sta-
tistical significance of result differences. In Proceed-
ings of the 18th International Conference on Compu-
tational linguistics (COLING 2000), pages 947–953,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

274



Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Seventh International Workshop on Semantic
Evaluation (SemEval 2013), pages 275–279, Atlanta, Georgia, June 14-15, 2013. c©2013 Association for Computational Linguistics

ETS: Domain Adaptation and Stacking for Short Answer Scoring∗

Michael Heilman and Nitin Madnani
Educational Testing Service

660 Rosedale Road
Princeton, NJ 08541, USA

{mheilman,nmadnani}@ets.org

Abstract

Automatic scoring of short text responses to
educational assessment items is a challeng-
ing task, particularly because large amounts
of labeled data (i.e., human-scored responses)
may or may not be available due to the va-
riety of possible questions and topics. As
such, it seems desirable to integrate various
approaches, making use of model answers
from experts (e.g., to give higher scores to
responses that are similar), prescored student
responses (e.g., to learn direct associations
between particular phrases and scores), etc.
Here, we describe a system that uses stack-
ing (Wolpert, 1992) and domain adaptation
(Daume III, 2007) to achieve this aim, allow-
ing us to integrate item-specific n-gram fea-
tures and more general text similarity mea-
sures (Heilman and Madnani, 2012). We re-
port encouraging results from the Joint Stu-
dent Response Analysis and 8th Recognizing
Textual Entailment Challenge.

1 Introduction

In this paper, we address the problem of automati-
cally scoring short text responses to educational as-
sessment items for measuring content knowledge.

Many approaches can be and have been taken to
this problem—e.g., Leacock and Chodorow (2003),
Nielsen et al. (2008), inter alia. The effectiveness
of any particular approach likely depends on the the
availability of data (among other factors). For exam-
ple, if thousands of prescored responses are avail-

∗System description papers for SemEval 2013 are required
to have a team ID (e.g., “ETS”) as a prefix.

able, then a simple classifier using n-gram features
may suffice. However, if only model answers (i.e.,
reference answers) or rubrics are available, more
general semantic similarity measures (or even rule-
based approaches) would be more effective.

It seems likely that, in many cases, there will
be model answers as well as a modest number of
prescored responses available, as was the case for
the Joint Student Response Analysis and 8th Rec-
ognizing Textual Entailment Challenge (§2). There-
fore, we desire to incorporate both task-specific fea-
tures, such as n-grams, as well as more general fea-
tures such as the semantic similarity of the response
to model answers.

We also observe that some features may them-
selves require machine learning or tuning on data
from the domain, in addition to any machine learn-
ing required for the overall system.

In this paper, we describe a machine learning ap-
proach to short answer scoring that allows us to in-
corporate both item-specific and general features by
using the domain adaptation technique of Daume III
(2007). In addition, the approach employs stacking
(Wolpert, 1992) to support the integration of com-
ponents that require tuning or machine learning.

2 Task Overview

In this section, we describe the task to which we ap-
plied our system: the Joint Student Response Anal-
ysis and 8th Recognizing Textual Entailment Chal-
lenge (Dzikovska et al., 2013), which was task 7 at
SemEval 2013.

The aim of the task is to classify student responses
to assessment items from two datasets represent-
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ing different science domains: the Beetle dataset,
which pertains to basic electricity and electronics
(Dzikovska et al., 2010), and the Science Entail-
ments corpus (SciEntsBank) (Nielsen et al., 2008),
which covers a wider range of scientific topics.

Responses were organized into five categories:
correct, partially correct, contradictory, irrelevant,
and non-domain. The SciEntsBank responses were
converted to this format as described by Dzikovska
et al. (2012).

The Beetle training data had about 4,000 student
answers to 47 questions. The SciEntsBank training
data had about 5,000 prescored student answers to
135 questions from 12 domains (different learning
modules). For each item, one or more model re-
sponses were provided by the task organizers.

There were three different evaluation scenarios:
“unseen answers”, for scoring new answers to items
represented in the training data; “unseen questions”,
for scoring answers to new items from domains rep-
resented in the training data; and “unseen domains”,
for scoring answers to items from new domains
(only for SciEntsBank since Beetle focused on a sin-
gle domain).

Performance was evaluated using accuracy,
macro-average F1 scores, and weighted average F1

scores.
For additional details, see the task description pa-

per (Dzikovska et al., 2013).

3 System Details

In this section, we describe the short answer scoring
system we developed, and the variations of it that
comprise our submissions to task 7. We begin by
describing our statistical modeling approach. There-
after, we describe the features used by the model
(§3.1), including the PERP feature that relies on
stacking (Wolpert, 1992), and then the domain adap-
tation technique we used (§3.2).

Our system is a logistic regression model with
`2 regularization. It uses the implementation of lo-
gistic regression from the scikit-learn toolkit (Pe-
dregosa et al., 2011).1 To tune the C hyperparame-
ter, it uses a 5-fold cross-validation grid search (with

1The scikit-learn toolkit uses a one-versus-all scheme, us-
ing multiple binary logistic regression classifiers, rather than a
single multiclass logistic regression classifier.

C ∈ 10{−3,−2,...,3}).
During development, we evaluated performance

using 10-fold cross-validation, with the 5-fold cross-
validation grid search still used for tuning within
each training partition (i.e., each set of 9 folds used
for training during cross-validation).

3.1 Features

Our full system includes the following features.

3.1.1 Baseline Features

It includes all of the baseline features generated
with the code provided by the task organizers.2

There are four types of lexically-driven text similar-
ity measures, and each is computed by comparing
the learner response to both the expected answer(s)
and the question, resulting in eight features in total.
They are described more fully by Dzikovska et al.
(2012).

3.1.2 Intercept Feature

The system includes an intercept feature that is al-
ways equal to one, which, in combination with the
domain adaptation technique described in §3.2, al-
lows the system to model the a priori distribution
over classes for each domain and item. Having these
explicit intercept features effectively saves the learn-
ing algorithm from having to use other features to
encode the distribution over classes.

3.1.3 Word and Character n-gram Features

The system includes binary indicator features for
the following types of n-grams:

• lowercased word n-grams in the response text
for n ∈ {1, 2, 3}.

• lowercased word n-grams in the response text
for n ∈ {4, 5, . . . , 11}, grouped into 10,000
bins by hashing and using a modulo operation
(i.e., the “hashing trick”) (Weinberger et al.,
2009).

• lowercased character n-grams in the response
text for n ∈ {5, 6, 7, 8}

2At the time of writing, the baseline code could
be downloaded at http://www.cs.york.ac.uk/
semeval-2013/task7/.
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3.1.4 Text Similarity Features
The system includes the following text similarity

features that compare the student response either to
a) the reference answers for the appropriate item, or
b) the student answers in the training set that are la-
beled “correct”.

• the maximum of the smoothed, uncased BLEU
(Papineni et al., 2002) scores obtained by com-
paring the student response to each correct
reference answer. We also include the word
n-gram precision and recall values for n ∈
{1, 2, 3, 4} for the maximally similar reference
answer.

• the maximum of the smoothed, uncased BLEU
scores obtained by comparing the student re-
sponse to each correct training set student an-
swer. We also include the word n-gram preci-
sion and recall values for n ∈ {1, 2, 3, 4} for
the maximally similar student answer.

• the maximum PERP (Heilman and Madnani,
2012) score obtained by comparing the student
response to the correct reference answers.

• the maximum PERP score obtained by compar-
ing the student response to the correct student
answers.

PERP is an edit-based approach to text similar-
ity. It computes the similarity of sentence pairs by
finding sequences of edit operations (e.g., insertions,
deletions, substitutions, and shifts) that convert one
sentence in a pair to the other. Then, using various
features of the edits and weights for those features
learned from labeled sentence pairs, it assigns a sim-
ilarity score. Heilman and Madnani (2012) provide
a detailed description of the original PERP system.
In addition, Heilman and Madnani (To Appear) de-
scribe some minor modifications to PERP used in
this work.

To estimate weights for PERP’s edit features, we
need labeled sentence pairs. First, we describe how
these labeled sentence pairs are generated from the
task data, and then we describe the stacking ap-
proach used to avoid training PERP on the same data
it will compute features for.

For the reference answer PERP feature, we use
the Cartesian product of the set of correct reference

answers (“good” or “best” for Beetle) and the set
of student answers, using 1 as the similarity score
(i.e., the label for training PERP) for pairs where the
student answer is labeled “correct” and 0 for all oth-
ers. For the student answer PERP feature, we use
the Cartesian product of the set of correct student
answers and the set of all student answers, using 1
as the similarity score for pairs where both student
answers are labeled “correct” and 0 for all others.3

We use 10 iterations for training PERP.
In order to avoid training PERP on the same re-

sponses it will compute features for, we use 10-fold
stacking (Wolpert, 1992). In this process, the train-
ing data are split up into ten folds. To compute the
PERP features for the instances in each fold, PERP
is trained on the other nine folds. After all 10 itera-
tions, there are PERP features for every example in
the training set. This process is similar to 10-fold
cross-validation.

3.2 Domain Adaptation

The system uses the domain adaptation technique
from Daume III (2007) to support generalization
across items and domains.

Instead of having a single weight for each feature,
following Daume III (2007), the system has multiple
copies with potentially different weights: a generic
copy, a domain-specific copy, and an item-specific
copy. For an answer to an unseen item (i.e., ques-
tion) from a new domain in the test set, only the
generic feature will be active. In contrast, for an an-
swer to an item represented in the training data, the
generic, domain-specific, and item-specific copies
of the feature would be active and contribute to the
score.

For our submissions, this feature copying ap-
proach was not used for the baseline features
(§3.1.1) or the BLEU and PERP text similarity fea-
tures (§3.1.4), which are less item-specific. Those
features had only general copies. We did not test
whether doing so would affect performance.

3The Cartesian product of the sets of correct student answers
and of all student answers will contain some pairs of identi-
cal correct answers. We decided to simply include these when
training PERP, since we felt it would be desirable for PERP to
learn that identical sentences should be considered similar.
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Beetle SciEntsBank
Submission A Q A Q D
Run 1 .5520 .5470 .5350 .4870 .4470
Run 2 .7050 .6140 .6250 .3560 .4340
Run 3 .7000 .5860 .6400 .4110 .4140
maximum .7050 .6140 .6400 .4920 .4710
mean .5143 .3978 .4568 .3769 .3736

Table 1: Weighted average F1 scores for 5-way classification for our SemEval 2013 task 7 submissions, along with
the maximum and mean performance, for comparison. “A” = unseen answers, “Q” = unseen questions, “D” = unseen
domains (see §2 for details). Results that were the maximum score among submissions for part of the task are in bold.

3.3 Submissions
We submitted three variations of the system. For
each variation, a separate model was trained for Bee-
tle and for SciEntsBank.

• Run 1: This run included the baseline (§3.1.1),
intercept (§3.1.2), and the text-similarity fea-
tures (§3.1.4) that compare student responses to
reference answers (but not those that compare
to scored student responses in the training set).

• Run 2: This run included the baseline (§3.1.1),
intercept (§3.1.2), and n-gram features (§3.1.3).

• Run 3: This run included all features.

4 Results

Table 1 presents the weighted averages of F1 scores
across the five categories for the 5-way subtask, for
each dataset and scenario. The maximum and mean
scores of all the submissions are included for com-
parison. These results were provided to us by the
task organizers.

For conciseness, we do not include accuracy or
macro-average F1 scores here. We observed that, in
general, the results from different evaluation metrics
were very similar to each other. We refer the reader
to the task description paper (Dzikovska et al., 2013)
for a full report of the task results.

Interestingly, the differences in performance be-
tween the unseen answers task and the other tasks
was somewhat larger for the SciEntsBank dataset
than for the Beetle dataset. We speculate that this re-
sult is because the SciEntsBank data covered a more
diverse set of topics.

Note that Runs 1 and 2 use subsets of the features
from the full system (Run 3). While Runs 1 and 2

are not directly comparable to each other, Runs 1
and 3 can be compared to measure the effect of the
features based on other previously scored student re-
sponses (i.e., n-grams, and the PERP and BLEU fea-
tures based on student responses). Similarly, Runs 2
and 3 can be compared to measure the combined ef-
fect of all BLEU and PERP features.

It appears that features of the other student re-
sponses improve performance for the unseen an-
swers task. For example, the full system (Run 3)
performed better than Run 1, which did not include
features of other student responses, on the unseen
answers task for both Beetle and SciEntsBank.

However, it is not clear whether the PERP and
BLEU features improve performance. The full sys-
tem (Run 3) did not always outperform Run 2, which
did not include these features.

We leave to future work various additional ques-
tions, such as whether student response features or
reference answer similarity features are more use-
ful in general, and whether there are any systematic
differences between human-machine and human-
human disagreements.

5 Conclusion

We have presented an approach for short answer
scoring that uses stacking (Wolpert, 1992) and do-
main adaptation (Daume III, 2007) to support the
integration of various types of task-specific and gen-
eral features. Evaluation results from task 7 at Se-
mEval 2013 indicate that the system achieves rela-
tively high levels of agreement with human scores,
as compared to other systems submitted to the
shared task.
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Abstract

In this paper we describe our system used to
participate in the Student-Response-Analysis
task-7 at SemEval 2013. This system is based
on text overlap through the soft cardinality and
a new mechanism for weight propagation. Al-
though there are several official performance
measures, taking into account the overall ac-
curacy throughout the two availabe data sets
(Beetle and SciEntsBank), our system ranked
first in the 2 way classification task and sec-
ond in the others. Furthermore, our sys-
tem performs particularly well with “unseen-
domains” instances, which was the more chal-
lenging test set. This paper also describes an-
other system that integrates this method with
the lexical-overlap baseline provided by the
task organizers obtaining better results than
the best official results. We concluded that the
soft cardinality method is a very competitive
baseline for the automatic evaluation of stu-
dent responses.

1 Introduction

The Student-Response-Analysis (SRA) task consist
in provide assessments of the correctness of student
answers (A), considering their corresponding ques-
tions (Q) and reference answers (RA) (Dzikovska
et al., 2012). SRA is the task-7 in the SemEval
2013 evaluation campaign (Dzikovska et al., 2013).
The method used in our participation was basically
text overlap based on the soft cardinality (Jimenez
et al., 2010) plus a machine learning classifier. This
method did not use any information external to the

data sets except for a stemmer and a list of stop
words.

The soft cardinality is a general model for object
comparison that has been tested at text applications.
Particularly, this text overlap approach has provided
strong baselines for several applications, i.e. entity
resolution (Jimenez et al., 2010), semantic textual
similarity (Jimenez et al., 2012a), cross-lingual tex-
tual entailment (Jimenez et al., 2012b), information
retrieval, textual entailment and paraphrase detec-
tion (Jimenez and Gelbukh, 2012). A brief descrip-
tion of the soft cardinality is presented in the next
section.

The data for SRA consist of two data sets Bee-
tle (5,199 instances) and SciEntsBank (10,804 in-
stances) divided into training and test sets (76%-
24% for Beetle and 46%-54% SciEntsBank). In ad-
dition, the test part of Beetle data set was divided
into two test sets: “unseen answers” (35%) and “un-
seen questions” (65%). Similarity, SciEntsBank test
part is divided into “unseen answers” (9%), “unseen
questions” (13%) and “unseen domains” (78%). All
texts are in English.

The challenge consists in predicting for each in-
stance triple (Q, A, RA) an assessment of correct-
ness for the student’s answer. Three levels of detail
are considered for this assessment: 2 way (correct
and incorrect), 3 way (correct, contradictory and in-
correct) and 5 way (correct, incomplete, contradic-
tory, irrelevant and non-in-the-domain).

Section 3 presents the method used for the extrac-
tion of features from texts using the soft cardinal-
ity to provide a vector representation. In Section 4,
the details of the system used to produce our predic-
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tions are presented. Besides, in that section a system
that integrates our system with the lexical-overlap
baseline proposed by the task organizers is also pre-
sented. This combined system was motivated by the
observation that our system performed well in the
SciEntsBank data set but poorly in Beetle in compar-
ison with the lexical-overlap baseline. The results
obtained by both systems are also presented in that
section.

Finally in Section 5 the conclusions of our partic-
ipation in this evaluation campaign are presented.

2 Soft Cardinality

The soft cardinality (Jimenez et al., 2010) of a col-
lection of elements S is calculated with the follow-
ing expression:

|S|′ =
n∑

i=1

wi ·

 n∑
j=1

sim(si, sj)
p

−1

(1)

Having S ={s1, s2, . . . , sn}; wi ≥ 0; p ≥ 0;
1 > sim(x, y) ≥ 0, x 6= y; and sim(x, x) = 1.
The parameter p controls the degree of "softness"
of the cardinality (the larger the “harder”). In fact,
when p → ∞ the soft cardinality is equivalent to
classical set cardinality. The default value for this
parameter is p = 1. The coefficients wi are weights
associated with each element, which can represent
the importance or informative character of each ele-
ment. The function sim is a similarity function that
compares pairs of elements in the collection S.

3 Features from Cardinalities

It is commonly accepted that it is possible to make
a fair comparison of two objects if they are of the
same nature. If the objects are instances of a com-
positional hierarchy, they should belong to the same
class to be comparable. Clearly, a house is compa-
rable with another house, a wall with another wall
and a brick with another brick, but walls and bricks
are not comparable (at least not directly). Similarly,
in text applications documents should be compared
with documents, sentences with sentences, words
with words, and so on.

However, a comparison measure between a sen-
tence and a document can be obtained with different

approaches. First, using the information retrieval ap-
proach, the document is considered like a very long
sentence and the comparison is then straight for-
ward. Another approach is to make pairwise com-
parisons between the sentence and each sentence in
the document. Then, the similarity scores of these
comparisons can be aggregated in a single score
using average, max or min functions. These ap-
proaches have issues, the former ignores the sen-
tence subdivision of the document and the later ig-
nores the similarities among the sentences in the
document.

In the task at hand, each instance is composed of
a question Q, a student answer A, which are sen-
tences, and a collection of reference answers RA,
which could be considered as a multi-sentence doc-
ument. The soft cardinality can be used to provide
values for |Q|′, |A|′, |RA|′, |Q∩A|′, |A∩RA|′ and
|Q∩RA|′. The intersections that involve RA require
a special treatment to tackle the aforementioned is-
sues.

Let’s start defining a word-similarity function.
Two words (or terms) t1 and t2 can be compared di-
viding them into character q-grams (Kukich, 1992).
The representation in q-grams of ti can be denoted
as t

[q]
i . Similarly, a combined representation us-

ing a range of q-grams of different length can be
denoted as t

[q1:q2]
i . For instance, if t1 =“home”

then t
[2:3]
1 ={“ho”,“om”,“me”,“hom”,“ome”}. Thus,

t
[q1:q2]
1 and t

[q1:q2]
2 representations can be com-

pared using the Dice’s coefficient to build a word-
similarity function:

simwords(t1, t2) =
2 ·
∣∣∣t[q1:q2]

1 ∩ t
[q1:q2]
2

∣∣∣∣∣∣t[q1:q2]
1

∣∣∣+ ∣∣∣t[q1:q2]
1

∣∣∣ (2)

Note that in eq. 2 the classical set cardinality was
used, i.e |x| means classical cardinality and |x|′ soft
cardinality.

The function simwords can be plugged in eq.1 to
obtain the soft cardinality of a sentence S (using uni-
tary weights wi = 1 and p = 1):

|S|′ =
|S|∑
i=1

 |S|∑
j=1

simword(ti, tj)

−1

(3)
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|X| |Y | |X ∪ Y |
BF1: |Q|′ BF2: |A|′ BF3: |Q ∪A|′
BF2: |A|′ BF4: |RA|′′ BF5: |RA ∪A|′′
BF1: |Q|′ BF4: |RA|′′ BF6: |RA ∪Q|′′

Table 1: Basic feature set

Where ti are the words in the sentence S .
The sentence-soft-cardinality function can be

used to build a sentence-similarity function to com-
pare two sentences S1 and S2 using again the Dice’s
coefficient:

simsent.(S1, S2) =
2 · (|S1|′ + |S2|′ − |S1 ∪ S2|′)

|S1|+ |S2|
(4)

In this formulation S1∪S2 is the concatenation of
both sentences.

The eq. 4 can be plugged again into eq. 1 to obtain
the soft cardinality of a “document” RA, which is a
collection of sentences RA = {S1, S2. . . . , S|RA|}:

|RA|′′ =
|RA|∑
i=1

|Si|′ ·

|RA|∑
j=1

sim(Si, Sj)

−1

(5)

Note that the soft cardinalities of the sentences
|Si|′ were re-used as importance weights wi in eq.
1. These weights are propagations of the unitary
weights assigned to the words, which in turn were
aggregated by the soft cardinality at sentence level
(eq. 3). This soft cardinality is denoted with double
apostrophe because is a function recursively based
in the single-apostrophized soft cardinality.

The proposed soft cardinality expressions are
used to obtain the basic feature set presented in Ta-
ble 1. The soft cardinalities of |Q|′, |A|′ and |Q∪A|′
are calculated with eq. 3. The soft cardinalities
|RA|′′, |RA∪A|′′ and |RA∪Q|′′ are calculated with
eq. 5. Recall that Q ∪ A is the concatenation of the
question and answer sentences. Similarly, RA ∪ A
and RA ∪Q are the collection of reference answers
adding A xor Q .

Starting from the basic feature set, an extended
set, showed in Table 2, can be obtained from each
one of the three rows in Table 1. Recall that |X ∩
Y | = |X|+ |Y |−|X∪Y | and |X \Y | = |X|−|X∩

EF1: |X ∩ Y | EF2: |X \ Y |
EF3: |Y \X| EF4: |X∩Y |

|X|

EF5: |X∩Y |
|Y | EF6: |X∩Y |

|X∪Y |

EF7: 2·|X∩Y |
|X|+|Y | EF8: |X∩Y |√

|X|·|Y |

EF9: |X∩Y |
min(|X|,|Y |) EF10: |X∩Y |

max(|X|,|Y |)

EF11: |X∩Y |·(|X|+|Y |)
2·|X|·|Y | EF12: |X ∪ Y | − |X ∩ Y |

Table 2: Extended feature set

Y |. Consequently, the total number of features is 6
basic features plus 12 extended features multiplied
by 3, i.e. 42 features.

4 Systems Description

4.1 Submitted System

First, each text in the SRA data was preprocessed by
tokenizing, lowercasing, stop-words1 removing and
stemming with the Porter’s algorithm (Porter, 1980).
Second, each stemmed word t was represented in
q-grams: t[3:4] for Beetle and t[4] for SciEntsBank.
These representations obtained the best accuracies
in the training data sets.

Two vector data sets were obtained extracting the
42 features–described in Section 3–for each instance
in Beetle and SciEntsBank separately. Then, three
classification models (2 way, 3way and 5 way) were
learned from the training partitions on each vector
data set using a J48 graft tree (Webb, 1999). All
6 resulting classification models were boosted with
15 iterations of bagging (Breiman, 1996). The used
implementation of this classifier was that included
in WEKA v.3.6.9 (Hall et al., 2009). The results
obtained by this system are shown in Table 3 in the
rows labeled with “Soft Cardinality-run1”.

4.2 An Improved System

At the time when the official results were released,
we observed that our submitted system performed
pretty well in SciEntsBank but poorly in Beetle.
Moreover, the lexical-overlap baseline outperformed
our system in Beetle. Firstly, we decided to include
in our feature set the 8 features of the lexical over-
lap baseline described by Dzikovska et al. (2012)

1those provided by nltk.org
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Beetle SciEntsBank
Task System UA1 UQ2 All UA1 UQ2 UD3 All All Rank

2 way

Soft Cardinality-unofficial 0.797 0.725 0.750 0.717 0.733 0.726 0.726 0.730 -
Soft Cardinality-run1 0.781 0.667 0.707 0.724 0.745 0.711 0.716 0.715 1
ETS-run1 0.811 0.741 0.765 0.722 0.711 0.698 0.702 0.713 2
CU-run1 0.786 0.718 0.742 0.656 0.674 0.693 0.687 0.697 3
Lexical overlap baseline 0.797 0.740 0.760 0.661 0.674 0.676 0.674 0.690 6

3 way

Soft Cardinality-unofficial 0.608 0.532 0.559 0.656 0.671 0.646 0.650 0.634 -
ETS-run1 0.633 0.551 0.580 0.626 0.663 0.632 0.635 0.625 1
Soft Cardinality-run1 0.624 0.453 0.513 0.659 0.652 0.637 0.641 0.618 2
CoMeT-run1 0.731 0.518 0.592 0.713 0.546 0.579 0.587 0.588 3
Lexical overlap baseline 0.595 0.512 0.541 0.556 0.540 0.577 0.570 0.565 8

5way

Soft Cardinality-unofficial 0.572 0.476 0.510 0.552 0.520 0.534 0.534 0.530 -
ETS-run1 0.574 0.560 0.565 0.543 0.532 0.501 0.509 0.519 1
Soft Cardinality-run1 0.576 0.451 0.495 0.544 0.525 0.512 0.517 0.513 2
ETS-run2 0.715 0.621 0.654 0.631 0.401 0.476 0.481 0.512 3
Lexical overlap baseline 0.519 0.480 0.494 0.437 0.413 0.415 0.417 0.430 11

Total number of test instances 439 819 1,258 540 733 4,562 5,835 7,093
TEST SETS: unseen answers1, unseen questions2, unseen domains3.

Table 3: Official results for the top-3 performing systems (among 15), the lexical overlap baseline in the SRA task
SemEval 2013 and unofficial results of the soft cardinality system combined with the lexical overlap (in italics).
Performance measure used: overall accuracy.

(see Text::Similarity::Overlaps2 package for more
details).

Secondly, the lexical overlap baseline aggregates
the pairwise scores between each reference answer
and the student answer by taking the maximum
value of the pairwise scores. So, we decided to use
this aggregation mechanism instead of the aggrega-
tion proposed through eq. 3.

Thirdly, only at that time we realized that, unlike
Beetle, in SciEntsBank all instances have only one
reference answer. Consequently, the only effect of
eq. 5 in SciEntsBank was in the calculation of |RA∪
A|′′ (and |RA∪Q|′′) by |X∪Y |′′ = |X|′+|Y |′

1+simsent.(X,Y ) .
As a result, this transformation induced a boosting
effect in X∩Y making |X∩Y |′′ ≥ |X∩Y |′ for any
X , Y . We decided to use this intersection-boosting
effect not only in RA ∩ A, RA ∩ Q, but in Q ∩
A. This intersecton boosting effect works similarly
to the Lesk’s measure (Lesk, 1986) included in the
lexical overlap baseline.

The individual effect in the performance of each

2http://search.cpan.org/dist/Text-
Similarity/lib/Text/Similarity/Overlaps.pm

of the previous decisions was positive in all three
cases. The results obtained using an improved
system that implemented those three decisions are
shown in Table 3–in italics. This system would have
obtained the best general overall accuracy in the of-
ficial ranking.

5 Conclusions

We participated in the Student-Response-Analysis
task-7 in SemEval 2013 with a text overlap system
based on the soft cardinality. This system obtained
places 1st (2 way task) and 2nd (3 way and 5 way)
considering the overall accuracy across all data sets
and test sets. Particularly, our system was the best
in the largest and more challenging test set, namely
“unseen domains”. Moreover, we integrated the lex-
ical overlap baseline to our system obtaining even
better results.

As a conclusion, the text overlap method based on
the soft cardinality is very challenging base line for
the SRA task.
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Abstract

Our system combines text similarity measures
with a textual entailment system. In the main
task, we focused on the influence of lexical-
ized versus unlexicalized features, and how
they affect performance on unseen questions
and domains. We also participated in the pi-
lot partial entailment task, where our system
significantly outperforms a strong baseline.

1 Introduction

The Joint Student Response Analysis and 8th Rec-
ognizing Textual Entailment Challenge (Dzikovska
et al., 2013) brings together two important dimen-
sions of Natural Language Processing: real-world
applications and semantic inference technologies.
The challenge focuses on the domain of middle-
school quizzes, and attempts to emulate the metic-
ulous marking process that teachers do on a daily
basis. Given a question, a reference answer, and a
student’s answer, the task is to determine whether
the student answered correctly. While this is not
a new task in itself, the challenge focuses on em-
ploying textual entailment technologies as the back-
bone of this educational application. As a conse-
quence, we formalize the question “Did the student
answer correctly?” as “Can the reference answer be
inferred from the student’s answer?”. This question
can (hopefully) be answered by a textual entailment
system (Dagan et al., 2009).

The challenge contains two tasks: In the main
task, the system must analyze each answer as a
whole. There are three settings, where each one de-
fines “correct” in a different resolution. The highest-
resolution setting defines five different classes or

“correctness values”: correct, partially correct, con-
tradictory, irrelevant, non-domain. In the pilot task,
critical elements of the answer need to be analyzed
separately. Each such element is called a facet, and
is defined as a pair of words that are critical in an-
swering the question. As there is a substantial dif-
ference between the two tasks, we designed sibling
architectures for each task, and divide the main part
of the paper accordingly.

Our goal is to provide a robust architecture for stu-
dent response analysis, that can generalize and per-
form well in multiple domains. Moreover, we are
interested in evaluating how well general-purpose
technologies will perform in this setting. We there-
fore approach the challenge by combining two such
technologies: DKPro Similarity –an extensive suite
of text similarity measures– that has been success-
fully applied in other settings like the SemEval 2012
task on semantic textual similarity (Bär et al., 2012a)
or reuse detection (Bär et al., 2012b).

BIUTEE, the Bar-Ilan University Textual Entail-
ment Engine (Stern and Dagan, 2011), which has
shown state-of-the-art performance on recognizing
textual entailment challenges. Our systems use both
technologies to extract features, and combine them
in a supervised model. Indeed, this approach works
relatively well (with respect to other entries in the
challenge), especially in unseen domains.

2 Background

2.1 Text Similarity

Text similarity is a bidirectional, continuous func-
tion which operates on pairs of texts of any length
and returns a numeric score of how similar one text
is to the other. In previous work (Mihalcea et al.,
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2006; Gabrilovich and Markovitch, 2007; Landauer
et al., 1998), only a single text similarity measure
has typically been applied to text pairs. However,
as recent work (Bär et al., 2012a; Bär et al., 2012b)
has shown, text similarity computation can be much
improved when a variety of measures are combined.

In recent years, UKP lab at TU Darmstadt has de-
veloped DKPro Similarity1, an open source toolkit
for analyzing text similarity. It is part of the
DKPro framework for natural language processing
(Gurevych et al., 2007). DKPro Similarity excels
at the tasks of measuring semantic textual simi-
larity (STS) and detecting text reuse (DTR), hav-
ing achieved the best performance in previous chal-
lenges (Bär et al., 2012a; Bär et al., 2012b).

2.2 Textual Entailment

The textual entailment paradigm is a generic frame-
work for applied semantic inference (Dagan et al.,
2009). The most prevalent task of textual entailment
is to recognize whether the meaning of a target nat-
ural language statement (H for hypothesis) can be
inferred from another piece of text (T for text). Ap-
parently, this core task underlies semantic inference
in many text applications. The task of analyzing stu-
dent responses is one such example. By assigning
the student’s answer as T and the reference answer
as H , we are basically asking whether one can in-
fer the correct (reference) answer from the student’s
response. In recent years, Bar-Ilan University has
developed BIUTEE (Stern and Dagan, 2011), an ex-
tensive textual entailment recognition engine. BI-
UTEE tries to convert T (represented as a depen-
dency tree) to H . It does so by applying a series of
knowledge-based transformations, such as synonym
substitution, active-passive conversion, and more.
BIUTEE is publicly available as open source.2

3 Main Task

In this section, we explain how we approached the
main task, in which the system needs to analyze each
answer as a whole. After describing our system’s ar-
chitecture, we explain how we selected training data
for the different scenarios in the main task. We then

1code.google.com/p/dkpro-similarity-asl
2cs.biu.ac.il/˜nlp/downloads/biutee

provide the details for each submitted run, and fi-
nally, our empirical results.

3.1 System Description

We build a system based on the Apache UIMA
framework (Ferrucci and Lally, 2004) and DKPro
Lab (Eckart de Castilho and Gurevych, 2011). We
use DKPro Core3 for preprocessing. Specifically,
we used the default DKPro segmenter, TreeTagger
POS tagger and chunker, Jazzy Spell Checker, and
the Stanford parser.4 We trained a supervised model
(Naive Bayes) using Weka (Hall et al., 2009) with
feature extraction based on clearTK (Ogren et al.,
2008). The following features have been used:

BOW features Bag-of-word features are based on
the assumption that certain words need to appear in
a correct answer. We used a mixture of token uni-
grams, bigrams, and trigrams, where each n-gram is
a binary feature that can either be true or false for a
document.5 Additionally, we also used the number
of tokens in the student answer as another feature in
this group.

Syntactic Features We extend BOW features
with syntactic functions by adding dependency and
phrase n-grams. Dependency n-grams are combina-
tions of two tokens and their dependency relation.
Phrase n-grams are combinations of the main verb
and the noun phrase left and right of the verb. In
both cases, we use the 10 most frequent n-grams.

Basic Similarity Features This group of features
computes the similarity between the reference an-
swer and the student answer. In case there is more
than one reference answer, we compute all pairwise
similarity scores and add the minimum, maximum,
average, and median similarity.6

Semantic Similarity Features are very similar to
the basic similarity features, except that we use se-
mantic similarity measures in order to bridge a pos-
sible vocabulary gap between the student and refer-
ence answer. We use the ESA measure (Gabrilovich

3code.google.com/p/dkpro-core-asl/
4DKPro Core v1.4.0, TreeTagger models v20130204.0,

Stanford parser PCFG model v20120709.0.
5Using the 750 most frequent n-grams gave good results on

the training set, so we also used this number for the test runs.
6As basic similarity measures, we use greedy string tiling

(Wise, 1996) with n = 3, longest common subsequence and
longest common substring (Allison and Dix, 1986), and word
n-gram containment(Lyon et al., 2001) with n = 2.
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and Markovitch, 2007) based on concept vectors
build from WordNet, Wiktionary, and Wikipedia.

Spelling Features As spelling errors might be in-
dicative of the answer quality, we use the number of
spelling errors normalized by the text length as an
additional feature.

Entailment Features We run BIUTEE (Stern and
Dagan, 2011) on the test instance (as T ) with each
reference answer (as H), which results in an array
of numerical entailment confidence values. If there
is more than one reference answer, we compute all
pairwise confidence scores and add the minimum,
maximum, average, and median confidence.

3.2 Data Selection Regime
There are three scenarios under which our system
is expected to perform. For each one, we chose (a-
priori) a different set of examples for training.

Unseen Answers Classify new answers to famil-
iar questions. Train on instances that have the same
question as the test instance.

Unseen Questions Classify new answers to un-
seen (but related) questions. Partition the questions
according to their IDs, creating sets of related ques-
tions, and then train on all the instances that share
the same partition as the test instance.

Unseen Domains Classify new answers to unseen
questions from unseen domains. Use all available
training data from the same dataset.

3.3 Submitted Runs
The runs represent the different levels of lexicaliza-
tion of the model which we expect to have strong
influence in each scenario:

Run 1 uses all features as described above. We
expect the BOW features to be helpful for the Un-
seen Answers setting, but to be misleading for un-
seen questions or domains, as the same word indi-
cating a correct answer for one question might cor-
respond to a wrong answer for another question.

Run 2 uses only non-lexicalized features, i.e. all
features except the BOW and syntactic features, in
order to assess the impact of the lexicalization that
overfits on the topic of the questions. We expect this
run to be less sensitive to the topic changes in the
Unseen Questions and Unseen Domains settings.

Run 3 uses only the basic similarity and the en-
tailment features. It should indicate the baseline per-

Unseen Unseen Unseen
Task Run Answers Questions Domains

2-way
1 .734 .678 .671
2 .665 .644 .677
3 .662 .625 .677

3-way
1 .670 .573 .572
2 .595 .561 .577
3 .574 .540 .576

5-way
1 .590 .376 .407
2 .495 .397 .371
3 .461 .394 .376

Table 1: Main task performance for the SciEntsBank test
set. We show weighted average F1 for the three scenarios.

Cor. Par Con. Irr. Non.
Correct 903 463 164 309 78

Partially Correct 219 261 93 333 80
Contradictory 61 126 91 103 36

Irrelevant 209 229 119 476 189
Non-Domain 0 0 0 2 18

Table 2: Confusion matrix of Run 1 in the 5-way Unseen
Domains scenario. The vertical axis is the real class, the
horizontal axis is the predicted class.

formance that can be expected without targeting the
system towards a certain topic.

3.4 Empirical Results

Table 1 shows the F1-measure (weighted average)
of the three runs. As was expected for the Unseen
Answers scenario, Run 1 using a lexicalized model
outperformed the other two runs. However, in the
other scenarios Run 1 is not significantly better, as
lexicalized features do not have the same impact if
the question or the domain changes.

Table 2 shows the confusion matrix of Run 1 in
the 5-way Unseen Domains scenario. The Correct
category was classified quite reliably, but the Irrele-
vant category was especially hard. While the refer-
ence answer provides some clues for what is correct
or incorrect, the range of things that are “irrelevant”
for a given question is potentially very big and thus
cannot be easily learned. We also see that the system
ability to distinguish Correct and Partially Correct
answers need to be improved.

It is difficult to provide an exact assessment of our
system’s performance (with respect to other systems
in the challenge), since there are multiple tasks, sce-
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narios, datasets, and even metrics. However, we can
safely say that our system performed above average
in most settings, and showed competitive results in
the Unseen Domains scenario.

4 Pilot Task

In the pilot task each facet needs to be analyzed sep-
arately, which requires some changes in the system
architecture.

4.1 System Description
We segmented and lemmatized the input data using
the default DKPro segmenter and the TreeTagger
lemmatizer. The partial entailment system is com-
posed of three methods: Exact, WordNet, and BI-
UTEE. These were combined in different combina-
tions to form the different runs.

Exact In this baseline method, we represent a
student answer as a bag-of-words containing all to-
kens and lemmas appearing in the text. Lemmas
are used to account for minor morphological dif-
ferences, such as tense or plurality. We then check
whether both facet words appear in the set.

WordNet checks whether both facet words, or
their semantically related words, appear in the stu-
dent’s answer. We use WordNet (Fellbaum, 1998)
with the Resnik similarity measure (Resnik, 1995)
and count a facet term as matched if the similarity
score exceeds a certain threshold (0.9, empirically
determined on the training set).

BIUTEE processes dependency trees instead of
bags of words. We therefore added a pre-processing
stage that extracts a path in the dependency parse
that represents the facet. This is done by first pars-
ing the entire reference answer, and then locating the
two nodes mentioned in the facet. We then find their
lowest common ancestor (LCA), and extract the path
from the facet’s first word to the second through the
LCA. BIUTEE can now be given the student an-
swer and the pre-processed facet, and try to recog-
nize whether the former entails the latter.

4.2 Submitted Runs
In preliminary experiments using the provided train-
ing data, we found that the very simple Exact Match
baseline performed surprisingly well, with 0.96 pre-
cision and 0.32 recall on positive class instances (ex-
pressed facets). We therefore decided to use this fea-

Unseen Unseen Unseen
Answers Questions Domains

Baseline .670 .688 .731
Run 1 .756 .710 .760
Run 2 .782 .765 .816
Run 3 .744 .733 .770

Table 3: Pilot task performance across different scenar-
ios. The scores are F1-measures (weighted average).

ture as an initial filter, and employ the others for
classifying the “harder” cases. Training BIUTEE
only on these cases, while dismissing easy ones, im-
proved our system’s performance significantly.

Run 1: Exact OR WordNet This is essentially
just the WordNet feature on its own, because every
instance that Exact classifies as positive is also pos-
itive by WordNet.

Run 2: Exact OR (BIUTEE AND WordNet) If
the instance is non-trivial, this configuration requires
that both BIUTEE and WordNet Match agree on pos-
itive classification. Equivalent to the majority rule.

Run 3: Exact OR BIUTEE BIUTEE increases
recall of expressed facets at the expense of precision.

4.3 Empirical Results

Table 3 shows the F1-measure (weighted average) of
each run in each scenario, including Exact Match as
a quite strong baseline. In the majority of cases, Run
2 that combines entailment and WordNet-based lex-
ical matching, significantly outperformed the other
two. It is interesting to note that the systems’ perfor-
mance does not degrade in “harder” scenarios; this is
a result of the non-lexicalized nature of our methods.
Unfortunately, our system was the only submission
in this track, so we do not have any means to perform
relative comparison.

5 Conclusion

We combined semantic textual similarity with tex-
tual entailment to solve the problem of student re-
sponse analysis. Though our features were not tai-
lored for this task, they proved quite indicative, and
adapted well to unseen domains. We believe that ad-
ditional generic features and knowledge resources
are the best way to improve on our results, while
retaining the same robustness and generality as our
current architecture.

288



Acknowledgements

This work has been supported by the Volkswagen Foundation as

part of the Lichtenberg-Professorship Program under grant No.

I/82806, and by the European Community’s Seventh Frame-

work Programme (FP7/2007-2013) under grant agreement no.

287923 (EXCITEMENT). We would like to thank the Minerva

Foundation for facilitating this cooperation with a short term

research grant.

References

Lloyd Allison and Trevor I. Dix. 1986. A bit-string
longest-common-subsequence algorithm. Information
Processing Letters, 23:305–310.

Daniel Bär, Chris Biemann, Iryna Gurevych, and Torsten
Zesch. 2012a. UKP: Computing semantic textual sim-
ilarity by combining multiple content similarity mea-
sures. In Proceedings of the 6th International Work-
shop on Semantic Evaluation and the 1st Joint Confer-
ence on Lexical and Computational Semantics, pages
435–440, June.

Daniel Bär, Torsten Zesch, and Iryna Gurevych. 2012b.
Text reuse detection using a composition of text sim-
ilarity measures. In Proceedings of the 24th In-
ternational Conference on Computational Linguistics
(COLING 2012), pages 167–184, December.

Ido Dagan, Bill Dolan, Bernardo Magnini, and Dan Roth.
2009. Recognizing textual entailment: Rationale,
evaluation and approaches. Natural Language Engi-
neering, 15(4):i–xvii.

Myroslava O. Dzikovska, Rodney Nielsen, Chris Brew,
Claudia Leacock, Danilo Giampiccolo, Luisa Ben-
tivogli, Peter Clark, Ido Dagan, and Hoa Trang Dang.
2013. Semeval-2013 task 7: The joint student re-
sponse analysis and 8th recognizing textual entailment
challenge. In *SEM 2013: The First Joint Conference
on Lexical and Computational Semantics, Atlanta,
Georgia, USA, 13-14 June. Association for Compu-
tational Linguistics.

Richard Eckart de Castilho and Iryna Gurevych. 2011.
A lightweight framework for reproducible parame-
ter sweeping in information retrieval. In Proceed-
ings of the 2011 workshop on Data infrastructurEs for
supporting information retrieval evaluation (DESIRE
’11), New York, NY, USA. ACM.

Christiane Fellbaum, editor. 1998. WordNet: An Elec-
tronic Lexical Database. MIT Press, Cambridge, MA.

David Ferrucci and Adam Lally. 2004. UIMA: An ar-
chitectural approach to unstructured information pro-
cessing in the corporate research environment. Natu-
ral Language Engineering, 10(3-4):327–348.

Evgeniy Gabrilovich and Shaul Markovitch. 2007. Com-
puting semantic relatedness using Wikipedia-based
explicit semantic analysis. In Proceedings of the 20th
International Joint Conference on Artificial Intelli-
gence (IJCAI 2007), pages 1606–1611.
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Tübingen, Germany, April.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten.
2009. The WEKA Data Mining Software: An Update.
SIGKDD Explorations, 11(1).

Thomas K. Landauer, Peter W. Foltz, and Darrell La-
ham. 1998. An introduction to latent semantic analy-
sis. Discourse Processes, 25(2&3):259–284.

Caroline Lyon, James Malcolm, and Bob Dickerson.
2001. Detecting short passages of similar text in
large document collections. In Proceedings of the
6th Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2001), pages 118–125,
Pittsburgh, PA USA.

Rada Mihalcea, Courtney Corley, and Carlo Strapparava.
2006. Corpus-based and knowledge-based measures
of text semantic similarity. In Proceedings of the 21st
National Conference on Artificial Intelligence, pages
775–780, Boston, MA.

Philip V. Ogren, Philipp G. Wetzler, and Steven Bethard.
2008. ClearTK: A UIMA Toolkit for Statistical Nat-
ural Language Processing. In Towards Enhanced
Interoperability for Large HLT Systems: UIMA for
NLP workshop at Language Resources and Evaluation
Conference (LREC).

Philip Resnik. 1995. Using information content to evalu-
ate semantic similarity in a taxonomy. In Proceedings
of the 14th International Joint Conference on Artificial
Intelligence (IJCAI 1995), pages 448–453.

Asher Stern and Ido Dagan. 2011. A confidence
model for syntactically-motivated entailment proofs.
In Proceedings of the 8th International Conference
on Recent Advances in Natural Language Processing
(RANLP 2011), pages 455–462.

Michael J. Wise. 1996. YAP3: Improved detection of
similarities in computer program and other texts. In
Proceedings of the 27th SIGCSE Technical Sympo-
sium on Computer Science Education (SIGCSE 1996),
pages 130–134, Philadelphia, PA.

289



Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Seventh International Workshop on Semantic
Evaluation (SemEval 2013), pages 290–299, Atlanta, Georgia, June 14-15, 2013. c©2013 Association for Computational Linguistics

SemEval-2013 Task 13:
Word Sense Induction for Graded and Non-Graded Senses

David Jurgens
Dipartimento di Informatica
Sapienza Università di Roma
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Abstract

Most work on word sense disambiguation has
assumed that word usages are best labeled
with a single sense. However, contextual am-
biguity or fine-grained senses can potentially
enable multiple sense interpretations of a us-
age. We present a new SemEval task for evalu-
ating Word Sense Induction and Disambigua-
tion systems in a setting where instances may
be labeled with multiple senses, weighted by
their applicability. Four teams submitted nine
systems, which were evaluated in two settings.

1 Introduction

Word Sense Disambiguation (WSD) attempts to
identify which of a word’s meanings applies in a
given context. A long-standing task, WSD is fun-
damental to many NLP applications (Navigli, 2009).
Typically, each usage of a word is treated as express-
ing only a single sense. However, contextual ambi-
guity as well as the relatedness of certain meanings
can potentially elicit multiple sense interpretations.
Recent work has shown that annotators find multi-
ple applicable senses in a given target word context
when using fine-grained sense inventories such as
WordNet (Véronis, 1998; Murray and Green, 2004;
Erk et al., 2009; Passonneau et al., 2012b; Jurgens,
2013; Navigli et al., 2013). Such contexts would be
better annotated with multiple sense labels, weight-
ing each sense according to its applicability (Erk et
al., 2009; Jurgens, 2013), in effect allowing ambigu-
ity or multiple interpretations to be explicitly mod-
eled. Accordingly, the first goal of this task is to
evaluate WSD systems in a setting where instances

may be labeled with one or more senses, weighted
by their applicability.

WSD methods are ultimately defined and poten-
tially restricted by their choice in sense inventory;
for example, a sense inventory may have insufficient
sense-annotated data to build WSD systems for spe-
cific types of text (e.g., social media), or the inven-
tory may lack domain-specific senses. Word Sense
Induction (WSI) has been proposed as a method for
overcoming such limitations by learning the senses
automatically from text. In essence, a WSI algo-
rithm acts as a lexicographer by grouping word us-
ages according to their shared meaning. The sec-
ond goal of this task is to assess the performance of
WSI algorithms when they are able to model multi-
ple meanings of a usage with graded senses.

Task 12 focuses on disambiguating senses for 50
target lemmas: 20 nouns, 20 verbs, and 10 adjectives
(Sec. 2). Since the Task evaluates only unsupervised
systems, no training data was provided; however, to
enable more comparison, Unsupervised WSD sys-
tems were also allowed to participate. Participat-
ing systems were evaluated in two settings (Sec. 3),
depending on whether they used induced senses or
WordNet 3.1 senses for their annotations. The re-
sults (Sec. 5) demonstrate a substantial improvement
over the competitive most frequent sense baseline.

2 Task Description

This task required participating systems to annotate
instances of nouns, verb, and adjectives using Word-
Net 3.1 (Fellbaum, 1998), which was selected due
to its fine-grained senses. Participants could label
each instance with one or more senses, weighting
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We all are relieved to lay aside our fight-or-flight reflexes and to commemorate our births from out of the dark
centers of the women, to feel the complexity of our love and frustration with each other, to stretch our cognition to
encompass the thoughts of every entity we know.

dark%3:00:01:: – devoid of or deficient in light or brightness; shadowed or black
dark%3:00:00:: – secret

I ask because my practice has always been to allow about five minutes grace, then remove it.

ask%2:32:02:: – direct or put; seek an answer to
ask%2:32:04:: – address a question to and expect an answer from

Table 1: Example instances with multiple senses due to intended double meanings (top) or contextual am-
biguity (bottom). Senses are specified using their WordNet 3.1 sense keys.

each by their applicability. Table 1 highlights two
example contexts where multiple senses apply. The
first example shows a case of an intentional dou-
ble meaning that evokes both the physical aspect of
dark.a as being devoid of light and the causal re-
sult of being secret. In contrast, the second example
shows a case of multiple interpretations from ambi-
guity; a different preceding context could generate
the alternate interpretations “I ask [you] because”
(sense ask%2:32:04::) or “I ask [the question]
because” (sense ask%2:32:02::).

2.1 Data

Three datasets were provided with the task. The trial
dataset provided weighted word sense annotations
using the data gathered by Erk et al. (2009). The
trial dataset consisted of 50 contexts for eight words,
where each context was labeled with WordNet 3.0
sense ratings from three untrained lexicographers.

Due to the unsupervised nature of the task, partic-
ipants were not provided with sense-labeled training
data. However, WSI systems were provided with the
ukWaC corpus (Baroni et al., 2009) to use in induc-
ing senses. Previous SemEval WSI tasks had pro-
vided participants with corpora specific to the task’s
target terms; in contrast, this task opted to use a large
corpus to enable WSI methods that require corpus-
wide statistics, e.g., statistical associations.

Test data was drawn from the Open American
National Corpus (Ide and Suderman, 2004, OANC)
across a variety of genres and from both the spoken
and written portions of the corpus, summarized in
Table 2. All contexts were manually inspected to en-
sure that the lemma being disambiguated was of the
correct part of speech and had an interpretation that

matched at least one WordNet 3.1 sense. This filter-
ing also removed instances that were in a colloca-
tion, or had an idiomatic meaning. Ultimately, 4664
contexts were used as test data, with a minimum of
22 and a maximum of 100 contexts per word.

2.2 Sense Annotation

Recent work proposes to gather sense annotations
using crowdsourcing in order to reduce the time
and cost of acquiring sense-annotated corpora (Bie-
mann and Nygaard, 2010; Passonneau et al., 2012b;
Rumshisky et al., 2012; Jurgens, 2013). There-
fore, we initially annotated the Task’s data using the
method of Jurgens (2013), where workers on Ama-
zon Mechanical Turk (AMT) rated all senses of a
word on a Likert scale from one to five, indicat-
ing the sense does not apply at all or completely
applies, respectively. Twenty annotators were as-
signed per instance, with their ratings combined by
selecting the most frequent rating. However, we
found that while the annotators achieved moderate
inter-annotator agreement (IAA), the resulting an-
notations were not of high enough quality to use in
the Task’s evaluations. Specifically, for some senses
and contexts, AMT annotators required more infor-
mation about sense distinctions than was feasible to
integrate into the AMT setting, which led to consis-
tent but incorrect sense assignments.

Therefore, the test data was annotated by the two
authors, with the first author annotating all instances
and the second author annotating a 10% sample of
each lemma’s instances in order to calculate IAA.
IAA was calculated using Krippendorff’s α (Krip-
pendorff, 1980; Artstein and Poesio, 2008), which is
an agreement measurement that adjusts for chance,
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Spoken Written
Genre Face-to-face Telephone Fiction Journal Letters Non-fiction Technical Travel Guides All

Instances 52 699 127 2403 103 477 611 192 4664
Tokens 1742 30,700 3438 69,479 2238 11,780 17,337 4490 141,204
Mean senses/inst. 1.17 1.08 1.15 1.13 1.31 1.10 1.11 1.11 1.12

Table 2: Test data used in Task 12, divided according to source type

ranging in (−1, 1] for interval data, where 1 indi-
cates perfect agreement and -1 indicates systematic
disagreement; two random annotations have an ex-
pected α of zero. We treat each sense and instance
combination as a separate item to rate. The total IAA
for the dataset was 0.504, and on individual words,
ranged from 0.903 for number.n to 0.00 for win.v.
While this IAA is less than the 0.8 recommended by
Krippendorff (2004), it is consistent with the IAA
distribution for the sense annotations of MASC on
other parts of the OANC corpus: Passonneau et al.
(2012a) reports an α of 0.88 to -0.02 with the MASI
statistic (Passonneau et al., 2006).

Table 2 summarizes the annotation statistics for
the Task’s data. The annotation process resulted in
far fewer senses per instance in the trial data, which
we attribute to using trained annotators. An analysis
across the corpora genres showed that the multiple-
sense annotation rates were similar. Due to the vari-
ety of contextual sources, all lemmas were observed
with at least two distinct senses.

3 Evaluation

We adopt a two-part evaluation setting used in pre-
vious SemEval WSI and WSD tasks (Agirre and
Soroa, 2007; Manandhar et al., 2010). The first eval-
uation uses a traditional WSD task that directly com-
pares WordNet sense labels. For WSI systems, their
induced sense labels are converted to WordNet 3.1
labels via a mapping procedure. The second evalu-
ation performs a direct comparison of the two sense
inventories using clustering comparisons.

3.1 WSD Task
In the first evaluation, we adopt a WSD task with
three objectives: (1) detecting which senses are ap-
plicable, (2) ranking senses by their applicability,
and (3) measuring agreement in applicability rat-
ings with human annotators. Each objectives uses
a specific measurement: (1) the Jaccard Index, (2)

positionally-weighted Kendall’s τ similarity, and
(3) a weighted variant of Normalized Discounted
Cumulative Gain, respectively. Each measure is
bounded in [0, 1], where 1 indicates complete agree-
ment with the gold standard. We generalize the tra-
ditional definition of WSD Recall such that it mea-
sures the average score for each measure across all
instances, including those not labeled by the system.
Systems are ultimately scored using the F1 measure
between each objective’s measure and Recall.

3.1.1 Transforming Induced Sense Labels

In the WSD setting, induced sense labels may be
transformed into a reference inventory (e.g., Word-
Net 3.1) using a sense mapping procedure. We fol-
low the 80/20 setup of Manandhar et al. (2010),
where the corpus is randomly divided into five par-
titions, four of which are used to learn the sense
mapping; the sense labels for the held-out partition
are then converted and compared with the gold stan-
dard. This process is repeated so that each partition
is tested once. For learning the sense mapping func-
tion, we use the distribution mapping technique of
Jurgens (2012), which takes into account the sense
applicability weights in both labelings.

3.1.2 Jaccard Index

Given two sets of sense labels for an instance,
X and Y , the Jaccard Index is used to measure the
agreement: |X∩Y ||X∪Y | . The Jaccard Index is maximized
when X and Y use identical labels, and is mini-
mized when the sets of sense labels are disjoint.

3.1.3 Positionally-Weighted Kendall’s τ

Rank correlations have been proposed for evalu-
ating a system’s ability to order senses by applicabil-
ity; in previous work, both Erk and McCarthy (2009)
and Jurgens (2012) propose rank correlation coeffi-
cients that assume all positions in the ranking are
equally important. However, in the case of graded
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sense evaluation, often only a few senses are appli-
cable, with the applicability ratings of the remain-
ing senses being relatively inconsequential. There-
fore, we consider an alternate rank scoring based on
Kumar and Vassilvitskii (2010), which weights the
penalty of reordering the lower positions less than
the penalty of reordering the first ranks.

Kendall’s τ distance, K, is a measure of the
number of item position swaps required to make
two sequences identical. Kumar and Vassilvitskii
(2010) extend this distance definition using a vari-
able penalty function δ for the cost of swapping two
positions, which we denote Kδ. By using an appro-
priate δ, Kδ can be biased towards the correctness
of higher ranks by assigning a smaller δ to lower
ranks. Because Kδ is a distance measure, its value
range will be different depending on the number of
ranks used. Therefore, to convert the measure to a
similarity we normalize the distance to [0, 1] by di-
viding by the maximum Kδ distance and then sub-
tracting the distance from one. Given two rankings
x and y where x is the reference by which y is to be
measured, we may compute the normalized similar-
ity using

Ksim
δ = 1− Kδ(x, y)

Kmax
δ (x)

. (1)

Equation 1 has its maximal value of one when rank-
ing y is identical to ranking x, and its minimal value
of zero when y is in the reverse order as x. We refer
to this value as the positionally-weighted Kendall’s
τ similarity, Ksim

δ . As defined, Ksim
δ does not ac-

count for ties. Therefore, we arbitrarily break ties in
a deterministic fashion for both rankings. Second,
we define δ to assign higher cost to the first ranks:
the cost to move an item into position i, δi, is de-
fined as n−(i+1)

n , where n is the number of senses.

3.1.4 Weighted NDCG

To compare the applicability ratings for sense an-
notations, we recast the annotation process in an In-
formation Retrieval setting: Given an example con-
text acting as a query over a word’s senses, the task
is to retrieve all applicable senses, ranking and scor-
ing them by their applicability. Moffat and Zobel
(2008) propose using Discounted Cumulative Gain
(DCG) as a method to compare a ranking against a
baseline. Given (1) a gold standard weighting of the

k senses applicable to a context, where wi denotes
the applicability for sense i in the gold standard, and
(2) a ranking of the k senses by some method, the
DCG may be calculated as

∑k
i=1

2wi+1−1
log2(i+1) . DCG is

commonly normalized to [0, 1] so that the value is
comparable when computed on rankings with dif-
ferent k and weight values. To normalize, the maxi-
mum value is calculated by first computing the DCG
on the ranking when the k items are sorted by their
weights, referred as the Ideal DCG (IDCG), and then
normalizing as NDCG = DCG

IDCG .
The DCG only considers the weights assigned

in the gold standard, which potentially masks im-
portance differences in the weights assigned to the
senses. Therefore, we propose weighting the DCG
by the relative difference in the two weights. Given
an alternate weighting of the k items, denoted as ŵi,

WDCG =
k∑
i=1

min(wi,ŵi)
max(wi,ŵi)

(
2wi+1 − 1

)
log2(i)

. (2)

The key impact in Equation 2 comes from weight-
ing an item’s contribution to the score by its rela-
tive deviation in absolute weight. A set of weights
that achieves an equivalent ranking may have a low
WDCG if the weights are significantly higher or
lower than the reference. Equation 2 may be nor-
malized in the same way as the DCG. We refer to
this final normalized measure as the Weighted Nor-
malized Discounted Cumulative Gain (WNDCG).

3.2 Sense Cluster Comparisons

Sense induction can be viewed as an unsupervised
clustering task where usages of a word are grouped
into clusters, each representing uses of the same
meaning. In previous SemEval tasks on sense in-
duction, instances were labeled with a single sense,
which yields a partition over the instances into dis-
joint sets. The proposed partition can then be com-
pared with a gold-standard partition using many ex-
isting clustering comparison methods, such as the
V-Measure (Rosenberg and Hirschberg, 2007) or
paired FScore (Artiles et al., 2009). Such cluster
comparison methods measure the degree of similar-
ity between the sense boundaries created by lexicog-
raphers and those created by WSI methods.

In the present task, instances are potentially la-
beled both with multiple senses and with weights
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reflecting the applicability. This type of sense label-
ing produces a fuzzy clustering: An instance may
belong to one or more sense clusters with its clus-
ter membership relative to its weight for that sense.
Formally, we refer to (1) a solution where the sets
of instances overlap as a cover and (2) a solution
where the sets overlap and instances may have par-
tial memberships in a set as fuzzy cover.

We propose two new fuzzy measures for com-
paring fuzzy sense assignments: Fuzzy B-Cubed
and Fuzzy Normalized Mutual Information. The
two measures provide complementary information.
B-Cubed summarizes the performance per instance
and therefore provides an estimate of how well a sys-
tem would perform on a new corpus with a similar
sense distribution. In contrast, Fuzzy NMI is mea-
sured based on the clusters rather than the instances,
thereby providing a performance analysis that is in-
dependent of the corpus sense distribution.

3.2.1 Fuzzy B-Cubed
Bagga and Baldwin (1998) proposed a clustering

evaluation known as B-Cubed, which compares two
partitions on a per-item basis. Amigó et al. (2009)
later extended the definition of B-Cubed to compare
overlapping clusters (i.e., covers). We generalize B-
Cubed further to handle the case of fuzzy covers.
B-Cubed is based on precision and recall, which es-
timate the fit between two clusterings, X and Y at
the item level. For an item i, precision reflects how
many items sharing a cluster with i inX appear in its
cluster in Y ; conversely, recall measures how many
items sharing a cluster in Y with i also appear in its
cluster in X . The final B-Cubed value is the har-
monic mean of the two scores.

To generalize B-Cubed to fuzzy covers, we adopt
the formalization of Amigó et al. (2009), who define
item-based precision and recall functions, P and R,
in terms of a correctness function, C → {0, 1}. For
notational brevity, let avg be a function that returns
the mean value of a series, and µx(i) denote the set
of clusters in clusteringX of which item i is a mem-
ber. B-Cubed precision and recall may therefore cal-
culated over all n items:

B-Cubed Precision = avg
i

[ avg
j 6=i∈∪µy(i)

P (i, j)] (3)

B-Cubed Recall = avg
i

[ avg
j 6=i∈∪µx(i)

R(i, j)]. (4)

When comparing partitions, P and R are defined as
1 if two items cluster labels are identical. To gen-
eralize B-Cubed for fuzzy covers, we redefine P
and R to account for differences in the partial clus-
ter membership of items. Let `X(i) denote the set
of clusters of which i is a member, and wk(i) de-
note the membership weight of item i in cluster k in
X . We therefore define C with respect to X of two
items as

C(i, j,X) =
∑

k∈`X(i)∪`X(j)

1−|wk(i)−wk(j)|. (5)

Equation 5 is maximized when i and j have
identical membership weights in the clusters of
which they are members. Importantly, Equation
5 generalizes to the correctness operations both
when comparing partitions and covers, as defined
by Amigó et al. (2009). Item-based Precision
and Recall are then defined using Equation 5 as
P (i, j,X) = Min(C(i,j,X),C(i,j,Y ))

C(i,j,X) and R(i, j,X) =
Min(C(i,j,X),C(i,j,Y ))

C(i,j,Y ) , respectively. These fuzzy gen-
eralizations are used in Equations 3 and 4.

3.2.2 Fuzzy Normalized Mutual Information
Mutual information measures the dependence be-

tween two random variables. In the context of
clustering evaluation, mutual information treats the
sense labels as random variables and measures the
level of agreement in which instances are labeled
with the same senses (Danon et al., 2005). For-
mally, mutual information is defined as I(X;Y ) =
H(X)−(H(X|Y ) whereH(X) denotes the entropy
of the random variable X that represents a parti-
tion, i.e., the sets of instances assigned to each sense.
Typically, mutual information is normalized to [0, 1]
in order to facilitate comparisons between multiple
clustering solutions on the same scale (Luo et al.,
2009), with Max(H(X), H(Y )) being the recom-
mended normalizing factor (Vinh et al., 2010).

In its original formulation Mutual information
is defined only to compare non-overlapping cluster
partitions. Therefore, we propose a new definition of
mutual information between fuzzy covers using ex-
tension of Lancichinetti et al. (2009) for calculating
the normalized mutual information between covers.
In the case of partitions, a clustering is represented
as a discrete random variable whose states denote
the probability of being assigned to each cluster. In
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the fuzzy cover setting, each item may be assigned
to multiple clusters and no longer has a binary as-
signment to a cluster, but takes on a value in [0, 1].
Therefore, each cluster Xi can be represented sepa-
rately as a continuous random variable, with the en-
tire fuzzy cover denoted as the variable X1...k, where
the ith entry of X is the continuous random vari-
able for cluster i. However, by modeling clusters us-
ing continuous domain, differential entropy must be
used for the continuous variables; importantly, dif-
ferential entropy does not obey the same properties
as discrete entropy and may be negative.

To avoid calculating entropy in the continuous do-
main, we therefore propose an alternative method of
computing mutual information based on discretiz-
ing the continuous values of Xi in the fuzzy set-
ting. For the continuous random variable Xi, we
discretize the value by dividing up probability mass
into discrete bins. That is, the support of Xi is parti-
tioned into disjoint ranges, each of which represents
a discrete outcome of Xi. As a result, Xi becomes a
categorical distribution over a set of weights ranges
{w1, . . . , wn} that denote the strength of member-
ship in the fuzzy set. With respect to sense annota-
tion, this discretization process is analogous to hav-
ing an annotator rate the applicability of a sense for
an instance using a Likert scale instead of using a
rational number within a fixed bound.

Discretizing the continuous cluster membership
ratings into bins allows us to avoid the problematic
interpretation of entropy in the continuous domain
while still expanding the definition of mutual infor-
mation from a binary cluster membership to one of
degrees. Using the definition of Xi and Yj as a cate-
gorical variables over discrete ratings, we may then
estimate the entropy and joint entropy as follows.

H(Xi) =

n∑
i=1

p(wi)log2p(wi) (6)

where p(wi) is the probability of an instance being
labeled with rating wi Similarly, we may define the
joint entropy of two fuzzy clusters as

H(Xk, Yl) =
n∑
i=1

m∑
j=1

p(wi, wj)log2p(wi, wj) (7)

where p(wi, wj) is the probability of an instance be-
ing labeled with rating wi in cluster Xk and wj in

cluster Yl, and m denotes the number of bins for Yl.
The conditional entropy between two clusters may
then be calculated as

H(Xk|Yl) = H(Xk, Yl)−H(Yl).

Together, Equations 6 and 7 may be used to define
I(X,Y ) as in the original definition. We then nor-
malize using the method of McDaid et al. (2011).
Based on the limited range of fuzzy memberships
in [0, 1], we selected uniformly distributed bins in
[0, 1] at 0.1 intervals when discretizing the member-
ship weights for sense labelings.

3.3 Baselines
Task 12 included multiple baselines based on mod-
eling different types of WSI and WSD systems.
Due to space constraints, we include only the four
most descriptive here: (1) Semcor MFS which la-
bels each instance with the most frequent sense of
that lemma in SemCor, (2) Semcor Ranked Senses
baseline, which labels each instance with all of the
target lemma’s senses, ranked according to their fre-
quency in SemCor, using weights n−i+1

n , where n is
the number of senses and i is the rank, (3) 1c1inst
which labels each instance with its own induced
sense and (4) All-instances, One sense which la-
bels all instances with the same induced sense. The
first two baselines directly use WordNet 3.1 senses,
while the last two use induced senses.

4 Participating Systems

Four teams submitted nine systems, seven of which
used induced sense inventories. AI-KU submitted
three WSI systems based on a lexical substitution
method; a language model is built from the target
word’s contexts in the test data and the ukWaC cor-
pus and then Fastsubs (Yuret, 2012) is used to iden-
tify lexical substitutes for the target. Together, the
contexts of the target and substitutes are used to
build a distributional model using the S-CODE al-
gorithm (Maron et al., 2010). The resulting contex-
tual distributions are then clustered using K-means
to identify word senses. The University of Mel-
bourne (Unimelb) team submitted two WSI systems
based on the approach of Lau et al. (2012). Their
systems use a Hierarchical Dirichlet Process (Teh
et al., 2006) to automatically infer the number of
senses from contextual and positional features. Un-
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WSD F1 Cluster Comparison

Team System Jac. Ind. Ksim
δ WNDCG Fuzzy NMI Fuzzy B-Cubed #Cl #S

AI-KU Base 0.197 0.620 0.387 0.065 0.390 7.76 6.61
AI-KU add1000 0.197 0.606 0.215 0.035 0.320 7.76 6.61
AI-KU remove5-add1000 0.244 0.642 0.332 0.039 0.451 3.12 5.33
Unimelb 5p 0.218 0.614 0.365 0.056 0.459 2.37 5.97
Unimelb 50k 0.213 0.620 0.371 0.060 0.483 2.48 6.08
UoS #WN Senses 0.192 0.596 0.315 0.047 0.201 8.08 6.77
UoS top-3 0.232 0.625 0.374 0.045 0.448 3.00 5.44
La Sapienza system-1 0.149 0.507 0.311 - - - 8.69
La Sapienza system-2 0.149 0.510 0.383 - - - 8.67

All-instances, One sense 0.192 0.609 0.288 0.0 0.623 1.00 6.62
1c1inst 0.0 0.0 0.0 0.071 0.0 1.00 0.0
Semcor MFS 0.455 0.465 0.339 - - - 1.00
Semcor Ranked Senses 0.149 0.559 0.489 - - - 8.66

Table 3: Performance on the five evaluation measures for all system and selected baselines. Top system
performances are marked in bold.

like other teams, the Unimelb systems were trained
on a Wikipedia corpus instead of the ukWaC cor-
pus. The University of Sussex (UoS) team submit-
ted two WSI systems that use dependency-parsed
features from the corpus, which are then clustered
into senses using the MaxMax algorithm (Hope and
Keller, 2013); the resulting fine-grained clusters are
then combined based on their degree of separabil-
ity. The La Sapienza team submitted two Unsu-
pervised WSD systems based applying Personal-
ized Page Rank (Agirre and Soroa, 2009) over a
WordNet-based network to compare the similarity of
each sense with the similarity of the context, ranking
each sense according to its similarity.

5 Results and Discussion

Table 3 shows the main results for all instances. Ad-
ditionally, we report the number of induced clusters
used to label each sense as #Cl and the number of
resulting WordNet 3.1 senses for each sense with
#S. As in previous WSD tasks, the MFS baseline
was quite competitive, outperforming all systems on
detecting which senses were applicable, measured
using the Jaccard Index. However, most systems
were able to outperform the MFS baseline on rank-
ing senses and quantifying their applicability.

Previous cluster comparison evaluations often
faced issues with the measures being biased either
towards the 1c1inst baseline or labeling all instances
with the same sense. However, Table 3 shows that

Team System F1 NMI B-Cubed

AI-KU Base 0.641 0.045 0.351
AI-KU add1000 0.601 0.023 0.288
AI-KU remove5-add1000 0.628 0.026 0.421
Unimelb 5p 0.596 0.035 0.421
Unimelb 50k 0.605 0.039 0.441
UoS #WN Senses 0.574 0.031 0.180
UoS top-3 0.600 0.028 0.414
La Sapienza System-1 0.204 - -
La Sapienza System-2 0.217 - -

All-instances, One sense 0.569 0.0 0.570
1c1inst 0.0 0.018 0.0
Semcor MFS 0.477 0.0 0.570

Table 4: System performance in the single-sense set-
ting. Top system performances are marked in bold.

systems are capable of performing well in both the
Fuzzy NMI and Fuzzy B-Cubed measures, thereby
avoiding the extreme performance of either baseline.

An analysis of the systems’ results showed that
many systems labeled instances with a high num-
ber of senses, which could have been influenced by
the trial data having significantly more instances la-
beled with multiple senses than the test data. There-
fore, we performed a second analysis that parti-
tioned the test set into two sets: those labeled with
a single sense and those with multiple senses. For
single-sense set, we modified the test setting to have
systems also label instances with a single sense:
(1) the sense mapping function for WSI systems
(Sec. 3.1.1) was modified so that after the mapping,
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WSD F1 Cluster Comparison

Team System Jac. Ind. Ksim
δ WNDCG Fuzzy NMI Fuzzy B-Cubed

AI-KU Base 0.394 0.617 0.317 0.029 0.078
AI-KU add1000 0.394 0.620 0.214 0.014 0.061
AI-KU remove5-add1000 0.434 0.585 0.290 0.004 0.116
Unimelb 5p 0.436 0.585 0.286 0.019 0.130
Unimelb 5000k 0.414 0.602 0.298 0.021 0.134
UoS #WN Senses 0.367 0.627 0.313 0.036 0.037
UoS top-3 0.421 0.574 0.302 0.006 0.113
La Sapienza system-1 0.263 0.660 0.447 - -
La Sapienza system-2 0.412 0.694 0.536 - -

All-instances, One sense 0.387 0.635 0.254 0.0 0.130
1c1inst 0.0 0.0 0.0 0.300 0.0
Semcor MFS 0.283 0.373 0.197
Semcor Ranked Senses 0.263 0.593 0.395

Table 5: System performance on all instances labeled with multiple senses. Top system performances are
marked in bold.

only the highest-weighted WordNet 3.1 sense was
used, and (2) the La Sapienza system output was
modified to retain only the highest weighted sense.
In this single-sense setting, systems were evaluated
using the standard WSD Precision and Recall mea-
sures; we report the F1 measure of Precision and Re-
call. The remaining subset of instances annotated
with multiple senses were evaluated separately.

Table 4 shows the systems’ performance on
single-sense instances, revealing substantially in-
creased performance and improvement over the
MFS baseline for WSI systems. Notably, the per-
formance of the best sense-remapped WSI systems
surpasses the performance of many supervised WSD
systems in previous WSD evaluations (Kilgarriff,
2002; Mihalcea et al., 2004; Pradhan et al., 2007;
Agirre et al., 2010). This performance suggests that
WSI systems using graded labels provide a way to
leverage huge amounts of unannotated corpus data
for finding sense-related features in order to train
semi-supervised WSD systems.

Table 5 shows the performance on the subset of
instances that were annotated with multiple senses.
We note that in this setting, the mapping proce-
dure transforms the All-Instances One Sense base-
line into the average applicability rating for each
sense in the test corpus. Notably, the La Sapienza
systems sees a significant performance increase in
this setting; their systems label each instance with
all of the lemma’s senses, which significantly de-

grades performance in the most common case where
only a single sense applies. However, when multi-
ple senses are known to be present, their method for
quantifying sense applicability appears closest to the
gold standard judgments. Furthermore, the majority
of WSI systems are able to surpass all four baselines
on identifying which senses are present and quanti-
fying their applicability.

6 Conclusion

We have introduced a new evaluation setting for
WSI and WSD systems where systems are measured
by their ability to detect and weight multiple appli-
cable senses for a single context. Four teams submit-
ted nine systems, annotating a total of 4664 contexts
for 50 words from the OANC. Many systems were
able to surpass the competitive MFS baseline. Fur-
thermore, when WSI systems were trained to pro-
duce only a single sense label, the performance of
resulting semi-supervised WSD systems surpassed
that of many supervised systems in previous WSD
evaluations. Future work may assess the impact of
graded sense annotations in a task-based setting. All
materials have been released on the task website.1
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Abstract

Word sense induction aims to discover differ-
ent senses of a word from a corpus by us-
ing unsupervised learning approaches. Once a
sense inventory is obtained for an ambiguous
word, word sense discrimination approaches
choose the best-fitting single sense for a given
context from the induced sense inventory.
However, there may not be a clear distinction
between one sense and another, although for
a context, more than one induced sense can
be suitable. Graded word sense method al-
lows for labeling a word in more than one
sense. In contrast to the most common ap-
proach which is to apply clustering or graph
partitioning on a representation of first or sec-
ond order co-occurrences of a word, we pro-
pose a system that creates a substitute vec-
tor for each target word from the most likely
substitutes suggested by a statistical language
model. Word samples are then taken accord-
ing to probabilities of these substitutes and the
results of the co-occurrence model are clus-
tered. This approach outperforms the other
systems on graded word sense induction task
in SemEval-2013.

1 Introduction

There exists several drawbacks of representing the
word senses with a fixed-list of definitions of a man-
ually constructed lexical database. There is no guar-
antee that they reflect the exact meaning of a tar-
get word in a given context since they usually con-
tain definitions that are too general (Véronis, 2004).
More so, lexical databases often include many rare

senses while missing corpus/domain-specific senses
(Pantel and Lin, 2004). The goal of Word Sense In-
duction (WSI) is to solve these problems by auto-
matically discovering the meanings of a target word
from a text, not pre-defined sense inventories. Word
Sense Discrimination (WSD) approaches determine
best-fitting sense among the meanings that are dis-
covered for an ambiguous word. However, (Erk
et al., 2009) suggested that annotators often gave
high ratings to more than one WordNet sense for the
same occurrence. They introduced a novel annota-
tion paradigm allowing that words have more than
one sense with a degree of applicability.

Unlike previous SemEval tasks in which systems
labeled a target word’s meaning with only one sense,
word sense induction task in SemEval-2013 relaxes
this by allowing a target word to have more than one
sense if applicable.

Word sense induction approaches can be catego-
rized into graph based models, bayesian, and vector-
space ones. In graph-based approaches, every con-
text word is represented as a vertex and if two con-
text words co-occur in one or more instances of a
target word, then two vertices are connected with
an edge. When the graph is obtained, one of the
graph clustering algorithm is employed. As a result,
different partitions indicate the different senses of a
target word (Véronis, 2004). Agirre et al. (2006) ex-
plored the use of two graph algorithms for unsuper-
vised induction and tagging of nominal word senses
based on corpora. Recently, Korkontzelos and Man-
andhar (2010) proposed a graph-based model which
achieved good results on word sense induction and
discrimination task in SemEval-2010.
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Brody and Lapata (2009) proposed a Bayesian
approach modeling the contexts of the ambiguous
word as samples from a multinomial distribution
over senses which are in turn characterized as dis-
tributions over words.

Vector-space models, on the other hand, typically
create context vector by using first or second or-
der co-occurrences. Once context vector has been
constructed, different clustering algorithms may be
applied. However, representing the context with
first or second order co-occurrences can be difficult
since there are plenty of parameters to be consid-
ered such as the order of occurrence, context win-
dow size, statistical significance of words in the con-
text window and so on. Instead of dealing with
these, we suggest representing the context with the
most likely substitutes determined by a statistical
language model. Statistical language models based
on large corpora has been examined in (Yuret, 2007;
Hawker, 2007; Yuret and Yatbaz, 2010) for unsuper-
vised word sense disambiguation and lexical substi-
tution. Moreover, the best results in unsupervised
part-of-speech induction achieved by using substi-
tute vectors (Yatbaz et al., 2012).

In this paper, we propose a system that represents
the context of each target word by using high prob-
ability substitutes according to a statistical language
model. These substitute words and their probabili-
ties are used to create word pairs (instance id - sub-
stitute word) to feed our co-occurrence model. The
output of the co-occurrence model is clustered by k-
means algorithm. Our systems perform well among
other submitted systems in SemEval-2013.

Rest of the paper is organized as follows. Sec-
tion 2 describes the provided datasets and evalu-
ation measures of the task. Section 3 gives de-
tails of our algorithm and is divided into five con-
tiguous subsections that correspond to each step of
our system. In Section 4 we present the differ-
ences between our three systems and their perfor-
mances. Finally, Section 5 summarizes our work in
this task. The code to replicate this work is available
at http://goo.gl/jPTZQ.

2 Data and Evaluation Methodology

The test data for the graded word sense induction
task in SemEval-2013 includes 50 terms containing

20 verbs, 20 nouns and 10 adjectives. There are a
total of 4664 test instances provided. All evalua-
tion was performed on test instances only. In ad-
dition, the organizers provided sense labeled trial
data which can be used for tuning. This trial data
is a redistribution of the Graded Sense and Usage
data set provided by Katrin Erk, Diana McCarthy,
and Nicholas Gaylord (Erk et al., 2009). It consists
of 8 terms; 3 verbs, 3 nouns, and 2 adjectives all
with moderate polysemy (4-7 senses). Each term
in trial data has 50 contexts, in total 400 instances
provided. Lastly, participants can use ukWaC1, a 2-
billion word web-gathered corpus, for sense induc-
tion. Furthermore, unlike in previous WSI tasks, or-
ganizers allow participants to use additional contexts
not found in the ukWaC under the condition that they
submit systems for both using only the ukWaC and
with their augmented corpora.

The gold-standard of test data was prepared using
WordNet 3.1 by 10 annotators. Since WSI systems
report their annotations in a different sense inven-
tory than WordNet 3.1, a mapping procedure should
be used first. The organizers use the sense mapping
procedure explained in (Jurgens, 2012). This proce-
dure has adopted the supervised evaluation setting
of past SemEval WSI Tasks, but the main differ-
ence is that the former takes into account applica-
bility weights for each sense which is a necessary
for graded word sense.

Evaluation can be divided into two categories: (1)
a traditional WSD task for Unsupervised WSD and
WSI systems, (2) a clustering comparison setting
that evaluates the similarity of the sense inventories
for WSI systems. WSD evaluation is made accord-
ing to three objectives:

• Their ability to detect which senses are appli-
cable (Jaccard Index is used)

• Their ability to rank the applicable senses ac-
cording to the level of applicability (Weighted
Kendall’s τ is used)

• Their ability to quantify the level of applicabil-
ity for each sense (Weighted Normalized Dis-
counted Cumulative Gain is used)

Clustering comparison is made by using:
1Available here: http://wacky.sslmit.unibo.it
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• Fuzzy Normalized Mutual Information: It cap-
tures the alignment of the two clusterings inde-
pendent of the cluster sizes and therefore serves
as an effective measure of the ability of an ap-
proach to accurately model rare senses.

• Fuzzy B-Cubed: It provides an item-based
evaluation that is sensitive to the cluster size
skew and effectively captures the expected per-
formance of the system on a dataset where the
cluster (i.e., sense) distribution would be equiv-
alent.

More details can be found on the task website.2

3 Algorithm

In this section, we explain our algorithm. First, we
describe data enrichment procedure then we will an-
swer how each instance’s substitute vector was con-
structed. In contrast to common practice which is
clustering the context directly, we first performed
word sampling on the substitute vectors and cre-
ated instance id - substitute word pairs as explained
in Subsection 3.3. These pairs were used in the
co-occurrence modeling step described in Subsec-
tion 3.4. Finally, we clustered these co-occurrence
modeling output with the k-means clustering algo-
rithm. It is worth noting that this pipeline is per-
formed on each target word separately.

SRILM (Stolcke, 2002) is employed on entire
ukWaC corpus for the 4-gram language model to
conduct all experiments.

3.1 Data Enrichment

Data enrichment aims to increase the number of in-
stances of target words. Our preliminary experi-
ments on the trial data showed that additional con-
texts increase the performance of our systems.

Assuming that our target word is book in noun
form. We randomly fetch 20,000 additional contexts
from ukWaC where our target word occurs with the
same part-of-speech tag. This implies that we skip
those sentences in which the word book functions as
a verb. These additional contexts are labeled with
unique numbers so that we can distinguish actual in-
stances in the test data. We follow this procedure for

2www.cs.york.ac.uk/semeval-2013/task13/

Substitute Probability
solve 0.305

complete 0.236
meet 0.096

overcome 0.026
counter 0.022
tackle 0.014

address 0.012
... ...
... ...

Table 1: The most likely substitutes for meet

every target word in the test data. In total, 1 mil-
lion additional instances were fetched from ukWac.
Hereafter we refer to this new dataset with as an ex-
panded dataset.

3.2 Substitute Vectors

Unlike other WSI methods which rely on the first or
the second order co-occurrences (Pedersen, 2010),
we represent the context of each target word instance
by finding the most likely substitutes suggested by
the 4-gram language model we built from ukWaC
corpus. The high probability substitutes reflect both
semantic and syntactic properties of the context as
seen in Table 1 for the following example:

And we need Your help to meet the chal-
lenge!

For every instance in our expanded dataset, we
use three tokens each on the left and the right side of
a target word as a context when estimating the prob-
abilities for potential lexical substitutes. This tight
window size might seem limited, however, tight con-
text windows give better scores for semantic simi-
larity, while larger context windows or second-order
context words are better for modeling general top-
ical relatedness (Sahlgren, 2006; Peirsman et al.,
2008).

Fastsubs (Yuret, 2012) was used for this process
and the top 100 most likely substitutes were used for
representing each instance since the rest of the sub-
stitutes had negligible probabilities. These top 100
probabilities were normalized to add up to 1.0 giv-
ing us a final substitute vector for a particular target
word’s instance. Note that the substitute vector is a

302



Instance ID Substitute Word
meet1 complete
meet1 solve
meet1 solve
meet1 overcome

... ...

... ...
meet1 meet
meet1 complete
meet1 solve
meet1 solve

Table 2: Substitute word sampling for instance meet1

Figure 1: Co-Occcurrence Embedding Sphere for meet

function of the context only and is indifferent to the
target word.

At the end of this step, we had 1,004,466 sub-
stitute vectors. The next common step might be to
cluster these vectors either locally, which means ev-
ery target word will be clustered separately; or glob-
ally, which indicates all instances (approximately 1
million) will be clustered together. Both approaches
led us to lower scores than the presented method.
Therefore, instead of clustering substitute vectors di-
rectly, we relied on co-occurrence modeling.

3.3 Substitute Word Sampling
Before running S-CODE (Maron et al., 2010) to
model co-occurrence statistics, we needed to per-
form the substitute word sampling. For each target
word’s instance, we sample 100 substitutes from its
substitute vector. Assuming that our target word is
meet and its substitute vector is the one shown in

Instance ID Substitute Word
meet1 complete
meet1 solve

... ...
meet2 hold
meet2 visit

... ...
meet20100 assemble

... ...
meet20100 gather

Table 3: Substitute sampling for a target word meet.
Instance ID - Substitute word pairs

Table 1. We choose 100 substitutes from this in-
stance’s substitute vector by using individual proba-
bilities of substitutes. As seen in Table 2, those sub-
stitutes which have high probabilities dominate the
right column. Recall that Table 2 illustrates only one
instance (subscript denotes the instance number) for
the target word meet which has 20,000 and 100 in-
stances from the context enrichment procedure and
the test, respectively. We followed the same proce-
dure for every instance of each target word. Table 3
depicts instance id - substitute word pairs for the
target word meet rather than for only one instance
shown in Table 2.

3.4 Co-Occurrence Modeling

After sampling, we had approximately 20,000 in-
stance id - substitute word pairs. These pairs were
used to feed S-CODE. The premise is that words
with similar meanings will occur in similar contexts
(Harris, 1954), and at the end this procedure enables
us to put together words with similar meanings as
well as making the clustering procedure more accu-
rate. If two different instances have similar substi-
tute word pairs (i.e, similar contexts) then these two
word pairs attract each other and they will be located
closely on the unit sphere, otherwise they will repel
and eventually be far away from each other (see Fig-
ure 1).

3.5 Clustering

We used k-means clustering on S-CODE sphere.
Note that the procedures explained in the fore-
gone subsections were repeated for each target
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System JI WKT WNDCG

A
ll

In
st

an
ce

s
ai-ku 0.759 0.804 0.432

ai-ku(a1000) 0.759 0.794 0.612
ai-ku(r5-a1000) 0.760 0.800 0.541

MFS 0.381 0.655 0.337
All-Senses 0.757 0.745 0.660

All-Senses-freq-ranked 0.757 0.789 0.671
All-Senses-avg-ranked 0.757 0.806 0.706

Random-3 0.776 0.784 0.306
Random-n 0.795 0.747 0.301

Table 4: Supervised results on the trial set using median
gold-standard (JI: Jaccard Index FScore, WKT: Weighted
Kendall’s Tau FScore, WNDCG: Weighted Normalized
Discounted Cumulative Gain FScore)

word. More precisely, the substitute sampling, co-
occurrence modeling and clustering were performed
one by one for each target word.

We picked 22 as k value since the test set con-
tained words with 3 to 22 senses. After all word
pairs were labeled, we counted all class labels for
each instance in the test set. For example, if meet1’s
50 word pairs are labeled with c1 and 30 word pairs
are labeled with c2 and finally 20 word pairs are la-
beled with c3, then this particular instance would
have 50% sense1, 30% sense2 and 20% sense3.

4 Evaluation Results

In this section, we will discuss evaluation scores and
the characteristics of the test and the trial data.

All three AI-KU systems followed the same pro-
cedures described in Section 3. After clustering,
some basic post-processing operations were per-
formed for ai-ku(a1000) and ai-ku(r5-a1000). For
ai-ku(a1000), we added 1000 to all sense labels
which were obtained from the clustering procedure;
for ai-ku(r5-a1000), those sense labels occurred less
than 5 times in clustering were removed since we
considered them to be unreliable labels, afterwards
we added 1000 for all remaining sense labels.

Supervised Metrics: Table 5 shows the perfor-
mance of our systems on the test data using all
instances (verbs, nouns, adjectives) for all super-
vised measures and in comparison with the sys-
tems that performed best and worst, most frequent
sense (MFS), all senses equally weighted, all senses
average weighted, random-3, and random-n base-

System JI WKT WNDCG

A
ll

In
st

an
ce

s

ai-ku 0.197 0.620 0.387
ai-ku(a1000) 0.197 0.606 0.215

ai-ku(r5-a1000) 0.244 0.642 0.332
Submitted-Best 0.244 0.642 0.387

All-Best 0.552 0.787 0.499
All-Worst 0.149 0.465 0.215

MFS 0.552 0.560 0.412
All-Senses-eq-weighted 0.149 0.787 0.436
All-Senses-avg-ranked 0.187 0.613 0.499

Random-3 0.244 0.633 0.287
Random-n 0.290 0.638 0.286

Table 5: Supervised results on the test set. (Submitted-
Best indicates the best scores among all submitted sys-
tem. All-Best indicates the best scores among all sub-
mitted systems and baselines. JI: Jaccard Index FS-
core, WKT: Weighted Kendall’s Tau FScore, WNDCG:
Weighted Normalized Discounted Cumulative Gain FS-
core)

Trial Data Test Data
Number of Sense 4.97 1.19
Sense Perplexity 5.79 3.78

Table 6: Average number of senses and average sense
perplexity for trial and test data

lines. Bold numbers indicate that ai-ku achieved
best scores among all submitted systems. Our sys-
tems performed generally well for all three super-
vised measures and slightly better for all submit-
ted systems. On the other hand, baselines achieved
better scores than all participants. More precisely,
on sense detection objective, MFS baseline obtained
0.552 which is the top score, while the best submit-
ted system could reach only 0.244. Why is it the case
that MFS had one of the worst sense detection score
on trial data (see Table 4), but best on test data? Un-
like the trial data, test data largely consists of only
one sense instances, MFS usually gives correct an-
swer. Table 6 illustrates the characteristics of the
test and trial data. Instances annotated with multiple
sense had a very small fraction in the test data. In
fact, 517 instances in the test set were annotated with
two senses (11%) and only 25 were annotated with
three senses (0.5%). However, trial data provided
by the organizers had almost 5 senses per instance
on the average. A similar results can be observed
in All-Senses baselines. On sense ranking objec-
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System FScore FNMI FB-Cubed

A
ll

Si
ng

le
-s

en
se

In
st

an
ce

s
ai-ku 0.641 0.045 0.351

ai-ku(a1000) 0.601 0.023 0.288
ai-ku(r5-a1000) 0.628 0.026 0.421
Submitted-Best 0.641 0.045 0.441

All-Best 0.641 0.048 0.570
All-Worst 0.477 0.006 0.180

MFS 0.578 - -
SemCor-MFS 0.477 - -

One Sense 0.569 0.0 0.570
Random-3 0.555 0.010 0.359
Random-n 0.533 0.006 0.223

Table 7: Supervised and unsupervised results on the test
set using instances which have only one sense. Bold num-
bers indicate that ai-ku achieved the best submitted sys-
tem scores. (FScore: Supervised FScore, FNMI: Fuzzy
Normalized Mutual Information, FB-Cubed: Fuzzy B-
Cubed FScore)

tives, All-Sense-eq-weighted outperformed all other
systems. The reason is the same as the above. This
baseline ranks all senses equally and since most in-
stances had been annotated only one sense, the other
wrong senses were tied and placed at the second po-
sition in ranking. As a result, this baseline achieved
the highest score. Finally, for quantifying the level
of applicability for each sense, Weighted NDCG was
employed. ai-ku outperformed other submitted sys-
tems, but top score was achieved by all-sense-avg-
weighted baseline. Addition to these results, orga-
nizers provided scores for instances which have only
one sense. This setting contains 89% of the test data.
Table 7 shows supervised and unsupervised scores
for all single-sense instances. Our base system, ai-
ku, outperformed all other system and all baselines
for FScore. Moreover, it also achieved the second
best score (0.045) for Fuzzy NMI. Only one base-
line (one sense per instance) obtained slightly better
score (0.048) for this metric. For Fuzzy B-Cubed,
ai-ku(r5-a1000) obtained 0.421 which is the third
best score.

Clustering Comparison: This evaluation setting
aims to measure the similarity of the induced sense
inventories for WSI systems. Unlike supervised
metrics, it avoids potential loss of sense information
since this setting does not require any sense map-
ping procedure to convert induced senses to a Word-

System Fuzzy NMI Fuzzy B-Cubed

A
ll

In
st

an
ce

s

ai-ku 0.065 0.390
ai-ku(a1000) 0.035 0.320

ai-ku(r5-a1000) 0.039 0.451
Submitted-Best 0.065 0.483

All-Best 0.065 0.623
All-Worst 0.016 0.201
Random-2 0.028 0.474
Random-3 0.018 0.382
Random-n 0.016 0.245

Table 8: Scores on clustering measures (Fuzzy NMI:
Fuzzy Normalized Mutual Information, Fuzzy B-Cubed:
Fuzzy B-Cubed FScore)

All instances
ai-ku 7.72

ai-ku(a1000) 7.72
ai-ku(r5-a1000) 3.11

Table 9: Average number of senses for each ai-ku systems
on test data

Net sense. ai-ku performed best for Fuzzy NMI
among other systems included baselines. For Fuzzy
B-Cubed, ai-ku(r5a1000) outperformed random-3
and random-n baselines. Table 8 depicts the per-
formance of our systems, best and worst systems as
well as the random baselines.

The best scores for the graded word sense in-
duction task in SemEval-2013 are mostly achieved
by baselines in supervised setting. Major problem
is that there is huge sense differences between test
and trial data regarding to number of sense distribu-
tion. Participants that used trial data as for param-
eter tuning and picking the best algorithm achieved
lower scores than baselines since test data does not
show properties of trial data. Consequently, ai-ku
systems produce significantly more senses than the
gold-standard (see Table 9), and this mainly deterio-
rates our performance.

5 Conclusion

In this paper, we presented substitute vector repre-
sentation and co-occurrence modeling on WSI task.
Clustering substitute vectors directly gives lower
scores. Thus, taking samples from each target’s sub-
stitute vector, we obtained instance id - substitute
word pairs. These pairs were used by S-CODE. Fi-
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nally we run k-means on the S-CODE. Although our
systems were highly ranked among the other submit-
ted systems, no system showed better performance
than the top baselines for all metrics. One explana-
tion is that trial data does not reflect the characteris-
tics of test data according to their number of sense
distributions. Systems used trial data biased to re-
turn more than one sense for each instance since av-
erage number of sense is almost five in trial data. In
addition, baselines (except random ones) know true
sense distribution in the test data beforehand which
make them harder to beat.
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Abstract

This paper describes our system for shared
task 13 “Word Sense Induction for Graded and
Non-Graded Senses” of SemEval-2013. The
task is on word sense induction (WSI), and
builds on earlier SemEval WSI tasks in ex-
ploring the possibility of multiple senses be-
ing compatible to varying degrees with a sin-
gle contextual instance: participants are asked
to grade senses rather than selecting a sin-
gle sense like most word sense disambigua-
tion (WSD) settings. The evaluation measures
are designed to assess how well a system per-
ceives the different senses in a contextual in-
stance. We adopt a previously-proposed WSI
methodology for the task, which is based on a
Hierarchical Dirichlet Process (HDP), a non-
parametric topic model. Our system requires
no parameter tuning, uses the English ukWaC
as an external resource, and achieves encour-
aging results over the shared task.

1 Introduction

In our previous work (Lau et al., 2012) we devel-
oped a word-sense induction (WSI) system based on
topic modelling, specifically a Hierarchical Dirich-
let Process (Teh et al., 2006). In evaluations over
the SemEval-2007 and SemEval-2010 WSI tasks we
achieved performance on par with the current state-
of-the art. The SemEval-2007 and SemEval-2010
WSI tasks assumed that each usage of a word has
a single gold-standard sense. In this paper we apply
this WSI method “off-the-shelf”, with no adaptation,
to the novel SemEval-2013 task of “Word Sense In-
duction for Graded and Non-Graded Senses”. Given

that the topic model allocates a multinomial distri-
bution over topics to each word usage (“document”,
in topic modelling terms), the SemEval-2013 WSI
task is an ideal means for evaluating this aspect of
the topic model.

2 System Description

Our system is based on the WSI methodology pro-
posed by Lau et al. (2012), and also applied to
SemEval-2013 Task 11 on WSI for web snippet
clustering (Lau et al., to appear). The core machin-
ery of our system is driven by a Latent Dirichlet Al-
location (LDA) topic model (Blei et al., 2003). In
LDA, the model learns latent topics for a collection
of documents, and associates these latent topics with
every document in the collection. A topic is repre-
sented by a multinomial distribution of words, and
the association of topics with documents is repre-
sented by a multinomial distribution of topics, a dis-
tribution for each document. The generative process
of LDA for drawing word w in document d is as fol-
lows:

1. draw latent topic z from document d;

2. draw word w from the chosen latent topic z.

The probability of selecting word w given a doc-
ument d is thus given by:

P (w|d) =
T∑

z=1

P (w|t = z)P (t = z|d).

where t is the topic variable, and T is the number of
topics.
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The number of topics, T , is a parameter in LDA.
We relax this assumption by extending the model
to be non-parametric, using a Hierarchical Dirichlet
Process (HDP: (Teh et al., 2006)). HDP learns the
number of topics based on data, with the concentra-
tion parameters γ and α0 controlling the variability
of topics in the documents (for details of HDP please
refer to the original paper).

To apply HDP to WSI, the latent topics are in-
terpreted as the word senses, and the documents are
usages that contain the target word of interest. That
is, given a target word (e.g. paper), a “document”
in our application is a sentence context surround-
ing the target word. In addition to the bag of words
surrounding the target word, we also include posi-
tional context word information, which was used in
our earlier work (Lau et al., 2012). That is, we in-
troduce an additional word feature for each of the
three words to the left and right of the target word.
An example of the topic model features is given in
Table 1.

2.1 Background Corpus and Preprocessing

The test dataset provides us with contextual in-
stances for each target word, and these instances
constitute the documents for the topic model. The
text of the test data is tokenised and lemmatised us-
ing OpenNLP and Morpha (Minnen et al., 2001).

Note, however, that there are only 100 instances
for most target words in the test dataset, and as such
the dataset may be too small for the topic model
to induce meaningful senses. To this end, we turn
to the English ukWaC — a web corpus of approxi-
mately 1.9 billion tokens — to expand the data, by
extracting context sentences that contain the target
word. Each extracted usage is a three-sentence con-
text containing the target word: the original sentence
that contains the actual usage and its preceding and
succeeding sentences. The extraction of usages from
the ukWaC significantly increases the amount of in-
formation for the topic model to learn the senses for
the target words from. However, HDP is compu-
tationally intensive, so we limit the number of ex-
tracted usages from the ukWaC using two sampling
approaches:

UNIMELB (5P) Take a 5% random sample of us-
ages;

UNIMELB (50K) Limit the maximum number of
randomly-sampled usages to 50,000 instances.

The usages from the ukWaC are tokenised and
lemmatised using TreeTagger (Schmid, 1994), as
provided by the corpus.

To summarise, for each target word we apply
the HDP model to the combined collection of the
test instances (provided by the shared task) and
the extracted usages from the English ukWaC (not-
ing that each instance/usage corresponds to a topic
model “document”). The topic model learns the
senses/topics for all documents in the collection, but
we only use the sense/topic distribution for the test
instances as they are the ones evaluated in the shared
task.

3 Experiments and Results

Following Lau et al. (2012), we use the default pa-
rameters (γ = 0.1 and α0 = 1.0) for HDP.1 For each
target word, we apply HDP to induce the senses, and
a distribution of senses is produced for each “docu-
ment” in the model. To grade the senses for the in-
stances in the test dataset, we apply the sense proba-
bilities learnt by the topic model as the sense weights
without any modification.

To illustrate the senses induced by our model, we
present the top-10 words of the induced senses for
the verb strike in Table 2. Although 13 senses in
total are induced and some of them do not seem very
coherent, only the first 8 senses — the more coherent
ones — are observed (i.e., have non-zero probability
for any usage) in the test dataset.

Two forms of evaluation are used in the task:
WSD evaluation and clustering comparison. For
WSD evaluation, three measures are used: (1)
Jaccard Index (JI), which measures the degree of
overlap between the induced senses and the gold
senses; (2) positionally-weighted Kendall’s tau (KT:
(Kumar and Vassilvitskii, 2010)), which measures
the correlation between the ranking of the induced
senses and that of the gold senses; and (3) nor-
malised discounted cumulative gain (NDCG), which

1These settings were considered “vague” priors in Teh et
al. (2006). They were tested in Lau et al. (2012) and the
model was shown to be robust under different parameter set-
tings. As such we decided to keep the settings. The imple-
mentation of our WSI system can be accessed via GitHub:
https://github.com/jhlau/hdp-wsi.
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Target word dogs
Context sentence Most breeds of dogs are at most a few hundred years old
Bag-of-word features most, breeds, of, are, at, most, a, few, hundred, years, old
Positional word features most #-3, breeds #-2, of #-1, are #1, at #2, most #3

Table 1: An example of the topic model features.

Sense Num Top-10 Terms
1 strike @card@ worker union war iraq week pay government action
2 strike hand god head n’t look face fall leave blow
3 strike @card@ balance court company case need balance #1 order claim
4 strike ball @card@ minute game goal play player shot half
5 strike @card@ people fire disaster area road car ship lightning
6 @card@ strike new news post deal april home business week
7 strike n’t people thing think way life book find new
8 @card@ strike coin die john church police age house william
9 div ukl syn color hunter text-decoration australian verb condom font-size

10 invent rocamadour cost mp3 terminal total wav honor omen node
11 training run rush kata performance marathon exercise technique workout interval
12 wrong qha september/2000 sayd — hawksmoor thyna pan salt common
13 zidane offering stone blow zidane #-1 type type #2 zidane #1 blow #3 materials

Table 2: The top-10 terms for each of the senses induced for the verb strike by the HDP model.

measures the correlation between the weights of
the induced senses and that of the gold senses.
For clustering comparison, fuzzy normalised mu-
tual information (FNMI) and fuzzy b-cubed (FBC)
are used. Note that the WSD systems participat-
ing in this shared task are not evaluated with clus-
tering comparison metrics, as they do not induce
senses/clusters in the same manner as WSI systems.

WSI systems produce senses that are different to
the gold standard sense inventory (WordNet 3.1),
and the induced senses are mapped to the gold stan-
dard senses using the 80/20 validation setting. De-
tails of this mapping procedure are described in Jur-
gens (2012).

Results for all test instances are presented in Ta-
ble 3. Note that many baselines are used, only some
of which we present in this paper, namely: (1) RAN-
DOM — label instances with one of three random in-
duced senses; (2) SEMCOR MFS — label instances
with the most frequently occurring sense in Semcor;
(3) TEST MFS — label instances with the most fre-
quently occurring sense in the test dataset. To bench-
mark our method, we present one or two of the best

systems from each team.
Looking at Table 3, our system performs encour-

agingly well. Although not the best system, we
achieve results close to the best system for each eval-
uation measure.

Most of the instances in the data were annotated
with only one sense; only 11% were annotated with
two senses, and 0.5% with three. As a result, the
task organisers categorised the instances into single-
sense instances and multi-sense instances to bet-
ter analyse the performance of participating sys-
tems. Results for single-sense and multi-sense in-
stances are presented in Table 4 and Table 5, re-
spectively. Note that for single-sense instances, only
precision is used for WSD evaluation as the Jaccard
Index, positionally-weighted Kendall’s tau and nor-
malised discounted cumulative gain are not applica-
ble. Our system performs relatively well, and trails
marginally behind the best system in most cases.

4 Conclusion

We adopt a WSI methodology from Lau et al. (2012)
for the task of grading senses in a WSD setting.
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System JI KT NDCG FNMI FBC
RANDOM 0.244 0.633 0.287 0.018 0.382
SEMCOR MFS 0.455 0.465 0.339 — —
TEST MFS 0.552 0.560 0.412 — —
AI-KU 0.197 0.620 0.387 0.065 0.390
AI-KU (REMOVE5-AD1000) 0.244 0.642 0.332 0.039 0.451
LA SAPIENZA (2) 0.149 0.510 0.383 — —
UOS (TOP-3) 0.232 0.625 0.374 0.045 0.448
UNIMELB (5P) 0.218 0.614 0.365 0.056 0.459
UNIMELB (50K) 0.213 0.620 0.371 0.060 0.483

Table 3: Results for all instances. The best-performing system is indicated in boldface.

System Precision FNMI FBC
RANDOM 0.555 0.010 0.359
SEMCOR MFS 0.477 — —
TEST MFS 0.578 — —
AI-KU 0.641 0.045 0.351
AI-KU (REMOVE5-AD1000) 0.628 0.026 0.421
UOS (TOP-3) 0.600 0.028 0.414
UNIMELB (5P) 0.596 0.035 0.421
UNIMELB (50K) 0.605 0.039 0.441

Table 4: Results for single-sense instances. The best-performing system is indicated in boldface.

System JI KT NDCG FNMI FBC
RANDOM 0.429 0.548 0.236 0.006 0.113
SEMCOR MFS 0.283 0.373 0.197 — —
TEST MFS 0.354 0.426 0.248 — —
AI-KU 0.394 0.617 0.317 0.029 0.078
AI-KU (REMOVE5-AD1000) 0.434 0.586 0.291 0.004 0.116
LA SAPIENZA (2) 0.263 0.531 0.365 — —
UOS (#WN SENSES) 0.387 0.628 0.314 0.036 0.037
UNIMELB (5P) 0.426 0.586 0.287 0.019 0.130
UNIMELB (50K) 0.414 0.602 0.299 0.021 0.134

Table 5: Results for multi-sense instances. The best-performing system is indicated in boldface.

310



With no parameter tuning and using only the English
ukWaC as an external resource, our system performs
relatively well at the task.
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Abstract

In recent years, sentiment analysis in social
media has attracted a lot of research interest
and has been used for a number of applica-
tions. Unfortunately, research has been hin-
dered by the lack of suitable datasets, com-
plicating the comparison between approaches.
To address this issue, we have proposed
SemEval-2013 Task 2: Sentiment Analysis in
Twitter, which included two subtasks: A, an
expression-level subtask, and B, a message-
level subtask. We used crowdsourcing on
Amazon Mechanical Turk to label a large
Twitter training dataset along with additional
test sets of Twitter and SMS messages for both
subtasks. All datasets used in the evaluation
are released to the research community. The
task attracted significant interest and a total
of 149 submissions from 44 teams. The best-
performing team achieved an F1 of 88.9% and
69% for subtasks A and B, respectively.

1 Introduction

In the past decade, new forms of communication,
such as microblogging and text messaging have
emerged and become ubiquitous. Twitter messages
(tweets) and cell phone messages (SMS) are often
used to share opinions and sentiments about the sur-
rounding world, and the availability of social con-
tent generated on sites such as Twitter creates new
opportunities to automatically study public opinion.

Working with these informal text genres presents
new challenges for natural language processing be-
yond those encountered when working with more
traditional text genres such as newswire.

Tweets and SMS messages are short in length: a
sentence or a headline rather than a document. The
language they use is very informal, with creative
spelling and punctuation, misspellings, slang, new
words, URLs, and genre-specific terminology and
abbreviations, e.g., RT for re-tweet and #hashtags.1

How to handle such challenges so as to automati-
cally mine and understand the opinions and senti-
ments that people are communicating has only very
recently been the subject of research (Jansen et al.,
2009; Barbosa and Feng, 2010; Bifet et al., 2011;
Davidov et al., 2010; O’Connor et al., 2010; Pak and
Paroubek, 2010; Tumasjan et al., 2010; Kouloumpis
et al., 2011).

Another aspect of social media data, such as Twit-
ter messages, is that they include rich structured in-
formation about the individuals involved in the com-
munication. For example, Twitter maintains infor-
mation about who follows whom. Re-tweets (re-
shares of a tweet) and tags inside of tweets provide
discourse information. Modeling such structured in-
formation is important because it provides means for
empirically studying social interactions where opin-
ion is conveyed, e.g., we can study the properties of
persuasive language or those associated with influ-
ential users.

Several corpora with detailed opinion and senti-
ment annotation have been made freely available,
e.g., the MPQA corpus (Wiebe et al., 2005) of
newswire text. These corpora have proved very
valuable as resources for learning about the lan-
guage of sentiment in general, but they did not focus
on social media.

1Hashtags are a type of tagging for Twitter messages.
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Twitter RT @tash jade: That’s really sad, Charlie RT “Until tonight I never realised how fucked up I was” -
Charlie Sheen #sheenroast

SMS Glad to hear you are coping fine in uni... So, wat interview did you go to? How did it go?

Table 1: Examples of sentences from each corpus that contain subjective phrases.

While some Twitter sentiment datasets have al-
ready been created, they were either small and pro-
prietary, such as the i-sieve corpus (Kouloumpis
et al., 2011), or they were created only for Span-
ish like the TASS corpus2 (Villena-Román et al.,
2013), or they relied on noisy labels obtained from
emoticons and hashtags. They further focused on
message-level sentiment, and no Twitter or SMS
corpus with expression-level sentiment annotations
has been made available so far.

Thus, the primary goal of our SemEval-2013 task
2 has been to promote research that will lead to a
better understanding of how sentiment is conveyed
in Tweets and SMS messages. Toward that goal,
we created the SemEval Tweet corpus, which con-
tains Tweets (for both training and testing) and SMS
messages (for testing only) with sentiment expres-
sions annotated with contextual phrase-level polar-
ity as well as an overall message-level polarity. We
used this corpus as a testbed for the system evalua-
tion at SemEval-2013 Task 2.

In the remainder of this paper, we first describe
the task, the dataset creation process, and the evalu-
ation methodology. We then summarize the charac-
teristics of the approaches taken by the participating
systems and we discuss their scores.

2 Task Description

We had two subtasks: an expression-level subtask
and a message-level subtask. Participants could
choose to participate in either or both subtasks. Be-
low we provide short descriptions of the objectives
of these two subtasks.

Subtask A: Contextual Polarity Disambiguation
Given a message containing a marked instance
of a word or a phrase, determine whether that
instance is positive, negative or neutral in that
context. The boundaries for the marked in-
stance were provided: this was a classification
task, not an entity recognition task.

2http://www.daedalus.es/TASS/corpus.php

Subtask B: Message Polarity Classification
Given a message, decide whether it is of
positive, negative, or neutral sentiment. For
messages conveying both a positive and a
negative sentiment, whichever is the stronger
one was to be chosen.

Each participating team was allowed to submit re-
sults for two different systems per subtask: one con-
strained, and one unconstrained. A constrained sys-
tem could only use the provided data for training,
but it could also use other resources such as lexi-
cons obtained elsewhere. An unconstrained system
could use any additional data as part of the training
process; this could be done in a supervised, semi-
supervised, or unsupervised fashion.

Note that constrained/unconstrained refers to the
data used to train a classifier. For example, if other
data (excluding the test data) was used to develop
a sentiment lexicon, and the lexicon was used to
generate features, the system would still be con-
strained. However, if other data (excluding the test
data) was used to develop a sentiment lexicon, and
this lexicon was used to automatically label addi-
tional Tweet/SMS messages and then used with the
original data to train the classifier, then such a sys-
tem would be unconstrained.

3 Dataset Creation

In the following sections we describe the collection
and annotation of the Twitter and SMS datasets.

3.1 Data Collection
Twitter is the most common micro-blogging site on
the Web, and we used it to gather tweets that express
sentiment about popular topics. We first extracted
named entities using a Twitter-tuned NER system
(Ritter et al., 2011) from millions of tweets, which
we collected over a one-year period spanning from
January 2012 to January 2013; we used the public
streaming Twitter API to download tweets.
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Instructions: Subjective words are ones which convey an opinion. Given a sentence, identify whether it is objective,
positive, negative, or neutral. Then, identify each subjective word or phrase in the context of the sentence and mark
the position of its start and end in the text boxes below. The number above each word indicates its position. The
word/phrase will be generated in the adjacent textbox so that you can confirm that you chose the correct range.
Choose the polarity of the word or phrase by selecting one of the radio buttons: positive, negative, or neutral. If a
sentence is not subjective please select the checkbox indicating that ”There are no subjective words/phrases”. Please
read the examples and invalid responses before beginning if this is your first time answering this hit.

Figure 1: Instructions provided to workers on Mechanical Turk followed by a screenshot.

Average # of Total Phrase Count Vocabulary
Corpus Words Characters Positive Negative Neutral Size
Twitter - Training 25.4 120.0 5,895 3,131 471 20,012
Twitter - Dev 25.5 120.0 648 430 57 4,426
Twitter - Test 25.4 121.2 2,734 1,541 160 11,736
SMS - Test 24.5 95.6 1,071 1,104 159 3,562

Table 2: Statistics for Subtask A.

We then identified popular topics as those named
entities that are frequently mentioned in association
with a specific date (Ritter et al., 2012). Given this
set of automatically identified topics, we gathered
tweets from the same time period which mentioned
the named entities. The testing messages had differ-
ent topics from training and spanned later periods.

To identify messages that express sentiment to-
wards these topics, we filtered the tweets us-
ing SentiWordNet (Baccianella et al., 2010). We
removed messages that contained no sentiment-
bearing words, keeping only those with at least one
word with positive or negative sentiment score that
is greater than 0.3 in SentiWordNet for at least one
sense of the words. Without filtering, we found class
imbalance to be too high.3

Twitter messages are rich in social media features,
including out-of-vocabulary (OOV) words, emoti-
cons, and acronyms; see Table 1. A large portion of
the OOV words are hashtags (e.g., #sheenroast)
and mentions (e.g., @tash jade).

3Filtering based on an existing lexicon does bias the dataset
to some degree; however, note that the text still contains senti-
ment expressions outside those in the lexicon.

Corpus Positive Negative Objective
/ Neutral

Twitter - Training 3,662 1,466 4,600
Twitter - Dev 575 340 739
Twitter - Test 1,573 601 1,640
SMS - Test 492 394 1,208

Table 3: Statistics for Subtask B.

We annotated the same Twitter messages with an-
notations for subtask A and subtask B. However,
the final training and testing datasets overlap only
partially between the two subtasks since we had
to throw away messages with low inter-annotator
agreement, and this differed between the subtasks.
For testing, we also annotated SMS messages, taken
from the NUS SMS corpus4 (Chen and Kan, 2012).
Tables 2 and 3 show statistics about the corpora we
created for subtasks A and B.

4http://wing.comp.nus.edu.sg/SMSCorpus/
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A B
Lower Avg. Upper Avg.

Twitter - Train 64.7 82.4 90.8 82.7
Twitter - Dev 51.2 74.7 87.8 78.4
Twitter - Test 68.8 83.6 90.9 76.9
SMS - Test 66.5 88.5 81.2 77.6

Table 4: Bounds for datasets in subtasks A and B.

3.2 Annotation Guidelines
The instructions provided to the annotators, along
with an example, are shown in Figure 1. We pro-
vided several additional examples to the annotators,
shown in Table 5.

In addition, we filtered spammers by considering
the following kinds of annotations invalid:

• containing overlapping subjective phrases;
• subjective but without a subjective phrase;
• marking every single word as subjective;
• not having the overall sentiment marked.

3.3 Annotation Process
Our datasets were annotated for sentiment on Me-
chanical Turk. Each sentence was annotated by five
Mechanical Turk workers (Turkers). In order to
qualify for the hits, the Turker had to have an ap-
proval rate greater than 95% and have completed 50
approved hits. Each Turker was paid three cents
per hit. The Turker had to mark all the subjec-
tive words/phrases in the sentence by indicating their
start and end positions and say whether each subjec-
tive word/phrase was positive, negative, or neutral
(subtask A). They also had to indicate the overall
polarity of the sentence (subtask B).

Figure 1 shows the instructions and an exam-
ple provided to the Turkers. The first five rows
of Table 6 show an example of the subjective
words/phrases marked by each of the workers.

For subtask A, we combined the annotations of
each of the workers using intersection as indicated
in the last row of Table 6. A word had to appear
in 2/3 of the annotations in order to be considered
subjective. Similarly, a word had to be labeled with
a particular polarity (positive, negative, or neutral)
2/3 of the time in order to receive that label.

We also experimented with combining annota-
tions by computing the union of the sentences, and
taking the sentence of the worker who annotated the
most hits, but we found that these methods were
not as accurate. Table 4 shows the lower, average,
and upper bounds for all the hits by computing the
bounds for each hit and averaging them together.
This gives a good indication about how well we can
expect the systems to perform. For example, even if
we used the best annotator each time, it would still
not be possible to get perfect accuracy.

For subtask B, the polarity of the entire sentence
was determined based on the majority of the labels.
If there was a tie, the sentence was discarded. In
order to reduce the number of sentences lost, we
combined the objective and the neutral labels, which
Turkers tended to mix up. Table 4 shows the aver-
age bound for subtask B by computing the bounds
for each hit and averaging them together. Since the
polarity is chosen based on the majority, the upper
bound is 100%.

4 Scoring

For both subtasks, the participating systems were
required to perform a three-way classification – a
particular marked phrase (for subtask A) or an en-
tire message (for subtask B) was to be classified as
positive, negative, or objective. For each system,
we computed a score for predicting positive/negative
phrases/messages vs. the other two classes.

For instance, to compute positive precision, Ppos,
we find the number of phrases/messages that a sys-
tem correctly predicted to be positive, and we divide
that number by the total number of messages it pre-
dicted to be positive. To compute recall, for the pos-
itive class, Rpos, we find the number of messages
correctly predicted to be positive and we divide that
number by the total number of positive messages in
the gold standard.

We then calculate F-score for the positive labels,
the harmonic average of precision and recall as fol-
lows Fpos = 2

PposRpos

Ppos+Rpos
. We carry out a similar

computation to calculate Fneg, which is F1 for neg-
ative messages.

The overall score for each system run is then
given by the average of the F1-scores for the posi-
tive and negative classes: F = (Fpos + Fneg)/2.
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Authorities are only too aware that Kashgar is 4,000 kilometres (2,500 miles) from Beijing but only a tenth of
the distance from the Pakistani border, and are desperate to ensure instability or militancy does not leak over the
frontiers.
Taiwan-made products stood a good chance of becoming even more competitive thanks to wider access to overseas
markets and lower costs for material imports, he said.
”March appears to be a more reasonable estimate while earlier admission cannot be entirely ruled out,” according
to Chen, also Taiwan’s chief WTO negotiator.
friday evening plans were great, but saturday’s plans didnt go as expected – i went dancing & it was an ok club,
but terribly crowded :-(
WHY THE HELL DO YOU GUYS ALL HAVE MRS. KENNEDY! SHES A FUCKING DOUCHE
AT&T was okay but whenever they do something nice in the name of customer service it seems like a favor, while
T-Mobile makes that a normal everyday thin
obama should be impeached on TREASON charges. Our Nuclear arsenal was TOP Secret. Till HE told our enemies
what we had. #Coward #Traitor
My graduation speech: ”I’d like to thanks Google, Wikipedia and my computer! :D #iThingteens

Table 5: List of example sentences with annotations that were provided to the annotators. All subjective phrases are
italicized. Positive phrases are in green, negative phrases are in red, and neutral phrases are in blue.

Worker 1 I would love to watch Vampire Diaries :) and some Heroes! Great combination 9/13
Worker 2 I would love to watch Vampire Diaries :) and some Heroes! Great combination 11/13
Worker 3 I would love to watch Vampire Diaries :) and some Heroes! Great combination 10/13
Worker 4 I would love to watch Vampire Diaries :) and some Heroes! Great combination 13/13
Worker 5 I would love to watch Vampire Diaries :) and some Heroes! Great combination 11/13
Intersection I would love to watch Vampire Diaries :) and some Heroes! Great combination

Table 6: Example of a sentence annotated for subjectivity on Mechanical Turk. Words and phrases that were marked as
subjective are italicized and highlighted in bold. The first five rows are annotations provided by Turkers, and the final
row shows their intersection. The final column shows the accuracy for each annotation compared to the intersection.

Note that ignoring Fneutral does not reduce the
task to predicting positive vs. negative labels only
(even though some participants have chosen to do
so) since the gold standard still contains neutral
labels which are to be predicted: Fpos and Fneg

would suffer if these examples are labeled as posi-
tive and/or negative instead of neutral.

We provided participants with a scorer. In addi-
tion to outputting the overall F-score, it produced
a confusion matrix for the three prediction classes
(positive, negative, and objective), and it also vali-
dated the data submission format.

5 Participants and Results

The results for subtask A are shown in Tables 7 and
8 for Twitter and for SMS messages, respectively;
those for subtask B are shown in Table 9 for Twit-
ter and in Table 10 for SMS messages. Systems are
ranked by their scores for the constrained runs; the
ranking based on scores for unconstrained runs is
shown as a subindex.

For both subtasks, there were teams that only sub-
mitted results for the Twitter test set. Some teams
submitted both a constrained and an unconstrained
version (e.g., AVAYA and teragram). As one would
expect, the results on the Twitter test set tended to be
better than those on the SMS test set since the SMS
data was out-of-domain with respect to the training
(Twitter) data.

Moreover, the results for subtask A were signifi-
cantly better than those for subtask B, which shows
that it is a much easier task, probably because there
is less ambiguity at the phrase-level.

5.1 Subtask A: Contextual Polarity
Table 7 shows that subtask A, Twitter, attracted 23
teams, who submitted 21 constrained and 7 uncon-
strained systems. Five teams submitted both a con-
strained and an unconstrained system, and two other
teams submitted constrained systems that are on
the boundary between being constrained and uncon-
strained.
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Run Const- Unconst- Use Super-
rained rained Neut.? vised?

NRC-Canada 88.93 yes yes
AVAYA 86.98 87.38(1) yes yes
BOUNCE 86.79 yes yes
LVIC-LIMSI 85.70 yes yes
FBM 85.50 yes semi
GU-MLT-LT 85.19 yes yes
�UNITOR 84.60 yes yes
USNA 81.31 yes yes
Serendio 80.04 yes yes
�ECNUCS 79.48 80.15(2) yes yes
TJP 78.16 yes yes
◦columbia-nlp 74.94 yes yes
teragram 74.89(3) yes yes
sielers 74.41 yes yes
KLUE 73.74 yes yes
OPTWIMA 69.17 36.91(6) yes yes
swatcs 67.19 63.86(5) no yes
Kea 63.94 yes yes
senti.ue-en 62.79 71.38(4) yes yes
uottawa 60.20 yes yes
IITB 54.80 yes yes
SenselyticTeam 53.88 yes yes
SU-sentilab 34.73(7) no yes
Majority Baseline 38.10 N/A N/A

Table 7: Results for subtask A on the Twitter dataset. The
◦ marks a team that includes a task coorganizer, and the
� indicates a system submitted as constrained but which
used additional Tweets or additional sentiment-annotated
text to collect statistics that were then used as a feature.

One system was semi-supervised, and the rest
were supervised. The supervised systems used clas-
sifiers such as SVM (8 systems), Naive Bayes (7 sys-
tems), and Maximum Entropy (3 systems). Other
approaches used include an ensemble of classifiers,
manual rules, and a linear classifier. Two of the sys-
tems chose not to predict neutral as a possible clas-
sification label.

The average F1-measure on the Twitter test set
was 74.1% for constrained systems and 60.5% for
unconstrained ones; this does not mean that using
additional data does not help, it just shows that the
best teams only participated with a constrained sys-
tem. NRC-Canada had the best constrained system
with an F1-measure of 88.9%, and AVAYA had the
best unconstrained one with F1=87.4%.

Run Const- Unconst- Use Super-
rained rained Neut.? vised?

GU-MLT-LT 88.37 yes yes
NRC-Canada 88.00 yes yes
?AVAYA 83.94 85.79(1) yes yes
�UNITOR 82.49 yes yes
TJP 81.23 yes yes
LVIC-LIMSI 80.16 yes yes
USNA 79.82 yes yes
�ECNUCS 76.69 77.34(2) yes yes
sielers 73.48 yes yes
FBM 72.95 no semi
teragram 72.83 72.83(4) yes yes
KLUE 70.54 yes yes
◦columbia-nlp 70.30 yes yes
senti.ue-en 66.09 74.13(3) yes yes
swatcs 66.00 67.68(5) no yes
Kea 63.27 yes yes
uottawa 55.89 yes yes
SU-sentilab 55.38(6) no yes
SenselyticTeam 51.13 yes yes
OPTWIMA 37.32 36.38(7) yes yes
Majority Baseline 31.50 N/A N/A

Table 8: Results for subtask A on the SMS dataset. The
? indicates a late submission, the ◦ marks a team that
includes a task co-organizer, and the � indicates a sys-
tem submitted as constrained but which used additional
Tweets or additional sentiment-annotated text to collect
statistics that were then used as a feature.

Table 8 shows the results for the SMS test set,
where 20 teams submitted 19 constrained and 7 un-
constrained systems (again, this included two teams
that submitted boundary systems, marked accord-
ingly). The average F-measure on this test set
was 70.8% for constrained systems and 65.7% for
unconstrained systems. The best constrained sys-
tem was that of GU-MLT-LT with an F-measure of
88.4%, and AVAYA had the best unconstrained sys-
tem with an F1 of 85.8%.

5.2 Subtask B: Message Polarity
Table 9 shows that subtask B, Twitter, attracted 38
teams, who submitted 36 constrained and 15 uncon-
strained systems (and two boundary ones).

The average F1-measure was 53.7% for the con-
strained and 54.6% for the unconstrained systems.
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Run Const- Unconst- Use Super-
rained rained Neut.? vised?

NRC-Canada 69.02 yes yes
GU-MLT-LT 65.27 yes yes
teragram 64.86 64.86(1) yes yes
BOUNCE 63.53 yes yes
KLUE 63.06 yes yes
AMI&ERIC 62.55 61.17(3) yes yes/semi
FBM 61.17 yes yes
AVAYA 60.84 64.06(2) yes yes/semi
SAIL 60.14 61.03(4) yes yes
UT-DB 59.87 yes yes
FBK-irst 59.76 yes yes
nlp.cs.aueb.gr 58.91 yes yes
�UNITOR 58.27 59.50(5) yes semi
LVIC-LIMSI 57.14 yes yes
Umigon 56.96 yes yes
NILC USP 56.31 yes yes
DataMining 55.52 yes semi
�ECNUCS 55.05 58.42(6) yes yes
nlp.cs.aueb.gr 54.73 yes yes
ASVUniOfLeipzig 54.56 yes yes
SZTE-NLP 54.33 53.10(9) yes yes
CodeX 53.89 yes yes
Oasis 53.84 yes yes
NTNU 53.23 50.71(10) yes yes
UoM 51.81 45.07(15) yes yes
SSA-UO 50.17 yes no
SenselyticTeam 50.10 yes yes
UMCC DLSI (SA) 49.27 48.99(12) yes yes
bwbaugh 48.83 54.37(8) yes yes/semi
senti.ue-en 47.24 47.85(13) yes yes
SU-sentilab 45.75(14) yes yes
OPTWIMA 45.40 54.51(7) yes yes
REACTION 45.01 yes yes
uottawa 42.51 yes yes
IITB 39.80 yes yes
IIRG 34.44 yes yes
sinai 16.28 49.26(11) yes yes
Majority Baseline 29.19 N/A N/A

Table 9: Results for subtask B on the Twitter dataset. The
� indicates a system submitted as constrained but which
used additional Tweets or additional sentiment-annotated
text to collect statistics that were then used as a feature.

These averages are much lower than those for sub-
task A, which indicates that subtask B is harder,
probably because a message can contain parts ex-
pressing both positive and negative sentiment.

Run Const- Unconst- Use Super-
rained rained Neut.? vised?

NRC-Canada 68.46 yes yes
GU-MLT-LT 62.15 yes yes
KLUE 62.03 yes yes
AVAYA 60.00 59.47(1) yes yes/semi
teragram 59.10(2) yes yes
NTNU 57.97 54.55(6) yes yes
CodeX 56.70 yes yes
FBK-irst 54.87 yes yes
AMI&ERIC 53.63 52.62(7) yes yes/semi
�ECNUCS 53.21 54.77(5) yes yes
UT-DB 52.46 yes yes
SAIL 51.84 51.98(8) yes yes
�UNITOR 51.22 48.88(10) yes semi
SZTE-NLP 51.08 55.46(3) yes yes
SenselyticTeam 51.07 yes yes
NILC USP 50.12 yes yes
REACTION 50.11 yes yes
SU-sentilab 49.57(9) no yes
nlp.cs.aueb.gr 49.41 55.28(4) yes yes
LVIC-LIMSI 49.17 yes yes
FBM 47.40 yes yes
ASVUniOfLeipzig 46.50 yes yes
senti.ue-en 44.65 46.72(12) yes yes
SSA UO 44.39 yes no
UMCC DLSI (SA) 43.39 40.67(14) yes yes
UoM 42.22 35.22(15) yes yes
OPTWIMA 40.98 47.15(11) yes yes
uottawa 40.51 yes yes
bwbaugh 39.73 43.43(13) yes yes/semi
IIRG 22.16 yes yes
Majority Baseline 19.03 N/A N/A

Table 10: Results for subtask B on the SMS dataset. The
� indicates a system submitted as constrained but which
used additional Tweets or additional sentiment-annotated
text to collect statistics that were then used as a feature.

Once again, NRC-Canada had the best con-
strained system with an F1-measure of 69%, fol-
lowed by teragram, which had the best uncon-
strained system with an F1-measure of 64.9%.

As Table 10 shows, the average F1-measure on
the SMS test set was 50.2% for constrained and
50.3% for unconstrained systems. NRC-Canada had
the best constrained system with an F1=68.5%, and
AVAYA had the best unconstrained one with F1-
measure of 59.5%.
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5.3 Overall
Overall, the results achieved by the best teams were
very strong, especially for the simpler subtask A:

• F1=88.93, NRC-Canada on subtask A, Twitter;

• F1=88.37, GU-MLT-LT on subtask A, SMS;

• F1=69.02, NRC-Canada on subtask B, Twitter;

• F1=68.46, NRC-Canada on subtask B, SMS.

We can see that the strongest team overall was that
of NRC-Canada, which was ranked first on three of
the four conditions; and it was second on subtask A,
SMS. There were two other teams that were strong
across both tasks and on both test sets: GU-MLT-LT
and AVAYA. Three other teams, namely teragram,
BOUNCE and KLUE, were ranked in the top-3 in at
least one subtask and test set.

6 Discussion

We have seen that most participants restricted them-
selves to the provided data and submitted con-
strained systems. Indeed, the best systems for each
of the two subtasks and for each of the two testing
datasets were constrained systems; of course, this
does not mean that additional data would not be use-
ful. Curiously, in some cases where a team submit-
ted a constrained and unconstrained run, the uncon-
strained run actually performed worse.

Not surprisingly, most systems were supervised;
there were only five semi-supervised systems, and
there was only one unsupervised system. One ad-
ditional team declared their system as unsupervised
since it was not making use of the training data; we
still classified it as supervised though since it did use
supervision – in the form of manual rules.

Most participants predicted all three labels (posi-
tive, negative and neutral), even though some partic-
ipants opted for not predicting neutral, which made
some sense since the final F1-score was averaged
over the positive and the negative predictions only.

The most popular classifiers included SVM, Max-
Ent, linear classifier, Naive Bayes; in some cases,
manual rules or ensembles of classifiers were used.

A variety of features were used, including word-
related (e.g., words, stems, n-grams, word clus-
ters), word-shape (e.g., punctuation, capitalization),

syntactic (e.g., POS tags, dependency relations),
Twitter-specific (e.g., repeated characters, emoti-
cons, URLs, hashtags, slang, abbreviations), and
sentiment-related (e.g., negation); one team also
used discourse relations. Almost all participants re-
lied heavily of various sentiment lexicons, the most
popular ones being MPQA and SentiWordNet, as
well as AFINN and Bing Liu’s Opinion Lexicon;
some participants used their own lexicons – preex-
isting or built from the provided data.

Given that Twitter messages are noisy, most par-
ticipants did some preprocessing, including tok-
enization, stemming, lemmatization, stopword re-
moval, normalization/removal of URLs, hashtags,
users, slang, emoticons, repeated vowels, punctua-
tion; some even did pronoun resolution.

7 Conclusion

We have described a new task that entered SemEval-
2013: task 2 on Sentiment Analysis on Twitter. The
task has attracted a very high number of participants:
149 submissions from 44 teams.

We believe that the datasets that we have created
as part of the task and which we have released to the
community5 under a Creative Commons Attribution
3.0 Unported License,6 will be found useful by re-
searchers beyond SemEval.
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Abstract

In this paper, we describe how we created two
state-of-the-art SVM classifiers, one to de-
tect the sentiment of messages such as tweets
and SMS (message-level task) and one to de-
tect the sentiment of a term within a message
(term-level task). Among submissions from
44 teams in a competition, our submissions
stood first in both tasks on tweets, obtaining
an F-score of 69.02 in the message-level task
and 88.93 in the term-level task. We imple-
mented a variety of surface-form, semantic,
and sentiment features. We also generated
two large word–sentiment association lexi-
cons, one from tweets with sentiment-word
hashtags, and one from tweets with emoticons.
In the message-level task, the lexicon-based
features provided a gain of 5 F-score points
over all others. Both of our systems can be
replicated using freely available resources.1

1 Introduction

Hundreds of millions of people around the world ac-
tively use microblogging websites such as Twitter.
Thus there is tremendous interest in sentiment anal-
ysis of tweets across a variety of domains such as
commerce (Jansen et al., 2009), health (Chew and
Eysenbach, 2010; Salathé and Khandelwal, 2011),
and disaster management (Verma et al., 2011; Man-
del et al., 2012).

1The three authors contributed equally to this paper. Svet-
lana Kiritchenko developed the system for the message-level
task, Xiaodan Zhu developed the system for the term-level task,
and Saif Mohammad led the overall effort, co-ordinated both
tasks, and contributed to feature development.

In this paper, we describe how we created two
state-of-the-art SVM classifiers, one to detect the
sentiment of messages such as tweets and SMS
(message-level task) and one to detect the sentiment
of a term within a message (term-level task). The
sentiment can be one out of three possibilities: posi-
tive, negative, or neutral. We developed these classi-
fiers to participate in an international competition or-
ganized by the Conference on Semantic Evaluation
Exercises (SemEval-2013) (Wilson et al., 2013).2

The organizers created and shared sentiment-labeled
tweets for training, development, and testing. The
distributions of the labels in the different datasets is
shown in Table 1. The competition, officially re-
ferred to as Task 2: Sentiment Analysis in Twitter,
had 44 teams (34 for the message-level task and 23
for the term-level task). Our submissions stood first
in both tasks, obtaining a macro-averaged F-score
of 69.02 in the message-level task and 88.93 in the
term-level task.

The task organizers also provided a second test
dataset, composed of Short Message Service (SMS)
messages (no training data of SMS messages was
provided). We applied our classifiers on the SMS
test set without any further tuning. Nonetheless, the
classifiers still obtained the first position in identify-
ing sentiment of SMS messages (F-score of 68.46)
and second position in detecting the sentiment of
terms within SMS messages (F-score of 88.00, only
0.39 points behind the first ranked system).

We implemented a number of surface-form, se-
mantic, and sentiment features. We also gener-
ated two large word–sentiment association lexicons,

2http://www.cs.york.ac.uk/semeval-2013/task2
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Table 1: Class distributions in the training set (Train), de-
velopment set (Dev) and testing set (Test). The Train set
was accessed through tweet ids and a download script.
However, not all tweets were accessible. Below is the
number of Train examples we were able to download.
The Dev and Test sets were provided by FTP.

Dataset Positive Negative Neutral Total
Tweets
Message-level task:

Train 3,045 (37%) 1,209 (15%) 4,004 (48%) 8,258
Dev 575 (35%) 340 (20%) 739 (45%) 1,654
Test 1,572 (41%) 601 (16%) 1,640 (43%) 3,813

Term-level task:
Train 4,831 (62%) 2,540 (33%) 385 (5%) 7,756
Dev 648 (57%) 430 (38%) 57 (5%) 1,135
Test 2,734 (62%) 1,541 (35%) 160 (3%) 4,435

SMS
Message-level task:

Test 492 (23%) 394 (19%) 1,208 (58%) 2,094
Term-level task:

Test 1,071 (46%) 1,104 (47%) 159 (7%) 2,334

one from tweets with sentiment-word hashtags, and
one from tweets with emoticons. The automatically
generated lexicons were particularly useful. In the
message-level task for tweets, they alone provided a
gain of more than 5 F-score points over and above
that obtained using all other features. The lexicons
are made freely available.3

2 Sentiment Lexicons

Sentiment lexicons are lists of words with associa-
tions to positive and negative sentiments.

2.1 Existing, Automatically Created Sentiment
Lexicons

The manually created lexicons we used include the
NRC Emotion Lexicon (Mohammad and Turney,
2010; Mohammad and Yang, 2011) (about 14,000
words), the MPQA Lexicon (Wilson et al., 2005)
(about 8,000 words), and the Bing Liu Lexicon (Hu
and Liu, 2004) (about 6,800 words).

2.2 New, Tweet-Specific, Automatically
Generated Sentiment Lexicons

2.2.1 NRC Hashtag Sentiment Lexicon
Certain words in tweets are specially marked with

a hashtag (#) to indicate the topic or sentiment. Mo-
3www.purl.com/net/sentimentoftweets

hammad (2012) showed that hashtagged emotion
words such as joy, sadness, angry, and surprised are
good indicators that the tweet as a whole (even with-
out the hashtagged emotion word) is expressing the
same emotion. We adapted that idea to create a large
corpus of positive and negative tweets.

We polled the Twitter API every four hours from
April to December 2012 in search of tweets with ei-
ther a positive word hashtag or a negative word hash-
tag. A collection of 78 seed words closely related
to positive and negative such as #good, #excellent,
#bad, and #terrible were used (32 positive and 36
negative). These terms were chosen from entries for
positive and negative in the Roget’s Thesaurus.

A set of 775,000 tweets were used to generate a
large word–sentiment association lexicon. A tweet
was considered positive if it had one of the 32 pos-
itive hashtagged seed words, and negative if it had
one of the 36 negative hashtagged seed words. The
association score for a term w was calculated from
these pseudo-labeled tweets as shown below:

score(w) = PMI(w, positive)− PMI(w, negative)
(1)

where PMI stands for pointwise mutual informa-
tion. A positive score indicates association with pos-
itive sentiment, whereas a negative score indicates
association with negative sentiment. The magni-
tude is indicative of the degree of association. The
final lexicon, which we will refer to as the NRC
Hashtag Sentiment Lexicon has entries for 54,129
unigrams and 316,531 bigrams. Entries were also
generated for unigram–unigram, unigram–bigram,
and bigram–bigram pairs that were not necessarily
contiguous in the tweets corpus. Pairs with cer-
tain punctuations, ‘@’ symbols, and some function
words were removed. The lexicon has entries for
308,808 non-contiguous pairs.

2.2.2 Sentiment140 Lexicon

The sentiment140 corpus (Go et al., 2009) is a
collection of 1.6 million tweets that contain pos-
itive and negative emoticons. The tweets are la-
beled positive or negative according to the emoti-
con. We generated a sentiment lexicon from this
corpus in the same manner as described above (Sec-
tion 2.2.1). This lexicon has entries for 62,468
unigrams, 677,698 bigrams, and 480,010 non-
contiguous pairs.

322



3 Task: Automatically Detecting the
Sentiment of a Message

The objective of this task is to determine whether a
given message is positive, negative, or neutral.

3.1 Classifier and features
We trained a Support Vector Machine (SVM) (Fan
et al., 2008) on the training data provided. SVM
is a state-of-the-art learning algorithm proved to be
effective on text categorization tasks and robust on
large feature spaces. The linear kernel and the value
for the parameter C=0.005 were chosen by cross-
validation on the training data.

We normalized all URLs to http://someurl and all
userids to @someuser. We tokenized and part-of-
speech tagged the tweets with the Carnegie Mellon
University (CMU) Twitter NLP tool (Gimpel et al.,
2011). Each tweet was represented as a feature vec-
tor made up of the following groups of features:

• word ngrams: presence or absence of contigu-
ous sequences of 1, 2, 3, and 4 tokens; non-
contiguous ngrams (ngrams with one token re-
placed by *);
• character ngrams: presence or absence of con-

tiguous sequences of 3, 4, and 5 characters;
• all-caps: the number of words with all charac-

ters in upper case;
• POS: the number of occurrences of each part-

of-speech tag;
• hashtags: the number of hashtags;
• lexicons: the following sets of features were

generated for each of the three manually con-
structed sentiment lexicons (NRC Emotion
Lexicon, MPQA, Bing Liu Lexicon) and for
each of the two automatically constructed lex-
icons (Hashtag Sentiment Lexicon and Senti-
ment140 Lexicon). Separate feature sets were
produced for unigrams, bigrams, and non-
contiguous pairs. The lexicon features were
created for all tokens in the tweet, for each part-
of-speech tag, for hashtags, and for all-caps to-
kens. For each token w and emotion or po-
larity p, we used the sentiment/emotion score
score(w, p) to determine:

– total count of tokens in the tweet with
score(w, p) > 0;

– total score =
∑

w∈tweet score(w, p);
– the maximal score =

maxw∈tweetscore(w, p);
– the score of the last token in the tweet with

score(w, p) > 0;

• punctuation:

– the number of contiguous sequences of
exclamation marks, question marks, and
both exclamation and question marks;

– whether the last token contains an excla-
mation or question mark;

• emoticons: The polarity of an emoticon was
determined with a regular expression adopted
from Christopher Potts’ tokenizing script:4

– presence or absence of positive and nega-
tive emoticons at any position in the tweet;

– whether the last token is a positive or neg-
ative emoticon;

• elongated words: the number of words with one
character repeated more than two times, for ex-
ample, ‘soooo’;
• clusters: The CMU pos-tagging tool provides

the token clusters produced with the Brown
clustering algorithm on 56 million English-
language tweets. These 1,000 clusters serve as
alternative representation of tweet content, re-
ducing the sparcity of the token space.

– the presence or absence of tokens from
each of the 1000 clusters;

• negation: the number of negated contexts. Fol-
lowing (Pang et al., 2002), we defined a negated
context as a segment of a tweet that starts
with a negation word (e.g., no, shouldn’t) and
ends with one of the punctuation marks: ‘,’,
‘.’, ‘:’, ‘;’, ‘!’, ‘?’. A negated context af-
fects the ngram and lexicon features: we add
‘ NEG’ suffix to each word following the nega-
tion word (‘perfect’ becomes ‘perfect NEG’).
The ‘ NEG’ suffix is also added to polarity and
emotion features (‘POLARITY positive’ be-
comes ‘POLARITY positive NEG’). The list
of negation words was adopted from Christo-
pher Potts’ sentiment tutorial.5

4http://sentiment.christopherpotts.net/tokenizing.html
5http://sentiment.christopherpotts.net/lingstruc.html
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3.2 Experiments

We trained the SVM classifier on the set of 9,912
annotated tweets (8,258 in the training set and 1,654
in the development set). We applied the model to the
test set of 3,813 unseen tweets. The same model was
applied unchanged to the other test set of 2,094 SMS
messages as well. The bottom-line score used by the
task organizers was the macro-averaged F-score of
the positive and negative classes. The results ob-
tained by our system on the training set (ten-fold
cross-validation), development set (when trained on
the training set), and test sets (when trained on the
combined set of tweets in the training and devel-
opment sets) are shown in Table 2. The table also
shows baseline results obtained by a majority clas-
sifier that always predicts the most frequent class as
output. Since the bottom-line F-score is based only
on the F-scores of positive and negative classes (and
not on neutral), the majority baseline chose the most
frequent class among positive and negative, which
in this case was the positive class. We also show
baseline results obtained using an SVM and unigram
features alone. Our system (SVM and all features)
obtained a macro-averaged F-score of 69.02 on the
tweet set and 68.46 on the SMS set. In the SemEval-
2013 competition, our submission ranked first on
both datasets. There were 48 submissions from 34
teams for this task.

Table 3 shows the results of the ablation experi-
ments where we repeat the same classification pro-
cess but remove one feature group at a time. The
most influential features for both datasets turned out
to be the sentiment lexicon features: they provided
gains of more than 8.5%. It is interesting to note
that tweets benefited mostly from the automatic sen-
timent lexicons (NRC Hashtag Lexicon and the Sen-
timent140 Lexicon) whereas the SMS set benefited
more from the manual lexicons (MPQA, NRC Emo-
tion Lexicon, Bing Liu Lexicon). Among the au-
tomatic lexicons, both the Hashtag Sentiment Lex-
icon and the Sentiment140 Lexicon contributed to
roughly the same amount of improvement in perfor-
mance on the tweet set.

The second most important feature group for
the message-level task was that of ngrams (word
and character ngrams). Expectedly, the impact of
ngrams on the SMS dataset was less extensive since

Table 2: Message-level Task: The macro-averaged F-
scores on different datasets.

Classifier Tweets SMS
Training set: Majority 26.94 -

SVM-all 67.20 -

Development set: Majority 26.85 -
SVM-all 68.72 -

Test set: Majority 29.19 19.03
SVM-unigrams 39.61 39.29
SVM-all 69.02 68.46

Table 3: Message-level Task: The macro-averaged F-
scores obtained on the test sets with one of the feature
groups removed. The number in the brackets is the dif-
ference with the all features score. The biggest drops are
shown in bold.

Experiment Tweets SMS
all features 69.02 68.46

all - lexicons 60.42 (-8.60) 59.73 (-8.73)
all - manual lex. 67.45 (-1.57) 65.64 (-2.82)
all - auto. lex. 63.78 (-5.24) 67.12 (-1.34)
all - Senti140 lex. 65.25 (-3.77) 67.33 (-1.13)
all - Hashtag lex. 65.22 (-3.80) 70.28 (1.82)

all - ngrams 61.77 (-7.25) 67.27 (-1.19)
all - word ngrams 64.64 (-4.38) 66.56 (-1.9)
all - char. ngrams 67.10 (-1.92) 68.94 (0.48)

all - negation 67.20 (-1.82) 66.22 (-2.24)
all - POS 68.38 (-0.64) 67.07 (-1.39)
all - clusters 69.01 (-0.01) 68.10 (-0.36)
all - encodings (elongated, emoticons, punctuations,
all-caps, hashtags) 69.16 (0.14) 68.28 (-0.18)

the classifier model was trained only on tweets.
Attention to negations improved performance on

both datasets. Removing the sentiment encoding
features like hashtags, emoticons, and elongated
words, had almost no impact on performance, but
this is probably because the discriminating informa-
tion in them was also captured by some other fea-
tures such as character and word ngrams.

4 Task: Automatically Detecting the
Sentiment of a Term in a Message

The objective of this task is to detect whether a term
(a word or phrase) within a message conveys a pos-
itive, negative, or neutral sentiment. Note that the
same term may express different sentiments in dif-
ferent contexts.
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4.1 Classifier and features

We trained an SVM using the LibSVM package
(Chang and Lin, 2011) and a linear kernel. In ten-
fold cross-validation over the training data, the lin-
ear kernel outperformed other kernels implemented
in LibSVM as well as a maximum-entropy classi-
fier. Our model leverages a variety of features, as
described below:

• word ngrams:

– presence or absence of unigrams, bigrams,
and the full word string of a target term;

– leading and ending unigrams and bigrams;

• character ngrams: presence or absence of two-
and three-character prefixes and suffixes of all
the words in a target term (note that the target
term may be a multi-word sequence);

• elongated words: presence or absence of elon-
gated words (e.g., ’sooo’);

• emoticons: the numbers and categories of
emoticons that a term contains6;

• punctuation: presence or absence of punctua-
tion sequences such as ‘?!’ and ‘!!!’;

• upper case:

– whether all the words in the target start
with an upper case letter followed by
lower case letters;

– whether the target words are all in upper-
case (to capture a potential named entity);

• stopwords: whether a term contains only stop-
words. If so, separate features indicate whether
there are 1, 2, 3, or more stop-words;

• lengths:

– the length of a target term (number of
words);

– the average length of words (number of
characters) in a term;

– a binary feature indicating whether a term
contains long words;

6http://en.wikipedia.org/wiki/List of emoticons

• negation: similar to those described for the
message-level task. Whenever a negation word
was found immediately before the target or
within the target, the polarities of all tokens af-
ter the negation term were flipped;

• position: whether a term is at the beginning,
end, or another position;

• sentiment lexicons: we used automatically cre-
ated lexicons (NRC Hashtag Sentiment Lexi-
con, Sentiment140 Lexicon) as well as manu-
ally created lexicons (NRC Emotion Lexicon,
MPQA, Bing Liu Lexicon).

– total count of tokens in the target term
with sentiment score greater than 0;

– the sum of the sentiment scores for all to-
kens in the target;

– the maximal sentiment score;
– the non-zero sentiment score of the last to-

ken in the target;

• term splitting: when a term contains a hash-
tag made of multiple words (e.g., #biggest-
daythisyear), we split the hashtag into compo-
nent words;

• others:

– whether a term contains a Twitter user
name;

– whether a term contains a URL.

The above features were extracted from target
terms as well as from the rest of the message (the
context). For unigrams and bigrams, we used four
words on either side of the target as the context. The
window size was chosen through experiments on the
development set.

4.2 Experiments

We trained an SVM classifier on the 8,891 annotated
terms in tweets (7,756 terms in the training set and
1,135 terms in the development set). We applied the
model to 4,435 terms in the tweets test set. The same
model was applied unchanged to the other test set of
2,334 terms in unseen SMS messages as well. The
bottom-line score used by the task organizers was
the macro-averaged F-score of the positive and neg-
ative classes.
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The results on the training set (ten-fold cross-
validation), the development set (trained on the
training set), and the test sets (trained on the com-
bined set of tweets in the training and development
sets) are shown in Table 4. The table also shows
baseline results obtained by a majority classifier that
always predicts the most frequent class as output,
and an additional baseline result obtained using an
SVM and unigram features alone. Our submission
obtained a macro-averaged F-score of 88.93 on the
tweet set and was ranked first among 29 submissions
from 23 participating teams. Even with no tuning
specific to SMS data, our SMS submission still ob-
tained second rank with an F-score of 88.00. The
score of the first ranking system on the SMS set was
88.39. A post-competition bug-fix in the bigram fea-
tures resulted in a small improvement: F-score of
89.10 on the tweets set and 88.34 on the SMS set.

Note that the performance is significantly higher
in the term-level task than in the message-level task.
This is largely because of the ngram features (see
unigram baselines in Tables 2 and 4). We analyzed
the labeled data provided to determine why ngrams
performed so strongly in this task. We found that the
percentage of test tokens already seen within train-
ing data targets was 85.1%. Further, the average ra-
tio of instances pertaining to the most dominant po-
larity of a target term to the total number of instances
of that target term was 0.808.

Table 5 presents the ablation F-scores. Observe
that the ngram features were the most useful. Note
also that removing just the word ngram features or
just the character ngram features results in only a
small drop in performance. This indicates that the
two feature groups capture similar information.

The sentiment lexicon features are the next most
useful group—removing them leads to a drop in F-
score of 3.95 points for the tweets set and 4.64 for
the SMS set. Modeling negation improves the F-
score by 0.72 points on the tweets set and 1.57 points
on the SMS set.

The last two rows in Table 5 show the results ob-
tained when the features are extracted only from the
target (and not from its context) and when they are
extracted only from the context of the target (and
not from the target itself). Observe that even though
the context may influence the polarity of the tar-
get, using target features alone is substantially more

Table 4: Term-level Task: The macro-averaged F-scores
on the datasets. The official scores of our submission are
shown in bold. SVM-all* shows results after a bug fix.

Classifier Tweets SMS
Training set: Majority 38.38 -

SVM-all 86.80 -

Development set: Majority 36.34 -
SVM-all 86.49 -

Test set: Majority 38.13 32.11
SVM-unigrams 80.28 78.71
official SVM-all 88.93 88.00
SVM-all* 89.10 88.34

Table 5: Term-level Task: The F-scores obtained on the
test sets with one of the feature groups removed. The
number in brackets is the difference with the all features
score. The biggest drops are shown in bold.

Experiment Tweets SMS
all features 89.10 88.34

all - ngrams 83.86 (-5.24) 80.49 (-7.85)
all - word ngrams 88.38 (-0.72) 87.37 (-0.97)
all - char. ngrams 89.01 (-0.09) 87.31 (-1.03)

all - lexicons 85.15 (-3.95) 83.70 (-4.64)
all - manual lex. 87.69 (-1.41) 86.84 (-1.5)
all - auto lex. 88.24 (-0.86) 86.65 (-1.69)

all - negation 88.38 (-0.72) 86.77 (-1.57)
all - stopwords 89.17 (0.07) 88.30 (-0.04)
all - encodings (elongated words, emoticons, punctns.,

uppercase) 89.16 (0.06) 88.39 (0.05)

all - target 72.97 (-16.13) 68.96 (-19.38)
all - context 85.02 (-4.08) 85.93 (-2.41)

useful than using context features alone. Nonethe-
less, adding context features improves the F-scores
by roughly 2 to 4 points.

5 Conclusions

We created two state-of-the-art SVM classifiers, one
to detect the sentiment of messages and one to de-
tect the sentiment of a term within a message. Our
submissions on tweet data stood first in both these
subtasks of the SemEval-2013 competition ‘Detect-
ing Sentiment in Twitter’. We implemented a variety
of features based on surface form and lexical cate-
gories. The sentiment lexicon features (both manu-
ally created and automatically generated) along with
ngram features (both word and character ngrams)
led to the most gain in performance.
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Abstract

This paper describes the details of our system
submitted to the SemEval-2013 shared task on
sentiment analysis in Twitter. Our approach to
predicting the sentiment of Tweets and SMS
is based on supervised machine learning tech-
niques and task-specific feature engineering.
We used a linear classifier trained by stochas-
tic gradient descent with hinge loss and elas-
tic net regularization to make our predictions,
which were ranked first or second in three of
the four experimental conditions of the shared
task. Furthermore, our system makes use of
social media specific text preprocessing and
linguistically motivated features, such as word
stems, word clusters and negation handling.

1 Introduction

Sentiment analysis, also known as opinion min-
ing, is a research field in the area of text min-
ing and natural language processing, which inves-
tigates the automated detection of opinions in lan-
guage. In written text, an opinion is a person’s atti-
tude towards some topic, pronounced by verbal (e.g.
choice of words, rhetorical figures) or non-verbal
means (e.g. emoticons, emphatic spelling). More
formally, Liu (2012) defines an opinion as the quin-
tuple (ei, aij , sijkl, hk, tl) where “ei is the name of
an entity, aij is an aspect of ei, sijkl is the sentiment
on aspect aij of entity ei, hk is the opinion holder,
and tl is the time when the opinion is expressed by
hk. The sentiment sijkl is positive, negative, or neu-
tral, or expressed with different strength/intensity
levels [...]. When an opinion is on the entity itself

as a whole, the special aspect GENERAL is used
to denote it. [...] ei and aij together represent the
opinion target” (Liu, 2012).

With the massively growing importance of social
media in everyday life, being able to automatically
find and classify attitudes in written text allows for
estimating the mood of a large group of people, e.g.
towards a certain event, service, product, matter of
fact or the like. As working with the very short and
informal texts typical for social networks poses chal-
lenges not encountered in more traditional text gen-
res, the International Workshop on Semantic Evalu-
ation (SemEval) 2013 has a shared task on sentiment
analysis in microblogging texts, which is detailed in
Wilson et al. (2013). The task requires sentiment
analysis of Twitter1 and SMS messages and com-
prises two subtasks, one of which deals with deter-
mining the sentiment of a given message fragment
depending on its context (Task A) and one on over-
all message polarity classification (Task B).

We treat both tasks as document-level senti-
ment classification tasks, which we define ac-
cording to Liu (2012) as determining the opinion
( ,GENERAL, s, , ) of a given message, where
s ∈ {positive, negative, neutral} and “the entity e,
opinion holder h, and time of opinion t are assumed
known or irrelevant” (Liu, 2012). For Task A we
only consider the marked fraction of the message to
be given.

This introduction is followed by sections dis-
cussing related work (2), details of our system (3),
experiments (4) and results and conclusion (5).

1a popular microblogging service on the Internet, see
http://twitter.com
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2 Related Work

Previous approaches to sentiment analysis of mi-
croblogging texts make use of a wide range of fea-
tures, including unigrams, n-grams, part-of-speech
tags and polarity values from (usually hand-crafted)
sentiment lexicons. O’Connor et al. (2010) exam-
ine tweets concerned with the 2009 US presiden-
tial elections, relying solely on the occurrence of
words from a sentiment lexicon. Nielsen (2011) in-
vestigates the impact of including internet slang and
obscene language when building a sentiment lexi-
con. Barbosa and Feng (2010) make use of three
different sentiment detection websites to label Twit-
ter data, while Davidov et al. (2010), Kouloumpis et
al. (2011) and Pak and Paroubek (2010) use Twit-
ter hashtags and emoticons as labels. Speriosu et
al. (2011) propagate information from seed labels
along a linked structure that includes Twitter’s fol-
lower graph, and Saif et al. (2012) specifically ad-
dress the data-sparsity problem by using semantic
smoothing and topic extraction.

3 System Description

In this section we present the details of our senti-
ment analysis system, which was implemented in
the Python programming language and is publicly
available online.2 We used the same preprocessing,
feature extraction and learning algorithm for both
subtasks, only the hyperparameters of the machine
learning algorithm were adjusted to the respective
dataset.

3.1 Preprocessing

Tokenization of the messages was done using a sim-
ple regular expression, which matches either URLs,
alphanumeric character sequences (plus apostrophe)
or non-alphanumeric non-whitespace character se-
quences. This way punctuation sequences like
emoticons are preserved, while still being separated
from words in case of missing whitespace. The same
happens to hashtags, so “#liiike:)” gets separated
into the three tokens #, liiike and :), which can
then be processed separately or as n-grams. While
this strategy performed reasonably well for us, more
sophisticated tokenizers for social media messages

2http://tobias.io/semevaltweet

that handle more special cases like emoticons in-
cluding letters are thinkable.

To address the large variety in spelling typical for
social networks we store three different variants of
each token:

a) The raw token found in the message

b) A normalized version, in which all characters
are converted to lowercase and all digits to 0

c) A collapsed version, in which all adjacent du-
plicate characters are removed from the nor-
malized version, if it is not present in an
English word list. That way “school” stays
“school”, but “liiike” gets converted to “like”.

3.2 Features
We explored a wide variety of linguistic and lexical
features. In our final submission we used the follow-
ing set of features for each message:

• The normalized tokens [boolean]

• The stems of the collapsed tokens, which were
computed using the Porter stemming algo-
rithm (Porter, 1980) implemented in the Python
Natural Language Toolkit (Bird et al., 2009).
[boolean]

• The word cluster IDs of raw, normalized and
collapsed tokens. The clusters were obtained
via unsupervised Brown clustering (Brown et
al., 1992) of 56,345,753 Tweets by Owoputi
et al. (2013) and are available on the web.3

[boolean]

• The accumulated (summed) positive and accu-
mulated negative SentiWordNet scores (Bac-
cianella et al., 2010) of all synsets matching the
collapsed token strings. [continuous]

Furthermore, the normalized tokens and stems
were marked with a special negation prefix, if they
occurred after a negation word or word cluster of
negation words. If a punctuation token occurred be-
fore the end of the message the marking was discon-
tinued at that point.

3http://www.ark.cs.cmu.edu/TweetNLP
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3.3 Machine Learning Methods

For the classification of the messages into the posi-
tive, negative and neutral classes we use three linear
models, which were trained in an one-vs.-all man-
ner. At prediction time we simply choose the label
with the highest score. All training was done us-
ing the open-source machine learning toolkit scikit-
learn,4 which provides a consistent Python API to
fast implementations of various machine learning al-
gorithms (Pedregosa et al., 2011).

The linear models were trained using stochastic
gradient descent (SGD), which is a gradient de-
scent optimization method that minimizes a given
loss function. The term “stochastic” refers to the
fact that the weights of the model are updated for
each training example, which is an approximation of
batch gradient descent, in which all training exam-
ples are considered to make a single step. This way
SGD is very fast to train, which was important to us
to be able to rapidly evaluate different feature com-
binations and hyperparameter settings using cross-
validation.

Algorithm 1 Stochastic gradient descent with hinge
loss and elastic net regularization

1: t← 1/(η α)
2: u← 0
3: Initialize wj and qj with 0 for all j
4: for epoch to NITER do
5: for i to NSAMPLES do
6: s← wTx(i)

7: η ← 1/(α t)
8: c← CLASSWEIGHT(y(i))
9: u← u+ ((1− ρ) η α)

10: for j to NFEATURES do

11: ∂`
∂wj
←

{
−y(i)x

(i)
j if y(i)s < 1

0 otherwise
12: wj ← (1− ρ η α) wj − η c ∂`

∂wj

13: z ← wj

14: if wj > 0 then
15: wj ← max(0, wj − (u+ qj))
16: else if wj < 0 then
17: wj ← min(0, wj + (u− qj))
18: qj ← qj + (wj − z)
19: t← t+ 1

4Version 0.13.1, http://scikit-learn.org

Hyperparameter Task A Task B
NITER 1000 1000
CLASSWEIGHT(y(i)) 1 auto5

α 0.0001 0.001
ρ 0.15 0.15

Table 1: Hyperparameters used for final model training

The loss function we used was hinge loss, which
is a large-margin loss function known for its use in
support vector machines. To avoid overfitting the
training set we employed elastic net regularization,
which is a combination of L1 and L2 regularization.

A simplified version of the SGD learning proce-
dure implemented in scikit-learn is shown in Algo-
rithm 1, where w is the weight vector of the model,
x(i) the feature vector of sample i, y(i) ∈ {−1,+1}
the ground truth label of sample i, η the learning
rate, α the regularization factor and ρ the elastic
net mixing parameter. Be aware that we did not
pick samples at random or shuffle the data, which
is crucial in case of training data which is sorted
by classes. The initial learning rate is set heuris-
tically and updated following Shalev-Shwartz et al.
(2007).6 The way of applying the L1 penalty (lines
13 to 18) is published as “cumulative L1 penalty” in
Tsuruoka et al. (2009). The final settings for the hy-
perparameters were determined by running a cross-
validated grid search on the combined training and
development sets and can be found in Table 1.

4 Experiments

For our experiments and the final model training
we used the combined training and development set
of the shared task. For Task A we removed mes-
sages labeled “objective” prior to training, while we
merged them into the “neutral” class for Task B.
This left us with 9419 training samples (5855 pos-
itive, 457 neutral, 3107 negative) for Task A and
10368 training samples (3855 positive, 4889 neutral,
1624 negative) for Task B. As the shared task was
evaluated on average F1 of the positive and negative
class, disregarding the neutral class, we also provide
our results in these measures in the following.

5inversely proportional to class frequency
6This is achieved by choosing “optimal” as setting for the

learning rate for scikit-learn’s SGDClassifier.

330



Negative Positive Avg.
Prec Rec Prec Rec F1

ALL 53.86 62.68 77.88 68.95 65.54
-stem -0.38 -1.10 -0.07 -0.08 -0.385
-wc -0.74 -0.30 +0.13 -2.05 -0.835
-swn -0.15 -0.73 -0.27 +0.10 -0.23
-neg +0.04 -0.92 -1.06 +0.44 -0.30
bow -4.03 -7.01 -0.44 -3.68 -3.83

Table 2: Feature ablation study (Task B)

During the process of preparing our submission
we used 10-fold cross-validation to evaluate differ-
ent combinations of features, machine learning algo-
rithms and their hyperparameter settings. While we
found the features described in section 3.2 to be use-
ful, we did not find further improvement by using
n-grams and part-of-speech tags, despite using the
Twitter-specific part-of-speech tagger by Owoputi et
al. (2013). Table 2 shows a cross-validated ablation
study on the features, removing one group of fea-
tures at a time to see their contribution to the model.
Using only normalized tokens is referred to as bag-
of-words (bow). One can see that word clusters are
the most important for our model, causing the high-
est overall loss in F1 performance when being re-
moved. Nevertheless, all other features contribute to
the performance of the model as well.

Further improvement can be made by carefully
picking a machine learning algorithm and tuning its
hyperparameters. For this task we found linear mod-
els to perform better than other classification meth-
ods such as naive bayes, decision tree / random for-
est and k-nearest neighbor. Figure 1 shows that
models trained with the method described in sec-
tion 3.3 (marked SGD) clearly outperforms mod-
els trained with the popular perceptron algorithm
(which could be described as stochastic gradient de-
scent with zero-one loss, no regularization and con-
stant learning rate, marked PER) with increasing
training set size. The values were obtained by train-
ing on different portions of the training set of Task
B and testing on the previously unseen Task B Twit-
ter test set (3813 samples). Starting from a cer-
tain amount of available training data, the choice of
the training algorithm becomes even more important
than the choice of features.
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Figure 1: Effect of training set size on different classifiers

5 Results and Conclusion

The results of our submission for the four hidden test
sets of the shared task can be found in Table 3. Given
the relatively small deviation from the results of the
cross-validation on combined training and develop-
ment set and the good ranks obtained in the shared
task system ranking, we conclude that the method
for sentiment analysis in microblogging messages
presented in this paper yields competitive results.

We showed that the performance for this task can
be improved by using linguistically motivated fea-
tures as well as carefully choosing a learning algo-
rithm and its hyperparameter settings.

Task Prec Rec F1 (Rank)
A SMS 86.09 91.01 88.37 (1)
A Twitter 85.06 85.43 85.19 (7)
B SMS 55.83 72.55 62.15 (2)
B Twitter 70.21 61.49 65.27 (2)

Table 3: Final results of our submission
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Abstract

This paper describes the systems submitted by
Avaya Labs (AVAYA) to SemEval-2013 Task
2 - Sentiment Analysis in Twitter. For the
constrained conditions of both the message
polarity classification and contextual polarity
disambiguation subtasks, our approach cen-
ters on training high-dimensional, linear clas-
sifiers with a combination of lexical and syn-
tactic features. The constrained message po-
larity model is then used to tag nearly half
a million unlabeled tweets. These automati-
cally labeled data are used for two purposes:
1) to discover prior polarities of words and
2) to provide additional training examples for
self-training. Our systems performed compet-
itively, placing in the top five for all subtasks
and data conditions. More importantly, these
results show that expanding the polarity lexi-
con and augmenting the training data with un-
labeled tweets can yield improvements in pre-
cision and recall in classifying the polarity of
non-neutral messages and contexts.

1 Introduction

The past decade has witnessed a massive expansion
in communication from long-form delivery such
as e-mail to short-form mechanisms such as mi-
croblogging and short messaging service (SMS) text
messages. Simultaneously businesses, media out-
lets, and investors are increasingly relying on these
messages as sources of real-time information and
are increasingly turning to sentiment analysis to dis-
cover product trends, identify customer preferences,
and categorize users. While a variety of corpora ex-

ist for developing and evaluating sentiment classi-
fiers for long-form texts such as product reviews,
there are few such resources for evaluating senti-
ment algorithms on microblogs and SMS texts.

The organizers of SemEval-2013 task 2, have be-
gun to address this resource deficiency by coordi-
nating a shared evaluation task for Twitter sentiment
analysis. In doing so they have assembled corpora
in support of the following two subtasks:

Task A - Contextual Polarity Disambiguation
“Given a message containing a marked in-
stance of a word or phrase, determine whether
that instance is positive, negative or neutral in
that context.”

Task B - Message Polarity Classification “Given
a message, classify whether the message is
of positive, negative, or neutral sentiment.
For messages conveying both a positive and
negative sentiment, whichever is the stronger
sentiment should be chosen.”

This paper describes the systems submitted by
Avaya Labs for participation in subtasks A and B.
Our goal for this evaluation was to investigate the
usefulness of dependency parses, polarity lexicons,
and unlabeled tweets for sentiment classification on
short messages. In total we built four systems for
SemEval-2013 task 2. For task B we developed a
constrained model using supervised learning, and
an unconstrained model that used semi-supervised
learning in the form of self-training and polarity lex-
icon expansion. For task A the constrained sys-
tem utilized supervised learning, while the uncon-
strained model made use of the expanded lexicon
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from task B. Output from these systems were sub-
mitted to all eight evaluation conditions. For a com-
plete description of the data, tasks, and conditions,
please refer to Wilson et al. (2013). The remainder
of this paper details the approaches, experiments and
results associated with each of these models.

2 Related Work

Over the past few years sentiment analysis has
grown from a nascent topic in natural language pro-
cessing to a broad research area targeting a wide
range of text genres and applications. There is
now a significant body of work that spans topics
as diverse as document level sentiment classifica-
tion (Pang and Lee, 2008), induction of word polar-
ity lexicons (Hatzivassiloglou and McKeown, 1997;
Turney, 2002; Esuli and Sebastiani, 2006; Moham-
mad and Turney, 2011) and even election prediction
(Tumasjan et al., 2010).

Efforts to train sentiment classifiers for Twitter
messages have largely relied on using emoticons
and hashtags as proxies of the true polarity (Bar-
bosa and Feng, 2010; Davidov et al., 2010b; Pak and
Paroubek, 2010; Agarwal et al., 2011; Kouloumpis
et al., 2011; Mohammad, 2012). Classification of
word and phrase sentiment with respect to surround-
ing context (Wilson et al., 2005) has yet to be ex-
plored for the less formal language often found in
microblog and SMS text. Semi-supervised learn-
ing has been applied to polarity lexicon induction
(Rao and Ravichandran, 2009), and sentiment clas-
sification at the sentence level (Täckström and Mc-
Donald, 2011) and document level (Sindhwani and
Melville, 2008; He and Zhou, 2011); however to
the best of our knowledge self-training and other
semi-supervised learning has seen only minimal use
in classifying Twitter texts (Davidov et al., 2010a;
Zhang et al., 2012).

3 System Overview

Given our overarching goal of combining polarity
lexicons, syntactic information and unlabeled data,
our approach centered on first building strong con-
strained models and then improving performance
by adding additional data and resources. For
both tasks, our data-constrained approach com-
bined standard features for document classification

conj → conj 〈conjunction〉
pobj → prep 〈preposition〉
pcomp→ prepc 〈preposition〉
prep|punct|cc→ ∅

Table 1: Collapsed Dependency Transformation Rules

with dependency parse and word polarity features
into a weighted linear classifier. For our data-
unconstrained models we used pointwise mutual in-
formation for lexicon expansion in conjunction with
self-training to increase the size of the feature space.

4 Preprocessing and Text Normalization

Our systems were built with ClearTK (Ogren et
al., 2008) a framework for developing NLP com-
ponents built on top of Apache UIMA. Our pre-
processing pipeline utilized ClearTK’s wrappers for
ClearNLP’s (Choi and McCallum, 2013) tokenizer,
lemmatizer, part-of-speech (POS) tagger, and de-
pendency parser. ClearNLP’s ability to retain emoti-
cons and emoji as individual tokens made it espe-
cially attractive for sentiment analysis. POS tags
were mapped from Penn Treebank-style tags to the
simplified, Twitter-oriented tags introduced by Gim-
pel et al. (2011). Dependency graphs output by
ClearNLP were also transformed to the Stanford
Collapsed dependencies representation (de Marneffe
and Manning, 2012) using our own transformation
rules (table 1). Input normalization consisted solely
of replacing all usernames and URLs with common
placeholders.

5 Sentiment Resources

A variety of our classifier features rely on manually
tagged sentiment lexicons and word lists. In partic-
ular we make use of the MPQA Subjectivity Lexi-
con (Wiebe et al., 2005) as well as manually-created
negation and emoticon dictionaries1. The negation
word list consisting of negation words such as no
and not. Because tokenization splits contractions,
the list includes the sub-word token n’t as well as
the apostrophe-less version of 12 contractions (e.g.
cant, wont, etc . . . ). To support emoticon-specific
features we created a dictionary, which paired 183
emoticons with either a positive or negative polarity.

1http://leebecker.com/resources/semeval-2013
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6 Message Polarity Classification

6.1 Features

Polarized Bag-of-Words Features: Instead of ex-
tracting raw bag-of words (BOW), we opted to in-
tegrate negation directly into the word representa-
tions following the approaches used by Das and
Chen (2001) and Pang et al. (2002). All words
between a negation word and the first punctuation
mark after the negation word were suffixed with
a NOT tag – essentially doubling the number of
BOW features. We extended this polarized BOW
paradigm to include not only the raw word forms
but all of the following combinations: raw word, raw
word+PTB POS tag, raw word+simplified POS tag,
lemma+simplified POS tag.
Word Polarity Features: Using a subjectivity lex-
icon, we extracted features for the number of posi-
tive, negative, and neutral words as well as the net
polarity based on these counts. Individual word po-
larities were inverted if the word had a child depen-
dency relation with a negation (neg) label. Con-
strained models use the MPQA lexicon, while un-
constrained models use an expanded lexicon that is
described in section 6.2.
Emoticon Features: Similar to the word polarity
features, we computed features for the number of
positive, negative, and neutral emoticons, and the
net emoticon polarity score.
Microblogging Features: As noted by Kouloumpis
et al. (2011), the emotional intensity of words in so-
cial media messages is often emphasized by changes
to the word form such as capitalization, charac-
ter repetition, and emphasis characters (asterisks,
dashes). To capture this intuition we compute fea-
tures for the number of fully-capitalized words,
words with characters repeated more than 3 times
(e.g. booooo), and words surround by asterisks or
dashes (e.g. *yay*). We also created a binary fea-
ture to indicate the presence of a winning score or
winning record within the target span (e.g. Oh yeah
#Nuggets 15-0).
Part-of-Speech Tag Features: Counts of the Penn
Treebank POS tags provide a rough measure of the
content of the message.
Syntactic Dependency Features: We extracted
dependency pair features using both standard and
collapsed dependency parse graphs. Extracted

head/child relations include: raw word/raw word,
lemma/lemma, lemma/simplified POS tag, simpli-
fied POS tag/lemma. If the head node of the relation
has a child negation dependency, the pair’s relation
label is prefixed with a NEG tag.

6.2 Expanding the Polarity Lexicon

Unseen words pose a recurring challenge for both
machine learning and dictionary-based approaches
to sentiment analysis. This problem is even more
prevalent in social media and SMS messages where
text lengths are often limited to 140 characters or
less. To expand our word polarity lexicon we adopt
a framework similar to the one introduced by Turney
(2002). Turney’s unsupervised approach centered on
computing pointwise mutual information (PMI) be-
tween highly polar seed words and bigram phrases
extracted from a corpus of product reviews.

Instead of relying solely on seed words for po-
larity, we use the constrained version of the mes-
sage polarity classifier to tag a corpus of approxi-
mately 475,000 unlabeled, English language tweets.
These tweets were collected over the period from
November 2012 to February 2013. To reduce the
number of noisy instances and to obtain a more bal-
anced distribution of sentiment labels, we eliminated
all tweets with classifier confidence scores below
0.9, 0.7, and 0.8 for positive, negative and neutral
instances respectively. Applying the threshold, re-
duced the tweet count to 180,419 tweets (50,789
positive, 59,029 negative, 70,601 neutral). This fil-
tered set of automatically labeled tweets was used
to accumulate co-occurrence statistics between the
words in the tweets and their corresponding senti-
ment labels. These statistics are then used to com-
pute word-sentiment PMI (equation 1), which is
the joint probability of a word and sentiment co-
occurring divided by the probability of each of the
events occurring independently. A word’s net po-
larity is computed as the signum (sgn) of the differ-
ence between a its positive and negative PMI values
(equation 2). It should be noted that polarities were
deliberately limited to values of {-1, 0, +1} to ensure
consistency with the existing MPQA lexicon, and to
dampen the bias of any single word.
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PMI(word, sentiment) = log2
p(word, sentiment)

p(word)p(sentiment)
(1)

polarity(word) = sgn(PMI(word, positive)−
PMI(word, negative))

(2)

Words with fewer than 10 occurrences, words
with neutral polarities, numbers, single characters,
and punctuation were then removed from this PMI-
derived polarity dictionary. Lastly, this dictionary
was merged with the dictionary created from the
MPQA lexicon yielding a final polarity dictionary
with 11,740 entries. In cases where an entry existed
in both dictionaries, the MPQA polarity value was
retained. This final polarity dictionary was used by
the unconstrained models for task A and B.

6.3 Model Parameters and Training
Constrained Model: Models were trained us-
ing the LIBLINEAR classification library (Fan et
al., 2008). L2 regularized logistic regression was
chosen over other LIBLINEAR loss functions be-
cause it not only gave improved performance on
the development set but also produced calibrated
outcomes for confidence thresholding. Training
data for the constrained model consisted of all
9829 examples from the training (8175 exam-
ples) and development (1654 examples) set re-
leased for SemEval 2013. Cost and label-specific
cost weight parameters were selected via exper-
imentation on the development set to maximize
the average positive and negative F1 values. The
c values ranged over {0.1, 0.5, 1, 2, 5, 10, 20, 100}
and the label weights wpolarity ranged over
{0.1, 1, 2, 5, 10, 20, 25, 50, 100}. Final parameters
for the constrained model were cost c = 1 and
weights wpositive = 1, wnegative = 25, and
wneutral = 1.
Unconstrained Model: In addition to using the ex-
panded polarity dictionary described in 6.2 for fea-
ture extraction, the unconstrained model also makes
use of automatically labeled tweets for self-training
(Scudder, 1965). In contrast to preparation of the ex-
panded polarity dictionary, the self-training placed
no threshold on the examples. Combining the self-
labeled tweets, with the official training and devel-
opment set yielded a new training set consisting

of 485,112 examples. Because the self-labeled in-
stances were predominantly tagged neutral, the LI-
BLINEAR cost parameters were adjusted to heav-
ily discount neutral while emphasizing positive and
neutral instances. The size and cost of training
this model prevented extensive parameter tuning and
instead were chosen based on experience with the
constrained model and to maximize recall on pos-
itive and negative items. Final parameters for the
unconstrained model were cost c = 1 and cate-
gory weights wpositive = 2, wnegative = 5, and
wneutral = 0.1.

7 Contextual Polarity Disambiguation

7.1 Features

The same base set of features used for message po-
larity classification were used for the contextual po-
larity classification, with the exception of the syn-
tactic dependency features. To better express the in-
context and out-of-context relation these additional
feature classes were added:

Scoped Dependency Features: Because this task
focuses on a smaller context within the message,
collapsed dependencies are less useful as the com-
pression may cross over context boundaries. In-
stead the standard syntactic dependency features de-
scribed above were modified to account for their re-
lation to the context. All governing relations for the
words contained within the contact were extracted.
Relations wholly contained within the boundaries of
the context were prefixed with an IN tag, whereas
those that crossed outside of the context were pre-
fixed with an OUT tag. Additionally counts of IN
and OUT relations were included as features.

Dependency Path Features: Like the single de-
pendency arcs, a dependency path can provide addi-
tional information about the syntactic and semantic
role of the context in the sentence. Our path fea-
tures consisted of two varieties: 1) POS-path and
2) Sentiment-POS-path. The POS-path consisted of
the PTB POS tags and dependency relation labels
for all nodes between the head of the context and the
root node of the parent sentence. The Sentiment-
POS-path follows the same path but omits the de-
pendency relation labels, uses the simplified POS
tags and appends word polarities (POS/NEG/NTR)
to the POS tags along the path.
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System
Positive Negative Neutral Favg Rank

P R F P R F P R F +/-
Tw

ee
t NRC-Canada (top) 0.814 0.667 0.733 0.697 0.604 0.647 0.677 0.826 0.744 0.690 1

AVAYA-Unconstrained 0.751 0.655 0.700 0.608 0.557 0.582 0.665 0.768 0.713 0.641 5
AVAYA-Constrained 0.791 0.580 0.669 0.593 0.509 0.548 0.636 0.832 0.721 0.608 12
Mean of submissions 0.687 0.591 0.626 0.491 0.456 0.450 0.612 0.663 0.615 0.538 -

SM
S

NRC-Canada (top) 0.731 0.730 0.730 0.554 0.754 0.639 0.852 0.753 0.799 0.685 1
AVAYA-Constrained 0.630 0.667 0.648 0.526 0.581 0.553 0.802 0.756 0.778 0.600 4
AVAYA-Unconstrained 0.609 0.659 0.633 0.494 0.637 0.557 0.814 0.710 0.759 0.595 5
Mean of submissions 0.512 0.620 0.546 0.462 0.518 0.456 0.754 0.578 0.627 0.501 -

Table 2: Message Polarity Classification (Task B) Results

System
Positive Negative Neutral Favg Rank

P R F P R F P R F +/-

Tw
ee

t NRC-Canada (top) 0.889 0.932 0.910 0.866 0.871 0.869 0.455 0.063 0.110 0.889 1
AVAYA-Unconstrained 0.892 0.905 0.898 0.834 0.865 0.849 0.539 0.219 0.311 0.874 2
AVAYA-Constrained 0.882 0.911 0.896 0.844 0.843 0.843 0.493 0.225 0.309 0.870 3
Mean of submissions 0.837 0.745 0.773 0.745 0.656 0.677 0.159 0.240 0.115 0.725 -

SM
S

GUMLTLT (top) 0.814 0.924 0.865 0.908 0.896 0.902 0.286 0.050 0.086 0.884 1
AVAYA-Unconstrained 0.815 0.871 0.842 0.853 0.896 0.874 0.448 0.082 0.138 0.858 3
AVAYA-Constrained 0.777 0.875 0.823 0.859 0.852 0.856 0.364 0.076 0.125 0.839 4
Mean of submissions 0.734 0.722 0.710 0.807 0.663 0.698 0.144 0.184 0.099 0.704 -

Table 3: Contextual Polarity Disambiguation (Task A) Results

For example given the bold-faced context in the
sentence:

@User Criminals killed Sadat, and in the
process they killed Egypt. . . they destroyed
the future of young & old Egyptians..

the extracted POS-path feature would be:

{NNP} dobj <{VBD} conj <{VBD}
ccomp <{VBD} root <{TOP}

while the Sentiment-POS path would be:

{ˆ/pos}{V/neg}{V/neg}{V/neg}{TOP}.

Paths with depth greater than 4 dependency rela-
tions were truncated to reduce feature sparsity. In
addition to these detailed path features, we include
two binary features to indicate if any part of the path
contains subject or object relations.

7.2 Model Parameters and Training
Like with message polarity classification, the con-
textual polarity disambiguation systems rely on LI-
BLINEAR’s L2 regularized logistic regression for
model training. Both constrained and unconstrained
models use identical parameters of cost c = 1

and weights wpositive = 1, wnegative = 2, and
wneutral = 1. They vary only in the choice of polar-
ity lexicon. The constrained model uses the MPQA
subjectivity lexicon, while the unconstrained model
uses the expanded dictionary derived via computa-
tion of PMI, which ultimately differentiates these
models through the variation in the sentiment path
and word polarity features.

8 Experiments and Results

In this section we report results for the series of Sen-
timent Analysis in Twitter tasks at SemEval 2013.
Please refer to refer to Wilson et al. (2013) for the
exact details about the corpora, evaluation condi-
tions, and methodology.

We submitted polarity output for the Message Po-
larity Classification (task B) and the Contextual Po-
larity Disambiguation (task A). For each task we
submitted system output from our constrained and
unconstrained models. As stated above, the con-
strained models made use of only the training data
released for the task, whereas the unconstrained
models trained on additional tweets. Each subtask
had two test sets one comprised of tweets and the
other comprised of SMS messages. Final task 2
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S G Message / Context
1 + / Going to Helsinki tomorrow or on the day after tomorrow,yay!
2 / + Eric Decker catches his second TD pass from Manning. This puts Broncos up 31-7 with 14:54 left in the 4th.
3 - / So, crashed a wedding reception and Andy Lee’s bro was in the bridal party. How’d you spend your Saturday

night? #longstory
4 - + Aiyo... Dun worry la, they’ll let u change one... Anyway, sleep early, nite nite...
5 + - Sori I haven’t done anything for today’s meeting.. pls pardon me. Cya guys later at 10am.
6 + - these PSSA’s are just gonna be the icing to another horrible monday. #fmlll #ihateschool

Table 4: Example Classification Errors: S=System, G=Gold, +=positive, −=negative, /=neutral. Bold-faced text
indicates the span for contextual polarities.

evaluation is based on the average positive and neg-
ative F-score. Task B results are listed in table 2,
and task A results are shown in table 3. For compar-
ison these tables also include the top-ranked system
in each category as well as the mean scores across
all submissions.

9 Error Analysis

To better understand our systems’ limitations we
manually inspected misclassified output. Table 4
lists errors representative of the common issues un-
covered in our error analysis.

Though some degree of noise is expected in senti-
ment analysis, we found several instances of annota-
tion error or ambiguity where it could be argued that
the system was actually correct. The message in #1
was annotated as neutral, whereas the presence of
the word “yay” suggests an overall positive polarity.
The text in #2 could be interpreted as positive, nega-
tive or neutral depending on the author’s disposition.

Unseen vocabulary and unexpected usages were
the largest category of error. For example in #3
“crashed” means to attend without an invitation in-
stead of the more negative meaning associated with
car accidents and airplane failures. Although POS
features can disambiguate word senses, in this case
more sophisticated features for word sense disam-
biguation could help. While the degradation in
performance between the Tweet and SMS test sets
might be explained by differences in medium, er-
rors like those found in #4 and #5 suggest that this
may have more to do with the dialectal differences
between the predominantly American and British
English found in the Tweet test set and the Collo-
quial Singaporean English (aka Singlish) found in
the SMS test set. Error #6 illustrates both how hash-
tags composed of common words can easily become

a problem when assigning a polarity to a short con-
text. Hashtag segmentation presents one possible
path to reducing this source of error.

10 Conclusions and Future Work

The results and rankings reported in section 8 sug-
gest that our systems were competitive in assign-
ing sentiment across the varied tasks and data con-
ditions. We performed particularly well in dis-
ambiguating contextual polarities finishing second
overall on the Tweet test set. We hypothesize this
performance is largely due to the expanded vocabu-
lary obtained via unlabeled data and the richer syn-
tactic context captured with dependency path repre-
sentations.

Looking forward, we expect that term recall and
unseen vocabulary will continue to be key chal-
lenges for sentiment analysis on social media. While
larger amounts of data should assist in that pursuit,
we would like to explore how a more iterative ap-
proach to self-training and lexicon expansion may
provide a less noisy path to attaining such recall.
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Abstract

The DDIExtraction 2013 task concerns the

recognition of drugs and extraction of drug-

drug interactions that appear in biomedical

literature. We propose two subtasks for the

DDIExtraction 2013 Shared Task challenge:

1) the recognition and classification of drug

names and 2) the extraction and classification

of their interactions. Both subtasks have been

very successful in participation and results.

There were 14 teams who submitted a total of

38 runs. The best result reported for the first

subtask was F1 of 71.5% and 65.1% for the

second one.

1 Introduction

The definition of drug-drug interaction (DDI) is

broadly described as a change in the effects of one

drug by the presence of another drug (Baxter and

Stockely, 2010). The detection of DDIs is an im-

portant research area in patient safety since these in-

teractions can become very dangerous and increase

health care costs. Drug interactions are frequently

reported in journals, making medical literature the

most effective source for their detection (Aronson,

2007). Therefore, Information Extraction (IE) can

be of great benefit in the pharmaceutical industry al-

lowing identification and extraction of relevant in-

formation on DDIs and providing an interesting way

of reducing the time spent by health care profession-

als on reviewing the literature.

The DDIExtraction 2013 follows up on a

first event organized in 2011, DDIExtraction

2011 (Segura-Bedmar et al., 2011b) whose main

goal was the detection of drug-drug interactions

from biomedical texts. The new edition includes in

addition to DDI extraction also a supporting task,

the recognition and classification of pharmacologi-

cal substances. DDIExtraction 2013 is designed to

address the extraction of DDIs as a whole, but di-

vided into two subtasks to allow separate evaluation

of the performance for different aspects of the prob-

lem. The shared task includes two challenges:

• Task 9.1: Recognition and classification of

pharmacological substances.

• Task 9.2: Extraction of drug-drug interactions.

Additionally, while the datasets used for

the DDIExtraction 2011 task were composed

by texts describing DDIs from the DrugBank

database(Wishart et al., 2006), the new datasets for

DDIExtraction 2013 also include MedLine abstracts

in order to deal with different types of texts and

language styles.

This shared task has been conceived with a dual

objective: advancing the state-of-the-art of text-

mining techniques applied to the pharmacological

domain, and providing a common framework for

evaluation of the participating systems and other re-

searchers interested in the task.

In the next section we describe the DDI corpus

used in this task. Sections 3 and 4 focus on the de-

scription of the task 9.1 and 9.2 respectively. Finally,

Section 5 draws the conclusions and future work.

2 The DDI Corpus

The DDIExtraction 2013 task relies on the DDI cor-

pus, which is a semantically annotated corpus of
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documents describing drug-drug interactions from

the DrugBank database and MedLine abstracts on

the subject of drug-drug interactions.

The DDI corpus consists of 1,017 texts (784

DrugBank texts and 233 MedLine abstracts) and

was manually annotated with a total of 18,491 phar-

macological substances and 5,021 drug-drug inter-

actions (see Table 1). A detailed description of the

method used to collect and process documents can

be found in (Segura-Bedmar et al., 2011a). The cor-

pus is distributed in XML documents following the

unified format for PPI corpora proposed by Pyysalo

et al., (2008) (see Figure 1). A detailed description

and analysis of the DDI corpus and its methodology

are included in an article currently under review by

BioInformatics journal.1

The corpus was split in order to build the datasets

for the training and evaluation of the different par-

ticipating systems. Approximately 77% of the DDI

corpus documents were randomly selected for the

training dataset and the remaining (142 DrugBank

texts and 91 MedLine abstracts) was used for the test

dataset. The training dataset is the same for both

subtasks since it contains entity and DDI annota-

tions. The test dataset for the task 9.1 was formed by

discarding documents which contained DDI annota-

tions. Entity annotations were removed from this

dataset to be used by participants. The remaining

documents (that is, those containing some interac-

tion) were used to create the test dataset for task 9.2.

Since entity annotations are not removed from these

documents, the test dataset for the task 9.2 can also

be used as additional training data for the task 9.1.

3 Task 9.1: Recognition and classification

of pharmacological substances.

This task concerns the named entity extraction of

pharmacological substances in text. This named en-

tity task is a crucial first step for information ex-

traction of drug-drug interactions. In this task, four

types of pharmacological substances are defined:

drug (generic drug names), brand (branded drug

names), group (drug group names) and drug-n (ac-

tive substances not approved for human use). For a

1M. Herrero-Zazo, I. Segura-Bedmar, P. Martı́nez. 2013.

The DDI Corpus: an annotated corpus with pharmacological

substances and drug-drug interactions, submitted to BioInfor-

matics

Training Test for task 9.1 Test for task 9.2

D
D

I-
D

ru
g
B

a
n

k

documents 572 54 158

sentences 5675 145 973

drug 8197 180 1518

group 3206 65 626

brand 1423 53 347

drug n 103 5 21

mechanism 1260 0 279

effect 1548 0 301

advice 819 0 215

int 178 0 94

D
D

I-
M

ed
L

in
e

documents 142 58 33

sentences 1301 520 326

drug 1228 171 346

group 193 90 41

brand 14 6 22

drug n 401 115 119

mechanism 62 0 24

effect 152 0 62

advice 8 0 7

int 10 0 2

Table 1: Basic statistics on the DDI corpus.

more detailed description, the reader is directed to

our annotation guidelines.2

For evaluation, a part of the DDI corpus consist-

ing of 52 documents from DrugBank and 58 Med-

Line abstracts, is provided with the gold annota-

tion hidden. The goal for participating systems is to

recreate the gold annotation. Each participant sys-

tem must output an ASCII list of reported entities,

one per line, and formatted as:

IdSentence|startOffset-endOffset|text|type

Thus, for each recognized entity, each line must

contain the id of the sentence where this entity ap-

pears, the position of the first character and the one

of the last character of the entity in the sentence, the

text of the entity, and its type. When the entity is a

discontinuous name (eg. aluminum and magnesium

hydroxide), this second field must contain the start

and end positions of all parts of the entity separated

by semicolon. Multiple mentions from the same sen-

tence should appear on separate lines.

3.1 Evaluation Metrics

This section describes the methodology that is used

to evaluate the performance of the participating sys-

tems in task 9.1.

The major forums of the Named Entity Recogni-

tion and Classification (NERC) research community

(such as MUC-7 (Chinchor and Robinson, 1997),

CoNLL 2003 (Tjong Kim Sang and De Meulder,

2003) or ACE07 have proposed several techniques

to assess the performance of NERC systems. While

2http://www.cs.york.ac.uk/semeval-2013/task9/
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Figure 1: Example of an annotated document of the DDI corpus.

Team Affiliation Description

T
a
sk

9
.1

LASIGE(Grego et al., 2013) University of Lisbon, Portugal Conditional random fields

NLM LHC National Library of Medicine, USA Dictionary-based approach

UEM UC3M(Sanchez-Cisneros and Aparicio, 2013) European U. of Madrid, Carlos III University of Madrid, Spain Ontology-based approach

UMCC DLSI(Collazo et al., 2013) Matanzas University, Cuba j48 classifier

UTurku(Björne et al., 2013) University of Turku, Finland SVM classifier (TEES system)

WBI NER(Rocktäschel et al., 2013) Humboldt University of Berlin, Germany Conditional random fields

T
a
sk

9
.2

FBK-irst (Chowdhury and Lavelli, 2013c) FBK-irst, Italy hybrid kernel + scope of negations and semantic roles

NIL UCM(Bokharaeian, 2013) Complutense University of Madrid, Spain SVM classifier (Weka SMO)

SCAI(Bobić et al., 2013) Fraunhofer SCAI, Germany SVM classifier (LibLINEAR)

UC3M(Sanchez-Cisneros, 2013) Carlos III University of Madrid, Spain Shallow Linguistic Kernel

UCOLORADO SOM(Hailu et al., 2013) University of Colorado School of Medicine, USA SVM classifier (LIBSVM)

UTurku(Björne et al., 2013) University of Turku, Finland SVM classifier (TEES system)

UWM-TRIADS(Rastegar-Mojarad et al., 2013) University of Wisconsin-Milwaukee, USA Two-stage SVM

WBI DDI(Thomas et al., 2013) Humboldt University of Berlin, Germany Ensemble of SVMs

Table 2: Short description of the teams.

ACE evaluation is very complex because its scores

are not intuitive, MUC and CoNLL 2003 used the

standard precision/recall/f-score metrics to compare

their participating systems. The main shared tasks in

the biomedical domain have continued using these

metrics to evaluate the outputs of their participant

teams.

System performance should be scored automat-

ically by how well the generated pharmacological

substance list corresponds to the gold-standard an-

notations. In our task, we evaluate the results of

the participating systems according to several evalu-

ation criteria. Firstly, we propose a strict evaluation,

which does not only demand exact boundary match,

but also requires that both mentions have the same

entity type. We are aware that this strict criterion

may be too restrictive for our overall goal (extrac-

tion of drug interactions) because it misses partial

matches, which can provide useful information for

a DDI extraction system. Our evaluation metrics

should score if a system is able to identify the ex-

act span of an entity (regardless of the type) and if

it is able to assign the correct entity type (regardless

of the boundaries). Thus, our evaluation script will

output four sets of scores according to:

1. Strict evaluation (exact-boundary and type

matching).

2. Exact boundary matching (regardless to the

type).

3. Partial boundary matching (regardless to the

type).

4. Type matching (some overlap between the

tagged entity and the gold entitity is required).

Evaluation results are reported using the standard

precision/recall/f-score metrics. We refer the reader

to (Chinchor and Sundheim, 1993) for a more de-

tailed description of these metrics.

These metrics are calculated over all entities and

on both axes (type and span) in order to evaluate

the performance of each axe separately. The final

score is the micro-averaged F-measure, which is cal-

culated over all entity types without distinction. The

main advantage of the micro-average F1 is that it
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takes into account all possible types of errors made

by a NERC system.

Additionally, we calculate precision, recall and f-

measure for each entity type and then their macro-

average measures are provided. Calculating these

metrics for each entity type allows us to evalu-

ate the level of difficulty of recognizing each en-

tity type. In addition to this, since not all entity

types have the same frequency, we can better as-

sess the performance of the algorithms proposed by

the participating systems. This is mainly because

the results achieved on the most frequent entity type

have a much greater impact on overall performance

than those obtained on the entity types with few in-

stances.

3.2 Results and Discussion

Participants could send a maximum of three system

runs. After downloading the test datasets, they had

a maximum of two weeks to upload the results. A

total of 6 teams participated, submitting 16 system

runs. Table 2 lists the teams, their affiliations and

a brief description of their approaches. Due to the

lack of space we cannot describe them in this paper.

Tables 3, 4 and 5 show the F1 scores for each run in

alphabetic order. The reader can find the full ranking

information on the SemEval-2013 Task 9 website3.

The best results were achieved by the WBI

team with a conditional random field. They em-

ployed a domain-independent feature set along

with features generated from the output of

ChemSpot (Rocktäschel et al., 2012), an existing

chemical named entity recognition tool, as well as

a collection of domain-specific resources. Its model

was trained on the training dataset as well as on en-

tities of the test dataset for task 9.2. The second

top best performing team developed a dictionary-

based approach combining biomedical resources

such as DrugBank, the ATC classification system,4

or MeSH,5 among others. Regarding the classifi-

cation of each entity type, we observed that brand

drugs were easier to recognize than the other types.

This could be due to the fact that when a drug is mar-

keted by a pharmaceutical company, its brand name

is carefully selected to be short, unique and easy to

3http://www.cs.york.ac.uk/semeval-2013/task9/
4http://www.whocc.no/atc ddd index/
5http://www.ncbi.nlm.nih.gov/mesh

remember (Boring, 1997). On the other hand, sub-

stances not approved for human use (drug-n) were

more difficult, due to the greater variation and com-

plexity in their naming. In fact, the UEM UC3M

team was the only team who obtained an F1 measure

greater than 0 on the DDI-DrugBank dataset. Also,

this may indicate that this type is less clearly defined

than the others in the annotation guidelines. Another

possible reason is that the presence of such sub-

stances in this dataset is very scarce (less than 1%).

It is interesting that almost every participating sys-

tem was better in detecting and classifying entities of

a particular class compared to all other systems. For

instance, on the whole dataset the dictionary-based

system from NLM LHC had it strengths at drug en-

tities, UEM UC3M at drug N entities, UTurku at

brand entities and WBI NER at group entities.

Finally, the results on the DDI-DrugBank dataset

are much better than those obtained on the DDI-

MedLine dataset. While DDI-DrugBank texts focus

on the description of drugs and their interactions, the

main topic of DDI-MedLine texts would not neces-

sarily be on DDIs. Coupled with this, it is not al-

ways trivial to distinguish between substances that

should be classified as pharmacological substances

and those who should not. This is due to the ambi-

guity of some pharmacological terms. For example,

insulin is a hormone produced by the pancreas, but

can also be synthesized in the laboratory and used

as drug to treat insulin-dependent diabetes mellitus.

The participating systems should be able to deter-

mine if the text is describing a substance originated

within the organism or, on the contrary, it describes a

process in which the substance is used for a specific

purpose and thus should be identified as pharmaco-

logical substance.

4 Task 9.2: Extraction of drug-drug

interactions.

The goal of this subtask is the extraction of drug-

drug interactions from biomedical texts. However,

while the previous DDIExtraction 2011 task focused

on the identification of all possible pairs of inter-

acting drugs, DDIExtraction 2013 also pursues the

classification of each drug-drug interaction accord-

ing to one of the following four types: advice, ef-

fect, mechanism, int. A detailed description of these
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Team Run Rank STRICT EXACT PARTIAL TYPE DRUG BRAND GROUP DRUG N MAVG

LASIGE

1 6 0,656 0,781 0,808 0,69 0,741 0,581 0,712 0,171 0,577

2 9 0,639 0,775 0,801 0,672 0,716 0,541 0,696 0,182 0,571

3 10 0,612 0,715 0,741 0,647 0,728 0,354 0,647 0,16 0,498

NLM LHC
1 4 0,698 0,784 0,801 0,722 0,803 0,809 0,646 0 0,57

2 3 0,704 0,792 0,807 0,726 0,81 0,846 0,643 0 0,581

UMCC DLSI 1,2,3 14,15,16 0,275 0,3049 0,367 0,334 0,297 0,313 0,257 0,124 0,311

UEM UC3M
1 13 0,458 0,528 0,585 0,51 0,718 0,075 0,291 0,185 0,351

2 12 0,529 0,609 0,669 0,589 0,752 0,094 0,291 0,264 0,38

UTurku

1 11 0,579 0,639 0,719 0,701 0,721 0,603 0,478 0,016 0,468

2 8 0,641 0,659 0,731 0,766 0,784 0,901 0,495 0,015 0,557

3 7 0,648 0,666 0,743 0,777 0,783 0,912 0,485 0,076 0,604

WBI

1 5 0,692 0,772 0,807 0,729 0,768 0,787 0,761 0,071 0,615

2 2 0,708 0,831 0,855 0,741 0,786 0,803 0,757 0,134 0,643

3 1 0,715 0,833 0,856 0,748 0,79 0,836 0,776 0,141 0,652

Table 3: F1 scores for task 9.1 on the whole test dataset (DDI-MedLine + DDI-DrugBank). (MAVG for macro-

average). Each run is ranked by STRICT performance.

Team Run Rank STRICT EXACT PARTIAL TYPE DRUG BRAND GROUP DRUG N MAVG

LASIGE

1 8 0,771 0,834 0,855 0,799 0,817 0,571 0,833 0 0,563

2 9 0,771 0,831 0,852 0,799 0,823 0,553 0,824 0 0,568

3 11 0,682 0,744 0,764 0,713 0,757 0,314 0,756 0 0,47

NLM LHC
1 2 0,869 0,902 0,922 0,902 0,909 0,907 0,766 0 0,646

2 3 0,869 0,903 0,919 0,896 0,911 0,907 0,754 0 0,644

UMCC DLSI 1,2,3 14,15,16 0,424 0,4447 0,504 0,487 0,456 0,429 0,371 0 0,351

UEM UC3M
1 13 0,561 0,632 0,69 0,632 0,827 0,056 0,362 0,022 0,354

2 12 0,595 0,667 0,721 0,667 0,842 0,063 0,366 0,028 0,37

UTurku

1 10 0,739 0,753 0,827 0,864 0,829 0,735 0,553 0 0,531

2 6 0,785 0,795 0,863 0,908 0,858 0,898 0,559 0 0,581

3 7 0,781 0,787 0,858 0,905 0,847 0,911 0,551 0 0,578

WBI

1 5 0,86 0,877 0,9 0,89 0,905 0,857 0,782 0 0,636

2 4 0,868 0,894 0,914 0,897 0,909 0,865 0,794 0 0,642

3 1 0,878 0,901 0,917 0,908 0,912 0,904 0,806 0 0,656

Table 4: F1 scores for task 9.1 on the DDI-DrugBank test data. (MAVG for macro-average). Each run is ranked by

STRICT performance.

Team Run Rank STRICT EXACT PARTIAL TYPE DRUG BRAND GROUP DRUG N MAVG

LASIGE

1 4 0,567 0,74 0,772 0,605 0,678 0,667 0,612 0,183 0,577

2 8 0,54 0,733 0,763 0,576 0,631 0,444 0,595 0,196 0,512

3 6 0,557 0,693 0,723 0,596 0,702 0,667 0,56 0,171 0,554

NLM LHC
1 5 0,559 0,688 0,702 0,575 0,717 0,429 0,548 0 0,462

2 3 0,569 0,702 0,715 0,586 0,726 0,545 0,555 0 0,486

UMCC DLSI 1,2,3 14,15,16 0,187 0,2228 0,287 0,245 0,2 0,091 0,191 0,13 0,23

UEM UC3M
1 13 0,39 0,461 0,516 0,431 0,618 0,111 0,238 0,222 0,341

2 11 0,479 0,564 0,628 0,529 0,665 0,182 0,233 0,329 0,387

UTurku

1 12 0,435 0,538 0,623 0,556 0,614 0,143 0,413 0,016 0,328

2 10 0,502 0,528 0,604 0,628 0,703 0,923 0,436 0,016 0,533

3 9 0,522 0,551 0,634 0,656 0,716 0,923 0,426 0,08 0,582

WBI

1 7 0,545 0,681 0,726 0,589 0,634 0,353 0,744 0,074 0,479

2 2 0,576 0,779 0,807 0,612 0,673 0,444 0,729 0,14 0,534

3 1 0,581 0,778 0,805 0,617 0,678 0,444 0,753 0,147 0,537

Table 5: F1 scores for task 9.1 on the DDI-MedLine test data. (MAVG for macro-average). Each run is ranked by

STRICT performance.
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types can be found in our annotation guidelines6.

Gold standard annotations (correct, human-

created annotations) of pharmacological substances

are provided to participants both for training and test

data. The test data for this subtask consists of 158

DrugBank documents and 33 MedLine abstracts.

Each participant system must output an ASCII list

including all pairs of drugs in each sentence, one per

line (multiple DDIs from the same sentence should

appear on separate lines), its prediction (1 if the pair

is a DDI and 0 otherwise) and its type (label null

when the prediction value is 0), and formatted as:

IdSentence|IdDrug1|IdDrug2|prediction|type

4.1 Evaluation Metrics

Evaluation is relation-oriented and based on the

standard precision, recall and F-score metrics. A

DDI is correctly detected only if the system is able

to assign the correct prediction label and the correct

type to it. In other words, a pair is correct only if

both prediction and type are correct. The perfor-

mance of systems to identify those pairs of drugs

interacting (regardless of the type) is also evaluated.

This allows us to assess the progress made with re-

gard to the previous edition, which only dealt with

the detection of DDIs.

Additionally, we are interested in assessing which

drug interaction types are most difficult to detect.

Thus, we calculate precision, recall and F1 for each

DDI type and then their macro-average measures are

provided. While micro-averaged F1 is calculated

by constructing a global contingency table and then

calculating precision and recall, macro-averaged F-

score is calculated by first calculating precision and

recall for each type and then taking the average of

these results.

Evaluating each DDI type separately allows us to

assess the level of difficulty of detecting and classi-

fying each type of interaction. Additionally, it is im-

portant to note that the scores achieved on the most

frequent DDI type have a much greater impact on

overall performance than those achieved on the DDI

types with few instances. Therefore, by calculating

scores for each type of DDI, we can better assess

the performance of the algorithms proposed by the

6http://www.cs.york.ac.uk/semeval-2013/task9/

participating systems.

4.2 Results and Discussion

The task of extracting drug-drug interactions from

biomedical texts has attracted the participation of 8

teams (see Table 2) who submitted 22 runs. Tables 6,

7 and 8 show the results for each run in alphabetic

order. Due to the lack of space, the performance

information is only shown in terms of F1 score. The

reader can find the full ranking information on the

SemEval-2013 Task 9 website7.

Most of the participating systems were built on

support vector machines. In general, approaches

based on non-linear kernels methods achieved better

results than linear SVMs. As in the previous edition

of DDIExtraction, most systems have used primarily

syntactic information. However, semantic informa-

tion has been poorly used.

The best results were submitted by the team from

FBK-irst. They applied a novel hybrid kernel based

RE approach described in Chowdhury (2013a).

They also exploited the scope of negations and

semantic roles for negative instance filtering as

proposed in (Chowdhury and Lavelli, 2013b) and

(Chowdhury and Lavelli, 2012). The second best

results were obtained by the WBI team from the

Humboldt University of Berlin. Its system com-

bines several kernel methods (APG (Airola et al.,

2008) and Shallow Linguistic Kernel (SL) (Giuliano

et al., 2006) among others), the Turku Event Ex-

traction system (TEES) (Björne et al., 2011)8 and

the Moara system (Neves et al., 2009). These two

teams were also the top two ranked teams in DDIEx-

traction 2011. For a more detailed description, the

reader is encouraged to read the papers of the partic-

ipants in the proceedings book.

While the DDIExtraction 2011 shared task con-

centrated efforts on the detection of DDIs, this new

DDIExtraction 2013 task involved not only the de-

tection of DDIs, but also their classification. Al-

though the results of DDIExtraction 2011 are not di-

rectly comparable with the ones reported in DDIEx-

traction 2013 due to the use of different training and

test datasets in each edition, it should be noted that

there has been a significant improvement in the de-

7http://www.cs.york.ac.uk/semeval-2013/task9/
8http://jbjorne.github.io/TEES/
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Team Run Rank CLA DEC MEC EFF ADV INT MAVG

FBK-irst

1 3 0.638 0.8 0.679 0.662 0.692 0.363 0.602

2 1 0.651 0.8 0.679 0.628 0.692 0.547 0.648

3 2 0.648 0.8 0.627 0.662 0.692 0.547 0.644

NIL UCM
1 12 0.517 0.588 0.515 0.489 0.613 0.427 0.535

2 10 0.548 0.656 0.531 0.556 0.61 0.393 0.526

SCAI

1 14 0.46 0.69 0.446 0.459 0.562 0.02 0.423

2 16 0.452 0.683 0.441 0.44 0.559 0.021 0.448

3 15 0.458 0.704 0.45 0.462 0.54 0.02 0.411

UC3M
1 11 0.529 0.676 0.48 0.547 0.575 0.5 0.534

2 21 0.294 0.537 0.268 0.286 0.325 0.402 0.335

UCOLORADO SOM

1 22 0.214 0.492 0.109 0.25 0.219 0.097 0.215

2 20 0.334 0.504 0.361 0.311 0.381 0.333 0.407

3 19 0.336 0.491 0.335 0.313 0.42 0.329 0.38

UTurku

1 9 0.581 0.684 0.578 0.585 0.606 0.503 0.572

2 7 0.594 0.696 0.582 0.6 0.63 0.507 0.587

3 8 0.582 0.699 0.569 0.593 0.608 0.511 0.577

UWM-TRIADS

1 17 0.449 0.581 0.413 0.446 0.502 0.397 0.451

2 13 0.47 0.599 0.446 0.449 0.532 0.421 0.472

3 18 0.432 0.564 0.442 0.383 0.537 0.292 0.444

WBI

1 6 0.599 0.736 0.602 0.604 0.618 0.516 0.588

2 5 0.601 0.745 0.616 0.595 0.637 0.49 0.588

3 4 0.609 0.759 0.618 0.61 0.632 0.51 0.597

Table 6: F1 scores for Task 9.2 on the whole test dataset (DDI-MedLine + DDI-DrugBank). DEC for Detection, CLA

for detection and classification, MEC for mechanism type, EFF for effect type, ADV for advice type, INT for int type

and MAVG for macro-average. Each run is ranked by CLA performance.

Team Run Rank CLA DEC MEC EFF ADV INT MAVG

FBK-irst

1 3 0.663 0.827 0.705 0.699 0.705 0.376 0.624

2 1 0.676 0.827 0.705 0.664 0.705 0.545 0.672

3 2 0.673 0.827 0.655 0.699 0.705 0.545 0.667

NIL UCM
1 12 0.54 0.615 0.527 0.525 0.625 0.444 0.565

2 10 0.573 0.68 0.552 0.597 0.619 0.408 0.55

SCAI

1 15 0.464 0.711 0.449 0.459 0.57 0.021 0.461

2 16 0.463 0.71 0.445 0.458 0.569 0.021 0.46

3 14 0.473 0.734 0.468 0.482 0.551 0.021 0.439

UC3M
1 11 0.555 0.703 0.493 0.593 0.59 0.51 0.561

2 21 0.306 0.549 0.274 0.302 0.334 0.426 0.352

UCOLORADO SOM

1 22 0.218 0.508 0.115 0.251 0.24 0.098 0.228

2 20 0.341 0.518 0.373 0.313 0.398 0.344 0.425

3 19 0.349 0.511 0.353 0.324 0.429 0.327 0.394

UTurku

1 8 0.608 0.712 0.6 0.63 0.617 0.522 0.6

2 7 0.62 0.724 0.605 0.644 0.638 0.522 0.614

3 9 0.608 0.726 0.591 0.635 0.617 0.522 0.601

UWM-TRIADS

1 17 0.462 0.596 0.43 0.459 0.509 0.405 0.463

2 13 0.485 0.616 0.467 0.466 0.536 0.425 0.486

3 18 0.445 0.573 0.469 0.39 0.544 0.29 0.46

WBI

1 6 0.624 0.762 0.621 0.645 0.634 0.52 0.61

2 5 0.627 0.775 0.636 0.636 0.652 0.5 0.611

3 4 0.632 0.783 0.629 0.652 0.65 0.513 0.617

Table 7: F1 scores for task 9.2 on the DDI-DrugBank test dataset. Each run is ranked by CLA performance.

Team Run Rank CLA DEC MEC EFF ADV INT MAVG

FBK-irst

1 4 0.387 0.53 0.383 0.436 0.286 0.211 0.406

2 3 0.398 0.53 0.383 0.407 0.286 0.571 0.436

3 2 0.398 0.53 0.339 0.436 0.286 0.571 0.44

NIL UCM
1 20 0.19 0.206 0.286 0.186 0 0 0.121

2 19 0.219 0.336 0.143 0.271 0 0 0.11

SCAI

1 1 0.42 0.462 0.412 0.458 0.2 0 0.269

2 8 0.323 0.369 0.389 0.333 0 0 0.182

3 6 0.341 0.474 0.31 0.379 0.222 0 0.229

UC3M
1 15 0.274 0.406 0.333 0.267 0 0.364 0.268

2 22 0.186 0.421 0.222 0.171 0.143 0 0.149

UCOLORADO SOM

1 21 0.188 0.37 0.042 0.241 0 0 0.073

2 14 0.275 0.394 0.258 0.302 0.138 0 0.177

3 17 0.244 0.356 0.194 0.255 0.222 0.4 0.272

UTurku

1 18 0.242 0.339 0.258 0.256 0.2 0 0.18

2 16 0.262 0.344 0.214 0.278 0.364 0 0.224

3 13 0.286 0.376 0.286 0.289 0.333 0 0.232

UWM-TRIADS

1 10 0.312 0.419 0.233 0.36 0.267 0 0.219

2 9 0.319 0.436 0.233 0.34 0.421 0.333 0.345

3 11 0.306 0.479 0.247 0.326 0.381 0.333 0.33

WBI

1 7 0.336 0.456 0.368 0.344 0.154 0.4 0.334

2 12 0.304 0.406 0.343 0.318 0.167 0 0.209

3 5 0.365 0.503 0.476 0.347 0.143 0.4 0.353

Table 8: F1 scores for task 9.2 on the DDI-MedLine test dataset. Each run is ranked by CLA performance.
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tection of DDIs: F1 has a remarkable increase from

65.74% (the best F1-score in DDIExtraction 2011)

to 80% (see DEC column of Table 6). The increase

of the size of the corpus made for DDIExtraction

2013 and of the quality of their annotations may

have contributed significantly to this improvement.

However, the results for the detection and classifi-

cation for DDIs did not exceed an F1 of 65.1%. Ta-

ble 6 suggests that some type of DDIs are more diffi-

cult to classify than others. The best F1 ranges from

69.2% for advice to 54.7% for int. One possible ex-

planation for this could be that recommendations or

advice regarding a drug interaction are typically de-

scribed by very similar text patterns such as DRUG

should not be used in combination with DRUG or

Caution should be observed when DRUG is admin-

istered with DRUG.

Regarding results for the int relationship, it should

be noted that the proportion of instances of this re-

lationship (5.6%) in the DDI corpus is much smaller

than those of the rest of the relations (41.1% for ef-

fect, 32.3% for mechanism and 20.9% for advice).

As stated earlier, one of the differences from

the previous edition is that the corpus developed

for DDIExtraction 2013 is made up of texts from

two different sources: MedLine and the DrugBank

database. Thus, the different approaches can be

evaluated on two different styles of biomedical texts.

While MedLine abstracts are usually written in ex-

tremely scientific language, texts from DrugBank

are written in a less technical form of the language

(similar to the language used in package inserts). In-

deed, this may be the reason why the results on the

DDI-DrugBank dataset are much better than those

obtained on the DDI-MedLine dataset (see Tables 7

and 8).

5 Conclusions

The DDIExtraction 2011 task concentrated efforts

on the novel aspects of the DDI extraction task, the

drug recognition was assumed and the annotations

for drugs were provided to the participants. This

new DDIExtraction 2013 task pursues the detec-

tion and classification of drug interactions as well

as the recognition and classification of pharmaco-

logical substances. The task attracted broad interest

from the community. A total of 14 teams from 7 dif-

ferent countries participated, submitted a total of 38

runs, exceeding the participation of DDIExtraction

2011 (10 teams). The participating systems demon-

strated substantial progress at the established DDI

extraction task on DrugBank texts and showed that

their methods also obtain good results for MedLine

abstracts.

The results that the participating systems have re-

ported show successful approaches to this difficult

task, and the advantages of non-linear kernel-based

methods over linear SVMs for extraction of DDIs.

In the named entity task, the participating systems

perform well in recognizing generic drugs, brand

drugs and groups of drugs, but they fail in recogniz-

ing active substances not approved for human use.

Although the results are positive, there is still much

room to improve in both subtasks. We have ac-

complished our goal of providing a framework and

a benchmark data set to allow for comparisons of

methods for the recognition of pharmacological sub-

stances and detection and classification of drug-drug

interactions from biomedical texts.

We would like that our test dataset can still serve

as the basis for fair and stable evaluation after the

task. Thus, we have decided that the full gold an-

notations for the test data are not available for the

moment. We plan to make available a web service

where researchers can test their methods on the test

dataset and compare their results with the DDIEx-

traction 2013 task participants.
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Abstract

This paper presents the multi-phase relation
extraction (RE) approach which was used for
the DDI Extraction task of SemEval 2013. As
a preliminary step, the proposed approach in-
directly (and automatically) exploits the scope
of negation cues and the semantic roles of in-
volved entities for reducing the skewness in
the training data as well as discarding possible
negative instances from the test data. Then, a
state-of-the-art hybrid kernel is used to train
a classifier which is later applied on the in-
stances of the test data not filtered out by the
previous step. The official results of the task
show that our approach yields an F-score of
0.80 for DDI detection and an F-score of 0.65
for DDI detection and classification. Our sys-
tem obtained significantly higher results than
all the other participating teams in this shared
task and has been ranked 1st.

1 Introduction

Drug-drug interaction (DDI) is a condition when one
drug influences the level or activity of another. The
extraction of DDIs has significant importance for
public health safety. It was reported that about 2.2
million people in USA, age 57 to 85, were taking
potentially dangerous combinations of drugs (Lan-
dau, 2009). Another report mentioned that deaths
from accidental drug interactions rose by 68 percent
between 1999 and 2004 (Payne, 2007). The DDIEx-
traction 2011 and DDIExtraction 2013 shared tasks
underline the importance of DDI extraction.

The DDIExtraction 2013 task concerns the recog-
nition of drugs and the extraction of drug-drug in-

teractions from biomedical literature. The dataset of
the shared task is composed by texts from the Drug-
Bank database as well as MedLine abstracts in or-
der to deal with different type of texts and language
styles. Participants were asked to not only extract
DDIs but also classify them into one of four pre-
defined classes: advise, effect, mechanism and int.
A detailed description of the task settings and data
can be found in Segura-Bedmar et al. (2013).

The system that we used in this shared task
combines various techniques proposed in our re-
cent research activities for relation extraction (RE)
(Chowdhury and Lavelli, 2012a; Chowdhury and
Lavelli, 2012b; Chowdhury and Lavelli, 2013).1

2 DDI Detection

Our system performs DDI detection and classifica-
tion in two separate steps. In this section, we explain
how DDI detection (i.e. whether two drug mentions
participate in a DDI) is accomplished. DDI classifi-
cation will be described in Section 3.

There are three phases for DDI detection: (i) dis-
card less informative sentences, (ii) discard less in-
formative instances, and (iii) train the system (a sin-
gle model regardless of DDI types) on the remaining
training instances and identify possible DDIs from
the remaining test instances. These phases are de-
scribed below.

2.1 Exploiting the scope of negations for
sentence filtering

Negation is a linguistic phenomenon where a nega-
tion cue (e.g. not) can alter the meaning of a partic-

1Available in https://github.com/fmchowdhury/HyREX.
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ular text segment or of a fact. This text segment (or
fact) is said to be inside the scope of such negation
(cue). In one of our recent papers (Chowdhury and
Lavelli, 2013), we proposed how to exploit the scope
of negations for RE. We hypothesize that a classi-
fier trained solely on features related to the scope of
negations can be used to pro-actively filter groups
of instances which are less informative and mostly
negative.

To be more precise, we propose to train a classi-
fier (which will be applied before using the kernel
based RE classifier mentioned in Section 2.3) that
would check whether all the target entity mentions
inside a sentence along with possible relation clues
(or trigger words), if any, fall (directly or indirectly)
under the scope of a negation cue. If such a sentence
is found, then it would be identified as less informa-
tive and discarded (i.e. the candidate mention pairs
inside such sentence would not be considered). Dur-
ing training (and testing), we group the instances by
sentences. Any sentence that contains at least one
relation of interest is considered by the less infor-
mative sentence (LIS) classifier as a positive (train-
ing/test) instance. The remaining sentences are con-
sidered as negative instances.

We use a number of features related to negation
scopes to train a binary SVM classifier that filters out
less informative sentences. These features are basi-
cally contextual and shallow linguistic features. Due
to space limitation, we do not report these features
here. Interested readers are referred to Chowdhury
and Lavelli (2013).

The objective of the classifier is to decide whether
all target entity mentions as well as any possible ev-
idence inside the corresponding sentence fall under
the scope of a negation cue in such a way that the
sentence is unlikely to contain the relation of in-
terest (e.g. DDI). If the classifier finds such a sen-
tence, then it is assigned the negative class label. At
present, we focus only on the first occurrence of the
negation cues “no”, “n’t” or “not”. These cues usu-
ally occur more frequently and generally have larger
negation scope than other negation cues.

The LIS classifier is trained using a linear SVM
classifier. Its hyper-parameters are tuned during
training for obtaining maximum recall. In this way
we minimize the number of false negatives (i.e. sen-
tences that contain relations but are wrongly filtered

out). Once the classifier is trained using the training
data, we apply it on both the training and test data.
However, if the recall of the LIS classifier is found
to be below a threshold value (we set it to 70.0) dur-
ing cross validation on the training data of a corpus,
it is not used for sentence filtering on such corpus.

Any (training/test) sentence that is classified as
negative is considered as a less informative sentence
and is filtered out. In other words, such a sentence is
not considered for RE. However, it should be noted
that, if such a sentence is a test sentence and it con-
tains positive RE instances, then all these filtered
positive RE instances are automatically considered
as false negatives during the calculation of RE per-
formance.

We rule out sentences (i.e. we consider them nei-
ther positive nor negative instances for training the
classifier that filters less informative sentences) dur-
ing both training and testing if any of the following
conditions holds:

• The sentence contains less than two target en-
tity mentions (such sentence would not contain
the relation of interest anyway).

• It has any of the following phrases – “not
recommended”, “should not be” or “must not
be”.2

• There is no “no”, “n’t” or “not” in the sentence.

• No target entity mention appears in the sen-
tence after “no”, “n’t’ or “not”.

2.2 Discarding instances using semantic roles
and contextual evidence

For identifying less informative negative instances,
we exploit static (i.e. already known, heuristically
motivated) and dynamic (i.e. automatically col-
lected from the data) knowledge which has been
proposed in Chowdhury and Lavelli (2012b). This
knowledge is described by the following criteria:

• C1: If each of the two entity mentions (of a
candidate pair) has anti-positive governors (see
Section 2.2.1) with respect to the type of the
relation, then they are not likely to be in a given
relation.

2These expressions often provide clues that one of the drug
entity mentions negatively influences the level of activity of the
other.
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• C2: If two entity mentions in a sentence refer
to the same entity, then it is unlikely that they
would have a relation between themselves.

• C3: If a mention is the abbreviation of another
mention (i.e. they refer to the same entity), then
they are unlikely to be in a relation.

Criteria C2 and C3 (static knowledge) are quite
intuitive. For criterion C1, we construct on the fly a
list of anti-positive governors (dynamic knowledge)
taken from the training data and use them for de-
tecting pairs that are unlikely to be in relation. As
for criterion C2, we simply check whether two men-
tions have the same name and there is more than one
character between them. For criterion C3, we look
for any expression of the form “Entity1 (Entity2)”
and consider “Entity2” as an abbreviation or alias of
“Entity1”.

The above criteria are used to filter instances from
both training and test data. Any positive test instance
filtered out by these criteria is automatically consid-
ered as a false negative during the calculation of RE
performance.

2.2.1 Anti-positive governors
The semantic roles of the entity mentions may in-

directly contribute either to relate or not to relate
them in a particular relation type (e.g. PPI) in the
corresponding context. To put it differently, the se-
mantic roles of two mentions in the same context
could provide an indication whether the relation of
interest does not hold between them. Interestingly,
the word on which a certain entity mention is (syn-
tactically) dependent (along with the dependency
type) could often provide a clue of the semantic role
of such mention in the corresponding sentence.

Our goal is to automatically identify the words
(if any) that tend to prevent mentions, which are di-
rectly dependent on those words, from participating
in a certain relation of interest with any other men-
tion in the same sentence. We call such words anti-
positive governors and assume that they could be ex-
ploited to identify negative instances (i.e. negative
entity mention pairs) in advance. Interested readers
are referred to Chowdhury and Lavelli (2012b) for
example and description of how anti-positive gov-
ernors are automatically collected from the training
data.

2.3 Hybrid Kernel based RE Classifier

As RE classifier we use the following hybrid kernel
that has been proposed in Chowdhury and Lavelli
(2013). It is defined as follows:

KHybrid (R1, R2) = KHF (R1, R2) + KSL

(R1, R2) + w * KPET (R1, R2)

where KHF is a feature based kernel (Chowdhury
and Lavelli, 2013) that uses a heterogeneous set
of features, KSL is the Shallow Linguistic (SL)
kernel proposed by Giuliano et al. (2006), and
KPET stands for the Path-enclosed Tree (PET) ker-
nel (Moschitti, 2004). w is a multiplicative constant
that allows the hybrid kernel to assign more (or less)
weight to the information obtained using tree struc-
tures depending on the corpus. We exploit the SVM-
Light-TK toolkit (Moschitti, 2006; Joachims, 1999)
for kernel computation. The parameters are tuned
by doing 5-fold cross validation on the training data.

3 DDI Type Classification

The next step is to classify the extracted DDIs into
different categories. We train 4 separate models for
each of the DDI types (one Vs all) to predict the
class label of the extracted DDIs. During this train-
ing, all the negative instances from the training data
are removed. The filtering techniques described in
Sections 2.1 and 2.2 are not used in this stage.

The extracted DDIs are assigned a default DDI
class label. Once the above models are trained, they
are applied on the extracted DDIs from the test data.
The class label of the model which has the highest
confidence score for an extracted DDI instance is as-
signed to such instance.

4 Data Pre-processing and Experimental
Settings

The Charniak-Johnson reranking parser (Charniak
and Johnson, 2005), along with a self-trained
biomedical parsing model (McClosky, 2010), has
been used for tokenization, POS-tagging and pars-
ing of the sentences. Then the parse trees are pro-
cessed by the Stanford parser (Klein and Manning,
2003) to obtain syntactic dependencies. The Stan-
ford parser often skips some syntactic dependencies
in output. We use the rules proposed in Chowdhury
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and Lavelli (2012a) to recover some of such depen-
dencies. We use the same techniques for unknown
characters (if any) as described in Chowdhury and
Lavelli (2011).

Our system uses the SVM-Light-TK toolkit3

(Moschitti, 2006; Joachims, 1999) for computation
of the hybrid kernels. The ratio of negative and posi-
tive examples has been used as the value of the cost-
ratio-factor parameter. The SL kernel is computed
using the jSRE tool4.

The KHF kernel can exploit non-target entities
to extract important clues (Chowdhury and Lavelli,
2013). So, we use a publicly available state-of-the-
art NER system called BioEnEx (Chowdhury and
Lavelli, 2010) to automatically annotate both the
training and the test data with disease mentions.

The DDIExtraction 2013 shared task data include
two types of texts: texts taken from the DrugBank
database and texts taken from MedLine abstracts.
During training we used both types together.

5 Experimental Results

Table 1 shows the results of 5-fold cross validation
for DDI detection on the training data. As we can
see, the usage of the LIS and LII filtering techniques
improves both precision and recall.

We submitted three runs for the DDIExtraction
2013 shared task. The only difference between the
three runs concerns the default class label (i.e. the
class chosen when none of the separate models as-
signs a class label to a predicted DDI). Such default
class label is “int”, “effect” and “mechanism” for
run 1, 2 and 3 respectively. According to the offi-
cial results provided by the task organisers, our best
result was obtained by run 2 (shown in Table 2).

According to the official results, the performance
for “advise” is very low (F1 0.29) in MedLine texts,
while the performance for “int” is comparatively
much higher (F1 0.57) with respect to the one of the
other DDI types. In comparison, the performance
for “int” is much lower (F1 0.55) in DrugBank texts
with respect to the one of the other DDI types.

In MedLine test data, the number of “effect” (62)
and “mechanism” (24) DDIs is much higher than
that of “advise” (7) and “int” (2). On the other

3http://disi.unitn.it/moschitti/Tree-Kernel.htm
4http://hlt.fbk.eu/en/technology/jSRE

P R F1

KHybrid 0.66 0.80 0.72
LIS filtering + KHybrid 0.67 0.80 0.73
LIS filtering + LII filtering 0.68 0.82 0.74
+ KHybrid

Table 1: Comparison of results for DDI detection on the
training data using 5-fold cross validation. Parameter tun-
ing is not done during these experiments.

P R F1

All text
DDI detection only 0.79 0.81 0.80
Detection and Classification 0.65 0.66 0.65
DrugBank text
DDI detection only 0.82 0.84 0.83
Detection and Classification 0.67 0.69 0.68
MedLine text
DDI detection only 0.56 0.51 0.53
Detection and Classification 0.42 0.38 0.40

Table 2: Official results of the best run (run 2) of our
system in the DDIExtraction 2013 shared task.

hand, in DrugBank test data, the different DDIs are
more evenly distributed – “effect” (298), “mecha-
nism” (278), “advise” (214) and “int” (94).

Initially, it was not clear to us why our system (as
well as other participants) achieves so much higher
results on the DrugBank sentences in comparison to
MedLine sentences. Statistics of the average num-
ber of words show that the length of the two types
of training sentences are substantially similar (Drug-
Bank : 21.2, MedLine : 22.3). It is true that the num-
ber of the training sentences for the former is almost
5.3 times higher than the latter. But it could not be
the main reason for such high discrepancies.

So, we turned our attention to the presence of the
cue words. In the 4,683 sentences of the DrugBank
training set (which have at least one drug mention),
we found that the words “increase” and “decrease”
are present in 721 and 319 sentences respectively.
While in the 877 sentences of the MedLine train-
ing set (which have at least one drug mention), we
found that the same words are present in only 67
and 40 sentences respectively. In other words, the
presence of these two important cue words in the
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DrugBank sentences is twice more likely than that
in the MedLine sentences. We assume similar obser-
vations might be also possible for other cue words.
Hence, this is probably the main reason why the re-
sults are so much better on the DrugBank sentences.

6 Conclusion

In this paper, we have described a novel multi-phase
RE approach that outperformed all the other partic-
ipating teams in the DDI Detection and Classifica-
tion task at SemEval 2013. The central component
of the proposed approach is a state-of-the-art hybrid
kernel. Our approach also indirectly (and automat-
ically) exploits the scope of negation cues and the
semantic roles of the involved entities.

Acknowledgments

This work is supported by the project “eOnco - Pervasive
knowledge and data management in cancer care”. The
authors would like to thank Alessandro Moschitti for his
help in the use of SVM-Light-TK.

References

E Charniak and M Johnson. 2005. Coarse-to-fine n-best
parsing and MaxEnt discriminative reranking. In Pro-
ceedings of the 43rd Annual Meeting of the Associa-
tion for Computational Linguistics (ACL 2005).

MFM Chowdhury and A Lavelli. 2010. Disease mention
recognition with specific features. In Proceedings of
the 2010 Workshop on Biomedical Natural Language
Processing, pages 83–90, Uppsala, Sweden, July.

MFM Chowdhury and A Lavelli. 2011. Drug-drug inter-
action extraction using composite kernels. In Proceed-
ings of the 1st Challenge task on Drug-Drug Interac-
tion Extraction (DDIExtraction 2011), pages 27–33,
Huelva, Spain, September.

MFM Chowdhury and A Lavelli. 2012a. Combining tree
structures, flat features and patterns for biomedical re-
lation extraction. In Proceedings of the 13th Confer-
ence of the European Chapter of the Association for
Computational Linguistics (EACL 2012), pages 420–
429, Avignon, France, April.

MFM Chowdhury and A Lavelli. 2012b. Impact of Less
Skewed Distributions on Efficiency and Effectiveness
of Biomedical Relation Extraction. In Proceedings of
the 24th International Conference on Computational
Linguistics (COLING 2012), Mumbai, India, Decem-
ber.

MFM Chowdhury and A Lavelli. 2013. Exploiting the
Scope of Negations and Heterogeneous Features for
Relation Extraction: A Case Study for Drug-Drug In-
teraction Extraction. In Proceedings of the 2013 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technology (NAACL 2013), Atlanta, USA, June.

C Giuliano, A Lavelli, and L Romano. 2006. Exploit-
ing shallow linguistic information for relation extrac-
tion from biomedical literature. In Proceedings of the
11th Conference of the European Chapter of the As-
sociation for Computational Linguistics (EACL 2006),
pages 401–408.

T Joachims. 1999. Making large-scale support vec-
tor machine learning practical. In Advances in ker-
nel methods: support vector learning, pages 169–184.
MIT Press, Cambridge, MA, USA.

D Klein and C Manning. 2003. Accurate unlexicalized
parsing. In Proceedings of the 41st Annual Meeting
of the Association for Computational Linguistics (ACL
2003), pages 423–430, Sapporo, Japan.

E Landau. 2009. Jackson’s death raises ques-
tions about drug interactions [Published in CNN;
June 26, 2009]. http://edition.cnn.
com/2009/HEALTH/06/26/jackson.drug.
interaction.caution/index.html.

D McClosky. 2010. Any Domain Parsing: Automatic
Domain Adaptation for Natural Language Parsing.
Ph.D. thesis, Department of Computer Science, Brown
University.

A Moschitti. 2004. A study on convolution kernels for
shallow semantic parsing. In Proceedings of the 42nd
Annual Meeting of the Association for Computational
Linguistics, ACL ’04, Barcelona, Spain.

A Moschitti. 2006. Making tree kernels practical for nat-
ural language learning. In Proceedings of 11th Confer-
ence of the European Chapter of the Association for
computational Linguistics (EACL 2006), pages 113–
120, Trento, Italy.

JW Payne. 2007. A Dangerous Mix [Published
in The Washington Post; February 27, 2007].
http://www.washingtonpost.com/
wp-dyn/content/article/2007/02/23/
AR2007022301780.html.

I Segura-Bedmar, P Martı́nez, and M Herrero-Zazo.
2013. SemEval-2013 task 9: Extraction of drug-drug
interactions from biomedical texts. In Proceedings of
the 7th International Workshop on Semantic Evalua-
tion (SemEval 2013), Atlanta, USA, June.

355



Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Seventh International Workshop on Semantic
Evaluation (SemEval 2013), pages 356–363, Atlanta, Georgia, June 14-15, 2013. c©2013 Association for Computational Linguistics

WBI-NER: The impact of domain-specific features on the performance of
identifying and classifying mentions of drugs
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Abstract

Named entity recognition (NER) systems
are often based on machine learning tech-
niques to reduce the labor-intensive devel-
opment of hand-crafted extraction rules and
domain-dependent dictionaries. Nevertheless,
time-consuming feature engineering is often
needed to achieve state-of-the-art performance.
In this study, we investigate the impact of such
domain-specific features on the performance
of recognizing and classifying mentions of
pharmacological substances. We compare the
performance of a system based on general fea-
tures, which have been successfully applied
to a wide range of NER tasks, with a system
that additionally uses features generated from
the output of an existing chemical NER tool
and a collection of domain-specific resources.
We demonstrate that acceptable results can be
achieved with the former system. Still, our ex-
periments show that using domain-specific fea-
tures outperforms this general approach. Our
system ranked first in the SemEval-2013 Task
9.1: Recognition and classification of pharma-
cological substances.

1 Introduction

The accurate identification of drug mentions in text
is an important prerequisite for many applications, in-
cluding the retrieval of information about substances
in drug development (e.g. Roberts and Hayes (2008)),
the identification of adverse drug effects (e.g. Lea-
man et al. (2010)) and the recognition of drug-drug
interactions (e.g. Thomas et al. (2011)). Given that
most of the information related to drug research is

covered by medical reports and pharmacological pub-
lications, computational methods for information ex-
traction should be used to support this task.

The SemEval-2013 Task 9.1 competition1 (Segura-
Bedmar et al., 2013) aims at a fair assessment on the
state-of-the-art of tools that recognize and classify
mentions of pharmacological substances in natural
language texts – a task referred to as drug named
entity recognition (NER). The goal of participating
teams is to recreate the gold annotation on a held-
out part of an annotated corpus. Four classes of en-
tities have to be identified: Drug, DrugN, Group
and Brand. Entities of class Drug denote any kind
of drug that is approved for use in humans, whereas
DrugN denotes substances that are not approved.
Group are terms describing a group of drugs and
Brand stands for drug names introduced by a phar-
maceutical company.

The aim of this study is to examine whether it is
worthwhile to implement domain-specific features
for supporting drug NER. The question we attempt
to answer is whether such features really help in iden-
tifying and classifying mentions of drugs or whether
a mostly domain-independent feature set, which can
be applied to many other tasks, achieves a compara-
ble performance.

2 Related work

Various NER systems for identifying different
classes of chemical entities, including mentions of
drugs, trivial names and IUPAC terms, have been pro-
posed.

1http://www.cs.york.ac.uk/semeval-2013/task9/
(accessed 2013-04-29)
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Klinger et al. (2008) trained a conditional random
field (CRF) (Lafferty et al., 2001) for extracting men-
tions of IUPAC and IUPAC-like entities. They report
an F1 measure of 85.6% on a hand-annotated corpus
consisting of MEDLINE abstracts.

Segura-Bedmar et al. (2008) introduced Drug-
NER, which is based on UMLS MetaMap Trans-
fer (MMTx) and nomenclature rules by the World
Health Organization International Nonproprietary
Names (INNs). Their system extracts and classifies
mentions of drugs and achieves a precision of 99.1%
and a recall of 99.8% on a silver-standard corpus.

OSCAR (Open-Source Chemistry Analysis Rou-
tines) (Corbett and Murray-Rust, 2006; Jessop et al.,
2011) extracts mentions of a wide range of chemi-
cals using a maximum entropy Markov model (Mc-
Callum et al., 2000). It achieves an F1 of 83.2% on
a corpus consisting of PubMed abstracts and 80.7%
on a corpus consisting of chemistry papers (Corbett
and Copestake, 2008).

Hettne et al. (2009) compiled Jochem (the joint
chemical dictionary) from ChemIDplus, ChEBI,
DrugBank, PubChem, HMDB, KEGG, MeSH and
CAS Registry IDs. Jochem was used with Peregrine
(Schuemie et al., 2007), a dictionary-based NER tool,
achieving an F1 of 50% on the SCAI corpus (Kolárik
et al., 2008).

We developed ChemSpot (Rocktäschel et al.,
2012), a system for extracting mentions of various
kinds of chemicals from text. We applied a CRF
for extracting mentions of IUPAC entities based on
the work of Klinger et al. (2008) and used Jochem
(Hettne et al., 2009) with an adapted matching-
mechanism for identifying trivial names, drugs and
brands. ChemSpot v1.0 achieved an overall F1 of
68.1% on the SCAI corpus. In the meantime, we have
worked on several enhancements (see Section 3.1).

The SemEval-2013 Task 9.1 poses new challenges
on NER tools. Instead of targeting all kinds of chem-
icals, it focuses on drugs, i.e., pharmacological sub-
stances that affect humans and are used for adminis-
tration. Moreover, entities need to be classified into
the four categories mentioned above.

3 Methods

Our approach is based on a linear-chain CRF with
mostly domain-independent features commonly ap-

plied to NER tasks. In addition, we employ vari-
ous domain-specific features derived from the out-
put of ChemSpot’s components, as well as Jochem,
the PHARE ontology (Coulet et al., 2011) and the
ChEBI ontology (De Matos et al., 2010). In the
following, we first explain extensions to ChemSpot.
Subsequently, we give a brief introduction to linear-
chain CRFs before describing the general and
domain-specific features used by our system. Finally,
we explain the experimental setup and discuss our
results.

3.1 Improvements of ChemSpot

To improve ChemSpot’s chemical NER performance,
we extend it by two components and modify its
match-expansion mechanism.

The first addition is a pattern-based tagger
for chemical formulae. In its basic form it ex-
tracts mentions matching the regular expression
(S N?(\+|-)?)+ where S denotes a chemical
symbol and N a natural number greater one.2 This
pattern is augmented by filters to comply with other
naming conventions, such as correct grouping of
compounds with parentheses.

The second extension targets ambiguous ab-
breviations. For example, the abbreviation “DAG”
could denote “diacylglycerol” or “directed acyclic
graph”. We use ABBREV, an algorithm proposed
by Schwartz and Hearst (2003), for extracting such
abbreviations and their definitions (e.g. “diacylglyc-
erol (DAG)”). Note that the position of the long form
(LF) and short form (SF) is interchangeable. To dis-
ambiguate between chemical and non-chemical ab-
breviations, we apply the following two rules to the
mentions extracted by ChemSpot: (1) For a given
pair of LF and SF, we check whether the LF was
found to be a chemical but the SF was not. In this
case we add a new annotation for every occurrence
of the SF in the document. (2) Contrary to that, if
only the SF was tagged as a chemical but the LF was
not, we assume that the abbreviation does not refer
to a chemical and remove all annotations of the SF
in the document.

ChemSpot’s match-expansion often leads to the
extraction of non-chemical suffixes corresponding to
verbs, e.g., “-induced”, “-enriched” or “-mediated”.

2By convention, 1 is ommited (e.g. CO2 instead of C1O2).
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Figure 1: A factor graph for a 1st-order linear-chain
CRF (2nd-order with dashed edges). Note that for
each feature function fj in the factor Ψ, the same
weight θj is used at all other positions (gray) in the
sequence (parameter tying).

To tackle this issue we stop the expansion at tokens
whose part-of-speech tag refers to a verb form. Fur-
thermore, we integrated OPSIN (Lowe et al., 2011)
to normalize entity mentions to InChI strings.

The current v1.5 release of ChemSpot achieves an
overall F1 of 74.2% on the SCAI corpus, improving
the performance by 6.1 percentage points (pp) F1
compared to ChemSpot v1.0.

3.2 Linear-chain conditional random fields

Contrary to the hybrid strategy used in ChemSpot,
we follow a purely machine learning based approach
for drug NER in this work. NER can be formulated
as a sequence labeling task where the goal is to find
a sequence of labels y = {y1, . . . , yn} given a se-
quence x = {x1, . . . , xn} of observed input tokens.
Labels commonly follow the IOB format, where B
denotes a token at the beginning of an entity men-
tion, I denotes the continuation of a mention and O
corresponds to tokens that are not part of a mention.
Extracting entity mentions from a tokenized text x
then amounts to finding y∗ = arg maxy p(y |x).

Linear-chain CRFs are well-known discriminative
undirected graphical models that encode the condi-
tional probability p(y |x) of a set of input variables
x and a sequence of output variables y (see Wallach
(2004) or Klinger and Tomanek (2007) for an intro-
duction). In the case of NER, x is a sequence of n
tokens and y a sequence of n corresponding labels.
Linear-chain CRFs of order k factorize p(y |x) into
a product of factors Ψ, globally normalized by an
input-dependent partition function Z(x):

p(y |x) =
1

Z(x)

n∏
i=1

Ψ(yi−k, . . . , yi−1, yi,x, i).

A factor Ψ is commonly defined as the exponen-
tial function of a sum of weighted feature functions
{f1, . . . , fm}:

1

Z(x)

n∏
i=1

exp

 m∑
j=1

θjfj(yi−k, . . . , yi−1, yi,x, i)

 .

The feature function weights {θj} can be learned
from training data and are shared across all positions
i (parameter tying).

The factorization of a CRF can be illustrated by
a factor graph (Kschischang et al., 2001). A factor
graph is a bipartite graph, where one set of nodes
corresponds to random variables and the other to fac-
tors. Each factor is connected to the variables of its
domain, making the factorization of the model ap-
parent. Figure 1 shows a factor graph for a segment
of a linear-chain CRF of order one and two respec-
tively. In a linear-chain CRF of order k, the label of
a token at position i is connected via feature func-
tions of a factor to the input sequence x as well as
the previous k labels. For example, in a first-order
linear-chain CRF, one of the feature functions could
be f[O→B,capital](yi−1, yi,x, i), which evaluates to 1 if
yi−1 = O, yi = B and xi starts with a capital letter
(otherwise it yields 0). Multiplication with the weight
θ[O→B,capital] yields an unnormalized local score that
indicates how favorable a transition from O to B is
provided that the token at position i starts with a capi-
tal letter. Note that the terms feature function and fea-
ture are often used synonymously and the case differ-
entiation for different labels is implicit. In this work
a feature fcapital denotes its corresponding set of first-
order feature functions {f[s→t,capital](yi−1, yi,x, i) |
(s, t) ∈ {(B,B), (B,I), (B,O), (I,B), (I,I), (I,O),
(O,B), (O,O)}}3 (similarly for second-order).

We employ MALLET (McCallum, 2002) as under-
lying CRF implementation and use a second-order
linear-chain CRF with offset conjunctions of order
two. Offset conjunctions of order k adds features
around a window of k to the features at a partic-
ular position, providing more contextual informa-
tion. Akin to Klinger et al. (2008), we perform fine-
grained tokenization, splitting at special characters
and transitions from alphanumeric characters to dig-
its. An exemplary tagging sequence is shown in Ta-
ble 1.

3Transitions from O to I are invalid.
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i 0 1 2 3 4 5 6 7 8 9 10
y O B-DrugN O B-DrugN I-DrugN I-DrugN O B-Group O O O
x Both ibogaine and 18 - MC ameliorate opioid withdrawal signs .

Table 1: Example label sequence for the tokenized sentence MedLine.d110.s4 of the training corpus.

Feature Class Description

FC

fCHEMSPOT part of a prediction by ChemSpot
fIUPAC part of an IUPAC entity
fFORMULA part of a chemical formula
fDICTIONARY part of a dictionary match
fABBREV part of a chemical abbreviation

FJ

fJOCHEM dictionaries in Jochem
fPREFIX frequent chemical prefix
fSUFFIX frequent chemical suffix

FO

fPHARE PHARE ontology
fCHEBDESCS #descendants in ChEBI ontology
fCHEBDEPTH average depth in ChEBI ontology

FG

fKLINGER see Klinger et al. (2008)
fBANNER see Leaman and Gonzalez (2008)
fABNER see Settles (2005)

FF

fUPPERCASESENT. part of an upper-case sentence
fPREVWINDOW text of preceding four tokens
fNEXTWINDOW text of succeeding four tokens

Table 2: Overview of features used for identifying
and classifying mentions of pharmacological sub-
stances.

Note that the sequence-labeling approach in the
described form cannot cope with discontinuous en-
tity mentions. Since only a tiny fraction (≈ 0.3%) of
entities in the training corpus are discontinuous, we
simply neglect these for training and tagging.

3.3 Feature sets

An overview of the features used by our system is
shown in Table 2. Our first two submissions for the
SemEval-2013 Task 9.1 differ only in that they use
different subsets of these features. Run 1 employs a
feature set assembled from common general features
used for biomedical NER (FG ∪ FF ), whereas Run
2 additionally uses features tailored for extracting
mentions of chemicals (FC ∪ FJ ∪ FO).

3.3.1 Run 1: general features FG and FF

We employ a union of common, rather domain-
independent features published by Klinger et al.
(2008), Settles (2005) and Leaman and Gonzalez

(2008). Note that these feature sets have been suc-
cessfully applied to a wide range of different biomed-
ical NER tasks, e.g., identifying mentions of DNA
sequences, genes, diseases, mutations, IUPAC terms,
cell lines and cell types. They encompass morpho-
logical, syntactic and orthographic features, such as
the text of the token itself, token character n-grams
of length 2 and 3, prefixes and suffixes of length 2, 3,
and 4, characters left and right to a token and part-of-
speech tags. Furthermore, they contain various regu-
lar expressions that capture, for instance, whether a
token starts with a capital letter or contains digits.

In addition, we employ features based on NER
examples in FACTORIE (McCallum et al., 2009).
Specifically, we use the text of the four preceding
and succeeding tokens and whether a token is part of
a sentence that contains only upper-case characters.
The latter is commonly the case for headlines, which
likely contain an entity mention.

3.3.2 Run 2: domain-specific features

In addition to the features of Run 1, we use pre-
dictions of our improved version of ChemSpot, as
well as features derived from Jochem, PHARE and
ChEBI.

ChemSpot-based features FC: When a token is
part of a mention extracted by one of ChemSpot’s
components (i.e. IUPAC entity, chemical formula,
dictionary match or chemical abbreviation), we use
the name of the respective component as feature. In
addition, we determine whether a token is part of an
entity predicted by ChemSpot after match-expansion,
boundary-correction and resolution of overlapping
entities. Using the output of ChemSpot as features
for our system could be framed as stacking (see
Wolpert (1992)).

Jochem-based features FJ : For every dictionary
contained in Jochem, we check whether a token is
part of an entity in that dictionary and use the name of
the dictionary as feature. Furthermore, we compile
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a list of frequent chemical suffixes and prefixes of
length three from Jochem.

Ontology-based features FO: It is often hard to
determine whether a mention refers to a specific
chemical entity or rather an abstract term denoting
a group of chemicals. To distinguish between these
two cases, we calculate the average depth and the
number of descendants of a term in the ChEBI on-
tology and use the binned count as feature. The idea
behind these features is that the specificity of an en-
tity correlates positively with its depth in the ontol-
ogy (e.g. leaf nodes are likely specific chemicals)
and negatively with the number of descendants (i.e.
having few descendants indicates a specific entity).

Further ontology-based features are derived from
PHARE, which consists of 200 curated relations. If
possible, we map a token to a term in that ontology
and use its label as feature.

3.4 Experiments

We perform document-level 10-fold cross-validation
(CV) on the training corpus to measure the impact
of domain-specific features. To ensure comparability
between Run 1 and Run 2, we use the same splits for
evaluation. Furthermore, we train models on the com-
plete training corpus and evaluate on the test corpus
of DDI Task 9.1 for each run respectively. In addi-
tion, we train a third model based on the best feature
set determined with CV and use the entity mentions
of the Task 9.2 test corpus, which also contains anno-
tations of drug-drug interactions, as additional train-
ing data (Run 3). Following the SemEval-2013 Task
9.1 metrics, we evaluate exact matching performance
(correct entity boundaries) and strict matching per-
formance (correct boundaries and correct type).

4 Results

Table 3 shows micro-average CV results for identi-
fying and classifying mentions of pharmacological
substances in the training corpus. The performance
varies drastically between different entity classes re-
gardless of the feature set, e.g., Run 1 achieves an F1

of 91.0% for Drug, but only 15.9% F1 for DrugN.
Run 2 outperforms Run 1 for entities of class

Drug (+1.2 pp F1) and DrugN (+4.9 pp F1), but
yields a lower performance for Brand (−0.9 pp
F1) and no change for Group entities. Overall, the

Run 1 Run 2

P R F1 P R F1 ∆F1

Drug 92.1 89.9 91.0 92.0 92.3 92.2 +1.2
DrugN 54.7 9.3 15.9 62.4 12.5 20.8 +4.9
Group 87.2 82.5 84.8 87.3 82.3 84.8 0.0
Brand 87.8 70.8 78.4 87.1 69.8 77.5 −0.9

Exact 93.9 86.9 90.3 94.5 89.0 91.7 +1.4
Strict 90.3 83.6 86.8 90.3 85.1 87.6 +0.8

Table 3: Document-level 10-fold cross-validation
micro-average results on the training corpus.

micro-average F1 measure increases by 0.8 pp for
strict matching and 1.4 pp F1 for exact matching.

The performance on the test corpus (see Table 4)
is drastically lower compared to CV results (e.g. 17.6
pp F1 for strict evaluation of Run 1). Except for enti-
ties of class Group, using domain-specific features
leads to a superior performance for identifying and
classifying mentions of pharmacological substances.
Run 2 outperforms Run 1 by 1.6 pp F1 for strict eval-
uation and 5.9 pp F1 for exact evaluation. Using en-
tity mentions of the Task 9.2 test corpus as additional
training data (Run 3) further boosts the performance
by 0.7 pp F1 for strict evaluation.

5 Discussion

Our results show a clear performance advantage
when using domain-specific features tailored for
identifying mentions of chemicals. CV results and
results on the test corpus show an increase in preci-
sion and recall for exact matching and an increase
in recall for strict matching. The considerably higher
recall for exact matching can be attributed to a higher
coverage of chemical entities by features that exploit
domain-knowledge.

It is striking that the performance for DrugN enti-
ties is extremely low compared to the other classes.
We believe that this might be due to two reasons.
First, entities of this class are underrepresented in
the training corpus (≈ 3%). Since machine learning
based methods tend to favor the majority class, it is
likely that many DrugN entities were classified as
mentions of one of the much larger classes Drug (≈
64%) or Group (≈ 23%). This can be confirmed by
the large differences between strict and exact match-
ing results shown in Table 3 and Table 4.
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Run 1 Run 2 Run 3

# P R F1 P R F1 ∆F1 P R F1 ∆F1

Drug 351 74.2 79.5 76.8 72.9 85.2 78.6 +1.8 73.6 85.2 79.0 +0.4
DrugN 121 25.0 4.1 7.1 35.7 8.3 13.4 +6.3 31.4 9.1 14.1 +0.7
Group 155 77.3 74.8 76.1 78.1 73.5 75.7 −0.4 79.2 76.1 77.6 +1.9
Brand 59 76.2 81.4 78.7 77.8 83.1 80.3 +1.6 81.0 86.4 83.6 +3.3

Exact 686 82.1 72.9 77.2 85.6 80.8 83.1 +5.9 85.5 81.3 83.3 +0.2
Strict 686 73.6 65.3 69.2 73.0 68.8 70.8 +1.6 73.4 69.8 71.5 +0.7

DrugBank (Strict) 304 86.9 85.2 86.0 87.3 86.2 86.8 +0.8 88.1 87.5 87.8 +1.0
MEDLINE (Strict) 382 60.8 49.5 54.5 60.5 55.0 57.6 +3.1 60.7 55.8 58.1 +0.5

Table 4: Results on the test corpus. ∆F1 denotes the F1 pp difference to the preceding Run and # the number
of annotated mentions

Second, DrugN denotes substances that have an ef-
fect on humans, but are not approved for medical use
– a property that is rarely stated along with the entity
mention and can thus often only be determined with
domain-knowledge.

We think it is also important to point to the large
difference between results obtained by 10-fold CV
on the training corpus and test results (e.g. up to 17.6
pp F1 for Run 1). One reason might be the large frac-
tion (≈ 83%) of entity mentions that appear more
than once in the training corpus compared to pre-
sumably many unseen entities in the test corpus. For
10-fold CV this means that an entity in the evaluation
fold has already been seen with a high probability in
one of the nine training folds, yielding results that
overestimate the generalization performance. More-
over, our results indicate that identifying and clas-
sifying pharmacological substances is much harder
for MEDLINE documents than for DrugBank docu-
ments with a difference of up to 31.5 pp F1 (cf. the
last two rows of Table 4). Hence, another apparent
reason for the performance differences is the sub-
stantial skew in the ratio of DrugBank to MEDLINE
documents in the training corpus (roughly 4:1) com-
pared to the test corpus (roughly 1:1). Since both sets
of documents stem from different resources, this can
be referred to as domain-adaptation problem.

In additional experiments we found that the
general-purpose chemical NER tool ChemSpot
achieves an F1 of 65.5% for exact matching on the
test corpus. This is 17.8 pp F1 below our best results
obtained with a machine learning based system (cf.

Run 3) that is able to exploit properties of the task-
specific annotations of the corpora.

6 Conclusion

We described our contribution to the SemEval-2013
Task 9.1: Recognition and classification of pharma-
cological substances. We found that a system based
on rather general features commonly used for a wide
range of biomedical NER tasks yields competetive
results. Implementing this system needed no domain-
adaptation and its performance could be sufficient for
applications building upon drug NER. Nevertheless,
adding domain-specific features boosts the perfor-
mance considerably. Further improvements can be
achieved by using entity annotations of the Task 9.2
test corpus as additional training data.

We identified two limitations of our approach.
First, we found that entities of the minority class
(DrugN) are very hard to classify correctly. Second,
differences between DrugBank and MEDLINE docu-
ments probably cause a domain-adaptation problem.
For future work, one could investigate whether the
latter can be addressed by domain-adaptation tech-
niques (e.g. Satpal and Sarawagi (2007)). To cope
with DrugN entities, one could implement features
derived from those resources that were used by the
annotators for deciding whether a substance is ap-
proved for use in humans, e.g., Drugs@FDA4 and
the WHO ATC5 classification system.

4http://www.accessdata.fda.gov/scripts/cder/
drugsatfda/ (accessed 2013-04-29)

5http://www.whocc.no/atc_ddd_index/ (accessed
2013-04-29)
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Abstract

In this paper, we describe our system that par-
ticipated in SemEval-2013, Task 2.B (senti-
ment analysis in Twitter). Our approach con-
sists of adapting Naive Bayes probabilities in
order to take into account prior knowledge
(represented in the form of a sentiment lex-
icon). We propose two different methods to
efficiently incorporate prior knowledge. We
show that our approach outperforms the clas-
sical Naive Bayes method and shows compet-
itive results with SVM while having less com-
putational complexity.

1 Introduction

With the advent of Internet microblogging, social
networks, like Twitter1 and Facebook2, have brought
about a real revolution in our way of communi-
cating. People share their opinions of everyday
life without taboos or restrictions thanks to the
anonymity offered by these tools, which makes them
a valuable source of information rather rich of sub-
jective data. These data can be mined using sen-
timent analysis as a means to understand people’s
feelings towards a political cause or what people are
thinking about a product or a service. Recent works
showed that Twitter sentiments can be correlated to
box-office revenues (Asur and Huberman, 2010) or
political polls (O’Connor et al., 2010).

Machine learning methods, like Naive Bayes
(NB) and Support Vector Machines (SVM), have
been widely used in sentiment analysis (Pang et al.,

1http://www.twitter.com/
2http://www.facebook.com/

2002; Pak and Paroubek, 2010). One major problem
with these methods, and in particular NB, is that the
model is built only on the learning data which can
lead to overfitting. In this paper, we describe our ap-
proach that participated in SemEval-2013, Task 2.B
(sentiment analysis in Twitter) (Wilson et al., 2013).
Our approach consists of learning with both NB and
prior knowledge. We show that our approach out-
performs the classical NB method and gives com-
petitive results compared to SVM while having less
computational complexity.

The remainder of this paper is organized as fol-
lows: prior works on sentiment analysis are dis-
cussed in Section 2. The proposed approach is de-
tailed in Section 3. Then, experiments and results
are given in Section 4 and 5.

2 Background

Sentiment analysis is a text mining task which deals
with the feelings expressed explicitly or implicitly
in a textual content. It concerns subjectivity anal-
ysis (subjective/objective), opinion mining (posi-
tive/negative/neutral), strength analysis, etc. Al-
though the term “sentiment analysis” includes all
these tasks, it often refers to opinion mining. Sen-
timent analysis methods can be categorized into ma-
chine learning, linguistic and hybrid methods.

Machine learning methods are usually supervised.
A model is built based on a learning dataset com-
posed of annotated texts and represented by a bag of
words. The model is then deployed to classify new
texts. Pang et al. (2002) use machine learning meth-
ods (NB, SVM and MaxEnt) to detect sentiments on
movie reviews. Pak and Paroubek (2010) use NB to
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perform sentiment analysis on Twitter data.
Linguistic methods use lexicons and manually-

crafted rules to detect sentiments. Kennedy and
Inkpen (2006) use syntactic analysis to capture lan-
guage aspects like negation and contextual valence
shifters. Other works (Turney and Littman, 2003;
Kamps et al., 2004) propose to use a term similarity
measure which can be statistical (e.g., Mutual Infor-
mation, LSA) or semantic (e.g., WordNet-based).

Hybrid methods use both statistical and linguistic
approaches. Esuli and Sebastiani (2011), which is
the closest work to ours, propose to use annotated
lexical resources to improve opinion extraction. The
bag-of-word text representation is enriched by new
tags (e.g. subjectivity, polarity). Then, an SVM-
based system is used for opinion classification.

3 Our approach

NB is a machine learning method that builds a clas-
sification model based only on the learning data
which makes it highly dependent on this data. For
example, in a sentiment analysis task, if the term
actor appears more frequently within a negative
context than in a positive one, it will be classified as
negative while actually it is not. Moreover, NB tends
sometimes to predict the class of majority (observed
on learning data) which increases classification er-
rors on unbalanced data. Our approach consists of
incorporating prior knowledge into the NB model to
make it less dependent on learning data.

To be efficiently used, prior knowledge must be
represented in a structured form. We choose, here,
to represent it by a sentiment lexicon (a set of pos-
itive and negative terms). Several lexicons have al-
ready been developed to address sentiment analysis
issues. Some of them are publicly available like the
MPQA subjectivity lexicon (Wilson et al., 2005),
Liu’s opinion lexicon (Ding et al., 2008), Senti-
WordNet (Esuli and Sebastiani, 2006). We believe
that such knowledge can be quite useful if used cor-
rectly and efficiently by machine learning methods.

In the following, we settle for a 2-way classi-
fication task (positive vs. negative). Texts are
represented by a vector space model (Salton et
al., 1975) and terms are weighted according to
their presence/absence in the text because previous
works (Pang et al., 2002; Pak and Paroubek, 2010)

showed that Boolean model performs better than
other weighting schemes in sentiment analysis. We
denote by w and w̄ the presence, respectively ab-
sence, modality of a word w. A “term” stands, here,
for any type of text features (smileys, n-grams).

3.1 Sentiment lexicon

We represent the prior knowledge by a 2-class sen-
timent lexicon: a list of subjective terms (words,
n-grams and smileys) manually annotated with two
scores: positive (scorec+) and negative (scorec−).
Each term has a score of 1 on a class polarity (we call
it right class) and 0 on the other one (wrong class).
For example, the word good has scorec+ = 1 and
scorec− = 0. Then, c+ is the right class of the word
good and c− is the wrong class.

3.2 NB method

NB is based on calculating class-wise term prob-
abilities on a learning dataset D where each text
d ∈ D is annotated with a class c ∈ {c+, c−}. In
the learning step, probability values p(w|c) are esti-
mated from D as follows:

p(w|c) =
1

nb(c)
· nb(w, c) (1)

Where nb(c) denotes the number of texts of class c
and nb(w, c) is the number of texts of class c that
contain the term w.

Once these probabilities are calculated for each
couple (w, c), the model can be used to classify new
texts. We choose to assign a new text d to the
class that maximizes the probability p(c|d). Using
Bayes’ theorem and independence assumption be-
tween term distributions, this probability is calcu-
lated as follows (the denominator can be dropped
because it is not dependent on the class c):

p(c|d) =
p(c) ·

∏
w∈d p(w|c)
p(d)

(2)

3.3 Incorporating prior knowledge

Prior knowledge is incorporated by adapting NB for-
mulas. We propose two different methods to do this:
Add & Remove and Transfer. These methods differ
in the way to calculate the class-wise term proba-
bilities p(w|c) but use the same classification rule:
class(d) = arg maxc∈{c+,c−} p(c|d).
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Add & Remove. This method consists of artifi-
cially adding some occurrences of term w to the
right class and removing some occurrences from the
wrong class. The lexicon is used to determine for
each term its right and wrong classes. To ensure
that probability values do not exceed 1, we introduce
nb(w̄, c), the number of texts of class c that do not
contain the term w, which is also equal to the maxi-
mum number of occurrences of w that can be added
to the class c. Thus, the number of added occur-
rences is a ratio αc of this maximum (0 ≤ αc ≤ 1).
Likewise, if c was the wrong class of w, the number
of removed occurrences from the class c is a ratio βc

of the maximum number that can be removed from
the class c, nb(w, c), with 0 ≤ βc ≤ 1. Formally,
term probabilities are calculated as follows:

p(w|c)=
1

nb(c)
·[nb(w, c)+αc ·scorec(w)·nb(w̄, c)

−βc · scorec̄(w) · nb(w, c)] (3)

Transfer. This method consists of transferring
some occurrences of a term w from the wrong class
to the right class. The number of transferred occur-
rences is such that the final probability is not greater
than 1 and the number of transferred occurrences is
not greater than the actual number of occurrences in
the wrong class. To meet these constraints, we in-
troduce max(w, c): the maximum number of occur-
rences ofw that can be transferred to the class c from
the other class c̄. This number must not be greater
than both the number of texts from c̄ containing w
and the number of texts from c not containing w.

max(w, c) = min{nb(w, c̄), nb(w̄, c)} (4)

Finally, the number of occurrences actually trans-
ferred is a ratio αc of max(w, c) with 0 ≤ αc ≤ 1.
Term probabilities are estimated as follows:

p(w|c)= 1

nb(c)
·[nb(w, c)+αc·scorec(w)·max(w, c)

−αc · scorec̄(w) ·max(w, c̄)] (5)

Both methods, Add & Remove and Transfer, con-
sist of removing occurrences from the wrong class
and adding occurrences to the right class with the
difference that in Transfer, the number of added oc-
currences is exactly the number of removed ones.

4 Experiment

4.1 Sentiment lexicon

For SemEval-2013 contest (Wilson et al., 2013),
we have developed our own lexicon based on Liu’s
opinion lexicon (Ding et al., 2008) and enriched
with some “microblogging style” terms (e.g., luv,
xox, gd) manually collected on the Urban Dic-
tionary3. The whole lexicon contains 7720 English
terms (words, 2-grams, 3-grams and smileys) where
2475 are positive and 5245 negative.

4.2 Dataset and preprocessing

To evaluate the proposed approach, we use
SemEval-2013 datasets: TW (tweets obtained by
merging learn and development data) and SMS, in
addition to MR (English movie reviews of Pang and
Lee (2004)). Concerning SMS, the classification is
performed using the model learned on tweets (TW)
in order to assess how it generalizes on SMS data.
Note that our approach is adapted to binary clas-
sification but can be used for 3-way classification
(which is the case of TW and SMS). We do this
by adapting only positive and negative probabilities,
neutral ones remain unchanged.

Texts are preprocessed by removing stopwords,
numerics, punctuation and terms that occur only
once (to reduce vocabulary size and data sparse-
ness). Texts are then stemmed using Porter stemmer
(Porter, 1997). We also remove URLs and Twitter
keywords (via, RT) from tweets.

4.3 Tools

As we compare our approach to SVM method,
we have used SVMmulticlass (Crammer and Singer,
2002). For a compromise between processing time
and performance, we set the trade-off parameter c to
4 on MR dataset and 20 on TW and SMS (based on
empirical results).

5 Results and discussion

In addition to the two proposed methods: Add &
Remove (A&R) and Transfer (TRA), texts are clas-
sified using NB and SVM with two kernels: linear
(SVM-L) and polynomial of degree 2 (SVM-P). All
the scores given below correspond to the average

3http://www.urbandictionary.com/
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F-score of positive and negative classes, even for
3-way classification. This measure is also used in
SemEval-2013 result evaluation and ranking (Wil-
son et al., 2013).

5.1 General results
General results are obtained only with unigrams and
smileys. Figure 1 presents the results obtained on
the different datasets on both 2-way (left) and 3-
way (right) classifications. For 2-way classification,
neutral texts are ignored and the model is evaluated
using a 5-fold cross validation. For 3-way classifi-
cation, the model is evaluated on the provided test
data. Compared with NB, our approach performs
better on all datasets. It also outperforms SVM, that
achieves poor results, except on MR.

Method 2-class 3-class
TW MR TW SMS

NB 74.07 73.06 59.43 48.80
SVM-L 49.79 74.56 37.56 32.13
SVM-P 49.74 84.64 37.56 32.13
A&R 76.05 80.57 60.57 49.42
TRA 76.00 75.53 60.27 51.35

Figure 1: General results (unigrams and smileys)

Parameter effect. To examine the effect of pa-
rameters, we perform a 2-way classification on TW
and MR datasets using 5-fold cross validation (Fig-
ure 2). We take, for A&R method, βc+ = βc− = 0
and for both methods, αc+ = αc− (denoted α).
This configuration does not necessarily give the best
scores. However, empirical tests showed that scores
are not significantly lower than the best ones. We
choose this configuration for simplicity (only one
parameter to tune).

Figure 2 shows that best scores are achieved with
different values of α depending on the used method
(A&R, TRA) and the data. Therefore, parameters
must be fine-tuned for each dataset separately.

5.2 SemEval-2013 results
For SemEval-2013 contest, we have enriched text
representation by 2-grams and 3-grams and used
A&R method with: αc+ = αc− = 0.003, βc+ =
0.04 and βc− = 0.02. All of these parameters have
been fine-tuned using the development data. We
have also made an Information Gain-based feature
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Figure 2: Effect of the parameter α on a 2-way classifica-
tion using methods: A&R (top) and TRA (bottom)

selection (Mitchell, 1997). Only the best 2000 terms
are kept to which we have added terms of the lexi-
con. Under these conditions, our approach achieved
the scores 62.55% on tweets (ranked 6th/35) and
53.63% on SMS (ranked 9th/28).

Dataset Class Pecision Recall F-score
positive 62.12 74.49 67.75

TW negative 46.23 75.54 57.36
neutral 76.74 44.27 56.15
positive 39.59 78.86 52.72

SMS negative 45.64 67.77 54.55
neutral 90.93 39.82 55.38

Figure 3: SemEval-2013 results (A&R method)

Regarding F-score of each class (Figure 3), our
approach gave better results on the negative class
(under-represented in the learning data) than NB
(49.09% on TW and 47.63% on SMS).

6 Conclusion

In this paper, we have presented a novel approach
to sentiment analysis by incorporating prior knowl-
edge into NB model. We showed that our approach
outperforms NB and gives competitive results with
SVM while better handling unbalanced data.

As a future work, further processing may be re-
quired on Twitter data. Tweets, in contrast to tra-
ditional text genres, show many specificities (short
size, high misspelling rate, informal text, etc.).
Moreover, tweets rely on an underlying structure
(re-tweets, hashtags) that may be quite useful to
build more accurate analysis tools.
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Abstract

In this paper, the UNITOR system participat-
ing in the SemEval-2013 Sentiment Analysis
in Twitter task is presented. The polarity de-
tection of a tweet is modeled as a classifica-
tion task, tackled through a Multiple Kernel
approach. It allows to combine the contribu-
tion of complex kernel functions, such as the
Latent Semantic Kernel and Smoothed Par-
tial Tree Kernel, to implicitly integrate syn-
tactic and lexical information of annotated ex-
amples. In the challenge, UNITOR system
achieves good results, even considering that
no manual feature engineering is performed
and no manually coded resources are em-
ployed. These kernels in-fact embed distri-
butional models of lexical semantics to deter-
mine expressive generalization of tweets.

1 Introduction

Web 2.0 and Social Networks technologies allow
users to generate contents on blogs, forums and new
forms of communication (such as micro-blogging)
writing their opinion about facts, things, events. The
analysis of this information is crucial for companies,
politicians or other users in order to learn what peo-
ple think, and consequently to adjust their strategies.
In such a scenario, the interest in the analysis of the
sentiment expressed by people is rapidly growing.
Twitter1 represents an intriguing source of informa-
tion as it is used to share opinions and sentiments
about brands, products, or situations (Jansen et al.,
2009).

1http://www.twitter.com

On the other hand, tweet analysis represents a
challenging task for natural language processing
systems. Let us consider the following tweets, evok-
ing a positive (1), and negative (2) polarity, respec-
tively.

Porto amazing as the sun sets... http://bit.ly/c28w (1)
@knickfan82 Nooooo ;( they delayed the knicks game

until Monday! (2)

Tweets are short, informal and characterized by
their own particular language with “Twitter syntax”,
e.g. retweets (“RT”), user references (“@”), hash-
tags (“#”) or other typical web abbreviations, such
as emoticons or acronyms.

Classical approaches to sentiment analysis (Pang
et al., 2002; Pang and Lee, 2008) are not directly ap-
plicable to tweets: most of them focus on relatively
large texts, e.g. movie or product reviews, and per-
formance drops are experimented in tweets scenario.
Some recent works tried to model the sentiment in
tweets (Go et al., 2009; Pak and Paroubek, 2010;
Kouloumpis et al., 2011; Davidov et al., 2010; Bifet
and Frank, 2010; Croce and Basili, 2012; Barbosa
and Feng, 2010; Agarwal et al., 2011). Specific ap-
proaches and feature modeling are used to achieve
good accuracy levels in tweet polarity recognition.
For example, the use of n-grams, POS tags, polar-
ity lexicon and tweet specific features (e.g. hash-
tag, retweet) are some of the component exploited
by these works in combination with different ma-
chine learning algorithms (e.g. Naive Bayes (Pak
and Paroubek, 2010), k-NN strategies (Davidov et
al., 2010), SVM and Tree Kernels (Agarwal et al.,
2011)).

In this paper, the UNITOR system participating
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in the SemEval-2013 Sentiment Analysis in Twit-
ter task (Wilson et al., 2013) models the senti-
ment analysis stage as a classification task. A Sup-
port Vector Machine (SVM) classifier learns the as-
sociation between short texts and polarity classes
(i.e. positive, negative, neutral). Different kernel
functions (Shawe-Taylor and Cristianini, 2004) have
been used: each kernel aims at capturing specific as-
pects of the semantic similarity between two tweets,
according to syntactic and lexical information. In
particular, in line with the idea of using convolu-
tion tree kernels to model complex semantic tasks,
e.g. (Collins and Duffy, 2001; Moschitti et al., 2008;
Croce et al., 2011), we adopted the Smoothed Par-
tial Tree Kernel (Croce et al., 2011) (SPTK). It is
a state-of-the-art convolution kernel that allows to
measure the similarity between syntactic structures,
which are partially similar and whose nodes can dif-
fer but are nevertheless semantically related. More-
over, a Bag-of-Word and a Latent Semantic Kernel
(Cristianini et al., 2002) are also combined with the
SPTK in a multi-kernel approach.

Our aim is to design a system that exhibits wide
applicability and robustness. This objective is pur-
sued by adopting an approach that avoids the use
of any manually coded resource (e.g. a polarity
lexicon), but mainly exploits distributional analysis
of unlabeled corpora: the generalization of words
meaning is achieved through the construction of a
Word Space (Sahlgren, 2006), which provides an ef-
fective distributional model of lexical semantics.

In the rest of the paper, in Section 2 we will
deeply explain our approach. In Section 3 the re-
sults achieved by our system in the SemEval-2013
challenge are described and discussed.

2 System Description

This section describes the approach behind the
UNITOR system. Tweets pre-processing and lin-
guistic analysis is described in Section 2.1, while the
core modeling is described in 2.2.

2.1 Tweet Preprocessing

Tweets are noisy texts and a pre-processing phase is
required to reduce data sparseness and improve the
generalization capability of the learning algorithms.
The following set of actions is performed before ap-

plying the natural language processing chain:

• fully capitalized words are converted in their
lowercase counterparts;
• reply marks are replaced with the pseudo-token
USER, and POS tag is set to $USR;
• hyperlinks are replaced by the token LINK,

whose POS is $URL;
• hashtags are replaced by the pseudo-token
HASHTAG, whose POS is imposed to $HTG;
• characters consecutively repeated more than

three times are cleaned as they cause high lev-
els of lexical data sparseness (e.g. “nooo!!!!!”
and “nooooo!!!” are both converted into
“noo!!”);
• all emoticons are replaced by SML CLS, where
CLS is an element of a list of classified emoti-
cons (113 emoticons in 13 classes).

For example, the tweet in the example 2 is nor-
malized in ‘user noo sml cry they delayed the knicks
game until monday’. Then, we apply an almost stan-
dard NLP chain with Chaos (Basili and Zanzotto,
2002). In particular, we process each tweet to pro-
duce chunks. We adapt the POS Tagging and Chunk-
ing phases in order to correctly manage the pseudo-
tokens introduced in the normalization step. This is
necessary because tokens like SML SAD are tagged
as nouns, and they influence the chunking quality.

2.2 Modeling Kernel Functions
Following a summary of the employed kernel func-
tions is provided.
Bag of Word Kernel (BOWK) A basic kernel func-
tion that reflects the lexical overlap between tweets.
Each text is represented as a vector whose dimen-
sions correspond to different words. Each dimen-
sion represents a boolean indicator of the presence
or not of a word in the text. The kernel function is
the cosine similarity between vector pairs.
Lexical Semantic Kernel (LSK) A kernel function
is obtained to generalize the lexical information of
tweets, without exploiting any manually coded re-
source. Basic lexical information is obtained by
a co-occurrence Word Space built accordingly to
the methodology described in (Sahlgren, 2006) and
(Croce and Previtali, 2010). A word-by-context ma-
trixM is obtained through a large scale corpus anal-
ysis. Then the Latent Semantic Analysis (Lan-
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dauer and Dumais, 1997) technique is applied as fol-
lows. The matrix M is decomposed through Singu-
lar Value Decomposition (SVD) (Golub and Kahan,
1965) into the product of three new matrices: U , S,
and V so that S is diagonal and M = USV T . M is
then approximated by Mk = UkSkV

T
k , where only

the first k columns of U and V are used, correspond-
ing to the first k greatest singular values. The orig-
inal statistical information about M is captured by
the new k-dimensional space, which preserves the
global structure while removing low-variant dimen-
sions, i.e. distribution noise. The result is that every
word is projected in the reduced Word Space and
an entire tweet is represented by applying an addi-
tive linear combination. Finally, the resulting ker-
nel function is the cosine similarity between vector
pairs, in line with (Cristianini et al., 2002).
Smoothed Partial Tree Kernel (SPTK) In order
to exploit the syntactic information of tweets, the
Smoothed Partial Tree Kernel proposed in (Croce et
al., 2011) is adopted. Tree kernels exploit syntactic
similarity through the idea of convolutions among
substructures. Any tree kernel evaluates the number
of common substructures between two trees T1 and
T2 without explicitly considering the whole frag-
ment space. Its general equation is reported here-
after:

TK(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2), (3)

where NT1 and NT2 are the sets of the T1’s and
T2’s nodes, respectively and ∆(n1, n2) is equal to
the number of common fragments rooted in the n1

and n2 nodes. The function ∆ determines the na-
ture of the kernel space. In the SPTK formulation
(Croce et al., 2011) this function emphasizes lexical
nodes. It computes the similarity between lexical
nodes as the similarity between words in the Word
Space. So, this kernel allows a generalization both
from the syntactic and the lexical point of view.

However, tree kernel methods are biased by pars-
ing accuracy and standard NLP parsers suffer accu-
racy loss in this scenario (Foster et al., 2011). It
is mainly due to the complexities of the language
adopted in tweets. In this work, we do not use a
representation that depends on full parse trees. A
syntactic representation derived from tweets chunk-
ing (Tjong Kim Sang and Buchholz, 2000) is here
adopted, as shown in Figure 1.

Notice that no explicit manual feature engineering
is applied. On the contrary we expect that discrim-
inative lexical and syntactic information (e.g. nega-
tion) is captured by the kernel in the implicit feature
space, as discussed in (Collins and Duffy, 2001).
A multiple kernel approach Kernel methods are
appealing as they can be integrated in various ma-
chine learning algorithms, such as SVM. Moreover
a combination of kernels is still a kernel function
(Shawe-Taylor and Cristianini, 2004). We employed
a linear combination αBOWK + βLSK + γSPTK
in order to exploit the lexical properties captured by
BOWK (and generalized by LSK) and the syntac-
tic information of the SPTK. In our experiments, the
kernel weights α, β and γ are set to 1.

3 Results and Discussion

In this section experimental results of the UNITOR

system are reported.

3.1 Experimental setup

In the Sentiment Analysis in Twitter task, two
subtasks are defined: Contextual Polarity

Disambiguation (Task A), and Message

Polarity Classification (Task B). The for-
mer deals with the polarity classification (positive,
negative or neutral) of a marked occurrence of a
word or phrase in a tweet context. For example
the adjective “amazing” in example 1 expresses a
positive marked word. The latter deals with the
classification of an entire tweet with respect to
the three classes positive, negative and neutral. In
both subtasks, we computed a fixed (80%-20%)
split of the training data for classifiers parameter
tuning. Tuned parameters are the regularization
parameter and the cost factor (Morik et al., 1999)
of the SVM formulation. The former represents the
trade off between a training error and the margin.
The latter controls the trade off between positive
and negative examples. The learning phase is made
available by an extended version of SVM-LightTK2,
implementing the smooth matching between tree
nodes.

We built a Word Space based on about 1.5 mil-
lion of tweets downloaded during the challenge pe-
riod using the topic name from the trial material as

2
http://disi.unitn.it/moschitti/Tree-Kernel.htm
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Figure 1: Chunk-based tree derived from examples (1) and (2)

query terms. We normalized and analyzed tweets as
described in section 2.1. Words occurring more than
100 times in the source corpus are represented as
vectors. The 10, 000 most frequent words in the cor-
pus are considered as contexts and the co-occurrence
scores are measured in a window of size n = ±5.
Vector components are weighted through the Point-
wise Mutual Information (PMI), and dimensional-
ity reduction is applied through SVD with a cut of
k = 250.

The task requires to classify two different texts:
tweets and sms. Sms classification is intended to
verify how well a system can scale on a different
domain. In the testing phase two types of submis-
sions are allowed. Constrained results refer to the
case where systems are trained only with the re-
leased data. Unconstrained results refer to the case
where additional training material is allowed. Eval-
uation metrics adopted to compare systems are Pre-
cision, Recall and F1-Measure. Average F1 of the
positive and negative classes is then used to generate
ranks. Further information about the task is avail-
able in (Wilson et al., 2013).

3.2 Results over Contextual Polarity
Disambiguation

We tackled Task A with a multi-kernel approach
combining the kernel functions described in Section
2.2. The final kernel is computed as the linear com-
bination of the kernels, as shown in Equation 4.

k(t1, t2) = SPTK(φA(t1), φA(t2))

+BOWK(ψA(t1), ψA(t2))

+ LSK(τA(t1), τA(t2)) (4)

where t1, t2 are two tweet examples. The φA(x)
function extracts the 4-level chunk tree from the
tweet x; nodes (except leaves) covering the marked
instance in x are highlighted in the tree with -POL.
The ψA(x) function extracts the vector representing

the Bag-of-Word of the words inside the marked in-
stance of x, while τA builds the LSA vectors of the
words occurring within the marked span of x. Re-
ferring to example 1, both ψA(x) and τA point to
the “amazing” adjective. Finally, k(t1, t2) returns
the similarity between t1 and t2 accordingly to our
modeling. As three polarity classes are considered,
we adopt a multi-classification schema accordingly
to a One-Vs-All strategy (Rifkin and Klautau, 2004):
the final decision function consists in the selection
of the category associated with the maximum SVM
margin.

Rank 4/19 class precision recall f1
positive .8375 .7750 .8050

Avg-F1 .8249 negative .8103 .8822 .8448
neutral .3475 .3082 .3267

Table 1: Task A results for the sms dataset

Rank 7/21 class precision recall f1
positive .8739 .8844 .8791

Avg-F1 .8460 negative .8273 .7988 .8128
neutral .2778 .3125 .2941

Table 2: Task A results for the twitter dataset

Tables 1 and 2 report the results of the UNITOR
system in the Task A. Only the constrained set-
ting has been submitted. The performance of the
proposed approach is among the best ones and we
ranked 4th and 7th among about 20 systems.

The system seems to be able to generalize well
from the provided training data, and results are re-
markable, especially considering that no manual an-
notated lexical resources were adopted and no man-
ual feature engineering is exploited. It demonstrates
that a multi-kernel approach, with the proposed shal-
low syntactic representation, is able to correctly
classify the sentiment in out-of-domain contexts too.
Syntax is well captured by the SPTK and the lexical
generalization provided by the Word Space allows
to generalize in the sms scenario.
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3.3 Results over Message Polarity
Classification

A multi-kernel approach is adopted for this task too,
as described in the following Equation 5:

k(t1, t2) = SPTK(φB(t1), φB(t2))

+BOWK(ψB(t1), ψB(t2))

+ LSK(τB(t1), τB(t2)) (5)

The φB(x) function extracts a tree representation of
x. In this case no nodes in the trees are marked.
The ψB(x) function extracts Bag-of-Word vectors
for all the words in the tweet x, while τB(x) extracts
the linear combination of vectors in the Word Space
for adjectives, nouns, verbs and special tokens (e.g.
hashtag, smiles) of the words in x. Again, a One-Vs-
All strategy (Rifkin and Klautau, 2004) is applied.
Constrained run. Tables 3 and 4 report the result
in the constrained case. In the sms dataset our sys-
tem suffers more with respect to the tweet one. In
both cases, the system shows a performance drop
on the negative class. It seems that the multi-kernel
approach needs more examples to correctly disam-
biguate elements within this class. Indeed, nega-
tive class cardinality was about 15% of the training
data, while the positive and neutral classes approxi-
mately equally divided the remaining 85%. More-
over, it seems that our system confuses polarized
classes with the neutral one. For example, the tweet
“going Hilton hotel on Thursday for #cantwait” is
classified as neutral (the gold label is positive). In
this case, the hashtag is the sentiment bearer, and
our model is not able to capture this information.

Rank 13/29 class precision recall f1
positive .5224 .7358 .6110

Avg-F1 .5122 negative .6019 .3147 .4133
neutral .7883 .7798 .7840

Table 3: Task B results for the sms dataset in the
constrained case

Rank 13/36 class precision recall f1
positive .7394 .6514 .6926

Avg-F1 .5827 negative .6366 .3760 .4728
neutral .6397 .8085 .7142

Table 4: Task B results for the twitter dataset in the
constrained case

Unconstrained run. In the unconstrained case we
trained our system adding 2000 positive examples
and 2000 negative examples to the provided training
set. These additional tweets were downloaded from
Twitter during the challenge period using positive
and negative emoticons as query terms. The under-
lying hypothesis is that the polarity of the emoticons
can be extended to the tweet (Pak and Paroubek,
2010; Croce and Basili, 2012). In tables 5 and 6
performance measures in this setting are reported.

Rank 10/15 class precision recall f1
positive .4337 .7317 .5446

Avg-F1 .4888 negative .3294 .6320 .4330
neutral .8524 .3584 .5047

Table 5: Task B results for the sms dataset in the
unconstrained case

Rank 5/15 class precision recall f1
positive .7375 .6399 .6853

Avg-F1 .5950 negative .5729 .4509 .5047
neutral .6478 .7805 .7080

Table 6: Task B results for the twitter dataset in the
unconstrained case

In this scenario, sms performances are again
lower than the twitter case. This is probably due to
the fact that the sms context is quite different from
the twitter one. This is not true for Task A: polar ex-
pressions are more similar in sms and tweets. Again,
we report a performance drop on the negative class.
However, using more negative tweets seems to be
beneficial. The F1 for this class increased of about
3 points for both datasets. Our approach thus needs
more examples to better generalize from data.

In the future, we should check the redundancy and
novelty of the downloaded material, as early dis-
cussed in (Zanzotto et al., 2011). Moreover, we will
explore the possibility to automatically learn the ker-
nel linear combination coefficients in order to op-
timize the balancing between kernel contributions
(Gönen and Alpaydin, 2011).
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Abstract 

This paper presents our system, TJP, which 

participated in SemEval 2013 Task 2 part A: 

Contextual Polarity Disambiguation. The goal 

of this task is to predict whether marked con-

texts are positive, neutral or negative. Howev-

er, only the scores of positive and negative 

class will be used to calculate the evaluation 

result using F-score. We chose to work as 

‘constrained’, which used only the provided 

training and development data without addi-

tional sentiment annotated resources. Our ap-

proach considered unigram, bigram and 

trigram using Naïve Bayes training model 

with the objective of establishing a simple-

approach baseline. Our system achieved F-

score 81.23% and F-score 78.16% in the re-

sults for SMS messages and Tweets respec-

tively. 

1 Introduction 

Natural language processing (NLP) is a research 

area comprising various tasks; one of which is sen-

timent analysis. The main goal of sentiment analy-

sis is to identify the polarity of natural language 

text (Shaikh et al., 2007). Sentiment analysis can 

be referred to as opinion mining, as study peoples’ 

opinions, appraisals and emotions towards entities 

and events and their attributes (Pang and Lee, 

2008). Sentiment analysis has become a popular 

research area in NLP with the purpose of identify-

ing opinions or attitudes in terms of polarity.  

This paper presents TJP, a system submitted to 

SemEval 2013 for Task 2 part A: Contextual Polar-

ity Disambiguation (Wilson et al., 2013). TJP was 

focused on the ‘constrained’ task, which used only 

training and development data provided. This 

avoided both resource implications and potential 

advantages implied by the use of additional data 

containing sentiment annotations. The objective 

was to explore the relative success of a simple ap-

proach that could be implemented easily with 

open-source software.  

The TJP system was implemented using the Py-

thon Natural Language Toolkit (NLTK, Bird et al., 

2009). We considered several basic approaches. 

These used a preprocessing phase to expand con-

tractions, eliminate stopwords, and identify emoti-

cons. The next phase used supervised machine 

learning and n-gram features. Although we had 

two approaches that both used n-gram features, we 

were limited to submitting just one result. Conse-

quently, we chose to submit a unigram based ap-

proach followed by naive Bayes since this 

performed better on the data.  

The remainder of this paper is structured as fol-

lows: section 2 provides some discussion on the 

related work. The methodology of corpus collec-

tion and data classification are provided in section 

3. Section 4 outlines details of the experiment and 

results, followed by the conclusion and ideas for 

future work in section 5. 

2 Related Work  

The micro-blogging tool Twitter is well-known 

and increasingly popular. Twitter allows its users 

to post messages, or ‘Tweets’ of up to 140 charac-

ters each time, which are available for immediate 
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download over the Internet. Tweets are extremely 

interesting to marketing since their rapid public 

interaction can either indicate customer success or 

presage public relations disasters far more quickly 

than web pages or traditional media. Consequently, 

the content of tweets and identifying their senti-

ment polarity as positive or negative is a current 

active research topic. 

Emoticons are features of both SMS texts, and 

tweets. Emoticons such as :) to represent a smile, 

allow emotions to augment the limited text in SMS 

messages using few characters. Read (2005) used 

emoticons from a training set that was downloaded 

from Usenet newsgroups as annotations (positive 

and negative). Using the machine learning tech-

niques of Naïve Bayes and Support Vector Ma-

chines Read (2005) achieved up to 70 % accuracy 

in determining text polarity from the emoticons 

used. 

Go et al. (2009) used distant supervision to clas-

sify sentiment of Twitter, as similar as in (Read, 

2005). Emoticons have been used as noisy labels in 

training data to perform distant supervised learning 

(positive and negative). Three classifiers were 

used: Naïve Bayes, Maximum Entropy and Sup-

port Vector Machine, and they were able to obtain 

more than 80% accuracy on their testing data.  

Aisopos et al. (2011) divided tweets in to three 

groups using emoticons for classification. If tweets 

contain positive emoticons, they will be classified 

as positive and vice versa. Tweets without posi-

tive/negative emoticons will be classified as neu-

tral. However, tweets that contain both positive 

and negative emoticons are ignored in their study. 

Their task focused on analyzing the contents of 

social media by using n-gram graphs, and the re-

sults showed that n-gram yielded high accuracy 

when tested with C4.5, but low accuracy with Na-

ïve Bayes Multinomial (NBM). 

3 Methodology  

3.1 Corpus 

The training data set for SemEval was built using 

Twitter messages training and development data.  

There are more than 7000 pieces of context. Users 

usually use emoticons in their tweets; therefore, 

emoticons have been manually collected and la-

beled as positive and negative to provide some 

context (Table 1), which is the same idea as in Ai-

sopos et al. (2011).  

 

Negative emoticons :( :-( :d :< D: :\ /: etc. 

Positive emoticons 
:) ;) :-) ;-) :P ;P (: (; :D 

;D etc. 

 
Table 1: Emoticon labels as negative and positive 

 

Furthermore, there are often features that have 

been used in tweets, such as hashtags, URL links, 

etc. To extract those features, the following pro-

cesses have been applied to the data. 

 

1. Retweet (RT), twitter username (@panda), 

URL links (e.g. y2u.be/fiKKzdLQvFo), 

and special punctuation were removed. 

2. Hashtags have been replaced by the fol-

lowing word (e.g. # love was replaced by 

love, # exciting was replaced by exciting). 

3. English contraction of ‘not’ was converted 

to full form (e.g. don’t -> do not). 

4. Repeated letters have been reduced and re-

placed by 2 of the same character (e.g. 

happpppppy will be replaced by happy, 

coollllll will be replaced by cooll). 

3.2 Classifier 

Our system used the NLTK Naïve Bayes classifier 

module. This is a classification based on Bayes’s 

rule and also known as the state-of-art of the Bayes 

rules (Cufoglu et al., 2008). The Naïve Bayes 

model follows the assumption that attributes within 

the same case are independent given the class label 

(Hope and Korb, 2004).  

Tang et al. (2009) considered that Naïve Bayes 

assigns a context   (represented by a vector   
 ) to 

the class    that maximizes        
   by applying 

Bayes’s rule, as in (1). 

 

 (  |  
 )   

         
     

    
  

 (1) 
 

 

 

where     
   is a randomly selected context  . The 

representation of vector is   
 .      is the random 

select context that is assigned to class  . 

To classify the term     
     , features in   

  

were assumed as    from          as in (2). 
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There are many different approaches to lan-

guage analysis using syntax, semantics, and se-

mantic resources such as WordNet. That may be 

exploited using the NLTK (Bird et al. 2009). How-

ever, for simplicity we opted here for the n-gram 

approach where texts are decomposed into term 

sequences. A set of single sequences is a unigram. 

The set of two word sequences (with overlapping) 

are bigrams, whilst the set of overlapping three 

term sequences are trigrams. The relative ad-

vantage of the bi-and trigram approaches are that 

coordinates terms effectively disambiguate senses 

and focus content retrieval and recognition. 

N-grams have been used many times in contents 

classification. For example, Pang et al. (2002) used 

unigram and bigram to classify movie reviews. The 

results showed that unigram gave better results 

than bigram. Conversely, Dave et al. (2003) re-

ported gaining better results from trigrams rather 

than bigram in classifying product reviews. Conse-

quently, we chose to evaluate unigrams, bigrams 

and trigrams to see which will give the best results 

 

 

 
 

Figure 1: Comparison of Twitter messages from two approaches 

 

 

 
 

Figure 2: Comparison of SMS messages from two approaches 

Unigram Bigram Trigram

Pos 1 84.46 82.09 80.8

Neg 1 71.08 59.53 52.91

Pos 2 84.62 83.31 83.25

Neg 2 71.70 65.00 64.34
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in the polarity classification. Our results are de-

scribed in the next section. 

4 Experiment and Results  

In this experiment, we used the distributed data 

from Twitter messages and the F-measure for sys-

tem evaluation. As at first approach, the corpora 

were trained directly in the system, while stop-

words (e.g. a, an, the) were removed before train-

ing using the python NLTK for the second 

approach. The approaches are demonstrated on a 

sample context in Table 2 and 3. 

After comparing both approaches (Figure 1), we 

were able to obtain an F-score 84.62% of positive 

and 71.70% of negative after removing stopwords. 

Then, the average F-score is 78.16%, which was 

increased from the first approach by 0.50%. The 

results from both approaches showed that, unigram 

achieved higher scores than either bigrams or tri-

grams.  

Moreover, these experiments have been tested 

with a set of SMS messages to assess how well our 

system trained on Twitter data can be generalized 

to other types of message data. The second ap-

proach still achieved the better scores (Figure 2), 

where we were able to obtain an F-score of 77.81% 

of positive and 84.66% of negative; thus, the aver-

age F-score is 81.23%. 

The results of unigram from the second ap-

proach submitted to SemEval 2013 can be found in 

Figure 3. After comparing them using the average 

F-score from positive and negative class, the re-

sults showed that our system works better for SMS 

messaging than for Twitter. 
 

gonna miss some of my classes. 

Unigram Bigram Trigram 

gonna 

miss 

some 

of 

my 

classes 

gonna miss 

miss some 

some of 

of my 

my classes 

gonna miss some 

miss some of 

some of my 

of my classes 

 

Table 2: Example of context from first approach 

 

 

 

 

 

 

gonna miss (some of) my classes. 

Unigram Bigram Trigram 

gonna 

miss 

my 

classes 

gonna miss 

miss my 

my classes 

gonna miss my 

miss my classes 

 

Table 3: Example of context from second approach. 

Note ‘some’ and ‘of’ are listed in NLTK stopwords. 

 

 

 
 

Figure 3: Results of unigram of Twitter and SMS in the 

second approach 

5 Conclusion and Future Work 

A system, TJP, has been described that participated 

in SemEval 2013 Task 2 part A: Contextual Polari-

ty Disambiguation (Wilson et al., 2013). The sys-

tem used the Python NLTK (Bird et al 2009) Naive 

Bayes classifier trained on Twitter data. Further-

more, emoticons were collected and labeled as pos-

itive and negative in order to classify contexts with 

emoticons. After analyzing the Twitter message 

and SMS messages, we were able to obtain an av-

erage F-score of 78.16% and 81.23% respectively 

during the SemEval 2013 task. The reason that, our 

system achieved better scores with SMS message 

then Twitter message might be due to our use of 

Twitter messages as training data. However this is 

still to be verified experimentally. 

The experimental performance on the tasks 

demonstrates the advantages of simple approaches. 

This provides a baseline performance set to which 

more sophisticated or resource intensive tech-

niques may be compared. 
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For future work, we intend to trace back to the 

root words and work with the suffix and prefix that 

imply negative semantics, such as ‘dis-’, ‘un-’, ‘-

ness’ and ‘-less’. Moreover, we would like to col-

lect more shorthand texts than that used commonly 

in microblogs, such as gr8 (great), btw (by the 

way), pov (point of view), gd (good) and ne1 (any-

one). We believe these could help to improve our 

system and achieve better accuracy when classify-

ing the sentiment of context from microblogs. 
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Abstract 

We present two systems developed at the Uni-

versity of Ottawa for the SemEval 2013 Task 2. 

The first system (for Task A) classifies the po-

larity / sentiment orientation of one target word 

in a Twitter message. The second system (for 

Task B) classifies the polarity of whole Twitter 

messages. Our two systems are very simple, 

based on supervised classifiers with bag-of-

words feature representation, enriched with in-

formation from several sources. We present a 

few additional results, besides results of the 

submitted runs. 

1 Introduction 

The Semeval 2013 Task 2 focused on classifying 

Twitter messages (“tweets”) as expressing a posi-

tive opinion, a negative opinion, a neutral opinion, 

or no opinion (objective). In fact, the neutral and 

objective were joined in one class for the require-

ments of the shared task. Task A contained target 

words whose sense had to be classified in the con-

text, while Task B was to classify each text into 

one of the three classes: positive, negative, and 

neutral/objective. The training data that was made 

available for each task consisted in annotated 

Twitter message. There were two test sets for each 

task, one composed of Twitter messages and one 

of SMS message (even if there was no specific 

training data for SMS messages). See more details 

about the datasets in (Wilson et al., 2013). 

 

2 System Description 

We used supervised learning classifiers from We-

ka (Witten and Frank, 2005). Initially we extracted 

simple bag-of-word features (BOW). For the sub-

mitted systems, we also used features calculated 

based on SentiWordNet information (Baccianella 

et al., 2010). SentiWordNet contains positivity, 

negativity, and objectivity scores for each sense of 

a word. We explain below how this information 

was used for each task. 

    As classifiers, we used Support Vector Ma-

chines (SVM) (SMO and libSVM from Weka with 

default values for parameters), because SVM is 

known to perform well on many tasks, and Multi-

nomial Naive Bayes (MNB), because MNB is 

known to perform well on text data and it is faster 

than SVM. 

2.1 Task A 

Our system for Task A involved two parts: the 

expansion of our training data and the classifica-

tion. The expansion was done with information 

from SentiWordNet. Stop words and words that 

appeared only once in the training data were fil-

tered out. Then the classification was completed 

with algorithms from Weka.  

As mentioned, the first task was to expand all of 

the tweets that were provided as training data. This 

was doing using Python and the Python NLTK 

library, as well as SentiWordNet. SentiWordNet 

provides a score of the sentient state for each word 

(for each sense, in case the word has more than 
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one sense). As an example, the word “want” can 

mean “a state of extreme poverty” with the Senti-

WordNet score of (Positive: 0 Objective: 

0.75 Negative: 0.25). The same word could also 

mean “a specific feeling of desire” with a score of 

(Positive: 0.5 Objective: 0.5 Negative: 0). We also 

used for expansion the definitions and synonyms 

of each word sense, from WordNet. 

The tweets in the training data are labeled with 

their sentiment type (Positive, Negative, Objective 

and Neutral). Neutral and Objective are treated the 

same. The provided training data has the target 

word marked, and also the sentiment orientation of 

the word in the context of the tweeter message. 

These target words were the ones expanded by our 

method. When the target was a multi-word expres-

sion, if the expression was found in WordNet, then 

the expansion was done directly; if not, each word 

was expanded in a similar fashion and concatenat-

ed to the original tweet. These target words were 

looked up in SentiWordNet and matched with the 

definition that had the highest score that also 

matched their sentiment label in the training data.  

 

 
Original Tweet The great Noel Gallagher is about to 

hit the stage in St. Paul. Plenty of 

room here so we're 4th row center. 

Plenty of room. Pretty fired up 
Key Words Great 
Sentiment Positive 
Definition very good; "he did a bully job"; "a 

neat sports car"; "had a great time at 

the party"; "you look simply smash-

ing" 
Synonyms Swell, smashing, slap-up, peachy, 

not_bad, nifty, neat, keen, groovy, 

dandy, cracking, corking, bully, 

bang-up 
Expanded 

Tweet 
The great Noel Gallagher is about to 

hit the stage in St. Paul. Plenty of 

room here so were 4th row center. 

Plenty of room. Pretty fired up  swell 

smashing slap-up peachy not_bad 

nifty neat keen groovy dandy crack-

ing corking bully bang-up very good 

he did a bully job a neat sports car 

had a great time at the party you look 

simply smashing  
Table 1: Example of tweet expansion for Task A 

 

 

The target word’s definition and synonyms were then 

concatenated to the original tweet. No additional 

changes were made to either the original tweet or the 

features that were added from SentiWordNet.  An ex-

ample follows in Table 1. The test data (Twitter and 

SMS) was not expanded, because there are no labels in 

the test data to be able to choose the sense with corre-

sponding sentiment. 

2.2 Task B 

For this task, we used the following resources: 

SentiwordNet (Baccianella et al, 2010), the Polari-

ty Lexicon (Wilson et al., 2005), the General In-

quirer (Stone et al., 1966), and the Stanford NLP 

tools (Toutanova et al., 2003) for preprocessing 

and feature selection. The preprocessing of Twitter 

messages is implemented in three steps namely, 

stop-word removal, stemming, and removal of 

words with occurrence frequency of one. Several 

extra features will be used: the number of positive 

words and negative words identified by three lexi-

cal resources mentioned above, the number of 

emoticons, the number of elongated words, and the 

number of punctuation tokens (single or repeated 

exclamation marks, etc.). As for SentiWordNet, 

for each word a score is calculated that shows the 

positive or negative weight of that word. No sense 

disambiguation is done (the first sense is used), but 

the scores are used for the right part-of-speech (in 

case a word has more than one possible part-of-

speech). Part-of-Speech tagging was done with the 

Stanford NLP Tools. As for General Inquirer and 

Polarity Lexicon, we simply used the list positive 

and negative words from these resources in order 

to count how many positive and how many nega-

tive terms appear in a message.  

 

3 Results 

3.1 Task A 

For classification, we first trained on our expanded 

training data using 10-fold cross-validation and 

using the SVM (libSVM) and Multinomial Na-

iveBayes classifiers from Weka, using their default 

settings. The training data was represented as a 

bag of words (BOW). These classifiers were cho-

sen as they have given us good results in the past 

for text classification. The classifiers were run 

with 10-fold cross-validation. See Table 2 for the 
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results. Without expanding the tweets, the accura-

cy of the SVM classifier was equal to the baseline 

of classifying everything into the most frequent 

class, which was “positive“ in the training data. 

For MNB, the results were lower than the baseline. 

After expanding the tweets, the accuracy increased 

to 73% for SVM and to 80.36% for MNB. We 

concluded that MNB works better for Task A. This 

is why the submitted runs used the MNB model 

that was created from the expanded training data. 

Then we used this to classify the Twitter and SMS 

test data. The average F-score for the positive and 

the negative class for our submitted runs can be 

seen in Table 3, compared to the other systems 

that participated in the task. We report this meas-

ure because it was the official evaluation measure 

used in the task. 

 

 

System SVM MNB 

Baseline 66.32% 66.32% 

BOW features 66.32% 33.23% 

BOW+ text expansion 73.00% 80.36% 
Table 2: Accuracy results for task A by 10-fold cross-

validation on the training data 

 

 

System Tweets SMS 

uOttawa system 0.6020 0.5589 

Median system 0.7489 0.7283 

Best system 0.8893 0.8837 
Table 3:  Results for Task A for the submitted runs 

(Average F-score for positive/negative class) 

    

   The precision, recall and F-score on the Twitter 

and SMS test data for our submitted runs can be 

seen in Tables 4 and 5, respectively. All our sub-

mitted runs were for the “constrained” task; no 

additional training data was used. 

 

 

Class Precision Recall F-Score 

Positive 0.6934 0.7659 0.7278 

Negative 0.5371 0.4276 0.4762 

Neutral 0.0585 0.0688 0.0632 
Table 4: Results for Tweet test data for Task A, for 

each class. 

 

 

Class Precision Recall F-Score 

Positive 0.5606 0.5705 0.5655 

Negative 0.5998 0.5118 0.5523 

Neutral 0.1159 0.2201 0.1518 

Table 5: Results for SMS test data for Task A, for each 

class. 

3.2 Task B 

First we present results on the training data (10-

fold cross-validation), then we present the results 

for the submitted runs (also without any additional 

training data).  

    Table 6 shows the overall accuracy for BOW 

features for two classifiers, evaluated based on 10-

fold cross validation on the training data, for two 

classifiers: SVM (SMO in Weka) and Multidimen-

sional Naïve Bays (MNB in Weka). The BOW 

plus SentiWordNet features also include the num-

ber of positive and negative words identified from 

SentiWordNet. The BOW plus extra features rep-

resentation includes the number of positive and 

negative words identified from SentiWordNet, 

General Inquirer, and Polarity Lexicon (six extra 

features). The last row of the table shows the over-

all accuracy for BOW features plus all the extra 

features mentioned in Section 2.2, including in-

formation extracted from SentiWordNet, Polarity 

Lexicon, and General Inquirer. We can see that the 

SentiWordNet features help, and that when includ-

ing all the extra features, the results improve even 

more. We noticed that the features from the Polari-

ty Lexicon contributed the most. When we re-

moved GI, the accuracy did not change much; we 

believe this is because GI has too small coverage. 

 

 

System SVM MNB 

Baseline 48.50% 48.50% 

BOW features 58.75% 59.56% 

BOW+ SentiWordNet 69.43% 63.30% 

BOW+ extra features 82.42% 73.09% 
Table 6: Accuracy results for task B by 10-fold cross-

validation on the training data 

 

    The baseline in Table 6 is the accuracy of a triv-

ial classifier that puts everything in the most fre-

quent class, which is neutral/objective for the 

training data (ZeroR classifier in Weka). 
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    The results of the submitted runs are in Table 7 

for the two data sets. The features representation 

was BOW plus SentiWordNet information. The 

official evaluation measure is reported (average F-

score for the positive and negative class). The de-

tailed results for each class are presented in Tables 

8 and 9.  

     In Table 7, we added an extra row for a new 

uOttawa system (SVM with BOW plus extra fea-

tures) that uses the best classifier that we designed 

(as chosen based on the experiments on the train-

ing data, see Table 6). This classifier uses SVM 

with BOW and all the extra features. 

 

 

System Tweets SMS 

uOttawa submitted  

system 

0.4251 0.4051 

uOttawa new system 0.8684 0.9140 

Median system 0.5150 0.4523 

Best system 0.6902 0.6846  
Table 7:  Results for Task B for the submitted runs 

(Average F-score for positive/negative). 

 

Class Precision Recall F-score 

Positive 0.6206 0.5089 0.5592 

Negative 0.4845 0.2080 0.2910 

Neutral 0.5357 0.7402 0.6216 
Table 8: Results for each class for task B, for the sub-

mitted system (SVM with BOW plus SentiWordNet 

features) for the Twitter test data. 

 

Class Precision Recall F-score 

Positive 0.4822 0.5508 0.5142 

Negative 0.5643 0.2005 0.2959 

Neutral 0.6932 0.7988 0.7423 
Table 9: Results for each class for task B, for the sub-

mitted system (SVM with BOW plus SentiWordNet 

features) for the SMS test data. 

 

4 Conclusions and Future Work  

In Task A, we expanded upon the Twitter messag-

es from the training data using their keyword’s 

definition and synonyms from SentiWordNet. We 

showed that the expansion helped improve the 

classification performance. In future work, we 

would like to try an SVM using asymmetric soft-

boundaries to try and penalize the classifier for 

missing items in the neutral class, the class with 

the least items in the Task A training data.   

 The overall accuracy of the classifiers for Task 

B increased a lot when we introduced the extra 

features discussed in section 2.2. The overall accu-

racy of SVM increased from 58.75% to 82.42% 

(as measures by cross-validation on the training 

data). When applying this classifier on the two test 

data sets, the results were very surprisingly good 

(even higher that the best system submitted by the 

SemEval participants for Task B
1
). 
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Abstract

This paper describes our system for participat-
ing SemEval2013 Task2-B (Kozareva et al.,
2013): Sentiment Analysis in Twitter. Given
a message, our system classifies whether the
message is positive, negative or neutral senti-
ment. It uses a co-occurrence rate model. The
training data are constrained to the data pro-
vided by the task organizers (No other tweet
data are used). We consider 9 types of fea-
tures and use a subset of them in our submitted
system. To see the contribution of each type of
features, we do experimental study on features
by leaving one type of features out each time.
Results suggest that unigrams are the most im-
portant features, bigrams and POS tags seem
not helpful, and stopwords should be retained
to achieve the best results. The overall results
of our system are promising regarding the con-
strained features and data we use.

1 Introduction

The past years have witnessed the emergence and
popularity of short messages such as tweets and
SMS messages. Comparing with the traditional gen-
res such as newswire data, tweets are very short and
use informal grammar and expressions. The short-
ness and informality make them a new genre and
bring new challenges to sentiment analysis (Pang et
al., 2002) as well as other NLP applications such
named entity recognition (Habib et al., 2013).

Recently a wide range of methods and features
have been applied to sentimental analysis over
tweets. Go et al. (2009) train sentiment classi-
fiers using machine learning methods, such as Naive

Bayes, Maximum Entropy and SVMs, with different
combinations of features such as unigrams, bigrams
and Part-of-Speech (POS) tags. Microblogging fea-
tures such as hashtags, emoticons, abbreviations, all-
caps and character repetitions are also found help-
ful (Kouloumpis et al., 2011). Saif et al. (2012)
train Naive Bayes models with semantic features.
Also the lexicon prior polarities have been proved
very useful (Agarwal et al., 2011). Davidov et al.
(2010) utilize hashtags and smileys to build a large-
scale annotated tweet dataset automatically. This
avoids the need for labour intensive manual anno-
tation. Due to the fact that tweets are generated con-
stantly, sentiment analysis over tweets has some in-
teresting applications, such as predicting stock mar-
ket movement (Bollen et al., 2011) and predicting
election results (Tumasjan et al., 2010; O’Connor et
al., 2010).

But there are still some unclear parts in the lit-
erature. For example, it is unclear whether using
POS tags improves the sentiment analysis perfor-
mance or not. Conflicting results are reported (Pak
and Paroubek, 2010; Go et al., 2009). It is also
a little surprising that not removing stopwords in-
creases performance (Saif et al., 2012). In this pa-
per, we build a system based on the concept of co-
occurrence rate. 9 different types of features are con-
sidered. We find that using a subset of these features
achieves the best results in our system, so we use
this subset of features rather than all the 9 types of
features in our submitted system. To see the contri-
bution of each type of features, we perform experi-
ments by leaving one type of features out each time.
Results show that unigrams are the most important
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features, bigrams and POS tags seem not helpful,
and retaining stopwords makes the results better.
The overall results of our system are also promis-
ing regarding the constrained features and data we
use.

2 System Description

2.1 Method
We use a supervised method which is similar to the
Naive Bayes classifier. The score of a tweet, denoted
by t, and a sentiment category, denoted by c, is cal-
culated according to the following formula:

Score(t, c) = [

n∑
i=1

log CR(fi, c)] + log P (c),

where fi is a feature extracted from t. The sentiment
category c can be positive, negative or neutral. And
CR(fi, c) is Co-occurrence Rate (CR) of fi and c
which can be obtained as follows:

CR(f, c) =
P (fi, c)

P (fi)P (c)
∝ #(fi, c)

#(fi)#(c)
,

where #(∗) is the number of times that the pattern
∗ appears in the training dataset. Then the category
of the highest score arg maxc Score(t, c) is the pre-
diction.

This method assumes all the features are inde-
pendent which is also the assumption of the Naive
Bayes model. But our model excludes P (fi) be-
cause they are observations. Hence comparing with
Naive Bayes, our model saves the effort to model
feature distributions P (fi). Also this method can
be trained efficiently because it only depends on the
empirical distributions.

2.2 Features
To make our system general, we constrain to the text
features. That is we do not use the features outside
the tweet texts such as features related to the user
profiles, discourse information or links. The follow-
ing 9 types of features are considered:

1. Unigrams. We use lemmas as the form of un-
igrams. The lemmas are obtained by the Stan-
ford CoreNLP1 (Toutanova et al., 2003). Hash-

1http://nlp.stanford.edu/software/corenlp.shtml

tags and emoticons are also considered as un-
igrams. Some of the unigrams are stopwords
which will be discussed in the next section.

2. Bigrams. We consider two adjacent lemmas as
bigrams.

3. Named entities. We use the CMU Twitter Tag-
ger (Gimpel et al., 2011; Owoputi et al., 2013)2

to recognize named entities. The tokens cov-
ered by a named entity are not considered as
unigrams any more. Instead a named entity as
a whole is treated as a single feature.

4. Dependency relations. Dependency relations
are helpful to the sentiment prediction. Here we
give an example to explain this type of features.
In the tweet “I may not be able to vote from
Britain but I COMPLETLEY support you!!!!” ,
the dependency relation between the word ‘not’
and ‘able’ is ‘NEG’ which stands for nega-
tion, and the dependency relation between the
word ‘COMPLETELY’ and ‘support’ is ‘ADV-
MOD’ which means adverb modifier. For this
example, we add ‘NEG able’ and ‘completely
support’ as dependency features to our system.
We use Stanford CoreNLP (Klein and Man-
ning, 2003a; Klein and Manning, 2003b) to ob-
tain dependencies. And we only consider two
types of dependencies ‘NEG’ and ‘ADVMOD’.
Other dependency relations are not helpful.

5. Lexicon prior polarity. The prior polarity of
lexicons have been proved very useful to sen-
timent analysis. Many lexicon resources have
been developed. But for a single lexicon re-
source, the coverage is limited. To achieve
better coverage, we merge three lexicon re-
sources. The first one is SentiStrength3 (Ku-
cuktunc et al., 2012). SentiStrength provides a
fine-granularity system for grading lexicon po-
larity which ranges from −5 (most negative) to
+5 (most positive). Our grading system con-
sists of three categories: negative, neutral and
positive. So we map the words ranging from
−5 to −1 in SentiStrength to negative in our
grading system, and the words ranging from

2http://www.ark.cs.cmu.edu/TweetNLP/
3http://sentistrength.wlv.ac.uk/
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+1 to +5 to positive. The rest are mapped
to neutral. We do the same for the other two
lexicon resources: OpinionFinder4 (Wiebe et
al., 2005) and SentiWordNet5 (Esuli and Sebas-
tiani, 2006; Baccianella and Sebastiani, 2010).

6. Intensifiers. The tweets containing intensifiers
are more likely to be non-neutral. In the sub-
mitted system, we merge the boosters in Sen-
tiStrength and the intensifiers in OpinionFinder
to form a list of intensifiers. Some of these in-
tensifiers strengthen emotion (e.g. ‘definitely’),
but others weaken emotion (e.g. ‘slightly’).
They are distinguished and assigned with dif-
ferent labels {intensifier strengthen,
intensifier weaken}.

7. All-caps and repeat characters. All-caps6 and
repeat characters are common expressions in
tweets to make emphasis on the applied tokens.
They can be considered as implicit intensifiers.
In our system, we first normalize the repeat
characters. For example, happyyyy is nor-
malized to happy as there are ≥ 3 consequent
y. Then they are treated in the same way as
intensifier features discussed above.

8. Interrogative sentence. Interrogative sentences
are more likely to be neutral. So we add if a
tweet includes interrogative sentences as a fea-
ture to our system. The sentences ending with
a question mark ‘?’ are considered as inter-
rogative sentences. We first use the Stanford
CoreNLP to find the sentence boundaries in a
tweet, then check the ending mark of each sen-
tence.

9. Imperative sentence. Intuitively, imperative
sentences are more likely to be negative. So
if a tweet contains imperative sentences can be
a feature. We consider the sentences start with
a verb as imperative sentences. The verbs are
identified by the CMU Twitter Tagger.

We further filter out the low-frequency features
which have been observed less than 3 times in the

4https://code.google.com/p/opinionfinder/
5http://sentiwordnet.isti.cnr.it/
6All characters of a token are in upper case.

training data. Because these features are not stable
indicators of sentiment. Our experiments show that
removing these low-frequency features increases the
accuracy.

2.3 Pre-processing

The pre-processing of our system includes two steps.
In the first step, we replace the abbreviations as de-
scribed in Section 2.3.1. In the second step, we use
the CMU Twitter Tagger to extract the features of
emoticons (e.g. :)), hashtags (e.g. #Friday), re-
ciepts (e.g. @Peter) and URLs, and remove these
symbols from tweet texts for further processing.

2.3.1 Replacing Abbreviations
Abbreviations are replaced by their original ex-

pressions. We use the Internet Lingo Dictionary
(Wasden, 2010) to obtain the original expressions
of abbreviations. This dictionary originally contains
748 acronyms. But we do not use the acronyms in
which all characters are digits. Because we find they
are more likely to be numbers than acronyms. This
results in 735 acronyms.

3 Experiments

Our system is implemented in Java and organized
as a pipeline consisting of a sequence of annotators
and extractors. This architecture is very similar to
the framework of UIMA (Ferrucci and Lally, 2004).
With such an architecture, we can easily vary the
configurations of our system.

3.1 Datasets

We use the standard dataset provided by Se-
mEval2013 Task2-B (Kozareva et al., 2013) for
training and testing. The training and develop-
ment data provided are merged together to train our
model. Originally, the training and development
data contain 9,684 and 1,654 instances, respectively.
But due to the policy of Twitter, only the tweet IDs
can be released publicly. So we need to fetch the ac-
tual tweets by their IDs. Some of the tweets are no
longer existing after they were downloaded for an-
notation. So the number of tweets used for training
is less than the original tweets provided by the orga-
nizers. In our case, we obtained 10,370 tweets for
training our model.
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Class Precision Recall F-Score
Positive 74.86 60.05 66.64
Negative 47.80 59.73 53.11
Neutral 67.02 73.60 70.15

Avg (Pos & Neg) 61.33 59.89 59.87

Table 1: Submitted System on Twitter Data

Class Precision Recall F-Score
Positive 54.81 57.93 56.32
Negative 37.87 67.77 48.59
Neutral 80.78 58.11 67.60

Avg (Pos & Neg) 46.34 62.85 52.46

Table 2: Submitted System on SMS Data

There are two test datasets: Twitter and SMS. The
first dataset consists of 3,813 twitter messages and
the second dataset contains 2,094 SMS messages.
The purpose of having a separate test set of SMS
messages is to see how well systems trained on twit-
ter data will generalize to other types of data.

3.2 Results of Our Submitted System

We use a subset of features described in Section 2.2
in our submitted system: unigrams, named entities,
dependency relations, lexicon prior polarity, inten-
sifiers, all-caps and repeat characters, interrogative
and imperative sentences. The official results on the
two datasets are given in Table (1, 2). Our system is
ranked as #14/51 on the Twitter dataset and #18/44
on the SMS dataset.

3.3 Feature Contribution Analysis

To see the contribution of each type of features, we
vary the configuration of our system by leaving one
type of features out each time. The results are listed
in Table 3.

In Table 3, ‘Y(T)’ means the corresponding fea-
ture is used and the test dataset is the Twitter Data,
and ‘N(sms)’ means the corresponding feature is left
out and the test dataset is SMS Data.

From Table 3, we can see that unigrams are the
most important features. Leaving out unigrams
leads to a radical decrease of F-scores. On the Twit-
ter dataset, the F-score drops from 59.87 to 41.44,
and on the SMS dataset, the F-score drops from
52.64 to 35.09. And also filtering out the low-

Feature Y(T) N(T) Y(sms) N(sms)
Stopword 59.87 58.19 52.64 51.00
POS Tag 58.68 59.87 51.87 52.64
Bigram 58.47 59.87 51.94 52.64

Unigram 59.87 41.22 52.64 35.09
3 ≤ 59.87 57.66 52.64 51.20

Intensifier 59.87 59.47 52.64 52.39
Lexicon 59.87 58.33 52.64 51.26

Named Ent. 59.87 59.71 52.64 51.80
Interrogative 59.87 59.67 52.64 52.93
Imperative 59.87 59.54 52.64 52.14

Dependence 59.87 59.37 52.64 52.08

Table 3: Avg (Pos & Neg) of Leave-one-out Experiments

frequency features which happens less than 3 times
increases the F-scores on Twitter data from 57.66 to
59.87, and on SMS data from 51.20 to 52.64. Re-
moving stopwords decreases the scores by 1.66 per-
cent. This result is consistent with that reported by
Saif et al. (2012). By taking a close look at the
stopwords we use, we find that some of the stop-
words are highly related to the sentiment polarity,
such as ‘can’, ‘no’, ‘very’ and ‘want’, but others
are not, such as ‘the’, ‘him’ and ‘on’. Removing
the stopwords which are related to the sentiment
is obviously harmful. This means the stopwords
which originally developed for the purpose of in-
formation retrieval are not suitable for sentimental
analysis. Dependency relations are also helpful fea-
tures which increase F-scores by about 0.5 percent.
The POS tags and bigrams seem not helpful in our
experiments, which is consistent with the results re-
ported by (Kouloumpis et al., 2011).

4 Conclusions

We described the method and features used in our
system. We also did analysis on feautre contribu-
tion. Experiment results suggest that unigrams are
the most important features, POS tags and bigrams
seem not helpful, filtering out the low-frequency fea-
tures is helpful and retaining stopwords makes the
results better.
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Abstract

This paper describes a dual-classifier ap-
proach to contextual sentiment analysis at the
SemEval-2013 Task 2. Contextual analysis of
polarity focuses on a word or phrase, rather
than the broader task of identifying the senti-
ment of an entire text. The Task 2 definition
includes target word spans that range in size
from a single word to entire sentences. How-
ever, the context of a single word is depen-
dent on the word’s surrounding syntax, while a
phrase contains most of the polarity within it-
self. We thus describe separate treatment with
two independent classifiers, outperforming the
accuracy of a single classifier. Our system
ranked 6th out of 19 teams on SMS message
classification, and 8th of 23 on twitter data.
We also show a surprising result that a very
small amount of word context is needed for
high-performance polarity extraction.

1 Introduction

A variety of approaches to sentiment analysis have
been proposed in the literature. Early work sought to
identify the general sentiment of entire documents,
but a recent shift to social media has provided a large
quantity of publicly available data, and private orga-
nizations are increasingly interested in how a pop-
ulation “feels” toward its products. Identifying the
polarity of language toward a particular topic, how-
ever, no longer requires identifying the sentiment of
an entire text, but rather the contextual sentiment
surrounding a target phrase.

Identifying the polarity of text toward a phrase is
significantly different from a sentence’s overall po-

larity, as seen in this example from the SemEval-
2013 Task 2 (Wilson et al., 2013) training set:

I had a severe nosebleed last night. I think
my iPad caused it as I was browsing for a
few hours on it. Anyhow, its stopped, which
is good.

An ideal sentiment classifier would classify this
text as overall positive (the nosebleed stopped!), but
this short snippet actually contains three types of po-
larity (positive, negative, and neutral). The middle
sentence about the iPad is not positive, but neutral.
The word ‘nosebleed’ has a very negative polarity
in this context, and the phrase ‘its stopped’ is posi-
tive. Someone interested in specific health concerns,
such as nosebleeds, needs a contextual classifier to
identify the desired polarity in this context.

This example also illustrates how phrases of dif-
ferent sizes require unique handling. Single token
phrases, such as ‘nosebleed’, are highly dependent
on the surrounding context for its polarity. How-
ever, the polarity of the middle iPad sentence is con-
tained within the phrase itself. The surrounding con-
text is not as important. This paper thus proposes
a dual-classifier that trains two separate classifiers,
one for single words, and another for phrases. We
empirically show that unique features apply to both,
and both benefit from independent training. In fact,
we show a surprising result that a very small win-
dow size is needed for the context of single word
phrases. Our system performs well on the SemEval
task, placing 8th of 23 systems on twitter text. It also
shows strong generalization to SMS text messages,
placing 6th of 19.

390



2 Previous Work

Sentiment analysis is a large field applicable to
many genres. This paper focuses on social media
(microblogs) and contextual polarity, so we only
address the closest work in those areas. For a
broader perspective, several survey papers are avail-
able (Pang and Lee, 2008; Tang et al., 2009; Liu and
Zhang, 2012; Tsytsarau and Palpanas, 2012).

Microblogs serve as a quick way to measure a
large population’s mood and opinion. Many differ-
ent sources have been used. O’Connor et al. (2010)
used Twitter data to compute a ratio of positive and
negative words to measure consumer confidence and
presidential approval. Kramer (2010) counted lex-
icon words on Facebook for a general ’happiness’
measure, and Thelwall (2011) built a general senti-
ment model on MySpace user comments. These are
general sentiment algorithms.

Specific work on microblogs has focused on find-
ing noisy training data with distant supervision.
Many of these algorithms use emoticons as seman-
tic indicators of polarity. For instance, a tweet that
contains a sad face likely contains a negative polar-
ity (Read, 2005; Go et al., 2009; Bifet and Frank,
2010; Pak and Paroubek, 2010; Davidov et al., 2010;
Kouloumpis et al., 2011). In a similar vein, hash-
tags can also serve as noisy labels (Davidov et al.,
2010; Kouloumpis et al., 2011). Most work on dis-
tant supervision relies on a variety of syntactic and
word-based features (Marchetti-Bowick and Cham-
bers, 2012). We adopt many of these features.

Supervised learning for contextual sentiment
analysis has not been thoroughly investigated. La-
beled data for specific words or queries is expensive
to generate, so Jiang et al. (2011) is one of the few
approaches with labeled training data. Earlier work
on product reviews sought the sentiment toward par-
ticular product features. These systems used rule
based approaches based on parts of speech and other
surface features (Nasukawa and Yi, 2003; Hu and
Liu, 2004; Ding and Liu, 2007).

Finally, topic identification in microblogs is also
related. The first approaches are somewhat simple,
selecting single keywords (e.g., “Obama”) to rep-
resent the topic (e.g., “US President”), and retrieve
tweets that contain the word (O’Connor et al., 2010;
Tumasjan et al., 2010; Tan et al., 2011). These sys-

tems then classify the polarity of the entire tweet,
and ignore the question of polarity toward the partic-
ular topic. This paper focuses on the particular key-
word or phrase, and identifies the sentiment toward
that phrase, not the overall sentiment of the text.

3 Dataset

This paper uses three polarity classes: positive, neg-
ative, and neutral. We developed all algorithms on
the ‘Task A’ corpora provided by SemEval-2013
Task 2 (Wilson et al., 2013). Both training and de-
velopment sets were provided, and an unseen test
set was ultimately used to evaluate the final systems.
The number of tweets in each set are shown here:

positive negative neutral
training 5348 2817 422
development 648 430 57
test (tweet) 2734 1541 160
test (sms) 1071 1104 159

4 Contextual Sentiment Analysis

Contextual sentiment analysis focuses on the dispo-
sition of a certain word or groups of words. Most
data-driven approaches rely on a labeled corpus to
drive the learning process, and this paper is no dif-
ferent. However, we propose a novel approach to
contextual analysis that differentiates between sin-
gle words and phrases.

The semantics of a single word in context from
that of a phrase are fundamentally different. Since
one word will have multiple contexts and is heavily
influenced by the surrounding words, more consid-
eration is given to adjacent words. A phrase often
carries its own semantics, so has less variability in
its meaning based on its context. Context is still im-
portant, but we propose separate classifiers in order
to learn weights unique to tokens and phrases. The
following describes the two unique feature sets. We
trained a Maximum Entropy classifier for each set.

4.1 Text Pre-Processing

All text is lowercased, and twitter usernames (e.g.,
@user) and URLs are replaced with placeholder to-
kens. The text is then split on whitespace. We also
prepend the occurrence of token “not” to the subse-
quent token, merging the two (e.g., “not happy” be-
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comes “not-happy”). We also found that removing
prefix and affix punctuation from each token, and
storing the punctuation for later use in punctuation
features boosts performance. These cleaned tokens
are the input to the features described below.

4.2 Single Word Sentiment Analysis

Assigning polarity to a single word mainly requires
features that accurately capture the surrounding con-
text. In fact, many single words do no carry any po-
larity in isolation, but solely require context. Take
the following two examples:

Justin LOVE YA so excited for the concert in
october MEXICO LOVES YOU

Im not getting on twitter tomorrow because all
my TL will consist of is a bunch of girls talking
about Justin Beiber

In these examples, Justin is the name of a singer
who does not carry an initial polarity. The first tweet
is clearly positive toward him, while the second is
not. Our single-token classifier used the following
set of features to capture these different contexts:

Target Token: The first features are the unigram
and bigram ending with the target token. We attach a
unique string to each to distinguish it from the text’s
other n-grams. We also include a feature for any
punctuation that was attached to the end of the token
(e.g., ’Justin!’ generates ’!’ as a feature).

Target Patterns: This feature generalizes the n-
grams that include the target word. It replaces the
target word with a variable in an effort to capture
general patterns that indicate sentiment. For in-
stance, using the first tweet above, we add the tri-
gram ‘<s> LOVE’ and two bigrams, ‘<s> ’
and ‘ LOVE’.

Unigrams, Bigrams, Trigrams: We include all
other n-grams in the text within a window of size
n from the target token.

Dictionary Matching: We have two binary fea-
tures, postivemood and negativemood, that indicate
if any word in the text appears in a sentiment lex-
icon’s positive or negative list. We use Bing Liu’s
Opinion Lexicon1.

1http://www.cs.uic.edu/˜liub/FBS/
sentiment-analysis.html\#lexicon

Punctuation Features: We included a binary fea-
ture for the presence or absence of exclamation
marks anywhere in the text. Further, we generate
a feature for punctuation at the end of the text.

Emoticons: We included two binary features for the
presence or absence of a smiley face and sad face
emoticon.

4.3 Phrasal Sentiment Analysis

We adopted several single word features for use in
phrases, including punctuation, dictionary match-
ing, and emoticons. However, since phrasal analy-
sis is often less dependent on context and more de-
pendent on the phrase itself, we altered the n-gram
features to be unique to the phrase. The following
features are solely used for target phrases, not single
words:

Unigrams, Bigrams, Trigrams: We include all n-
grams in the target phrase only. This differs from
the single token features that included n-grams from
a surrounding window.

Phrasal Punctuation: If the target phrase ends with
any type of punctuation, we include it as a feature.

5 Experiments

Initial model design and feature tuning was con-
ducted on the SemEval-2013 Task 2 training set for
training, and its dev set for evaluation. We split the
data into two parts: tweets with single word targets,
and tweets with target phrases. We trained two Max-
Ent classifiers using the Stanford JavaNLP toolkit2.
Each datum in the test set is labeled using the appro-
priate classifier based on the target phrase’s length.

The first experiments are ablation over the fea-
tures described in Section 4, separately improving
the single token and phrasal classifiers. Results are
reported in Table 1 using simple accuracy on the de-
velopment set. We initially do not split off punc-
tuation, and use only unigram features for phrases.
The window size is initally infinite (i.e., the entire
text is used for n-grams). Bigrams and trigrams hurt
performance and are not shown. Reducing the win-
dow size to a single token (ignore the entire tweet)
increased performance by 1.2%, and stripping punc-
tuation off tokens by another 1.9%. The perfor-

2http://nlp.stanford.edu/software/index.shtml
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Single Token Features
Just Unigrams 70.5
+ Target Token Patterns 70.4
+ Sentiment Lexicon 71.5
+ Target Token N-Grams 73.3
+ EOS punctuation 73.2
+ Emoticons 73.3
Set Window Size = 1 74.5
Strip punctuation off tokens 76.4

Phrasal Features
Just Unigrams 76.4
+ Emoticons 76.3
+ EOS punctuation 76.6
+ Exclamation Marks 76.5
+ Sentiment Lexicon 77.7

Table 1: Feature ablation in order. Single token features
begin with unigrams only, holding phrasal features con-
stant at unigrams only. The phrasal table picks up where
the single token table finishes. Each row uses all features
added in previous rows.

Dual-Classifier Comparison
Single Classifier 76.6%
Dual-Classifier 77.7%

Table 2: Performance increase from splitting into two
classifiers. Accuracy reported on the development set.

mance increase with phrasal features is 1.3% abso-
lute, whereas token features contributed 5.9%.

After choosing the optimum set of features based
on ablation, we then retrained the classifiers on both
the training and development sets as one large train-
ing corpus. The SemEval-2013 Task 2 competition
included two datasets for testing: tweets and SMS
messages. Official results for both are given in Ta-
ble 3 using the F1 measure.

Finally, we compare our dual-classifier to a single
standard classifier. We use the same features used
in Table 1, train on the training set, and report accu-
racy on the development set. See Table 2. Our dual
classifier improves relative accuracy by 1.4%.

6 Discussion

One of the main surprises from our experiments was
that a large portion of text could be ignored with-
out hurting classification performance. We reduced

Twitter Dataset
F1 Score

Top System (1st) 88.9
This Paper (8th) 81.3
Majority Baseline (20th) 61.6
Bottom System (24th) 34.7

SMS Dataset
F1 Score

Top System (1st) 88.4
This Paper (6th) 79.8
Majority Baseline (19th) 47.3
Min System (20th) 36.4

Table 3: Performance on Twitter and SMS Data.

the window size in which n-grams are extracted to
size one, and performance actually increases 1.2%.
At least for single word target phrases, including n-
grams of the entire tweet/sms is not helpful. We
only used n-gram patterns that included the token
and its two immediate neighbors. A nice side ben-
efit is that the classifier contains fewer features, and
trains faster as a result.

The decision to use two separate classifiers helped
performance, improving by 1.4% relative accuracy
on the development set. The decision was moti-
vated by the observation that the polarity of a token
is dependent on its surrounding context, but a longer
phrase is dependent more on its internal syntax. This
allowed us to make finer-grained feature decisions,
and the feature ablation experiments suggest our ob-
servation to be true. Better feature weights are ulti-
mately learned for the unique tasks.

Finally, the feature ablation experiments revealed
a few key takeaways for feature engineering: bi-
grams and trigrams hurt classification, using a win-
dow size is better than the entire text, and punctu-
ation should always be split off tokens. Further, a
sentiment lexicon reliably improves both token and
phrasal classification.

Opportunities for future work on contextual anal-
ysis exist in further analysis of the feature window
size. Why doesn’t more context help token classifi-
cation? Do n-grams simply lack the deeper seman-
tics needed, or are these supervised algorithms still
suffering from sparse training data? Better sentence
and phrase detection may be a fruitful focus.
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Abstract

This paper describes our approach to the
SemEval-2013 task on “Sentiment Analysis
in Twitter”. We use simple bag-of-words mod-
els, a freely available sentiment dictionary auto-
matically extended with distributionally similar
terms, as well as lists of emoticons and inter-
net slang abbreviations in conjunction with fast
and robust machine learning algorithms. The
resulting system is resource-lean, making it rel-
atively independent of a specific language. De-
spite its simplicity, the system achieves compet-
itive accuracies of 0.70–0.72 in detecting the
sentiment of text messages. We also apply our
approach to the task of detecting the context-
dependent sentiment of individual words and
phrases within a message.

1 Introduction

The SemEval-2013 task on “Sentiment Analysis in
Twitter” (Wilson et al., 2013) focuses on polarity clas-
sification, i. e. the problem of determining whether
a textual unit, e. g. a document, paragraph, sentence
or phrase, expresses a positive, negative or neutral
sentiment (for a review of research topics and re-
cent developments in the field of sentiment analysis
see Liu (2012)). There are two subtasks: in task B,
“Message Polarity Classification”, whole messages
have to be classified as being of positive, negative
or neutral sentiment; in task A, “Contextual Polarity
Disambiguation”, a marked instance of a word or
phrase has to be classified in the context of a whole
message.

The training data for task B consist of approxi-
mately 10 200 manually annotated Twitter messages,

the training data for task A of approximately 9 500
marked instances in approximately 6 300 Twitter mes-
sages.1 The test data consist of in-domain Twit-
ter messages (3 813 messages for task B and 4 435
marked instances in 2 826 messages for task A) and
out-of-domain SMS text messages (2 094 messages
for task B, 2 334 marked instances in 1 437 messages
for task A). The distribution of messages and marked
instances over sentiment categories in the training
and test sets is shown in Tab. 1.

pos neg neu total

train-B 3 783 1 600 4 832 10 215
test-B Twitter 1 572 601 1 640 3 813
test-B SMS 492 394 1 208 2 094
train-A 5 862 3 166 463 9 491
test-A Twitter 2 734 1 541 160 4 435
test-A SMS 1 071 1 104 159 2 334

Table 1: The data sets for both tasks

The main focus of the current paper lies on experi-
menting with resource-lean and robust methods for
task B, the classification of whole messages. We do,
however, apply our approach also to task A.

2 Features used for polarity classification

Our general approach is quite simple: we extract
feature vectors from the training data (based on the

1These figures indicate the amount of training data we were
actually able to use. Due to Twitter’s licensing conditions, the
training data could only be made available as a collection of IDs.
Even when using the official Twitter API for collecting the actual
messages rather than the screen-scraping approach suggested by
the task organizers, ca. 10% of the data were not (or no longer)
available.
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original messages and a small number of additional
resources) and feed them into fast and robust super-
vised machine learning algorithms implemented in
the Python machine learning library scikit-learn (Pe-
dregosa et al., 2011). For task B, the features are
computed on the basis of the whole message; for task
A, we use essentially the same features, but compute
them once for the marked word or phrase and once
for the rest of the message. All the features we use
are described in some more detail in the following
subsections.

2.1 Bag of words

We experimented with three different sets of bag-of-
words features: unigrams, unigrams and bigrams, and
an extended unigram model that includes a simple
treatment of negation. For all three models we simply
use the word frequencies as feature weights.

Our preprocessing pipeline starts with a simple
preliminary tokenization step (lowercasing the whole
message and splitting it on whitespace). In the re-
sulting list of tokens, all user IDs and web URLs are
replaced with placeholders.2 Any remaining punctu-
ation is stripped from the tokens and empty tokens
are deleted. In the extended unigram model, up to
three tokens following a negation marker are then
prefixed with not_ (fewer tokens if another negation
marker or the end of the message is reached). Finally
all words are stemmed using the Snowball stemmer.3

For a token unigram or bigram to be included in
the bag of words models, it has to occur in at least
five messages.

As an additional feature we include the total num-
ber of tokens per message.

2.2 Features based on a sentiment dictionary

Widely-used algorithms such as SentiStrength (Thel-
wall et al., 2010) rely heavily on dictionaries contain-
ing sentiment ratings of words and/or phrases. We
use features based on an extended version of AFINN-
111 (Nielsen, 2011).4

The AFINN sentiment dictionary contains senti-
ment ratings ranging from −5 (very negative) to 5

2The regular expression for matching web URLs has
been taken from http://daringfireball.net/2010/07/
improved_regex_for_matching_urls.

3http://snowball.tartarus.org/
4http://www2.imm.dtu.dk/pubdb/p.php?6010

(very positive) for 2 476 word forms. In order to ob-
tain a better coverage, we extended the dictionary
with distributionally similar words. For this pur-
pose, large-vocabulary distributional semantic mod-
els (DSM) were constructed from a version of the
English Wikipedia5 and the Google Web 1T 5-Grams
database (Brants and Franz, 2006). The Wikipedia
DSM consists of 122 281 case-folded word forms
as target terms and 30 484 mid-frequency content
words (lemmatised) as feature terms; the Web1T5
DSM of 241 583 case-folded word forms as target
terms and 100 063 case-folded word forms as fea-
ture terms. Both DSMs use a context window of two
words to the left and right, and were reduced to 300
latent dimensions using randomized singular value
decomposition (Halko et al., 2009).

For each AFINN entry, the 30 nearest neighbours
according to each DSM were considered as exten-
sion candidates. Sentiment ratings for the new candi-
dates were computed by averaging over the 30 near-
est neighbours of the respective candidate term (with
scores set to 0 for all neighbours not listed in AFINN),
and rescaling to the range [−5,5].6 After some ini-
tial experiments, only candidates with a computed
rating ≤−2.5 or ≥ 2.5 were retained, resulting in an
extended dictionary of 2 820 word forms.

As with the bag of words model, we make use of
a simple heuristic treatment of negation: following a
negation marker, the polarity of the next sentiment-
carrying token up to a distance of at most four tokens
is multiplied by −1.

The sentiment dictionary is used to extract four
features: I) the number of tokens that express a posi-
tive sentiment, II) the number of tokens that express
a negative sentiment, III) the total number of tokens
that express a sentiment according to our sentiment
dictionary and IV) the arithmetic mean of all the sen-
timent scores from the sentiment dictionary in the
message.

5We used the pre-processed and linguistically annotated
Wackypedia corpus available from http://wacky.sslmit.
unibo.it/.

6Scaling coefficients were determined by regression on ex-
tension candidates that were already listed in AFINN.
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2.3 Features based on emoticons and internet
slang abbreviations

In addition to the sentiment dictionary we use a list
of 212 emoticons and 95 internet slang abbreviations
from Wikipedia. We manually classified these 307
emotion markers as negative (−1), neutral (0) or pos-
itive (1).

The extracted features based on this list are similar
to the ones based on the sentiment dictionary. We use
I) the number of positive emotion markers, II) the
number of negative emotion markers, III) the total
number of emotion markers and IV) the arithmetic
mean of all the emotion markers in the message.

3 Experiments

In this section we evaluate different classifiers (multi-
nomial Naive Bayes,7 Linear SVM8 and Maximum
Entropy9) and various combinations of features on
the gold test sets. We vary the bag-of-words model
(bow), the use of AFINN (sent), our extensions to
the sentiment dictionary (ext) and the list of emotion
markers (emo). To present as clear a picture of the
classifiers’ performances as possible, we report F-
scores for each of the three classes, the weighted av-
erage of all three F-scores (Fw), the (unweighted) av-
erage of the positive and negative F-scores (Fpos+neg;
this is the value shown in the official task results and
used for ranking systems), as well as accuracy.

Results for submitted systems are typeset in italics,
the best results in each column are typeset in bold
font.

3.1 Task B: Message Polarity Classification

Experiments with just a simple unigram bag-of-
words model show that for both the Twitter (Tab. 3)
and the SMS data (Tab. 4) the Maximum Entropy
classifier outperforms multinomial Naive Bayes and
Linear SVM by a considerable margin. For compar-
ison, we also include some weak baselines (Tab. 2).
The random baselines classify messages randomly,10

7We always use the default setting alpha = 1.0.
8In all experiments, we use the following parameters:

penalty = ‘l1’, dual = False, C = 1.0.
9We use the following parameter settings in our experiments:

penalty = ‘l1’, C = 1.0.
10randomuniform assumes a uniform probability distribution

(all categories have equal probabilities), randomweighted has
learned the probability distribution from the training data,

the majority baselines simply assign all messages
to the most frequent category in the training data.11

As one would expect, all three learning algorithms
are vastly superior to those baselines. Using both
unigrams and bigrams in the bag-of-words model
improves classifier peformance; so does the extended
unigram model with negations.

For the Twitter data, adding the sentiment dictio-
nary, the dictionary extensions and the list of emo-
tion markers further improves classifier performance,
with the best results being achieved by a combina-
tion of all these features with a uni- and bigram bag-
of-words model. The best combination of features
would have been the fourth best system out of 35
constrained systems (sixth best out of all 51 systems),
one rank higher than our task submission.12

For the SMS data, adding the sentiment dictio-
nary and the dictionary extensions seems to improve
the official score Fpos+neg, but slightly decreases
weighted average F-score and accuracy. This might
be due to the greater orthographical variation in SMS
texts. Emotion markers seem to be a much better
sentiment indicator in the SMS data. But while just
combining the list of emotion markers with the ex-
tended unigram bag-of-words model leads to the best
weighted average F-score and accuracy, Fpos+neg is
best when a combination of all features is used. This
is also the system we submitted, being the third best
system (out of 44) for that task.

3.2 Task A: Contextual Polarity
Disambiguation

The results for task A are similar to those for task
B in that Maximum Entropy is the best classifier for
the unigram bag-of-words model for both the Twitter
(Tab. 5) and the SMS data (Tab. 6). Adding negation
treatment to the bag-of-words model increases classi-
fier performance, as do the inclusion of AFINN and
the use of emotion markers. Interestingly, extend-
ing the sentiment dictionary based on distributional
similarity leads to slightly worse results. Therefore,

randomweighted,binary uses the same probability distribution but
classifies messages only as either positive or negative.

11majority classifies all messages as neutral, as this is the most
frequent category in the training data, majoritybinary does binary
classification and thus classifies all messages as positive.

12Evaluation results for all SemEval-2013 tasks are avail-
able online: http://www.cs.york.ac.uk/semeval-2013/
index.php?id=evaluation-results.
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classifier Fpos Fneg Fneu Fw Fpos+neg Acc

randomuniform 0.3666 0.2128 0.3745 0.3458 0.2897 0.3318
randomweighted 0.3912 0.1681 0.4521 0.3820 0.2796 0.3835
randomweighted,binary 0.5186 0.2042 0.000 0.2460 0.3614 0.3349
majority 0.0000 0.0000 0.6015 0.2587 0.0000 0.4301
majoritybinary 0.5838 0.0000 0.0000 0.2407 0.2919 0.4123

Table 2: Some weak baselines for task B, Twitter test set

classifier bow sent ext emo Fpos Fneg Fneu Fw Fpos+neg Acc

Multin. NB uni - - - 0.6355 0.5093 0.6898 0.6390 0.5724 0.6423
LinearSVM uni - - - 0.6412 0.4884 0.6876 0.6371 0.5648 0.6418
MaxEnt uni - - - 0.6705 0.5109 0.7212 0.6671 0.5907 0.6761

MaxEnt uni+bi - - - 0.6845 0.5192 0.7257 0.6762 0.6019 0.6845
MaxEnt unineg - - - 0.6797 0.5284 0.7242 0.6750 0.6041 0.6824
MaxEnt unineg + - - 0.6860 0.5661 0.7284 0.6854 0.6261 0.6911
MaxEnt unineg - - + 0.6807 0.5393 0.7229 0.6766 0.6100 0.6835
MaxEnt unineg + + - 0.6841 0.5529 0.7258 0.6814 0.6185 0.6874
MaxEnt unineg + + + 0.6963 0.5650 0.7325 0.6912 0.6306 0.6968
MaxEnt unineg + - + 0.6952 0.5753 0.7338 0.6929 0.6353 0.6984
MaxEnt uni+bi + - + 0.7034 0.5706 0.7358 0.6964 0.6370 0.7018
MaxEnt uni+bi + + + 0.7052 0.5720 0.7371 0.6979 0.6386 0.7031
MaxEnt - + + + 0.6920 0.3532 0.6533 0.6220 0.5226 0.6370

Table 3: Evaluation results for task B on the Twitter test set

classifier bow sent ext emo Fpos Fneg Fneu Fw Fpos+neg Acc

Multin. NB uni - - - 0.4918 0.4773 0.5541 0.5250 0.4845 0.5153
LinearSVM uni - - - 0.5833 0.5046 0.7229 0.6490 0.5440 0.6442
MaxEnt uni - - - 0.6260 0.5015 0.7903 0.6974 0.5638 0.7015

MaxEnt uni+bi - - - 0.6003 0.5380 0.7658 0.6840 0.5692 0.6829
MaxEnt unineg - - - 0.6528 0.5412 0.7884 0.7100 0.5970 0.7125
MaxEnt unineg + - - 0.6399 0.5955 0.7744 0.7092 0.6177 0.7073
MaxEnt unineg - - + 0.6596 0.5507 0.8033 0.7220 0.6052 0.7259
MaxEnt unineg + + - 0.6374 0.5905 0.7731 0.7068 0.6140 0.7049
MaxEnt unineg + + + 0.6506 0.5900 0.7903 0.7198 0.6203 0.7197
MaxEnt unineg + - + 0.6556 0.5833 0.7908 0.7200 0.6195 0.7202
MaxEnt uni+bi + - + 0.6318 0.5896 0.7750 0.7064 0.6107 0.7044
MaxEnt uni+bi + + + 0.6341 0.5783 0.7746 0.7047 0.6062 0.7030
MaxEnt - + + + 0.5961 0.3421 0.7179 0.6186 0.4691 0.6342

Table 4: Evaluation results for task B on the SMS test set
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classifier bow sent ext emo Fpos Fneg Fneu Fw Fpos+neg Acc

Multin. NB uni - - - 0.7799 0.6164 0.0498 0.6967 0.6981 0.7067
LinearSVM uni - - - 0.7759 0.6046 0.0576 0.6905 0.6902 0.6949
MaxEnt uni - - - 0.7974 0.6155 0.0110 0.7059 0.7065 0.7218

MaxEnt uni+bi - - - 0.8071 0.6320 0.0222 0.7179 0.7195 0.7335
MaxEnt unineg - - - 0.8058 0.6380 0.0110 0.7188 0.7219 0.7342
MaxEnt unineg + - - 0.8160 0.6610 0.0317 0.7339 0.7385 0.7479
MaxEnt unineg + + - 0.8153 0.6583 0.0316 0.7325 0.7368 0.7466
MaxEnt unineg + + + 0.8141 0.6608 0.0330 0.7326 0.7374 0.7468
MaxEnt unineg + - + 0.8153 0.6664 0.0331 0.7353 0.7409 0.7493

Table 5: Evaluation results for task A on the Twitter test set

classifier bow sent ext emo Fpos Fneg Fneu Fw Fpos+neg Acc

Multin. NB uni - - - 0.6766 0.6657 0.0213 0.6268 0.6712 0.6452
LinearSVM uni - - - 0.6628 0.6533 0.0365 0.6157 0.6581 0.6290
MaxEnt uni - - - 0.6829 0.6630 0.0117 0.6277 0.6729 0.6491

MaxEnt uni+bi - - - 0.6825 0.6504 0.0230 0.6224 0.6665 0.6435
MaxEnt unineg - - - 0.7008 0.6770 0.0120 0.6427 0.6889 0.6654
MaxEnt unineg + - - 0.7127 0.6962 0.0238 0.6579 0.7044 0.6804
MaxEnt unineg + + - 0.7108 0.6954 0.0238 0.6568 0.7031 0.6791
MaxEnt unineg + + + 0.7090 0.7017 0.0237 0.6589 0.7054 0.6808
MaxEnt unineg + - + 0.7114 0.7034 0.0238 0.6608 0.7074 0.6829

Table 6: Evaluation results for task A on the SMS test set

we could have improved upon our task submission
by excluding the sentiment dictionary extensions –
however, the gains are very small and the system’s
ranks would still be the same (17/28 for the Twitter
data, 16/26 for the SMS data).

4 Discussion

4.1 Error analysis

4.1.1 Task B: Message Polarity Classification
The most prominent problem, according to the con-
fusion matrix in Tab. 7, is that a lot of negative mes-
sages are classified as neutral; the same problem
exists to a lesser extent for positive messages.

A qualitative analysis of mis-classified messages
for which the MaxEnt classifier indicated high con-
fidence suggests that the human annotators did not
clearly distinguish between sentiment expressed by
the authors of messages and their own response to
message content. For example, the messages shown

predicted
pos neg neu

go
ld

pos 979 352 70 40 523 100
neg 70 47 287 213 244 134
neu 191 191 58 75 1391 942

Table 7: Task B, confusion matrix for tweets/SMS

in (1) and (2) report a negative and positive event,
respectively, in a neutral way and should therefore
be annotated with neutral sentiment. However, in the
test data they are labelled as negative and positive by
the human annotators.

(1) MT @LccSy #Syria, Deir Ezzor | Marba’eh:
Aerial shelling dropped explosive barrels on
residential buildings in the town. Tue, 23
October.
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(2) European Exchanges open with a slight
rise: (AGI) Rome, October 24 - Euro-
pean Exchanges opened with a slight ris...
http://t.co/mAljf6eT

This problem is probably a major factor in the mis-
classification of many negative and positive messages
as neutral. In order to better reproduce the human
annotations, the system would additionally have to
decide whether a reported event is of a negative, pos-
itive or neutral nature per se – a quite different task
that would require external training data and world
knowledge.

An analysis of mis-classified positive messages
further suggests that certain punctuation marks, espe-
cially multiple exclamation marks, might be useful
as additional features.

4.1.2 Task A: Contextual Polarity
Disambiguation

The confusion matrix in Tab. 8 shows that mes-
sages marked as negative in the test data often mis-
classified as positive and vice versa, while neutral
instances are overwhelmingly classified as positive
or negative. This suggests that for the classifiers we
use, there might be too few neutral instances in the
training data (cf. Tab. 1).

predicted
pos neg neu

go
ld

pos 2329 826 397 239 8 6
neg 550 341 980 761 11 2
neu 109 92 48 65 3 2

Table 8: Task A, confusion matrix for tweets/SMS

4.2 Conclusion and future work

We use a resource-lean approach, relying only on
three external resources: a stemmer, a relatively
small sentiment dictionary and an even smaller list
of emotion markers. Stemmers are already avail-
able for many languages and both kinds of lexical
resources can be gathered relatively easily for other
languages. The list of emotion markers should apply
to most languages. This makes our whole system rel-
atively language-independent, provided that a similar
amount of manually labelled training data is avail-

able.13 In fact, the learning curve for our system
(Fig. 1) suggests that even as few as 3 000–3 500
labelled messages might be sufficient. The similar

0.
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Figure 1: Learning curve of our system for the “Message
Polarity Classification” task, evaluated on the Twitter data

evaluation results for the Twitter and the SMS data
show that not relying on Twitter-specific features like
hashtags pays off: by making our system as generic
as possible, it is robust, not overfitted to the training
data, and generalizes well to other types of data. The
methods discussed in the current paper are particu-
larly well suited to the “Message Polarity Classifica-
tion” task, our system ranking amongst the best. It
turns out, however, that simply applying the same ap-
proach to the “Contextual Polarity Disambiguation”
task yields only mediocre results.

In the future, we would like to experiment with a
couple of additional features. Determining the near-
est neighbors of a message based on Latent Semantic
Analysis might be a useful addition, as might be the
use of part-of-speech tags created by an in-domain
POS tagger (Gimpel et al., 2011)14. We would also
like to find out whether a heuristic treatment of inten-
sifiers and detensifiers, the normalization of character
repetitions, or the inclusion of some punctuation-
based features could further improve classifier per-
formance.

13For task B, even the extended unigram bag-of-words model
by itself, without any additional resources, would have per-
formed quite well as the 9th best constrained system on the
Twitter test set (13th best system overall) and the 5th best system
on the SMS test set.

14http://www.ark.cs.cmu.edu/TweetNLP/
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SINAI research group

University of Jaén
E-23071, Jaén (Spain)

amontejo@ujaen.es

M. T. Martı́n-Valdivia
SINAI research group

University of Jaén
E-23071, Jaén (Spain)
maite@ujaen.es

L. A. Ureña-López
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Abstract

This paper describes the participation of
the SINAI research group in the 2013 edi-
tion of the International Workshop Se-
mEval. The SINAI research group has
submitted two systems, which cover the
two main approaches in the field of sen-
timent analysis: supervised and unsuper-
vised.

1 Introduction

In the last years, the sentiment analysis (SA) re-
search community wants to go one step further,
which consists in studying different texts that
usually can be found in commerce websites or
opinions websites. Currently, the users publish
their opinions through other platforms, being one
of the most important the microblogging plat-
form Twitter1. Thus, the SA research commu-
nity is focused on the study of opinions that users
publish through Twitter. This interest is shown in
several workshops focused on the study of SA in
Twitter:

1. RepLab 2012 at CLEF2 (Amigó et al.,
2012): Competition carried out within the
CLEF conference, where the participants
had to develop a system for measuring the
reputation of commercial brands.

1http://twitter.com
2http://limosine-project.eu/events/

replab2012

2. TASS 2012 at SEPLN3(Villena-Román et
al., 2013): Satellite event of the SEPLN
2012 Conference to foster the research in
the field of SA in social media, specifically
focused on the Spanish language.

In this paper is described the participation of
the SINAI4 research group in the second task of
the 2013 edition of the International Workshop
SemEval (Wilson et al., 2013). We have submit-
ted two systems (constrained and unconstrained).
The constrained system follows a supervised ap-
proach, while the unconstrained system is based
on an unsupervised approach which used two lin-
guistic resources: the Sentiment Analysis Lexi-
con5 (Hu and Liu, 2004) and WeFeelFine6 (Kam-
var and Harris, 2011).

The paper is organized as follows: first we
present a description of the preparing data pro-
cess. Then the constrained system is outlined.
The participation overview finishes with the de-
scription of the unconstrained system.

2 Preparing data

The organizers provided two sets of data, one for
training and another for the development. The
data was concerned by a set of identification
number of tweets with their corresponding po-
larity label. We used the script provided by the
organizers to download the two sets of tweets.

3http://www.daedalus.es/TASS/
4http://sinai.ujaen.es
5http://www.cs.uic.edu/˜liub/FBS/

opinion-lexicon-English.rar
6http://wefeelfine.org
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The python script was no able to download all the
tweets. The training set was composed by 8,633
tweets and the development set by 1,053 tweets.

The data preparation is a step in the workflow
of most data mining tasks. Also, in Natural Lan-
guage Processing is usual the preparation of the
documents or the texts for their further process-
ing. Internet is usually the source of texts for SA
tasks, so the application of a specific processing
to those texts with the aim of extracting their po-
larity is recommended. The texts published in
Twitter have several issues that must be resolved
before processing them:

1. The linguistic style of tweets is usually in-
formal, with a intensive usage of abbrevia-
tions, idioms, and jargon.

2. The users do not care about the correct use
of grammar, which increases the difficulty
of carrying out a linguistic analysis.

3. Because the maximum length of a tweet is
140 characters, the users normally refer to
the same concept with a large variety of
short and irregular forms. This problems is
known as data sparsity, and it is a challenge
for the sentiment-topic task.

4. The lack of context, which makes difficult
to extract the semantics of these sort pieces
of text.

Before applying a cleaning process to the cor-
pus with the aim of overcoming the issues de-
scribed above, we have studied the different
kinds of marks, like emoticons, question and ex-
clamation marks or hashtags in the tweets.

Regarding the issues listed above and the
marks in the tweets, we have carried out a clean-
ing and a normalization process which imply the
following operations:

1. The uppercase characters have been ex-
changed by lowercase characters.

2. Links have been replaced by the token
“ ULR ”.

3. Question and exclamation marks have been
switched to the tokens “ QUESTION ” and
“ EXCLAMATION ” respectively.

4. Mentions7 have been exchanged by the to-
ken “ MENTION ”.

5. All the HTML tags have been removed.

6. The hashtags8 have been normalized with
the token “ HASHTAG ”.

7. Tokens that express laughing (hahaha,
hehehe...) have been normalized with the
token “ LAUGH ”.

8. Users usually write expressions or abbrevi-
ations for surprise phrases like omg. All
these kind of expressions are replaced by the
token “ SURPRISE ”.

9. Positive emoticons like :), ;) or :, have been
normalized with the token “ HAPPY ”.

10. Negative emoticons like :(, :’( or :-( have
been normalized with the token “ SAD ”.

11. Twitter users usually repeat letters to em-
phasize the idea that they want to express.
Therefore, all the words with a letter re-
peated more than two times have been re-
duced to only two instances. For exam-
ple, the word “aaaamaaaaaziiiing” in tweet
111733236627025920 is transformed into
“aamaaziing”.

After applying a normalization process to the
training and development sets, we have used for
the constrained system and the unsconstrained
system a dataset of 9,686 tweets.

3 Constrained System

The guidelines of the task define a constrained
system as a system that only can use the train
data provided by the organizers. Due to this re-
striction we decided to follow a supervised ap-
proach. It is required to define a set of parame-
ters when the supervised method is the elected.
The first step is to choose the minimum unit of
information, i.e. what segments of text are con-
sidered as features. Pang et al. (2002) assert that

7A twitter mention is a reference to another user which
has the pattern “@user name”

8A hashtag is the way to refer a topic in Twitter, which
has the pattern “#topic name”
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Class Precision Recall F1-score
Positive 0.6983 0.6295 0.6621
Neutral 0.6591 0.8155 0.7290
Negative 0.5592 0.2710 0.3651
Average 0.6652

Table 1: Assessment with TF-IDF weighting scheme

opinions or reviews should be represented with
unigrams, but other work shows bigrams and tri-
grams outperformed the unigrams features (Dave
et al., 2003). Therefore, there is not agreement
in the SA research community about what is the
best choice, unigrams or n-grams. Before several
validations on the training set of the task we de-
cided to use unigrams as feature for the polarity
classification process. Thus, for the supervised
algorithm, we have represented each tweet as a
vector of unigrams.

The next decision was about the application
of a stemmer process and getting rid off the En-
glish stop words. We only have applied stemmer
process to the data because in previous works
(Martı́nez-Cámara et al., 2013a) we did not reach
good results removing the stop words in texts
from Twitter. Another topic of discussion in the
SA research community is the weighting scheme.
Pang et al. (2002) weighted each unigram fol-
lowing a binary scheme. Also, in the most cited
survey about SA (Pang and Lee, 2008) the au-
thors indicated that the overall sentiment may not
usually be highlighted through repeated use of
the same terms. On the other hand, Martı́nez-
Cámara et al. (2011) achieved the best results
using TF-IDF as weighting scheme. Due to the
lack of agreement in the SA research community
about the use of a specific weight scheme, we
have carried out several assessments with aim of
deciding the most suitable one for the task. The
machine learning algorithm selected for the eval-
uation was SVM. The results are shown in Tables
1 and 2.

The results achieved with the two weighting
schemes are very similar. Regarding the posi-
tive class, the binary weighting scheme obtains
better results than the TF-IDF one, so the pres-
ence of positive keywords is more useful than

Class Precision Recall F1-score
positive 0.7037 0.6335 0.6668
neutral 0.6506 0.8313 0.7299
negative 0.5890 0.2105 0.3112
Average 0.6654

Table 2: Assessment with a binary weighting scheme

the frequent occurrence of those keywords. For
the neutral class, regarding precision and F1-
score, the TF-IDF scheme outperformed the bi-
nary scheme, but the recall had a higher value
when the terms are weighted binary. The pre-
cision of the classification for the neutral class
is only 1.2% better than the case where TF-IDF
is used, while recall and the F1-score is better
when the weighting of the features is binary. Al-
though the negative class has a similar perfor-
mance to that of the positive one with the two
weighting schemes, we highlighted the high dif-
ference between the other two classes and the
negative. The difference is more evident in the
recall value, while the neutral class has a value
of 0.8313 (binary), the negative one has a value
of 0.2105 (binary). Therefore, due to the fact that
the binary weighting scheme achieved better re-
sults in average, we decided to use it in the final
system.

The last step in the configuration of a su-
pervised approach based on machine learning is
the selection of the algorithm. The algorithm
selected was Support Vector Machine (SVM)
(Cortes and Vapnik, 1995). Our decision is based
on the widely used SVM by the research com-
munity of SA. The first application of SVM for
SA was in (Pang et al., 2002) with good re-
sults. Since the publication of the previous work,
other researchers have used SVM, and some of
them are: (Zhang et al., 2009), (Pang and Lee,
2004) and (Jindal and Liu, 2006). Also, the al-
gorithm SVM has been used to classify the po-
larity over tweets (Go et al., 2009) (Zhang et al.,
2011) (Jiang et al., 2011). A broader review of
the research about SA in Twitter can be found in
(Martı́nez-Cámara et al., 2013b). Furthermore,
our decision is supported by previous in-house
experimentation.
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For the experimentation we have used the
framework for data mining RapidMiner9. In
RapidMiner there are several implementations
of SVM, among which we have selected Lib-
SVM10(Chang and Lin, 2011) with built-in de-
fault parametrization.

To sum up, the configuration of the SINAI
constrained system is:

1. Machine learning approach: Supervised

2. Features: Unigrams.

3. Weighted scheme: Binary. If the term is
presence the value is 1, 0 in other case.

4. Stemmer: Yes

5. Stopper: No

6. Algorithm: SVM.

The results reached during the development
period are shown in Table 2

4 Unconstrained System

Our unconstrained system follows a two level
categorization approach, determining whether
the tweet is subjective or not at a first stage, and,
for the subjective classified ones, whether the
tweet is positive or negative. Both classification
phases are fully based on knowledge resources.
A predefined list of affective words is used for
subjectivity detection, and a search process over
the collection of emotions generated from a web
resource is applied for final polarity classifica-
tion. Figure 1 shows a general diagram of the
system.

4.1 Step 1: determining subjectivity
The system based in WeFeelFine only catego-
rizes between positive and negative texts, so a
preliminary classification into subjective and ob-
jective (i.e. neutral) must be performed. To this
end, a lexical approach is followed: those tweets
containing at least one affective term from a list
of predefined ones are considered subjective. If

9http://rapid-i.com/
10http://www.csie.ntu.edu.tw/˜cjlin/

libsvm/

Figure 1: Unconstrained system general diagram

affective terms are not found, then the tweet is
directly labeled as neutral. This list is called Sen-
timent Analysis Lexicon (SAL), which is defined
in the work of Bing Liu (Hu and Liu, 2004). The
list has two differentiated groups: a list of posi-
tive terms (agile, enjoy, improving) and another
with negative ones (anger, refusing, unable...).
At this phase, the polarity is not considered, so
both lists are merged into a list of around 6,800
subjectivity terms.

4.2 Step 2: determining polarity

The WeFeelFine project (Kamvar and Harris,
2011) has been used as knowledge base for po-
larity classification following the approach pro-
posed by (Montejo-Ráez, 2013). WeFeelFine11

gathers affective texts from several blogs, cre-
ating a huge database of mood-related expres-
sions. Almost two millions “feelings” are col-
lected and indexed by the system. It is possible
to retrieve related sentences and expressions by
using its API. In this way, we have obtained the

11http://wefeelfine.org
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top 200 most frequent feelings. For each feeling,
about 1,500 sentences are include in a document
that represents such a feeling. Then, using the
Lucene12 search engine, these documents have
been indexed. In this way, we can use an incom-
ing tweet as query and retrieve a ranked list of
feelings, as shown in Figure 2.

Figure 2: Polarity classification

The ranked list with the top 100 feelings (i.e.
those feelings more related to the tweet) is taken
for computing the final polarity by a summation
of the manually assigned polarity of the feeling
weighted with the score value returned by the en-
gine, as shown in Equation 1.

p(t) =
1

|R|
∑
r∈R

RSVr · lr (1)

where
p(t) is the polarity of tweet t
R is the list of retrieved feelings
lr is the polarity label of feeling r
RSVr is the Ranking Status Value of the feel-

ing determined by Lucene.
As we did with the constrained system, we

also assess the unconstrained system before ap-
plying the test data. The results reached during
the evaluation phase are shown in Table 3. It is
remarkable the fact that the precision value of the
unconstrained system is a bit higher than the one

12http://lucene.apache.org/

Class Precision Recall F1-score
positive 0.5004 0.6341 0.5593
neutral 0.6772 0.5416 0.6018
negative 0.3580 0.3456 0.3516
Average 0.5094

Table 3: Assessment of the unconstrained system

reached by the constrained configuration. Thus,
SAL is a good resource for subjective classifi-
cation tasks. The unconstrained system reached
worse results with positive and negative classes,
but it is an expected result because supervised
approaches usually obtain better results than the
unsupervised and knowledge based approaches.
However, the polarity classification has reached
acceptable results, so it encourage us to follow
improving the method based of the use of We-
FeelFine.
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Eugenio Martı́nez-Cámara, M. Teresa Martı́n-
Valdivia, L. Alfonso Ure na López, and Ruslan
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Abstract

This paper briefly reports our submissions
to the two subtasks of Semantic Analysis in
Twitter task in SemEval 2013 (Task 2), i.e.,
the Contextual Polarity Disambiguation task
(an expression-level task) and the Message
Polarity Classification task (a message-level
task). We extract features from surface infor-
mation of tweets, i.e., content features, Micro-
blogging features, emoticons, punctuation and
sentiment lexicon, and adopt SVM to build
classifier. For subtask A, our system on twit-
ter data ranks 2 on unconstrained rank and on
SMS data ranks 1 on unconstrained rank.

1 Introduction

Micro-blogging today has become a very popular
communication tool among Internet users. Millions
of messages are appearing daily in popular web sites
that provide services for Micro-blogging and one
popularly known is Twitter1. Through the twitter
platform, users share either information or opin-
ions about personalities, politicians, products, com-
panies, events (Prentice and Huffman, 2008) etc. As
a result of the rapidly increasing number of tweets,
mining sentiments expressed in tweets has attracted
more and more attention, which is also one of the
basic analysis utility functions needed by various ap-
plications.

The task of Sentiment Analysis in Twitter is
to identify the sentiment of tweets and get a bet-
ter understanding of how sentiment is conveyed in

1http://www.twitter.com

tweets and texts, which consists of two sub-tasks,
i.e., the Contextual Polarity Disambiguation task
(an expression-level task) and the Message Polarity
Classification task (a message-level task). The con-
textual polarity disambiguation task (subtask A) is
to determine whether a given message containing a
marked instance of a word or a phrase is positive,
negative or neutral in that context. The message
polarity classification task (subtask B) is to decide
whether a given message is of positive, negative, or
neutral sentiment and for messages conveying both
a positive and negative sentiment, whichever is the
stronger sentiment should be chosen (Wilson et al.,
2013). We participate in these two tasks.

In recent years, many researchers have proposed
methods to analyze sentiment in twitter. For exam-
ple, (Pak and Paroubek, 2010) used a Part of Speech
(POS) tagger on the tweets and found that some POS
taggers can help identify the sentiment of tweets.
They found that objective tweets often contain more
nouns than subjective tweets. However, subjective
tweets may carry more adjectives and adverbs than
objective tweets. Besides, (Davidov et al., 2010)
proved that emoticon and punctuation like excla-
mation mark are good features when distinguishing
the sentiment of tweets. In addition, some senti-
ment lexicons like SentiWordNet (Baccianella et al.,
2010) and MPQA Subjectivity Lexicon (Wilson et
al., 2009) have been adopted to calculate the senti-
ment score of tweets (Zirn et al., 2011).

The rest of this paper is organized as follows. Sec-
tion 2 describes our approach for subtask 1, i.e.,
the Contextual Polarity Disambiguation task. Sec-
tion 3 describes our approach for subtask 2, i.e., the
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message polarity classification task. Concluding re-
marks is in Section 4.

2 System Description of Contextual
Polarity Disambiguation

For the Contextual Polarity Disambiguation task,
we first extract features from multiple aspects, i.e.,
punctuation, emoticons, POS tags, instance length
and sentiment lexicon features. Then we adopt poly-
nomial SVM to build classification models. Accord-
ing to the definition of this task, the given instance
has been marked by a start position and an end posi-
tion rather than a whole tweet. So we first record the
frequency of the first three kinds of features in this
given instance. To avoid interference from the num-
ber of words in given instance, we then normalize
the feature values by the length of instance.

2.1 Preprocessing

Typically, most tweets contain informal language
expressions, with creative spelling and punctuation,
misspellings, slang, new words, URLs, and genre-
specific terminology and abbreviations, such as,
“RT” for “re-tweet” and #hashtags, which are a type
of tagging for Twitter messages. Therefore, working
with these informal text genres presents challenges
for natural language processing beyond those typ-
ically encountered when working with more tradi-
tional text genres, such as newswire data. So we
perform text preprocessing in order to remedy as
many informal texts as possible. Firstly, we per-
form normalization to convert creative spelling and
misspelling into its right spelling. For example, any
repetition of more than 3 continuous letters are re-
duced back to 1 letter (e.g. “noooo” is reduced to
“no”). In addition, according to the Internet slang
dictionary2, we convert each slang to its complete
form, for example, “aka” is rewritten as “also known
as”. After that, we use the Stanford parser3 for to-
kenization and the Stanford POS Tagger4 for POS
tagging. Finally, Natural Language Toolkit5 is used
for WordNet based Lemmatization.

2http://www.noslang.com
3http://nlp.stanford.edu/software/lex-parser.shtml
4http://nlp.stanford.edu/software/tagger.shtml
5http://nltk.org/

2.2 Features

2.2.1 Punctuation

Typically, punctuation may express user’s senti-
ment to a certain extent. For example, many excla-
mation marks (!) in tweet may indicate strong feel-
ings or high volume (shouting). Therefore, given
a marked instance, we record the frequency of the
following four types of punctuation: (1) exclama-
tion mark (!), (2) question mark (?), (3) double or
single quotation marks( ” and “”), (4) sum of the
above three punctuation. Then the punctuation fea-
ture value is normalized by the length of instance.

2.2.2 Emoticons

We create two features that capture the number of
positive and negative emoticons. Table 1 lists the
two types of emoticons. We also use the union of
the two emoticon sets as a feature. In total, we have
three emoticon features.

Positive Emoticons Negative Emoticons
:-) : ) :D :-D =) ;) :( :-( : ( ;(
;-) ; ) ;D ;-D (; :) ;-( ; ( ):

:-P ;-P XD (-: (-; :o) ;o) -/ :/ ;-/ ;/
:0) ;0) ˆ ˆ T T T0T ToT

Table 1: List of emoticons

2.2.3 POS

According to the finding of (Pak and Paroubek,
2010), POS taggers help to identify the sentiment
of tweets. Therefore, we record the frequency of
the following four POS features, i.e., noun (“NN”,
“NNP”, “NNS” and “NNPS” POS tags are grouped
into noun feature), verb (“VB”, “VBD”, “VBG”,
“VBN”, “VBP” and “VBZ” POS tags are grouped
into verb feature), adjective (“JJ”, “JJR” and “JJS”
POS tags are grouped into adjective feature) and
adverb (“RB”, “RBR” and “RBS” POS tags are
grouped into adverb feature). Then we normalize
them by the length of given instance.

2.2.4 Sentiment lexicon Features

For each word in a given instance, we use three
sentiment lexicons to identify its sentiment polarity
and calculate its sentiment weight, i.e., SentiWord-
Net (Baccianella et al., 2010), MPQA Subjectivity
Lexicon (Wilson et al., 2009) and an Unigram Lex-
icon made from the Large Movie Review Dataset
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v1.0 (Maas et al., 2011). To calculate the sentiment
score for this instance, we use the following formula
to sum up the sentiment score of each word:

Senti(I) =
∑

w∈I

Num(w) ∗ Senti weight

Length(I)
(1)

where I represents the given instance and w repre-
sents each word in I . The Senti weight is calcu-
lated based on the word in the instance and the cho-
sen sentiment lexicon. That is, for each word in the
instance, we have different Senti weight values for
it since we use different sentiment lexicons. Below
we describe the calculation of Senti weight values
for a word in three sentiment lexicons. Note that
Num(w) is always 1 since most words appear one
time in a instance.
SentiWordNet. SentiWordNet is a lexical resource
for sentiment analysis, which assigns each synset of
WordNet (Stark and Riesenfeld, 1998) three senti-
ment scores: positivity, negativity, objectivity (e.g.
living#a#3, positivity: 0.5, negativity: 0.125, ob-
jectivity: 0.375), where sum of these three scores
is always 1. For one concept, if its positive score
and negative score are all 0, we treat it as objective
concept; otherwise, we treat it as subjective concept.
And we take the first sense as the concept of each
word.

We extract three features from SentiWordNet, i.e.,
SUBWordNet, POSWordNet and NEGWordNet.
The Senti weight of SUBWordNet records
whether a word is subjective. If it is subjective,
we set Senti weight as 1, otherwise 0. Similarly,
the Senti weight values of POSWordNet and
NEGWordNet indicate the positive score and the
negative score of the given word. Considering
some negation terms may reverse the sentiment
orientation of instance, we manually generate a
negation term list (e.g. “not”, “never”, etc.,) and if a
negation term appears in the instance, we switch the
POSWordNet to NEGWordNet and vice versa. Be-
sides, we adopt another feature to record the ratio of
POSWordNet/NEGWordNet. If the denominator is
0, i.e., NEGWordNet = 0, that means, the word has
the strongest positive sentiment orientation, then we
set 10*POSWordNet as its feature value.
MPQA. The MPQA Subjectivity Lexicon contains
about 8, 000 subjective words. Each word in the

lexicon has two types of sentiment strength: strong
subjective and weak subjective, and four kinds of
sentiment polarity: positive, negative, both (positive
and negative) and neutral. Therefore we calculate
three features from this lexicon, i.e., SUBMPQA,
POSMPQA and NEGMPQA. For the SUBMPQA

feature, if the word has strong or weak subjective,
we set its Senti weight as 1 or 0.5 accordingly.
For the POSMPQA (NEGMPQA) feature, we set
Senti weight as 1, or 0.5 or 0 if the word has strong
positive (negative), or weak positive (negative) or
neutral. We also reverse the sentiment orientation
of POSMPQA and NEGMPQA if a negation term
appears.
Unigram Lexicon. Unlike the above two lexicons
in themselves which provide sentiment polarity and
sentiment strength for each word, we also utilize the
third lexicon to calculate the sentiment information
statistically. Therefore we generate an unigram lex-
icon by ourselves from a large Movie Review data
set(Maas et al., 2011) which contains 25, 000 posi-
tive and 25, 000 negative movie reviews. We calcu-
late the Senti weight of each word appears in the
data set as the ratio of the frequency of this word
in positive reviews to that in negative reviews and
record this feature as SentiUL.

Clearly, since we use additional data set to de-
velop a sentiment lexicon which is used to generate
this SentiUL feature, this feature is worked with all
other features to train the unconstrained system.

2.2.5 Other features

In addition, we collect three other features: (1)
length of instance, (2) uppercase word (e.g. “WTO”
or “Machine Learning”), (3) URL. For the uppercase
word and URL features, we record the frequency of
them and then normalize them by the instance length
as well.

2.3 Experiment and Results

2.3.1 Classification Algorithm

We adopt LibSVM6 to build polynomial kernel-
based SVM classifiers. We have also tried linear ker-
nel but get no improvement. To obtain the optimal
parameters for SVM, such as c and g, we perform
grid search with 10-fold cross validation on training

6http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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data.

2.3.2 Results and Discussion

In section 2, we obtained 22 features in total. To
train the constrained model, we used the above de-
scribed 21 features (except SentiUL) and used all
above 22 features to train the unconstrained model.
We combined the provided training and develop-
ment data by the organizers as our final training
data. And we should apologize for our misunder-
standing of the definitions of the constrained and
unconstrained condition. As the official definition
of unconstrained model, participates are allowed
to add other data to expand the training data sets,
but our unconstrained model only adds one fea-
ture (SentiUL) which is got from other data set.
Therefore, we actually submitted two results of con-
strained model. But we still refer this model trained
on all features as unconstrained model for it ap-
peared in the unconstrained list of official results.
There are two kinds of test data: 4, 435 twitter in-
stances and 2, 334 SMS message instances. Table
2 list the F-score and averaged F-score of positive,
negative and neutral class of each test data set.

On one hand, from the table we can see that
whether on constrained or unconstrained model, the
results on twitter data are slightly better than those
of SMS data. However, this difference is not signifi-
cant. This indicates that the model trained on twitter
data performs well on SMS data. And it also shows
that twitter data and SMS data are linguistically sim-
ilar with each other in nature. On the other hand, we
find that on each test data set, there is little differ-
ence between the constrained model and the uncon-
strained model, which indicates the SentiUL feature
does not have discriminating power by itself. How-
ever, since we had not used other labeled or unla-
beled data to extend the training data set, we cannot
draw a conclusion on this. Besides, our results con-
tain no neutral items even though the classifier we
used is multivariate. One reason may be the neutral
instances in training data is too sparse for the classi-
fier to learn.

On twitter data, our system ranks 2 under un-
constrained model and ranks 10 under constrained
model. On SMS data, our system ranks first under
unconstrained model and ranks 7 under constrained
model.

3 System Description of Message Polarity
Classification

Unlike the previous subtask, the Message Polarity
classification task focuses on the whole tweet rather
than a marked sequence of given instance. Firstly,
we perform text preprocessing as Task A. Besides
the previous described features, we also extract fol-
lowing features.

3.1 Features

3.1.1 Micro-blogging features

We adopted three tweet domain-specific features,
i.e., #hashtags, @USERS, URLs. We calculate the
frequency of the three features and normalize them
by the length of instance.

3.1.2 n-gram features

We used unigrams to capture the content of
tweets.

3.2 Classification Algorithm

We adopted two different classifiers in preliminary
experiments, i.e., maximum entropy and SVM. We
used the Mallet tool (McCallum, 2002) to perform
Maximum Entropy classification and LibSVM7 with
a linear kernel, where the default setting is adopted
in all experiments.

3.3 Results on Training Data

In the first experiment, we used only content fea-
tures and LibSVM classifier to do our experiments.
The results were listed in Table 3. From Table 3,
we found that the system with unigram without re-
moving stop words performs the best. The possible
reason was that Microblogs are always short (con-
strained in 140 words) and removing stop words
would cause information missing in such a short
text. In addition, although bigrams improved the
performance to some extern, they added the feature
space many more and might affect other features. So
in our final systems, we used only unigram feature
and did not remove stop words.

In the second experiment, we compared all fea-
tures described before with two learning algorithms.
The results were shown in Table 4, where 1 indi-
cates unigram, 2 indicates micro-blog, 3 indicates

7http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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System F-pos F-neg F-neu average F(pos and neg)
twitter-constrained 0.8506 0.7390 0.0 0.7948

twitter-unconstrained 0.8561 0.7468 0.0 0.8015
SMS-constrained 0.7727 0.7611 0.0 0.7669

SMS-unconstrained 0.7645 0.7824 0.0 0.7734

Table 2: Results of our systems on subtask A test data

features F-pos F-neg F-neu average F(pos and neg) acc(%)
unigrams 0.6356 0.3381 0.7122 0.4869 63.75

unigrams(remove stop words) 0.6046 0.3453 0.6988 0.4750 62.13
bigrams 0.5186 0.0196 0.6625 0.2691 55.85

unigrams+bigrams 0.6234 0.3724 0.7043 0.4979 63.18

Table 3: Results of our systems on on subtask B training data using content features

features F-pos F-neg F-neu average F(pos and neg) acc(%)
MaxEnt SVM MaxEnt SVM MaxEnt SVM MaxEnt SVM MaxEnt SVM

1 0.6178 0.6356 0.3696 0.3381 0.6848 0.7122 0.4937 0.4869 61.56 63.75
1+2 0.6403 0.6339 0.4207 0.4310 0.6990 0.7184 0.5305 0.5324 63.75 64.89

1+2+3 0.6328 0.6512 0.4051 0.4371 0.6975 0.7232 0.5190 0.5442 63.18 65.75
1+2+3+4 0.6488 0.6593 0.4587 0.4481 0.7083 0.7288 0.5538 0.5537 64.89 66.41
2+3+4 0.5290 0.5201 0.2897 0.2643 0.6503 0.6411 0.4093 0.3922 55.85 54.80

Table 4: Results of our systems on subtask B training data using all features and two learning algorithms

punctuation, 4 indicates sentiment lexicon features.
From Table 4, the best performance was obtained
by using all these features. Since the performance
of Maximum Entropy and SVM in terms of F-score
was comparable to each other, we finally chose SVM
since it achieved a better accuracy than MaxEnt.

3.4 Results on Test Data

We combined the provided training and develop-
ment data by the organizers as our final training data.
There were two kinds of test data: 3, 813 tweets and
2, 094 SMS messages . Table 5 listed the results of
our final systems on the tweet and SMS data sets by
using all above described features and SVM algo-
rithm.

From Table 5, on one hand, we can see that the
overall performance of SMS test data is inferior to
twitter data, for the reason may be that the domain
of features are all based on twitter data, and maybe
not quite suitable for SMS data. However, this dif-
ferent is not significant. On the other hand, we also
can find that there is no obvious distinction between

the constrained and the unconstrained model on each
test data.Also from Table 5, the F-score for positive
instances is higher than negative instances, and it
is interesting that most of other participants’systems
results show the same consequence. One of the rea-
son may be the positive instance in training data are
more than negative instances both in training data
and test data.

Our result on twitter message is 0.5842 , while
on SMS is 0.5477. Compared with the highest av-
erage F-score 0.6902 in twitter data and 0.6848 in
SMS data, our system does not perform very well.
On the one hand , pre-processing was roughly , then
features extracted were not suited in classification
stage. On the other hand, in classification stage all
parameters were default when used LibSVM. These
might cause low performance. In future, we may
overcome the insufficient described above and take
hashtags’ sentiment inclination and the source files
of URLs into consideration to enhance the perfor-
mance.
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System F-pos F-neg F-neu average F(pos and neg)
twitter-constrained 0.6671 0.4338 0.7124 0.5505

twitter-unconstrained 0.6775 0.4908 0.7204 0.5842
SMS-constrained 0.5796 0.4846 0.7801 0.5321

SMS-unconstrained 0.5818 0.5137 0.7612 0.5477

Table 5: Results of our systems on subtask B test data

4 Conclusion

In this work we extracted features from four aspects,
including surface information of twitters and senti-
ment lexicons like SentiWordNet and MPQA Lexi-
con. On the contextual polarity disambiguation task,
our system ranks 2 on twitter (unconstrained) rank
and ranks 1 on SMS (unconstrained) rank.
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Abstract 
 

Umigon is developed since December 2012 as a 
web application providing a service of sentiment 
detection in tweets. It has been designed to be 
fast and scalable. Umigon also provides 
indications for additional semantic features 
present in the tweets, such as time indications or 
markers of subjectivity. Umigon is in continuous 
development, it can be tried freely at 
www.umigon.com. Its code is open sourced at: 
https://github.com/seinecle/Umigon 

 
1. General principle of operation 
Umigon belongs to the family of lexicon based 
sentiment classifiers (Davidov et al. 2010, Kouloumpis  
et al. 2011). It is specifically designed to detect 
sentiment (positive, negative or neutral) in tweets. The 
“sentiment detection engine” of Umigon consists of 4 
main parts, which are detailed below: 
- detection of semantic features in the entire tweet. 
Smileys and onomatopes are given special attention. 
- evaluation of hashtags. 
- decomposition of the tweet into a list of its n-grams 
(up to 4-grams), comparison of each n-gram with the 
terms in lexicons. In case of a match, a heuristic is 
applied. 
- final series of heuristics at the level of the entire 
tweet, taking advantage of the semantic features 
detected in the previous steps. A final, unique 
sentiment (pos, neg or neut) is ascribed to the tweet. 
 
2. The four steps of the classification engine 
We refer in footnotes to the Java classes which 
implement the processes described here.  
 
2.1   Global heuristics 

 

Smileys and onomatopes carry strong indications of 
sentiment, but also come in a variety of orthographic 
forms which require methods devoted to their 
treatment1. 
Onomatopes and exclamations often include repeated 
vowels and consonants, as in yeaaaaahhhh (repeated 
“a” and “h”), but also yeaah (repeated “a”),  or 
yeeeeaaaaah (repeated “e” and “a”). We list the most 
common exclamations and use regular expressions to 
capture the variety of forms they can assume. If such a 
form is found in the tweet, the related sentiment 
(positive or negative) is saved, and will be evaluated at 
a final stage for the global sentiment of the entire 
tweet. 
Similarly, smileys are frequently spelled in multiple 
variations: :-) can also be found as :-)) or :-)))))))) . For 
this reason here also the flexibility of regular 
expressions is used to detect spelling variations. In 
addition, we consider that a smiley positioned at the 
very end of a tweet gives an unambiguous signal as to 
the sentiment of the tweet. For instance: 
@mydearfriend You got to see Lady Gaga live, so lucky! 
Hate you :))) 
Here, whatever the negative sentiments (Hate you) 
signaled in the tweet, the final smiley has an overriding 
effect and signals the strongest sentiment in the tweet. 
For this reason smileys located in final positions are 
recorded as such. 
 
2.2   Evaluation of hashtags 

 
Hashtags are of special interest as they single out a 
semantic unit of special significance in the tweet. 
Exploiting the semantics in a hashtag faces the issue 
that a hashtag can conflate several terms, as in 
#greatstuff or #notveryexciting. Umigon applies a series 
                                                           
1 
https://github.com/seinecle/Umigon/blob/master/src/java/Heur
istics/SentenceLevelHeuristicsPre.java 
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of heuristics matching parts of the hashtag with 
lexicons2. In the case of #notveryexciting , the starting 
letters not will be identified as one of the terms in the 
lexicon for negative terms. Similarly, the letters very 
will be identified as one of the terms present in the 
lexicon for “strength of sentiment”. exciting will be 
detected as one of the terms in the lexicon for positive 
sentiment. Taken together, not very exciting will lead 
to an evaluation of a negative sentiment for this 
hashtag. This evaluation is recorded and will be 
combined with the evaluation of other features of the 
tweet at a later stage. 
 
2.3   Decomposition in ngrams 
The text of the tweet is decomposed in a list of 
unigrams, bigrams, trigrams and quadrigrams. For 
example, the tweet This service leaves to be desired 
will be decomposed in list of the following expressions: 

“This, service, leaves, to, be, desired, This service, 
service leaves, leaves to, to be, be desired, This 
service leaves, service leaves to, leaves to be, to be 
desired, This service leaves to, service leaves to be, 
leaves to be desired” 
 

The reason for this decomposition is that some markers 
of sentiment are contained in expressions made of 
several terms. In the example above, to be desired is a 
marker of negative judgment recorded as such in the 
lexicon for negative sentiment, while desired is a 
marker of positive sentiment. 
Umigon loops through all the n-grams of the tweet and 
checks for their presence in several lexicons3.  
If an n-gram is indeed found to be listed in one of the 
lexicons, the heuristic attached to this term in this 
lexicon is executed, returning a classification (positive 
sentiment, negative sentiment, or another semantic 
feature). Heuristics attached to terms in the lexicons 
are described in detail in section 3. 
 
2.4   Post-processing: a last look at the entire tweet . 

 
 At this stage, the methods described above may have 
returned a large number of (possibly conflicting) 
sentiment categories for a single tweet. For instance, in 
the example This service leaves to be desired, the 
examination of the n-grams has returned a positive 
sentiment classification (desired) and also negative (to 
                                                           
2 
https://github.com/seinecle/Umigon/blob/master/src/java/Heur
istics/HashtagLevelHeuristics.java 
3 
https://github.com/seinecle/Umigon/blob/master/src/java/Class
ifier/ClassifierMachine.java 

be desired). A series of heuristics adjucates which of 
the conflicting indications for sentiments should be 
retained in the end. In the case above, the co-presence 
of negative and positive sentiments without any further 
indication is resolved as the tweet being of a negative 
sentiment. If the presence of a moderator is detected 
in the tweet (such as but, even if, though), rules of a 
more complex nature are applied4. 
 
3. A focus on lexicons and heuristics 
 Four lexicons are used for sentiment analysis (number 
of terms in the lexicons in brackets): “positive tone” 
(332), “negative tone” (630), “strength of sentiment” 
(59), “negations” (45). These lexicons have been 
created manually by the inspection of thousands of 
tweets, and continue to be expanded on a regular 
basis. Note that the same term can appear in different 
lexicons (if rarely in practice). For example, the term 
fucking appears in the lexicon for negative tone and in 
the lexicon for strong sentiments. Each term in a 
lexicon is accompanied by a heuristics and a decision 
rule. 
 
3.1   Simple case from the “negative sentiments” 
lexicon: 
 

Term sadfaced 

Heuristics None 

Decision Rule 012 
 
If a tweet contains the term sadfaced, Umigon will 
directly add the code “012” (which stands for negative 
sentiment) to the tweet5. 
 
3.2   More complex case from the “positive sentiments” 
lexicon: 
 

Term Satisfied 

Heuristics 
!isImmediatelyPrecededBy
ANegation 

Decision Rule 011|012 
 
If the term satisfied is present in a tweet, the heuristics 
!isImmediatelyPrecededByANegation is applied. This s a 
method checking whether the term immediately 
                                                           
4 
https://github.com/seinecle/Umigon/blob/master/src/java/Heur
istics/SentenceLevelHeuristicsPost.java 
5 See this class for the full list of possible classifications: 
https://github.com/seinecle/Umigon/blob/master/src/java/Class
ifier/Categories.java 
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preceding satisfied in the tweet is a negation or not6. 
This method returns a Boolean (true / false). The 
Boolean returned by this heuristics will determine the 
outcome of the decision rule. Here, the decision rule is 
a simple binary choice: codify as 011 (meaning, a 
positive sentiment) if satisfied is not preceded by a 
negation; codify it as 012 (negative sentiment) 
otherwise.  
 
3.3   Complex case from the “negative sentiments” 
lexicon: 
 

Term hard 
Heuristics !isImmediatelyPrecededBy

ANegation+++!isImmediat
elyFollowedBySpecificTer
m///work|disk 

Decision Rule A?(B?(012):011) 
 
This example shows how several heuristics (separated 
by +++) can be combined, leading to complex rules of 
decision. In this example, whenever the term hard is 
detected in a tweet, 2 heuristics are evaluated: is the 
term preceded by a negation? Is the term followed by 
specific terms – work or disk, in this case? Each of these 
heuristics returns a Boolean. The Booleans are fed into 
the interpreter of the decision rule, where A and B 
represent the 2 Booleans7. Depending on their value, 
the decision tree takes a different branch, leading to 
the selection of one codification. In the example: 
If A is false, return 011: a positive sentiment. 
Example: not hard 
If A is true and B is true, return 012: a negative 
sentiment. Example: it is hard 
If A is true and B is false, returns null: nothing (a neutral 
sentiment). 
Example: this is a hard disk 
 
While in practice it is rarely needed to write up rules of 
such complexity, they offer an extra flexibility to exploit 
the semantic features of terms in varying contexts. 
 
 

                                                           
 6 The method actually checks the two terms before, in order to 
capture cases such as “not very satisfied”, where a negative 
term is present but not immediately preceding the term under 
review. See the details of all heuristics here: 
https://github.com/seinecle/Umigon/blob/master/src/java/Heur
istics/Heuristic.java 
7 The class for the interpreter is: 
https://github.com/seinecle/Umigon/blob/master/src/java/Rule
Interpreter/Interpreter.java 

4. Performance 
 
4.1   Accuracy 
Umigon was formally evaluated in a semantic 
evaluation task proposed by SemEval-2013, the 
International Workshop on Semantic Evaluation 
(Wilson et al., 2013). The task consisted in classifying 
3,813 tweets as positive, negative or neutral in polarity 
(task B). The results: 

class Pos neg neut 
prec 0.7721 0.4407 0.6471 
rec 0.5604 0.5507 0.7579 
fscore 0.6495 0.4896 0.6981 
average(pos and neg)  0.5696 

 

   

 
For reference, the best performing participant in this 
task obtained the following results (Mohammad et al., 
2013): 

class pos  neg neut 
prec 0.8138 0.6967 0.6765 
rec 0.6673 0.604 0.8262 
fscore 0.7333 0.6471 0.7439 
average(pos and neg) 0.6902 

 

   

 
We see that Umigon had an especially poor precision 
for tweets of a negative sentiment (results greyed in 
the table). This means that Umigon failed to identify 
many negative tweets as such. One reason accounting 
for this poor performance is the definition we adopt for 
what a negative sentiment is. For example, the SemEval 
task included this negative tweet: 
“Renewed fighting rocks Syria: An early morning 
explosion rocked the flashpoint city of Deir Ezzor on 
Saturday in...” 
By design, Umigon has not been conceived to classify 
such a tweet as negative because if it contains negative 
elements of a factual nature (explosion, fighting), but 
contains no marker of a negative attitude. 
This question aside, the accuracy of Umigon should be 
improved by increasing the number of terms and 
heuristics in the lexicons, which is an ongoing process. 
 
4.2   Speed 
 
Tested on a dataset provided by sentiment140.com8, 
Umigon performs the classification of 1.6 million 
tweets in less than 15 minutes. We believe that not 
relying on Part of Speech tagging makes it a specially 

                                                           
8 http://help.sentiment140.com/for-students 

416



 
 

fast solution for lexicon-based sentiment classifiers. 
The classifier engine is implemented in such a way that 
the presence of absence of n-grams in the terms lists is 
checked through look-ups on hashsets (is this n-gram 
contained in a set?), not loops through these sets. Since 
look-ups in hashsets is typically of O(1) compexity9, this 
insures that the performance of Umigon will not 
degrade even with expanded lexicons. 
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Abstract

This paper presents the contribution of our
team at task 2 of SemEval 2013: Sentiment
Analysis in Twitter. We submitted a con-
strained run for each of the two subtasks. In the
Contextual Polarity Disambiguation subtask,
we use a sentiment lexicon approach combined
with polarity shift detection and tree kernel
based classifiers. In the Message Polarity Clas-
sification subtask, we focus on the influence
of domain information on sentiment classifica-
tion.

1 Introduction

In the past decade, new forms of communication,
such as microblogging and text messaging have
emerged and became ubiquitous. These short mes-
sages are often used to share opinions and sentiments.
The Sentiment Analysis in Twitter task promotes re-
search that will lead to a better understanding of how
sentiment is conveyed in tweets and texts. In this
paper, we describe our contribution at task 2 of Se-
mEval 2013 (Wilson et al., 2013). For the Contextual
Polarity Disambiguation subtask, covered in section
2, we use a system that combines a lexicon based
approach to sentiment detection with two types of
supervised learning methods, one used for polarity
shift identification and one for tweet segment classi-
fication in the absence of lexicon words. The third
section presents the Message Polarity Classification
subtask. We focus here on the influence of domain
information on sentiment classification by detecting
words that change their polarity across domains.

2 Task A: Contextual Polarity
Disambiguation

In this section we present our approach for the con-
textual polarity disambiguation task in which, given
a message containing a marked instance of a word or
a phrase, the system has to determine whether that
instance is positive, negative or neutral in that con-
text. For this task, we submitted a single run using
only the tweets provided by the organizers.

2.1 System description

Based on the predominant strategy, sentiment anal-
ysis systems can be divided into those that focus on
sentiment lexicons together with a set of rules and
those that rely on machine learning techniques. For
this task, we use a mixed approach in which we first
filter the tweets based on the occurrences of words
from a sentiment lexicon and then apply different
supervised learning methods on the grounds of this
initial classification. In Figure 1 we detail the work-
flow of our system. We use the + , − and ∗ symbols
to denote a positive, negative and neutral tweet seg-
ment, respectively. Also, we use the a→ b notation
when referring to a polarity shift from a to b.

2.1.1 Data preprocessing
The language used in Twitter presents some partic-

ularities, such as the use of hashtags or user mentions.
In order to maximize the efficiency of language pro-
cessing methods, such as lemmatization and syntactic
parsing, we perform several normalization steps. We
remove the # symbol, all @ mentions and links and
perform lower case conversion. Also, if a vowel is
repeated more than 3 times in a word, we reduce it to

Using Syntactic Features and Multi-polarity Words for Sentiment Analysis in Twitter]
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Figure 1: Contextual polarity disambiguation task system description

a single occurrence and we reduce multiple consecu-
tive punctuation marks to a single one. Finally, we
lemmatize the normalized text.

Emoticons have been successfully used as senti-
ment indicators in tweets (Davidov et al., 2010). In
our approach, we map a set of positive emoticons to
the word good and a set of negative emoticons to the
word bad. We use the following sets of emoticons:

• Positive emoticons: :) , :-) , :D , =) , :’) , :o) , :P
, >:) , :”>, >:|, <3 , ;>, ;) , ;-) , ;>, (: , (;

• Negative emoticons: :( , : ( , :-( , :’( , :/ , :<, ;(

Traits of informal language have been used as fea-
tures in Twitter sentiment classification tasks (Go
et al., 2009). In order to avoid the loss of possi-
ble useful information, we keep record of the per-
formed normalizations as binary features associated
to a tweet segment. We retain the following set of fea-
tures: hasPositiveEmoticon, hasNegativeEmoticon,
hasHashtag, hasAtSign, hasConsecutivePunctuation,
hasConsecutiveVowels, hasUpperCaseWords.

2.1.2 Classification methods
In a first step, we select tweet segments that con-

tain at least one word from a lexicon and assign to
it the polarity of that word. If there are more than
one sentiment words with different polarities in the
segment, we keep the most frequent polarity and in
the few cases where there is an equal number of posi-
tive and negative words, we take the polarity of the
last one. Next, we look for negation indicators (e.g.
not, ’t) using a set of words and rules and replace
them with the NEG token. We then identify instances

where there is a shift between the polarity predicted
from the lexicon and the one from the ground truth.
In order to account for the unbalanced datasets(e.g.
192 instances where there is a +→ − shift and 3188
where the positive instance was correctly identified
from the lexicon) we use cost sensitive classifiers. We
define a cost matrix in which the cost of the classifier
making a false positive error is three times higher
than a false negative error. Using this approach we
guide the classifier to provide less but more confident
predictions for the existence of a polarity shift while
allowing it to make more errors when predicting the
absence of a shift. For these classifiers, we use a Bag
of Words representation of the lemmatized segments.
When a word from the sentiment lexicon does not
appear in the tweet segment, we use a one vs. all
classification approach with a SVM classifier and
tree kernels. The tree kernel is a function between
two trees that computes a normalized similarity score
in the range [0,1] (Culotta and Sorensen, 2004). For
our task, we use an implementation of tree kernels
for syntactic parse trees (Moschitti, 2006) that is built
on top of the SVM-Light library (Joachims, 1999) in
a similar manner to that presented in (Ginsca, 2012).
We build the syntactic parse trees with the Stanford
CoreNLP library (Klein and Manning, 2003).

2.2 Evaluation and Results

For the experiments presented in this section, we
merge the training and development datasets and for
the polarity shift and sentiment classification experi-
ments we report the results using a 5-fold cross vali-
dation technique over the resulting dataset.
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2.2.1 Lexicon choice influence
Considering that the selection of a lexicon plays

an important role on the performance of our system,
we tested 3 widely used sentiment lexicons: Sen-
tiWordNet 3 (Baccianella et al., 2010), Bing Liu’s
Opinion Lexicon (Hu and Liu, 2004) and MPQA
Subjectivity Lexicon (Wilson et al., 2005). Different
combinations of these lexicons were tried and in Ta-
ble 1 we present the top performing ones. Besides
the F-Measure for positive (Fp) and negative (Fn)
instances, we also list the percentage of instances in
which appears at least one word from the lexicon.
SentiWordnet appoints polarity weights to words,
ranging from 0 to 1. An important parameter is the
threshold over which a word is considered to have a
certain polarity. We tested several values (from 0.5 to
0.9 with a step of 0.05) and the best results in terms
of F-Measure were obtained for a threshold of 0.75.
Our finding is consistent with the value suggested in
(Chen et al., 2012).

Lexicon Found(%) Fp Fn
Liu 55.7 0.93 0.85
MPQA 61.4 0.89 0.76
SentWN 79.4 0.86 0.78
Liu+MPQA 67.1 0.89 0.78
Liu+SentWN 79.4 0.87 0.81
Liu+MPQA+SentWN 79.4 0.86 0.81

Table 1: Influence of lexicon on the F-Measure for positive
and negative segments

2.2.2 Polarity shift experiments
We tested several classifiers using the Weka toolkit

(Hall et al., 2009) and found that the best results
were obtained with the Sequential Minimal Optimiza-
tion (SMO) classifier. For instance, when classifying
+ → − shifts, SMO correctly identified 91 out of
192 polarity shifts in contrast with 68 and 41 detected
by a Random Forests and a Naive Bayes classifier,
respectively. For the +→ ∗ classification, the SMO
classifier finds 2 out of 34 shifts, for − → +, 15 out
of 238 and for − → ∗, 2 out of 32 shifts are found.
After changing the polarity of sentiment segments as
found by the 4 classifiers, we obtain an increase in
F-Measure from 0.930 to 0.947 for positive segments
and from 0.851 to 0.913 for negative segments. Our
choice of the Bag of Words model instead of a parse

tree representation for these classifiers is justified by
the poor performance of tree kernels when dealing
with unbalanced data.

2.2.3 Sentiment classification experiments

Model Class Avg. F-score

Basic Tree
positive 0.780
negative 0.645
neutral 0.227

Tree + Numeric
positive 0.768
negative 0.590
neutral 0.132

Tree + Context 2
positive 0.801
negative 0.676
neutral 0.231

Table 2: Comparison between different models used for
segment polarity classification

In a series of preliminary experiments, we tested
several classifiers trained on a Bag of Words model
and an SVM classifier with a tree kernel. We found
that the parse tree representation of a tweet segment
provided a higher accuracy. This shows that although
small, when a segment contains more than one word,
its syntactic structure becomes a relevant feature.
In Table 2 we compare the results of 3 tree based
models. In the Basic Tree model, we use only the
syntactic parse tree representation of a tweet seg-
ment. For the Tree + Numeric model, we use the
initial tree kernel together with a polynomial kernel
on the binary structure features presented in section
2.1.1. In the Tree + Context model, we include in the
parse tree, besides the given section, k tokens (words,
punctuation) from the whole tweet that surround the
selected segment. We performed tests with k from 1
to 5 and obtained the best results with a k value of 2.

2.2.4 Competition results
For the Twitter dataset, we ranked 4th out of

23 groups that submitted constrained runs. When
combining the results of the constrained and uncon-
strained submissions, our run was ranked 5th out of
a total of 29 submissions. For the SMS dataset, we
ranked 5th out of a total of 18 groups for the con-
strained setting and our submission was ranked 5th
out of 24 combined runs. In Table 3, we detail the
results we obtained on the competition test datasets.
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Class P R F-score
Twitter positive 0.8623 0.9140 0.8874
Twitter negative 0.8453 0.8086 0.8265
Twitter neutral 0.4127 0.1625 0.2332
SMS positive 0.7107 0.8945 0.7921
SMS negative 0.8687 0.7609 0.8112
SMS neutral 0.3684 0.0440 0.0787

Table 3: Competition results overview on the Twitter and
SMS datasets

2.3 Discussion

The robustness of our approach is proved by the
low standard deviation of the F-Measure scores ob-
tained over each of the the 5 folds used for evaluation
(0.026) but also by the small difference between the
results we obtained during the development phase
and those reported on the competition test dataset.
The choice of lexicons results in a trade-off between
the percentage of instances classified with either the
lexicon and polarity shift or the supervised learning
method. Although the first one yields better results
and it is apparently desirable to have a better cover-
age of lexicon terms, this would reduce the number of
instances for training a classifier leading to a poorer
performance of this approach.

3 Task B: Message Polarity Classification

In this section, we present our approach for the mes-
sage polarity classification task in which, given a
message, the system has to determine whether it ex-
presses a positive, negative, or neutral sentiment. As
for Task A, we submitted a single constrained run.

3.1 Preprocessing of the corpora

We use as training corpora the training data, merged
with the development data. After the deletion of
tweets no longer available, our final training set con-
tains 10402 tweets: 3855 positive, 1633 negative and
4914 objective or neutral. In the preprocessing step,
we first remove the web addresses from the tweets to
reduce the noise. Then, we extract the emoticons and
create new features with the number of occurrences
of each type of emoticon. The different emoticons
types are presented in Table 4. Then, we lemmatize
the text using LIMA, a linguistic analyzer of CEA
LIST (Besançon et al., 2010).

:-) :) =) X) x) Smile
:-( :( =( Sadness

:-D :D =D X-D XD x-D xD :’) Laugh
;-) ;) Wink
< 3 Heart

:’-( :’( =’( Tear

Table 4: Common emoticon types

3.2 Boostexter baseline

To classify the tweets, we used the BoosTexter1 clas-
sifier (Schapire and Singer, 2000) in its discrete Ad-
aBoost.MH version, setting the number of iterations
to 1000. We used two types of features: a Bag of
Words of lemmatized uni-, bi- and tri-grams and the
number of occurrences of each emoticon type.

Bog of words features Emoticon type feature
wow lady gaga be great Smile 1

Table 5: Example of tweet representation

Boostexter is designed to maximize the accuracy,
not the F-score, which is the chosen evaluation metric
for this task. As the training data contain few negative
examples, the classifier tends to under-detect this
class. In order to favour the negative class detection,
we balance the training corpora. So our final system
is trained on 4899 tweets (1633 of each class, chosen
randomly). The accuracy results are not presented
here. However, the gain between our baseline and
our final system has the same order of magnitude.

3.3 Integration of domain information

Some words can change their polarity between two
different domains (Navigli, 2012; Yoshida et al.,
2011). For example, the word ”return” is positive
in ”I can’t wait to return to my book”. However, it is
often very negative when we are talking about some
electronics device, as in ”I had to return my phone
to the store”. This phenomenon happens even in
more closely related domains: ”I was laughing all the
time” is a good point for a comedy film but a bad one
for a horror film. We call such words or expressions
”multi-polarity words”. This phenomenon is different

1BoosTexter is a general purpose machine-learning program
based on boosting for building a classifier from text.
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from polysemy, as a word can keep the same meaning
across domains while changing its polarity and it can
lead to classification error (Wilson et al., 2009). In
(Marchand, 2013), we have shown, on a corpus of re-
views, that a sensible amount of multi-polarity words
influences the results of common opinion classifiers.
Their deletion or their differentiation leads to better
classification results. Here, we test this approach on
a corpus of tweets.

3.3.1 Domain generation with LDA
In order to apply our method, we need to assign

domains to tweets. For that purpose, we use Latent
Dirichlet Allocation (LDA) (Blei et al., 2003). We
used the Mallet LDA implementation (McCallum,
2002). The framework uses Gibbs sampling to con-
stitute the sample distributions that are exploited for
the creation of the topic models. The models are built
using the lemmatized tweets from the training and
development data. We performed tests with a number
of domains ranging from 5 to 25, with a step of 5.
Each LDA representation of a tweet is encoded by
inferring a domain distribution. For example, if a
model with 5 domains is used, we generate a vector
of length 5, where each the i-th value is the propor-
tion of terms belonging to the i-th domain.

Domain 1 tonight, watch, time, today
Domain 2 win, vote, obama, black
Domain 3 game, play, win, team
Domain 4 apple, international, sun, anderson
Domain 5 ticket, show, open, live

Table 6: Most representative words of each domain (5
domains version)

In first experiments with crossvalidation on train-
ing data, the 5 domains version, presented in Table 6,
appears to be the most efficient. Therefore, in the rest
of the paper, results are shown only for this version.

3.3.2 Detection of multi-polarity words
For detecting the multi-polarity words, we use the

positive and negative labels of the training data. We
make the assumption that positive words will mostly
appear in positive tweets and negative words in neg-
ative tweets. Between two different corpora, we de-
termine words with different polarity across corpora
by using a χ2 test on their profile of occurrence in

positive and negative tweets in both corpora. The risk
of false positive is set to 0.05. The words are also
selected only if they occur more often than a given
threshold. For the SemEval task B, we apply this
detection for each domain. Each time, we detect the
words that change their polarity between a specific
domain and all the others. For example, the word
”black” is detected as positive in the second domain,
related to the election of Barack Obama, and neutral
in the rest of the tweets. At the end of this procedure,
we have 5 collections of words which change their
polarity (one different collection for each domain).
These collections are rather small: from 21 to 61
multi-polarity words are detected depending on the
domain and the parameters.

3.3.3 Differentiation of multi-polarity words
We tested different strategies in order to integrate

the domain information in the Sentiment Classifica-
tion in Twitter task.

• Domain-specific: 5 different classifiers are
trained on the domain specific subpart of the
tweets, without change on the data.

• Diff-topic: 5 different classifiers are trained on
the whole corpus, where the detected multi-
polarity words are differentiated into ”word-
domainX” and ”word-other”.

• Change-all: only 1 classifier is trained. Similar
to the previous one, except all the differentia-
tions are made at the same time.

• Keep-topic: 5 different classifiers are trained.
The detected multi-polarity words are kept in-
side their domain and deleted in the others.

• Remove-all: 5 different classifiers are trained.
The detected multi-polarity words are deleted
inside and outside their domain.

For the change-all version, we use only one classifier:
all test tweets are classified using the same classifier.
In the other versions, we obtain 5 classifiers. For
each test tweet, we determine its domain profile us-
ing topic models of LDA. Then we use a mix of all
the classifiers with weighting according to the LDA
mixture2. The domain-specific version gives worse

2The weight is the exponential of the LDA score.

422



results than the baseline trained on the whole original
corpus and is not represented on the figures.

Figure 2: Average F-measure results for the best set of
parameters for each method.

We tested all these versions with two training sets:
first, using all the training tweets to train the clas-
sifiers (Figure 2) and secondly, only the tweets for
which a domain can be confidently attributed (at least
a 75% score from the LDA model) (Figure 3). In this
case, the training set contains 2889 tweets. The run
submitted to SemEval corresponds to the change-all
version, trained with all the training tweets.

Figure 3: Average F-measure results for the best set of
parameters for each method.

Empirically, we set the threshold for the number
of occurrences to 10 in the first experiment and only
to 5 in the domain confident experiment, due to the
smallest size of the training corpora.

3.4 Analysis of the result and discussion
Using a boosting method with lemma trigrams and
emoticons features is a good fully automatic baseline.
We are in the mid range of results of all the partici-
pants (19th out of 48 submissions for the tweets and
26th out of 42 submissions for the SMS). We try to
include domain information to improve the opinion
classification. As we don’t have a reference domain
differentiation for the tweets, we separate them us-
ing the LDA method. The domain-specific version,
which does not take into account the multi-polarity
words, degrades the performances(-1.85% in the first

experiment, -2.8% in the second). On the contrary,
all our versions which use multi-polarity words, es-
pecially remove-all version, improve the F-measure.
The final improvement is small but it has to be re-
lated to the small number of multi-polarity words we
have detected (in average, 36 words per domain). We
think that the tweet collection is too small for the χ2

test to detect a lot of words with enough confidence.
For comparison, in our experiment on reviews, we
detected about 400 multi-polarity words per domain.
It is also worth noticing that for the domain confi-
dent experiment, the improvement is more sensible
(+1.46% versus +0.70%) even if the absolute value of
the score is not better, due to a much smaller training
data. It’s a good argument for our method. Another
question is about the method used to separate the
tweets into different domains. We plan to have more
control on the domains by using a more supervised
method based on the categories of Wikipedia.

4 Conclusion

In this paper, we presented our contribution to Se-
mEval 2013 task 2: Sentiment Analysis in Twitter.
For the Contextual Polarity Disambiguation subtask,
we described a very efficient and robust method based
on a sentiment lexicon associated with a polarity shift
detector and a tree based classification. As for the
Message Polarity Classification, we focused on the
impact of domain information. With only 4899 train-
ing tweets, we achieve good performances and we
demonstrate that words with changing polarity can
influence the classification performance.
One of the challenges of this SemEval task was to
see how well sentiment analysis models trained us-
ing Twitter data would generalize to a SMS dataset.
Looking at our result but also at the submissions of
other participants, a drop of performance can be ob-
served between the results on the Twitter and SMS
test datasets. In (Hu et al., 2013), the authors per-
form a thorough study on the differences between the
language used on Twitter and that of SMS messages
and chat. They find that Twitter language is more
conservative and less informal than SMS and online
chat and that the language of Twitter can be seen as
a projection of a formal register in a restricted space.
This is a good indicator to the difficulty of using a
Twitter centered system on a SMS dataset.
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Abstract

This paper is an overview of the SwatCS
system submitted to SemEval-2013 Task 2A:
Contextual Polarity Disambiguation. The sen-
timent of individual phrases within a tweet
are labeled using a combination of classifiers
trained on a range of lexical features. The
classifiers are combined by estimating the ac-
curacy of the classifiers on each tweet. Perfor-
mance is measured when using only the pro-
vided training data, and separately when in-
cluding external data.

1 Introduction

Spurred on by the wide-spread use of the social net-
works to communicate with friends, fans and cus-
tomers around the globe, Twitter has been adopted
by celebrities, athletes, politicians, and major com-
panies as a platform that mitigates the interaction be-
tween individuals.

Analysis of this Twitter data can provide insights
into how users express themselves. For example,
many new forms of expression and language fea-
tures have emerged on Twitter, including expres-
sions containing mentions, hashtags, emoticons, and
abbreviations. This research leverages the lexical
features in tweets to predict whether a phrase within
a tweet conveys a positive or negative sentiment.

2 Related Work

A common goal of past research has been to discover
and extract features from tweets that accurately in-
dicate sentiment (Liu, 2010). The importance of

feature selection and machine learning in sentiment
analysis has been explored prior to the rise of so-
cial networks. For example, Pang and Lee (2004)
apply machine learning techniques to extracted fea-
tures from movie reviews.

More recent feature-based systems include a
lexicon-based approach (Taboada et al., 2011), and
a more focused study on the importance of both ad-
verbs and adjectives in determining sentiment (Be-
namara et al., 2007). Other examples include us-
ing looser descriptions of sentiment rather than rigid
positive/negative labelings (Whitelaw et al., 2005)
and investigating how connections between users
can be used to predict sentiment (Tan et al., 2011).

This task differs from past work in sentiment anal-
ysis of tweets because we aim to build a model capa-
ble of predicting the sentiment of sub-phrases within
the tweet rather than considering the entire tweet.
Specifically, “given a message containing a marked
instance of a word or a phrase, determine whether
that instance is positive, negative or neutral in that
context” (Wilson et al., 2013). Research on context-
oriented polarity predates the emergence of social
networks: (Nasukawa and Yi, 2003) predict senti-
ment of subsections in a larger document.

N-gram features, part of speech features and
“micro-blogging features” have been used as accu-
rate indicators of polarity (Kouloumpis et al., 2011).
The “micro-blogging features” are of particular in-
terest as they provide insight into how users have
adapted Twitter tokens to natural language to por-
tray sentiment. These features include hashtags and
emoticons (Kouloumpis et al., 2011).
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3 Data

The task organizers provided a manually-labeled set
of tweets. For parts of this study, their data was sup-
plemented with external data (Go et al., 2009).

As part of pre-processing, all tweets were
part-of-speech tagged using the ARK TweetNLP
tools (Owoputi et al., 2013). All punctuation was
stripped, except for #hashtags, @mentions,
emoticons :), and exclamation marks. All hyper-
links were replaced with a common string, “URL”.

3.1 Common Data

The provided training data was a collection of ap-
proximately 15K tweets, manually labeled for senti-
ment (positive, negative, neutral, or objective) (Wil-
son et al., 2013). These sentiment labels applied
to a specific phrase within the tweet and did not
necessarily match the sentiment of the entire tweet.
Each tweet had at least one labeled phrase, though
some tweets had multiple phrases labeled individu-
ally. Overall, 37% of tweets had one labeled phrase,
with an average of 2.58 labeled phrases per tweet.

Each of our classifiers were binary classifiers, la-
beling phrases as either positive or negative. As
such, approximately 10.5K phrases labeled as objec-
tive or neutral were pruned from the training data,
resulting in a final training set containing 5362 la-
beled phrases, 3445 positive and 1917 negative.

The test data consisted of tweets and SMS mes-
sages, although the training data contained only
tweets. The test set for the phrase-level task (Task A)
contained 4435 tweets and 2334 SMS messages.

3.2 Outside Data

Task organizers allowed two submissions, a con-
strained submission using only the provided training
data, and an unconstrained submission allowing the
use of external data. For the unconstrained submis-
sion, we used a data set built by Go et al. (2009). The
data set was automatically labeled using emoticons
to predict sentiment. We used a 50K tweet subset
containing 25K positive and 25K negative tweets.

3.3 Phrase Isolation

For tweets containing a single labeled phrase, we use
the entire tweet as the context for the phrase. For
tweets containing two labeled phrases, we use the

unigram label bigram label
happy pos not going neg
good pos looking forward pos
great pos happy birthday pos
love pos last episode neg
best pos i’m mad neg

Table 1: The 5 most influential unigram and bigrams
ranked by information gain.

context from the start of the tweet to the end of the
first phrase as the context for the first phrase, and the
context from the start of the second phrase to the end
of the tweet for the second phrase. If more than two
phrases are present, the context for any phrase in the
middle of the tweet is limited to only the words in
the labeled phrase.

4 Classifiers

The system uses a combination of naive Bayes clas-
sifiers to label the input. Each classifier is trained on
a single feature extracted from the tweet. The classi-
fiers are combined using a confidence-weighted vot-
ing scheme. The system applies a simple negation
scheme to all of the language features used by the
classifiers. Any word following a negation term in
the phrase has the substring “NOT” prefixed to it.
This negation scheme was applied to n-gram fea-
tures and lexicon features.

4.1 N-gram Features

Rather than use all of the n-grams as features, we
ranked each n-gram (w/POS tags) by calculating its
chi-square-based information gain. The top 2000
n-grams (1000 positive, 1000 negative) are used as
features in the n-gram classifier. Both a unigram and
bigram classifier use these ranked (word/POS) fea-
tures. Table 1 shows the highest ranked unigrams
and bigrams using this method.

4.2 Sentiment Lexicon Features

A second classifier uses the MPQA subjectivity lex-
icon (Wiebe et al., 2005). We extract both the po-
larity and the polarity strength for each word/POS
in the lexicon matching a word/POS in the phrase’s
context. We refer to this classifier as the lexicon
classifier.
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Figure 1: Classifier accuracy increases as the difference
between the probabilities of the labelings increases.

4.3 Part of Speech and Special Token Features

Three additional classifiers were built using features
extracted from the tweets. Our third classifier uses
only the raw counts of specific part of speech tags:
adjectives, adverbs, interjections, and emoticons.
The fourth classifier uses the emoticons as a fea-
ture. To reduce the noise in the emoticon feature set,
many (over 25) different emoticons are mapped to
the basic “:)” and “:(” expressions. Some emoticons
such as “xD” did not map to these basic expressions.
A fifth classifier gives added weight to words with
extraneous repeated letters. Words containing two
or more repeated letters (that are not in a dictionary,
e.g. “heyyyyy”, “sweeeet”) are mapped to their pre-
sumed correct spelling (e.g. “hey”, “sweet”).

5 Confidence-Based Classification

To combine all of the classifiers, the system esti-
mates the confidence of each classifier and only ac-
cepts the classification output if the confidence is
higher than a specified baseline. To establish a clas-
sifier’s confidence, we take the absolute value of
the difference between a classifier’s positive output
probability and negative output probability, which
we call alpha. Alpha values close to 1 indicate high
confidence in the predicted label; values close to 0
indicate low confidence in the predicted label.

5.1 Classifier Voting

The predicted accuracy of each classifier is deter-
mined after the trained classifiers are evaluated us-
ing a development set with known labels. Using the
dev set, we calculate the accuracy of each classi-

rank classifier data polarity acc
1 unigrams (C) positive 0.89
2 unigrams (U) positive 0.88
3 lexicon (C) negative 0.83
4 lexicon (U) negative 0.81
5 tagcount (C) positive 0.78
6 bigrams (C) positive 0.75
7 tagcount (U) novote <0.65
8 bigrams (U) novote <0.65

Table 2: An example of the polarity and corresponding
accuracy output for each classifier for a single tweet. The
labels (C) and (U) indicate whether the classifier was
trained on constrained training data or on unconstrained
data (Go et al., 2009).

fier at alpha values between 0 and 1. The result is
a trained classifier with an approximation of overall
classification accuracy at a given alpha value. Fig-
ure 1 shows the relationship between alpha value
and overall classifier accuracy. As expected, classi-
fication accuracy increases as confidence increases.

Table 2 shows the breakdown of classifier accu-
racy for a single tweet using both provided and ex-
ternal data. The accuracy listed is the classifier-
specific accuracy determined by the alpha value for
that phrase in the tweet. Using a dev set, we ex-
perimentally established the most effective baseline
to be 0.65. In the voting system described below,
only classifiers with confidence above the baseline
(per marked phrase) are used. Therefore, the spe-
cific combination of classifiers used for each phrase
may be different.

An unlabeled phrase is assigned a polarity and
confidence value from each classifier. These proba-
bilities are combined using a voting system to deter-
mine a single output. This voting system calculates
the final labeling by computing the average proba-
bility for each label only for those classifiers with
estimated accuracies above the baseline. The label
with the highest overall probability is selected.

6 Results

The constrained submission only allowed for train-
ing on the provided data and placed 17 out of 23
entries. The unconstrained submission was trained
on both the provided data and the external data and
placed 6 out of 8 entries. Both submissions were
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unigram label bigram label lexicon label
aint neg school tomorrow neg bad neg

excited pos not going neg excited pos
sucks neg didn’t get neg tired neg

sick neg might not neg dead neg
poor neg gonna miss neg poor neg
smh pos still haven’t neg happy pos

tough pos breakout kings neg black neg
greatest pos work tomorrow neg good pos

f*ck neg ray lewis pos hate neg
nets neg can’t wait pos sorry neg

Table 3: The most influential features from the unigram,
bigram, and lexicon classifiers.

evaluated using the Twitter and SMS data described
in Section 3.1. As mentioned, our system used a bi-
nary classifier, predicting only positive and negative
labels, making no neutral classifications.

The constrained system evaluated on the Twitter
test set had an F-measure of .672, with a high dis-
parity between the F-measure for tweets labeled as
positive versus those labeled as negative (.79 vs .53).
The unconstrained system on the Twitter test set un-
derperformed our constrained system, with an F-
measure of only .639.

The constrained system on the SMS test set
yielded an F-measure of .660; the unconstrained sys-
tem on the same data yielded an F-measure of .679.

6.1 Features Extracted
The most important features extracted by the un-
igram, bigram and lexicon classifiers are shown
in Table 3. Features such as “ray lewis”, “smh”,
“school tomorrow”, “work tomorrow”, “breakout
kings” and “nets” demonstrate that the classifiers
formed a relationship between sentiment and collo-
quial language. An example of this understanding is
assigning a strong negative sentiment to “sucks” (as
the verb “to suck” does not carry sentiment). The bi-
grams “breakout kings”, “ray lewis” and “nets” are
interesting features because their sentiment is highly
cultural: “breakout kings” is a popular TV show that
was canceled, “ray lewis” a high profile player for
an NFL team, and “nets” a reference to the strug-
gling NBA basketball team. Expressions such as
“smh” (a widely-used abbreviation for “shaking my
head”) show how detecting tweet- and SMS-specific
language is important to understanding sentiment in

this domain.

7 Discussion

This supervised system combines many features
to classify positive and negative sentiment at the
phrase-level. Phrase-based isolation (Section 3.3)
limits irrelevant context in the model. By estimat-
ing classifier confidence on a per-phrase basis, the
system can prioritize confident classifiers and ignore
less-confident ones before combination.

Similar results on the Twitter and SMS data sets
indicates the similarity between the domains. The
external data improved the system on the SMS data
and reduced system accuracy on the Twitter data.
This difference in performance may be an indication
that the supplemental data set was noisier than we
expected, or that it was more applicable to the SMS
domain (SMS) than we anticipated.

There was a noticeable difference between pos-
itive and negative classification accuracy for all of
the submissions. This difference is likely due to ei-
ther a positive bias in training set used (the provided
training data is 64% positive, 36% negative) or a se-
lection of features that favored positive sentiment.

7.1 Improvements and Future Work

Unfortunately, the time constraints of the evalua-
tion exercise led to a programming bug that wasn’t
caught until after the submission deadline. In pre-
processing, we accidentally stripped most of the
emoticon features out of the text. While it is un-
clear how much this would have effected our final
performance, such features have been demonstrated
as valuable in similar tasks. After fixing this bug
the system performs better in both constrained and
unconstrained situations (as evaluated on the devel-
opment set).

We would like to increase the size of external data
set to include all of the approximately 380K tweets
(rather than the 50K subset we used). This expanded
training set would likely improve the robustness of
the system. Specifically, we would expect classifiers
with limited coverage, such as the repeat-letter clas-
sifier, to yield increased performance.
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Abstract

The paper describes experiments using grid
searches over various combinations of ma-
chine learning algorithms, features and pre-
processing strategies in order to produce the
optimal systems for sentiment classification of
microblog messages. The approach is fairly
domain independent, as demonstrated by the
systems achieving quite competitive results
when applied to short text message data, i.e.,
input they were not originally trained on.

1 Introduction

The informal texts in microblogs such as Twitter
and on other social media represent challenges for
traditional language processing systems. The posts
(“tweets”) are limited to 140 characters and often
contain misspellings, slang and abbreviations. On
the other hand, the posts are often opinionated in
nature as a very result of their informal character,
which has led Twitter to being a gold mine for sen-
timent analysis (SA). SA for longer texts, such as
movie reviews, has been explored since the 1990s;1

however, the limited amount of attributes in tweets
makes the feature vectors shorter than in documents
and the task of analysing them closely related to
phrase- and sentence-level SA (Wilson et al., 2005;
Yu and Hatzivassiloglou, 2003). Hence there are
no guarantees that algorithms that perform well on
document-level SA will do as well on tweets. On
the other hand, it is possible to exploit some of the
special features of the web language, e.g., emoticons

1See Pang and Lee (2008); Feldman (2013) for overviews.

and emotionally loaded abbreviations. Thus the data
will normally go through some preprocessing before
any classification is attempted, e.g., by filtering out
Twitter specific symbols and functions, in particular
retweets (reposting another user’s tweet), mentions
(’@’, tags used to mention another user), hashtags
(’#’, used to tag a tweet to a certain topic), emoti-
cons, and URLs (linking to an external resource,
e.g., a news article or a photo). The first system to re-
ally use Twitter as a corpus was created as a student
course project at Stanford (Go et al., 2009). Pak and
Paroubek (2010) experimented with sentiment clas-
sification of tweets using Support Vector Machines
and Conditional Random Fields, benchmarked with
a Naı̈ve Bayes Classifier baseline, but were unable
to beat the baseline. Later, and as Twitter has grown
in popularity, many other systems for Twitter Senti-
ment Analysis (TSA) have been developed (see, e.g.,
Maynard and Funk, 2011; Mukherjee et al., 2012;
Saif et al., 2012; Chamlertwat et al., 2012).

Clearly, it is possible to classify the sentiment of
tweets in a single step; however, the approach to
TSA most used so far is a two-step strategy where
the first step is subjectivity classification and the
second step is polarity classification. The goal of
subjectivity classification is to separate subjective
and objective statements. Pak and Paroubek (2010)
counted word frequencies in a subjective vs an ob-
jective set of tweets; the results showed that in-
terjections and personal pronouns are the strongest
indicators of subjectivity. In general, these word
classes, adverbs and (in particular) adjectives (Hatzi-
vassiloglou and Wiebe, 2000) have shown to be
good subjectivity indicators, which has made part-
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of-speech (POS) tagging a reasonable technique for
filtering out objective tweets. Early research on
TSA showed that the challenging vocabulary made
it harder to accurately tag tweets; however, Gimpel
et al. (2011) report on using a POS tagger for mark-
ing tweets, performing with almost 90% accuracy.

Polarity classification is the task of separating the
subjective statements into positives and negatives.
Kouloumpis et al. (2011) tried different solutions for
tweet polarity classification, and found that the best
performance came from using n-grams together with
lexicon and microblog features. Interestingly, per-
formance dropped when a POS tagger was included.
They speculate that this can be due to the accuracy
of the POS tagger itself, or that POS tagging just is
less effective for analysing tweet polarity.

In this paper we will explore the application of
a set of machine learning algorithms to the task of
Twitter sentiment classification, comparing one-step
and two-step approaches, and investigate a range of
different preprocessing methods. What we explic-
itly will not do, is to utilise a sentiment lexicon, even
though many methods in TSA rely on lexica with a
sentiment score for each word. Nielsen (2011) man-
ually built a sentiment lexicon specialized for Twit-
ter, while others have tried to induce such lexica
automatically with good results (Velikovich et al.,
2010; Mohammad et al., 2013). However, sentiment
lexica — and in particular specialized Twitter senti-
ment lexica — make the classification more domain
dependent. Here we will instead aim to exploit do-
main independent approaches as far as possible, and
thus abstain from using sentiment lexica. The rest of
the paper is laid out as follows: Section 2 introduces
the twitter data sets used in the study. Then Section 3
describes the system built for carrying out the twitter
sentiment classification experiments, which in turn
are reported and discussed in Sections 4 and 5.

2 Data

Manually collecting information from Twitter would
be a tedious task, but Twitter offers a well doc-
umented Representational State Transfer Applica-
tion Programming Interface (REST API) which al-
lows users to collect a corpus from the micro-
blogosphere. Most of the data used in TSA re-
search is collected through the Twitter API, either by

Training Dev 1 Dev 2 NTNU
Class Num % Num % Num % Num %

Negative 1288 15 176 21 340 26 86 19

Neutral 4151 48 144 45 739 21 232 50

Positive 3270 37 368 35 575 54 142 31

Total 8709 688 1654 461

Table 1: The data sets used in the experiments

searching for a certain topic/keyword or by stream-
ing realtime data. Four different data sets were used
in the experiments described below. three were sup-
plied by the organisers of the SemEval’13 shared
task on Twitter sentiment analysis (Wilson et al.,
2013), in the form of a training set, a smaller initial
development set, and a larger development set. All
sets consist of manually annotated tweets on a range
of topics, including different products and events.

Tweet-level classification (Task 2B) was split into
two subtasks in SemEval’13, one allowing training
only on the data sets supplied by the organisers (con-
strained) and one allowing training also on external
data (unconstrained). To this end, a web applica-
tion2 for manual annotation of tweets was built and
used to annotate a small fourth data set (‘NTNU’).
Each of the 461 tweets in the ‘NTNU’ data set was
annotated by one person only.

The distribution of target classes in the data sets is
shown in Table 1. The data was neither preprocessed
nor filtered, and thus contain hashtags, URLs, emoti-
cons, etc. However, all the data sets provided by
SemEval’13 had more than three target classes (e.g.,
‘objective’, ‘objective-OR-neutral’), so tweets that
were not annotated as ‘positive’ or ‘negative’ were
merged into the ‘neutral’ target class.

Due to Twitter’s privacy policy, the given data sets
do not contain the tweet text, but only the tweet ID
which in turn can be used to download the text. The
Twitter API has a limit on the number of downloads
per hour, so SemEval’13 provided a Python script
to scrape texts from https://twitter.com. This
script was slow and did not download the texts for all
tweet IDs in the data sets, so a faster and more pre-
cise download script3 for node.js was implemented
and submitted to the shared task organisers.

2http://tinyurl.com/tweetannotator
3http://tinyurl.com/twitscraper
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3 Experimental Setup

In order to run sentiment classification experiments,
a general system was built. It has a Sentiment Anal-
ysis API Layer which works as a thin extension of
the Twitter API, sending all tweets received in par-
allel to a Sentiment Analysis Classifier server. After
classification, the SA API returns the same JSON
structure as the Twitter API sends out, only with an
additional attribute denoting the tweet’s sentiment.
The Sentiment Analysis Classifier system consists
of preprocessing and classification, described below.

3.1 Preprocessing

As mentioned in the introduction, most approaches
to Twitter sentiment analysis start with a pre-
processing step, filtering out some Twitter specific
symbols and functions. Go et al. (2009) used ‘:)’
and ‘:(’ as labels for the polarity, so did not remove
these emoticons, but replaced URLs and user names
with placeholders. Kouloumpis et al. (2011) used
both an emoticon set and a hashtagged set. The lat-
ter is a subset of the Edinburgh Twitter corpus which
consists of 97 million tweets (Petrović et al., 2010).
Some approaches have also experimented with nor-
malizing the tweets, and removing redundant letters,
e.g., “loooove” and “crazyyy”, that are used to ex-
press a stronger sentiment in tweets. Redundant let-
ters are therefore often not deleted, but words rather
trimmed down to one additional redundant letter, so
that the stronger sentiment can be taken into consid-
eration by a score/weight adjustment for that feature.

To find the best features to use, a set of eight dif-
ferent combinations of preprocessing methods was
designed, as detailed in Table 2. These include no
preprocessing (P0, not shown in the table), where
all characters are included as features; full remove
(P4), where all special Twitter features like user
names, URLs, hashtags, retweet (RT ) tags, and
emoticons are stripped; and replacing Twitter fea-
tures with placeholder texts to reduce vocabulary.
The “hashtag as word” method transforms a hashtag
to a regular word and uses the hashtag as a feature.
“Reduce letter duplicate” removes redundant char-
acters more than three (“happyyyyyyyy!!!!!!” →
“happyyy!!!”). Some methods, like P1, P2, P4, P5
and P7 remove user names from the text, as they
most likely are just noise for the sentiment. Still,

Method P1 P2 P3 P4 P5 P6 P7

Remove Usernames X X X X X
Username placeholder X
Remove URLs X X X X
URL placeholder X
Remove hashtags X X
Hashtag as word X
Hashtag placeholder X
Remove RT -tags X X X
Remove emoticons X X
Reduce letter duplicate X X X X
Negation attachment X X X

Table 2: Overview of the preprocessing methods

the fact that there are references to URLs and user
names might be relevant for the sentiment. To make
these features more informative for the machine
learning algorithms, a preprocessing method (P3)
was implemented for replacing them with place-
holders. In addition, a very rudimentary treatment
of negation was added, in which the negation is at-
tached to the preceding and following words, so that
they will also reflect the change in sentence polarity.

Even though this preprocessing obviously is
Twitter-specific, the results after it will still be do-
main semi-independent, in as far as the strings pro-
duced after the removal of URLs, user names, etc.,
will be general, and can be used for system training.

3.2 Classification

The classification step currently supports three
machine learning algorithms from the Python
scikit-learn4 package: Naı̈ve Bayes (NB),
Maximum Entropy (MaxEnt), and Support Vector
Machines (SVM). These are all among the super-
vised learners that previously have been shown to
perform well on TSA, e.g., by Bermingham and
Smeaton (2010) who compared SVM and NB for
microblogs. Interestingly, while the SVM technique
normally beats NB and MaxEnt on longer texts, that
comparison indicated that it has some trouble with
outperforming NB when feature vectors are shorter.
Three different models were implemented:

1. One-step model: a single algorithm classifies
tweets as negative, neutral or positive.

2. Two-step model: the tweets are first classified
as either subjective or neutral. Those that are

4http://scikit-learn.org
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Figure 1: Performance across all models (red=precision, blue=recall, green=F1-score, brown=accuracy)

classified as subjective are then sent to polarity
classification (i.e., negative or positive).

3. Boosting (Freund and Schapire, 1997): a way
to combine classifiers by generating a set of
sub-models, each of which predicts a sentiment
on its own and then sends it to a voting process
that selects the sentiment with highest score.

In all cases, the final classification is returned to the
API Layer sentiment provider.

4 Experimental Results

Experiments were carried out using the platform in-
troduced in the previous section, with models built
on the training set of Table 1. The testing system
generates and trains different models based on a set
of parameters, such as classification algorithm, pre-
processing methods, whether or not to use inverse
document frequency (IDF) or stop words. A grid
search option can be activated, so that a model is
generated with the best possible parameter set for
the given algorithm, using 10-fold cross validation.

4.1 Selection of Learners and Features

An extensive grid search was conducted. This search
cycled through different algorithms, parameters and
preprocessing techniques. The following param-
eters were included in the search. Three binary
(Yes/No) parameters: Use IDF, Use Smooth
IDF, and Use Sublinear IDF, together with
ngram (unigram/bigram/trigram). SVM
and MaxEnt models in addition included C and
NB models alpha parameters, all with the value
ranges [0.1/0.3/0.5/0.7/0.8/1.0]. SVM
and MaxEnt models also had penalty (L1/L2).

Figure 1 displays the precision, recall, F1-score,
and accuracy for each of the thirteen classifiers with
the Dev 2 data set (see Table 1) used for evaluation.
Note that most classifiers involving the NB algo-
rithm perform badly, both in terms of accuracy and
F-score. This was observed for the other data sets as
well. Further, we can see that one-step classifiers did
better than two-step models, with MaxEnt obtaining
the best accuracy, but SVM a slightly better F-score.
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Data set Dev 2 Dev 1
Learner SVM MaxEnt SVM MaxEnt

Precision 0.627 0.647 0.700 0.561
Recall 0.592 0.578 0.726 0.589
F1-score 0.598 0.583 0.707 0.556
Accuracy 0.638 0.645 0.728 0.581

Table 3: Best classifier performance (bold=best score;
all classifiers were trained on the training set of Table 1)

A second grid search with the two best classifiers
from the first search was performed instead using the
smaller Dev 1 data set for evaluation. The results
for both the SVM and MaxEnt classifiers are shown
in Table 3. With the Dev 1 data set, SVM performs
much better than MaxEnt. The larger Dev 2 develop-
ment set contains more neutral tweets than the Dev 1
set, which gives us reasons to believe that evaluating
on the Dev 2 set favours the MaxEnt classifier.

A detailed error analysis was conducted by in-
specting the confusion matrices of all classifiers. In
general, classifiers involving SVM tend to give bet-
ter confusion matrices than the others. Using SVM
only in a one-step model works well for positive and
neutral tweets, but a bit poorer for negative. Two-
step models with SVM-based subjectivity classifica-
tion exhibit the same basic behaviour. The one-step
MaxEnt model classifies more tweets as neutral than
the other classifiers. Using MaxEnt for subjectivity
classification and either MaxEnt or SVM for polarity
classification performs well, but is too heavy on the
positive class. Boosting does not improve and be-
haves in a fashion similar to two-step MaxEnt mod-
els. All combinations involving NB tend to heavily
favour positive predictions; only the two-step mod-
els involving another algorithm for polarity classifi-
cation gave some improvement for negative tweets.

The confusion matrices of the two best learners
are shown in Figures 2a-2d, where a learner is shown
to perform better if it has redish colours on the main
diagonal and blueish in the other fields, as is the case
for SVM on the Dev 1 data set (Figure 2c).

As a part of the grid search, all preprocessing
methods were tested for each classifier. Figure 3
shows that P2 (removing user names, URLs, hash-
tags prefixes, retweet tokens, and redundant letters)
is the preprocessing method which performs best

(a) SVM Dev 2 (b) MaxEnt Dev 2

(c) SVM Dev 1 (d) MaxEnt Dev 1

Figure 2: SVM and MaxEnt confusion matrices (out-
put is shown from left-to-right: negative-neutral-positive;
the correct classes are in the same order, top-to-bottom.
“Hotter” colours (red) indicate that more instances were
assigned; “colder” colours (blue) mean fewer instances.)
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Figure 3: Statistics of preprocessing usage

(gives the best accuracy) and thus used most of-
ten (10 times). Figure 3 also indicates that URLs
are noisy and do not contain much sentiment, while
hashtags and emoticons tend to be more valuable
features (P2 and P7 — removing URLs — perform
best, while P4 and P5 — removing hashtags and
emoticons in addition to URLs — perform badly).
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Data set Twitter SMS
System NTNUC NTNUU NTNUC NTNUU

Precision 0.652 0.633 0.659 0.623
Recall 0.579 0.564 0.646 0.623
F1-score 0.590 0.572 0.652 0.623
F1 + /− 0.532 0.507 0.580 0.546

Table 4: The NTNU systems in SemEval’13

4.2 SemEval’13 NTNU Systems and Results

Based on the information from the grid search, two
systems were built for SemEval’13. Since one-step
SVM-based classification showed the best perfor-
mance on the training data, it was chosen for the
system participating in the constrained subtask, NT-
NUC. The preprocessing also was the one with the
best performance on the provided data, P2 which
involves lower-casing all letters; reducing letter du-
plicates; using hashtags as words (removing #); and
removing all URLs, user names and RT -tags.

Given the small size of the in-house (‘NTNU’)
data set, no major improvement was expected from
adding it in the unconstrained task. Instead, a rad-
ically different set-up was chosen to create a new
system, and train it on both the in-house and pro-
vided data. NTNUU utilizes a two-step approach,
with SVM for subjectivity and MaxEnt for polarity
classification, a combination intended to capture the
strengths of both algorithms. No preprocessing was
used for the subjectivity step, but user names were
removed before attempting polarity classification.

As further described by Wilson et al. (2013), the
SemEval’13 shared task involved testing on a set of
3813 tweets (1572 positive, 601 negative, and 1640
neutral). In order to evaluate classification perfor-
mance on data of roughly the same length and type,
but from a different domain, the evaluation data also
included 2094 Short Message Service texts (SMS;
492 positive, 394 negative, and 1208 neutral).

Table 4 shows the results obtained by the NTNU
systems on the SemEval’13 evaluation data, in terms
of average precision, recall and F-score for all three
classes, as well as average F-score for positive and
negative tweets only (F1+/−; i.e., the measure used
to rank the systems participating in the shared task).

5 Discussion and Conclusion

As can be seen in Table 4, the extra data available
to train the NTNUU system did not really help it:
it gets outperformed by NTNUC on all measures.
Notably, both systems perform well on the out-
of-domain data represented by the SMS messages,
which is encouraging and indicates that the approach
taken really is domain semi-independent. This was
also reflected in the rankings of the two systems in
the shared task: both were on the lower half among
the participating systems on Twitter data (24th/36
resp. 10th/15), but near the top on SMS data, with
NTNUC being ranked 5th of 28 constrained systems
and NTNUU 6th of 15 unconstrained systems.

Comparing the results to those shown in Table 3
and Figure 1, NTNUC’s (SVM) performance is in
line with that on Dev 2, but substantially worse
than on Dev 1; NTNUU (SVM→MaxEnt) performs
slightly worse too. Looking at system output with
and without the ‘NTNU’ data, both one-step SVM
and MaxEnt models and SVM→MaxEnt classified
more tweets as negative when trained on the ex-
tra data; however, while NTNUC benefited slightly
from this, NTNUU even performed better without it.

An obvious extension to the present work would
be to try other classification algorithms (e.g., Condi-
tional Random Fields or more elaborate ensembles)
or other features (e.g., character n-grams). Rather
than the very simple treatment of negation used
here, an approach to automatic induction of scope
through a negation detector (Councill et al., 2010)
could be used. It would also be possible to relax
the domain-independence further, in particular to
utilize sentiment lexica (including twitter specific),
e.g., by automatic phrase-polarity lexicon extraction
(Velikovich et al., 2010). Since many users tweet
from their smartphones, and a large number of them
use iPhones, several tweets contain iPhone-specific
smilies (“Emoji”). Emoji are implemented as their
own character set (rather than consisting of charac-
ters such as ‘:)’ and ‘:(’, etc.), so a potentially major
improvement could be to convert them to character-
based smilies or to emotion-specific placeholders.
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Abstract

This paper describes our submission for Se-

mEval2013 Task 2: Sentiment Analysis in

Twitter. For the limited data condition we use

a lexicon-based model. The model uses an af-

fective lexicon automatically generated from a

very large corpus of raw web data. Statistics

are calculated over the word and bigram af-

fective ratings and used as features of a Naive

Bayes tree model. For the unconstrained data

scenario we combine the lexicon-based model

with a classifier built on maximum entropy

language models and trained on a large exter-

nal dataset. The two models are fused at the

posterior level to produce a final output. The

approach proved successful, reaching rank-

ings of 9th and 4th in the twitter sentiment

analysis constrained and unconstrained sce-

nario respectively, despite using only lexical

features.

1 Introduction

The analysis of the emotional content of text, is

relevant to numerous natural language processing

(NLP), web and multi-modal dialogue applications.

To that end there has been a significant scientific

effort towards tasks like product review analysis

(Wiebe and Mihalcea, 2006; Hu and Liu, 2004),

speech emotion extraction (Lee and Narayanan,

2005; Lee et al., 2002; Ang et al., 2002) and pure

text word (Esuli and Sebastiani, 2006; Strappar-

ava and Valitutti, 2004) and sentence (Turney and

Littman, 2002; Turney and Littman, 2003) level

emotion extraction.

The rise of social media in recent years has seen

a shift in research focus towards them, particularly

twitter. The large volume of text data available is

particularly useful, since it allows the use of com-

plex machine learning methods. Also important is

the interest on the part of companies that are actively

looking for ways to mine social media for opinions

and attitudes towards them and their products. Sim-

ilarly, in journalism there is interest in sentiment

analysis for a way to process and report on the public

opinion about current events (Petulla, 2013).

Analyzing emotion expressed in twitter borrows

from other tasks related to affective analysis, but

also presents unique challenges. One common is-

sue is the breadth of content available in twitter: a

more limited domain would make the task easier,

however there are no such bounds. There is also a

significant difference in the form of language used

in tweets. The tone is informal and typographical

and grammatical errors are very common, making

even simple tasks, like Part-of-Speech tagging much

harder. Features like hashtags and emoticons can

also be helpful (Davidov et al., 2010).

This paper describes our submissions for Se-

mEval 2013 task 2, subtask B, which deals pri-

marily with sentiment analysis in twitter. For the

constrained condition (using only the organizer-

provided twitter sentences) we implemented a sys-

tem based on the use of an affective lexicon and part-

of-speech tag information, which has been shown

relevant to the task (Pak and Paroubek, 2010).

For the unconstrained condition (including external

sources of twitter sentences) we combine the con-

strained model with a maximum entropy language
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model trained on external data.

2 Experimental procedure

We use two separate models, one for the constrained

condition and a combination for the unconstrained

condition. Following are short descriptions.

2.1 Lexicon-based model

The method used for the constrained condition is

based on an affective lexicon containing out-of-

context affective ratings for all terms contained in

each sentence. We use an automated algorithm of

affective lexicon expansion based on the one pre-

sented in (Malandrakis et al., 2011), which in turn

is an expansion of (Turney and Littman, 2002).

We assume that the continuous (in [−1, 1]) va-

lence and arousal ratings of any term can be repre-

sented as a linear combination of its semantic simi-

larities to a set of seed words and the affective rat-

ings of these words, as follows:

v̂(wj) = a0 +
N∑

i=1

ai v(wi) dij , (1)

where wj is the term we mean to characterize,

w1...wN are the seed words, v(wi) is the valence rat-

ing for seed word wi, ai is the weight corresponding

to seed word wi (that is estimated as described next),

dij is a measure of semantic similarity between wi

and wj . For the purposes of this work, the seman-

tic similarity metric is the cosine similarity between

context vectors computed over a corpus of 116 mil-

lion web snippets collected by posing one query for

every word in the Aspell spellchecker’s vocabulary

to the Yahoo! search engine and collecting up to 500

of the top results.

Given a starting, manually annotated, lexicon we

can select part of it to serve as seed words and then

use 1 to create a system of linear equations where

the only unknowns are the weights ai. The system

is solved using Least Squares Estimation. That pro-

vides us with an equation that can generate affective

ratings for every term (not limited to words), as long

as we can estimate the semantic similarity between

it and the seed words.

Seed word selection is performed by a simple

heuristic (though validated through experiments):

we want seed words to have extreme affective rat-

ings (maximum absolute value) and we want the set

to be as closed to balanced as possible (sum of seed

ratings equal to zero).

Given these term ratings, the next step is combin-

ing them through statistics. To do that we use sim-

ple statistics (mean, min, max) and group by part

of speech tags. The results are statistics like “max-

imum valence among adjectives”, “mean arousal

among proper nouns” and “number of verbs and

nouns”. The dimensions used are: valence, absolute

valence and arousal. The grouping factors are the 39

Penn treebank pos tags plus higher order tags (adjec-

tives, verbs, nouns, adverbs and combinations of 2,3

and 4 of them). The statistics extracted are: mean,

min, max, most extreme, sum, number, percentage

of sentence coverage. In the case of bigram terms no

part-of-speech filtering/grouping is applied. These

statistics form the feature vectors.

Finally we perform feature selection on the mas-

sive set of candidates and use them to train a model.

The model selected is a Naive Bayes tree, a tree with

Naive Bayes classifiers on each leaf. The motivation

comes by considering this a two stage problem: sub-

jectivity detection and polarity classification, mak-

ing a hierarchical model a natural choice. NB trees

proved superior to other types of trees during our

testing, presumably due to the smoothing of obser-

vation distributions.

2.2 N-gram language model

The method used for the unconstrained condition

is based on a combination of the automatically ex-

panded affective lexicon described in the previ-

ous section together with a bigram language model

based on the work of (Wang et al., 2012), which

uses a large set of twitter data from the U.S. 2012

Presidential election. As a part of the unconstrained

system, we were able to leverage external annotated

data apart from those provided by the SEMEVAL

2013 sentiment task dataset. Of the 315 million

tweets we collected about the election, we anno-

tated a subset of 40 thousand tweets using Ama-

zon Mechanical Turk. The annotation labels that

we used were “positive”, “negative”, “neutral”, and

“unsure”, and additionally raters could mark tweets

for sarcasm and humor. We excluded tweets marked

as “unsure” as well as tweets that had disagree-
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ment in labels if they were annotated by more than

one annotator. To extract the bigram features, we

used a twitter-specific tokenizer (Potts, 2011), which

marked uniform resource locators (URLs), emoti-

cons, and repeated characters, and which lowercased

words that began with capital letters followed by

lowercase letters (but left words in all capitals). The

bigram features were computed as presence or ab-

sense in the tweet rather than counts due to the small

number of words in tweets. The machine learning

model used to classify the tweets was the Megam

maximum entropy classifier (Daumé III, 2004) in

the Natural Language Toolkit (NLTK) (Bird et al.,

2009).

2.3 Fusion

The submitted system for the unconstrained condi-

tion leverages both the lexicon-based and bigram

language models. Due to the very different nature

of the models we opt to not fuse them at the feature

level, using a late fusion scheme instead. Both par-

tial models are probabilistic, therefore we can use

their per-class posterior probabilities as features of

a fusion model. The fusion model is a linear kernel

SVM using six features, the three posteriors from

each partial model, and trained on held out data.

3 Results

Following are results from our method, evaluated

on the testing sets (of sms and twitter posts) of

SemEval2013 task 2. We evaluate in terms of 3-

class classification, polarity classification (positive

vs. negative) and subjectivity detection (neutral vs.

other). Results shown in terms of per category f-

measure.

3.1 Constrained

The preprocessing required for the lexicon-based

model is just part-of-speech tagging using Treetag-

ger (Schmid, 1994). The lexicon expansion method

is used to generate valence and arousal ratings for

all words and ngrams in all datasets and the part of

speech tags are used as grouping criteria to gener-

ate statistics. Finally, feature selection is performed

using a correlation criterion (Hall, 1999) and the re-

sulting feature set is used to train a Naive Bayes

tree model. The feature selection and model train-

Table 1: F-measure results for the lexicon-based model,

using different machine learning methods, evaluated on

the 3-class twitter testing data.

model
per-class F-measure

neg neu pos

Nbayes 0.494 0.652 0.614

SVM 0.369 0.677 0.583

CART 0.430 0.676 0.593

NBTree 0.561 0.662 0.643

Table 2: F-measure results for the constrained condition,

evaluated on the testing data.

set classes
per-class F-measure

neg neu pos/other

twitter

3-class 0.561 0.662 0.643

pos vs neg 0.679 0.858

neu vs other 0.685 0.699

sms

3-class 0.506 0.709 0.531

pos vs neg 0.688 0.755

neu vs other 0.730 0.628

ing/classification was conducted using Weka (Wit-

ten and Frank, 2000).

The final model uses a total of 72 features, which

can not be listed here due to space constraints. The

vast majority of these features are necessary to de-

tect the neutral category: positive-negative separa-

tion can be achieved with under 30 features.

One aspect of the model we felt worth investigat-

ing, was the type of model to be used. Using a multi-

stage model, performing subjectivity detection be-

fore positive-negative classification, has been shown

to provide an improvement, however single models

have also been used extensively. We compared some

popular models: Naive Bayes, linear kernel SVM,

CART-trained tree and Naive Bayes tree, all using

the same features, on the twitter part of the SemEval

testing data. The results are shown in Table 1. The

two Naive Bayes-based models proved significantly

better, with NBTree being clearly the best model for

these features.

Results from the submitted constrained model are

shown in Table 2. Looking at the twitter data re-

sults and comparing the positive-negative vs the
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3-class results, it appears the main weakness of

this model is subjectivity detection, mostly on the

neutral-negative side. It is not entirely clear to us

whether that is an artifact of the model (the nega-

tive class has the lowest prior probability, thus may

suffer compared to neutral) or of the more complex

forms of negativity (sarcasm, irony) which we do not

directly address. There is a definite drop in perfor-

mance when using the same twitter-trained model on

sms data, which we would not expect, given that the

features used are not twitter-specific. We believe this

gap is caused by lower part-of-speech tagger perfor-

mance: visual inspection reveals the output on twit-

ter data is fairly bad.

Overall this model ranked 9th out of 35 in the

twitter set and 11th out of 28 in the sms set, among

all constrained submissions.

3.2 Unconstrained

Table 3: F-measure results for the maximum entropy

model with bigram features, evaluated on the testing data.

set classes
per-class F-measure

neg neu pos/other

twitter

3-class 0.403 0.661 0.623

pos vs neg 0.586 0.804

neu vs other 0.661 0.704

sms

3-class 0.390 0.587 0.542

pos vs neg 0.710 0.648

neu vs other 0.587 0.641

Table 4: F-measure results for the unconstrained condi-

tion, evaluated on the testing data.

set classes
per-class F-measure

neg neu pos/other

twitter

3-class 0.565 0.679 0.655

pos vs neg 0.672 0.881

neu vs other 0.667 0.732

sms

3-class 0.502 0.723 0.538

pos vs neg 0.625 0.772

neu vs other 0.710 0.637

In order to create the submitted unconstrained

model we train an SVM model using the lexicon-

based and bigram language model posterior proba-

bilities as features. This fusion model is trained on

held-out data (the development set of the SemEval

data). The results of classification using the bigram

language model alone are shown in Table 3 and the

results from the final fused model are shown in Ta-

ble 4. Looking at relative per-class performance, the

results follow a form most similar to the constrained

model, though there are gains in all cases. These

gains are less significant when evaluated on the sms

data, resulting in a fair drop in ranks: the bigram lan-

guage model (expectedly) suffers more when mov-

ing to a different domain, since it uses words as

features rather than the more abstract affective rat-

ings used by the lexicon-based model. Also, because

the external data used to train the bigram language

model was from discussions of politics on Twitter,

the subject matter also varied in terms of prior senti-

ment distribution in that the negative class was pre-

dominant in politics, which resulted in high recall

but low precision for the negative class.

This model ranked 4th out of 16 in the twitter set

and 7th out of 17 in the sms set, among all uncon-

strained submissions.

4 Conclusions

We presented a system of twitter sentiment analy-

sis combining two approaches: a hierarchical model

based on an affective lexicon and a language model-

ing approach, fused at the posterior level. The hier-

archical lexicon-based model proved very successful

despite using only n-gram affective ratings and part-

of-speech information. The language model was

not as good individually, but provided a noticeable

improvement to the lexicon-based model. Overall

the models achieved good performance, ranking 9th

of 35 and 4th of 16 in the constrained and uncon-

strained twitter experiments respectively, despite us-

ing only lexical information.

Future work will focus on incorporating im-

proved tokenization (including part-of-speech tag-

ging), making better use of twitter-specific features

like emoticons and hashtags, and performing affec-

tive lexicon generation on twitter data.
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Abstract 

In this paper, we describe the development 

and performance of the supervised system 

UMCC_DLSI-(SA). This system uses corpora 

where phrases are annotated as Positive, 

Negative, Objective, and Neutral, to achieve 

new sentiment resources involving word 

dictionaries with their associated polarity. As 

a result, new sentiment inventories are 

obtained and applied in conjunction with 

detected informal patterns, to tackle the 

challenges posted in Task 2b of the Semeval-

2013 competition. Assessing the effectiveness 

of our application in sentiment classification, 

we obtained a 69% F-Measure for neutral and 

an average of 43% F-Measure for positive 

and negative using Tweets and SMS 

messages. 

1 Introduction 

Textual information has become one of the most 

important sources of data to extract useful and 

heterogeneous knowledge from. Texts can provide 

factual information, such as: descriptions, lists of 

characteristics, or even instructions to opinion-

based information, which would include reviews, 

emotions, or feelings. These facts have motivated 

dealing with the identification and extraction of 

opinions and sentiments in texts that require 

special attention.  

Many researchers, such as (Balahur et al., 2010; 

Hatzivassiloglou et al., 2000; Kim and Hovy, 

2006; Wiebe et al., 2005) and many others have 

been working on this and related areas. 

Related to assessment Sentiment Analysis (SA) 

systems, some international competitions have 

taken place. Some of those include: Semeval-2010 

(Task 18: Disambiguating Sentiment Ambiguous 

Adjectives 1 ) NTCIR (Multilingual Opinion 

Analysis Task (MOAT 2)) TASS 3  (Workshop on 

Sentiment Analysis at SEPLN workshop) and 

Semeval-2013 (Task 2 4  Sentiment Analysis in 

Twitter) (Kozareva et al., 2013). 

In this paper, we introduce a system for Task 2 

b) of the Semeval-2013 competition. 

1.1 Task 2 Description 

In participating in “Task 2: Sentiment Analysis in 

Twitter” of Semeval-2013, the goal was to take a 

given message and its topic and classify whether it 

had a positive, negative, or neutral sentiment 

towards the topic. For messages conveying, both a 

positive and negative sentiment toward the topic, 

the stronger sentiment of the two would end up as 

the classification. Task 2 included two sub-tasks. 

Our team focused on Task 2 b), which provides 

two training corpora as described in Table 3, and 

two test corpora: 1) sms-test-input-B.tsv (with 

2094 SMS) and 2) twitter-test-input-B.tsv (with 

3813 Twit messages). 

The following section shows some background 

approaches. Subsequently, in section 3, we 

describe the UMCC_DLSI-(SA) system that was 

used in Task 2 b). Section 4 describes the 

assessment of the obtained resource from the 

Sentiment Classification task. Finally, the 

conclusion and future works are presented in 

section 5. 

2 Background 

The use of sentiment resources has proven to be a 

necessary step for training and evaluating  systems 

that implement sentiment analysis, which also 

                                                 
1 http://semeval2.fbk.eu/semeval2.php 
2 http://research.nii.ac.jp/ntcir/ntcir-ws8/meeting/ 
3 http://www.daedalus.es/TASS/ 
4http://www.cs.york.ac.uk/semeval-2013/task2/ 
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include fine-grained opinion mining (Balahur, 

2011). 

In order to build sentiment resources, several 

studies have been conducted. One of the first is the 

relevant work by (Hu and Liu, 2004) using lexicon 

expansion techniques by adding synonymy and 

antonym relations provided by WordNet 

(Fellbaum, 1998; Miller et al., 1990) Another one 

is the research described by (Hu and Liu, 2004; 

Liu et al., 2005) which obtained an Opinion 

Lexicon compounded by a list of positive and 

negative opinion words or sentiment words for 

English (around 6800 words). 

A similar approach has been used for building 

WordNet-Affect (Strapparava and Valitutti, 2004) 

which expands six basic categories of emotion; 

thus, increasing the lexicon paths in WordNet. 

Nowadays, many sentiment and opinion 

messages are provided by Social Media. To deal 

with the informalities presented in these sources, it 

is necessary to have intermediary systems that 

improve the level of understanding of the 

messages. The following section offers a 

description of this phenomenon and a tool to track 

it. 

2.1 Text normalization 

Several informal features are present in opinions 

extracted from Social Media texts. Some research 

has been conducted in the field of lexical 

normalization for this kind of text. TENOR 

(Mosquera and Moreda, 2012) is a multilingual 

text normalization tool for Web 2.0 texts with an 

aim to transform noisy and informal words into 

their canonical form. That way, they can be easily 

processed by NLP tools and applications. TENOR 

works by identifying out-of-vocabulary (OOV) 

words such as slang, informal lexical variants, 

expressive lengthening, or contractions using a 

dictionary lookup and replacing them by matching 

formal candidates in a word lattice using phonetic 

and lexical edit distances. 

2.2 Construction of our own Sentiment 

Resource  

Having analyzed the examples of SA described in 

section 2, we proposed building our own sentiment 

resource (Gutiérrez et al., 2013) by adding lexical 

and informal patterns to obtain classifiers that can 

deal with Task 2b of Semeval-2013. We proposed 

the use of a method named RA-SR (using Ranking 

Algorithms to build Sentiment Resources) 

(Gutiérrez et al., 2013) to build sentiment word 

inventories based on senti-semantic evidence 

obtained after exploring text with annotated 

sentiment polarity information. Through this 

process, a graph-based algorithm is used to obtain 

auto-balanced values that characterize sentiment 

polarities, a well-known technique in Sentiment 

Analysis. This method consists of three key stages: 

(I) Building contextual word graphs; (II) Applying 

a ranking algorithm; and (III) Adjusting the 

sentiment polarity values. 

These stages are shown in the diagram in Figure 1, 

which the development of sentimental resources 

starts off by giving four corpora of annotated 

sentences (the first with neutral sentences, the 

second with objective sentences, the third with 

positive sentences, and the last with negative 

sentences). 

 

 
Figure 1. Resource walkthrough development 

process. 

2.3 Building contextual word graphs 

Initially, text preprocessing is performed by 

applying a Post-Tagging tool (using Freeling 

(Atserias et al., 2006) tool version 2.2 in this case) 

to convert all words to lemmas 5 . After that, all 

obtained lists of lemmas are sent to RA-SR, then 

divided into four groups: neutral, objective, 

positive, and negative candidates. As the first set 

                                                 
5 Lemma denotes canonic form of the words. 
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of results, four contextual graphs are 

obtained:  𝐺𝑛𝑒𝑢,   𝐺𝑜𝑏𝑗 , 𝐺𝑝𝑜𝑠,  and 𝐺𝑛𝑒𝑔 , where 

each graph includes the words/lemmas from the 

neutral, objective, positive and negative sentences 

respectively. These graphs are generated after 

connecting all words for each sentence into 

individual sets of annotated sentences in 

concordance with their annotations ( 𝑃𝑜𝑠 , 𝑁𝑒𝑔 , 

𝑂𝑏𝑗, 𝑁𝑒𝑢 ). 

Once the four graphs representing neutral, 

objective, positive and negative contexts are 

created, we proceed to assign weights to apply 

graph-based ranking techniques in order to auto-

balance the particular importance of each vertex 𝑣𝑖 

into 𝐺𝑛𝑒𝑢, 𝐺𝑜𝑏𝑗, 𝐺𝑝𝑜𝑠 and 𝐺𝑛𝑒𝑔. 

As the primary output of the graph-based ranking 

process, the positive, negative, neutral, and 

objective values are calculated using the PageRank 

algorithm and normalized with equation (1). For a 

better understanding of how the contextual graph 

was built see (Gutiérrez et al., 2013). 

2.4 Applying a ranking algorithm 

To apply a graph-based ranking process, it is 

necessary to assign weights to the vertices of the 

graph. Words involved into 𝐺𝑛𝑒𝑢, 𝐺𝑜𝑏𝑗, 𝐺𝑝𝑜𝑠 

and 𝐺𝑛𝑒𝑔 take the default of 1/N as their weight 

to define the weight of 𝑣 vector, which is used in 

our proposed ranking algorithm. In the case where 

words are identified on the sentiment repositories 

(see Table 4) as positive or negative, in relation to 

their respective graph, a weight value of 1 (in a 

range [0 … 1] ) is assigned. 𝑁  represents the 

maximum quantity of words in the current graph. 

After that, a graph-based ranking algorithm is 

applied in order to structurally raise the graph 

vertexes’ voting power. Once the reinforcement 

values are applied, the proposed ranking algorithm 

is able to increase the significance of the words 

related to these empowered vertices. 

The PageRank (Brin and Page, 1998) 

adaptation, which was popularized by (Agirre and 

Soroa, 2009) in Word Sense Disambiguation 

thematic, and which has obtained relevant results, 

was an inspiration to us in our work. The main 

idea behind this algorithm is that, for each edge 

between 𝑣i and 𝑣j in graph 𝐺, a vote is made from 

𝑣 i to 𝑣 j. As a result, the relevance of 𝑣 j is 

increased. 

On top of that, the vote strength from 𝑖  to 𝑗 

depends on 𝑣𝑖′𝑠 relevance. The philosophy behind 

it is that, the more important the vertex is, the 

more strength the voter would have. Thus, 

PageRank is generated by applying a random 

walkthrough from the internal interconnection of 

𝐺 , where the final relevance of 𝑣𝑖  represents the 

random walkthrough probability over 𝐺 , and 

ending on 𝑣𝑖.  

In our system, we apply the following 

configuration: dumping factor 𝑐 = 0.85 and, like 

in (Agirre and Soroa, 2009) we used 30 iterations. 

A detailed explanation about the PageRank 

algorithm can be found in (Agirre and Soroa, 

2009)  

After applying PageRank, in order to obtain 

standardized values for both graphs, we normalize 

the rank values by applying the equation (1), 

where 𝑀𝑎𝑥(𝐏𝐫) obtains the maximum rank value 

of 𝑷𝒓 vector (rankings’ vector). 

𝐏𝐫𝑖 = 𝐏𝐫𝑖/𝑀𝑎𝑥(𝐏𝐫) (1) 

2.5 Adjusting the sentiment polarity values 

After applying the PageRank algorithm on𝐺𝑛𝑒𝑢, 

𝐺𝑜𝑏𝑗 , 𝐺𝑝𝑜𝑠  and 𝐺𝑛𝑒𝑔 , having normalized their 

ranks, we proceed to obtain a final list of lemmas 

(named 𝐿𝑓 ) while avoiding repeated elements. 

𝐿𝑓 is represented by 𝐿𝑓𝑖  lemmas, which would 

have, at that time, four assigned values: Neutral, 

Objective, Positive, and Negative, all of which 

correspond to a calculated rank obtained by the 

PageRank algorithm.  

At that point, for each lemma from 𝐿𝑓,  the 

following equations are applied in order to select 

the definitive subjectivity polarity for each one: 

𝑃𝑜𝑠 =  {
𝑃𝑜𝑠 − 𝑁𝑒𝑔 ;  𝑃𝑜𝑠 > 𝑁𝑒𝑔

0                ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

𝑁𝑒𝑔 =  {
𝑁𝑒𝑔 − 𝑃𝑜𝑠 ;  𝑁𝑒𝑔 > 𝑃𝑜𝑠

0                ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

Where 𝑃𝑜𝑠  is the Positive value and 𝑁𝑒𝑔  the 

Negative value related to each lemma in 𝐿𝑓. 

In order to standardize again the 𝑃𝑜𝑠  and 𝑁𝑒𝑔 

values and making them more representative in a 

[0…1] scale, we proceed to apply a normalization 

process over the 𝑃𝑜𝑠 and 𝑁𝑒𝑔 values. 

From there, based on the objective features 

commented by (Baccianella et al., 2010), we 

assume the same premise to establish an 

alternative objective value of the lemmas. 

Equation (4) is used for that: 
𝑂𝑏𝑗𝐴𝑙𝑡 = 1 − |𝑃𝑜𝑠 − 𝑁𝑒𝑔| (4) 

Where 𝑂𝑏𝑗𝐴𝑙𝑡  represents the alternative 

objective value. 
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As a result, each word obtained in the sentiment 

resource has an associated value of: positivity 

( 𝑃𝑜𝑠 , see equation (2)), negativity ( 𝑁𝑒𝑔 , see 

equation (3)), objectivity(𝑅𝑒𝑎𝑙_𝑜𝑏𝑗,  obtained by 

PageRank over 𝐺𝑜𝑏𝑗  and normalized with 

equation (1)), calculated-objectivity (𝑂𝑏𝑗𝐴𝑙𝑡, now 

cited as 𝑜𝑏𝑗_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ) and neutrality ( 𝑁𝑒𝑢 , 

obtained by PageRank over 𝐺𝑛𝑒𝑢 and normalized 

with equation (1)). 

3  System Description 

The system takes annotated corpora as input from 

which two models are created. One model is 

created by using only the data provided at 

Semeval-2013 (Restricted Corpora, see Table 3), 

and the other by using extra data from other 

annotated corpora (Unrestricted Corpora, see 

Table 3). In all cases, the phrases are pre-

processed using Freeling 2.2 pos-tagger (Atserias 

et al., 2006) while a dataset copy is normalized 

using TENOR (described in section 2.1). 

The system starts by extracting two sets of 

features. The Core Features (see section 3.1) are 

the Sentiment Measures and are calculated for a 

standard and normalized phrase. The Support 

Features (see section 3.2) are based on regularities, 

observed in the training dataset, such as 

emoticons, uppercase words, and so on. 

The supervised models are created using Weka6 

and a Logistic classifier, both of which the system 

uses to predict the values of the test dataset. The 

selection of the classifier was made after analyzing 

several classifiers such as: Support Vector 

Machine, J48 and REPTree. Finally, the Logistic 

classifier proved to be the best by increasing the 

results around three perceptual points. 

The test data is preprocessed in the same way 

the previous corpora were. The same process of 

feature extraction is also applied. With the 

aforementioned features and the generated models, 

the system proceeds to classify the final values of 

Positivity, Negativity, and Neutrality.  

3.1 The Core Features 

The Core Features is a group of measures based on 

the resource created early (see section 2.2). The 

system takes a sentence preprocessed by Freeling 

2.2 and TENOR. For each lemma of the analyzed 

sentence, 𝑝𝑜𝑠 , 𝑛𝑒𝑔 , 𝑜𝑏𝑗_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ,  𝑟𝑒𝑎𝑙_𝑜𝑏𝑗, 

                                                 
6 http://www.cs.waikato.ac.nz/ 

and 𝑛𝑒𝑢  are calculated by using the respective 

word values assigned in RA-SR. The obtained 

values correspond to the sum of the corresponding 

values for each intersecting word between the 

analyzed sentence (lemmas list) and the obtained 

resource by RA-SR. Lastly, the aforementioned 

attributes are normalized by dividing them by the 

number of words involved in this process. 

Other calculated attributes are: 𝑝𝑜𝑠_𝑐𝑜𝑢𝑛𝑡 , 

𝑛𝑒𝑔_𝑐𝑜𝑢𝑛𝑡 , 𝑜𝑏𝑗_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 , 

𝑜𝑏𝑗_𝑟𝑒𝑎𝑙_𝑐𝑜𝑢𝑛𝑡 and 𝑛𝑒𝑢_𝑐𝑜𝑢𝑛𝑡. These attributes 

count each involved iteration for each feature type 

( 𝑃𝑜𝑠 , 𝑁𝑒𝑔 , 𝑅𝑒𝑎𝑙_𝑜𝑏𝑗 , 𝑂𝑏𝑗𝐴𝑙𝑡  and 𝑁𝑒𝑢 

respectively, where the respective value may be 

greater than zero. 

Attributes 𝑐𝑛𝑝  and cnn are calculated by 

counting the amount of lemmas in the phrases 

contained in the Sentiment Lexicons (Positive and 

Negative respectively).  

All of the 12 attributes described previously are 

computed for both, the original, and the 

normalized (using TENOR) phrase, totaling 24 

attributes. The Core features are described next.  
Feature Name Description 

𝒑𝒐𝒔 

Sum of respective value of each word. 
𝒏𝒆𝒈 

𝒐𝒃𝒋_𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅 

𝒓𝒆𝒂𝒍_𝒐𝒃𝒋 

𝒏𝒆𝒖 

𝒑𝒐𝒔_𝒄𝒐𝒖𝒏𝒕 

Counts the words where its respective value 

is greater than zero 

𝒏𝒆𝒈_𝒄𝒐𝒖𝒏𝒕 

𝒐𝒃𝒋_𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅_𝒄𝒐𝒖𝒏𝒕 

𝒓𝒆𝒂𝒍_𝒐𝒃𝒋_𝒄𝒐𝒖𝒏𝒕 

𝒏𝒆𝒖_𝒄𝒐𝒖𝒏𝒕 
𝒄𝒏𝒑 (to positive) Counts the words contained in the 

Sentiment Lexicons for their respective 

polarities. 

𝒄𝒏𝒏 (to negative) 

Table 1. Core Features 

3.2 The Support Features 

The Support Features is a group of measures based 

on characteristics of the phrases, which may help 

with the definition on extreme cases. The emotPos 

and emotNeg values are the amount of Positive 

and Negative Emoticons found in the phrase. The 

exc and itr are the amount of exclamation and 

interrogation signs in the phrase. The following 

table shows the attributes that represent the 

support features: 
Feature Name Description 

𝒆𝒎𝒐𝒕𝑷𝒐𝒔 
Counts the respective Emoticons 

𝒆𝒎𝒐𝒕𝑵𝒆𝒈 

𝒆𝒙𝒄 (exclamation marks (“!”)) 
Counts the respective marks 

𝒊𝒕𝒓 (question marks (“?”)) 

𝑾𝑶𝑹𝑫𝑺_𝒄𝒐𝒖𝒏𝒕 Counts the uppercase words 
𝑾𝑶𝑹𝑫𝑺_𝒑𝒐𝒔 Sums the respective values of the 

Uppercase words 𝑾𝑶𝑹𝑫𝑺_𝒏𝒆𝒈 

𝑾𝑶𝑹𝑫𝑺_𝒑𝒐𝒔_𝒄𝒐𝒖𝒏𝒕_𝒓𝒆𝒔 (to Counts the Uppercase words 
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positivity) contained in their respective 

Graph 𝑾𝑶𝑹𝑫𝑺_𝒏𝒆𝒈_𝒄𝒐𝒖𝒏𝒕_𝒓𝒆𝒔(to 

negativity) 

𝑾𝑶𝑹𝑫𝑺_𝒑𝒐𝒔_𝒄𝒐𝒖𝒏𝒕_𝒅𝒊𝒄𝒕 (to 

positivity) 
Counts the Uppercase words 

contained in the Sentiment 
Lexicons 7 for their respective 

polarity  

𝑾𝑶𝑹𝑫𝑺_𝒏𝒆𝒈_𝒄𝒐𝒖𝒏𝒕_𝒅𝒊𝒄𝒕 (to 

negativity) 

𝒘𝒐𝒐𝒐𝒓𝒅𝒔_𝒄𝒐𝒖𝒏𝒕 Counts the words with repeated 

chars  
𝒘𝒐𝒐𝒐𝒓𝒅𝒔_𝒑𝒐𝒔 Sums the respective values of the 

words with repeated chars 𝒘𝒐𝒐𝒐𝒓𝒅𝒔_𝒏𝒆𝒈 

𝒘𝒐𝒐𝒐𝒓𝒅𝒔_𝒏𝒆𝒈_𝒄𝒐𝒖𝒏𝒕_𝒅𝒊𝒄𝒕 (in 

negative lexical resource ) 
Counts the words with repeated 
chars contained in the respective 

lexical resource 𝒘𝒐𝒐𝒐𝒓𝒅𝒔_𝒑𝒐𝒔_𝒄𝒐𝒖𝒏𝒕_𝒅𝒊𝒄𝒕 (in 

positive lexical resource ) 

𝒘𝒐𝒐𝒐𝒓𝒅𝒔_𝒑𝒐𝒔_𝒄𝒐𝒖𝒏𝒕_𝒓𝒆𝒔 (in 

positive graph ) 
Counts the words with repeated 

chars contained in the respective 
graph 𝒘𝒐𝒐𝒐𝒓𝒅𝒔_𝒏𝒆𝒈_𝒄𝒐𝒖𝒏𝒕_𝒓𝒆𝒔  (in 

negative graph ) 

Table 2. The Support Features 

4 Evaluation 

In the construction of the sentiment resource, we 

used the annotated sentences provided by the 

corpora described in Table 3. The resources listed 

in Table 3 were selected to test the functionality of 

the words annotation proposal with subjectivity 

and objectivity. Note that the shadowed rows 

correspond to constrained runs corpora: tweeti-b-

sub.dist_out.tsv 8  (dist), b1_tweeti-objorneu-

b.dist_out.tsv 9  (objorneu), twitter-dev-input-

B.tsv10 (dev). 

The resources from Table 3 that include 

unconstrained runs corpora are: all the previously 

mentioned ones, Computational-intelligence11 (CI) 

and stno12 corpora. 

The used sentiment lexicons are from the 

WordNetAffect_Categories13 and opinion-words14 

files as shown in detail in Table 4. 

Some issues were taken into account throughout 

this process. For instance, after obtaining a 

contextual graph 𝐺, factotum words are present in 

most of the involved sentences (i.e., verb “to be”). 

This issue becomes very dangerous after applying 

the PageRank algorithm because the algorithm 

                                                 
7 Resources described in Table 4. 
8Semeval-2013 (Task 2. Sentiment Analysis in Twitter, 

subtask b). 
9Semeval-2013 (Task 2. Sentiment Analysis in Twitter, 

subtask b). 
10 http://www.cs.york.ac.uk/semeval-2013/task2/ 
11A sentimental corpus obtained applying techniques 

developed by GPLSI department. See 

(http://gplsi.dlsi.ua.es/gplsi11/allresourcespanel) 

12NTCIR Multilingual Opinion Analysis Task (MOAT) 

http://research.nii.ac.jp/ntcir/ntcir-ws8/meeting/ 
13 http://wndomains.fbk.eu/wnaffect.html 
14 http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html 

strengthens the nodes possessing many linked 

elements. For that reason, the subtractions 𝑃𝑜𝑠 −
𝑁𝑒𝑔 and 𝑁𝑒𝑔 − 𝑃𝑜𝑠 are applied, where the most 

frequent words in all contexts obtain high values. 

The subtraction becomes a dumping factor.  

As an example, when we take the verb “to be”, 

before applying equation (1), the verb achieves the 

highest values in each subjective context graph 

( 𝐺𝑝𝑜𝑠  and 𝐺𝑛𝑒𝑔)  namely, 9.94 and 18.67 rank 

values respectively. These values, once equation 

(1) is applied, are normalized obtaining both 

𝑃𝑜𝑠 =  1 and 𝑁𝑒𝑔 =  1 in a range [0...1]. At the 

end, when the following steps are executed 

(Equations (2) and (3)), the verb “to be” 

achieves 𝑃𝑜𝑠 = 0 , 𝑁𝑒𝑔 = 0  and 

therefore  𝑂𝑏𝑗𝐴𝑙𝑡 = 1 . Through this example, it 

seems as though we subjectively discarded words 

that appear frequently in both contexts (Positive 

and Negative). 

Corpus N P O Neu 
Obj 

or Neu 
Unk T 

C UC 

dist 176 368 110 34 - - 688 X X 

objorneu 828 1972 788 1114 1045 - 5747 X X 

dev 340 575 - 739 - - 1654 X X 

CI 6982 6172 - - - - 13154  X 

stno15 1286 660 - 384 - 10000 12330  X 

T 9272 9172 898 1532 1045 10000 31919   

Table 3. Corpora used to apply RA-SR. Positive (P), 

Negative (N), Objective (Obj/O), Unknow (Unk), Total 

(T), Constrained (C), Unconstrained (UC). 
Sources P N T 

WordNet-Affects_Categories 

 (Strapparava and Valitutti, 2004) 
629 907 1536 

opinion-words  

(Hu and Liu, 2004; Liu et al., 2005) 

2006 4783 6789 

Total 2635 5690 8325 

Table 4. Sentiment Lexicons. Positive (P), Negative 

(N) and Total (T). 
   Precision (%) Recall (%) Total (%) 

 C Inc P  N  Neu P N Neu Prec Rec F1 

Run1 8032 1631 80,7 83,8 89,9 90,9 69,5 86,4 84,8 82,3 82,9 

Run2 19101 4671 82,2 77,3 89,4 80,7 81,9 82,3 83,0 81,6 80,4 

Table 5. Training dataset evaluation using cross-

validation (Logistic classifier (using 10 folds)). 

Constrained (Run1), Unconstrained (Run2), Correct(C), 

Incorrect (Inc). 

4.1 The training evaluation 

In order to assess the effectiveness of our trained 

classifiers, we performed some evaluation tests.  

Table 5 shows relevant results obtained after 

applying our system to an environment (specific 

domain). The best results were obtained with the 

                                                 
15 NTCIR Multilingual Opinion Analysis Task (MOAT) 

http://research.nii.ac.jp/ntcir/ntcir-ws8/meeting/ 
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restricted corpus. The information used to increase 

the knowledge was not balanced or perhaps is of 

poor quality. 

4.2 The test evaluation 

The test dataset evaluation is shown in Table 6, 

where system results are compared with the best 

results in each case. We notice that the constrained 

run is better in almost every aspect. In the few 

cases where it was lower, there was a minimal 

difference. This suggests that the information used 

to increase our Sentiment Resource was 

unbalanced (high difference between quantity of 

tagged types of annotated phrases), or was of poor 

quality. By comparing these results with the ones 

obtained by our system on the test dataset, we 

notice that on the test dataset, the results fell in the 

middle of the effectiveness scores. After seeing 

these results (Table 5 and Table 6), we assumed 

that our system performance is better in a 

controlled environment (or specific domain). To 

make it more realistic, the system must be trained 

with a bigger and more balanced dataset. 

Table 6 shows the results obtained by our 

system while comparing them to the best results of 

Task 2b of Semeval-2013. In Table 5, we can see 

the difference between the best systems. They are 

the ones in bold and underlined as target results.  

These results have a difference of around 20 

percentage points. The grayed out ones correspond 

to our runs. 
      Precision (%) Recall (%) Total 

Runs C Inc P N Neu P N Neu Prec Rec F 1 

1_tw 2082 1731 60,9 46,5 52,8 49,8 41,4 64,1 53,4 51,8 49,3 

1_tw_cnd 2767 1046 81,4 69,7 67,7 66,7 60,4 82,6 72,9 69,9 69,0 

2_tw 2026 1787 58,0 42,2 42,2 52,2 43,9 57,4 47,4 51,2 49,0 

2_tw_ter 2565 1248 71,1 54,6 68,6 74,7 59,4 63,1 64,8 65,7 64,9 

1_sms 1232 862 43,9 46,1 69,5 55,9 31,7 68,9 53,2 52,2 43,4 

1_sms_cnd 1565 529 73,1 55,4 85,2 73,0 75,4 75,3 71,2 74,5 68,5 

2_sms 1023 1071 38,4 31,4 68,3 60,0 38,3 47,8 46,0 48,7 40,7 

2_sms_ava 1433 661 60,9 49,4 81,4 65,9 63,7 71,0 63,9 66,9 59,5 

Table 6. Test dataset evaluation using official scores. 

Corrects(C), Incorrect (Inc). 

Table 6 run descriptions are as follows:  

 UMCC_DLSI_(SA)-B-twitter-constrained 

(1_tw), 

 NRC-Canada-B-twitter-constrained 

(1_tw_cnd),  

 UMCC_DLSI_(SA)-B-twitter-unconstrained 

(2_tw), 

 teragram-B-twitter-unconstrained (2_tw_ter), 

 UMCC_DLSI_(SA)-B-SMS-constrained 

(1_sms), 

 NRC-Canada-B-SMS-constrained 

(1_sms_cnd), UMCC_DLSI_(SA)-B-SMS-

unconstrained (2_sms), 

 AVAYA-B-sms-unconstrained (2_sms_ava). 

As we can see in the training and testing 

evaluation tables, our training stage offered more 

relevant scores than the best scores in Task2b 

(Semaval-2013). This means that we need to 

identify the missed features between both datasets 

(training and testing). 

For that reason, we decided to check how many 

words our system (more concretely, our Sentiment 

Resource) missed. Table 7 shows that our system 

missed around 20% of the words present in the test 

dataset. 
 hits miss miss (%) 

twitter 23807 1591 6,26% 

sms 12416 2564 17,12% 

twitter nonrepeat   2426 863 26,24% 

sms norepeat 1269 322 20,24% 

Table 7. Quantity of words used by our system over 

the test dataset. 

5 Conclusion and further work 

Based on what we have presented, we can say that 

we could develop a system that would be able to 

solve the SA challenge with promising results. The 

presented system has demonstrated election 

performance on a specific domain (see Table 5) 

with results over 80%. Also, note that our system, 

through the SA process, automatically builds 

sentiment resources from annotated corpora.  

For future research, we plan to evaluate RA-SR 

on different corpora. On top of that, we also plan 

to deal with the number of neutral instances and 

finding more words to evaluate the obtained 

sentiment resource. 
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Abstract

This paper describes University of Leipzig’s
approach to SemEval-2013 task 2B on Sen-
timent Analysis in Twitter: message polar-
ity classification. Our system is designed to
function as a baseline, to see what we can
accomplish with well-understood and purely
data-driven lexical features, simple general-
izations as well as standard machine learning
techniques: We use one-against-one Support
Vector Machines with asymmetric cost fac-
tors and linear “kernels” as classifiers, word
uni- and bigrams as features and additionally
model negation of word uni- and bigrams in
word n-gram feature space. We consider gen-
eralizations of URLs, user names, hash tags,
repeated characters and expressions of laugh-
ter. Our method ranks 23 out of all 48 partic-
ipating systems, achieving an averaged (pos-
itive, negative) F-Score of 0.5456 and an av-
eraged (positive, negative, neutral) F-Score of
0.595, which is above median and average.

1 Introduction

In SemEval-2013’s task 2B on Sentiment Analysis
in Twitter, given a Twitter message, i.e. a tweet, the
goal is to classify whether this tweet is of positive,
negative, or neutral polarity (Wilson et al., 2013),
i.e. the task is a ternary polarity classification.

Due to Twitter’s growing popularity, the availabil-
ity of large amounts of data that go along with that
and the fact, that many people freely express their
opinion on virtually everything using Twitter, re-
search on sentiment analysis in Twitter has received
a lot of attention lately (Go et al., 2009; Pak and

Paroubek, 2010). Language is usually used casu-
ally in Twitter and exhibits interesting properties.
Therefore, some studies specifically address certain
issues, e.g. a tweet’s length limitation of 140 char-
acters, some studies leverage certain language char-
acteristics, e.g. the presence of emoticons etc.

Davidov et al. (2010) identify various “sentiment
types” defined by Twitter hash tags (e.g. #bored)
and smileys (e.g. :S) using words, word n-grams,
punctuation marks and patterns as features. Bar-
bosa and Feng (2010) map words to more general
representations, i.e. part of speech (POS) tags and
the words’ prior subjectivity and polarity. Addi-
tionally, they count the number of re-tweets, hash
tags, replies, links etc. They then combine the out-
puts of 3 online sources of labeled but noisy and bi-
ased Twitter data into a more robust classification
model. Saif et al. (2012) also address data sparsity
via word clustering methods, i.e. semantic smooth-
ing and sentiment-topics extraction. Agarwal et al.
(2011) contrast a word unigram model, a tree ker-
nel model and a model of various features, e.g. POS
tag counts, summed up prior polarity scores, pres-
ence or absence of capitalized text, all applied to bi-
nary and ternary polarity classification. Kouloumpis
et al. (2011) show that Twitter-specific feature engi-
neering, e.g. representing the presence or absence
of abbreviations and character repetitions improves
model quality. Jiang et al. (2011) focus on target-
dependent polarity classification regarding a given
user query.

While various models and features have been pro-
posed, word n-gram models proved to be competi-
tive in many studies (Barbosa and Feng, 2010; Agar-
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wal et al., 2011; Saif et al., 2012) yet are straight-
forward to implement. Moreover, word n-gram
models do not rely on hand-crafted and generally
{genre, domain}-non-specific resources, e.g. prior
polarity dictionaries like SentiWordNet (Esuli and
Sebastiani, 2006) or Subjectivity Lexicon (Wiebe et
al., 2005). In contrast, purely data-driven word n-
gram models are domain-specific per se: they “let
the data speak for themselves”. Therefore we be-
lieve that carefully designing such a baseline using
well-understood and purely data-driven lexical fea-
tures, simple generalizations as well as standard ma-
chine learning techniques is a worthwhile endeavor.

In the next Section we describe our system. In
Section 3 we discuss its results in SemEval-2013
task 2B and finally conclude in Section 4.

2 System Description

We approach the ternary polarity classification via
one-against-one (Hsu and Lin, 2002) Support Vector
Machines (SVMs) (Vapnik, 1995; Cortes and Vap-
nik, 1995) using a linear “kernel” as implemented
by LibSVM1. To deal with the imbalanced class dis-
tribution of positive (+), negative (−) and neutral-
or-objective (0) instances, we use asymmetric cost
factors C+, C−, C0 that allow for penalizing false
positives and false negatives differently inside the
one-against-one SVMs. While the majority class’
C0 is set to 1.0, the minority classes’ C{+,−}s are
set as shown in (1)

C{+,−} =
#(0-class instances)

#({+,−}-class instances)
(1)

similar to Morik et al. (1999)’s suggestion.

2.1 Data

To develop our system, we use all training data avail-
able to us for training and all development data avail-
able to us for testing, after removing 75 duplicates
from the training data and 2 duplicates from the
development data. Please note that 936 tweets of
the originally provided training data and 3 tweets of
the originally provided development data were not

1http://www.csie.ntu.edu.tw/˜cjlin/
libsvm/

available at our download time2. Table 1 summa-
rizes the used data’s class distribution after duplicate
removal.

Data + − 0 Σ

Training 3,263 1,278 4,132 8,673
Development 384 197 472 1,053

Σ 3,647 1,475 4,604 9,726

Table 1: Class distribution of positive (+), negative (−)
and neutral-or-objective (0) instances in training and de-
velopment data after duplicate removal.

For sentence segmentation and tokenization of the
data we use OpenNLP3. An example tweet of the
provided training data is shown in (1):

(1) #nacamam @naca you have to try Sky-
walk Deli on the 2nd floor of the Com-
erica building on Monroe! #bestlunche
http://instagr.am/p/Rfv-RfTI-3/.

2.2 Model Selection
To select an appropriate model, we experiment with
different feature sets (cf. Section 2.2.1) and different
combinations of generalizations (cf. Section 2.2.2).

2.2.1 Features
We consider the following feature sets:

a. word unigrams

b. word unigrams plus negation modeling for
word unigrams

c. word uni- and bigrams

d. word uni- and bigrams plus negation modeling
for word unigrams

e. word uni- and bigrams plus negation modeling
for word uni- and bigrams

Word uni- and bigrams are induced data-driven, i.e.
directly extracted from the textual data. We perform
no feature selection; neither stop words nor punc-
tuation marks are removed. We simply encode the
presence or absence of word n-grams.

2Training data was downloaded on February 21, 2013, 9:18
a.m. and development data was downloaded on February 28,
2013, 10:41 a.m. using the original download script.

3http://opennlp.apache.org
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Whether a word uni- or bigram is negated, i.e.
appears inside of a negation scope (Wiegand et al.,
2010), is detected by LingScope4 (Agarwal and Yu,
2010), a state-of-the-art negation scope detection
based on Conditional Random Fields (Lafferty et
al., 2001). We model the negation of word n-grams
in an augmented word n-gram feature space as de-
tailedly described in Remus (2013): In this feature
space, each word n-gram is either represented as
present ([1, 0]), absent ([0, 0]), present inside a nega-
tion scope ([0, 1]) and present both inside and out-
side a negation scope ([1, 1]).

We trained a model for each feature set and chose
the one that yields the highest accuracy: word uni-
and bigrams plus negation modeling for word uni-
and bigrams.

2.2.2 Generalizations
To account for Twitter’s typical language char-

acteristics, we consider all possible combinations
of generalizations of the following character se-
quences, inspired by (Montejo-Ráez et al., 2012):

a. User names, that mark so-called mentions in a
Tweet, expressed by @username.

b. Hash tags, that mark keywords or topics in a
Tweet, expressed by #keyword.

c. URLs, that mark links to other web pages.

d. Twitpic URLs, that mark links to pictures
hosted by twitpic.com.

e. Repeated Characters, e.g. woooow. We col-
lapse characters re-occuring more than twice,
e.g. woooow is replaced by woow.

f. Expressions of laughter, e.g. hahaha. We
generalize derivatives of the “base forms”
haha, hehe, hihi and huhu. A derivative
must contain the base form and may addition-
ally contain arbitrary uppercased and lower-
cased letters at its beginning and its end. We
collapse these derivatives. E.g., hahahah and
HAHAhaha and hahaaa are all replaced by
their base form haha, eheheh and heheHE
are all replaced by hehe etc.

4http://sourceforge.net/projects/
lingscope/

User names, hash tags, URLs and Twitpic URLs are
generalized by either simply removing them (mode
I) or by replacing them with a single unique token
(mode II), i.e. by forming an equivalence class. Re-
peated characters and expressions of laughter are
generalized by collapsing them as described above.

There are 1 +
∑6

k=1

(
6
k

)
= 64 possible combina-

tions of generalizations including no generalization
at all. We trained a word uni- and bigram plus nega-
tion modeling for word uni- and bigrams model (cf.
Section 2.2.1) for each combination and both mode
I and mode II and chose the one that yields the high-
est accuracy: Generalization of URLs (mode I), re-
peated characters and expressions of laughter.

Although it may appear counterintuitive not to
generalize hash tags and user names, the training
data contains several re-occuring hash tags, that ac-
tually convey sentiment, e.g. #love, #cantwait,
#excited. Similarly, the training data con-
tains several re-occuring mentions of “celebrities”,
that may hint at sentiment which is usually as-
sociated with them, e.g. @justinbieber or
@MittRomney.

3 Results & Discussion

To train our final system, we use all available train-
ing and development data (cf. Table 1). The SVM’s
“base” cost factor C is optimized via 10-fold cross
validation, where in each fold 9/10th of the available
data are used for training, the remaining 1/10th is used
for testing. C values are chosen from {2 · 10−3, 2 ·
10−2, 2 · 10−1, 2 · 100, 2 · 101, 2 · 102, 2 · 103}. In-
ternally, the asymmetric cost factors C+, C−, C0 (cf.
Section 2) are then set to C{+,−,0} := C · C{+,−,0}.

The final system is then applied to both Twit-
ter and SMS test data (cf. Table 2). Please note

Test Data + − 0 Σ

Twitter 1,572 601 1,640 3,813
SMS 492 394 1,208 2,094

Table 2: Class distribution of positive (+), negative (−)
and neutral-or-objective (0) instances in Twitter and SMS
testing data.

that we only participate in the constrained setting of
SemEval-2013 task 2B (Wilson et al., 2013) as we
did not use any additional training data.
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Detailed evaluation results on Twitter test data
are shown in Table 3, results on SMS test data are
shown in Table 4. The ranks we achieved in the con-
strained only-ranking and the full constrained and
unconstrained-ranking are shown in Table 5.

Class P R F

+ 0.7307 0.5833 0.6487
− 0.5795 0.3577 0.4424
0 0.6072 0.8098 0.6940

+,− 0.6551 0.4705 0.5456
+,−, 0 0.6391 0.5836 0.5950

Table 3: Precision P , Recall R and F-Score F of Univer-
sity of Leipzig’s approach to SemEval-2013 task 2B on
Twitter test data distinguished by classes (+, −, 0) and
averages of +,− and +,−, 0.

Class P R F

+ 0.5161 0.5854 0.5486
− 0.5174 0.3020 0.3814
0 0.7289 0.7881 0.7574

+,− 0.5168 0.4437 0.4650
+,−, 0 0.5875 0.5585 0.5625

Table 4: Precision P , Recall R and F-Score F of Uni-
versity of Leipzig’s approach to SemEval-2013 task 2B
on SMS test data distinguished by classes (+, −, 0) and
averages of +,− and +,−, 0.

Test data Constr. Un/constr.
Twitter 18 of 35 23 of 48
SMS 20 of 28 31 of 42

Table 5: Ranks of University of Leipzig’s approach to
SemEval-2013 task 2B on Twitter and SMS test data in
the constrained only (Constr.) and the constrained and
unconstrained setting (Un/constr.).

On Twitter test data our system achieved an av-
eraged (+,−) F-Score of 0.5456, which is above
the average (0.5382) and above the median (0.5444).
Our system ranks 23 out of 48 participating systems
in the full constrained and unconstrained-ranking.
Averaging over over +,−, 0 it yields an F-Score of
0.595.

On SMS test data our system performs quite
poorly compared to other participating systems as (i)
we did not adapt our model to the SMS data at all,

e.g. we did not consider more appropriate or other
generalizations, and (ii) its class distribution is quite
different from our training data (cf. Table 1 vs. 2).
Our system achieved an averaged (+,−) F-Score of
0.465, which is below the average (0.5008) and be-
low the median (0.5060). Our system ranks 31 out of
42 participating systems in the full constrained and
unconstrained-ranking. Averaging over over +,−, 0
it yields an F-Score of 0.5625.

4 Conclusion

We described University of Leipzig’s contribution
to SemEval-2013 task 2B on Sentiment Analysis in
Twitter. We approached the message polarity classi-
fication via well-understood and purely data-driven
lexical features, negation modeling, simple general-
izations as well as standard machine learning tech-
niques. Despite being designed as a baseline, our
system ranks midfield on both Twitter and SMS test
data.

As even the state-of-the-art system achieves
(+,−) averaged F-Scores of 0.6902 and 0.6846
on Twitter and SMS test data, respectively, polar-
ity classification of tweets and short messages still
proves to be a difficult task that is far from being
solved. Future enhancements of our system include
the use of more data-driven features, e.g. features
that model the distribution of abbreviations, punctu-
ation marks or capitalized text as well as fine-tuning
our generalization mechanism, e.g. by (i) general-
izing only low-frequency hash tags and usernames,
but not generalizing high-frequency ones, (ii) gener-
alizing acronyms that express laughter, such as lol
(“laughing out loud”) or rofl (“rolling on the floor
laughing”).
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Experiments with DBpedia, WordNet and SentiWordNet as re-
sources for sentiment analysis in micro-blogging 

    

 

Abstract 

Sentiment Analysis in Twitter has become an 

important task due to the huge user-generated 

content published over such media. Such 

analysis could be useful for many domains 

such as Marketing, Finance, Politics, and So-

cial. We propose to use many features in order 

to improve a trained classifier of Twitter mes-

sages; these features extend the feature vector 

of uni-gram model by the concepts extracted 

from DBpedia, the verb groups and the similar 
adjectives extracted from WordNet, the Senti-

features extracted using SentiWordNet and 

some useful domain specific features. We also 

built a dictionary for emotion icons, abbrevia-

tion and slang words in tweets which is useful 

before extending the tweets with different fea-

tures. Adding these features has improved the 

f-measure accuracy 2% with SVM and 4% 

with NaiveBayes. 

1 Introduction 

In recent years, the explosion of social media has 

changed the relation between the users and the 
web. The world has become closer and more “real-

time” than ever. People have increasingly been part 

of virtual society where they have created their 
content, shared it, interacted with others in differ-

ent ways and at a very increasingly rate.  Twitter is 

one of the most important social media, with 1 
billion tweets

1
 posted per week and 637 million 

users
2
. 

                                                        
1http://blog.kissmetrics.com/twitter-statistics/ 
2http://twopcharts.com/twitter500million.php 

     With the availability of such content, it attracts 

the attention from who want to understand the 
opinion and interestingness of individuals. Thus, it 

would be useful in various domains such as poli-

tics, financing, marketing and social. In this con-
text, the efficacy of sentiment analysis of twitter 

has been demonstrated at improving prediction of 

box-office revenues of movies in advance of their 
release (Asur and Huberman, 2010). Sentiment 

Analysis has been used to study the impact of 13 

twitter accounts of celebrated person on their fol-

lowers (Bae and Lee, 2012) and for forecasting the 
interesting tweets which are more probably to be 

reposted by the followers many times (Naveed, 

Gottron et al., 2011). 
     However, sentiment analysis of microblogs 

faces several challenges, the limited size of posts 

(e.g., maximum 140 characters in Twitter), the 

informal language of such content containing slang 
words and non-standard expressions (e.g. gr8 in-

stead of great, LOL instead of laughing out loud, 

goooood etc.), and the high level of noise in the 
posts due to the absence of correctness verification 

by user or spelling checker tools. 

   Three different approaches can be identified in 
the literature of Sentiment Analysis, the first ap-

proach is the  lexicon based  which uses specific 

types of lexicons to derive the polarity of a text, 

this approach is suffering from the limited size of 
lexicon and requires human expertise to build the 

lexicon (Joshi, Balamurali et al., 2011). The 

second one is machine learning approach which 
uses annotated texts with a given label to learn a 

statistical model and an early work was done on a 

movie review dataset (Pang, Lee et al., 2002). Both 
lexicon and machine learning approaches can be 
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combined to achieve a better performance (Khuc, 

Shivade et al. 2012). The third one is social ap-
proach which exploits social network properties 

and data for enhancing the accuracy of the classifi-

cation (Speriosu, Sudan et al., 2011; Tan, Lee et al. 

2011; Hu, Tang et al., 2013) (Hu, Tang et al., 
2013) (Tan, Lee et al., 2011). 

    In this paper, we employ machine learning. Each 

text is represented by a vector in which the features 
have to be selected carefully. They can be the 

words of the text, their POS tags (part of speech), 

or any other syntactic or semantic features. 
     We propose to exploit some additional features 

(section 3) for sentiment analysis that extend the 

representation of tweets by:  

• the concepts extracted from DBpedia
3
,  

• the related adjectives and verb groups ex-

tracted from WordNet
4
,  

• some “social” features such as the number 

of happy and bad emotion icons,  

• the number of exclamation and question 

marks,  

• the existence of URL (binary feature),  

• if the tweet is re-tweeted (binary feature),  

• the number of symbols the tweet contains,  

• the number of uppercase words,  

• some other senti-features extracted from 

SentiWordNet
5
 such as the number of 

positive, negative and neutral words that 

allow estimating a score of the negativity, 

positivity and objectivity of the tweets, 
their polarity and subjectivity.  

     We extended the unigram model with these 

features (section 4.2). We also constructed a dic-

tionary for the abbreviations and the slang words 
used in Twitter in order to overcome the ambiguity 

of the tweets. 

     We tested various combinations (section 4.2) of 
these features, and then we chose the one that gave 

the highest F-measure for negative and positive 

classes (submission for Tweet subtask B of senti-
ment analysis in twitter task of SemEval2013 

(Wilson, Kozareva et al. 2013)). We tested differ-

ent machine learning models: Naïve Bayes, SVM, 

IcsiBoost
6
 but the submitted runs exploited SVM 

only
6
. 

                                                        
3 http://dbpedia.org/About 
4 http://wordnet.princeton.edu/ 
5 http://sentiwordnet.isti.cnr.it/ 
6 http://code.google.com/p/icsiboost/ 

     The rest of this paper is organized as follows. 

Section 2 outlines existing work of sentiment anal-
ysis over Twitter. Section 3 presents the features 

we used for training a classifier. Our experiments 

are described in section 4 and future work is pre-

sented in section 5.  

2 Related Work  

We can identify three main approaches for senti-

ment analysis in Twitter. The lexicon based ap-
proaches which depend on dictionaries of positive 

and negative words and calculate the polarity ac-

cording to the positive and negative words in the 

text. Many dictionaries have been created manual-
ly such as ANEW (Aaffective Norms for English 

Words) or automatically such as SentiWordNet 

(Baccianella, Esuli et al. 2010). Four lexicon dic-
tionaries were used to overcome the lack of words 

in each one (Joshi, Balamurali et al. 2011; Mukher-

jee, Malu et al. 2012). Automatically construction 
of a Twitter lexicon was implemented by Khuc, 

Shivade et al. (2012). 

      Machine learning approaches were employed 

from annotated tweets by using Naive Bayes, Max-
imum Entropy MaxEnt and Support Vector Ma-

chines (SVM) (Go, Bhayani et al. 2009).  Go et al. 

(2009) reported that SVM outperforms other clas-
sifiers. They tried a unigram and a bigram model in 

conjunction with parts-of-speech (POS) features; 

they noted that the unigram model outperforms all 

other models when using SVM and that POS fea-
tures decline the results. N-gram with lexicon fea-

tures and microbloging features were useful but 

POS features were not (Kouloumpis, Wilson et al. 
2011). In contrast, Pak & Paroubek (2010) re-

ported that POS and bigrams both help. Barbosa & 

Feng (2010) proposed the use of syntax features of 
tweets like retweet, hashtags, link, punctuation and 

exclamation marks in conjunction with features 

like prior polarity of words and POS of words, 

Agarwal et al. (2011) extended their approach by 
using real valued prior polarity and by combining 

prior polarity with POS. They build models for 

classifying tweets into positive, negative and neu-
tral sentiment classes and three models were pro-

posed: a unigram model, a feature based model and 

a tree kernel based model which presented a new 

tree representation for tweets. Both combining 
unigrams with their features and combining the 

features with the tree kernel outperformed the uni-
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gram baseline. Saif et al. (2012) proposed to use 

the semantic features, therefore they extracted the 
hidden concepts in the tweets. They demonstrated 

that incorporating semantic features extracted us-

ing AlchemyAPI
7
 improves the accuracy of senti-

ment classification through three different tweet 
corpuses. 

     The third main approach takes into account the 

influence of users on their followers and the rela-
tion between the users and the tweets they wrote. 

Using the Twitter follower graph might improve 

the polarity classification. Speriosu, Sudan et al. 
(2011) demonstrated that using label propagation 

with Twitter follower graph improves the polarity 

classification. Tan, Lee et al. (2011) employed 

social relation for user-level sentiment analysis. 
Hu, Tang et al. (2013) proposed a sociological 

approach to handling the noisy and short text 

(SANT) for supervised sentiment classification, 
they reported that social theories such as Sentiment 

Consistency and Emotional Contagion could be 

helpful for sentiment analysis. 

3 Feature Extraction  

We used different types of features in order to 

improve the accuracy of sentiment classification. 

— Bag of words (uni-gram) 

The most commonly used features in text analysis 

are the bag of words which represent a text as un-
ordered set of words. It assumes that words are 

independent from each other and also disregards 

their order of appearance. We used these features 
as a baseline model.  

— Domain specific features 

We extracted some domain specific features of 

tweets which are: presence of an URL or not, the 

tweet was retweeted or not, the number of “Not”, 
the number of happy emotion icons, the number of 

sad emotion icons, exclamation and question 

marks, the number of words starting by a capital 

letter, the number of @.  

— DBpedia features 

We used the DBpedia Spotlight
8
 Web service to 

extract the concepts of each tweet. For example, 

                                                        
7 http://www.alchemyapi.com/ 
8 http://dbpedia-spotlight.github.io/ 

for the previous tweet, the DBpedia concepts for 

Chapel Hill are (Settlement, PopulatedPlace, 

Place). Therefore, if we suppose that people post 

positively about settlement, it would be more prob-

able to post positively about Chapel Hill. 

— WordNet features 

We used WordNet for extracting the synonyms of 
nouns, verbs and adjectives, the verb groups (the 

hierarchies in which the verb synsets are arranged), 

the similar adjectives (synset) and the concepts of 

nouns which are related by the relation is-a in 
WordNet. 

We chose the first synonym set for each noun, 

adjective and verb, then the concepts of the first 
noun synonym set, the similar adjectives of the 

first adjective synonym set and the verb group of 

the first verb synonym set. We think that those 
features would improve the accuracy because they 

could overcome the ambiguity and the diversity of 

the vocabulary. 

- Senti-features 

We used SentiWordNet for extracting the number 
and the scores of positive, negative and neutral 

words in tweets, the polarity (the number of posi-

tive words divided by the number of negative ones 

incremented by one) and subjectivity (the number 
of positive and negative words divided by the neu-

tral ones incremented by one).  

4 Evaluations 

4.1 Data collection 

We used the data set provided in SemEval 2013 for 

subtask B of sentiment analysis in Twitter (Wilson, 

Kozareva et al. 2013). The participants were pro-
vided with training tweets annotated positive, neg-

ative or neutral. We downloaded these tweets using 

the given script. Among 9646 tweets, we could 
only download 8498 of them because of protected 

profiles and deleted tweets. Then, we used the 

development set containing 1654 tweets for eva-

luating our methods. The method which gave the 
highest accuracy for the average of positive and 

negative classes was chosen for the submitted runs. 

Lastly, we combined the development set with 
training set and built a new model which predicted 

the labels of the 3813 tweets in the test set.  
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4.2 Experiments 

We have done various experiments using the fea-
tures presented in Section 3 with SVM model us-

ing linear kernel and the following parameters: 

weighting value=1, degree=3, cost=1, nu=0.5 and 

seed=1. We firstly constructed feature vector of 
tweet terms which gave 0.52% for f-measure of the 

negative and positive classes. Then, we augmented  

this vector by the similar adjectives of WordNet 
which improves a little the f-measure, particularly  

for the positive class. After that, we added the con-

cepts of DBpedia which also improved the quality 
of the positive class and declined the negative one. 

Finally, we added all the verb groups, senti-

features and domain specific features which im-

proved the f-measure for both negative and posi-
tive classes but particularly for the positive one. 

Table 1 presents the results for each kind of feature 

vector. 
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Positive 0.603 0.619 0.622 0.637 

Negative 0.443 0.436 0.417 0.440 

Neutral 0.683 0.685 0.691 0.689 

Avg neg+pos 0.523 0.527 0.520 0.538 

Table 1. The results of different feature vectors using linear 
SVM model (degree=3, weight=1, nu=0.5)  
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Positive 0.514 0.563 0.562 0.540 

Negative 0.397 0.422 0.427 0.424 

Neutral 0.608 0.652 0.648 0.636 

Avg neg+pos 0.456 0.493 0.495 0.482 

Table 2. The results of different feature vectors using a     
NaiveBayes approach. 

 

     We remark that the DBpedia concepts improved 
the accuracy, and just the similar adjectives and 

group verbs of  WordNet improved it, but the other 

synonyms and concepts declined it. The reason 

may be linked to a perturbation added by the syn-

onyms. Moreover, the first synonym set is not ne-
cessary to be the most suitable one. Many domain 

specific and Senti-WordNet features improved the 

accuracy, but others did not, such as the number of 

neutral words, whether the tweet is reposted or not, 
the number of @ and the number of #. So we ex-

cluded the features that declined the accuracy. 

    We have done some experiments using Naive-
Bayes (Table 2). Naïve Bayes improved the accu-

racy of the negative and positive classes, and the 

highest f-measure was obtained by adding the ad-
jectives and the DBpedia concepts. Using such 

features improved the f-measure for the positive 

and negative classes: about 2% with SVM and 4% 

with NaiveBayes. The improvement given by 
means of the Naïve Bayes model was more signifi-

cant than the one obtained with SVM and needed 

fewer features, but the higher accuracy was ob-
tained by SVM. 

5 Discussion and Future Work 

In this paper we experimented the value of using 

DBpedia, WordNet and SentiWordNet for the sen-

timent classification of tweets. We extended the 
feature vector of tweets by the concepts of DBpe-

dia, verb groups and similar adjectives from 

WordNet, the senti-features from SentiWordNet 

and other domain specific features. We think that 
using other lexicon dictionaries with SentiWord-

Net is more useful, we did not use POS Tagger for 

detecting the part of speech. We augmented the 
feature vector by all these features. In fact, for 

some tweets this expansion is not the best strategy. 

However, it will be important to find out a way for 
selecting only the features that improve the accura-

cy. 

    We verified that the adjectives are useful fea-

tures and we should now focus on extracting the 
suitable and similar adjectives. For the abbrevia-

tion LOL (loud of laughing), it might be more use-

ful to replace it by funny or by another adjective 
that reflects the sentiment of the writer. However, 

we could enhance our dictionary by these adjec-

tives. We could handle the emotion icons in a simi-
lar way. 

     We also plan to combine the results of different 

classifiers for improving the total accuracy. 
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Abstract

The fast development of Social Media made it
possible for people to no loger remain mere
spectators to the events that happen in the
world, but become part of them, comment-
ing on their developments and the entities in-
volved, sharing their opinions and distribut-
ing related content. This phenomenon is of
high importance to news monitoring systems,
whose aim is to obtain an informative snap-
shot of media events and related comments.

This paper presents the strategies employed in
the OPTWIMA participation to SemEval 2013
Task 2-Sentiment Analysis in Twitter. The
main goal was to evaluate the best settings for
a sentiment analysis component to be added to
the online news monitoring system.

We describe the approaches used in the com-
petition and the additional experiments per-
formed combining different datasets for train-
ing, using or not slang replacement and gener-
alizing sentiment-bearing terms by replacing
them with unique labels.

The results regarding tweet classification are
promising and show that sentiment generaliza-
tion can be an effective approach for tweets
and that SMS language is difficult to tackle,
even when specific normalization resources
are employed.

1 Introduction

Sentiment analysis is the Natural Language Process-
ing (NLP) task dealing with the detection and clas-
sification of sentiments in texts. Usually, the classes
considered are “positive”, “negative” and “neutral”,

although in some cases finer-grained categories are
added (e.g. “very positive” and “very negative”) or
only the “positive” and “negative” classes are taken
into account.

This task has received a lot of interest from the re-
search community in the past years. The work done
regarded the manner in which sentiment can be clas-
sified from texts pertaining to different genres and
distinct languages, in the context of various applica-
tions, using knowledge-based, semi-supervised and
supervised methods [Pang and Lee, 2008]. The re-
sult of the analyses performed have shown that the
different types of text require specialized methods
for sentiment analysis, as, for example, sentiments
are not conveyed in the same manner in newspaper
articles and in blogs, reviews, forums or other types
of user-generated contents [Balahur et al., 2010].

In the light of these findings, dealing with senti-
ment analysis in tweets and SMS (that we can gener-
ally call “short informal texts”) requires an analysis
of the characteristics of such texts and the design of
adapted methods.

Our participation in the SemEval 2013 Task 2
[Wilson et al., 2013] had as objective to test how
well our proposed methods for sentiment analysis
for short informal texts (especially tweets) would
perform. The two subtasks proposed in this com-
petition were: a) the classification of sentiment from
snippets from tweets and SMS marked as start and
end position and b) the classification of sentiment
from entire tweets and SMS. Each team could sub-
mit 2 runs for each dataset and task, one employ-
ing as training data only the data provided within
the competition (“constrained”) and the second em-
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ploying any additional data (“unconstrained”). We
submitted 2 of such runs for each of the subtasks
and datasets.

The main requirements for the system we imple-
mented were: a) not to use language-specific NLP
processing tools (since our final goal is to make the
present system work for many more languages); and
b) to work fast, so that it can be integrated in a near
real time media monitoring system.

2 Related Work and Contribution

One of the first studies on the classification of polar-
ity in tweets was Go et al. [2009]. The authors con-
ducted a supervised classification study on tweets
in English, using the emoticons (e.g. “:)”, “:(”,
etc.) as markers of positive and negative tweets.
Read [2005] employed this method to generate a
corpus of positive tweets, with positive emoticons
“:)”, and negative tweets with negative emoticons
“:(”. Subsequently, they employ different supervised
approaches (SVM, Naı̈ve Bayes and Maximum En-
tropy) and various sets of features and conclude that
the simple use of unigrams leads to good results, but
it can be slightly improved by the combination of
unigrams and bigrams.

In the same line of thinking, Pak and Paroubek
[2010] also generated a corpus of tweets for sen-
timent analysis, by selecting positive and negative
tweets based on the presence of specific emoticons.
Subsequently, they compare different supervised ap-
proaches with n-gram features and obtain the best
results using Naı̈ve Bayes with unigrams and part-
of-speech tags.

Another approach on sentiment analysis in tweet
is that of Zhang et al. [2011]. Here, the authors em-
ploy a hybrid approach, combining supervised learn-
ing with the knowledge on sentiment-bearing words,
which they extract from the DAL sentiment dictio-
nary [Whissell, 1989]. Their pre-processing stage
includes the removal of retweets, translation of ab-
breviations into original terms and deleting of links,
a tokenization process, and part-of-speech tagging.
They employ various supervised learning algorithms
to classify tweets into positive and negative, using n-
gram features with SVM and syntactic features with
Partial Tree Kernels, combined with the knowledge
on the polarity of the words appearing in the tweets.

The authors conclude that the most important fea-
tures are those corresponding to sentiment-bearing
words. Finally, Jiang et al. [2011] classify sentiment
expressed on previously-given “targets” in tweets.
They add information on the context of the tweet to
its text (e.g. the event that it is related to). Subse-
quently, they employ SVM and General Inquirer and
perform a three-way classification (positive, nega-
tive, neutral).

The main contributions of the approaches con-
sidered for the competition reside in the evaluation
of different strategies to adapt sentiment analysis
methods to the language employed in short informal
texts.

The methods employed in our system are simple,
work fast and efficient and can be easily adapted
to other languages. The main adaptations we con-
sider are part of a pre-processing step, in which the
language in these short informal texts is normalized
(brought to a dictionary form).

Finally, the methods presented are compared on
different configurations and training sets, so that the
conclusions drawn are relevant to the phenomena
found in this type of informal texts.

3 Methods Employed by OPTWIMA in
SemEval 2013 Task 2

We employ two different approaches: a) one
based on supervised learning using Support Vector
Machines Sequential Minimal Optimization (SVM
SMO) using unigram and bigram features; and b) a
hybrid approach, based on supervised learning with
a SVM SMO linear kernel, on unigram and bigram
features, but exploiting as features sentiment dictio-
naries, emoticon lists, slang lists and other social
media-specific features. SVM SMO was preferred
due to the computation speed. We do not employ
any specific language analysis software. The aim
is to be able to apply, in a straightforward manner,
the same approach to as many languages as possible.
The approach can be extended to other languages by
using similar dictionaries that have been created in
our team Steinberger et al. [2011].

The sentiment analysis process contains two
stages: preprocessing and sentiment classification.
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3.1 Preprocessing of Short Informal Texts
The language employed in short informal texts such
as tweets and SMS is different from the one found
in other types of texts, such as newspaper articles
and the form of the words employed is sometimes
not the one we may find in a dictionary. Further
on, users writing on Twitter or SMS-ing on their
cell phone employ a special “slang” (i.e. informal
language, with special expressions, such as “lol”,
“omg”), emoticons, and often emphasize words by
repeating some of their letters. Additionally, the lan-
guage employed in Twitter has specific characteris-
tics, such as the markup of tweets that were reposted
by other users with “RT”, the markup of topics us-
ing the “#” (hash sign) and of the users using the
“@” sign.

All these aspects must be considered at the time
of processing tweets and, to some extent, SMS.

As such, before applying supervised learning to
classify the sentiment of the short informal texts
considered, we preprocess them, to normalize the
language they contain and try to abstract on the con-
cepts that are sentiment-bearing, by replacing them
with labels, according to their polarity1. In case of
SMS messages, the slang employed, the short forms
of words and the acronyms make these texts non pro-
cessable without prior replacement and normaliza-
tion of the slang. The preprocessing stage contains
the following steps:

• Repeated punctuation sign normalization
(RPSN).

In the first step of the preprocessing, we detect
repetitions of punctuation signs (“.”, “!” and
“?”). Multiple consecutive punctuation signs
are replaced with the labels “multistop”, for
the fullstops, “multiexclamation” in the case of
exclamation sign and “multiquestion” for the
question mark and spaces before and after.

• Emoticon replacement (ER).

In the second step of the preprocessing, we em-
ploy the annotated list of emoticons from Sen-
tiStrength2 and match the content of the tweets

1The preprocessing steps involving the use of affect dictio-
naries and modifier replacement are used only in one of the two
methods considered

2http://sentistrength.wlv.ac.uk/

against this list. The emoticons found are re-
placed with their polarity (“positive” or “nega-
tive”) and the “neutral” ones are deleted.

• Lower casing and tokenization (LCN).

Subsequently, the tweets are lower cased and
split into tokens, based on spaces and punctua-
tion signs.

• Slang replacement (SR).

The next step involves the normalization of the
language employed. In order to be able to
include the semantics of the expressions fre-
quently used in Social Media, we employed the
list of slang expressions from dedicated sites 3.
This step is especially relevant to SMS texts,
whose language in their original form has little
to do with language employed in ordinary texts.

• Word normalization (WN).

At this stage, the tokens are compared to entries
in Roget’s Thesaurus. If no match is found, re-
peated letters are sequentially reduced to two or
one until a match is found in the dictionary (e.g.
“perrrrrrrrrrrrrrrrrrfeeect” becomes “perrfeect”,
“perfeect”, “perrfect” and subsequently “per-
fect”). The words used in this form are maked
as “stressed”.

• Affect word matching (AWM).

Further on, the tokens in the tweet are matched
against three different sentiment lexicons: Gen-
eral Inquirer, LIWC and MicroWNOp, which
were previously split into four different cate-
gories (“positive”, “high positive”, “negative”
and “high negative”). Matched words are re-
placed with their sentiment label - i.e. “posi-
tive”, “negative”, “hpositive” and “hnegative”.

• Modifier word matching (MWM).

Similar to the previous step, we employ a list
of expressions that negate, intensify or dimin-
ish the intensity of the sentiment expressed to
detect such words in the tweets. If such a word
is matched, it is replaced with “negator”, “in-
tensifier” or “diminisher”, respectively.

3www.noslang.com/dictionary, www.smsslang.com
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• User and topic labeling (UTL).

Finally, the users mentioned in the tweet, which
are marked with “@”, are replaced with “PER-
SON” and the topics which the tweet refers to
(marked with “#”) are replaced with “TOPIC”.

3.2 Sentiment Classification of Short Informal
Texts

Once the texts are preprocessed, they are passed on
to the sentiment classification module.

We employed supervised learning using Support
Vector Machines Sequential Minimal Optimization
(SVM SMO) [Platt, 1998] with a linear kernel, em-
ploying boolean features - the presence or absence
of unigrams and bigrams determined from the train-
ing data (tweets that were previousely preprocessed
as described above) that appeared at least twice. Bi-
grams are used especially to spot the influence of
modifiers (negations, intensifiers, diminishers) on
the polarity of the sentiment-bearing words. We
tested different parameters for the kernel and modi-
fied only the C constant to the best value determined
on the training data (5.0)/

We tested the approach on different datasets and
dataset splits, using the Weka data mining software
4. The training models are built on a cluster of com-
puters (4 cores, 5000MB of memory each).

4 Evaluation and Discussion

We participated in SemEval 2013 in Task 2 with
two versions of the system, for each of the two sub-
tasks (A and B). The main difference among them is
the use of dictionaries for affect and modifier word
matching and replacement. As such, in the first
method (denoted as “Dict”), we perform all the pre-
processing steps mentioned above, while the second
method is applied on the data on which the AWM
and MWM are not performed (i.e. words that are
associated with a sentiment in a lexicon are not re-
placed with labels). This second method will be de-
noted “NoDict”.

Another difference between the different evalu-
ations we performed are the datasets employed for
training. We created different models, employing:

1) For both the “Constrained” and “Uncon-
strained” submissions, the development and train-

4http://www.cs.waikato.ac.nz/ml/weka/

ing data from the corresponding subtask (i.e. using
as training the data in subtask A - the sets given as
training and development together - to train a classi-
fier for the test data in task A; the same for subtask
B). In this case, the training data is marked with the
corresponding subtask (i.e. training data “A”, train-
ing data “B”);

2) For both the “Constrained” and “Uncon-
strained” submissions, the development and training
data from both subtasks - both training and develop-
ment sets - to train one classifier which is used for
both subtasks. This training set is denoted as “A+B”;

3) For the “Unconstrained” submissions, we
added to the joint training and development data
from both subtasks the set of MySpace comments
provided by [Thelwall et al., 2010]. This small set
contains 1300 short texts from the MySpace social
network5. The motivation behind this choice is that
texts from this source are very similar in language
and structure to tweets and (after slang replacement)
SMS.

Finally, we trained different classifiers on the
training sets described, with and without replacing
the affective and modifier words and with and with-
out employing the slang replacement pre-processing
step.

The results are presented in Tables 1, 2, 3, 4, in
terms of average F-measure of the positive and neg-
ative classes (as used by the organizers). The runs
submitted in the competition are marked with an as-
terisk (“*”). We did not perform all the experiments
for the sets of SMS without slang replacement, as
the first results were very low.

As we can see from the results, our approach per-
formed better in classifying the overall sentiment of
texts than small snippets. The results were signifi-
cantly better for the classification of tweets in com-
parison to SMS, whose language (even with slang
replacement) made them difficult to tackle. We can
also see that the joint use of slang replacement and
dictionaries for tweets leads to significantly lower
results, meaning that this step (at least with the re-
sources we employed for slang treatment), is not
necessary for the treatment of tweets. Instead, for
these texts, the use of affect dictionaries and mod-
ifier lists and their generalizaton lead to better re-

5http://www.myspace.com/
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Trained on A+B with slang replacement (Constrained)
Test set Dict NoDict
Task A Tweets 0.35 0.37
Task A SMS 0.35 0.37*
Task B Tweets 0.45* 0.54
Task B SMS 0.40* 0.47

Table 1: Results obtained using A+B (train and developement data) as training set and replacing the slang.

Trained on A+B+MySpace with slang replacement (Unconstrained)
Test Set Dict NoDict
Task A Tweets 0.36 0.39*
Task A SMS 0.37* 0.37
Task B Tweets 0.46 0.54*
Task B SMS 0.40 0.37*

Table 2: Results obtained using A+B+MySpace (train and developement data) as training set and replacing the slang.

sults. This proves that such a generalization, in the
context of “legible” texts, is a useful tool for senti-
ment analysis. Further on, the results showed that
adding a small quantity of training data led to no
significant growth in performance (for the data in
which slang was replaced). Additional evaluations
could be made to quantify the effect of this data
when other methods to generalize are not applied.
As an observation, our results were balanced for all
three classes, with even higher scores for the neutral
class. We believe this class should have been con-
sidered as well, since in real-world settings systems
for sentiment analysis must also be able to classify
texts pertaining to this category.

Finally, we can see that in the case of SMS, the
difference between the use of slang with or without
affect label generalizations is insignificant. We be-
lieve this is due to the fact that the expressions with
which the slang is replaced are very infrequent in
traditional sentiment dictionaries (such as the ones
we employed). Even by replacing the short forms
and slang with their equivalents, the texts obtained
contain words that are infrequent in other types of
texts, even tweets. However, we will perform addi-
tional experiments with other lists of slang and add,
as much as it is possible, the informal sentiment-
bearing expressions to create new affect resources
for this types of texts.

5 Conclusions and Future Work

In this article, we presented and evaluated the ap-
proaches considered for our participation in the Se-
mEval 2013 Task 2. We evaluated different com-
binations of features, resources and training sets
and applied different methods to tackle the issues
brought by the informal language used in tweets and
SMS.

As future work, we would like to extend the sys-
tem to more languages, using the dictionaries cre-
ated by Steinberger et al. [2011] and analyze and in-
clude new features that are particular to social media
- especially tweets - to improve the performance of
the sentiment analysis component. Further on, we
would like to quantify the influence of using linguis-
tic processing tools to perform lemmatizing, POS-
tagging and the inclusion of corresponding features
on the final performance of the system. Finally, we
would like to explore additional resources to deal
with the issue of language informality in tweets and
further explore the problems posed by the peculiar
language employed in SMS.
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Abstract

This paper presents the Tweetsted system im-
plemented for the SemEval 2013 task on Sen-
timent Analysis in Twitter. In particular, we
participated in Task B on Message Polar-
ity Classification in the Constrained setting.
The approach is based on the exploitation of
various resources such as SentiWordNet and
LIWC. Official results show that our approach
yields a F-score of 0.5976 for Twitter mes-
sages (11th out of 35) and a F-score of 0.5487
for SMS messages (8th out of 28 participants).

1 Introduction

Microblogging is currently a very popular commu-
nication tool where millions of users share opinions
on different aspects of life. For this reason it is a
valuable source of data for opinion mining and sen-
timent analysis.

Working with such type of texts presents chal-
lenges for NLP beyond those typically encountered
when dealing with more traditional texts, such as
newswire data. Tweets are short, the language used
is very informal, with creative spelling and punctua-
tion, misspellings, slang, new words, URLs, genre-
specific terminology and abbreviations, and #hash-
tags. These characteristics need to be handled with
specific approaches.

This paper presents the approach adopted for the
SemEval 2013 task on Sentiment Analysis in Twit-
ter, in particular Task B on Message Polarity Clas-
sification in the Constrained setting (i.e., using the
provided training data only).

The goal of Task B on Message Polarity Classi-
fication is the following: given a message, decide
whether it expresses a positive, negative, or neutral
sentiment. For messages conveying both a positive
and a negative sentiment, whichever is the stronger
sentiment should be chosen.

Two modalities are possible: (1) Constrained (us-
ing the provided training data only; other resources,
such as lexica, are allowed; however, it is not al-
lowed to use additional tweets/SMS messages or ad-
ditional sentences with sentiment annotations); and
(2) Unconstrained (using additional data for train-
ing, e.g., additional tweets/SMS messages or addi-
tional sentences annotated for sentiment). We par-
ticipated in the Constrained modality.

We adopted a supervised machine learning (ML)
approach based on various contextual and seman-
tic features. In particular, we exploited resources
such as SentiWordNet (Esuli and Sebastiani, 2006),
LIWC (Pennebaker and Francis, 2001), and the lex-
icons described in Mohammad et al. (2009).

Critical features include: whether the mes-
sage contains intensifiers, adjectives, interjections,
presence of positive or negative emoticons, pos-
sible message polarity based on SentiWordNet
scores (Esuli and Sebastiani, 2006; Gatti and
Guerini, 2012), scores based on LIWC cate-
gories (Pennebaker and Francis, 2001), negated
words, etc.

2 System Description

Our supervised ML-based approach relies on Sup-
port Vector Machines (SVMs). The SVM imple-
mentation used in the system is LIBSVM (Chang
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and Lin, 2001) for training SVM models and test-
ing. Moreover, in the preprocessing phase we used
TweetNLP (Owoputi et al., 2013), a POS tagger ex-
plicitly tailored for working on tweets.

We adopted a 2 stage approach: (1) during stage
1, we performed a binary classification of messages
according to the classes neutral vs subjective; (2)
in stage 2, we performed a binary classification of
subjective messages according to the classes positive
vs negative. We performed various experiments on
the training and development sets exploring the use
of different features (see Section 2.1) to find the best
configurations for the official submission.

2.1 Feature list

We implement several features divided into three
groups: contextual features, semantic features from
context and semantic features from external re-
sources. The complete list is reported in Table 1.

Contextual features are features computed by
considering only the tokens in the tweets/SMS and
the associated part of speech.

Semantic Features from Context are features
based on words polarity. Emoticons were recog-
nized through a list of emoticons extracted from
Wikipedia1 and then manually labeled as positive or
negative. Negated words (feature n. 18) are any to-
ken occurring between n’t, not, no and a comma, ex-
cluding those tagged as function words. Feature n.
19 captures tokens (or sequences of tokens) labeled
with a positive or negative polarity in the resource
described in Mohammad et al. (2009). The intensi-
fiers considered for Feature n. 20 have been identi-
fied by implementing a simple algorithm that detects
tokens containing anomalously repeated characters
(e.g. happyyyyy). Feature n. 21 was computed by
training the system on the training data and predict-
ing labels for the test data, and then using these la-
bels as new features to train the system again.

Semantic Features from external resources in-
clude word classes from the Linguistic Inquiry
and Word Count (LIWC), a tool that calculates
the degree to which people use different cate-
gories of words related to psycholinguistic pro-
cesses (Pennebaker and Francis, 2001). LIWC in-

1http://en.wikipedia.org/wiki/List_of_
emoticons

cludes about 2,200 words and stems grouped into 70
broad categories relevant to psychological processes
(e.g., EMOTION, COGNITION). Sample words are
shown in Table 2.

For each non-zero valued LIWC category of a cor-
responding tweet/SMS, we added a feature for that
category and used the category score as the value
of that feature. We call this LWIC string feature.
Alternatively, we also added a separate feature for
each non-zero valued LIWC category and set 1 as
the value of that feature. This feature is called LWIC
boolean.

We also used words prior polarity - i.e. if a word
out of context evokes something positive or nega-
tive. For this, we relied on SentiWordNet, a broad-
coverage resource that provides polarities for (al-
most) every word. Since words can have multi-
ple senses, we compute the prior polarity of a word
starting from the polarity of each sense and returning
its polarity strength as an index between -1 and 1.
We tested 14 formulae that combine posterior polar-
ities in different ways to obtain a word prior polarity,
as reported in (Gatti and Guerini, 2012).

For the SWNscoresMaximum feature, we select
the prior polarity of the word in a tweet/SMS hav-
ing the maximum absolute score among all words
(of that tweet/SMS). For SWNscoresPolarityCount,
we select the polarity (positive, negative or neutral)
that is assigned to the majority of the words. As
for SWNscoresSum, it corresponds to the sum of
the prior polarities associated with all words in the
tweet/SMS.

3 Experimental Setup

In order to select the best performing feature set,
we carried out several 5-fold cross validation ex-
periments on the training data. We report in Table
3 the best performing feature set. In particular, we
adopted a 2 stage approach:

1. during the first stage we performed a binary
classification of messages according to the
classes neutral vs subjective;

2. in the second stage, we performed a binary
classification of subjective messages according
to the classes positive vs negative.

We opted for a two stage binary classification ap-
proach, since we observed that it produces slightly
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Contextual Features
1. noOfAdjectives num
2. adjective list string
3. interjection list string
4. firstInterj string
5. lastInterj string
6. bigramList string
7. beginsWithRT boolean
8. hasRTinMiddle boolean
9. endsWithLink boolean
10. endsWithHashtag boolean
11. hasQuestion boolean

Semantic Features from Context
12. noOfPositiveEmoticons num
13. noOfNegativeEmoticons num
14. beginsWithPosEmoticon boolean
15. beginsWithNegEmoticon boolean
16. endsWithPosEmoticon boolean
17. endsWithNegEmoticon boolean
18. negatedWords string
19. indexOfChunksWithPolarity string
20. containsIntensifier boolean
21. labelPredictedBySystem pos./neg./neut.

Semantic Features from External Resources
22. LIWC string string
23. LIWC boolean string
24. SWNscoresMaximum pos./neg./neut.
25. SWNscoresPolarityCount pos./neg./neut.
26. SWNscoresSum pos./neg./neut.

Table 1: Complete feature list.

LABEL Sample words
CERTAIN all, very, fact*, exact*, certain*, completely
DISCREP but, if, expect*, should
TENTAT or, some, may, possib*, probab*
SENSES observ*, discuss*, shows, appears
SELF we, our, I, us
SOCIAL discuss*, interact*, suggest*, argu*
OPTIM best, easy*, enthus*, hope, pride
ANGER hate, kill, annoyed
INHIB block, constrain, stop

Table 2: Word categories along with sample words

better results than a single stage multi-class ap-
proach (i.e. neutral vs positive vs negative).2 Dif-
ferent combinations of classifiers were explored ob-
taining comparable results. Here we will report only

2The average F-scores (pos and neg) for two stage and single
stage approaches obtained using the official scorer, by training
on the training data and testing on the development data, are
0.5682 and 0.5611 respectively.

the best results.
STAGE 1. The best result for stage (1), neutral vs

subjective, obtained with 5-fold cross validation on
training set only, accounts for an accuracy of 69.6%.
Instead, the best result for stage (1), obtained with
training on training data and testing on development
data, accounts for an accuracy of 72.67%.

The list of best features is reported in Table 3.
Feature selection was performed by starting from a
small set of basic features, and then by adding the
remaining features incrementally.

Contextual Features
2. adjective list string
3. interjection list string
5. lastInterj string

Semantic Features from Context
12. noOfPositiveEmoticons num
13. noOfNegativeEmoticons num
18. negatedWords string
19. indexOfChunksWithPolarity string
20. containsIntensifier boolean

Semantic Features from external resources
23. LIWC boolean string
24. SWNscoresMaximum posi./neg./neut.

Table 3: Best performing feature set.

STAGE 2. In stage (2), positive vs negative, we
started from the best feature set obtained from stage
(1) and added the remaining features one by one in-
crementally. In this case, we kept SWNscoresMaxi-
mum without testing again other formulae; in partic-
ular, to compute words prior polarity, we also kept
the first sense approach, that assigns to every word
the SWN score of its most frequent sense and proved
to be the most discriminative in the first stage neutral
vs. subjective. We found that none of the feature sets
produced better results than that obtained using the
best feature set selected from stage (1). So, the best
feature set for stage (2) is unchanged. We trained
the system on the training data and tested it on the
development data, achieving an accuracy of 80.67%.

4 Evaluation

The SemEval task organizers (Wilson et al., 2013)
provided two test sets on which the systems were
to be evaluated: one included Twitter messages, i.e.
the same type of texts included in the training set,
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while the other comprised SMS messages, i.e. texts
having more or less the same length as the Twitter
data but (supposedly) a different style. We applied
the same model, trained both on the training and the
development set, on the two types of data, without
any specific adaptation.

The Twitter test set was composed of 3,813
tweets. Official results show that our approach
yields an F-score of 0.5976 for Twitter messages
(11th out of 35), while the best performing system
obtained an F-score of 0.6902. The confusion ma-
trix is reported in Table 4, while the score details
in Table 5. The latter table shows that our system
achieves the lowest results on negative tweets, both
in terms of precision and of recall.

gs/pred positive negative neutral
positive 946 101 525
negative 90 274 237
neutral 210 70 1360

Table 4: Confusion matrix for Twitter task

class prec recall F-score
positive 0.7592 0.6018 0.6714
negative 0.6157 0.4559 0.5239
neutral 0.6409 0.8293 0.7230
average(pos and neg) 0.5976

Table 5: Detailed results for Twitter task

The SMS test set for the competition was com-
posed of 2,094 SMS. Official results provided by the
task organizers show that our approach yields an F-
score of 0.5487 for SMS messages (8th out of 28
participants), while the best performing system ob-
tained an F-score of 0.6846. The confusion matrix
is reported in Table 6, while the score details in Ta-
ble 7. Also in this case the recognition of negative
messages achieves by far the poorest performance.

A comparison of the results on the two test sets
shows that, as expected, our system performs bet-
ter on tweets than on SMS. However, precision
achieved by the system on neutral SMS is 0.12
points better on text messages than on tweets.

Interestingly, it appears from the results in Ta-
bles 5 and 7 (and from the distribution of the classes
in the data sets) that there may be a correlation be-
tween the number of tweets/SMS for a particular

class and the performance obtained for such class.
We plan to further investigate this issue.

gs/pred positive negative neutral
positive 320 44 128
negative 66 171 157
neutral 208 64 936

Table 6: Confusion matrix for SMS task

class prec recall F-score
positive 0.5387 0.6504 0.5893
negative 0.6129 0.4340 0.5082
neutral 0.7666 0.7748 0.7707
average(pos and neg) 0.5487

Table 7: Detailed results for SMS task

5 Conclusions

In this paper, we presented Tweetsted, the system de-
veloped by FBK for the SemEval 2013 task on Sen-
timent Analysis. We trained a classifier performing
a two-step binary classification, i.e. first neutral vs.
subjective data, and then positive vs. negative ones.
We implemented a set of features including contex-
tual and semantic ones. We also integrated in our
feature representation external knowledge from Sen-
tiWordNet, LIWC and the resource by Mohammad
et al. (2009). On both test sets (i.e., Twitter mes-
sages and SMS) of the constrained modality of the
challenge, we achieved a good performance, being
among the top 30% of the competing systems. In
the near future, we plan to perform an error analysis
of the wrongly classified data to investigate possible
classification issues, in particular the lower perfor-
mance on negative tweets and SMS.
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Abstract

Sentiment analysis refers to automatically ex-
tracting the sentiment present in a given natu-
ral language text. We present our participation
to the SemEval2013 competition, in the senti-
ment analysis of Twitter and SMS messages.
Our approach for this task is the combination
of two sentiment analysis subsystems which
are combined together to build the final sys-
tem. Both subsystems use supervised learning
using features based on various polarity lexi-
cons.

1 Introduction

Business owners are interested in the feedback of
their customers about the products and services pro-
vided by businesses. Social media networks and
micro-blogs such as Facebook and Twitter play an
important role in this area. Micro-blogs allow users
share their ideas with others in terms of small sen-
tences; while Facebook updates may indicate an
opinion inside a longer text. Automatic sentiment
analysis of text collected from social media makes it
possible to quantitatively analyze this feedback.

In this paper we describe our sentiment analy-
sis system identified as SU-Sentilab in the SemEval
2013 competition, Task 2: Sentiment analysis in
Twitter. One or the problems in this competition was
to label a given tweet or sms message with the cor-
rect sentiment orientation, as positive, negative or
neutral. In the second task of the same competition,
the polarity of a given word or word sequence in the
message was asked. Details are described in (Man-
andhar and Yuret, 2013).

We participated in both of these tasks using a
classifier combination consisting of two sub-systems
that are based on (Dehkharghani et al., 2012)(Gezici
et al., 2012) and adapted to the tweet domain. Both
sub-systems use supervised learning in which the
system is trained using tweets with known polari-
ties and used to predict the label (polarity) of tweets
in the test set. Both systems use features that
are based on well-known polarity resources namely
SentiWordNet (Baccianella et al., 2010), SenticNet
(Cambria et al., 2012) and NRC Emotion Lexicon
(Mohammad, 2012). Also a set of positive and neg-
ative seed words (Liu et al., 2005) is used in feature
extraction.

The remainder of paper is organized as follows:
Related works are presented in Section 2; the pro-
posed approach is described in Section 3 and exper-
imental evaluation is presented in Section 4.

2 Related Works

There has been much work on sentiment analysis in
the last ten years (Riloff and Wiebe, 2003) (Wilson
et al., 2009) (Taboada et al., 2011) (Pang and Lee,
2008). The two fundamental methods for sentiment
analysis are lexicon-based and supervised methods.
The lexicon-based technique adopts the idea of de-
termining the review sentiment by obtaining word
polarities from a lexicon, such as the SentiWordNet
(Baccianella et al., 2010), SenticNet (Cambria et al.,
2012). This lexicon can be domain-independent or
domain-specific. One can use a domain-specific lex-
icon whenever available, to get a better performance
by obtaining the correct word polarities in the given
domain (e.g., the word ’small’ has a positive mean-
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ing in cell phone domain, while it has a negative
meaning in hotel domain). On the other hand, estab-
lishing a domain-specific lexicon is costly, so many
systems use a domain-independent lexicon, such as
the SentiWordNet, shortly SWN, (Baccianella et al.,
2010) and SenticNet (Cambria et al., 2012). Part
of Speech (POS) information is commonly indicated
in polarity lexicons, partly to overcome word-sense
disambiguity and therefore help achieve a better sen-
timent classification performance.

Alternatively, supervised methods use machine
learning techniques to build models or discrimina-
tors for the different classes (e.g. positive reviews),
using a large corpus. For example, in (Pang et al.,
2002) (Yu and Hatzivassiloglou, 2003), the Naive
Bayes algorithm is used to separate positive reviews
from negative ones. Note that supervised learning
techniques can also use a lexicon in the feature ex-
traction stage. They also generally perform bet-
ter compared to lexicon-based approaches; however
collecting a large training data may be an issue.

In estimating the sentiment of a given natural lan-
guage text, many issues are considered. For instance
one important problem is determining the subjectiv-
ity of a given sentence. In an early study, the ef-
fects of adjective orientation and gradability on sen-
tence subjectivity was studied (Hatzivassiloglou and
Wiebe, 2000). Wiebe et al. (Wiebe et al., 2004)
presents a broad survey on subjectivity recognition
and the key elements that may have an impact on it.

In estimating the sentiment polarity, the use of
higher-order n-grams is also studied. Pang et. al
report results where unigrams work better than bi-
grams for sentiment classification on a movie dataset
(Pang et al., 2002). Similarly, occurrence of rare
words (Yang et al., 2006) or the position of words in
a text are examined for usefulness (Kim and Hovy,
2006)(Pang et al., 2002). In connection with the oc-
currences of rare words, different variations of delta
tf*idf scores of words, indicating the difference in
occurrences of words in different classes (positive or
negative reviews), have been suggested (Paltoglou
and Thelwall, 2010).

In addition to sentiment classification, obtaining
the opinion strength is another issue which may be
of interest. Wilson et al. (Wilson et al., 2004) for
instance, attempts to determine clause-level opinion
strength. Since this is a difficult task, one of the re-

cent studies also investigated the relations between
word disambiguation and subjectivity, in order to
obtain sufficient information for a better sentiment
classification (Wiebe and Mihalcea, 2006). A recent
survey describing the fundamental approaches can
be found in (Liu, 2012).

Two sub-systems combined to form the SU-
Sentilab submission are slightly modified from our
previous work (Gezici et al., 2012) (Dehkharghani
et al., 2012) (Demiroz et al., 2012). For subsys-
tem SU1, we presented some new features in addi-
tion to the ones suggested in (Dehkharghani et al.,
2012). For subsystem SU2, we combined two sys-
tems (Demiroz et al., 2012) (Gezici et al., 2012).
The detailed descriptions for our subsystems SU1
and SU2 as well as our combined system can be
found in the following sections.

3 System Description

We built two sentiment analysis systems using su-
pervised learning techniques with labelled tweets for
training. Then, another classifier was trained for
combining the two systems, which is what is sub-
mitted to SemEval-2013 Task 2. The subsystems,
SU1 and SU2, and also the combination method are
explained in the following subsections.

3.1 Subsystem SU1

Subsystem SU1 uses subjectivity based features that
are listed in Table 1. These features are divided into
two groups:

• F1 through F8, using domain independent
resources SenticNet (SN) (Cambria et al.,
2012), SentiWordNet (SWN) (Baccianella et
al., 2010) and the NRC Emotion lexicons
(NRC) (Mohammad, 2012),

• F9 through F13 using the seed word list (called
SubjWords).

In the remainder of this subsection, we describe
the features which are grouped according to the lex-
ical resource used.

SentiWordNet In SentiWordNet (Baccianella et
al., 2010), three scores are assigned to each connota-
tion of a word: positivity, negativity and objectivity.
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The summation of these three scores equals to one:

Pos(w) + Neg(w) + Obj(w) = 1 (1)

where w stands for a given word; and the three
scores stand for its positivity, negativity and objec-
tivity scores, respectively. Furthermore, we define
the the polarity of a word w as:

Pol(w) = Pos(w)−Neg(w) (2)

We also do not do word sense disambiguation
(WSD) because it is an ongoing problem that has not
been completely solved. The average polarity of all
words in a review, r, denoted by AP (r) is computed
as in (3).

AP (r) =
1

|r|
∑
wi∈r

Pol(wi) (3)

where |r| is the number of words in tweet r and
Pol(wi) is the polarity of the word wi as defined
above.

Feature name
F1: Avg. polarity of all words using SWN
F2: Avg. polarity of negative words using SWN
F3: Avg. polarity of positive words using SWN
F4: Avg. polarity of negative words using SN
F5: Avg. polarity of positive words using SN
F6: term frequency of negative words using NRC
F7: term frequency of positive words using NRC
F8: term frequency of swear words
F9: Cumulative frequency of positive SubjWords
F10: Cumulative frequency of negative SubjWords
F11: Proportion of positive to negative SubjWords
F12: Weighted probability of positive SubjWords
F13: Weighted probability of negative SubjWords

Table 1: Features extracted for each tweet in subsystem
SU1

The first three features (F1, F2, F3) are based on
the average polarity concept (AP). A word w is de-
cided as positive if Pol(w) > 0, and decided as neg-
ative if Pol(w) < 0.

SenticNet SenticNet (Cambria et al., 2012) is a
polarity lexicon that assigns numerical values be-
tween -1 and +1 to a phrase.

Unlike SentiWordNet (Baccianella et al., 2010),
we did not need to do word sense disambiguation
for SenticNet. Two features, F4 and F5 use the aver-
age polarity of negative and positive words extracted
from SenticNet. A term is considered as positive if
its overall polarity score is greater than 0 and is con-
sidered as negative if this score is lower than 0.

NRC Emotion Lexicon The NRC Emotion Lex-
icon (Mohammad, 2012) is similar to SenticNet
in terms of considering different emotions such as
anger and happiness; but it is different from Sentic-
Net because it only assigns a binary value (0 or 1)
to words. Features F6 and F7 use the number of
negative and positive words seen according to this
lexicon.

Feature F8 is an isolated feature from other
groups which is the list of English swear words col-
lected from the Internet. As an indication to negative
sentiment, we counted the number of appearances of
those swear words in tweets and used it as a feature.

Subjective Words (SubjWords) We also use a set
of seed words which is a subset of the seed word list
proposed in (Liu et al., 2005), which we called Sub-
jWords. The filtering of the original set of subjec-
tive words, for a particular domain, is done through
a supervised learning process, where words that are
not seen in any tweet in the training set are elimi-
nated. Specifically, we add a positive seed word to
the positive subset of SubjWords if it has been seen
in at least one positive tweet; and similarly a nega-
tive seed word is added to negative subset if it has
been seen in a negative tweet.

The number of positive and negative words in the
initial set before filtering is 2005 and 4783 respec-
tively. Those numbers decrease to 387 positive and
558 negative words after filtering. Note that this fil-
tering helps us to make the seed word sets domain-
specific, which in turn helps increase the accuracy
of sentiment classification.

The mentioned filtered seed words are used in fea-
tures F9 through F13 in different ways. For F9 and
F10, we compute the cumulative term frequency of
positive and negative seed words for each tweet in
the training set, respectively.

F9(r) =
∑

ti∈PS

tf(ti, r) (4)
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F10(r) =
∑

ti∈NS

tf(ti, r) (5)

The feature F11 is the proportion of positive seed
words (the number of occurrences) to the negative
ones in a review (tweet):

F11(r) =
p + 1

n + 1
(6)

where p and n are the number of positive and nega-
tive seed words, respectively.

Finally features F12 and F13 are the weighted
probabilities of positive and negative words in a re-
view, calculated as follows:

F12(r) = p ∗ (1− P+(p)) (7)

F13(r) = n ∗ (1− P−(n)) (8)

where p is the number of positive seed words
in review r and P+(p) is the probability of seeing
p positive words in a review. Similarly, F13(r) is
the weighted probability of negative words in a re-
view r; n is the number of negative seed words in
the review, and P−(n) is the probability of seeing
n negative words in a review. Probabilities P+(p)
and P−(n) are calculated from training set. Table 2
presents the values of P+(p) for n = 1 . . . 5. For
instance, the probability of seeing at least one posi-
tive subjective word in a positive tweet is 0.87, while
seeing three positive words is only 0.47.

p 1 2 3 4 5
P+(p) 0.87 0.69 0.47 0.17 0.06

Table 2: The probability of seeing p positive words in a
positive tweet.

Classifier The extracted features are fed into a lo-
gistic regression classifier, chosen for its simplicity
and successful use in many problems. We have used
WEKA 3.6 (Hall et al., 2009) implementation for
this classifier, all with default parameters.

3.2 Subsystem SU2

Subsystem SU2 uses word-based and sentence-
based features proposed in (Gezici et al., 2012) and
summarized in Table 3. For adapting to the tweet

domain, we also added some new features regarding
smileys.

The features consist of an extensive set of 24 fea-
tures that can be grouped in five categories: (1) basic
features, (2) features based on subjective word oc-
currence statistics, (3) delta-tf-idf weighting of word
polarities, (4) punctuation based features, and (5)
sentence-based features. They are as follows:

Basic Features In this group of features, we ex-
ploit word-based features and compute straightfor-
ward features which were proposed several times be-
fore in the literature (e.g. avg. review polarity and
review purity). Moreover, smileys which are crucial
symbols in Twitter are also included here.

Seed Words Features In the second group of fea-
tures, we have two seed sets as positive and negative
seed words. These seed words are the words that are
obviously positive or negative irrelevant of the con-
text. As seed words features, we make calculations
related to their occurrences in a review to capture
several clues for sentiment determination.

∆tf-idf Features This group consists of features
based on the ∆tf-idf score of a word-sense pair,
indicating the relative occurrence of a word-sense
among positive and negative classes (Demiroz et al.,
2012).

Punctuation-based Features This group contains
the number of question and exclamation marks in the
message, as they may give some information about
the sentiment of a review, especially for the Twitter
domain.

Sentence-based Features In this last group of fea-
tures, we extract features based on sentence type
(e.g. subjective, pure, and non-irrealis) (Taboada et
al., 2011) and sentence position (e.g. first line and
last line) (Zhao et al., 2008). Features include sev-
eral basic ones such as the average polarity of the
first sentence and the average polarity of subjective
or pure sentences. We also compute ∆tf-idf scores
on sentence level.

Finally, we consider the number of sentences
which may be significant in SMS messages and the
estimated review subjectivity as a feature derived
from sentence-level processing. The review is con-
sidered subjective if it contains at least one subjec-

474



tive sentence. In turn, a sentence is subjective if and
only if it contains at least one subjective word-sense
pair or contains at least one smiley. A word-sense
pair is subjective if and only if the sum of its posi-
tive and negative polarity taken from SentiWordNet
(Baccianella et al., 2010) is bigger than 0.5 (Zhang
and Zhang, 2006). These features are described in
detail in (Gezici et al., 2012).

Feature name
F1: Average review polarity
F2: Review purity
F3: # of positive smileys
F4: # of negative smileys
F5: Freq. of seed words
F6: Avg. polarity of seed words
F7: Std. of polarities of seed words
F8: ∆tf-idf weighted avg. polarity of words
F9: ∆tf-idf scores of words
F10: # of Exclamation marks
F11: # of Question marks
F12: Avg. First Line Polarity
F13: Avg. Last Line Polarity
F14: First Line Purity
F15: Last Line Purity
F16: Avg. pol. of subj. sentences
F17: Avg. pol. of pure sentences
F18: Avg. pol. of non-irrealis sentences
F19: ∆tf-idf weighted polarity of first line
F20: ∆tf-idf scores of words in the first line
F21: ∆tf-idf weighted polarity of last line
F22: ∆tf-idf scores of words in the last line
F23: Review subjectivity (0 or 1)
F24: Number of sentences in review

Table 3: Features extracted for each tweet in subsystem
SU2

Obtaining Polarities from SentiWordNet For all
the features in subsystem SU2, we use SentiWord-
Net (Baccianella et al., 2010) as a lexicon. Al-
though, we use the same lexicon for our two subsys-
tems, the way we include the lexicon to our subsys-
tems differs. In this subsystem, we obtain the domi-
nant polarity of the word-sense pair from the lexicon
and use the sign for the indication of polarity direc-
tion. The dominant polarity of a word w, denoted by
Pol(w), is calculated as:

Pol(w) =



0 if max(p=, p+, p−) = p=

p+ else if p+ ≥ p−

−p− otherwise

where p+, p= and p− are the positive, objective and
negative polarities of a word w, respectively.

After obtaining the dominant polarities of words
from SentiWordNet (Baccianella et al., 2010), we
update these polarities using our domain adaptation
technique (Demiroz et al., 2012). The ∆tf − idf
scores of words are computed and if there is a dis-
agreement between the ∆tf − idf and the domi-
nant polarity of a word indicated by the lexicon, then
the polarity of the word is updated. This adaptation
is described in detail in one of our previous works
(Demiroz et al., 2012).

Classifier The extracted features are fed into a
Naive Bayes classifier, also chosen for its simplic-
ity and successful use in many problems. We have
used WEKA 3.6 (Hall et al., 2009) implementation
for this classifier, where the Kernel estimator param-
eter was set to true.

3.3 Combination of Subsystems

As we had two independently developed systems
that were only slightly adapted for this competition,
we wanted to apply a sophisticated classifier combi-
nation technique. Rather than averaging the outputs
of the two classifiers, we used the development set
to train a new classifier, to learn how to best combine
the two systems. Note that in this way the combiner
takes into account the different score scales and ac-
curacies of the two sub-systems automatically.

The new classifier takes as features the probabil-
ities assigned by the systems to the three possible
classes (positive, objective, negative) and another
feature which is an estimate of subjectivity of the
tweet or SMS messages. We trained the system us-
ing these 7 features obtained from the development
data for which we had the groundtruth, with the goal
of predicting the actual class label based on the esti-
mates of the two subsystems.
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4 Evaluation

4.1 Competition Tasks

There were two tasks in this competition: 1) Task A
where the aim was to determine the sentiment of a
phrase within the message and 2) Task B where the
aim was to obtain the overall sentiment of a mes-
sage. In each task, the classification involves the as-
signment of one of the three sentiment classes, posi-
tive, negative and objective/neutral. There were two
different datasets for each task, namely tweet and
SMS datasets (Manandhar and Yuret, 2013). Due to
the different nature of tweets and SMS and the two
tasks (A and B), we in fact considered this as four
different tasks.

4.2 Submitted Systems

Due to time constraints, we mainly worked on
TaskB where we had some prior experience, and
only submitted participated in TaskA for complete-
ness.

As we did not use any outside labelled data
(tweets or SMS), we trained our systems on the
available training data which consisted only of
tweets and submitted them on both tweets and SMS
sets. In fact, we separated part of the training data
as validation set and comparison of the two subsys-
tems.

Since only one system is allowed for each task,
we selected the submitted system from our 3 sys-
tems (SU1, SU2, combined) based on their perfor-
mance on the validation set. The performances of
these systems are summarized in Table 4.

Finally, we re-trained the selected system with the
full training data, to use all available data.

For the implementation, we used C# for subsys-
tem SU1 and Java & Stanford NLP Parser (De Marn-
effe and Manning, 2008) for subsystem SU2 and
WEKA (Hall et al., 2009) for the classification part
for both of the systems.

4.3 Results

In order to evaluate and compare the performances
of our two systems, we separated a portion of the
training data as validation set, and kept it separate.
Then we trained each system on the training set and
tested it on the validation set. These test results are
given in Table 4.

We obtained 75.60% accuracy on the validation
set with subsystem SU1 on TaskA twitter using lo-
gistic regression. For the same dataset, we obtained
70.74% accuracy on the validation set with subsys-
tem SU2 using a Naive Bayes classifier.

For TaskB Twitter dataset on the other hand, we
benefited from our combined system in order to get
better results. With this combined system using lo-
gistic regression as a classifier, we achieved 64%
accuracy on the validation set. The accuracies ob-
tained by the individual subsystems on this task was
63.10% by SU1 and 62.92% by SU2.

Dataset System Accuracy
TaskA Twitter SU1 75.60%

SU2 70.74%
SU1 63.10%

TaskB Twitter SU2 62.92%
Combined 64.00%

Table 4: Performance of Our Systems on Validation Data

4.4 Discussion & Future Work

The accuracy of our submitted systems for different
tasks are not very high due to many factors. First of
all, both domains (tweets and SMSs) were new to us
as we had only worked on review polarity estimation
on hotel and movie domains before.

For tweets, the problem is quite difficult due to
especially short message length; misspelled words;
and lack of domain knowledge (e.g. ’Good Girl, Bad
Girl’ does not convey a sentiment, rather it is a stage
play’s name). As for the SMS data, there were no
training data for SMSs, so we could not tune or re-
train our existing systems, either. Finally, for Task
A, we had some difficulty with the phrase index, due
to some ambiguity in the documentation. Nonethe-
less, we thank the organizers for a chance to evaluate
ourselves among others.

This was our first experience with this competi-
tion and with the Twitter and SMS domains. Given
the nature of tweets, we used simple features ex-
tracted from term polarities obtained from domain-
independent lexicons. In the future, we intend to use
more sophisticated algorithms, both in the natural
language processing stage, as well as the machine
learning algorithms.
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Abstract

We present a supervised sentiment detection
system that classifies the polarity of subjec-
tive phrases as positive, negative, or neutral. It
is tailored towards online genres, specifically
Twitter, through the inclusion of dictionaries
developed to capture vocabulary used in on-
line conversations (e.g., slang and emoticons)
as well as stylistic features common to social
media. We show how to incorporate these
new features within a state of the art system
and evaluate it on subtask A in SemEval-2013
Task 2: Sentiment Analysis in Twitter.

1 Introduction

People use social media to write openly about their
personal experiences, likes and dislikes. The follow-
ing sentence from Twitter is a typical example: “To-
morrow I’m coming back from Barcelona...I don’t
want! :(((”. The ability to detect the sentiment ex-
pressed in social media can be useful for understand-
ing what people think about the restaurants they
visit, the political viewpoints of the day, and the
products they buy. These sentiments can be used
to provided targeted advertising, automatically gen-
erate reviews, and make various predictions, such as
political outcomes.

In this paper we develop a sentiment detection al-
gorithm for social media that classifies the polarity
of sentence phrases as positive, negative, or neutral
and test its performance in Twitter through the par-
ticipation in the expression level task (subtask A)
of the SemEval-2013 Task 2: Sentiment Analysis
in Twitter (Wilson et al., 2013) which the authors

helped organize. To do so, we build on previous
work on sentiment detection algorithms for the more
formal news genre, notably the work of Agarwal et
al (2009), but adapt it for the language of social me-
dia, in particular Twitter. We show that exploiting
lexical-stylistic features and dictionaries geared to-
ward social media are useful in detecting sentiment.

In this rest of this paper, we discuss related work,
including the state of the art sentiment system (Agar-
wal et al., 2009) our method is based on, the lexicons
we used, our method, and experiments and results.

2 Related Work

Several recent papers have explored sentiment anal-
ysis in Twitter. Go et al (2009) and Pak and
Paroubek (2010) classify the sentiment of tweets
containing emoticons using n-grams and POS. Bar-
bosa and Feng (2010) detect sentiment using a po-
larity dictionary that includes web vocabulary and
tweet-specific social media features. Bermingham
and Smeaton (2010) compare polarity detection in
twitter to blogs and movie reviews using lexical fea-
tures. Agarwal et al (2011) perform polarity senti-
ment detection on the entire tweet using features that
are somewhat similar to ours: the DAL, lexical fea-
tures (e.g. POS and n-grams), social media features
(e.g. slang and hashtags) and tree kernel features. In
contrast to this related work, our approach is geared
towards predicting sentiment is at the phrase level as
opposed to the tweet level.

3 Lexicons

Several lexicons are used in our system. We use the
DAL and expand it with WordNet, as it was used in
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Corpus DAL
NNP
(Post
DAL)

Word
Length-
ening

WordNet Wiktionary Emoticons Punctuation
& Numbers

Not
Covered

Twitter - Train 42.9% 19.2% 1.4% 10.2% 12.7% 0.3% 1.5% 11.7%
Twitter - Dev 57.3% 13.8% 1.1% 7.1% 12.2% 0.4% 2.7% 5.4%
Twitter - Test 49.9% 15.6% 1.4% 9.6% 12.1% 0.5% 1.6% 9.3%
SMS - Test 60.1% 3.6% 0.6% 7.9% 14.7% 0.6% 1.9% 10.3%

Table 1: Coverage for each of the lexicons in the training and test corpora’s.

the original work (Agarwal et al., 2009), and expand
it further to use Wiktionary and an emoticon lexicon.
We consider proper nouns that are not in the DAL to
be objective. We also shorten words that are length-
ened to see if we can find the shortened version in
the lexicons (e.g. sweeeet→ sweet). The coverage
of the lexicons for each corpus is shown in Table 1.

3.1 DAL

The Dictionary of Affect and Language (DAL)
(Whissel, 1989) is an English language dictionary
of 8742 words built to measure the emotional mean-
ing of texts. In addition to using newswire, it was
also built from individual sources such as interviews
on abuse, students’ retelling of a story, and adoles-
cent’s descriptions of emotions. It therefore covers a
broad set of words. Each word is given three scores
(pleasantness - also called evaluation (ee), active-
ness (aa), and imagery (ii)) on a scale of 1 (low)
to 3 (high). We compute the polarity of a chunk in
the same manner as the original work (Agarwal et
al., 2009), using the sum of the AE Space Score’s
(|
√

ee2 + aa2|) of each word within the chunk.

3.2 WordNet

The DAL does cover a broad set of words, but we
will still often encounter words that are not included
in the dictionary. Any word that is not in the DAL
and is not a proper noun is accessed in WordNet
(Fellbaum, 1998) 1 and, if it exists, the DAL scores
of the synonyms of its first sense are used in its
place. In addition to the original approach, if there
are no synonyms we look at the hypernym. We then
compute the average scores (ee, aa, and ii) of all the
words and use that as the score for the word.

1We cannot use SentiWordNet because we are interested in
the DAL scores

3.3 Wiktionary
We use Wiktionary, an online dictionary, to supple-
ment the common words that are not found in Word-
Net and the DAL. We first examine all “form of” re-
lationships for the word such as “doesnt” is a “mis-
spelling of” “doesn’t”, and ‘tonite” is an “alternate
form of” “tonight”. If no “form of” relationships ex-
ist, we take all the words in the definitions that have
their own Wiktionary page and look up the scores
for each word in the DAL. (e.g., the verb definition
for LOL (laugh out loud) in Wiktionary is “To laugh
out loud” with “laugh” having its own Wiktionary
definition; it is therefore looked up in the DAL and
the score for “laugh” is used for “LOL”.) We then
compute the average scores (ee, aa, and ii) of all the
words and use that as the score for the word.

3.4 Emoticon Dictionary
emoticon :) :D <3 :( ;)
definition happy laughter love sad wink

Table 2: Popular emoticons and their definitions

We created a simple lexicon to map common
emoticons to a definition in the DAL. We looked at
over 1000 emoticons gathered from several lists on
the internet2 and computed their frequencies within
a LiveJournal blog corpus. (In the future we would
like to use an external Twitter corpus). We kept
the 192 emoticons that appeared at least once and
mapped each emoticon to a single word definition.
The top 5 emoticons and their definitions are shown
in Table 2. When an emoticon is found in a tweet we
look up its definition in the DAL.

4 Methods

We run our data through several pre-processing steps
to preserve emoticons and expand contractions. We

2www.chatropolis.com, www.piology.org, en.wikipedia.org
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General Social Media
Feature Example Feature Example
Capital Words Hello Emoticons :)
Out of Vocabulary duh Acronyms LOL
Punctuation . Repeated Questions ???
Repeated Punctuation #@. Exclamation Points !
Punctuation Count 5 Repeated Exclamations !!!!
Question Marks ? Word Lengthening sweeeet
Ellipses ... All Caps HAHA
Avg Word Length 5 Links/Images www.url.com

Table 3: List of lexical-stylistic features and examples.

then pre-process the sentences to add Part-of-Speech
tags (POS) and chunk the sentences using the CRF
tagger and chunker (Phan, 2006a; Phan, 2006b).
The chunker uses three labels, ‘B’ (beginning), ‘I’
(in), and ‘O’ (out). The ‘O’ label tends to be ap-
plied to punctuation which one typically wants to
ignore. However, in this context, punctation can be
very important (e.g. exclamation points, and emoti-
cons). Therefore, we append words/phrases tagged
as O to the prior B-I chunk.

We apply the dictionaries to the preprocessed sen-
tences to generate lexical, syntactic, and stylistic
features. All sets of features were reduced using chi-
square in Weka (Hall et al., 2009).

4.1 Lexical and Syntactic Features

We include POS tags and the top 500 n-gram fea-
tures(Agarwal et al., 2009). We experimented with
different amounts of n-grams and found that more
than 500 n-grams reduced performance.

The DAL and other dictionaries are used along
with a negation state machine(Agarwal et al., 2009)
to determine the polarity for each word in the sen-
tence. We include all the features described in the
original system (Agarwal et al., 2009).

4.2 Lexical-Stylistic Features

We include several lexical-stylistic features (see Ta-
ble 3) that can occur in all datasets. We divide these
features into two groups, general: ones that are
common across online and traditional genres, and
social media: one that are far more common in on-
line genres. Examples of general style features are
exclamation points and ellipses. Examples of social
media style features are emoticons and word length-
ening. Word lengthening is a common phenomenon

Figure 1: Percentage of lexical-stylistic features that are
negative (top), neutral (middle), and positive (bottom) in
the Twitter training corpus.

in social media where letters are repeated to indi-
cate emphasis (e.g. sweeeet). It is particularly com-
mon in opinionated words (Brody and Diakopoulos,
2011). The count values of each feature was normal-
ized by the number of words in the phrase.

The percentage of lexical-stylistic features that
are positive/negative/neutral is shown in Figure 1.
For example, emoticons tend to indicate a positive
phrase in Twitter. Each stylistic feature accounts for
less than 2% of the sentence but at least one of the
stylistic features exists in 61% of the Tweets.

We also computed the most frequent emoticons
(<3, :D), acronyms (lol), and punctuation symbols
(#) within a subset of the Twitter training set and
included those as additional features.

5 Experiments and Results

This task was evaluated on the Twitter dataset pro-
vided by Semeval-2013 Task 2, subtask A, which the
authors helped organize. Therefore, a large portion
of time was spent on creating the dataset.
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Experiment Twitter SMS
Dev Test

Majority 36.3 38.1 31.5
Just DAL 70.1 72.3 67.1
WordNet 72.2 73.6 67.7
Wiktionary 72.8 73.7 68.7
Style 71.5 73.7 69.7
n-grams 75.2 75.7 72.5
WordNet+Style 73.2 74.6 70.1
Dictionaries+Style 74.0 75.0 70.2
Dictionaries+Style+n-grams 75.8 77.6 73.3

Table 4: Experiments using the Twitter corpus. Results
are shown using average F-measure of the positive and
negative class. All experiments include the DAL. The
dictionaries refer to WordNet, Wiktionary, and Emoticon.
Style refers to Lexical-Stylistic features. All results ex-
ceed the majority baseline significantly.

We ran all of our experiments in Weka (Hall et
al., 2009) using Logistic Regression. We also exper-
imented with other learning methods but found that
this worked best. All results are shown using the av-
erage F-measure of the positive and negative class.

We tuned our system for Semeval-2013 Task 2,
subtask A, using the provided development set and
ran it on the provided Twitter and SMS test data.
Our results are shown in Table 4 with all results
being statistically significant over a majority base-
line. We also use the DAL as a baseline to in-
dicate how useful lexical-stylistic features (specifi-
cally those geared towards social media) and the dic-
tionaries are in improving the performance of sen-
timent detection of phrases in online genres in con-
trast to using just the DAL. The results that are statis-
tically significant (computed using the Wilcoxon’s
test, p ≤ .02) shown in bold. Our best results for
each dataset include all features with an average F-
measure of 77.6% and 73.3% for the Twitter and
SMS test sets respectively resulting in a significant
improvement of more than 5% for each test set over
the DAL baseline.

At the time of submission, we had not experi-
mented with n-grams, and therefore chose the Dic-
tionaries+Style system as our final version for the
official run resulting in a rank of 12/22 (75% F-
measure) for Twitter and 13/19 (70.2% F-measure)
for SMS. Our rank with the best system, which in-
cludes n-grams, would remain the same for Twitter,
but bring our rank up to 10/19 for SMS.

We looked more closely at the impact of our new
features and as one would expect, feature selection
found the general and social media style features
(e.g. emoticons, :(, lol, word lengthening) to be use-
ful in Twitter and SMS data. Using additional online
dictionaries is useful in Twitter and SMS, which is
understandable because they both have poor cover-
age in the DAL and WordNet. In all cases using
n-grams was the most useful which indicates that
context is most important. Using Dictionaries and
Style in addition to n-grams did provide a signifi-
cant improvement in the Twitter test set, but not in
the Twitter Dev and SMS test set.

6 Conclusion and Future Work

We have explored whether social media features,
Wiktionary, and emoticon dictionaries positively im-
pact the accuracy of polarity detection in Twitter and
other online genres. We found that social media re-
lated features can be used to predict sentiment in
Twitter and SMS. In addition, Wiktionary helps im-
prove the word coverage and though it does not pro-
vide a significant improvement over WordNet, it can
be used in place of WordNet. On the other hand, we
found that using the DAL and n-grams alone does al-
most as well as the best system. This is encouraging
as it indicates that content is important and domain
independent sentiment systems can do a good job of
predicting sentiment in social media.

The results of the SMS messages dataset indicate
that even though the online genres are different, the
training data in one online genre can indeed be used
to predict results with reasonable accuracy in the
other online genre. These results show promise for
further work on domain adaptation across different
kinds of social media.
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Abstract

This paper describes the system implemented
by Fundació Barcelona Media (FBM) for clas-
sifying the polarity of opinion expressions in
tweets and SMSs, and which is supported by
a UIMA pipeline for rich linguistic and sen-
timent annotations. FBM participated in the
SEMEVAL 2013 Task 2 on polarity classifi-
cation. It ranked 5th in Task A (constrained
track) using an ensemble system combining
ML algorithms with dictionary-based heuris-
tics, and 7th (Task B, constrained) using an
SVM classifier with features derived from the
linguistic annotations and some heuristics.

1 Introduction

We introduce the FBM system for classifying the
polarity of short user-generated text (tweets and
SMSs), which participated in the two subtasks of
SEMEVAL 2013 Task 2 on Sentiment Analysis in
Twitter. These are: Task A. Contextual Polarity Dis-
ambiguation, and Task B. Message Polarity Classifi-
cation. The former aimed at classifying the polarity
of already identified opinion expressions (or cues),
whereas the latter consisted in classifying the polar-
ity of the whole text (Wilson et al., 2013).

The literature agrees on two main approaches for
classifying opinion expressions: using supervised
learning methods and applying dictionary/rule-
based knowledge (see (Liu, 2012) for an overview).
Each of them on its own has been used in work-
able systems, and a principled combination of both
of them can yield good results on noisy data, since

generally one (dictionaries/rules) offers good preci-
sion while the other (ML) is able to discover unseen
examples and thus enhances recall.

FBM combined both approaches in order to bene-
fit from their respective strengths and compensating
as much as possible their weaknesses. For Task A
we used linguistic (lexical and syntactic) annotations
to implement both types of approaches. On the one
hand, we built machine learning classifiers based on
Support Vector Machines (SVMs) and Conditional
Random Fields (CRFs). On the other, we imple-
mented a basic classification system mainly based
on polarity dictionaries and negation information, as
well as simple decision tree-like heuristics extracted
from the training data. For task B we trained an
SVM classifier using some of the annotations from
Task A.

The paper first presents the process of data com-
pilation and preprocessing (section 2), and then de-
scribes the systems for Tasks A (section 3) and B
(section 4). Results and conclusions are discussed
in the last section.

2 Data Compilation and Processing

2.1 Making data available

The corpus of SMSs was provided to the partici-
pants by the organizers of the task. As for the corpus
of tweets, legal restrictions on twitter data distribu-
tion required the participants to download the tex-
tual contents of the corpus from a list of tweet ids.
We retrieved the tweet text using the official twit-
ter API instead of script provided by the organizers,
but not all the tweets were available for download
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due to restrictions of different types (e.g. geograph-
ical), or because the twitter account was temporarily
suspended. In total, we managed to retrieve 10,764
tweets out of 11,777 ids provided by the organizers
(91.4%). It is worth pointing out that the restric-
tions on tweets distribution can become an issue for
future users of the dataset, as the amount of avail-
able tweets will diminish over time. By contrast, the
twitter test corpus was distributed with the full text
to avoid those problems.

2.2 Leveraging the data with rich linguistic
information

We applied the same linguistic processing to both
corpora (SMSs and tweets), even though the SMS
test data presents very different characteristics from
the twitter data, not only because of what can be ap-
preciated as genre differences, but also due to the
fact that is apparently written in Singaporean En-
glish, which differs significantly from American or
British English. No efforts were made to adapt
our linguistic processing modules and dictionaries
to this data.

Tweets and SMSs were processed with a UIMA1-
based pipeline consisting of a set of linguistic and
opinion-oriented modules, which includes:

Basic linguistic processing: Sentence segmen-
tation, tokenization, POS-tagging, lemmatiza-
tion.

Syntax: Dependency parsing.

Lexicon-based annotations:

• Basic polarity, distinguishing among: positive,
negative, and neutral, as encoded in Wilson et
al. (2010).

• Polarity strength, using the score for pos-
itive and negative polarity in SentiWordnet
3.0 (Baccianella et al., 2010). Each Sen-
tiWordNet synset has an associated triplet of
numerical scores (positive, negative,
and objective) expressing the intensity of
positive, negative and objective polarity of the
terms it contains. They range from 0.0 to 1.0,
and their sum is 1.0 for each synset (Esuli and
Sebastiani, 2007). We selected only the synset

1http://uima.apache.org/uima-specification.html

with positive or negative scores higher than 0.5,
containing a total of 16,791 words.

• Subjectiviy clues, from Wilson et al. (2010),
which are classified as weak or strong depend-
ing on their degree of subjectivity.

• Sentiment expressions, from the Linguistic In-
quiry and Word Count (LIWC) 2001 Dictio-
nary (Pennebaker et al., 2001).

• In-house compiled lexicons of negation mark-
ers (such as ’no’, ’never’, ’none’) and quanti-
fiers (’all’, ’many’, etc.), the latter further clas-
sified into low, medium and high according to
their quantification degree.

The different classifiers employed by FBM con-
structed their vectors from this output to learn global
and contextual polarities.

3 Task A: Ensemble System

Our system combined Machine Learning and rule-
based approaches. The aim was to combine the
strengths of each individual component while avoid-
ing as much as possible their weaknesses. In what
follows we describe each system component as well
as the way the ensemble system worked out the col-
lective decisions.

3.1 Conditional Random Fields

One of the classifiers uses the Conditional Random
Fields implementation of a biomedical Named En-
tity Recognition system (JNET from JulieLab) 2, ex-
ploiting the classification capabilities of the system
(rather than its span detection) by strongly associat-
ing already defined “marked instances” with a polar-
ity, and exploring a 5-word window. It uses depen-
dency labels, POS tags, polar words, sentiwordnet
and LWIC sentiment annotations, as well as indica-
tions for quantifiers and negation markers.

3.2 Support Vector Machines

This classifier was implemented using an SVM algo-
rithm with a linear kernel and the C parameter set to
0.2 (determined using a 5 fold cross-validation). The
features set includes those that we used in RepLab

2http://www.julielab.de
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2012 (Chenlo et al., 2012) (including number of:
characters, words, links, hashtags, positive and neg-
ative emoticons, question-exclamation marks, ad-
jectives, nouns, verbs, adverbs, uppercased words,
words with duplicated vowels), plus a set of new
features at tweet level obtained from the linguistic
annotations: number of high/medium/low polarity
quantifiers, number of positive and negative polar
words, sentiwordnet applied to both the cue and the
whole tweet.

Moreover, the RepLab polarity calculation based
on different dictionaries was modified to take into
account negation (in a 3-word window) potentially
inverting the polarity (negPol). This polarity mea-
sure was applied to the cue and to the whole tweet,
thus generating two additional features.

3.3 Heuristic Approach

In task A, in parallel to the supervised learning sys-
tem, we developed a method (named Heur) based
on polarity dictionary lookup and simple heuristics
(see Figure 1) taking into account opinion words
as well as negation markers and quantifiers. These
heuristics were implemented so as to maximize the
number of correct positive and negative labels in the
training data. To this end, we calculated the aggre-
gate polarity of a cue segment as the sum of word
polarities found in the polarity lexicon. The aggre-
gate values in the training set ranged from -3 to +3,
taking respectively 1, 0 and -1 as the polarity of pos-
itive, neutral and negative words. The label distri-
bution of cue segments with an aggregate polarity
value of -1 is shown in Table 1.

Aggregate polarity -1
Negation no yes
negative 1,032 30

neutral 37 4
positive 178 71

Table 1: Cue segment polarity statistics in training data
for an aggregate polarity value of -1.

In this case, if no negation is present in the cue
segment, a majority (1,032) of examples had the
negative label. In case there was at least a negation, a
majority (71) of examples had a positive label. This
behaviour was observed with all negative aggregate

1: if has polar word(CUE) then
2: polarity= lex(P)-0.5*lex(QP)
3: -lex(N)+0.5*lex(QN)
4: if polarity>0 then
5: if has negation(CUE) then negative
6: else positive
7: end if
8: else if polarity<0 then
9: if has negation(CUE) then positive

10: else negative
11: end if
12: else
13: if has negation(CUE) then positive
14: else negative
15: end if
16: end if
17: else if has negation(CUE) then negative
18: else
19: polarity= tlex(P)-0.5*tlex(QP)
20: -tlex(N)+0.5*tlex(QN)
21: if polarity<0 then negative
22: else if tlex(NEU)>0 then neutral
23: else if polarity>0 then positive
24: else if has negemo(CUE) then negative
25: else if has posemo(CUE) then positive
26: else unknwn
27: end if
28: end if

Figure 1: Heuristics used by the lexicon-based system to
classify the polarity of a segment marked up as opinion
cue (Task A).

polarity values in training data, yielding the rule in
lines 8 to 11 of Figure 1. Similar rules were ex-
tracted for the other aggregate polarity values (lines
4 to 16 of Figure 1).

Figure 1 details the complete classification algo-
rithm. Note (lines 1 to 17) that we first rely on the
basic polarity lexicon annotations (described in sec-
tion 2). The final aggregate polarity formula (lines
2-3) was refined to distinguish sentiment words
which act as quantifiers, such as pretty in pretty mad.
The word pretty is both a positive polar word and a
quantifier. We want its polarity to be positive in case
it occurs in isolation, but less than one so that the
sum with a following negative polar word (such as
mad) be negative. We thus give this kind of words
a polarity of 0.5 by substracting 0.5 for each polar
word which is also a quantifier. In the polarity for-
mula of lines 2-3, lex(X) refers to the number of
words annotated as X, P and N refer respectively
to positive and negative polar words, and QP and
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QN refer to positive and negative polar words which
are also quantifiers. Quantifiers which are not polar
words are not taken into account because they are
not likely to change the opinion polarity.

In case that no annotations from the basic polar-
ity, quantifiers, and negative markers lexicons are
found (lines 18 to 28), we look up in dictionaries
built from the training data (tlex in lines 19-20).
To build these dictionaries, we counted how many
times each word was labeled positive, negative and
neutral. We considered that a word has a given po-
larity if the number of times it was assigned to this
class is greater than the number of times it was as-
signed to any other class by a given threshold. We
calculated the polarity in the same way as before,
but now with the counts from the lexicon automati-
cally compiled from the training data. To improve
the recall of the dictionary lookup, we performed
some text normalization: lowercasing, deletion of
repeated characters (such as gooood) and deletion of
the hashtag “#” character. Finally, if no polar word
is found in the automatically compiled lexicon, we
look at the sentiment annotations (extracted from the
LIWC dictionary).

3.4 Ensemble Voting Algorithm
As already mentioned, we combined the results from
the described polarity methods to build a collective
decision. Table 2 shows the performance (in terms
of F1 measure) of the different single methods over
the tweet test data.

SVM Heur Heur+ CRF
Test 80.74 83.47 84.62 62.85

Table 2: Twitter Task A results for different methods

Although the heuristic method outperforms the
ML methods, they are not only different in nature
(ML vs. heuristic) but also use different information
(see Table 5). This suggests that the ensemble solu-
tion will be complementary and capable of obtaining
better results than any of the individual methods by
itself.

The development set was used to calculate the en-
semble response given the individual votes of the
different systems in a way similar to the behavior
knowledge space method (Huang and Suen, 1993).
Table 3 shows an example of how the assemble

voting is built. For each method vote combina-
tion (SVM-Heuristics-CRF) the number of positives
/ negatives / neutral is calculated in the development
data. The ensemble (EV) selects the vote that max-
imizes the number of correct votes in the develop-
ment data (in bold).

SVM Heur CRF EV # Instances
pos neg neu

− + − − 0 6 0
− − + − 1 23 2
− − − − 3 125 2
− u + + 1 0 0
+ u n − 0 1 0
+ − + + 17 13 2
+ + + + 314 18 17
+ − n + 3 1 0

Table 3: Oracle building example (EV: Ensemble Vote,
+:positive, −:negative, n:neutral, u:unknown)

The test data contains some combination of votes
that were not seen in the development data. Thus,
in order to deal with these unseen combinations of
votes in the test set we use the following backup
heuristics based on the preformance figures of the
individual methods: Use the vote of the heuristic
method. If this method does not vote (u), then se-
lect the SVM vote.

Table 4 shows the results of the proposed ensem-
ble method, the well-known majority voting and the
upper bound of this ensemble method (calculated
with the same strategy over the test data), over the
development and test tweet data

Ensemble Majority Upper
Voting Voting Bound

Dev 85.48 81.31 85.48
Test 85.50 82.70 89.37

Table 4: Results for different ensemble strategies

In the development corpus, the upper bound and
ensemble results are the same, given that they ap-
ply the same knowledge. The difference is in the
test dataset, where the ensemble voting is calculated
based on the knowledge obtained from the develop-
ment corpus, while the upper bound uses the knowl-
edge that can be derived from the test corpus.
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Table 5 illustrates the features used by each com-
ponent.

SVM SVM CRF Heur
(task A) (task B)

word • • •
lemma

pos • •
deps •
pol • • • •

polW •
sent • • •

sentiwn • • •
quant • • • •
neg • • • •

links •
hashTags •

Table 5: Information used (pos: part-of-speech; deps: de-
pendencies; pol: basic polarity classification; polW: basic
polarity word; sent: LIWC sentiments; sentwn: Senti-
Wordnet; quant/neg: quantifiers and negation markers.)

4 Task B: A Support Vector
Machine-based System

The system presented for task B is based on ML us-
ing a SVM model. The feature vector used as input
for the SVM component is composed of the annota-
tions provided by the linguistic annotation pipeline,
extended with a feature obtained by applying nega-
tion to the next polar words (window of size 3).

The features used do not include the words (or
their lemmas) because the number of tweets avail-
able for training is small (104) compared to the num-
ber of different words (4 · 104). A model based on
bag-of-words would suffer from overfitting and thus
be very domain and time-dependent. If the train and
test sets were randomly selected from a bigger set,
the use of words could increase the model’s accu-
racy, but the model would also be too narrowly ap-
plied to this specific dataset.

From the annotation pipeline we extracted as fea-
tures: the polar words (PolW) and their basic po-
larity (Pol); the sentiment annotations from LIWC
(Sent); the negation markers (Neg) and quantifiers
(Quant). The model was trained using Weka (Hall
et al., 2009).

The model used is SVM with the C parameter set
to 1.0 and applying a 10 fold cross-validation. The
option of doing first a model to discriminate polar
and neutral tweets was discarded because Weka al-
ready does that when training classifiers for more
than two training classes, and the combination of the
two classifiers (a first one between polar and opin-
ionated and a second one between positive and neg-
ative) would produce the same results.

5 Results and Discussion

The results of our system in each subcorpus and task
are presented in Table 5 (average of the F1-measure
over the classes positive and negative, constrained
track), with the ranking achieved in the competition
in parentheses.

Tweet Corpus SMS Corpus
Task A 0.86 (5th) 0.73 (11th)
Task B 0.61 (7th) 0.47 (28th)

Table 6: FBM system performance (F1 average over pos-
itive and negative classes, constrained track) and rankings

Given the differences in style and vocabularies be-
tween the SMS and tweet corpora, and the fact that
we made not effort whatsoever to adapt our system
or models to them, the drop in performance from
one to the other is considerable, but to be expected
since domain customization is an important aspect
of opinion mining.

Task A: The confusion matrix in Table 7 shows
an acceptable performance for the most frequent
classes in the corpus (with an error of 7.75% and
19.5% for postive and negative cues, respectively)
and a very poor job for neutral cues (98.1% of er-
ror), clearly a minority class in the training corpus
(5% of the data).

GOLD: Pos Neg Neu
SYSTEM: Pos 2,522 296 126

Neg 206 1,240 31
Neu 6 5 3

Table 7: Task A confusion matrix

Given the skewed distribution of polarity cate-
gories in the test corpus, however, neutral mistakes
amount to only 23% of our system error, and so we
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focus our analysis on the problems in positive and
negative cues, respectively amounting to 31.7% and
44.8% of the total error. There are 2 main sources of
error:

• Limitations of the dictionaries employed,
which were short in covering somewhat fre-
quent slang words (e.g., wacky, baddest, shit-
loads), expressions (e.g., ouch, yukk, C’MON),
or phrases (e.g., over the top), some of which
express a particular polarity but contain a word
expressing just the opposite (have a blast, to
want something bad/ly).

• Problems in UGC processing, mainly related to
normalization (e.g., fooooool) and tokenization
(Perfect...not sure), which put at risk the cor-
rect identification of lexical elements that are
crucial for polarity classification.

Task B: The average F-score of positive and neg-
ative classes was 0.62 in the development set (that
was included in the training set) and the averaged F-
score for the test set was 0.61 (so they are very simi-
lar). If focusing on precision and recall, the positive
and negative classes have higher precision but lower
recall in the test set. We think that this low degrada-
tion of perfomance indicates the model’s potential
for generalization.

6 Conclusions

From our results, we can conclude that the use of
ensemble combination of orthogonal methods pro-
vides good performance for Task A. Similar results
could be expected for Task B (judging from mix-
ing dictionaries and ML in similar tasks at RepLab
2012 (Chenlo et al., 2012)). The ML methods that
we applied for Task B are essentially additive, and
hence have difficulties in applying features such as
polarity shifters. To overcome this, one of the fea-
tures includes negation of polar words when a polar-
ity shifter is near.

Overall, the SemEval Tasks have make evident the
usual challenges when mining opinions from Social
Media channels: noisy text, irregular grammar and
orthography, highly specific lingo, etc. Moreover,
temporal dependencies can affect the performance if
the training and test data have been gathered at dif-

ferent times, as is the case with text of such a volatile
nature as tweets and SMSs.
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Figure 2: Distribution of tweets over time

The histogram in Figure 2 shows that this also ap-
plies to the Semeval tweets dataset. It illustrates the
distribution of tweets over time (extrapolated from
the sequential ids) in the 3 subcorpora (train, devel-
opment and test), showing some divergence between
the test corpus on the one hand, and the develop-
ment and training corpora on the other. Neverthe-
less, our system shows little performance degrada-
tion between development and testing results, as at-
tested in Table 4 (ensemble voting column).

Our work here and at other competitions already
cited validate a system that combines stochastic and
symbolic methodologies in a principled, data-driven
approach. Time and domain dependencies of Social
Media data make system and model generalization
highly desirable, and our system hybrid nature also
contribute to this objective.
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Abstract

We evaluate a naive machine learning ap-
proach to sentiment classification focused
on Twitter in the context of the sentiment
analysis task of SemEval-2013. We employ
a classifier based on the Random Forests al-
gorithm to determine whether a tweet ex-
presses overall positive, negative or neu-
tral sentiment. The classifier was trained
only with the provided dataset and uses as
main features word vectors and lexicon word
counts. Our average F-score for all three
classes on the Twitter evaluation dataset
was 51.55%. The average F-score of both
positive and negative classes was 45.01%.
For the optional SMS evaluation dataset our
overall average F-score was 58.82%. The
average between positive and negative F-
scores was 50.11%.

1 Introduction

Sentiment Analysis is a growing research field, es-
pecially on web social networks. In this setting,
users share very diverse messages such as real-
time reactions to news, events and daily experi-
ences. The ability to tap on a vast repository of
opinions, such as Twitter, where there is great di-
versity of topics, has become an important goal
for many different applications. However, due to
the nature of the text, NLP systems face additional

challenges in this context. Shared messages, such
as tweets, are very short and users tend to resort to
highly informal an noisy speech.

Following this trend, the 2013 edition of Se-
mEval1 included a sentiment analysis on Twitter
task (SemEval-2013 Task 2). Participants were
asked to implement a system capable of determin-
ing whether a given tweet expresses positive, neg-
ative or neutral sentiment. To help in the develop-
ment of the system, an annotated training corpus
was released. Systems that used only the given
corpus for training were considered constrained,
while others were considered unconstrained. The
submitted prototypes were evaluated in a dataset
consisting of around 3700 tweets of several topics.
The metric used was the average F-score between
the positive and negative classes.

Our goal with this participation was to create a
baseline system from which we can build upon and
perform experiments to compare new approaches
with the state-of-the-art.

2 Related Work

The last decade saw a growing interest in systems
to automatically process sentiment in text. Many
approaches to detect subjectivity and determine

1Proceedings of the 7th International Workshop on Se-
mantic Evaluation (SemEval 2013), in conjunction with the
Second Joint Conference on Lexical and Computational Se-
mantics (*SEM 2013)
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polarity of opinions in news articles, weblogs and
product reviews have been proposed (Pang et al.,
2002; Pang et al., 2004; Wiebe et al., 2005; Wil-
son et al., 2005). This sub-field of NLP, known as
Sentiment Analysis is presented in great depth in
(Liu, 2012).

The emergence and proliferation of microblog
platforms created a medium where people express
and convey all kinds of information. In particu-
lar, these platforms are a rich source of subjec-
tive and opinionated text, which has motivated
the application of similar techniques to this do-
main. However, in this context, messages tend
to be very short and highly informal, full of ty-
pos, slang and unconventional spelling, posing ad-
ditional challenges to NLP systems. In fact, early
experiments in Sentiment Analysis in the context
of Twitter (Barbosa et al., 2010; Davidov et al.,
2010; Koulompis et al., 2011; Pak et al., 2010;
Bifet et al., 2010) show that the techniques that
proved effective in other domains are not sufficient
in the microblog setting. In the spirit of these ap-
proaches, we included a preprocessing step, fol-
lowed by feature extraction focusing on word,
lexical and Twitter-specific features. Finally, we
use annotated data to train an automatic classifier
based on the Random Forests (Breiman, 2001) and
BESTrees (Sun et al., 2011) learning algorithms.

3 Resources

Two annotated datasets were made available to
participants of SemEval-2013 Task 2: one for
training purposes which was to contain 8000 to
12000 tweets; and another, for development, con-
taining 2000. The combined datasets ended up
amounting to a little over 7500 tweets. The distri-
bution of positives, negatives and neutrals for the
combined datasets can be found in Table 1. Nearly
half of all tweets belonged to the neutral class, and
negatives represent just 15% of these datasets.

Class Number
Positive 37%
Negative 15%
Neutral 48%

Table 1: Class distribution of annotated data.

Random examples of each class drawn from the
datasets are shown in Table 2.

Positive:
1 Louis inspired outfit on Monday and Zayn
inspired outfit today..4/5 done just need Harry
2 waking up to a Niners win, makes Tuesday
get off to a great start! 21-3 over the cards
and 2 games clear in the NFC West.

Negative:
3 Sitting at home on a Saturday night doing
absolutely nothing... Guess I’ll just watch
Greys Anatomy all night. #lonerproblems
#greysanatomy
4 Life just isn’t the same when there is no
Pretty Little Liars on Tuesday nights.

Neutral:
5 Won the match #getin . Plus,
tomorrow is a very busy day, with
Awareness Day’s and debates. Gulp. Debates
6 @ Nenaah oh cause my friend got something
from china and they said it will take at least 6
to 8 weeks and it came in the 2nd week :P

Table 2: Random examples of annotated tweets.

4 Approach

Given our goal of creating a baseline system, we
experimented with a common set of features used
in sentiment analysis. The messages were mod-
elled as a combination of binary (or presence) uni-
grams, lexical features and Twitter-specific fea-
tures. We decided to follow a supervised approach
by learning a Random Forests classifier from the
annotated data provided by the organisers of the
workshop (see Section 3). In summary, the devel-
opment of our system consisted of four steps: 1)
preprocessing of the data, 2) feature extraction, 3)
learning the classifier, and 4) applying the classi-
fier to the test set.

4.1 Preprocessing
The lexical variation introduced by typos, ab-
breviations, slang and unconventional spelling,
leads to very large vocabularies. The resulting
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sparse vector representations with few non-zero
values hamper the learning process. In order to
tackle this problem, we replaced user mentions
(@<username>) with a fixed tag <USER> and
URLs with the tag <URL>. Then, each sentence
was normalised by converting to lower-case and
reducing character repetitions to at most 3 charac-
ters (e.g. ”heelloooooo!” would be normalised to
”heellooo!”). Finally, we performed the lemma-
tisation of the sentence using the Morphadorner2

software.

4.2 Feature Extraction

After the preprocessing step, we extract a vector
consisting of the top uni-grams present in the train-
ing set and represent individual messages in terms
of this vector. For each message we also compute
the frequency of smileys and words with prior sen-
timent polarity using a sentiment lexicon. Finally,
we include the harmonic mean of positive and neg-
ative words. Next we explain each feature in more
detail.

Word vector: a sparse word vector containing
the top 25.000 most frequent words that occur in
the training set. This feature aims at capturing re-
lations between certain words and overall message
polarity. The vector was extracted using the Weka
toolkit (Hall et al., 2009) with the stop word list
option.

Lexicon word count: positive and negative sen-
timent word counts. When the word is preceded by
a negation particle we invert the polarity. We used
Bing Liu’s Opinion Lexicon3 that includes 2006
positive and 4783 negative words and is especially
tailored for social media because it considers mis-
spellings, slang and other domain specific varia-
tions.

Smileys count: a count of positive and negative
smileys that appear in the tweet. We take advan-
tage of these constructs being especially indicative
of the overall expressed sentiment in a text (Davi-
dov et al., 2010). Although there are smiley lexi-
cons, such as the one used on SentiStrength4, we
used regular expressions to capture most common

2http://morphadorner.northwestern.edu/
3http://www.cs.uic.edu/˜liub/FBS/

sentiment-analysis.html
4http://sentistrength.wlv.ac.uk

smileys in a flexible way.
Hashtag count: a count of positive and negative

hashtags. This feature also uses Bing Liu’s lexicon
to determine wether a word contained in an hash-
tag is positive or negative. The rationale behind
this feature is that positive or negative words in the
form of hashtags can have a stronger meaning than
regular words (Davidov et al., 2010).

Positive/negative harmonic mean: harmonic
mean between positive and negative token counts,
including words and hashtags.

In an attempt to further reduce the dimensional-
ity of the feature space we computed the principal
components of the word vector using the Principal
Components Analysis filter in Weka but observed
that this yielded worse results.

4.3 Learning the classifier
To implement our classifier we used the Weka ma-
chine learning framework and experimented with
two ensemble algorithms: Random Forests and
BESTrees. We eventually dropped the use of BE-
STrees as initial results were worse.

We attempted to use most of the data while be-
ing able to effectively measure the performance of
the classifier. Therefore we used the totality of
both sets for training and evaluated using 10 fold
cross-validation.

Since we used only the annotated dataset that
was provided for this task, our approach is consid-
ered constrained.

5 Results

Our results with 10 fold cross-validation using the
submitted classifier, are presented in Table 3.

Class Precision Recall F-score
positive 61.0% 63.9% 62.4%
negative 54.1% 26.8% 35.8%
neutral 64.7% 72.4% 68.3%
average F-score (pos/neg) 49.1%

Table 3: Cross-validation results using the training set.

Task evaluation results are presented in Table 4
for tweets. Our approach ranked 44th out of 48
participants. The evaluation dataset had a sim-
ilar class distribution to the annotated datasets,
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with almost half being neutral, and just 14% neg-
ative. Preliminary results with cross-validation
were similar to those of the final evaluation for
Twitter.

Class Precision Recall F-score
positive 62.52% 55.28% 58.68%
negative 55.74% 21.80% 31.34%
neutral 56.54% 75.43% 64.63%
average F-score (pos/neg) 45.01%

Table 4: Task evaluation results for Tweets.

Also included in SemEval-2013 Task 2 was an
evaluation using a SMS dataset to understand if a
classifier trained using tweets could be applied to
SMS messages. SMS results are shown in Table 5.
In this case our approach ranked 23th out of 42 par-
ticipants. The SMS evaluation dataset was com-
posed of more than half neutral messages (58%),
and similarly distributed positives (23%) and neg-
atives (19%).

Class Precision Recall F-score
positive 53.66% 59.50% 56.45%
negative 60.54% 34.26% 43.76%
neutral 72.91% 79.90% 76.27%
average F-score (pos/neg) 50.11%

Table 5: Task evaluation results for SMS.

6 Discussion and Conclusions

As expected, our naive approach performs poorly
in the context of Twitter messages. The obtained
results are in line with similar approaches de-
scribed in the literature and we found that Ran-
dom Forests achieve the same performance as
other learning algorithms tried for the same task
(Koulompis et al., 2011).

The uneven distribution of classes in the data
may have also contributed to the low performance
of the classifier. Although the neutral class was
not considered in the evaluation, the datasets had
a great predominance of neutral messages whereas
the negative examples only accounted for 15% of
the corpus. This suggests that it could be useful to
use a minority class over-sampling method, such

as SMOTE (Chawla, 2002), to reduce the effect
of this imbalance on the data. We used n-grams
to model the words that compose each message.
However, this approach leads to very sparse rep-
resentations, thus becoming important to consider
techniques that reduce feature space. We experi-
mented with PCA, without success, but we still be-
lieve that applying feature selection algorithms or
denser word representations (Turian et al., 2010)
could improve performance in this task.

We find that our classifier performs better on the
SMS dataset. This might be explained by the fact
that SMS messages tend to be more direct, whereas
the same tweet can express, or show signs of, con-
tradictory sentiments. In fact, our naive approach
outperforms other systems that had better results
in the Twitter dataset, but it is difficult to say why,
given that we do not have access to the SMS test
set annotations.

Despite the poor ranking results, we achieved
our goal of performing basic experiments in the
task of sentiment analysis in Twitter and developed
a baseline system that will serve as a starting point
for future research.
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Abstract 

We propose a method for using discourse rela-
tions for polarity detection of tweets. We have 

focused on unstructured and noisy text like 

tweets on which linguistic tools like parsers and 

POS-taggers don’t work properly. We have 

showed how conjunctions, connectives, modals 

and conditionals affect the sentiments in tweets. 

We have also handled the commonly used ab-

breviations, slangs and collocations which are 

usually used in short text messages like tweets. 

This work focuses on a Web based application 

which produces results in real time. This ap-

proach is an extension of the previous work 

(Mukherjee et al. 2012). 

1. Introduction 

Discourse relation is an important component of 
natural language processing which connects 

phrases and clauses together to establish a cohe-
rent relation. Linguistic constructs like conjunc-

tions, connectives, modals, conditionals and ne-

gation do alter the sentiments of a sentence. For 

example, the movie had quite a few memorable 

moments but I still did not like it. The overall 

polarity of the sentence is negative even though 

it has one positive and one negative clause. This 
is because of the presence of the conjunction but 

which gives more weightage to the clause fol-

lowing the conjunction.  

Traditional works in discourse analysis use a 
discourse parser (Marcu  et al., 2003; Polanyi et 

al., 2004; Wolf et al., 2005; Welner et al., 2006; 

Narayanan et al., 2009; Prasad et al., 2010). 

Many of these works and some other works in 
discourse (Taboada et al., 2008; Zhou et al., 

2011) build on the Rhetorical Structure Theory 

(RTS) proposed by Mann et al. (1988) which 
tries to identify the relations between the nucleus 

 

 

and satellite in the sentence. 

 
Most of the work is based on well-structured text 

and the methods applied on that text is not suita-

ble for the discourse analysis on micro-blogs 

because of the following reasons: 
 

1. Micro-blogs like Twitter restricts a post 

(tweet) to be of only 140 characters. Thus, users 
do not use formal language to discuss their 

views. Thus, there are abundant spelling mis-

takes, abbreviations, slangs, collocations, discon-

tinuities and grammatical errors. 
These differences cause NLP tools like POS-

taggers and parsers to fail frequently, as these 

tools are built for well-structured text. Thus, 
most of the methods described in the previous 

works are not well suited for discourse analysis 

on Micro-blogs like text. 
2. The web-based applications require a 

fast response time. Using a heavy linguistic re-

source like parsing increases the processing time 

and slows down the application. 
  

Most of the previous work on discourse analysis 

does not take into consideration the conjunc-
tions, connectives, modals, conditionals etc and 

are based on bag-of-words model with features 

like part-of-speech information, unigrams, bi-
grams etc. along with other domain-specific fea-

tures like emoticons, hashtags etc. Our work 

harness the importance of discourse connectives 

like conjunctions, connectives, modals, condi-
tionals etc and show that along with bag-of-

words model, it gives better sentiment classifica-

tion accuracy. This work is the extension of 
(Mukherjee et al. 2012). 

 

The roadmap for the rest of the paper is as fol-

lows: Section 2 studies the effect of discourse 
relations on sentiment analysis and identifies the  
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critical ones. Section 3 talks about the semantic 

operators which influence the discourse rela-
tions. Section 4 discusses the lexicon based clas-

sification approach. Section 5 describes the fea-

ture engineering of the important features. Sec-

tion 6 gives the list of experiments conducted 
and analysis of the results. Conclusion and Fu-

ture Work is presented in Section 7. 

 

2. Discourse Relations Critical for Sen-

timent Analysis 

(Mukherjee et al. 2012) showed that that the fol-

lowing discourse relations are critical for SA as 

all relations are not useful for SA. Table 1 pro-
vides examples of various discourse relations. 

 

Violated Expectations and Contrast: In Exam-

ple 2, a simple bag-of-words feature based clas-
sifier will classify it as positive. However, it ac-

tually represents a negative sentiment. Such cas-

es need to be handled separately. In Example 5, 
“memorable" has (+1) score and “not like" has (-

1) score and overall polarity is 0 or objective 

whereas it should be negative as the final verdict 
following “but" is the deciding factor. 

 

These kinds of sentences refute the neighboring 

clause. They can be classified as Conj_Prev in 
which the clause preceding the conjunction is 

preferred and Conj_Fol in which the clause fol-

lowing the conjunction is preferred. 

 

Conclusive or Inferential Conjunctions: These 

are the set of conjunctions, Conj_infer, that tend 

to draw a conclusion or inference. Hence, the 
discourse segment following them (subsequently 

in Example 11) should be given more weight. 

 
Conditionals: In Example 3, “amazing" 

represent a positive sentiment. But the final po-

larity should be objective as we are talking of a 
hypothetical situation. 

 

Other Discourse Relations: Sentences under 

Cause-Effect, Similarity, Temporal Sequence, 
Attribution, Example, Generalization and Elabo-

ration, provide no contrasting, conflicting or hy-

pothetical information. They can be handled by 

taking a simple bag-of-words model.  

3. Semantic Operators Influencing Dis-

course Relations 

There are connectives or semantic operators 

present in the sentences which influence the dis-

course relation within a sentence. For example, 

in the sentence the cannon camera may bad de-
spite good battery life. The connective despite 

increases the weightage of the previous dis-

course element i.e. bad is weighted up but may 
introduces a certain kind of uncertainty which 

cannot be ignored.  

 

1.  (I did not study anything throughout the seme-

ster), so (I failed in the exams). 

2.  (Sourav failed to deliver in the penultimate test) 

despite (great expectations). 

3. If (I had bought the amazing Nokia phone), I 

would not be crying). 

4. (I love Cannon) and (I also love Sony). 

5. (The movie had quite a few memorable moments) 

but (I still did not like it). 

6. (The theater became interesting) after a while. 

7. According (to the reviews), (the movie must be 

bad). 

8. (Salman is a bad guy), for instance (he is always 

late). 

9. In addition (to the bad battery life), (the camera 

is also very costly). 

10. In general, (cameras from cannon (take great 

pictures). 

11. (They were not in favour of that camera) and 
subsequently (decided not to buy it). 

Table 1:  Examples of Discourse Coherent 

Relations 

Similarity, in the sentence He gave his best in 

the movie, but still it was not good enough to win 
an Oscar. The connective but increases the 

weight of the following discourse i.e. good and 

win are weighted up but presence of negation 
operator also cannot be ignored. 
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1. Modals: Events that are happening or are 

bound to happen are called realis events. And 
those events that have possibly occurred or have 

some probability to occur in distant future are 

known as irrealis events. And it is important to 

distinguish between the two as it also alters the 
sentiments in a piece of text. Modals depict ir-

realis events and just cannot be handled by sim-

ple majority valence model. 
 

(Mukherjee et al. 2012) divided modals into two 

categories: Strong_Mod and Weak_Mod. 
 

Strong_Mod is the set of modals that express a 

higher degree of uncertainty in any situation. 

Weak_Mod is the set of modals that express 
lesser degree of uncertainty and more emphasis 

on certain events or situations.  

 
Like conditionals, sentences with strong modals 

express higher degree of uncertainty, thus dis-

course elements near strong modals are weighted 
down. Thus, in the previous example the cannon 

camera may bad despite good battery life bad is 

toned down. 

 

Relations Attributes 

Conj_Fol but, however, never-

theless, otherwise, yet, 

still, nonetheless 

Conj_Prev till, until, despite, in 

spite, though, although 

Conj_Inf therefore, furthermore, 

consequently, thus, as 
a result, subsequently, 

eventually, hence 

Conditionals If 

Strong_Mod might, could, can, 
would, may 

Weak_Mod should, ought to, need 

not, shall, will, must 

Neg not, neither, never, no, 
nor 

Table 2: Discourse Relations and Semantic 

Operators Essential for Sentiment Analysis 

 

2. Negation: The negation operator inverts the 

polarity of the sentence following it. Usually, to 
handle negation a window (typically 3-5 words) 

is considered and the polarities of all the words 

are reversed. We have considered the window 

size to be 5 and reverse the polarities of all the 
words within the window, till either a conjunc-

tion comes or window size exceeds. For example 

In the sentence He gave his best in the movie, 
but still it was not good enough to win an Oscar 

polarities of good and win are reversed. 
  

4. Lexicon Based Classification 

We have used Senti-WordNet (Esuli et al. 2006), 

Inquirer (Stone et. al 1996) and the Bing Liu 

sentiment lexicon (Hu et al. 2004) to find out the 
word polarities. To compensate the bias effects 

introduced by the individual lexicons, we have 

used three different lexicons. The polarities of 
the reviews are given by (Mukherjee et al. 2012) 

 

𝑠𝑖𝑔𝑛 (   𝑓𝑖𝑗 ∗ 𝑓𝑙𝑖𝑝𝑖𝑗 ∗ 𝑝(𝑤𝑖𝑗 ))

𝑛𝑖

𝑖=1

𝑚

𝑖=1

 

 

𝑤𝑒𝑟𝑒 𝑝 𝑤𝑖𝑗  =  𝑝𝑜𝑙 𝑤𝑖𝑗   𝑖𝑓 𝑦𝑝𝑖𝑗 = 0 

                        

                             =  
𝑝𝑜𝑙 𝑤𝑖𝑗  

2
 𝑖𝑓 𝑦𝑝𝑖𝑗 = 1  

   

Above equation finds the weighted, signed po-

larity of a review. The polarity of each word, 
pol(wij) being +1 or -1, is multiplied with its dis-

course weight fij and all the weighted polarities 

are added. Flipij indicates if the polarity of wij is 
to be negated. 

In case there is any conditional or strong modal 

in the sentence (indicated by 𝑦𝑝𝑖𝑗 = 1 ), then 

the polarity of every word in the sentence is 

toned down, by considering half of its assigned 

polarity (
+1

2
 ,
−1

2
) 

Thus, if good occurs in the user post twice, it 

will contribute a polarity of +1 × 2 = +2 to the 

overall review polarity, if 𝑦𝑝𝑖𝑗 = 0. In the 

presence of a strong modal or conditional, it will 

contribute a polarity of 
+1

2
∗ 2 =  +1. 

497



All the stop words, discourse connectives and 

modals are ignored during the classification 
phase, as they have a zero polarity in the lexicon.  

We have handled commonly used slangs, ab-

breviations and collocations by manually tagging 

them as positive, negative or neutral.  

5. Feature Engineering 

The features specific for lexicon based classifi-
cation for the task sentiment Analysis, identified 

in Section 2.4, are handled as follows: 

 

a) The words following the Conj_Fol (Table 2) 
are given more weightage. Hence their frequency 

count is incremented by 1. 

We follow a naive weighting scheme whereby 
we give a (+1) weightage to every word we con-

sider important. In Example 5, “memorable" gets 

(+1) score, while “did not like" gets a (-2) score, 
making the overall score (-1) i.e. the example 

suggests a negative sentiment. 

 

b) The weightage of the words occurring before 
the Conj_Prev (Table 2) is increased by 1. In 

Example 2, “failed" will have polarity (-2) in-

stead of (-1) and “great expectations" will have 
polarity (+1), making the overall polarity (-1), 

which conforms to the overall sentiment. 

 
c) The weightage of the words in the sentences 

containing conditionals (if) and strong modals 

(might, could, can, would, may) are toned down. 

 
e) The polarity of all words appearing within a 

window of 5 from the occurrence of a negation 

operator (not, neither, nor, no, never) and before 
the occurrence of a violating expectation con-

junction is reversed. 

  

f) Exploiting sentence position information, the 
words appearing in the first k and last k sen-

tences, are given more weightage. The value of k 

is set empirically. 
 

g) The Negation Bias factor is treated as a para-

meter which is learnt from a small set of nega-
tive polarity tagged documents. The frequency 

count of all the negative words (in a rule based 

system) is multiplied with this factor to give 

negative words more weightage than positive 
words. 

6. Experiments and Evaluation 

For the lexicon-based approach, we performed 
two types of experiments- sentiment pertaining 

to a particular instance in a tweet (SemEval-

2013 Task A) and generic sentiment analysis of 
a tweet (SemEval-2013 Task B). We treat both 

the tasks similarly. 

 

6.1 Dataset 

 

We performed experiments on two Datasets: 

 
1) SemEval-2013-task 2 Twitter Dataset A con-

taining 4435 tweets without any external data. 

2) SemEval-2013-task 2 Twitter Dataset B con-
taining 3813 tweets without any external data. 

 

6.2 Results on the Twitter Dataset A and B 

 
The system performs best for the positive class 

tweets as shown in Table 3 and Table 4 and per-

forms badly for the negative class which is due 
to the fact that negative tweets can contain sar-

casm which is a difficult phenomenon to capture. 

Also the results of the neutral category are very 
less which suggests that our system is biased 

towards subjective tweets and we wish to give 

the majority sentiment in the tweets. 

  

Class Precision Recall F-score 

Positive 0.6706 0.5958 0.6310 

Negative 0.4124 0.5328 0.4649 

Neutral 0.0667 0.0063 0.0114 

Table 3: Results on Twitter Dataset A 

 

Class Precision Recall F-score 

Positive 0.4809  0.5941 0.5316 

Negative 0.1753   0.5374 0.2643 

Neutral 0.6071  0.0104 0.0204 

Table 4: Results on Twitter Dataset B 
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6.3 Discussion 

 
The lexicon based classifier suffers from the 

problem of lexeme space where it is not able 

handle all the word senses. Also, short-noisy text 

like tweets often contain various spelling mis-
takes like great can be grt, g8t etc. or tomorrow 

can be tom, tomm, tommrrw etc. which will not 

be detected and handled properly.  
 

We suggest that a supervised approach compris-

ing of the discourse features along with the bag-
of-words model and the sense based features will 

improve the results. 

 

7. Conclusion and Future Work 

We have showed that discourse connectives, 

conjunctions, negations and conditionals do alter 
the sentiments of a piece of text. Most of the 

work on Micro-blogs like twitter is build on bag-

of-words model and does not incorporate dis-

course relations. We discussed an approach 
where we can incorporate discourse relations 

along-with bag-of-words model for a web-

application where parsers and taggers cannot be 
used as the results are required in real time. 

 

We need to take into consideration word senses 
and a supervised approach to use all the features 

collectively. Also, a spell checker would really 

help in the noisy text like in tweets.  
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Abstract

This paper describes the specifications and re-
sults of SSA-UO, unsupervised system, pre-
sented in SemEval 2013 for Sentiment Analy-
sis in Twitter (Task 2) (Wilson et al., 2013).
The proposal system includes three phases:
data preprocessing, contextual word polarity
detection and message classification. The
preprocessing phase comprises treatment of
emoticon, slang terms, lemmatization and
POS-tagging. Word polarity detection is car-
ried out taking into account the sentiment as-
sociated with the context in which it appears.
For this, we use a new contextual sentiment
classification method based on coarse-grained
word sense disambiguation, using WordNet
(Miller, 1995) and a coarse-grained sense in-
ventory (sentiment inventory) built up from
SentiWordNet (Baccianella et al., 2010). Fi-
nally, the overall sentiment is determined us-
ing a rule-based classifier. As it may be ob-
served, the results obtained for Twitter and
SMS sentiment classification are good consid-
ering that our proposal is unsupervised.

1 Introduction

The explosion of Web 2.0 has marked a new age
for the human society. The huge use of Social Me-
dia such as Facebook1 , MySpace2 , LinkedIn3 and
Twitter4 , offers a place for people to share informa-
tion in real time. Twitter is one of the most popular

1https://www.facebook.com
2http://www.myspace.com/
3http://www.linkedin.com
4https://www.twitter.com/

social network websites and has been growing at a
very fast pace. The number of active users exceeds
500 million and the number of tweets posted by day
exceeds 500 million (as of May 2012)5. Through the
twitter applications, users shared opinions about per-
sonalities, politicians, products, companies, events,
etc. This has been attracting the attention of dif-
ferent research communities interested in analyz-
ing its content and motivated many natural language
tasks, such as sentiment analysis, emotions detec-
tion, opinions retrieval, product recommendation or
opinion summarization.

One of the most popular sentiment analysis tasks
is polarity classification. This task is a new field
that classifies opinion texts as positive, negative or
neutral (Pang et al., 2002; Turney, 2002; Esuli and
Sebastiani, 2006; Wilson et al., 2006; Wiegand et
al., 2010). Determining polarity might seem an easy
task, as many words have some polarity by them-
selves. However, words do not always express the
same sentiment, and in most cases the polarity of a
word depends on the context in which the word is
used. So, terms that clearly denote negative feel-
ings can be neutral, or even positive, depending
on their context. Hence, sentiment analysis sys-
tems should include semantic-level analysis in order
to solve word ambiguity and correctly capture the
meaning of each word according to its context. Also,
complex linguistic processing is needed to deal with
problems such as the effect of negations and infor-
mal language. Moreover, understanding the senti-
mental meaning of the different textual units is im-
portant to accurately determine the overall polarity

5http://www.statisticbrain.com/twitter-statistics/
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of a text.
In this paper, we present a system that has as main

objective to analyze the sentiments of tweets and
classify these as positive, negative or neutral. The
proposal system includes three phases: data prepro-
cessing, contextual word polarity detection and mes-
sage classification. The preprocessing phase com-
prises treatment of emoticons, spell-errors, slang
terms, lemmatization and POS-tagging. Word po-
larity detection is carried out taking into account the
sentiment associated with the context within which
it appears. For this, we use a new contextual senti-
ment classification method based on coarse-grained
word sense disambiguation, using WordNet (Miller,
1995) and a coarse-grained sense inventory (senti-
ment inventory) built up from SentiWordNet (Bac-
cianella et al., 2010). Finally, the polarity is deter-
mined using a rule-based classifier. The paper is
organized as follows. Section 2 describes of SSA-
UO system. In Section 3 we evaluate our proposal
and discuss the results obtained in the SemEval 2013
Task No. 2. Finally, section 4 provides concluding
remarks.

2 SSA-UO System

We use an unsupervised strategy consisting in a
coarse-grained clustering-based word sense disam-
biguation (WSD) method that differentiates positive,
negative, highly positive, highly negative and objec-
tive uses of every word on context which it occurs.
The proposal method uses WordNet and a coarse-
grained sense inventory (sentiment inventory) built
up from SentiWordNet. The overall architecture of
our sentiment classifier is shown in Figure 1.

Firstly, data preprocessing is done to eliminate in-
complete, noisy or inconsistent information. A Sen-
timent Word Sense Disambiguation method (Section
2.3) is then applied to content words (nouns, adjec-
tives, verbs and adverbs). Once all content words
are disambiguated, we apply a rule-based classifier
(Section 2.4) to decide whether the tweet is positive,
negative or neutral.

Unsupervised word sense disambiguation method
proposed by (Anaya-Sánchez et al., 2006) was
adapted for sentiment word sense disambiguation.
Unlike the authors, who aim to obtain the correct
sense of a word, we use the method to determine

Figure 1: Overall architecture of Sentiment Classifier

when a word is used with highly positive (HP), posi-
tive (P), highly negative (HN), negative (N) or objec-
tive (O) meaning based on a sentiment sense inven-
tory. We make sentiment sense inventory based on
sense-level annotation in SentiWordNet. Finally, we
apply a rule-based classifier to determine the overall
sentiment in tweet.

2.1 Data Preprocessing

The tweets differ from the text in articles, books, or
even spoken language. It is limited to 140 charac-
ters, also includes many idiosyncratic uses, such as
emoticons, slang terms, misspellings, URLs, “RT”
for re-tweet, “@” for user mentions, “#” for hash-
tags, and character repetitions. Therefore it is nec-
essary to preprocess the text, in order to reduce the
noise information. The preprocessing step involve
the following task. The text is tokenized and URL,
re-tweets and author mentions are removed. Hash-
tag tokens frequently contain relevant information
related to the topic of the tweet, this is included as
part of the text but without the “#” character. We
replace emoticon tokens by emotion words using
an emoticons dictionary, obtained from Wikipedia
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6. Each emoticon was manually annotated with an
emotion word and polarity value. Emoticons that
suggest positive emotions - “:-)”, “:)”, “X-D” - are
annotated with the emotion word “happy” and neg-
ative emoticons - “:-(”, “:-c”, “:,(” - are annotated
with the emotion word “sad”. The presence of ab-
breviations within a tweet is noted, therefore abbre-
viations are replaced by their meaning (e.g., LOL –
laughing out loud) using a dictionary7. Finally the
text is POS-tagged and lemmatized using TreeTag-
ger (Schmid, 1994) and stopwords are discarded.

2.2 Sentiment Sense Inventory

We considered SentiWordNet for building senti-
ment coarse-grained sense inventory. SentiWordNet
contain positive, negative and objective scores be-
tween 0 and 1 for all senses in WordNet. Based
on this sense level annotation, we define a new
rule (SentiS) for classifying senses in five sentiment
class. The senses are classified in the following man-
ner (Alexandra et al., 2009): senses whose positive
score is greater than or equal to 0.75 are consid-
ered to be highly positive (HP), senses with posi-
tive score greater than or equal to 0.5 and lower than
0.75 are considered positive (P), senses with nega-
tive score greater than or equal 0.75 are considered
highly negative (HN), whereas those whose negative
score is lower than 0.75 and greater than or equal to
0.5 are considered to be negative (N). In the remain-
ing cases, the senses are considered to be objective
(O) (see equation(1)).

sentiS(s)=



HP i f ScoreP(s)≥ 0.75
HN i f ScoreN(s)≥ 0.75
P i f ScoreP(s) < 0.75 and ScoreP(s)≥ 0.5
N i f ScoreN(s) < 0.75 and ScoreN(s)≥ 0.5
O in other case

(1)

Table 1 summarizes the distribution of the five
sentiment classes once classified all senses of Sen-
tiWordNet.

A notable unbalance can be observed between the
number of highly positive, highly negative, positive,
negative and objective senses.

6http://en.wikipedia.org/wiki/List of emoticons
7http://www.noslang.com/dictionary/

Once all senses were classified in a five sentiment
sense class, we create a coarse sense inventory based
on this classification. This inventory is defined in the
following manner: For each word in SentiWordNet
we grouped its senses with the same sentiment class
in a single sense (coarse-sense), in case of objective
senses these are kept separated.

2.3 Contextual Word Polarity Detection
Much work on sentiment analysis have been di-
rected to determine the polarity of opinion using
anotated lexicons with prior polarity (Hatzivas-
siloglou and McKeown, 1997; Kamps and Marx,
2002; Turney, 2002). However a word can mod-
ify your prior polarity in relation to the context
within which it is invoked. For example the word
“earthquake” is used with negative meaning in the
sentence :

“Selling the company caused an earthquake amount
the employees”.

Whereas it is used in an neutral meaning in the
sentence:

“An earthquake is the result of a sudden release of
energy in the Earth’s crust that creates seismic waves”.

For this reason, our system uses a coarse-grained
WSD method for obtaining the contextual polarity
of all words in tweets. The selected disambigua-
tion method (Anaya-Sánchez et al., 2006) was de-
veloped for the traditional WSD task. In this WSD
method, the senses are represented as topic signa-
tures (Lin and Hovy, 2000) built from the repository
of concepts of WordNet. The disambiguation pro-
cess starts from a clustering distribution of all pos-
sible senses of the ambiguous words by applying
the Extended Star clustering algorithm (Gil-Garcı́a
et al., 2003). Such a clustering tries to identify co-
hesive groups of word senses, which are assumed
to represent different meanings for the set of words.

Resource HP HN P N O
SWN 310 938 2242 2899 109035

Table 1: Senses highly positive, highly negative, positive,
negative and objective distributions.
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Then, clusters that match the best with the context
are selected. If the selected clusters disambiguate
all words, the process stops and the senses belong-
ing to the selected clusters are interpreted as the dis-
ambiguating ones. Otherwise, the clustering is per-
formed again (regarding the remaining senses) until
a complete disambiguation is achieved. It does not
distinguish between highly positive, positive, nega-
tive, highly negative or objective meaning of a word.
In this paper, we propose a strategy to built a coarse-
grained sense representation. Firstly, a topic signa-
tures for all senses into WordNet is built and the
topic signatures for coarse-grained senses is the sum
of the topic signatures of the corresponding fine-
grained senses that was grouped.

We explain coarse-grained sense representation
using the following example:

Let us consider the adjective “sad”. This adjec-
tive has three word senses into WordNet 2.0

sad#a#1 – experiencing or showing sorrow or unhappiness

sad#a#2 – of things that make you feel sad

sad#a#3 – bad; unfortunate

Firstly the topic signature are built for each word
sense:

vector1 = topicSignature(sad#a#1)

vector2 = topicSignature(sad#a#2)

vector3 = topicSignature(sad#a#3)

The senses are classified using equation (1)(in
Section 2.2), sense 1 and 3 were considered as
highly negative, whereas the sense 2 is objective.
The topic signature associated to highly negative
coarse-grained sense is computed as:

topicSignature(sad#a#HN) = sum(vector1+ vector3)

and objective coarse-grained sense is kept as
vector2

topicSignature(sad#a#O) = vector2

2.4 Rule-based Sentiment Classifier

We use a rule-based classifier to classify tweets into
positive, negative or neutral. A polarity value is as-

signed to each word, based on equation 2, after these
were disambiguated. It is necessary to clarify that
emotion words that replaced emoticons in the pre-
processing phase, are not disambiguated. Instead,
we give a prior polarity value equal to 4 if emotion
word is “happy” and -4 in case that emotion word is
“sad”. It is important to mention that the polarity of
a word is forced into the opposite class if it is pre-
ceded by a valence shifter (obtained from the Negate
category in GI (Stone et al., 1966)).

polarity(w) =



4
−4

2
−2

0

i f w is disambiguated as HP
i f w is disambiguated as HN
i f w is disambiguated as P
i f w is disambiguated as N
i f w is disambiguated as O

(2)

The polarity of the tweet is determined from the
scores of positive and negative words it contains. To
sum up, for each tweet the overall positive (PosS(t))
value and overall negative value (NegS(t)) , are com-
puted as:

PosS(t) = ∑
wi∈WP

polarity(wi) (3)

WP: Words disambiguated as highly positive or
positive in tweet t

NegS(t) = ∑
wi∈WN

polarity(wi) (4)

WN : Words disambiguated as highly negative or
negative in tweet t

If PosS(t) is greater than NegS(t) then the tweet
is considered as positive. On the contrary, if PosS(t)
is less than NegS(t) the tweet is negative. Finally, if
PosS(t) is equal to NegS(t) the tweet is considered
as neutral.

2.5 A Tweet Sentiment Classification Example

The general operation of the algorithm is illustrated
in the following example:

Let us consider the following tweet:

@JoeyMarchant: I really love Jennifer Aniston :-)
#loving, she is very cooooollll and sexy. I’m married to
her... LOL, http://t.co/2RShsRNSDW
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After applying the preprocessing phase, we
obtain the following normalized text:

I really love Jennifer Aniston “happy” loving, she
is very cooll and sexy. I’m married to her... lots of laughs.

When the text is lemmatized and stopwords are
removed, we obtain the following bag of words (for
each word we show: lemma and part-of-speech n-
noun, v-verb, a-adjective, r-adverb and u-unknown):

really#r love#v jennifer#a aniston#n “happy”#a
loving#a cooll#a sexy#a marry#v lot#n laugh#n.

After contextual word polarity detection, we
obtain the following result (for each word we
shown lemma, part-of-speech and sentiment sense,
HP-highly positive, HN-highly negative, P-positive,
N-negative and O-objective).

really#r#P love#v#P jennifer#a#O aniston#n#O
“happy”#a loving#a#HP cooll#a#O sexy#a#P
marry#v#O lot#n#O laugh#n#P

Once that all words were disambiguated we
obtained their polarities using the equation 2 intro-
duced in section 2.4. We show the polarities values
assigned to each word, in Table 2.

Word POS Sentiment Polarity
really r P 2
love v P 2

jennifer a O 0
aniston n O 0
“happy” a - 4
loving a HP 4
cooll a O 0
sexy a P 2

marry a O 0
lot n O 0

laugh n P 2

Table 2: Polarity assigned to each word

Note that the word “happy” has not been dis-
ambiguated, its polarity is assigned according
to the emoticon associated in the original tweet.

Afterward we compute overall positive and negative
polarity value:

NegS(t) = 0

PosS(t) = 2+2+4+4+2+2 = 16

Therefore, the tweet t is classified as positive.

3 Results

This section presents the evaluation of our system in
the context of SemEval 2013 Task No.2 Subtask B
(Sentiment Analysis in Twitter). For evaluating the
participant’s systems two unlabeled datasets were
provided, one composed of Twitter messages and
another of SMS messages. For each dataset two
runs can be submitted, the first (constrained), the
system can only be used the provided training data
and other resources such as lexicons. In the second
(unconstrained), the system can use additional data
for training. Our runs are considered as constrained
because SSA-UO only use lexical resources for sen-
timent classification.

Runs Dataset F1 all runs Rank
twitter-1 Twitter 50.17 33(48)

sms-1 SMS 44.39 33 (42)

Table 3: SSA-UO results in polarity classification, all
runs summited

Runs Dataset F1 constrained runs Rank
twitter-1 Twitter 50.17 25 (35)

sms-1 SMS 44.39 22 (28)

Table 4: SSA-UO results in polarity classification, con-
strained runs summited

In Table 3 we summarize the results obtained by
SSA-UO system. As may be observed average F1
measure for Twitter dataset is the 50.17 and 44.39
for the SMS dataset. A total of 48 runs were sub-
mitted by all systems participant’s in Twitter and 42
for SMS dataset. Our runs were ranked 33th for both
datasets.

In Table 4 we compare our results with those runs
that can be considered as constrained. A total of 35
runs for Twitter and 28 for SMS were submitted ,
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ours runs were ranked in 25th and 22th respectively.
It’s worth mentioning that, the results obtained can
be considered satisfactory, considering the complex-
ity of the task and that our system is unsupervised.

4 Conclusion

In this paper, we have described the SSA-UO system
for Twitter Sentiment Analysis Task at SemEval-
2013. This knowledge driven system relies on unsu-
pervised coarse-grained WSD to obtain the contex-
tual word polarity. We used a rule-based classifier
for determining the polarity of a tweet. The experi-
mental results show that our proposal is accurate for
Twitter sentiment analysis considering that our sys-
tem does not use any corpus for training.
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Abstract

This article describes a Sentiment Analysis

(SA) system named senti.ue-en, built

for participation in SemEval-2013 Task 2, a

Twitter SA challenge. In both challenge sub-

tasks we used the same supervised machine

learning approach, including two classifiers in

pipeline, with 22 semantic oriented features,

such as polarized term presence and index,

and negation presence. Our system achieved

a better score on Task A (0.7413) than in the

Task B (0.4785). In the first subtask, there is

a better result for SMS than the obtained for

the more trained type of data, the tweets.

1 Introduction

This paper describes the participation of a group

led by Universidade de Évora’s Computer Science

Department in SemEval-2013 Task 2 (Wilson et

al., 2013), using senti.ue-en system. Having

previous experience in NLP tasks, such as ques-

tion answering (Saias, 2010; Saias and Quaresma,

2012), this was the authors first attempt to imple-

ment a system for Sentiment Analysis (SA) in En-

glish language. We have a recent work (Fernandes,

2013) involving SA but it is geared towards Por-

tuguese language, and thought for regular text. It

was based on rules on the outcome of linguistic anal-

ysis, which did not work well for tweets, because the

morphosyntactic analyzer misses much, due to the

abundance of writing errors, symbols and abbrevia-

tions. Moreover, in that work we began by detecting

named entities and afterwards classify the sentiment

being expressed about them. For SemEval the goal

is different, being target-independent. In both A and

B subtasks, systems must work on sentiment polar-

ity, in a certain context or full message, but the target

entity (or the opinion topic) will not appear in the

output. Thus, we have decided that senti.ue-en

system would be implemented from scratch, for En-

glish language and according to the objectives of this

challenge, in particular the Task B.

2 Related Work

Microblogging and social networks are platforms

where people express opinions. In recent years

many papers have been published on social me-

dia content SA. Pang et al. (2002) applied machine

learning based classifiers for sentiment classification

on movie reviews. Their experimental results using

Naive Bayes, Maximum Entropy, and Support Vec-

tor Machines (SVM) algorithms achieved best re-

sults with SVM and unigram presence as features.

Some target-dependent approaches are sensitive to

the entity that is receiving each sentiment. A sen-

tence can have a positive sentiment about an entity

and a negative for another. Such classification can

be performed with rules on the occurrence of nouns,

verbs and adjectives, as done in (Nasukawa and Yi,

2003). It is common to use parsers and part-of-

speech tagging. Barbosa and Feng (2010) explore

tweet writting details and meta-information in fea-

ture selection. Instead of using many unigrams as

features, the authors propose the use of 20 features

(related to POS tags, emoticons, upper case usage,

word polarity and negation), achieving faster train-

ing and test times. A two-phase approach first clas-
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sifies messages as subjective and objective, and then

the polarity is classified as positive or negative for

tweets having subjectivity. Groot (2012) builds a

feature vector with polarized words and frequently

occurring words being taken as predictive for Twit-

ter messages. Supervised learning algorithms as

SVM and Naive Bayes are then used to create a pre-

diction model. The work (Gebremeskel, 2011) is fo-

cused on tweets about news. Authors report an ac-

curacy of 87.78% for a three-classed sentiment clas-

sification using unigram+bigram presence features

and Multinomial Naive Bayes classifier. In Jiang et

al. (2011) work, Twitter SA starts with a query, iden-

tifying a target, and classifies sentiment in the query

result tweets, related to that target. Instead of con-

sidering only the text of a tweet, their context-aware

approach also considers related tweets and target-

dependent features. With precise criteria for the con-

text of a tweet, authors seek to reduce ambiguity and

report performance gains.

3 Methodology

As in most systems described in the literature, in
this area, our senti.ue-en system is based on su-
pervised machine learning. To handle the data for-
mat, in the input and on the outcome of the system,
we chose to use Python and the Natural Language
Toolkit (NLTK), a platform with resources and pro-
gramming libraries suitable for linguistic processing
(Bird, 2006). Task A asks us to classify the senti-
ment in a word or phrase in the context of the mes-
sage to which it belongs. For Task B, we had to
classify the overall sentiment expressed in each mes-
sage. Since tweets are short messages, we early have
chosen to apply the same system for both tasks, ad-
mitting some possible difference in training or pa-
rameterization. As the fine control of the correspon-
dence between each sentiment expression and its tar-
get entity is not sought, Task A is treated as a spe-
cial case of Task B, and our system does not con-
sider the text around the expression to classify. The
organization prepared a message corpus for training
and another to be used as a development-time eval-
uation dataset. We merged the training corpus with
the development corpus, and our development test
set was dynamically formed by random selection
of instances for each class (positive, negative and
neutral). Some tweets were not downloaded prop-
erly. For message polarity classification, we ended
up with 9191 labeled messages, which we split into
training and test sets.

Text processing started with tokenization, that was
white space or punctuation based. Some experi-
ments also included lemmatization, done with the
NLTK WordNet Lemmatizer. In the first approach
to Task B, we applied the Naive Bayes classification
algorithm using term presence features. The test set
was formed by random selection of 200 instances
of each class. After several experiments with this
system configuration, the average accuracy for the 3
classes was close to 45%. Looking for better results,
instead of the bag-of-words approach, we chose a
smaller set of semantic oriented features:

• presence of polarized term

• overall value of sentiment in text

• negation presence

• negation before polarized expression

• presence of polarized task A n-grams

• overall value of polarized task A n-grams

• overall and presence of similar to Task A n-grams

• first and last index of polarized terms

Checking for the presence of positive and negative

polarized terms produces two features for each of

the three sentiment lexicons used by our system.

AFINN (Nielsen, 2011) is a sentiment lexicon con-

taining a list of English words rated between minus

five (negative) and plus five (positive). The words

have been manually labeled by Finn Årup Nielsen,

from 2009 to 2011. SentiWordNet (Baccianella et

al., 2010) is a lexical resource for opinion mining

that assigns sentiment scores to each synset of Word-

Net (Princeton University, 2010). After some exper-

imentation with this resource, we decided to apply a

threshold, disregarding terms whose score absolute

value is less than 0.3. Another sentiment lexicon,

from Liu et al. (2005), derived from a work on online

customer reviews of products. The overall text sen-

timent value is calculated by adding the sentiment

value in each word. This is the way chosen to handle

more than one sentiment in a single tweet. Our sys-

tem creates a separated overall sentiment value fea-

ture for AFINN, SentiWordNet and Liu’s lexicons,

because each resource uses a different range of val-

ues. Each of these features is calculated by summing

the sentiment value in each word of the text clas-

sify. Detection of denial in the text also gave rise to

a feature. Thinking in cases like ”This meal was not
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good”, we created features for the presence of denial

before positive and negative expressions, where the

adjective’s sentiment value is inverted by negation.

In these two features, an expression is polarized if

it is included in any of the sentiment lexicons. The

training corpus for Task A included words or phrases

marked as positive or negative. We created two more

features to signal the presence of polarized words

or n-grams in the texts to be classified. To comple-

ment, another feature accounts for the overall Task

A polarized n-grams value, adding 1 for each posi-

tive occurrence and subtracting 1 every negative oc-

currence in the tweet. Because a term can arise in

inflected form, we added another three features to

assess the same on Task A data, but accepting varia-

tions in words or expressions. Using lemmatization

and synonyms, we seek more flexibility in n-gram

verification. The last four features identify the text

token index for the first and the last occurrence, for

each sentiment flavor, positive and negative, accord-

ing to any used sentiment lexicon. Emoticons are

present in sentiment lexicons, so it was not created a

specific feature for them.

Using these 22 features with Naive Bayes, the aver-

age overall accuracy was 60%. When analyzed by

class, the lower accuracy happens on neutral class,

near 50%. Accuracy por positive class was 68%,

and for negative it was 63%. For the next iteration,

the NLTK classifier was set up for Decision Tree al-

gorithm. After several runs, we noticed that while

the overall accuracy remained identical, the poorest

results came now for the negative class, having 54%

accuracy. The run average accuracy for classes pos-

itive and neutral, was respectively 59% and 64%. In

the latest evolution the system applies two classifiers

in sequence. Each tweet is first classified with Naive

Bayes. This creates a new feature for the second

classifier, which is considered along with the previ-

ous ones by the Decision Tree algorithm. This con-

figuration led us to the best overall accuracy in the

development stage, with 62%, and was the version

applied to Task B in constrained mode.

The unconstrained mode allowed systems to use ad-

ditional data for training. The IMDB dataset (Maas

et al., 2011) contains movie reviews with their asso-

ciated binary sentiment polarity labels. We chose a

subset of this corpus consisting of 500 positive and

500 negative reviews with less than 350 characters.

T Data Mode Positive Negative Neutral

A

sms
C 0.8079 0.8985 0.1130

U 0.8695 0.9206 0.1348

twitter
C 0.9190 0.8162 0.0588

U 0.9412 0.8411 0.0705

B

sms
C 0.4676 0.4356 0.7168

U 0.4625 0.4161 0.7293

twitter
C 0.6264 0.3996 0.5538

U 0.6036 0.3589 0.5621

Table 1: senti.ue-en precision in Tasks A and B

Sanders used a Naive Bayes classifier and token-

based feature extraction to create a corpus (Sanders,

2011) for SA on Twitter. We were able to discharge

only part of the corpus, from which we selected

250 positive tweets and the same number of neg-

ative ones. In unconstrained mode, senti.ue-en

has the same configuration, but uses extra instances

from these two corpus for training.

Task A is treated with the same mechanism. The

system classifies the sentiment for the text inside the

given boundaries. Because many of these cases have

a single word, our system uses a third extra corpus

for training in unconstrained mode. Each word on

AFINN lexicon is added to training set, with pos-

itive or negative class, depending on its sentiment

value.

4 Results

We submitted our system’s result for each of the

eight expected runs. Each run was a combination

of subtask (A or B), dataset (Twitter or SMS) and

training mode (constrained or unconstrained). After

the deadline for submission, the organization evalu-

ated the results. The precision in our system’s output

is indicated in Table 1. The use of more training in-

stances in unconstrained mode leads to an improve-

ment of precision in Task A, for all classes. In Task

B we notice the opposite effect, with a slight drop in

precision for positive and negative classes, and about

1% improvement in neutral class precision. We also

note that precision has lower values in neutral class

for Task A, whereas in Task B it is the class negative

that has the lowest precision.

Table 2 shows the recall obtained for the same re-

sults. This metric also shows a gain in Task A,

for positive and negative classes using unconstrained

mode. For subtask B, the constrained mode had bet-
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T Data Mode Positive Negative Neutral

A

sms
C 0.5341 0.5453 0.6792

U 0.6471 0.6196 0.6730

twitter
C 0.4898 0.4958 0.7500

U 0.6203 0.5704 0.7000

B

sms
C 0.5711 0.3350 0.7061

U 0.5386 0.4594 0.6556

twitter
C 0.5515 0.3245 0.6555

U 0.5280 0.4359 0.5854

Table 2: senti.ue-en recall in Tasks A and B

T Data Mode Positive Negative Neutral

A

sms
C 0.6431 0.6787 0.1937

U 0.7420 0.7407 0.2246

twitter
C 0.6390 0.6169 0.1090

U 0.7478 0.6798 0.1281

B

sms
C 0.5142 0.3788 0.7114

U 0.4977 0.4367 0.6905

twitter
C 0.5866 0.3581 0.6004

U 0.5633 0.3937 0.5735

Table 3: senti.ue-en F-measure in Tasks A and B

ter recall for positive and neutral classes. But recall

varies in the opposite direction in the negative class

when using our extra training instances.

Using the F-measure metric to evaluate our results,

we get the values in Table 3. This balanced assess-

ment between precision and recall confirms the im-

provement of results in Task A when using the un-

constrained mode. We note, for Task B, a small loss

in unconstrained mode on positive class, but that is

outweighed by the gain on the negative class.

In SemEval-2013 Task 2, the participating systems

are ranked by their score. This corresponds to the

average F-measure in positive and negative classes.

Table 4 shows the score obtained by our system. The

score is in line with our forecasts in the Task A, but

below what we wanted in Task B. Looking at Table 3

we see that positive and negative classes’ F-measure

values are substantially lower than the values for

neutral class, in Task B and in both constrained and

unconstrained mode. For Task B, most correct re-

sults were in the class less relevant for the score.

5 Conclusions

With our participation in SemEval-2013 Task 2 we
intended to build a real-time SA system for the En-
glish used nowadays in social media content. This
goal was achieved and we experienced the use of im-

T Data Mode Score

A

sms
C 0.6609

U 0.7413

twitter
C 0.6279

U 0.7138

B

sms
C 0.4465

U 0.4672

twitter
C 0.4724

U 0.4785

Table 4: senti.ue-en score

portant English linguistic resources to support this
task, such as corpora and sentiment lexicons.
We had some problems detected only after the close
of submission. Lemmatization did not always work
well. In ’last index of polarized term’ feature, we
noticed a problem that ironically came precisely at
the version used to submit, where the last index
was counted from the start of text, and it should be
counted from the end.
We think that the difference in system performance
between Task A and Task B has to do with the
amount of noise present in the text. Because many
of the texts to classify in Task A had a single word
or a short phrase, the system was more likely to suc-
ceed. Another reason is the fact that our system has
not been tuned to maximize the score (F-measure in
positive and negative classes). During development
we took into account only the overall accuracy seen
in NLTK classifier result. Perhaps the overall system
performance may have been affected by our deci-
sion of merge the training and the development cor-
pus as training set. We used a class balanced set for
development-time evaluation, smaller than the given
development set, and the final test set had a different
class distribution (Wilson et al., 2013).
By reviewing the system, we feel that the classifica-
tion algorithms in the pipeline system should swap.
Now we would use first the Decision Tree classi-
fier, and after, receiving an extra feature, the Naive
Bayes classifier, which as mentioned in section 3,
suggested slightly better results for positive and neg-
ative classes. For the future, we intend to evolve the
system in order to become more precise and target-
aware. For the first part we need to review and evalu-
ate the actual contribution of the current features. As
for the second, we intend to introduce named entity
recognition, so that each sentiment can be associated
with its target entity.
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Abstract

For SemEval-2013 Task 2, A and B (Sen-
timent Analysis in Twitter), we use a rule-
based pattern matching system that is based on
an existing ‘Domain Independent’ sentiment
taxonomy for English, essentially a highly
phrasal sentiment lexicon. We have made
some modifications to our set of rules, based
on what we found in the annotated training
data that was made available for the task. The
resulting system scores competitively, espe-
cially on task B.

1 Introduction

SAS taxonomies for sentiment analysis are primar-
ily topic-focused. They are designed to track sen-
timent around brands, entities, or other topics and
subtopics in a domain (Lange and Sethi, 2011;
Lakkaraju and Sethi, 2012; Albright and Lakkaraju,
2011). Domain-independent taxonomies have a
second function. In addition to performing topic-
focused tasks, they can be set up to perform senti-
ment analysis at the document level, classifying the
whole document as positive, negative, or neutral. In
this task all sentiment expressions are taken into ac-
count, rather than only those which are related to
the tracked topic. This second function is becom-
ing increasingly important. It allows for a broader
perspective that is complementary to topic-focused
opinion mining.

We participated in both subtask A and B of
SemEval-2013 Task 2: Sentiment Analysis in Twit-
ter (Wilson et al., 2013) with an adaptation of our
existing system. For task B, identifying the overall

sentiment of a tweet, our taxonomy mainly needed
some fine-tuning to specifically accommodate Twit-
ter data. (Normally tweets only make up a small
part of the data we work with.) We also made a
few adaptations to focus entirely on document level
sentiment, whereas originally the main focus of our
system was on tracking sentiment around products.
For task A, identifying the sentiment of ambiguous
phrases in a tweet, a few more modifications were
needed.

Our system is entirely rule-based, and the rules
are hand-written. In some cases, statistical text min-
ing approaches are used for the discovery of topics
and terms to facilitate rule writing. Our sentiment
analysis software does offer a statistical component,
but our experience is that purely rule-based models
work better for our typical sentiment analysis tasks.

Advantages of rules are that problems observed
in the output can be targeted directly, and the model
can become more and more refined over time. Also,
they allow for simple customization. In our brand-
centered work, we customize our taxonomies for
one or more brands that we want to track. When
we build a taxonomy for a new domain, we build
upon work we have done before in other domains.
The assignment of sentiment to certain phrases can
be sensitive to context where it needs to be. The
canceled task C, identifying sentiment related to a
topic, could have been approached successfully with
a rule-based approach, as our rules are specifically
designed to connect sentiment to targeted topics.

Section 2 describes the basic architecture of our
system, followed by a section on related work. Then
sections 4 and 5 describe the adaptations made for
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each subtask and present the results. This is fol-
lowed by a more general discussion of our approach
in the light of these results in section 6, and the con-
clusion in section 7.

2 The base system

The datasets we normally use for the development
of our taxonomies include blogs, forums, news, and
Twitter. When developing a domain-specific taxon-
omy, we collect data for that particular domain, e.g.
Banking, Retail, Hospitality. We build the taxonomy
with the terms we encounter in those documents,
and test on a new set of documents. The Domain
Independent taxonomy started out as the common
base derived from several of these taxonomies, and
was then built out and tested using a wider range of
English-language documents. Since we used some
other tweets in the development of the original sys-
tem, our submission is considered unconstrained.

Our rules are patterns that match words or se-
quences of words, which makes our approach essen-
tially lexicon-based. Matching occurs left-to-right
and longer matches take precedence over shorter
ones. The top level rules in our sentiment taxonomy
are set up to recognize positive and negative word-
sequences. There is also a set of ‘neutral’ rules at
that level that block the assignment of positive or
negative sentiment in certain cases.

A positive or negative sequence can consist of a
single word from the positive or negative word-lists,
or a spelled out phrase from the positive or nega-
tive phrase-lists. Alternatively, it can be built up out
of multiple components, for example an emphatic
modifier and a sentiment term, or a negation and a
sentiment term. We call these sequences Positive
and Negative ‘Contexts’, since they are contexts for
the topic-terms that we normally track.

Documents are preprocessed by an in-house POS-
tagger. Rules can require a word to have a particular
part of speech.

The words in the word-list, or in any of the other
rules, can be marked with an ‘@’-sign to enable
morphological expansion, and in that case they will
match any of the forms in their paradigm. For ex-
ample ‘love@’ will match love, loves, loved, and
loving. This functionality is supported by a mor-
phological dictionary that links these forms to their

stem.
The rules are organized into lists that represent

useful concepts, which can be referred to in other
rules as a means of abstraction. For example the
rule:

def{Negation} def{PositiveAdjectives}

matches phrases that are composed of a negation (as
defined in the list named Negation) and a positive
adjective (as defined in the list named PositiveAd-
jectives). Negation includes rules like ‘hasn’t been’,
‘doesnt’[sic], ‘not exactly the most’, etc., and Posi-
tiveAdjectives contains a rule that matches words in
PositiveWords if they are also tagged as adjectives.
For efficiency reasons the dependencies cannot be
circular, hence not allowing for recursion.

Distance rules can be used to capture a longer
span, matching a specified pattern at the beginning
and at the end, including arbitrary intervening words
up to a specified number. They can also be used to
make matching a term dependent on specified terms
in the context. For example,

(SENT, (DIST 4, “ a{ def{HigherIsBetter}}”,

“ a{ def{Lowering}}”))

will capture phrases that say a company’s profit
(HigherIsBetter) went down (Lowering). The
SENT-operator prevents matching across sentence
boundaries.

(ORDDIST 7, “ def{PositiveContext}”,

“ a{ def{PositiveAmbig}}”)

will capture ambiguous positive expressions when
they follow an unambiguously positive sequence
within a distance of 7 words.

This ensemble of lists and rules has grown rela-
tively organically, and is motivated by the data we
encounter. We introduce new distinctions when we
feel it will make a difference in terms of results,
or sometimes for ease of development and mainte-
nance.

Usually each sentiment expression has the same
weight, and one positive and one negative expres-
sion cancel each other out. However at the top level
we can introduce weights, and we have done so in
this model. We have created lists of weak positive
and negative expressions, and we gave those very
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Positive:
• (ORDDIST 2, “ a{exceed@}”, “ a{expectation@}”)

• :Pro could not be happier

• blown away by

• def{Negation} want@ it to end

• above and beyond

• break@ down barriers

• can’t go wrong with

• dying to def{Consume}
• save@ me def{Money}
• (ALIGNED, “ c{treat@}”, ”:N”)

Negative:
• def{Negation} find def{NounPhrases}

def{PositivePhrases}
• (SENT, (ORDDIST 7, “ a{disappointed that}”,

“ a{ def{PositivePhrases}}”))

• I would have loved

• def{Negation} accept@

• breach of def{PositiveWords}
• def{Money} magically disappears

• lack of training

• make@ no sense

• subject@ me to

• fun dealing with

Figure 1: Examples of rules for positive and negative
phrases and patterns.

low weights, so that they would only matter if there
were no regular-strength expressions present. We
limited some of those weak sentiment rules to sub-
task A only, but they clearly helped with recall there.

Negations in the default case turn positives into
negatives and negatives into neutrals. In addition to
negations we also have sentiment reversers, which
turn negatives into positives. Simple negations nor-
mally scope over a right-adjacent word or phrase, for
example a noun phrase or a verb. A special class of
clausal negations (I don’t think that) by approxima-
tion take scope over a clause.

This system contains roughly 2500 positive words
and 2000 positive phrases, and roughly 7500 neg-
ative words and 3000 negative phrases. Some ex-
amples are given in Figure 1. The neutral list also
contains about 2000 rules. Other helper lists such as

Negation, EmphaticModifiers, and Money typically
contain about a hundred rules each.

A system like this takes about six to eight weeks
to build for a new language. This requires a deve-
loper who is already familiar with the methodology,
and assumes existing support for the language, in-
cluding a morphological dictionary and a part-of-
speech tagger.

3 Related work

In tasks that are not topic-related, purely rule-based
models are rare, although the winning system of
SemEval-2010 Task 18 (Wu and Jin, 2010), some-
what similar to task A, was rule-based (Yang and
Liu, 2010). Liu (2010) suggests that more rule-
based work may be called for. However, there are
many other systems with a substantial rule-based
component (Nasukawa and Yi, 2003; Choi and
Cardie, 2008; Prabowo and Thelwall, 2009; Wilson
et al., 2005). Systems commonly have some rules
in place that account for the effect of negation (Wie-
gand et al., 2010) and modifiers. Sentiment lexicons
are widely used, but mainly contain single words
(Baccianella et al., 2010; Taboada et al., 2011). For
topic-related tasks, rule-based systems are a bit more
common (Ding et al., 2008).

4 Task A

Task A was to assign sentiment to a target in context.
The target in isolation would often be ambiguous. It
was a novel challenge to adapt our model for this
subtask.

Since we normally track sentiment around spe-
cific topics, we can usually afford to ignore highly
ambiguous phrases. Typical examples of this are
ambiguous emoticons and comments like no joke at
the end a sentence, or directly following it. When
these are used and could be disambiguated, usually
there is a less ambiguous term available that occurs
closer to the topic-term that we are interested in. (In
some cases we do use the topic as disambiguating
context.)

Also, we generally place slightly more empha-
sis on precision than on recall, assuming that with
enough data the important trends will emerge, even
if we ignore some of the unclear cases and outliers.
This makes the output cleaner and more pleasant to
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work with for follow-up analysis.

4.1 Model adaptations and processing
We adapted our model to task A by introducing lists
of ambiguous positive and negative terms that were
then disambiguated in context, e.g. if there was an-
other sentiment term of a specified polarity nearby.
We also added some larger patterns that included an
ambiguous term, but as a whole had a much clearer
polarity. Below are some examples of rules for the
word like, which is highly ambiguous in English.

1. (ALIGNED, “ c{like@}”, “:V”) (pos)

2. likes (pos)

3. I like (pos)

4. like magic (pos)

5. give it a “like” (pos)

6. kinda like it (weakpos)

7. doesn’t seem like (hypothetical)

8. How can you like (neg)

9. don’t like (neg)

10. like to pretend (neg)

11. treated like a number (neg)

12. Is it like (neutral)

13. a bit like (neutral)

14. the likes of (neutral)

A seemingly obvious rule for like is (1), restrict-
ing it to usage as a verb. However, disambiguating
like is a difficult task for the tagger too, and the re-
sult is not always correct. Therefore this rule is a
fall-back case, when none of the longer rules apply.
Inflected forms such as (2) are pretty safe, with a
few exceptions, which can be caught by neutralizing
rules, such as (14). The hypothetical case, (7), is not
used in task A, but it is in task B.

A potential issue for our results on this task is that
our system only returns the longest match. So in a
sentence such as ‘I didn’t like it’, if you ask people
to annotate like, they may say it is positive, whereas
the longer phrase didn’t like is negative. In the out-
put of our system, like will only be part of a negative
sequence. The information that it was originally rec-
ognized as a positive word cannot be retrieved at the
output level.

We found that the annotators for task A were in
general much more liberal in assigning sentiment
than we normally are. We made major gains by re-
moving some of our neutralizing rules, for example

those that neutralize sentiment in hypothetical con-
texts, and by classifying negations that were not part
of a larger recognized phrase as weak negatives.

The annotations in the development data were
sometimes confusing (see also section 6). We had
some difficulty in figuring out when certain terms
such as hope or miss you should be considered
positive and when negative. The verb apologize
turned out to be annotated sometimes positive and
sometimes negative in near identical tweets.

The test items were processed as follows:

1. run the sentiment model on the text (tweet/SMS)

2. identify the target phrase as a character span

3. collect detected sentiment that overlaps with the tar-
get phrase

(a) if there is no overlapping sentiment expres-
sion, the sentiment is neutral

(b) if there is exactly one overlapping sentiment
expression, that expression determines the
sentiment

(c) if there is more than one sentiment expression
that overlaps with the target, compute which
sentiment has more weight (and in case of a
draw, assign neutral)

4.2 Results
We get a higher precision for positive and negative
sentiment on task A than any of the other teams,
but we generally under-predict sentiment. Precision
on neutral sentiment is very low. Detecting neutral
phrases did not seem to be a very important goal in
the final version of this task, though. The results of
our predictions on the Twitter portion of the data are
shown in Figure 2.

These results are slightly different from what we
submitted, as we did not realize at the time of sub-
mission that the encoding of the text was different
in the test data than it had been in the previously re-
leased data. The submitted results are included in
the summarizing Table 1 at the end of the discussion
section.

Some targets are easily missed. We do not have
a good coverage of hashtags yet, for example. We
incorporate frequent misspellings that are common
in Twitter and SMS. However, we have no general
strategy in place to systematically recognize uncon-
ventionally spelled words (Eisenstein, 2013). For
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gs \ pred positive negative neutral
positive 1821 77 888 2734
negative 47 1091 403 1541
neutral 11 6 143 160

1879 990 1382 4435

class precision recall f-score
positive 0.9691 0.6661 0.7895
negative 0.9293 0.7080 0.8037
neutral 0.1035 0.8938 0.1855
average(pos and neg) 0.7966

Figure 2: Confusion table and scores on task A, tweets

a project that processes Twitter data it would also
make sense to periodically scan for new hashtags
and add them to the rules if they carry sentiment.
However, a sentiment lexicon is never quite com-
plete.

Therefore we experimented with a guessing com-
ponent. If we do not detect any sentiment in the tar-
get sequence, we let our model make a guess, based
on the overall sentiment it assigns to the document,
assuming that an ambiguous target overall is more
likely to be positive in a positive context and neg-
ative in a negative context. (Note that this is differ-
ent from our disambiguation rules, which only apply
to explicitly listed items.) This gives us substantial
gains on this subtask (Figure 3). However, this may
not hold up in a similar task where there are more
neutral instances than there were here, as we see a
decrease in precision on positive and negative.

gs \ pred positive negative neutral
positive 2147 230 357 2734
negative 137 1249 155 1541
neutral 50 33 77 160

2334 1512 589 4435

class precision recall f-score
positive 0.9199 0.7853 0.8473
negative 0.8261 0.8105 0.8182
neutral 0.1307 0.4813 0.2056
average(pos and neg) 0.8327

Figure 3: Confusion table and scores on task A, tweets,
with guessing

5 Task B

Task B was to predict the overall sentiment of a
tweet. This was much closer to the task our tax-
onomy is designed for, and yet it turned out to be
different in subtle ways.

5.1 Model adaptations and processing

We quickly found that running the model as we had
adapted it for subtask A over-predicted sentiment
on subtask B. We therefore put most of our neu-
tralizing rules back in place for this subtask, and
restricted a subset of the weak sentiment terms to
subtask A only. We disabled the mechanism that
helped us catch ambiguous terms in subtask A (see
section 4.1).

For processing we used our standard method,
comparing the added weights of the positive and of
the negative sequences found. The highest score
wins. In case of a draw, the document is classified as
neutral. ‘Unclassified’ (no sentiment terms found)
also maps to neutral for this task. A confidence score
is computed, but not used here.

5.2 Results

Our system compares positively to those of the other
teams. Originally we were in 3rd place as a team
on the Twitter data. After correcting for the encod-
ing problem we rise to second (assuming the other
teams did not have the same problem). Among un-
constrained systems only, we are first on tweets and
second on SMS. The results, after the correction, are
shown in Figure 4. As for task A, the original results
are included in the final summarizing Table 1.

gs \ pred positive negative neutral
positive 1188 88 296 1572
negative 66 373 162 601
neutral 408 202 1030 1640

1662 663 1488 3813

class precision recall f-score
positive 0.7148 0.7557 0.7347
negative 0.5626 0.6206 0.5902
neutral 0.6922 0.6280 0.6586
average(pos and neg) 0.6624

Figure 4: Confusion table and scores on task B, tweets
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6 Discussion

We modified an existing rule-based system for Sem-
Eval Task 2. While the development of this exist-
ing system was a considerable time investment, the
modifications for the two SemEval subtasks took
no more than about 2 person-weeks in total. The
models used in task A and B have a large common
base, and our rule-based approach measures up well
against other systems. This shows that if the work is
done once, it can be re-used, modified, and refined.

As mentioned in section 4.1, the annotations did
not always seem consistent. The guidelines did not
ask the annotators to keep in mind a particular task
or purpose for their annotations. However, the cor-
rect annotation of a tweet or fragment can vary de-
pending on the purpose of the annotation. Non-
arbitrary choices have to be made as to what counts
as sentiment: Do you try to identify cases of im-
plicit sentiment? Do you count cases of quoted or
reported ‘3rd-party’-sentiment? . . . Ultimately it
depends on what you are interested in: Do you want
to: -track sentiment around certain topics? -know
how authors are feeling? -assess the general mood?
-track distressing versus optimistic messages in the
news? . . . While manual rule writing allows us to
choose a consistent strategy, it was not obvious what
the optimal strategy was in this SemEval task.

There were considerable differences in annotation
strategy between task A and task B, which shared the
same tweets. The threshold for detecting sentiment
appeared to be considerably lower in task A than in
task B. This suggests that different choices had been
made. These choices probably reflect how the anno-
tators perceived the tasks.

In our core business, we primarily track sentiment
around brands. One of the choices we made was
to also include good and bad news about the brand
(such as that the company’s stock went up or down)
where no explicit sentiment is expressed, because
the circulation of such messages reflects on the rep-
utation of the brand. (Liu (2010) points out that a
lot of sentiment is implicit.) In task B, we noticed
that ‘newsy’ tweets had a tendency to be annotated
as neutral. We did not have the time to thoroughly
adapt our model for that interpretation.

Both manually annotating training data for super-
vised machine learning and using training data for

manual rule writing require a lot of work. Both
can be crowd-sourced to a large extent if the pro-
cess is made simple enough, and the instructions
are clear enough. All methods that use lists of sen-
timent terms benefit from automatically extracting
such terms from a corpus (Qiu et al., 2009; Wiebe
and Riloff, 2005). As those methods become more
sophisticated, the work of rule writers becomes eas-
ier. Since the correct annotation depends on the task
at hand, and there are many different choices that
can be made, annotated data can be hard to reuse for
a slightly different task than the one for which it was
created. In rule-based models it is easier to leverage
earlier work and to slightly modify the model for a
new task. Both the rules and the model’s decision-
making process are human-interpretable.

Table 1 (next page) summarizes our results on the
various portions of the task, and under different con-
ditions. The results on SMS-data are consistently
lower than their counterparts on tweets, but they fol-
low the same pattern. We conclude that the model
generalizes to SMS, but not perfectly. This is not
surprising, since we have never looked at SMS-data
before, and the genre does appear to have some id-
iosyncrasies.

7 Conclusion

Our model is essentially a highly phrasal sentiment
lexicon. Ways of defining slightly more abstract pat-
terns keep the amount of work and the number of
rules manageable. The model is applied through pat-
tern matching on text, and returns a sentiment pre-
diction based on the number of positive and nega-
tive expressions found, based on the sum of their
weights. This is not mediated by any machine learn-
ing.

Slightly different versions of this system were em-
ployed in subtasks A and B. It turned out to be a
strong competitor in Task 2 of SemEval-2013, espe-
cially on subtask B, where it scored in the top three.
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Abstract

This paper briefly reports our system for the
SemEval-2013 Task 2: sentiment analysis in
Twitter. We first used an SVM classifier with
a wide range of features, including bag of
word features (unigram, bigram), POS fea-
tures, stylistic features, readability scores and
other statistics of the tweet being analyzed,
domain names, abbreviations, emoticons in
the Twitter text. Then we investigated the ef-
fectiveness of these features. We also used
character n-gram language models to address
the problem of high lexical variation in Twit-
ter text and combined the two approaches to
obtain the final results. Our system is robust
and achieves good performance on the Twitter
test data as well as the SMS test data.

1 Introduction

The challenge of the SemEval-2013 Task 2 (Task
B) is the “Message Polarity Classification” (Wilson
et al., 2013). Specifically, the task was to classify
whether a given message has positive, negative or
neutral sentiment; for messages conveying both pos-
itive and negative sentiment, whichever is stronger
should be chosen.

In recent years, text messaging and microblog-
ging such as tweeting has gained its popularity.
Since these short messages are often used not only
to discuss facts but also to share opinions and sen-
timents, sentiment analysis on this type of data has
lately become interesting. However, some features
of this type of data make natural language process-
ing challenging. For example, the messages are usu-

ally short and the language used can be very in-
formal, with misspellings, creative spellings, slang,
URLs and special abbreviations. Some research has
already been done attempting to address these prob-
lems, to enable sentiment analysis on this type of
data, in particular on Twitter data, and even to use
the outcome of sentiment analysis to make predic-
tions (Jansen et al., 2009; Barbosa and Feng, 2010;
Bifet and Frank, 2010; Davidov et al., 2010; Jiang et
al., 2011; Pak and Paroubek, 2010; Saif et al., 2012;
Tumasjan et al., 2010).

As the research mentioned above, our system used
a machine learning based approach for sentiment
analysis. Our system combines results from an SVM
classifier using a wide range of features as well as
votes derived from character n-gram language mod-
els to do the final prediction.

The rest of this paper is organized as follows. Sec-
tion 2 describes the features used for the SVM clas-
sifier. Section 3 describes how the votes from char-
acter n-gram language models were derived. Section
4 describes the details of our method. And finally
section 5 presents the results.

2 Features

We pre-processed the tweets as follows: i) tok-
enized the tweets using a tokenizer suitable for Twit-
ter data, which, for example, recognize emoticons
and hashtags; ii) replaced all URLs with the token
twitterurl; iii) replaced all Twitter usernames with
the token @twitterusername; iv) converted all to-
kens into lower case; v) replaced all sequences of
repeated characters by three characters, for example,
convert gooooood to goood, this way we recognize
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the emphasized usage of the word; vi) expanded ab-
breviations with a dictionary,1 which we will refer
to as noslang dictionary; vii) appended neg to all
words from one position before a negation word to
the next punctuation mark.

We represented each given tweet using 6 feature
families:

• Lexical features (UG, BG): Number of times
each unigram appears in the tweet (UG); num-
ber of times each bigram appears in the tweet
(BG).

• POS features (POS U, POS B): Number of
times each POS appears in the tweet divided by
number of tokens of that tweet (POS U); num-
ber of times each POS bigram appears in the
tweet (POS B). To tag the tweet we used the
ark-twitter-nlp tagger.2

• Statistical features (STAT): Various readabil-
ity scores (ARI, Flesch Reading Ease, RIX,
LIX, Coleman Liau Index, SMOG Index, Gun-
ning Fog Index, Flesch-Kincaid Grade Level)
of the tweet; some simple statistics of the tweet
(average count of words per sentence, complex
word count, syllable count, sentence count,
word count, char count). We calculated the
statistics and scores after pre-processing step
vi). We then normalized these scores so that
they had mean 0 and standard deviation 1.

• Stylistic features (STY): Number of times
an emoticon appears in the tweet, number of
words which are written in all capital let-
ters, number of words containing characters
repeated consecutively more than three times,
number of words containing characters re-
peated consecutively more than four times. We
calculated these features after pre-processing
step i). We used the binarized and the logarith-
mically scaled version of these features.

• Abbreviation features (ABB): For every term
in the noslang dictionary, we checked whether
it was present in the tweet or not and used this
as a feature.

1http://www.noslang.com
2http://www.ark.cs.cmu.edu/TweetNLP/

• URL features (URL): We expanded the URLs
in the Twitter text and collected all the domain
names which the URLs in the training set point
to, and used them as binary features.

Feature sets UG, BG, POS U, POS B are com-
mon features for sentiment analysis (Pang et al.,
2002). Remus (2011) showed that incorporat-
ing readability measures as features can improve
sentence-level subjectivity classification. Stylistic
features have also been used in sentiment analysis on
Twitter data (Go et al., 2010). Some abbreviations
express sentiment which is not apparent from word
level. For example lolwtime, which means laugh-
ing out loud with tears in my eyes, expresses positive
sentiment overall, but this does not follow directly at
the sentiment of individual words, so the feature set
ABB might be helpful. Finally, we conjecture that a
tweet including an URL pointing to youtube.com
is more likely to be subjective than a tweet including
an URL pointing to a news website.

3 Integrating votes from language models
based on character n-grams

Language Models can be used for text classification
tasks. Since the goal of the SemEval-2013 Task 2
(Task B) is to classify each tweet into one of the
three classes: positive, negative or neutral, a lan-
guage model approach can be used.

Emoticon-smoothed language models have been
used to do Twitter sentiment analysis (Liu et al.,
2012). The language models used there were based
on words. However, there is evidence (Aisopos et
al., 2012; Raaijmakers and Kraaij, 2008) showing
that super-word character n-gram features can be
quite effective for sentiment analysis on short infor-
mal data. This is because noise and mis-spellings
tend to have smaller impact on substring patterns
than on word patterns. Our system used language
models based on character n-grams to improve the
performance of sentiment analysis on tweets.

For every tweet we constructed 3 sequences of
character-trigrams and 4 sequences of character-
four-grams. For instance, the tweet "Hello
World!" would have 7 corresponding substring
representations:
<s><s>H ell o W orl d!</s>,
<s>He llo Wo rld !</s></s>,
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Hel lo Wor ld!,
<s><s><s>H ello Wor ld!</s>
<s><s>He llo Worl d!</s></s>,
<s>Hel lo W orld !</s></s></s>,
Hell o Wo rld!
where <s> means start of a sentence, </s> means
end of a sentence, means whitespace. Using the
corresponding sequences of character-trigrams from
all positive tweets in training set we trained a lan-
guage model LM+

3 . To train the language model
we used Chen and Goodman’s modified Kneser-Ney
discounting for N-grams from the SRILM toolkit
(Stolcke, 2002). Given a new sequence of character-
trigrams derived from a positive tweet, it should
give a lower perplexity value than a language model
trained on sequences of character-trigrams from
negative tweets.

In this way we obtained 6 language models:
LM−

3 from character-trigram sequences of neg-
ative tweets, LMN

3 from character-trigram se-
quences of neutral tweets, LM+

3 from character-
trigram sequences of positive tweets, LM−

4 from
character-four-grams sequences of negative tweets,
LMN

4 from character-four-gram sequences of neu-
tral tweets, LM+

4 from character-four-gram se-
quences of positive tweets.

For every new tweet, we first obtain the 7 corre-
sponding substring representations. Then for each
substring representation, we calculate 3 votes from
the language models. For instance, for a sequence
of character-trigrams, we first calculate three per-
plexity valuesP−3 , PN

3 , P+
3 using language models

LM−
3 , LMN

3 , LM+
3 then produce votes according

to the following discretization function:

vote(LMx
n , LMy

n) =

{
1 if P x

n ≥ P y
n ;

−1 else.

where n ∈ {3, 4} is the length of the character n-
gram, x, y ∈ {−, +, N} are class labels and P x

n , P y
n

are the corresponding perplexity values. In this way
we obtain 21 votes for every tweet. However, in the
final classification, every sentence got 42 votes, of
which 21 were derived from bigram language mod-
els of the substrings and 21 were from trigram lan-
guage models of these substrings.

Feature Sets Accuracy
UG,BG,POS U,POS B,STAT,STY,ABB,URL 0.692
BG,POS U,POS B,STAT,STY,ABB,URL 0.641
POS U,POS B,STAT,STY,ABB,URL 0.579
POS U,STAT,STY,ABB,URL 0.564
STAT,STY,ABB,URL 0.524
STY,ABB,URL 0.474
STY,URL 0.454
URL 0.441

Table 1: Cross validation average accuracy with differ-
ent feature sets. we started with all 8 feature sets and
removed feature sets one by one, where we always first
removed the feature set that resulted in the biggest drop
in accuracy.

4 Methods

In this section we describe the methods used by our
system.

Firstly, we did feature selection on all the features
described in Section 2. Using Mutual Information
(Shannon and Weaver, 1949) and 10-fold cross vali-
dation we chose the top 13,500 features. Using these
features we trained an SVM classifier with the train-
ing data. As the implementation of the SVM classi-
fier we used liblinear (Fan et al., 2008). The SVM
classifier was then used to produce initial predictions
for messages in the development set, the Twitter test
set and the SMS test set.

Then, we represented every message in the devel-
opment set, the Twitter test set and the SMS test
set using the 42 votes we described in Section 3
together with the predictions of the SVM classifier
we described above. Using the Bagging algorithm
from the WEKA machine learning toolkit (Hall et
al., 2009) and the development set data, we trained
a new classifier and used this classifier for the final
prediction on Twitter test data and SMS test data.

5 Results

5.1 Feature analysis

To study the effectiveness of different features, we
started with all 8 feature sets and removed feature
sets one by one, where we always first removed the
feature set that resulted in the biggest drop in accu-
racy. We did 10 fold cross validation on training set
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Feature Sets Accuracy
POS U,POS B,STAT,STY,ABB,URL 0.579
POS B,STY,ABB,URL 0.571
POS U,STY,ABB,URL 0.557
STAT,STY,ABB,URL 0.524
STY,ABB,URL 0.474

Table 2: Cross validation average accuracy with further
combination of feature sets.

Accuracy F1 (pos, neg)
Majority Baseline 0.4123 0.2919
SVM Classifier 0.6612 0.5414

SVM + LM Votes 0.6457 0.5384

Table 3: Overall accuracy and average F1 score for posi-
tive and negative classes on Twitter test data.

and used average accuracy as a metric.
As we can see from Table 1, lexical features were

the most important features – they counted for more
than 0.11 loss of accuracy when removed from the
features. POS features and statistical features were
also important, POS bigrams more so than POS uni-
grams. Stylistic, abbreviation and URL features, on
the contrary, seem to be only of moderate useful-
ness.

To further investigate the relationship between the
feature sets POS U, POS B and STAT, we did addi-
tional experiments. From Table 2, we can see that
removing all three feature sets caused a decrease
in accuracy to 0.47, including just one feature set
POS B, POS U or STAT resulted in accuracy above
0.57, 0.55 and 0.52 respectively. This shows that
all three feature sets were quite effective and POS B
was most useful. However, adding all of the three
feature sets only caused an increase in accuracy to
0.579, which suggests that they were highly corre-
lated.

Accuracy F1 (pos, neg)
Majority Baseline 0.2350 0.1902
SVM Classifier 0.6504 0.5811

SVM + LM Votes 0.6418 0.5670

Table 4: Overall accuracy and average F1 score for posi-
tive and negative classes on SMS test data.

5.2 Effectiveness of language model features

To evaluate the effectiveness of features derived
from language models of character n-grams, we
compared the performance of our SVM classifier
and that of the classifier combining the SVM clas-
sifier results and language model features.3 We per-
formed our experiments on both of the Twitter test
data and the SMS test data. The results in Table 3
and Table 4 suggested that in our current setup, lan-
guage model features were not very helpful.

Table 3 and Table 4 also show that our system
improved the performance greatly compared to Ma-
jority baseline system,4. Compared with other par-
ticipants in the SemEval-2013 Task 2, our system
achieved average performance on Twitter test data.
However, it has been the ninth best out of all 48 sys-
tems for the performance on SMS test data. This
shows that our system can be easily adapted to dif-
ferent contexts without a big drop in performance.
One reason for that might be that we did not use any
sentiment lexicon developed specifically for Twitter
data and we used high level features like the statisti-
cal features and POS features for our classification.

6 Conclusion

This paper briefly reports our system designed for
the SemEval-2013 Task 2: sentiment analysis in
Twitter. We first used an SVM classifier with a wide
range of features. We found that simple statistics
of the tweets, for example word count or readabil-
ity scores, can help in sentiment analysis on Twitter
text.

We then used character n-gram language mod-
els to address the problem of high lexical variation
in Twitter text and combined the two approaches
to obtain the final results. Although in our current
setup, features derived from character n-gram lan-
guage models do not perform very well, they may
benefit from a larger training data set.
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Abstract

In this paper, we describe our system for the
SemEval-2013 Task 2, Sentiment Analysis in
Twitter. We formed features that take into ac-
count the context of the expression and take a
supervised approach towards subjectivity and
polarity classification. Experiments were per-
formed on the features to find out whether
they were more suited for subjectivity or po-
larity Classification. We tested our model for
sentiment polarity classification on Twitter as
well as SMS chat expressions, analyzed their
F-measure scores and drew some interesting
conclusions from them.

1 Introduction

In recent years there has been a huge growth in pop-
ularity of vaious social media microblogging plat-
forms like Twitter. Users freely share their personal
opinions on various events and entities on these plat-
forms. However, while character constraints make
sure the opinions are short and to the point, they also
contribute to the noisy nature of Twitter data.

The contextual polarity of the phrase in which a
particular instance of a word appears may be quite
different from the word’s prior polarity. Positive
words are used in phrases expressing negative sen-
timents, or vice versa. Also, quite often words that
are positive or negative out of context are neutral in
context, meaning they are not even being used to ex-
press a sentiment. This is evident from the example
of underlined phrase in the following tweet:

Lana Del Rey at Hammersmith Apollo in
May...Very badly want tickets

In a technique with large lexicon of words marked
with their prior polarity, badly would have a negative
score making the whole sentence with negative sen-
timent. Even if we perform phrase-level analysis for
the phrase “Very badly”, Very only acts as an intensi-
fier for badly and the whole sentence is still marked
negative. It’s only when we look further from the
underlined phrase that we realize that “Very badly”
in the context of wanting something shows positive
sentiment.

Early work on sentiment analysis is based on
document-level analysis of reviews (Pang, B., and
Lee, L., 2004). This approach isn’t feasible for mi-
croblogging data due to the extremely small size of
individual documents. The results on the effective-
ness of part-of-speech features are mixed. While
most regard POS features helpful in subjectivity
classification (Barbosa, L. and Feng, J., 2010), some
report very insignificant improvement on using them
(Kouloumpis, E., Wilson, T. and Moore, J., 2011).
However, most phrase-level approaches began with
a large lexicon of words marked with their prior po-
larity (Kim, S. M., and Hovy, E., 2004; Hu, M., and
Liu, B, 2004). Wilson, Wiebe and Hoffman (2005)
sought to include contextual polarity in the foray by
using various dependency relation based features for
subjectivity and polarity classification. Our goal is
to perform contextual sentiment polarity classifica-
tion in the domain of noisy expressions from tweets
and SMS messages.

2 Data

We use the annotated Twitter expressions provided
by SemEval-2013 Task 2 (Wilson et al., 2013) or-
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ganizers for training our model. Each instance of
the data contains an expression and its parent tweet.
There are a total of 24939 tweet expressions in the
training dataset and they are annotated into four
classes:

• Objective: Expressions carrying no opinion by
themselves or even in the context of their parent
tweet.

• Positive: Expressions carrying positive senti-
ment in the context of the parent tweet.

• Negative: Expressions carrying negative senti-
ment in the context of the parent tweet.

• Neutral: Expressions carrying prior subjectiv-
ity but are rendered objective in the context of
their parent tweet.

Two separate lexicons for emoticons and interjec-
tions having non-zero prior polarities were created.
47 Subjective emoticons were extracted from train-
ing data as well as from various popular chat ser-
vices. 212 Subjective interjections were extracted
from training data as well from Wiktionary1.

We test our trained model on two separate test
datasets provided by SemEval-2013 Task 2 organiz-
ers, 1) Twitter expressions and 2) SMS expressions.

2.1 Preprocessing

Data preprocessing consists of three steps: 1) To-
kenization, 2) Part-of-Speech (POS) tagging, and
3) Normalization. For the first two steps we use
Twitter NLP and Part-of-Speech Tagging system
(Gimpel, K., et al., 2011). It is a Tokenizer and
POS Tagger made for Twitter dataset and thus
contains separate POS tags for hash-tags(#), at-
mention(@), URLs and E-Mail addresses(U) and
emoticons(E). The POS Tagger identifies common
abbreviations and tags them accordingly. We use
Twitter NLP and Part-of-Speech Tagging system for
the SMS expressions too due to similar noisy na-
ture of SMS data. For the normalization process,
all upper case letters are converted to lower case,
and instances of repeated characters are replaced
by a repetition of two characters. This is done

1http://en.wiktionary.org/wiki/Category:
English_interjections

so that existing legal words having characters re-
peating two times aren’t harmed. #hash-tags are
stripped of the # character and then treated as a nor-
mal word/phrase, at-mention(@) denote the name of
a person/organization and thus they are treated as
proper noun and since URLs don’t carry any senti-
ment, they are ignored in the expression. We expect
the normalization process to aid in forming better
features and in turn improving the performance of
the system as a whole.

3 Features

We use three types of features for our classification
experiments,

• Phrase Prior Polarity Features

• POS Tag Pattern Features

• Noisy data specific Features

Both Phrase Prior Polarity and POS Tag features are
computed for the expression to be analyzed as well
as, if available, two words 2 before and after the ex-
pression.

3.1 Phrase Prior Polarity Feature
Every expression in the dataset is represented by
its aggregate positive and negative polarity score.
Senti-Wordnet (Baccianella, S., Esuli, A., and Se-
bastiani, F., 2010), Emoticon Lexicon and an Inter-
jection Lexicon are used to calculate these prior po-
larities. Bigrams and trigrams are identified by their
presence in Senti-Wordnet. For each identified un-
igram, bigram or trigram, we compute the mean of
all its subjective wordnet sense scores under the POS
tag assigned to it. If a unigram word isn’t present in
Senti-Wordnet, its stemmed3 form is searched keep-
ing the original POS Tag. We perform negation de-
tection by enabling a flag whenever a word occur-
ring in negation list appears. The negation list con-
sists of words like no, not, never, etc, as well all
words ending with -n’t. Negation words act as po-
larity reversers, for e.g., consider the following ex-
pression:“not so sure”. In a simple bag of words ap-
proach, “not so sure” wouldn’t be classified as neg-
ative due to the presence of sure. To overcome this,

2The figure of two words was reached empirically upon try-
ing various lengths.

3The stemmer used is Snowball Stemmer for English.
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prior polarities of all words are reversed on the oc-
currence of a negation word. Some negation words
such as no, not, never, also carry their own negative
score (-1), in case no subjective word is found in the
expression, their individual negative score is added
to the aggregate prior polarity of the expression. Ad-
jectives and adverbs are treated as polarity shifters.
They either shift the prior polarities of nouns and
verbs, or in case of objective nouns and verbs, con-
tribute their own prior polarities to the expression,
e.g., “exceedingly slow”, “little truth”, “amazing
car”, etc.

On encountering any emoticon or interjection in
the expression that is present in our lexicon, its cor-
responding score is added to the aggregate prior po-
larity of the expression.

Finally, both positive and negative prior polarities
of the expression are normalized by the number of
words in the expression after tokenization.

3.2 POS Tag Pattern Feature
Both Tweets and SMS messages are extremely short.
Twitter is a social microblogging platform having
just 140 character space for a tweet while SMS mes-
sages have little word length due to typing con-
straints on a mobile device. All the above factors
contribute to the noisiness of data. Hence, it isn’t
enough to find prior polarities of n-grams occurring
in the expression. We thus formed a heuristic tech-
nique of using POS tag patterns as features. POS tag
patterns carry information regarding POS tags com-
bined with the location of their occurrence in the ex-
pression as a feature. For e.g., the POS tag pattern
for the expression “not so sure” in the tweet

@thehuwdavies you think the Boro will
beat Swansea? I’m not so sure, Decem-
ber/January is when we implode

will be RRA, where R = Adverb and A = Adjective.

3.3 Noisy data specific Features
Interjections and emoticons are useful indicators of
subjectivity in a sentence. Even if many interjections
or emoticons don’t carry a defininte sentiment polar-
ity, they do indicate that some sort of opinion from
the user is available in the tweet or sms. Some ex-
amples of interjections and emoticons with no fixed
prior polarity are, “wow”, “oh my god”, “:-o”, etc.

4 Experiments and Results

Our goal for these experiments is two-fold. First,
we want to evaluate the effectiveness of our features
when using them for subjectivity classification as
compared to sentiment polarity classification. Sec-
ond, we want to evaluate and compare the perfor-
mance of our learnt model when tested upon Twitter
and SMS expression data. We use Naive Bayes clas-
sifier in Weka (Hall, M., et al., 2009) as the learning
algorithm.

Feature Analysis between Subjectivity and Polar-
ity Classification For our first set of experiments,
we re-label all positive, negative and neutral expres-
sions as subjective for subjectivity classification in
the training dataset. For polarity classification we
remove all objective expressions from the training
dataset and perform 3-way classification between
positive, negative and neutral expressions. In both
cases we perform 10-fold cross validation on the
training dataset. For subjectivity classification we
have 24939 tweet expressions with 15565 objective
and 9374 subjective expressions. Subjective expres-
sions contain 5787 positive, 3131 negative and 456
neutral expressions. Table 1 shows the accuracy of
subjectivity and sentiment polarity classification re-
sults and improvement due to each feature.

It is fairly evident from Table 1 that phrase prior
polarity features are equally important for both sub-
jectivity and sentiment polarity classification. The
same however, doesn’t completely hold true for the
other two feature types. While POS Tag pattern
features provide an improvement of 1.89% in sub-
jectivity classification accuracy, they only provide a
0.64% increase in accuracy in polarity classification.
Many inferences can be drawn from this result and
a deeper analysis is required on POS tag patterns to
prove that this wasn’t a mere aberration. Emoticon
and interjection feature too give lower improvement
in accuracies during sentiment polarity classifica-
tion (0.44%) as compared to subjectivity classifica-
tion (0.83%). This, however, is expected since most
common emoticons and interjections with prior po-
larities are already covered in the total score of the
expression. Thus, the noisy data based binary fea-
tures have significant contribution only when the
emoticons and interjections aren’t present in the lex-
icon. This implies that these binary features only
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Features Subjectivity Polarity
f1 86.58 72.93
f1 + f2 88.47 73.57
f1 + f2 + f3 89.3 74.01
f1 + f2 + f3 - context 84.38 72.25

f1 : Phrase Prior Polarity Features
f2 : POS Tag Pattern Features
f3 : Noisy Data Specific Features

context : Phrase Prior Polarity and POS Tag
pattern features defined for 2 words
before and after the expression

Table 1: Accuracies for all three features used for
Subjectivity and Sentiment Polarity Classification.

hint towards the expression being subjective. The
context features, i.e., phrase prior polarity and POS
tag pattern features defined for 2 words before and
after the expression also carry more significance dur-
ing subjectivity classification than in sentiment po-
larity classification.

Polarity Classification comparison for Twitter
and SMS expression data For the second set of
experiments comparing the performance of polarity
classification in Twitter expressions and SMS ex-
pressions, we use the polarity classification model
learnt in the above experiment. Tables 2(a) and 2(b)
shows the precision, recall and F-measure scores for
both Twitter and SMS expressions.

The polarity classification accuracies for Twitter
and SMS expressions are 74.76% and 70.82%, re-
spectively. Closer inspection of test data shows that
SMS expressions exhibit more aggressive usage of
abbreviations and slangs and are in general noisier
than Twitter expressions. This is probably due to the
fact that typing on a cellphone is more cumbersome
than on a keyboard. The quantitative distribution of
positive, negative and neutral classes in both datasets
affects the F-measure scores of individual classes.
This is evident from the difference in positive and
negative F-measures of Twitter and SMS expres-
sions data. In both datasets, neutral class F-measure
is extremely low. This is partially expected due to
the low quantity of neutral class expressions in Twit-
ter (160/4435) and SMS (159/2334) data. Still, it

Class Precision Recall F-measure
positive 0.8120 0.8120 0.8120
negative 0.6477 0.7073 0.6762
neutral 0.3333 0.0375 0.0674

(a) Twitter expression data

Class Precision Recall F-measure
positive 0.6823 0.8263 0.7475
negative 0.7520 0.6947 0.7222
neutral 0.0588 0.0063 0.0114

(b) SMS expression data

Table 2: Precision, Recall and F-measure scores for
positive, negative and neutral classes computed on
Twitter and SMS expressions data.

seems that more fine-grained analysis of neutral ex-
pressions is required for better polarity classification
accuracy.

Our method ranks 16th (F-measure: 0.7441) out
of 28 participating systems for Twitter data and 12th
(F-measure: 0.7348) out of 26 participating systems
for SMS data. The best performing system have
0.8893(NRC-Canada) and 0.8837(GUMLTLT) av-
eraged(positive, negative) F-measure score for Twit-
ter and SMS data, respectively.

5 Conclusions

Our experiments on features show that phrase prior
polarity features give good results for both subjec-
tivity and polarity classification. POS tag pattern
features, emoticon and interjection features, on the
other hand, are better suited for subjectivity classi-
fication. A deeper analysis is required and various
relational and dependency features should be iden-
tified and used to improve the performance of po-
larity classification. SMS expressions are noisier in
general than Twitter expressions and thus the polar-
ity classifier gives less accurate results for it. How-
ever, both of these datasets face problems common
to the polarity classifier. More research is needed
with a balanced dataset to understand various under-
lying relational causes for an expression to become
neutral and to further confirm the conclusions of this
paper.
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Abstract

This paper describes an expression-level senti-
ment detection system that participated in the
subtask A of SemEval-2013 Task 2: Senti-
ment Analysis in Twitter. Our system uses a
supervised approach to learn the features from
the training data to classify expressions in new
tweets as positive, negative or neutral. The
proposed approach helps to understand the rel-
evant features that contribute most in this clas-
sification task.

1 Introduction

In recent years, Twitter has emerged as an ubiquitous
and an opportune platform for social activity. Ana-
lyzing the sentiments of the tweets expressed by an
international user-base can provide an approximate
view of how people feel. One of the biggest chal-
lenges of working with tweets is their short length.
Additionally, the language used in tweets is very
informal, with creative spellings and punctuation,
misspellings, slang, new words, URLs, and genre-
specific terminology and abbreviations, such as, RT
for “re-tweet” and #hashtags, which are a type of
tagging for tweets. Although several systems tackle
the task of analyzing sentiments from tweets, the
task of analyzing sentiments at term or phrase-level
within a tweet has remained largely unexplored.

This paper describes the details of our expression-
level sentiment detection system that participated in
the subtask A of SemEval-2013 Task 2: Sentiment
Analysis in Twitter (Wilson et al., 2013). The goal
is to mark expressions (a term or short phrases) in

a tweet with their contextual polarity. This is chal-
lenging given the fact that the entire length of a tweet
is restricted to just 140 characters. We describe the
creation of an SVM classifier that is used to classify
the contextual polarity of expressions within tweets.
A feature set derived from various linguistic fea-
tures, parts-of-speech tagging and prior sentiment
lexicons was used to train the classifier.

2 Related Work

Sentiment detection from Twitter data has attracted
much attention from the research community in re-
cent times (Go et al., 2009; Pang et al., 2002; Pang
and Lee, 2004; Wilson et al., 2005; T. et al., 2012).
However, most of these approaches classify entire
tweets by their overall sentiment (positive, negative
or neutral).

The task at hand is to classify expressions with
their contextual sentiment. Most of these expres-
sions can be found in sentiment lexicons already an-
notated with their general polarity, but the focus of
this task is to detect the polarity of that expression
within the context of the tweet it appears in, and
therefore, given the context, the polarity of the ex-
pression might differ from that found in any lexicon.
One of the primary goals of this task is to facilitate
the creation of a corpus of tweets with sentiment ex-
pressions marked with their contextual sentiments.

Wilson, Wiebe and Hoffman (Wilson et al., 2005)
explored the challenges of contextual polarity of
sentiment expressions by first determining whether
an expression is neutral or polar and then disam-
biguating the polarity of the polar expressions. Na-
sukawa and Yi (Nasukawa and Yi, 2003) classified
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the polarity of target expressions using manually de-
veloped patterns. Both these approaches, however,
experimented with general webpages and online re-
views but not Twitter data.

3 Task Setup

This paper describes the task of recognizing con-
textual sentiments of expressions within a tweet.
Formally, given a message containing a marked in-
stance of a word or a phrase, the task is to determine
whether that instance is positive, negative or neutral
in that context.

A corpus of roughly 8343 twitter messages was
made available by the task organizers, where each
tweet included an expression marked as positive,
negative or neutral. Also available was a develop-
ment data set containing 1011 tweets with similarly
marked expressions. The data sets included mes-
sages on a broad range of topics such as a mix-
ture of entities (e.g., Gadafi, Steve Jobs), products
(e.g., kindle, android phone), and events (e.g., Japan
earthquake, NHL playoffs). Keywords and hashtags
were used to identify and collect messages relevant
to the selected topic, which were then annotated us-
ing Mechanical Turk. Further details regarding the
task setup may be found in the task description paper
(Wilson et al., 2013).

The evaluation consisted of classifying 4435 ex-
pressions in a Twitter data set. Furthermore, to test
the generalizability of the systems, the task organiz-
ers provided a test data set consisting of 2334 SMS
messages, each containing a marked expression, for
which no prior training data set was made available.

4 System Description

Our aim by participating in the SemEval-2013 Sen-
timent Analysis in Twitter task was to investigate
what features are most useful in distinguishing the
different polarities. The various steps of building our
system are described in detail as follows.

4.1 Tokenization

Tweets are known for being notoriously noisy due
to their length restricted to just 140 characters which
forces users to be creative in order to get their mes-
sages across. This poses an inherent challenge when
analyzing tweets which need to undergo some sig-

nificant preprocessing. The first step includes tok-
enizing the words in the tweet. Punctuation is identi-
fied during the tokenization process and marked for
inclusion as one of the features in the feature set.
This includes Twitter-specific punctuation such as
“#” hashtags, specific emoticons such as “:)” and
any URL links are replaced by a “URL” placeholder.

4.2 n-gram features

Each expression consists of one or more words, with
the average number of words in an expression in the
training data set found to be 2. We derive lower-case
unigram and bigram as well as the full string features
from the expressions which are represented by their
frequency counts in the feature set. The n-grams
were cleaned (stripped of any punctuation) before
being included in the feature set as they were ob-
served to provide better results than noisy n-grams.
Note that the presence of punctuation did become a
part of the feature set as described in 4.3. We also
experimented with word-splitting, especially found
in hashtags (e.g., #iamsohappy); however, contrary
to our initial supposition, this step resulted in poorer
results overall due to word-splitting error propaga-
tion and was therefore avoided.

4.3 POS tagging

For tagging the various parts-of-speech of a tweet,
we use the POS tagger (Gimpel et al., 2011) that is
especially designed to work with English data from
Twitter. The tagging scheme encompasses 25 tags
(please see (Gimpel et al., 2011) for the full listing),
including some Twitter-specific tags (which could
make up as much as 13% of all tags as shown in
their annotated data set) such as “#” hashtag (indi-
cates topic/category for tweet), “@” at-mention (in-
dicates another user as a recipient of a tweet), “RT”
re-tweets and URL or email addresses. The punctu-
ation (such as “:-)”, “:b”, “(:”, amongst others) from
the n-grams is captured using the “emoticon” and
“punctuation” tags that are explicitly identified by
this POS tagger trained especially for tweets.

Table 1 shows an example using a subset of two
POS tags for an expression (# Adj. and # Emoti-
con denotes the number of adjectives and emoticons
respectively). Other POS tags include nouns (NN),
verbs (VB) and so on. Features incorporating the
information about the parts-of-speech of the expres-
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Esperance will be without star player Youssef Msakni for the first leg of the
Champions League final against Al Ahly on Saturday. #AFRICA

Prior Polarity Length POS in Expression POS in Tweet n-grams
Pos. Neg. Exp. Tweet #Adj. #Emoticon #Adj. #NN “without” “star” “without star” ...
0 0 3 23 0 0 1 13 1 1 1 ...

Table 1: Sample feature set for an expression (denoted in bold)

sion as well as the tweet denoted by their frequencies
produced better results than using a binary notation.
Hence frequency counts were used in the feature set.

4.4 Prior sentiment lexicon

A prior sentiment lexicon was generated by combin-
ing four already existing polarity lexicons including
the Opinion Lexicon (Hu and Liu, 2004), the Sen-
tiWordNet (Esuli and Sebastiani, 2006), the Subjec-
tivity Clues database (Wilson et al., 2005) and the
General Inquirer (Stone and Hunt, 1963). If any
of the words in the expression are also found in the
prior sentiment lexicon, then the frequencies of such
prior positive and negative words are included as
features in the feature set.

4.5 Other features

Other features found to be useful in the classification
process include the length of the expression as well
as the length of the tweet. A sample of the feature
set is shown in Table 1.

4.6 Classifier

During development time, we experimented with
different classifiers but in the end, the Support Vec-
tor Machines (SVM), using the polynomial kernel,
trained over tweets from the provided train and de-
velopment data outperformed all the other classi-
fiers. The final feature set included four main fea-
tures plus the n-grams as well as the features depict-
ing the presence or absence of a POS in the expres-
sion and the tweet.

5 Experiments and Discussion

The task organizers made available a test data set
composed of 4435 tweets where each tweet con-
tained an instance of an expression whose sentiment
was to be detected. Another test corpus of 2334
SMS messages was also used in the evaluation to

test how well a system trained on tweets generalizes
on other data types.

The metric for evaluating the systems is F-
measure. We participated in the “constrained” ver-
sion of the task which meant working with only the
provided training data and no additional tweets/SMS
messages or sentences with sentiment annotations
were used. However, other resources such as sen-
timent lexicons can be incorporated into the system.

Table 2, which presents the results of our submis-
sion in this task, lists the F-score of the positive,
negative and neutral classes on the Twitter test data,
whereas Table 3 lists the results of the SMS mes-
sage data. As it can be observed from the results,
the negative sentiments are classified better than the
positive ones. We reckon this may be due to the
comparatively fewer ways of expressing a positive
emotion, while the negative sentiment seems to have
a much wider vocabulary (our sentiment lexicon has
25% less positive words than negative). Whereas
the positive class has a higher precision, the nega-
tive class seems to have a more notable recall. The
most striking observation, however, is the extremely
low F-score for the neutral class. This may be due to
the highly skewed proportion (less than 5%) of neu-
tral instances in the training data. In future work, it
will be interesting to see how balancing out the pro-
portions of the three classes affects the classification
accuracy.

We also ran some ablation experiments on the
provided Twitter and SMS test data sets after the
submission. Table 4 reports the findings of exper-
iments where, for example, “- prior polarities” in-
dicates a feature set excluding the prior polarities.
The metric used here is the macro-averaged F-score
of the positive and the negative class. The baseline
measure implements a simple SVM classifier using
only the words as unigram features in the expres-
sion. Interestingly, contrary to our hypothesis dur-
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ing development time, using the POS of the entire
tweet was the least helpful feature. Since this was
an expression level classification task, it seems that
using the POS features of the entire tweet may mis-
guide the classifier. Unsurprisingly, the prior po-
larities turned out to be the most important part of
the feature set for this classification task as it seems
that many of the expressions’ contextual polarities
remained same as their prior polarities.

Class Precision Recall F-score
Positive 0.93 0.47 0.62
Negative 0.50 0.95 0.65
Neutral 0.15 0.12 0.13

Macro-average 0.6394

Table 2: Submitted results: Twitter test data

Class Precision Recall F-score
Positive 0.85 0.39 0.53
Negative 0.59 0.96 0.73
Neutral 0.18 0.06 0.09

Macro-average 0.6327

Table 3: Submitted results: SMS test data

Twitter SMS
Baseline 0.821 0.824

Full feature set (submitted) 0.639 0.632
- Prior polarities 0.487 0.494

- Lengths 0.612 0.576
- POS expressions 0.646 0.615

- POS tweets 0.855 0.856

Table 4: Macro-averaged F-score results using different
feature sets

6 Conclusion

This paper presented the details of our system which
participated in the subtask A of SemEval-2013 Task
2: Sentiment Analysis in Twitter. An SVM classifier
was trained on a feature set consiting of prior po-
larities, various POS and other Twitter-specific fea-
tures. Our experiments indicate that prior polari-
ties from sentiment lexicons are significant features
in this expression level classification task. Further-
more, a classifier trained on just tweets can general-

ize considerably well on SMS message data as well.
As part of our future work, we would like to explore
what features are more helpful in not only classify-
ing the positive class better, but also distinguishing
neutrality from polarity.
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Abstract

In this paper, we describe our system sub-
mitted for the Sentiment Analysis task at Se-
mEval 2013 (Task 2). We implemented a com-
bination of Explicit Semantic Analysis (ESA)
with Naive Bayes classifier. ESA represents
text as a high dimensional vector of explicitly
defined topics, following the distributional se-
mantic model. This approach is novel in the
sense that ESA has not been used for Senti-
ment Analysis in the literature, to the best of
our knowledge.

1 Introduction

Semantic relatedness measure gives the comparison
of different terms or texts on the basis of their
meaning or the content. For instance, it can be
said that the word ”computer” is semantically
more related to ”laptop” than ”flute”. Sentiment
analysis refers to the task of determining the overall
contextual polarity of the written text. In this paper,
we propose the use of semantic relatedness models,
specifically Explicit Semantic Analysis (ESA),
to identify textual polarity. There are different
approaches to model semantic relatedness like
WordNet based models (Banerjee and Banerjee,
2002), distributional semantic models (DSMs) etc.
DSMs follow the distributional hypothesis, which
says that words occurring in the same contexts tend
to have similar meanings (Harris, 1954). There-
fore, considering sentiment classification problem,
distributional hypothesis suggests that the words or
phrases referring to positive polarity would tend to
co-occur, and similar assumptions can be made for

the negative terms.

DSMs generally utilize large textual corpora to
extract the distributional information relying on
the co-occurrence information and distribution of
the terms. These models represent the text in the
form of high-dimensional vectors highlighting the
co-occurrence information. Semantic relatedness
between two given texts is calculated by using
these vectors, thus, following that the the semantic
meaning of a text can be inferred from its usage
in different contexts. There are several different
computational models following distributional
semantics hypothesis. Latent Semantic Analysis
(LSA), Latent Dirichlet Allocation (LDA) (Blei et.
al., 2003), Explicit Semantic Analysis (ESA) are
some examples of such models. However, in this
work, we investigated the use of ESA for the given
task of sentiment analysis (SA).

There are two sub-tasks defined in Task 2 at
SemEval 2013 (SemEval, 2013). We participated in
Message Polarity Classification sub-task, where we
are required to automatically classify the sentiment
of a given message into positive, negative, or
neutral. The task deals with the short texts coming
from Twitter and SMS (Short Message Service). We
are provided with 8,000 - 12,000 twitter messages
annotated with their sentiment label for the purpose
of training the models. In this work, we present our
approach for sentiment classification which uses a
combination of ESA and Naive Bayes classifier. The
rest of the paper is structured as follows : Section 2
discusses some related work in this context. Section
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3 briefly explains ESA. Section 4 describes our
approaches while Section 5 explains the submitted
runs for our system to the task. Section 6 reports the
results, and we conclude in section 7.

2 Related Work

The research in SA initiated with the classical ma-
chine learning algorithms like Naive Bayes, Maxi-
mum Entropy etc. using intuitive features like un-
igrams, bigrams, parts of speech information, posi-
tion of words, adjectives etc. (Pang et. al., 2002).
However, such approaches are heavily dependent
upon the given training data, and therefore can be
very limited for SA due to out of vocabulary words
and phrases, and different meanings of words in
different contexts (Pang and Lee, 2008). Due to
these problems, several methods have been investi-
gated to use some seed words for extracting more
positive and negative terms with the help of lexi-
cal resources like WordNet etc., for instance, Senti-
WordNet, which defines the polarity of the word
along with the intensity. In this paper, we model the
sentiment classification using DSMs based on ex-
plicit topic models (Cimiano et. al., 2009), which
incorporate correlation information from a corpus
like Wikipedia, to generalize from a few known pos-
itive or negative terms. There have been some other
attempts to utilize topic models in this regards, but
they mainly focussed on latent topic models (Lin and
He, 2009) (Maas et. al., 2011). Joint sentiment topic
model introduced LDA based unsupervised topic
models in sentiment analysis by pointing out that
sentiments are often topic dependent because same
word/phrase could represent different sentiments for
different topics (Lin and He, 2009). The recent work
by Maas et. al. (Maas et. al., 2011) on using latent
concept models presented a mixture model of un-
supervised and supervised techniques to learn word
vectors capturing semantic term-document informa-
tion along with the sentiment content.

3 Explicit Semantic Analysis

Explicit Semantic Analysis (ESA) is a technique
for computing semantic relatedness between texts
using distributional information (Gabrilovich and
Markovitch, 2007). ESA represents text as vec-
tors of concepts explicitly defined by humans, like

Wikipedia articles. This provides an intuitive and
easily understandable topic space for humans, in
contrast to the latent topic space in latent mod-
els.Input texts are represented as multidimensional
vectors of weighted concepts. The procedure of
computing semantic relatedness involves comparing
the vectors corresponding to the given texts e.g. us-
ing cosine product. The magnitude of each dimen-
sion in the vector is the associativity weight of the
text to that explicit concept/dimension. To quantify
this associativity, the textual content related to the
explicit concept/dimension is utilized. This weight
can be calculated by considering different methods,
for instance, tf-idf score. ESA has been proved to
be a generalized vector space model (Gottron et. al.,
2011).

4 Methodology

We implemented a combination of traditional ma-
chine learning based approach for SA using Naive
Bayes algorithm, and ESA based sentiment identifi-
cation. To perform sentiment classification solely
using ESA, we asses the similarity of a new text
against the text whose sentiment is already known,
using ESA. More similar is a text to a particular sen-
timent annotated text, better are its chances to be-
long to the same sentiment class. On the other hand,
we followed a standard classification approach by
learning Naive Bayes over the given training data.
Finally, we consult both ESA and Naive Bayes for
classifying the text. The overall probability of a text
belonging to a particular sentiment class was deter-
mined by weighted sum of ESA similarity score,
and the scores given by Naive Bayes classifier. The
sentiment class with the highest total score was ac-
cepted as the sentiment of the input text. The indi-
vidual weights of ESA and Naive Bayes were deter-
mined by linear regression for our experiments.

5 System Description

We created three bags of words (BOW) correspond-
ing to the different sentiment classes (positive,
negative, and neutral) annotated in the training
data. These BOWs were used as the definition of
the particular sentiment class for making the ESA
comparisons, and for learning Naive Bayes. We
used unigrams and bigrams as features for the Naive
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Task Approach F score Highest F score Rank
Twitter, with constrained data ESA with Naive Bayes .5182 .6902 24/35
SMS, with constrained data ESA with Naive Bayes .422 .6846 24/28
Twitter, with unconstrained data ESA with Naive Bayes .4507 .6486 16/16
SMS, with unconstrained data ESA with Naive Bayes .3522 .4947 15/15
Twitter, with constrained data ESA .35 .6902 NA

Table 1: Results

Bayes algorithm. The ESA implementation was
replicated from the version available on Github1,
replacing the Wikipedia dump by the version
released in February 2013.

We submitted two runs each for Twitter and
SMS test data. The first run (constrained) used
only the provided training data for learning while
the second run (unconstrained) used a combination
of external training data coming from the popular
movie review dataset (Pang et. al., 2002), and the
data provided with the task.

6 Results and discussion

The first four entries provided in the table 1 corre-
spond to the four runs submitted in SemEval-2013
Task 2. The fifth entry corresponds to the results
of a separate experiment performed by us, to esti-
mate the influence of ESA on SA. According to the
F-scores, ESA is unable to identify the sentiment in
the texts following the mentioned approach. The re-
sults suggest that combining Naive Bayes to the sys-
tem improved the overall scores. However, even the
combined system could not perform well. Also, the
mixing of external data lowered the scores indicat-
ing incompatibility of the external training data with
the provided data.

7 Conclusion

We presented an approach of using ESA for senti-
ment classification. The submitted system follow
a combination of standard Naive Bayes model and
ESA based classification. The results of the task
suggests that the approach we used for ESA based
classification is unable to identify the sentiment ac-
curately. As a future step, we plan to investigate

1https://github.com/kasooja/clesa

more on the usability of ESA for sentiment classifi-
cation, for instance, by using suitable features in the
concept definitions, and weighing them according to
the different sentiment classes.
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Abstract

Using labeled Twitter training data from
SemEval-2013, we train both a subjectivity
classifier and a polarity classifier separately,
and then combine the two into a single hier-
archical classifier. Using additional unlabeled
data that is believed to contain sentiment, we
allow the polarity classifier to continue learn-
ing using self-training. The resulting system is
capable of classifying a document as neutral,
positive, or negative with an overall accuracy
of 61.2% using our hierarchical Naive Bayes
classifier.1

1 Introduction

Many people use social networks, such as Twitter,
to connect and communicate with others. Users of
social networks often share their experiences, such
as watching a recent movie or tv show, reading a
book, or a newly tried product or service. In addi-
tion, social networks provide an avenue for discus-
sion of current events, such as politics. Many people
and companies are often concerned with how others
perceive their product—which is sometimes them-
selves, as is the case for politicians—or their service.
By understanding and reacting to what the consumer
is thinking, they can attempt to maximize their good
press as well as to help minimize the bad. It would
therefore be useful to use the information users of
social networks share to perform sentiment analysis
in order to understand how people perceive targets
of interest.

1 A working demo of the system will be available for a short
time at: http://infertweet.bwbaugh.com

In general, sentiment analysis often involves the
use of machine learning, especially Naive Bayes,
SVM, and MaxEnt classifiers [Jose]. Features gen-
eral include n-grams and POS tags [Go et al., 2009;
Pak and Paroubek, 2010; Jose], as well as senti-
ment lexicons [Jose]. Go et al. [2009] achieved
around 82.5% accuracy for positive-negative polar-
ity detection, Jose achieved around 76% accuracy
for subjective-objective classification, and Pak and
Paroubek [2010] achieved around 70% accuracy for
a combined subjectivity-polarity classifier.

While determining whether a document known to
be subjective is positive or negative (polarity detec-
tion) is relatively easy, a currently more difficult task
in sentiment analysis is identifying whether a docu-
ment is subjective or objective (subjectivity analy-
sis). Many approaches simply ignore the objective
class [Go et al., 2009], which does not work for real
world problems as there are a substantial amount of
documents that are either partially or wholly objec-
tive [Koppel and Schler, 2006].

Many previous methods focus on either subjectiv-
ity analysis or polarity detection. Our method incor-
porates both subtasks into a single overall system in
order to perform sentiment analysis.

2 Background

The sentiment analysis in Twitter task of SemEval-
2013 [Wilson et al., 2013] provides 9,864 la-
beled tweets from Twitter to be used as a train-
ing dataset. Each instance is labeled as either
positive, negative, or neutral, and was
annotated through Amazon’s Mechanical Turk. The
terms of service for Twitter puts restrictions on the
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type of data that may be re-released, therefore par-
ticipants SemEval-2013 Task 2 participants were
required to download tweets directly from Twit-
ter. Due to deleted or otherwise unavailable tweets,
this system was only able to download approxi-
mately 8,750 training instances. Additionally, a
development dataset was provided with 1,654 la-
beled tweets, of which 340 are negative, 739 are
neutral, and 575 are positive. The provided
test set consisted of 3,813 instances, of which 601
are negative, 1640 are neutral, and 1572 are
positive.

In related work, Go et al. [2009] generated an au-
tomatically labeled noisy gold standard by search-
ing for tweets that contained one of several emoti-
cons2 (e.g. :) or :() that were mapped to ei-
ther the positive or negative class depend-
ing on the type of emoticon in the text. This sys-
tem also collected approximately one million tweets
using emoticons as a keyword search for match-
ing, however the data remained unlabeled. Though
these tweets are unlabeled, they are presumed to be
subjective—either positive or negative but
not neutral—because of the intuitive association
of emoticons with sentiment.

3 Approach

The system uses a custom implementation of Multi-
nomial Naive Bayes as the classifier.3 We create
a hierarchical classifier, which in this case consists
of two binary classifiers. The first-level is the sub-
jectivity classifier, which can output objective
(neutral) or subjective. If the output of the first
level is subjective, then the second-level polar-
ity classifier decides if the instance is positive or
negative.

Both classifiers (subjective and polarity) are
trained on approximately 8,750 training instances,
which come from the released SemEval-2013 train-
ing dataset. The subjective classifier is not given any

2The term emoticon comes from a blending of the words
“emotion” and “icon”.

3 The machine learning components (Multinomial Naive
Bayes) were written for this system as a Python library,
and will be available on GitHub: https://github.com/
bwbaugh/infer. That toolkit was then used as a founda-
tion for writing the code for the system, which will also be
available on GitHub: https://github.com/bwbaugh/
infertweet.

Figure 1: A single multinomial classifier, which can out-
put any class label.

Figure 2: A hierarchical classifier, which in this case con-
sists of two binary classifiers. The first level is a sub-
jectivity classifier, with an output of either subjective or
neutral. The second level is a sentiment polarity classi-
fier, with an output of either positive or negative.

additional training data. The system then uses its
current model to classify approximately one million
unlabeled tweets that are believed to be subjective.
The unlabeled tweets were classified one at a time.
If the system classified the tweet as subjective, it was
used to train the polarity classifier only if the confi-
dence in the predicted label was greater than 0.8.
We stopped the system after approximately 910k to-
tal training instances were used.

The core features extracted are unigrams and bi-
grams. Bigrams had an additional start and
end token at the beginning and end of the full

text of the training instance.
As part of a preprocessing step, we attempted to

find URLs in the text and replace them with a special
URL token. We shortened characters repeated

more than twice, such that “haaaaaaate” would be-
come “haate”. We attempted to find dates in the text
and replace them with a special DATE token.
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Figure 3: Performance of the single (non-hierarchical) and hierarchical classifiers on the development set vs. the
number of training instances. The performance metric for positive, negative and neutral is F-measure, SemEval is the
simple average of the positive and negative performance, and accuracy is the overall number of correct instances. The
first 8,750 instances are labeled, while the rest are unlabeled instances that were added using self-training.

4 Experiments

4.1 Design

The system was incrementally trained one tweet at
a time, with the performance checked every so often
by using the current model to classify the develop-
ment set instances. Once all of the labeled training
data had been used, the subjectivity classifier was
given no additional training instances, and the re-
mainder of the subjectively charged unlabeled data
was used to train the polarity classifier.

Variables experimented on included: extracting
n-grams up to size 4 and trying all combinations;
mapping Twitter usernames to a special token; map-
ping substrings recognized as a date to a special to-
ken; combining a negation token such as “not” to the
following token; deleting characters repeated more

than twice; mapping numbers to a special token;
counting exclamation points; the confidence thresh-
old above which the predicted label for an unlabeled
instance would be used for training.

In addition to collecting unlabeled data using
emoticon keywords, we also experimented with us-
ing sentences from Wikipedia as neutrally labeled
text, as well as using a random subsample of all
English-language tweets from the Twitter public
stream as a source of unlabeled data for any class.

We also tried using a single non-hierarchical clas-
sifier using each source of unlabeled data.

4.2 Results

4.2.1 SemEval-2013 development set
Using additional unlabeled data with the single

multinomial classifier always resulted in overall de-
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Figure 4: The confusion matrix on the development
set produced after training on a total of approximately
970k training instances. Rows are the true labels while
columns are the predicted labels.

4.2.2 SemEval-2013 test set

gs \ pred negative neutral positive

negative 324 203 74

neutral 196 1168 276

positive 233 498 841

Table 1: Confusion matrix (hierarchical)

class prec recall fscore

negative 0.4303 0.5391 0.4786

neutral 0.6249 0.7122 0.6657

positive 0.7061 0.5350 0.6088

Table 2: Performance (hierarchical)

The average F-score of the positive and
negative classes is 0.5437, which is the main
evaluation metric used by SemEval-2013 Task 2.
The overall accuracy is 61.2%.

4.2.3 Discussion
By using a hierarchical classifier, we are able to

prevent degradation of the performance of the clas-
sifier on neutrally labeled instances by only applying
additional training data to the polarity classifier.

The use of additional unlabeled data results in an
increase in performance for the hierarchical classi-
fier as seen in Figure 3. However, the increase in
performance comes with an exponential increase in
the number of unlabeled instances. Using appropri-
ate feature selection for online algorithms, such as
feature hashing, a system like this could train indefi-
nitely on additional data from a Twitter stream with-
out running out of memory.

The system’s lack of high-quality sources for ad-
ditional objective-OR-neutral data—either
labeled or unlabeled—appears to be our biggest ob-
stacle to increasing performance at this time. The
poor performance of the single multinomial classi-
fier when given additional unlabeled data can also
likely be attributed to this reason. Identifying ad-
ditional high-quality sources of neutral data would
likely go a long way towards improving the over-
all system performance. Active learning approaches
could also be applied with the goal of improving the
subjectivity classifier.

5 Conclusion

Using a hierarchical classifier comprised of two
Naive Bayes classifiers, we are able to improve the
performance of polarity detection with the addition
of unlabeled data in an online setting by isolating the
subjectivity classifier.
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Abstract

This paper describes the system developed by
the Serendio team for the SemEval-2013 Task
2 competition (Task A). We use a lexicon
based approach for discovering sentiments.
Our lexicon is built from the Serendio tax-
onomy. The Serendio taxonomy consists of
positive, negative, negation, stop words and
phrases. A typical tweet contains word varia-
tions, emoticons, hashtags etc. We use prepro-
cessing steps such as stemming, emoticon de-
tection and normalization, exaggerated word
shortening and hashtag detection. After the
preprocessing, the lexicon-based system clas-
sifies the tweets as positive or negative based
on the contextual sentiment orientation of the
words. Our system yields an F-score of 0.8004
on the test dataset.

1 Introduction

Social media websites like Twitter, Facebook etc.
are a major hub for users to express their opinions
online. On these social media sites, users post com-
ments and opinions on various topics. Hence these
sites become rich sources of information to mine for
opinions and analyze user behavior and provide in-
sights for:

• User behavior

• Product feedback

• User intentions

• Lead generation

Businesses spend an enormous amount of time
and money to understand their customer opinions
about their products and services. Thus Sentiment
Analysis has become a hot research area since 2002.
Sentiment Analysis is used to determine sentiments,
emotions and attitudes of the user. The text used for
analysis can range from big document (e.g. Product
reviews from Amazon, blogs) to small status mes-
sage (e.g. Tweets, Facebook comments). In this pa-
per, we confine to Twitter data i.e classify a tweet to
have a positive, negative or neutral sentiment.

The rest of the paper is organized as follows. In
Section 2, we study relevant previous work on Sen-
timent Analysis on Twitter data. In Section 3, we
describe each processing step of our approach in de-
tail. In Section 4, we experiment with the training
and the lexicon. In Section 5, we report and evaluate
the final result obtained from the test data published
by the SemEval team. In Section 6, we present our
conclusions and outline our future work.

2 Related Work

Sentiment Analysis on raw text is a well known
problem. The Liu (2012) book covers the entire
field of Sentiment Analysis. Sentiment Analysis can
be done using Machine learning or a Lexicon-based
approach. We use our lexicon based approach in our
study. The rest of the paper is confined to Lexicon
based approach

2.1 Lexicon based approach

The lexicon based approach is based on the assump-
tion that the contextual sentiment orientation is the
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sum of the sentiment orientation of each word or
phrase. Turney (2002) identifies sentiments based
on the semantic orientation of reviews. (Taboada et
al., 2011; Melville et al., 2011; Ding et al., 2008)
use lexicon based approach to extract sentiments.

Sentiment Analysis on microblogs is more chal-
lenging compared to longer discourses like reviews.
Major challenges for microblog sentiment analysis
are short length status message, informal words,
word shortening, spelling variation and emoticons.
Sentiment Analysis on Twitter data have been re-
searched by (Bifet and Frank, 2010; Berming-
ham and Smeaton, 2010; Pak and Paroubek, 2010).
We use our lexicon based approach to extract sen-
timents. The open lexicon such as Sentiword-
net (Esuli and Sebastiani, 2006; Baccianella et
al., 2010), Q-wordnet (Agerri and Garcı́a-Serrano,
2010), WordNet-Affect (Strapparava and Valitutti,
2004) are developed for supporting Sentiment Anal-
ysis. Studies have been made on preprocessing
tweets. Han and Baldwin (2011) used a classi-
fier to detect word variation and match the related
word. Kaufmann and Kalita (2010) gives the full
preprocessing approach to convert a tweet to normal
text. Sentiment Analysis on Twitter data is not con-
fined to raw text. Analyzing Emoticons have been
an interesting study. Go et al. (2009) used emoti-
cons to classify the tweets as positive or negative
and train standard classifiers such as Naive Bayes,
Maximum Entropy, and Support Vector Machines.
Hashtag may have some sentiment in it. Davidov
et al. (2010) used 50 hashtags and 15 emoticons as
sentiment labels for classification to allow diverse
sentiment types for the tweet. Negation and inten-
sifier play an important role in Sentiment Analysis.
Negation word can reverse the polarity, where as in-
tensifier increases sentiment strength. Taboada et
al. (2011) studied role of the intensifier and negation
in the lexicon based Sentiment Analysis. Wiegand
et al. (2010) survey the role of negation in Sentiment
Analysis.

3 Serendio Approach

Serendio sentiment engine extracts and analyzes
sentiments for a given product and feature set.
Serendio sentiment engine currently works for eight
different domains such as banking, tablets, smart-

phones, televisions, apparel, gaming, automobiles
and e-readers. In this section, we will introduce
Serendio’s Sentiment engine and the enhancements
that were made to handle the SemEval Task 2, Task
A - Contextual Polarity Disambiguation (Wilson et
al., 2013). The main steps of our approach are ex-
plained in detail in the subsections.

3.1 Creation of lexicon

The lexicon can be created either manually
(Taboada et al., 2011; Tong et al., 2001) or expand-
ing automatically from a seed of words (Kanayama
et al., 2006; Kaji and Kitsuregawa, 2007; Turney,
2002; Turney and Littman, 2003). In our study, the
lexicon is manually created. It is a one time process.
Two types of lexicons are created.

Common lexicon: This contains data that would
have the same semantic meaning or sense across dif-
ferent domains and categories.

• Common or default sentiment words. Posi-
tive and Negative sentiment words that have the
same sentiment value or sense across different
domains. For e.g. sentiment word “good” al-
ways represents a positive sentiment and it is
independent of any category. Positive or Nega-
tive sentiment words have a sentiment score of
+1 or -1 to indicate the respective polarity.

• Negation Words. Negation words are the
words which reverse the polarity of sentiment.
For example, “The battery life is not good” has
negative sentiment

• Blind Negation Words. In the sentence, “The
T.V needs a better remote”, “needs” is a blind
negation word. Blind negation words operate
at a sentence level and points out the absence
or presence of some sense that is not desired in
a product feature.

• Split words. Split words are the words used
for splitting sentences into clauses. The split
words list consists of conjunctions and punc-
tuation marks. For example the complex sen-
tence, “Camera is good but the battery is bad”
is split into two clauses “Camera is good” and
“Battery is bad”.
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Category specific lexicon: Category specific lex-
icon contains the (1) Product Catalog which iden-
tifies all the products that we are interested in. (2)
Feature Catalog which is a list of attributes that the
product has. This enables the Serendio engine to do
analysis at the feature level. (3) Sentiment words
(positive and negative) that are specific to the cate-
gory. For example, for a category such as Televi-
sions, a product would be Samsung TV. The feature
would be LCD screen and the word “glare” would
be the category specific negative sentiment word.

The semeval task 2 contains Twitter data that can-
not be pinned to any specific category. So for this
task, only the common lexicon was used.

3.2 Preprocessing

A typical tweet contains word variations, emoticons,
hashtags etc. The objective of the preprocessing step
is to normalize the text into an appropriate form to
extract the sentiments. Below are the preprocessing
steps used.

• POS Tagging. POS Tagger gives part of
speech tag associated with words. POS tagging
is done using NLTK (Bird, 2006).

• Stemming. Stemmer gives the stem word.
Serendio lexicon contains stem words only. So
non stem words are stemmed and replaced with
stem words. For example, words like ‘loved‘,
‘loves‘, ‘loving‘, ‘love‘ are replaced with ‘lov‘.
This would aid the engine to do the word match
from the text to the lexicon. Stemming is done
using NLTK

• Exaggerated word shortening. Words which
have same letter more than two times and not
present in the lexicon are reduced to the word
with the repeating letter occurring just once
(Kouloumpis et al., 2011). For example, the
exaggerated word “NOOOOOO” is reduced to
“NO”.

• Emoticon detection. Emoticon has some sen-
timent associated with it. Twitter NLP (Ritter
et. al , 2011; Ritter et. al , 2012) is used to
extract emoticons along with the sentiments in
the Twitter data.

• Hashtag detection. The hashtag is a topic or
a keyword that is marked with a tweet. Hash-
tag is a phrase starting with # with no space
between them. Hashtags are identified and sen-
timents are extracted from them.

3.3 Sentiment calculation

Sentiment calculation is the aggregation of the sum
of the sentiment bearing entities of the tweet. Enti-
ties can be text, emoticons and hashtags. The sen-
timent calculation algorithm is shown in Algorithm
1. The sentiment calculation is based on a set of
heuristics built on the sentiment orientation of the
words. Blind negation words are extracted from the
sentence. The presence of the blind negation words
indicate negative sentiment. If the sentence contains
a blind negation word then other steps are skipped
and sentiment is blindly assigned as negative. Next,
sentiment words are extracted. The sentiment po-
larity of the word can be changed due to negation
words that occur in proximity (2 word distance).
If a sentiment word is not present, then the senti-
ment negation word becomes additive to the neg-
ative sentiment list. The sentence “I can not deal
it” has the negation word “not” and it does not con-
tain a sentiment word. So the negation word just
gets added to the negative sentiment word. Senti-
ments from emoticons are extracted with the help
of Twitter NLP. Sentiment words within the hash-
tag are extracted by python regex functions. For ex-
ample, from the hashtag “#ihateu”, the word “hate”
is extracted as a sentiment word. The sentiment of
the tweet is aggregated as the sum of the sentiments
from all the entities.

4 Experimental Data

The training data consist of real time tweets. 9451
subjective expressions are marked from all the
tweets and are labeled as positive or negative or neu-
tral. The average number of words of the marked
subjective expression is around 2 to 3 words. The
common dictionary that is constructed is shown in
Table 2. The Serendio sentiment engine is run on
the training data set. We identify the correct senti-
ment of the the phrases which are misclassified as
neutral, we include the phrases in our lexicon with
their appropriate sentiments.
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Algorithm 1: Sentiment Calculation
Data: Preprocessed Twitter data
Result: Output: Positive, Negative, Neutral
Find the list of sentiment words SentiList, its
position in the sentence;
Find the list of sentiment negation words
SentiNegat, its position in the sentence;
Find the list of blind negation words
BlindNegat, its position in the sentence;
if BlindNegat then

return negativity;
else

if SentiList and SentiNegat then
foreach word in the SentiList do

if word is atmost the distance of 2
from SentiNegat then

Revert the polarity of the word;
end

end
else

if SentiNegat then
Add the SentiNegat to the
negative SentiList;

end
end

end
SentiSum=0;
foreach word in the SentiList do

SentiSum=SentiSum+sentiment of
word;

end
if Hashtag is present then

Find all the sentiment words in hash tag
using regex matching and add them to
SentiList

end
if Emoticon is present then

Find sentiment of the emoticon and add
emoticon,it’s sentiment to SentiList

end
SentiType=“neutral”;
if SentiSum > 0 then

SentiType=“positive”;
end
if SentiSum < 0 then

SentiType=“negative”;
end
return SentiType;

Table 1: Training Data

Sentiment type Expression count
Positive 5865
Negative 3120
Neutral 466

Table 2: Lexicon Details

Data type Count
Blind Negation word 7
Negation 13
Positive sentiment word 1260
Negative sentiment word 1703
Split word 16

5 Result and Discussion

Our sentiment engine performed reasonably well.
Please see Table 3 for Precision and Recall measure-
ments. The recall rates are lower because of our lexi-
cons lack of coverage of all the sentiment words. In-
formal language of tweets posed another challenge
for identifying negative sentiments. For example,
swear words such as “sh*t” and “f**k” are generally
considered as negative sentiment words. Phrases
such as “This sh*t is good” and “F**king awesome”
were identified as negative sentiments when in fact
they were expressing positive sentiments.

Table 3: Results

POSITIVE NEGATIVE
PRECISION 0.9361 0.8884
RECALL 0.7132 0.7912

The Serendio lexicon that we used has sentiment
words with a sentiment attached to it. By integrat-
ing with a lexical source such as Sentiwordnet, we
feel we could get a more nuanced word sense dis-
ambiguation. For example, the word “good” is con-
sidered to have positive polarity. According to Sen-
tiwordnet 3.0, good as an adjective has 21 different
senses with different sentiments. For example, the
sentiment word “good” in the phrase “A good mile
from here” gives an objective sense, not in a positive
sense.
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6 Conclusion

In this paper we presented our system that we used
for the SemEval-2013 Task 2 for doing Sentiment
Analysis for Twitter data. We got an F-score of
0.8004 on the test data set.

We presented a lexicon based method for Senti-
ment Analysis with Twitter data. We provided prac-
tical approaches to identifying and extracting sen-
timents from emoticons and hashtags. We also pro-
vided a method to convert non-grammatical words to
grammatical words and normalize non-root to root
words to extract sentiments.

A lexicon based approach is a simple, viable and
practical approach to Sentiment Analysis of Twitter
data without a need for training. A Lexicon based
approach is as good as the lexicon it uses. To achieve
better results, word sense disambiguation should be
combined with the existing lexicon approach.
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Abstract

In this paper we introduce our contribution
to the SemEval-2013 Task 2 on “Sentiment
Analysis in Twitter”. We participated in “task
B”, where the objective was to build mod-
els which classify tweets into three classes
(positive, negative or neutral) by their con-
tents. To solve this problem we basically fol-
lowed the supervised learning approach and
proposed several domain (i.e. microblog) spe-
cific improvements including text preprocess-
ing and feature engineering. Beyond the su-
pervised setting we also introduce some early
results employing a huge, automatically anno-
tated tweet dataset.

1 Introduction

In the past few years, the popularity of social me-
dia has increased. Many studies have been made in
the area (Jansen et al., 2009; O’Connor et al., 2010;
Bifet and Frank, 2010; Sang and Bos, 2012). Peo-
ple post messages on a variety of topics, for example
products, political issues, etc. Thus a big amount of
user generated data is created day-by-day. The man-
ual processing of this data is impossible, therefore
automatic procedures are needed.

In this paper we introduce an approach which is
able to assign sentiment labels to Twitter messages.
More precisely, it classifies tweets into positive, neg-
ative or neutral polarity classes. The system partici-
pated in the SemEval-2013 Task 2: Sentiment Anal-
ysis in Twitter, Task–B Message Polarity Classifica-
tion (Wilson et al., 2013). In our approach we used
a unigram based supervised model because it has

been shown that it works well on short messages like
tweets (Jiang et al., 2011; Barbosa and Feng, 2010;
Agarwal et al., 2011; Liu, 2010). We reduced the
size of the dictionary by normalizing the messages
and by stop word filtering. We also explored novel
features which gave us information on the polarity of
a tweet, for example we made use of the acronyms
in messages.

In the “constrained” track of Task–B we used the
given training and development data only. For the
“unconstrained” track we downloaded tweets using
the Twitter Streaming API1 and automatically anno-
tated them. We present some preliminary results on
exploiting this huge dataset for training our classi-
fier.

2 Approach

At the beginning of our experiments we used a
unigram-based supervised model. Later on, we re-
alized that the size of our dictionary is huge, so
in the normalization phase we tried to reduce the
number of words in it. We investigated novel fea-
tures which contain information on the polarity of
the messages. Using these features we were able to
improve the precision of our classifier. For imple-
mentation we used the MALLET toolkit, which is a
Java-based package for natural language processing
(McCallum, 2002).

2.1 Normalization
One reason for the unusually big dictionary size is
that it contains one word in many forms, for exam-

1https://dev.twitter.com/docs/
streaming-apis/streams/public
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ple in upper and lower case, in a misspelled form,
with character repetition, etc. On the other hand, it
contained numerous special annotations which are
typical for blogging, such as Twitter-specific anno-
tations, URL’s, smileys, etc. Keeping these in mind
we made the following normalization steps:

• First, in order to get rid of the multiple forms
of a single word we converted them into lower
case form then we stemmed them. For this pur-
pose we used the Porter Stemming Algorithm.

• We replaced the @ and # Twitter-specific tags
with the [USER] and [TAG] notations, respec-
tively. Besides we converted every URL in the
messages to the [URL] notation.

• Smileys in messages play an important role
in polarity classification. For this reason we
grouped them into positive and negative smi-
ley classes. We considered :), :-),: ), :D, =), ;),
; ), (: and :(, :-(, : (, ):, ) : smileys as positive
and negative, respectively.

• Since numbers do not contain information re-
garding a message polarity, we converted them
as well to the [NUMBER] form. In ad-
dition, we replaced the question and excla-
mation marks with the [QUESTION MARK]
and [EXCLAMATION MARK] notations. Af-
ter this we removed the unnecessary char-
acters ’"#$%&()*+,./:;<=>\ˆ{}˜, with
the exception that we removed the ’ character
only if a word started or ended with it.

• In the case of words which contained character
repetitions – more precisely those which con-
tained the same character at least three times
in a row –, we reduced the length of this se-
quence to three. For instance, in the case
of the word yeeeeahhhhhhh we got the form
yeeeahhh. This way we unified these charac-
ter repetitions, but we did not loose this extra
information.

• Finally we made a stop word filtering in order
to get rid of the undesired words. To identify
these words we did not use a stop word dictio-
nary, rather we filtered out those words which
appeared too frequently in the training corpus.

We have chosen this method because we would
like to automatically detect those words which
are not relevant in the classification.

Before the normalization step, the dictionary con-
tained approximately 41, 000 words. After the above
introduced steps we managed to reduce the size of
the dictionary to 15, 000 words.

2.2 Features

After normalizing Twitter messages, we searched
for special features which characterize the polarity
of the tweets. One such feature is the polarity of
each word in a message. To determine the polarity
of a word, we used the SentiWordNet sentiment lex-
icon (Baccianella et al., 2010). In this lexicon, a pos-
itive, negative and an objective real value belong to
each word, which describes the polarity of the given
word. We consider a word as positive if the related
positive value is greater than 0.3, we consider it as
negative if the related negative value is greater than
0.2 and we consider it as objective if the related ob-
jective value is greater than 0.8. The threshold of the
objective value is high because most words are ob-
jective in this lexicon. After calculating the polarity
of each word we created three new features for each
tweet which are the number of positive, negative and
objective words, respectively. We also checked if a
negation word precedes a positive or negative word
and if so we inverted its polarity.

We also tried to group acronyms by their polarity.
For this purpose we used an acronym lexicon which
can be found on the www.internetslang.com
website. For each acronym we used the polarity of
each word in the acronym’s description and we de-
termined the polarity of the acronym by calculat-
ing the rate of positive and negative words in the
description. This way we created two new fea-
tures which are the number of positive and negative
acronyms in a given message.

Our intuition was that people like to use character
repetitions in their words for expressing their happi-
ness or sadness. Besides normalizing these tokens
(see Section 2.1), we created a new feature as well,
which represents the number of this kind of words
in a tweet.

Beyond character repetitions people like to write
words or a part of the text in upper case in order to
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call the reader’s attention. Because of this we cre-
ated another feature which is the number of upper
case words in the given text.

3 Collected Data

In order to achieve an appropriate precision with su-
pervised methods we need a big amount of training
data. Creating this database manually is a hard and
time-consuming task. In many cases it is hard even
for humans to determine the polarity of a message,
for instance:

After a whole 5 hours away from work, I
get to go back again, I’m so lucky!

In the above tweet we cannot decide precisely the
polarity because the writer can be serious or just sar-
castic.

In order to increase the size of the training data
we acquired additional tweets, which we used in
the unconstrained run for Task–B. We created an ap-
plication which downloads tweets using the Twitter
Streaming API. The API supports language filter-
ing, which was used to get rid of non-English mes-
sages. Our manual investigations of the downloaded
tweets revealed, however, that this filter allows a big
amount of non-English tweets, which is probably
due to the fact that some Twitter users did not set
their language. We used Twitter4J2 API (which is
a Java library for the Twitter API) for downloading
these tweets. We automatically annotated the down-
loaded tweets using the Twitter Sentiment3 web ap-
plication, similar to Barbosa and Feng (2010) but
we used only one annotator. This web application
also supports language detection, but after this extra
filtration, our dataset still contained a considerable
amount of non-English messages. After 16 hours
of data collection we got 350, 000 annotated tweets,
where the distribution of neutral, positive and neg-
ative classes was approximately 60%, 20%, 20%,
respectively. For further testing purposes we have
chosen 10, 000 tweets from each class.

4 Results

We report results on the two official test sets of the
shared task. The “twitter” test set consists of 3, 813

2http://twitter4j.org
3http://www.sentiment140.com

tweets while the “sms” set consists of 2, 094 sms
messages. We evaluated both test databases in two
ways, in the so-called constrained run we only used
the official training database, while in the uncon-
strained run we also used a part of the additional
data, which was mentioned in the 3 section. The
official training database contained 4, 028 positive,
1, 655 negative and 3, 821 neutral tweets while for
the unconstrained run we used an additional 10, 000
tweets from each class. This way in each phase we
got four kinds of runs, which were evaluated with
the Naı̈ve Bayes and Maximum Entropy classifiers.

In Table 1 the evaluation of the unigram-based
model with the Naı̈ve Bayes learner can be seen.
The table contains the F-scores for the positive, neg-
ative and neutral labels for each of the four runs.
The avg column contains the average F-score for the
positive and negative labels, which was the official
evaluation metric for SemEval-2013 Task 2. We got
the best scores for the neutral label whilst the worst
scores are obtained for the negative label, which is
due to the fact that there were much less negative
instances in the training database. It can be seen
that the F-scores for the unconstrained run are better
both for the tweet and sms test databases. For the
unigram-based model the F-scores are higher when
we used the Maximum Entropy model (see Table 2).

pos neg neut avg
twitter-constrained 0.59 0.09 0.65 0.34
twitter-unconstrained 0.60 0.17 0.65 0.38
sms-constrained 0.46 0.16 0.63 0.31
sms-unconstrained 0.47 0.38 0.53 0.42

Table 1: Unigram-based model, Naı̈ve Bayes learner

pos neg neut avg
twitter-constrained 0.60 0.33 0.67 0.46
twitter-unconstrained 0.60 0.40 0.66 0.50
sms-constrained 0.47 0.31 0.69 0.39
sms-unconstrained 0.52 0.47 0.66 0.49

Table 2: Unigram-based model, Maximum Entropy
learner

In Tables 3 and 4 the evaluation results can be
seen for the normalized model. The normalization
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step increased the precision for both learning al-
gorithms and the Maximum Entropy learner is still
better than Naı̈ve Bayes. Besides this we noticed
that for both learners in the case of the tweet test
database, the unconstrained run had lower scores
than the constrained whilst in the case of the sms
test database this phenomenon did not appear.

pos neg neut avg
twitter-constrained 0.65 0.32 0.67 0.48
twitter-unconstrained 0.62 0.21 0.63 0.41
sms-constrained 0.56 0.27 0.72 0.41
sms-unconstrained 0.52 0.35 0.66 0.43

Table 3: Normalized model, Naı̈ve Bayes learner

pos neg neut avg
twitter-constrained 0.66 0.40 0.68 0.53
twitter-unconstrained 0.61 0.42 0.64 0.51
sms-constrained 0.61 0.38 0.77 0.49
sms-unconstrained 0.57 0.47 0.72 0.52

Table 4: Normalized model, Maximum Entropy
learner

The evaluation results of the feature-based model
can be seen in Tables 5 and 6. In the case of the
Naı̈ve Bayes learner, the features did not increase the
F-scores, only for the sms-unconstrained run. For
the other runs the achieved scores decreased. In the
case of the Maximum Entropy learner the features
increased the F-scores, slightly for the constrained
runs and a bit more for the unconstrained runs.

From this analysis we can conclude that the nor-
malization of the messages yielded a considerable
increase in the F-scores. We discussed above that
this step also significantly reduced the size of the
dictionary. The features increased the precision too,
especially for the unconstrained run. This means
that these features represent properties which are
useful for those training data which are not from the
same corpus as the test messages. We compared two
machine learning algorithms and from the results we
concluded that the Maximum Entropy learner per-
forms better than the Naı̈ve Bayes on this task. Our
experiments also showed that the external, automat-
ically labeled training database helped only in the

classification of sms messages. This is due to the
fact that the smses and our external database are
from a different distribution than the official tweet
database.

pos neg neut avg
twitter-constrained 0.65 0.32 0.67 0.48
twitter-unconstrained 0.62 0.17 0.79 0.39
sms-constrained 0.56 0.38 0.74 0.47
sms-unconstrained 0.54 0.29 0.70 0.41

Table 5: Feature-based model, Naı̈ve Bayes learner

pos neg neut avg
twitter-constrained 0.66 0.41 0.69 0.54
twitter-unconstrained 0.63 0.43 0.65 0.53
sms-constrained 0.62 0.39 0.79 0.50
sms-unconstrained 0.61 0.49 0.75 0.55

Table 6: Feature-based model, Maximum Entropy
learner

5 Conclusions and Future Work

Recently, sentiment analysis on Twitter messages
has gained a lot of attention due to the huge amount
of Twitter users and their tweets. In this paper we ex-
amined different methods for classifying Twitter and
sms messages. We proposed special features which
characterize the polarity of the messages and we
concluded that due to the informality (slang, spelling
mistakes, etc.) of the messages it is crucial to nor-
malize them properly.

In the future, we plan to investigate the utility of
relations between Twitter users and between their
tweets and we are interested in topic-dependent sen-
timent analysis.
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Abstract

The widespread use of Twitter makes it very
interesting to determine the opinions and the
sentiments expressed by its users. The short-
ness of the length and the highly informal na-
ture of tweets render it very difficult to auto-
matically detect such information. This paper
reports the results to a challenge, set forth by
SemEval-2013 Task 2, to determine the posi-
tive, neutral, or negative sentiments of tweets.
Two systems are explained: System A for de-
termining the sentiment of a phrase within a
tweet and System B for determining the senti-
ment of a tweet. Both approaches rely on rich
feature sets, which are explained in detail.

1 Introduction

Twitter consists of a massive number of posts on a
wide range of subjects, making it very interesting to
extract information and sentiments from them. For
example, answering questions like ‘What do Twitter
users feel about the brand X?’ are quite interesting.
The constrained length and highly informal nature
of tweets presents a serious challenge for the auto-
mated extraction of such sentiments.

Twitter supports special tokens (i.e. mentions and
hashtags), which have been utilized to determine the
sentiment of tweets. In (Go et al., 2009), emoticons
are used to label tweets. In (Davidov et al., 2010),
Twitter emoticons as well as hashtags are used to la-
bel tweets. O’Connor et al. (2010) demonstrated
a correlation between sentiments identified in pub-
lic opinion polls and those in tweets. A subjectivity

† These authors contributed equally to this work

lexicon was used to identify the positive and nega-
tive words in a tweet. In (Barbosa and Feng, 2010),
subjective tweets are used for sentiment classifica-
tion. They propose the use of word specific (e.g.
POS tags) and tweet specific (e.g. presence of a link)
features. Most of these studies use their own anno-
tated data sets for evaluation, which makes it diffi-
cult to compare the performances of their proposed
approaches.

Sentiment Analysis in Twitter 2013 (SemEval
2013 Task 2) (Wilson et al., 2013) presented a chal-
lenge for exploring different approaches examin-
ing sentiments conveyed in tweets: interval-level
(phrase-level) sentiment classification (TaskA) and
message-level sentiment classification (TaskB). Sen-
timent are considered as positive, negative, or neu-
tral. For TaskA, the goal is to determine the sen-
timent of an interval (consecutive word sequence)
within a tweet. For TaskB, the goal is to determine
sentiment of an entire tweet. For example, let’s con-
sider a tweet like ‘Can’t wait until the DLC for ME3
comes out tomorrow. :-)’. For TaskA, the interval
0-1 (Can’t wait) is ‘positive’ and the interval 10-10
(:-)) is ‘positive’. For TaskB, this tweet is ‘positive’.

In this paper, we present two systems, one for
TaskA and one for TaskB. In both cases machine
learning methods were utilized with rich feature sets
based on the characteristics of tweets. Our results
suggest that our approach is promising for sentiment
classification in Twitter.

2 Approach

The task of detecting the sentiments of a tweet or
an interval therein, is treated as a classification of
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Figure 1: The Overview of BOUNCE System

tweets into positive, negative, or neutral sets. Fig-
ure 1 gives the overview of our approach. The Pre-
processor module tokenizes the tweets that are used
by the Feature Generator. At this stage, the tweets
are represented as feature vectors. For TaskA, the
feature vectors are used by the Interval Classifier
that predicts the labels of the tweet intervals. For
TaskB, the feature vectors are used by the Positive
Classifier and the Negative Classifier which report
on the positivity and negativity of the tweets. The
Tweet Classifier determines the tweet labels using a
rule-based method. Each step is described in detail
in the following subsections.

2.1 Lexicons
The core of our approach to sentiment analysis relies
on word lists that are used to determine the positive
and negative words or phrases. Several acquired lists
are used in addition to one that we curated. AFINN
(Nielsen, 2011) is the main sentiment word list in-
cluding 2477 words rated between -5 to 5 for va-
lence. SentiWordNet (Baccianella et al., 2010), de-
rived from the Princeton English WordNet (Miller,
1995), assigns positive, negative, or objective scores
to each synset in WordNet. We considered the av-
erage of a word’s synsets as its SentiWordNet score.
Thus, synsets are disregarded and no disambiguation
of the sense of a word in a given context is done.
The SentiWordNet score of a word is not used if it
has objective synsets, since it indicates that the word
might have been used in an objective sense. We use
a list of emotion words and categories that is created
by DeRose1. Furthermore, a slang dictionary down-

1http://derose.net/steve/resources/emotionwords/ewords.html

loaded from the Urban Dictionary2 containing over
16,000 phrases (with no sentiment) is used. Finally,
we curated a sentiment word list initiated with a list
of positive and negative words obtained from Gen-
eral Inquirer (Stone et al., 1966), and refined by sen-
timent emitting words from a frequency-based or-
dered word list generated from the training data set
of SemEval-2013 Task A. Naturally, this list is more
specialized to the Twitter domain.

2.2 Preprocessing

Prior to feature generation, tweets were prepro-
cessed to yield text with more common wording.
For this, CMU’s Ark Tokenizer and Part-of-Speech
(POS) Tagger (Gimpel et al., 2011), which has been
specifically trained for tweets, was used. Tweets are
tokenized and POS tagged.

2.3 Feature Sets

In addition to the lexical or syntactic characteristics,
the manner in which tweets are written may reveal
sentiment. Orthogonal shapes of words (esp. fully
or partially capitalized words), expressions of a sin-
gle word or a phrase in the form of a hashtag, posi-
tions of certain tokens in a tweet are prominent char-
acteristics of tweets. In addition to these, tweets may
convey multiple sentiments. This leads to sequence-
based features, where we append features for each
sentiment emitted by a word or a phrase in a tweet.
Moreover, since TaskA asks for sentiment of inter-
vals in a tweet, we also engineer features to catch
clues from the surrounding context of the interval,

2http://www.urbandictionary.com
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such as the sentiments and lengths of the neighbor-
ing intervals. For TaskB, the usage of hashtags and
last words in tweets were occasionally sentimental,
thus we considered them as features as well. We ex-
plain all features in detail in Section 3.

2.4 Classification
Maximum entropy models (Berger et al., 1996) have
been used in sentiment analysis (Fei et al., 2010).
They model all given data and treat the remainder as
uniform as possible making no assumptions about
what is not provided. For this, TaskA system uses
the MaxEnt tool (Zhang, 2011).

Naive Bayes is a simple probabilistic model based
on Bayes’ Theorem that assumes independence be-
tween features. It has performed well in sentiment
classification of Twitter data (Go et al., 2009; Bifet
and Frank, 2010). TaskB data was not evenly dis-
tributed. There were very few negative tweets com-
pared to positive tweets. Using a single classifier
to distinguish the classes from each other resulted
in poor performance in identifying negative tweets.
Therefore, TaskB system utilizes multiple binary
classifiers that use the one-vs-all strategy. Maximum
Entropy and Naive Bayes models were considered
and the model that performed best on the develop-
ment set was chosen for each classifier. As a result,
the positive classifier (Bpos) is based on the Max-
imum Entropy model, whereas the negative classi-
fier (Bneg) is based on Naive Bayes. TaskB system
uses the Natural Language Toolkit (Loper and Bird,
2002).

3 Systems

In this section, TaskA and TaskB systems are ex-
plained in detail. All features used in the final ex-
periments for both tasks are shown in Table 1.

3.1 TaskA System
TaskA is a classification task where we classify a
given interval as having positive, negative or neutral
sentiment. TaskA feature sets are shown in Table 1.

lexical features: These features use directly
words (or tokens) from tweets as features. single-
word feature uses the word of the single-word inter-
vals, whereas slang features are created for match-
ing uni-grams and bi-grams from our slang dictio-
nary. We also use emoticons as features, as well as

the words or phrases that emit emotion according to
the lexicons described in Section 2.1.

score-based features: These features use the
scores obtained from the AFINN and SentiWordNet
(SWN) lexicons. We use separate scores for the pos-
itive and negative sentiments, since one interval may
contain multiple words with opposite sentiment. In
case of multiple positive or negative occurances, we
take the arithmetic mean of those.

shape-based features: These features capture the
length of an interval, whether it contains a capital-
ized word or all words are capitalized, whether it
contains a URL, or ends with an exclamation mark.

tag-based features: In addition to numeric val-
ues of sentiments, we use the tokens ‘positive’ and
‘negative’ to express the type of sentiment. When
multiple words emit a sentiment in a given interval,
their corresponding tokens are appended to create a
single feature out of it, sequences. Moreover, we
have another set of features which also contains the
POS tags of these sentiment words.

indicator features: These features are used in or-
der to expose how many sentiment emitting words
from our currated large lexicon exist in a given inter-
val. hasNegation indicates the presence of a nega-
tion word like not or can’t in the interval, whereas
numOfPosIndicators and numOfNegIndicators gives
the number of tokens that convey positive and nega-
tive sentiment, respectively.

context features: In addition to the features gen-
erated from the given interval, these features capture
the context information from the neighboring inter-
vals. Feature surroundings combines the length of
the interval along with the lengths of the intervals on
both sides, whereas surrounding-shape and extra-
surrounding-shape features use number of positive
and negative sentiment indicators for the intervals.
We also use their normalized forms (those starting
with norm-) where we divide the number of indi-
cators by the length of the interval. Features with
-extra- use two adjacent intervals from both sides.
Intervals that are not available are represented with
NA.

3.2 TaskB System
TaskB is a classification task where we determine
the sentiment (positive, negative, or neutral) of a
tweet. TaskB system uses a rule-based method to
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Feature Set Feature Example Feature Instance used by

lexical-based

single-word-* single-word-worst A, B
slang-* slang-shit A, Bpos

emoticons-* emoticons-:) A
emitted-emotions-* emitted-emotions-angry A, B

score-based afinn-positive:#, afinn-negative:# afinn-positive:4, afinn-negative:-2 A, B
swn-positive:#, swn-negative:# swn-positive:2, swn-negative:-3 A

shape-based

length-# length-10 A
hasAllCap-T/F hasAllCap-T A
fullCap-T/F fullCap-T A
hasURL-T/F hasURL-F A, B
endsWExlamation-T/F endsWExlamation-T A, Bneg

tag-based
our-seq-* our-seq-positive-positive A, B
our-tag-seq-*, swn-seq-*, swn-tag-seq-* afinn-seq-positive-a-positive-n A
afinn-seq-*, afinn-tag-seq-* afinn-seq-positive-a-negative-n A

indicators
hasNegation-T/F hasNegation-F A
numOfPosIndicators-# numOfPosIndicators-2 A
numOfNegIndicators-# numOfNegIndicators-0 A

context

surroundings-#-#-# surroundings-1-2-NA A
surr-shape-#-#-# surrounding-shape-NA-2-1 A
extra-surr-shape-#-#-#-#-# extra-surr-shape-NA-2-1-0-1 A
norm-surr-shape-#-#-# norm-surr-shape-0.5-0.2-0.0 A
norm-extra-surr-shape-#-#-#-#-# norm-extra-surr-shape-NA-0.5-0.2-0.0-0.2 A
left-sentiment-*, right-sentiment-* left-sentiment-positive A

twitter-tags

hasEmoticon-T/F hasEmoticon-T B
hasMention-T/F hasMention-T B
hasHashtag-T/F hasHashtag-F B
[emoticon|mention|hash]-count-# mention-count-3 B

repetition unigram-*n unigram-[no+] B
$character-count-# o-count-7 B

lastword lastword-*n lastword-[OMG+] B
lastwordshape-* lastwordshape-XXXX B

chat chatword-* for word ‘gz’: chatword-congratulations B
interjection interjection-*n interjection-[lo+l] B

negation
negword-*n negword-never Bneg

negword-count-# negword-count-3 Bneg

negcapword-count-# negcapword-count-1 Bneg

hash
hashword-* hashword-good B
hashtag-#* hashtag-#good B
hash-sentiment-[positive|negative] hash-sentiment-positive B

lingemotion [noun|verb|adverb|adjective]-$emotion noun-fear B

oursent

for tweet: a nice morning.. I hate work.. damn!
oursent-* oursent-nice, oursent-hate, oursent-damn B
oursent-longseq-* oursent-longseq-pnn B
oursent-shortseq-* oursent-shortseq-pn B
oursent-first-last-* oursent-first-last-pn B

afinn-phrases

phrase-firstsense-[positive|negative] phrase-firstsense-positive B
phrase-lastsense-[positive|negative] phrase-lastsense-negative B
afinnword-* afinnword-nice, afinnword-hate, afinnword-damn B
afinn-firstsense-[positive|negative] afinn-firstsense-positive B
afinn-lastsense-[positive|negative] afinn-lastsense-positive B

emo emo-pattern-* for =) : emo-pattern-HAPPY B

Table 1: Feature sets used in TaskA and TaskB
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Dataset Type Positive Negative Neutral+Objective Tot. No. of Instances

TaskA
Training 5290 (5865) 2771(3120) 16118 (17943) 24179 (26928)
Development 589 (648) 392 (430) 1993 (2202) 2974 (3280)
Test 2734 1541 160 4435

TaskB
Training 3274 (3640) 1291 (1458) 4155 (4586) 8720 (9684)
Development 523 (575) 309 (340) 674 (739) 1506 (1654)
Test 1572 601 1640 3813

Table 2: Number of instances used in TaskA and TaskB

decide on the sentiment label of a tweet. For each
tweet, the probabilities of belonging to the posi-
tive class (Probpos) and negative class (Probneg)
are computed by the Bpos and Bneg classifiers, re-
spectively. If Probpos is greater than Probneg, and
greater than a predefined threshold, then the tweet
is classified as ‘positive’, otherwise it is classified
as ‘neutral’. On the other hand, if Probneg is
greater than Probpos, and greater than the prede-
fined threshold, then the tweet is classified as ‘neg-
ative’, otherwise it is classified as ‘neutral’. The
threshold is set to 0.45, since it gives the optimal F-
score on the development set. TaskB features along
with examples are shown in Table 1.

twitter-tags: hasEmoticon, hasMention, ha-
sURL, and hasHashtag indicate whether the corre-
sponding term (e.g. mention) exists in the tweet.

repetition: Words with repeating letters are
added as a feature ∗n. ∗n represents the normalized
version (i.e., no repeating letters) of a word. For ex-
ample, ‘nooooooo’ is shortened to [no+]. We also
keep the count of the repeated character.

wordshape: Shape of each word in a tweet is con-
sidered. For example, the shape of ‘NOoOo!!’ is
‘XXxXx!!’.

lastword: The normalized form and the shape of
the last word are used as features. For example, if
the lastword is ‘OMGG’, then lastword ‘[OMG+]’
and lastwordshape ‘XXXX’ are used as features.

chat: A list of chat abbreviations that express sen-
timent is manually created. Each abbreviation is re-
placed by its corresponding word.

interjection: An interjection is a word that ex-
presses an emotion or sentiment (e.g. hurraah,
loool). Interjection wordn is used as a feature.

negation: We manually created a negation list ex-
tended by word clusters from (Owoputi et al., 2013).
A negation word is represented by spellings such

as not, n0t, and naht. Each negation wordn (e.g
neve[r+]) is considered. We keep the count of nega-
tion words and all capitalized negation words.

hash: If the hashtag is ‘#good’ then #good and
good become hash features. If the hashtag is a sen-
timent expressing word according to our sentiment
word list, then we keep the sentiment information.

lingemotion: Nodebox Linguistics3 package
gives emotional values of words for expressions of
emotions such as fear and sadness. POS augmented
expression information is used as a feature.

oursent: Each word in a tweet that exists in our
sentiment word list is considered. When multiple
sentiment expressing words are found, a sentiment
sequence feature is used. oursent-longseq keeps
the long sequence, whereas oursent-shortseq keeps
same sequence without repetitive sentiments. We
also consider the first and last sentiments emitted by
a tweet.

afinn: We consider each word that exists in
AFINN. If a negation exists before this word, the
opposite sentiment is considered. For example, if a
tweet contains the bigram ‘not good’, then the senti-
ment of the bigram is set to ‘negative’. The AFINN
scores of the positive and negative words, as well as
the first and last sentiments emitted by the tweet are
considered.

phrases: Each n-gram (n > 1) of a tweet that
exists in our sentiment phrase list is considered.

afinn-phrases: Phrases are retrieved using the
phrases feature. Each sentiment that appears in
a phrase is kept, hence we obtain a sentiment se-
quence. The first and last sentiments of this se-
quence are also considered. Then, the phrases are
removed from the tweet text and the afinn feature is
applied.

emo: We manually created an emoticon list where

3http://nodebox.net/code/index.php/Linguistics
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each term is associated with an emotion pattern such
as HAPPY. These emotion patterns are used as a fea-
ture.

others: Bpos uses the slang feature from the lexi-
cal feature set, and Bneg uses endsWExlamation fea-
ture from the indicators feature set.

4 Experiments and Results

4.1 Data

The data set provided by the task organizers was an-
notated by using Amazon Mechanical Turk4. The
annotations of the tweets in the training and devel-
opment sets were provided to the task participants.
However, the tweets had to be downloaded from
Twitter by using the script made available by the or-
ganizers. We were unable to download all the tweets
in the training and development sets, since some
tweets were deleted and others were not publicly
accessible due to their updated authorization status.
The number of actual tweets (numbers in parenthe-
ses) and the number of collected tweets are shown in
Table 2. Almost 10% of the data for both tasks are
missing. For the test data, however, the tweets were
directly provided to the participants.

4.2 Results on TaskA

We start our experiments with features generated
from lexicons and emoticons. Called our baseline,
it achieved an f-score of 47.8 on the devset in Ta-
ble 3. As we add other features at each step, we
reach an average f-score of 81.6 on the devset at
the end. Among those features, the most contribut-
ing ones are lexical feature single-word, indicator
feature hasNegation, and especially shape feature
length. The success of the length feature is mostly
due to the nature of intervals, where the long ones
tend to be neutral, and the rest are mostly positive
or negative. Another noteworthy result is that our
curated word list contributed more compared to the
others. When the final model is used on the test set,
we get the results in Table 5. Having low neutral f-
score might be due to the fact that there were only a
few neutral intervals in the test set, which might in-
dicate that their characteristics may not be the same
as the ones in the devset.

4https://www.mturk.com/mturk/

Added Features Avg. F-Score
afinn-positive, afinn-negetive

47.8swn-positive, swn-negative,
emoticons, emitted-emotions
+ hasAllCap, fullCap, hasURL, 50.1endsWExclamation
+ slang 51.5
+ single-word 56.8
+ afinn-seq, swn-seq, afinn-tag-seq, 57.7swn-tag-seq
+ our-seq, our-tag-seq 60.2
+ hasNegation 64.8
+ numOfPosIndicators, 65.3numOfNegIndicators
+ length 75.2
+ left-sentiment, right-sentiment 76.5
+ surroundings, surrounding-shape 78.9
+ extra-surrounding-shape 80.6
+ norm-surrounding-shape, 81.6norm-extra-surrounding-shape

Table 3: Macro-averaged F-Score on the TaskA dev. set

Added Features Average
F-Score

oursent (baseline) 58.59
+ afinn-phrases 64.64
+ tags + hash 65.43
+ interjection + chat 65.53
+ emo + lingemotion 65.92
+ repetition + lastword 66.01
+ negation + others 66.32

Table 4: Macro-averaged F-Score on the TaskB dev. set

4.3 Results on TaskB

The baseline model is considered to include oursent
feature that gives an average f-score of 58.59. Next,
we added the afinn-phrases feature which increased
the average f-score to 64.64. This increase can be
explained by the sentiment scores and sequence pat-
terns that afinn-phrases is based on. Following that
model, the other added features slightly increased
the average f-score to 66.32 as shown in Table 4.
The final model is used over the test set of TaskB,
where we obtained an f-score of 63.53 as shown in
Table 5.
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Class Precision Recall F-Score

TestA
positive 89.7 88.3 89.0
negative 86.6 82.7 84.6
neutral 10.7 18.1 13.4

average(pos+neg) 88.15 85.5 86.8

TestB
positive 82.3 55.6 66.4
negative 48.7 80.2 60.6
neutral 68.2 73.3 70.7

average(pos+neg) 65.56 67.93 63.53

Table 5: Results on the test sets for both tasks

5 Conclusion

We presented two systems one for TaskA (a Maxi-
mum Entropy model) and one for TaskB (Maximum
Entropy + Naive Bayes models) based on using rich
feature sets. For Task A, we started with a baseline
system that just uses ordinary features like sentiment
scores of words. As we added new features, we ob-
served that lexical features and shape-based features
are the ones that contribute most to the performance
of the system. Including the context features and the
indicator feature for negations led to considerable
improvement in performance as well. For TaskB,
we first created a baseline model that uses sentiment
words and phrases from the AFINN lexicon as fea-
tures. Each feature that we added to the system re-
sulted in improvement in performance. The nega-
tion and endsWExclamation features only improved
the performance of the negative classifier, whereas
the slang feature only improved the performance of
the positive classifier.

Our results show that using rich feature sets with
machine learning algorithms is a promising ap-
proach for sentiment classification in Twitter. Our
TaskA system ranked 3rd among 23 systems and
TaskB system ranked 4th among 35 systems partici-
pating in SemEval 2013 Task 2.
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Abstract

This paper describes the systems with which
we participated in the task Sentiment Analysis
in Twitter of SEMEVAL 2013 and specifically
the Message Polarity Classification. We used
a 2-stage pipeline approach employing a lin-
ear SVM classifier at each stage and several
features including BOW features, POS based
features and lexicon based features. We have
also experimented with Naive Bayes classi-
fiers trained with BOW features.

1 Introduction

During the last years, Twitter has become a very
popular microblogging service. Millions of users
publish messages every day, often expressing their
feelings or opinion about a variety of events, top-
ics, products, etc. Analysing this kind of content
has drawn the attention of many companies and re-
searchers, as it can lead to useful information for
fields, such as personalized marketing or social pro-
filing. The informal language, the spelling mis-
takes, the slang and special abbreviations that are
frequently used in tweets differentiate them from
traditional texts, such as articles or reviews, and
present new challenges for the task of sentiment
analysis.

The Message Polarity Classification is defined as
the task of deciding whether a message M conveys a
positive, negative or neutral sentiment. For instance
M1 below expresses a positive sentiment, M2 a neg-
ative one, while M3 has no sentiment at all.

M1: GREAT GAME GIRLS!! On to districts Monday
at Fox!! Thanks to the fans for coming out :)

M2: Firework just came on my tv and I just broke down
and sat and cried, I need help okay

M3: Going to a bulls game with Aaliyah & hope next
Thursday

As sentiment analysis in Twitter is a very recent
subject, it is certain that more research and improve-
ments are needed. This paper presents our approach
for the subtask of Message Polarity Classification
(Wilson et al., 2013) of SEMEVAL 2013. We used a
2-stage pipeline approach employing a linear SVM
classifier at each stage and several features includ-
ing bag of words (BOW) features, part-of-speech
(POS) based features and lexicon based features.
We have also experimented with Naive Bayes clas-
sifiers trained with BOW features.

The rest of the paper is organised as follows. Sec-
tion 2 provides a short analysis of the data used
while section 3 describes our approach. Section 4
describes the experiments we performed and the cor-
responding results and section 5 concludes and gives
hints for future work.

2 Data

Before we proceed with our system description we
briefly describe the data released by the organisers.
The training set consists of a set of IDs correspond-
ing to tweet messages, along with their annotations.
A message can be annotated as positive, negative
or neutral. In order to address privacy concerns,
rather than releasing the original Tweets, the organ-
isers chose to provide a python script for download-
ing the data. This resulted to different training sets
for the participants since tweets may often become
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SEMEVAL STATS TRAIN (ours) TRAIN (official) Dev DEV (final) TEST (sms)
Positive 3280 37,57% 3640 37,59% 524 34,82% 575 34,76% 492 23,50%
Negative 1289 14,77% 1458 15,06% 308 20,47% 340 20,56% 394 18,82%
Neutral 4161 47,66% 4586 47,36% 673 44,72% 739 44,68% 1208 57,69%
TOTAL 8730 9684 1505 1654 2094
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Figure 1: Train and Development data class distribution.

unavailable due to a number of reasons. Concerning
the development and test sets the organisers down-
loaded and provided the tweets. 1 A first analysis
of the data indicates that they suffer from a class im-
balance problem. Specifically the training data we
have downloaded contain 8730 tweets (3280 posi-
tive, 1289 negative, 4161 neutral), while the devel-
opment set contains 1654 tweets (575 positive, 340
negative, 739 neutral). Figure 1 illustrates the prob-
lem on train and development sets.

3 System Overview

The system we propose is a 2–stage pipeline pro-
cedure employing SVM classifiers (Vapnik, 1998)
to detect whether each message M expresses pos-
itive, negative or no sentiment (figure 2). Specifi-
cally, during the first stage we attempt to detect if M
expresses a sentiment (positive or negative) or not.
If so, M is called “subjective”, otherwise it is called
“objective” or “neutral”.2 Each subjective message
is then classified in a second stage as “positive” or
“negative”. Such a 2–stage approach has also been
suggested in (Pang and Lee, 2004) to improve sen-
timent classification of reviews by discarding objec-
tive sentences, in (Wilson et al., 2005a) for phrase-
level sentiment analysis, and in (Barbosa and Feng,
2010) for sentiment analysis on Twitter messages.

1A separate test set with SMS messages was also provided
by the organisers to measure performance of systems over other
types of message data. No training and development data were
provided for this set.

2Hereafter we will use the terms “objective” and “neutral”
interchangeably.

3.1 Data Preprocessing

Before we could proceed with feature engineering,
we performed several preprocessing steps. To be
more precise, a twitter specific tokeniser and part-
of-speech (POS) tagger (Ritter et al., 2011) were
used to obtain the tokens and the corresponding
POS tags which are necessary for a particular set
of features to be described later. In addition to these,
six lexicons, originating from Wilson’s (2005b) lexi-
con, were created. This lexicon contains expressions
that given a context (i.e., surrounding words) indi-
cate subjectivity. The expression that in most con-
text expresses sentiment is considered to be “strong”
subjective, otherwise it is considered weak subjec-
tive (i.e., it has specific subjective usages). So, we
first split the lexicon in two smaller, one contain-
ing strong and one containing weak subjective ex-
pressions. Moreover, Wilson also reports the polar-
ity of each expression out of context (prior polarity)
which can be positive, negative or neutral. As a con-
sequence, we further split each of the two lexicons
into three smaller according to the prior polarity of
the expression, resulting to the following six lexi-
cons:

S+ : Contains strong subjective expressions with
positive prior polarity.

S− : Contains strong subjective expressions with
negative prior polarity.

S0 : Contains strong subjective expressions with
neutral prior polarity.
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Figure 2: Our 2–stage pipeline procedure.

W+ : Contains weak subjective expressions with
positive prior polarity.

W− : Contains weak subjective expressions with
negative prior polarity.

W0 : Contains weak subjective expressions with
neutral prior polarity.

Adding to these, three more lexicons were created,
one for each class (positive, negative, neutral). In
particular, we employed Chi Squared feature selec-
tion (Liu and Setiono, 1995) to obtain the 100 most
important tokens per class from the training set.
Very few tokens were manually erased to result to
the following three lexicons.

T+ : Contains the top-94 tokens appearing in posi-
tive tweets of the training set.

T− : Contains the top-96 tokens appearing in nega-
tive tweets of the training set.

T0 : Contains the top-94 tokens appearing in neutral
tweets of the training set.

The nine lexicons described above are used to cal-
culate precision (P (t, c)), recall (R(t, c)) and F −

measure (F1(t, c)) of tokens appearing in a mes-
sage with respect to each class. Equations 1, 2 and 3
below provide the definitions of these metrics.

P (t, c) =
#tweets that contain token t and belong to class c

#tweets that contain token t
(1)

R(t, c) =
#tweets that contain token t and belong to class c

#tweets that belong to class c
(2)

F1(t, c) =
2 · P (t, c) · R(t, c)

P (t, c) + R(t, c)
(3)

3.2 Feature engineering

We employed three types of features, namely
boolean features, POS based features and lexicon
based features. Our goal is to build a system that is
not explicitly based on the vocabulary of the training
set, having therefore better generalisation capability.

3.2.1 Boolean features
Bag of words (BOW): These features indicate the

existence of specific tokens in a message. We
used feature selection with Info Gain to obtain
the 600 most informative tokens of the training
set and we then manually removed 19 of them
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to result in 581 tokens. As a consequence we
get 581 features that can take a value of 1 if a
message contains the corresponding token and
0 otherwise.

Time and date: We observed that time and date of-
ten indicated events in the train data and such
messages tend to be objective. Therefore, we
added two more features to indicate if a mes-
sage contains time and/or date expressions.

Character repetition: Repetitive characters are of-
ten added to words by users, in order to give
emphasis or to express themselves more in-
tensely. As a consequence they indicate sub-
jectivity. So we added one more feature having
a value of 1 if a message contains words with
repeating characters and 0 otherwise.

Negation: Negation not only is a good subjectivity
indicator but it also may change the polarity of
a message. We therefore add 5 more features,
one indicating the existence of negation, and
the remaining four indicating the existence of
negation that precedes (in a distance of at most
5 tokens) words from lexicons S+, S−, W+ and
W−.

Hash-tags with sentiment: These features are im-
plemented by getting all the possible sub-
strings of the string after the symbol # and
checking if any of them match with any word
from S+, S−, W+ and W− (4 features). A
value of 1 means that a hash-tag containing a
word from the corresponding lexicon exists in
a message.

3.2.2 POS based features
Specific POS tags might be good indicators of

subjectivity or objectivity. For instance adjectives
often express sentiment (e.g., beautiful, frustrating)
while proper nouns are often reported in objective
messaged. We, therefore, added 10 more features
based on the following POS tags:

1. adjectives,

2. adverbs,

3. verbs,

4. nouns,

5. proper nouns,

6. urls,

7. interjections,

8. hash-tags,

9. happy emoticons, and

10. sad emoticons.

We then constructed our features as follows. For
each message we counted the occurrences of tokens
with these POS tags and we divided this number
with the number of tokens having any of these POS
tags. For instance if a message contains 2 adjectives,
1 adverb and 1 url then the features corresponding to
adjectives, adverbs and urls will have a value of 2

4 , 1
4

and 1
4 respectively while all the remaining features

will be 0. These features can be thought of as a way
to express how much specific POS tags affect the
sentiment of a message.

Going a step further we calculate precision
(P (b, c)), recall (R(b, c)) and F − measure
(F1(b, c)) of POS tags bigrams with respect to each
class (equations 4, 5 and 6 respectively).

P (b, c) =
#tweets that contain bigram b and belong to class c

#tweets that contain bigram b
(4)

R(b, c) =
#tweets that contain bigram b and belong to class c

#tweets that belong to class c
(5)

F1(b, c) =
2 · P (b, c) · R(b, c)

P (b, c) + R(b, c)
(6)

For each bigram (e.g., adjective-noun) in a mes-
sage we calculate F1(b, c) and then we use the aver-
age, the maximum and the minimum of these values
to create 9 additional features. We did not experi-
ment over measures that weight differently Precision
and Recall (e.g., Fb for b = 0.5) or with different
combinations (e.g., F1 and P ).

3.2.3 Lexicon based features
This set of features associates the words of the

lexicons described earlier with the three classes.
Given a message M , similarly to the equations 4 and
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6 above, we calculate P (t, c) and F1(t, c) for every
token t ∈ M with respect to a lexicon. We then ob-
tain the maximum, minimum and average values of
P (t, c) and F1(t, c) in M . We note that the combi-
nation of P and F1 appeared to be the best in our
experiments while R(t, c) was not helpful and thus
was not used. Also, similarly to section 3.2.2 we
did not experiment over measures that weight differ-
ently Precision and Recall (e.g., Fb for b = 0.5). The
former metrics are calculated with three variations:

(a) Using words: The values of the metrics con-
sider only the words of the message.

(b) Using words and priors: The same as (a) but
adding to the calculated metrics a prior value.
This value is calculated on the entire lexicon,
and roughly speaking it is an indicator of how
much we can trust L to predict class c. In cases
that a token t of a message M does not appear
in a lexicon L the corresponding scores of the
metrics will be 0.

(c) Using words and their POS tags: The values
of the metrics consider the words of the message
along with their POS tags.

(d) Using words, their POS tags and priors: The
same as (c) but adding to the calculated metrics
an apriori value. The apriori value is calculated
in a similar manner as in (b) with the difference
that we consider the POS tags of the words as
well.

For case (a) we calculated minimum, maximum
and average values of P (t, c) and F1(t, c) with re-
spect to S+, S−, S0, W+, W− and W0 consider-
ing only the words of the message resulting to 108
features. Concerning case (b) we calculated average
P (t, c) and F1(t, c) with respect to S+, S−, S0, W+,
W− and W0, and average P (t, c) with respect to T+,
T− and T0 adding 45 more features. For case (c) we
calculated minimum, maximum and average P (t, c)
with respect to S+, S−, S0, W+, W− and W0 (54
features), and, finally, for case (d) we calculated av-
erage P (t, c) and F1(t, c) with respect to S+, S−,
S0, W+, W− and W0 to add 36 features.

Class F1

Positive 0.6496
Negative 0.4429
Neutral 0.7022
Average 0.5462

Table 1: F1 for development set.

4 Experiments

As stated earlier we use a 2–stage pipeline approach
to identify the sentiment of a message. Preliminary
experiments on the development data showed that
this approach is better than attempting to address the
problem in one stage during which a classifier must
classify a message as positive, negative or neutral.
To be more precise we used a Naive Bayes classifier
and BOW features using both 1–stage and 2–stage
approaches. Although we considered the 2–stage
approach with a Naive Bayes classifier as a baseline
system we used it to submit results for both twitter
and sms test sets.

Having concluded to the 2–stage approach we
employed for each stage an SVM classifier, fed with
the 855 features described in section 3.2.3 Both
SVMs use linear kernel and are tuned in order to
find the optimum C parameter. Observe that we use
the same set of features in both stages and let the
classifier learn the appropriate weights for each fea-
ture. During the first stage, the classifier is trained
on the entire training set after merging positive and
negative classes to one superclass, namely subjec-
tive. In the second stage, the classifier is trained only
on positive and negative tweets of the training and
is asked to determine whether the messages classi-
fied as subjective during the first stage are positive
or negative.

4.1 Results

In order to obtain the best set of features we trained
our system on the downloaded training data and
measured its performance on the provided develop-
ment data. Table 1 illustrates the F1 results on the
development set. A first observation is that there
is a considerable difference between the F1 of the
negative class and the other two, with the former be-

3We used the LIBLINEAR distribution (Fan et al., 2008)
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Class F1
Positive 0.6854
Negative 0.4929
Neutral 0.7117
Average 0.5891

Table 2: F1 for twitter test set.

Class F1
Positive 0.6349
Negative 0.5131
Neutral 0.7785
Average 0.5740

Table 3: F1 for sms test set.

ing significantly decreased. This might be due to
the quite low number of negative tweets of the ini-
tial training set in comparison with the rest of the
classes. Therefore, the addition of 340 negative ex-
amples from the development set emerged from this
imbalance and proved to be effective as shown in ta-
ble 2 illustrating our results on the test set regarding
tweets. Unfortunately we were not able to submit
results with this system for the sms test set. How-
ever, we performed post-experiments after the gold
sms test set was released. The results shown on table
3 are similar to the ones obtained for the twitter test
set which means that our model has a good general-
isation ability.

5 Conclusion and future work

In this paper we presented our approach for the
Message Polarity Classification task of SEMEVAL

2013. We proposed a pipeline approach to detect
sentiment in two stages; first we discard objective
messages and then we classify subjective (i.e., car-
rying sentiment) ones as positive or negative. We
used SVMs with various extracted features for both
stages and although the system performed reason-
ably well, there is still much room for improvement.
A first problem that should be addressed is the dif-
ficulty in identifying negative messages. This was
mainly due to small number of tweets in the train-
ing data. This was somewhat alleviated by adding
the negative instances of the development data but
still our system reports lower results for this class as

compared to positive and neutral classes. More data
or better features is a possible improvement. An-
other issue that has not an obvious answer is how to
proceed in order to improve the 2–stage pipeline ap-
proach. Should we try and optimise each stage sepa-
rately or should we optimise the second stage taking
into consideration the results of the first stage?
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Abstract

This paper describes the NILC USP system
that participated in SemEval-2013 Task 2:
Sentiment Analysis in Twitter. Our system
adopts a hybrid classification process that
uses three classification approaches: rule-
based, lexicon-based and machine learning
approaches. We suggest a pipeline architec-
ture that extracts the best characteristics from
each classifier. Our system achieved an F-
score of 56.31% in the Twitter message-level
subtask.

1 Introduction

Twitter and Twitter messages (tweets) are a modern
way to express sentiment and feelings about aspects
of the world. In this scenario, understanding the sen-
timent contained in a message is of vital importance
in order to understand users behavior and for mar-
ket analysis (Java et al., 2007; Kwak et al., 2010).
The research area that deals with the computational
treatment of opinion, sentiment and subjectivity in
texts is called sentiment analysis (Pang et al., 2002).

Sentiment analysis is usually associated with a
text classification task. Sentiment classifiers are
commonly categorized in two basic approaches:
lexicon-based and machine learning (Taboada et al.,
2011). A lexicon-based classifier uses a lexicon to
provide the polarity, or semantic orientation, of each
word or phrase in the text. A machine learning clas-
sifier learns features (usually the vocabulary) from
annotated corpus or labeled examples.

In this paper, we present a hybrid system for senti-
ment classification in Twitter messages. Our system

combines three different approaches: rule-based,
lexicon-based and machine learning. The purpose of
our system is to better understand the use of a hybrid
system in Twitter text and to verify the performance
of this approach in an open evaluation contest.

Our system participated in SemEval-2013 Task
2: Sentiment Analysis in Twitter (Wilson et al.,
2013). The task objective was to determine the sen-
timent contained in Twitter messages. The task in-
cluded two sub-tasks: a expression-level classifi-
cation (Task A) and a message-level classification
(Task B). Our system participated in Task B. In this
task, for a given message, our system should classify
it as positive, negative, or neutral.

Our system was coded using Python and the
CLiPS Pattern library (De Smedt and Daelemans,
2012). This last library provides the part-of-speech
tagger and the SVM algorithm used in this work1.

2 Related work

Despite the significant number of works in senti-
ment analysis, few works have approached Twit-
ter messages. Agarwal et al. (2011) explored new
features for sentiment classification of twitter mes-
sages. Davidov et al. (2010) studied the use of
hashtags and emoticons in sentiment classification.
Diakopoulos and Shamma (2010) analyzed the peo-
ple’s sentiment on Twitter for first U.S. presidential
debate in 2008.

The majority of works in sentiment analysis uses
either machine learning techniques or lexicon-based

1Our system code is freely available at
http://github.com/pedrobalage/SemevalTwitterHybridClassifier
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techniques. However, some few works have pre-
sented hybrid approaches. König and Brill (2006)
propose a hybrid classifier that utilizes human rea-
soning over automatically discovered text patterns to
complement machine learning. Prabowo and Thel-
wall (2009) evaluates the effectiveness of different
classifiers. This study showed that the use of multi-
ple classifiers in a hybrid manner could improve the
effectiveness of sentiment analysis.

3 System architecture

Our system is organized in four main components:
normalization, rule-based classifier, lexicon-based
classifier and machine learning classifier. These
components are connected in a pipeline architecture
that extracts the best characteristics from each com-
ponent. The Figure 1 shows the system architecture.

Figure 1: System architecture

In this pipeline architecture, each classifier, in a
sequential order, evaluates the Twitter message. In
each step, the classifier may determine the polarity
class of the message if a certain degree of confidence
is achieved. If the classifier may not achieve this
confidence threshold, the classifier in the next step
is called. The machine learning classifier is the last
step in the process. It is responsible to determine the
polarity if the previous classifiers failed to achieve
the confidence level required to classification. The
normalization component is responsible to correct
and normalize the text before the classifiers use it.

This architecture improves the classification pro-
cess because it takes advantage of the multiple ap-
proaches. For example, the rule-based classifier is
the most reliable classifier. It achieves good results
when the text is matched by a high-confidence rule.
However, due the freedom of language, rules may
not match 100% of the unseen examples, conse-
quently it has a low recall rate.

Lexicon-based classifiers, for example, are very
confident in the process to determine if a text is polar
or neutral. Using sentiment lexicons, we can deter-
mine that sentences containing sentiment words are
polar and sentences that do not contain such words
are neutral. Moreover, the presence of a high num-
ber of positive or negative words in the text may be
a strong indicative of the polarity.

Finally, machine learning is known to be highly
domain adaptive and to be able to find deep corre-
lations (Taboada et al., 2011). This last classifier
might provide the final decision when the previous
methods failed. In the following sub-sections, we
describe in more details the components in which
our system is based on. In the next section, we ex-
plain how the confidence level was determined.

3.1 Normalization and rule-based classifier

The normalization module is in charge of correcting
and normalizing the texts. This module performs the
following operations:

• Elements such as hashtags, urls and mentions
are transformed into a consistent set of codes;

• Emoticons are grouped into representative
categories (such as happy, sad, laugh) and con-
verted to particular codes;

• Signals of exaltation (such as repetitive excla-
mation marks) are recognized;

• A simple misspelling correction is performed;

• Part-of-speech tagging is performed.

The rule-based classifier is very simple. The only
rules applied here are concerned to the emoticons
found in the text. Empirically, we evidenced that
positive emoticons are an important indicative of
positiveness in texts. Likewise, negative emoticons
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indicate negativeness tendency. This module re-
turns the number of positive and negative emoticons
matched in the text.

3.2 Lexicon-based classifier

The lexicon-based classifier is based on the idea that
the polarity of a text can be summarized by the sum
of the individual polarity values of each word or
phrase present in the text. In this assumption, a
sentiment lexicon identifies polar words and assigns
polarity values to them (known as semantic orienta-
tions).

In our system, we used the sentiment lexicon pro-
vided by SentiStrength (Thelwall et al., 2010). This
lexicon provides an emotion vocabulary, an emoti-
cons list, a negation list and a booster word list.

In our algorithm, we sum the semantic orienta-
tions of each individual word in the text. If the word
is negated, the polarity is inverted. If the word is in-
tensified (boosted), we increase its polarity by a fac-
tor determined in the sentiment lexicon. A lexicon-
based classifier usually assumes the signal of the fi-
nal score as the sentiment class: positive, negative
or neutral (score zero).

3.3 Machine learning classifier

The machine learning classifier uses labeled exam-
ples to learn how to classify new instances. The
algorithm learns by using features extracted from
these examples. In our classifier, we used the SVM
algorithm provided by CLiPS Pattern. The features
used by the classifier are bag-of-words, the part-of-
speech set, and the existence of negation in the sen-
tence.

4 Hybrid approach and tuning

The organization from SemEval-2013 Task 2: Senti-
ment Analysis in Twitter provided three datasets for
the task (Wilson et al., 2013). A training dataset
(TrainSet), with 6,686 messages2, a development
dataset (DevSet), with 1,654 messages, and two test-
ing datasets (TestSets), with 3,813 (Twitter TestSet)
and 2,094 (SMS TestSet) messages each.

As we said in the previous section, our system is
a pipeline of classifiers where each classifier may

2The number of messages may differ from other participants
because the data was collected by crawling

assign a sentiment class if it achieves a particular
confidence threshold. This confidence threshold is a
fixed value we set for each system in order to have
a decision boundary. This decision was made by in-
specting the results table obtained with the develop-
ment set, as shown below.

Table 1 shows how the rule-based classifier per-
formed in the development dataset. The classifier
score consists in the difference between the num-
ber of positive emoticons and the number of nega-
tive emoticons found in the message. For example,
for score of -1 we had 22 negative, 4 neutral and 2
positive messages.

Table 1: Correlation between the rule-based classifier
scores and the gold standard classes in the DevSet

Rule-based Gold Standard Class
classifier score Negative Neutral Positive

-1 22 4 2
0 311 708 496
1 7 24 71
2 2 4

3 to 6 1 2

Inspecting the Table 1 we adjusted the rule-based
classifier boundary to decide when the score is dif-
ferent from zero. For values greater than zero, the
classifier will assign the positive class and, for val-
ues below zero, the classifier will assign the negative
class. For values equal zero, the classifier will call
the lexicon-based classifier.

Table 2 is similar to the Table 1, but it now shows
the scores obtained by the lexicon-based classifier
for the development set. This score is the message
semantic orientation computed by the sum of the se-
mantic orientation for each individual word.

Inspecting Table 2, we adjusted the lexicon-based
classifier to assign the positive class when the total
score is greater than 3 and negative class when the
total score is below -3. Moreover, we evidenced that,
compared to the other classifiers, the lexicon-based
classifier had better performance to determine the
neutral class. Therefore, we adjusted the lexicon-
based classifier to assign the neutral class when the
total score is zero. For any other values, the machine
learning classifier is called.

Finally, Table 3 shows the confusion matrix for
the machine learning classifier in the development
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Table 2: Correlation between the lexicon-based classifier
score and the gold standard classes in the DevSet

Lexicon-based Gold Standard Class
classifier scores Negative Neutral Positive

-11 to -6 26 8 4
-5 15 6 4
-4 31 20 9
-3 32 24 5
-2 57 86 22
-1 25 31 20
0 74 354 115
1 26 70 42
2 28 87 103
3 12 29 81
4 8 9 56
5 2 6 42

6 to 13 4 9 72

dataset. The machine learning classifier does not
operate with a confidence threshold, so no decisions
were made for this classifier. We see that machine
learning classifier does not have a good accuracy
in general. Our hybrid approach proposed aims to
overcome this problem. Next section shows the re-
sults achieved for the Semeval test dataset.

Table 3: Confusion matrix for the machine learning clas-
sifier in the DevSet

Machine learning Gold Standard Class
classifier class Negative Neutral Positive

negative 35 6 11
neutral 232 595 262
positive 73 138 302

5 Results

Table 4 shows the results obtained by each individ-
ual classifier and the hybrid classifier for the test
dataset. In the task, the systems were evaluated with
the average F-Score obtained for positive and nega-
tive classes3. We see that the Hybrid approach could
improve in relation to each classifier score, confirm-
ing our hypothesis.

3Semeval-2013 Task 2: Sentiment Analysis in Twitter com-
pares the systems by the average F-score for positive and nega-
tive classes. For more information see Wilson et al. (2013)

Table 4: Average F-score (positive and negative) obtained
by each classifier and the hybrid approach

Classifier Twitter TestSet SMS TestSet
Rule-based 0.1437 0.0665
Lexicon-Based 0.4487 0.4282
Machine Learning 0.4999 0.4029
Hybrid Approach 0.5631 0.5012

Table 5 shows the results in terms of precision,
recall and F-score for each class by the hybrid clas-
sifier in the Twitter dataset. Inspecting our algo-
rithm for the Twitter dataset, we had 277 examples
classified by the rule-based classifier, 2,312 by the
lexicon-based classifier and 1,224 the by machine
learning classifier. The results for the SMS dataset
had similar values.

Table 5: Results for Twitter TestSet
Class Precision Recall F-Score
positive 0.6935 0.6145 0.6516
negative 0.5614 0.4110 0.4745
neutral 0.6152 0.7427 0.6729

6 Conclusion

We described a hybrid classification system used for
Semeval-2013 Task 2: Sentiment Analysis in Twit-
ter. This paper showed how a hybrid classifier might
take advantage of multiple sentiment analysis ap-
proaches and how these approaches perform in a
Twitter dataset.

A future direction of this work would be im-
proving each individual classifier. In our system,
we used simple methods for each employed classi-
fier. Thus, we believe the hybrid classification tech-
nique applied might achieve even better results. This
strengthens our theory that hybrid techniques might
outperform the current state-of-art in sentiment anal-
ysis.
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Abstract

In this paper the UNITOR-HMM-TK system
participating in the Spatial Role Labeling
task at SemEval 2013 is presented. The
spatial roles classification is addressed as a
sequence-based word classification problem:
the SVMhmm learning algorithm is applied,
based on a simple feature modeling and a ro-
bust lexical generalization achieved through a
Distributional Model of Lexical Semantics. In
the identification of spatial relations, roles are
combined to generate candidate relations, later
verified by a SVM classifier. The Smoothed
Partial Tree Kernel is applied, i.e. a con-
volution kernel that enhances both syntactic
and lexical properties of the examples, avoid-
ing the need of a manual feature engineering
phase. Finally, results on three of the five tasks
of the challenge are reported.

1 Introduction

Referring to objects or entities in the space, as well
as to relations holding among them, is one of the
most important functionalities in natural language
understanding. The detection of spatial utterances
thus finds many applications, such as in GPS navi-
gation systems, or Human-Robot Interaction (HRI).

In Computational Linguistics, the task of recog-
nizing spatial information is known as Spatial Role
Labeling (SpRL), as discussed in (KordJamshidi et
al., 2010). Let us consider the sentence:

[A man]TRAJECTOR is sitting [on]SPATIAL INDICATOR

[a chair]LANDMARK and talking on the phone. (1)

where three roles are labeled: the phrase “A man”
refers to a TRAJECTOR, “a chair” to a LAND-

MARK and they are related by the spatial expres-
sion “on” denoted as SPATIAL INDICATOR. The
last role establishes the type of the spatial relation,
e.g. Regional. The ambiguity of natural language
makes this task very challenging. For example, in
the same Example 1, another preposition “on” can
be considered, but the phrase “the phone” is not a
spatial role, as it refers to a communication mean.
This mainly depends on the semantics of the gram-
matical head words, i.e. chair and phone. Such phe-
nomena are crucial in many learning frameworks,
as in kernel-based learning (Shawe-Taylor and Cris-
tianini, 2004), where the decision is based on the
similarity between training and testing data.

This paper describes the UNITOR-HMM-TK sys-
tem participating in the Semeval 2013 Spatial Role
Labeling Task (Kolomiyets et al., 2013), addressing
three of the five defined sub-tasks:

• Task A: Spatial Role Classification. It con-
sists in labeling short sentences with spatial
roles among SPATIAL INDICATOR, TRAJEC-
TOR and LANDMARK.

• Task B: Relation Identification. It consists in
the identification of relations among roles iden-
tified in Task A. This task does not involve the
semantic relation classification.

• Task C: Spatial Role Classification. It con-
sists in labeling short documents with spa-
tial roles among the extended role set: TRA-
JECTOR, LANDMARK, SPATIAL INDICATOR,
MOTION INDICATOR, PATH, DIRECTION and
DISTANCE.

The UNITOR-HMM-TK system addresses both the
problems of identifying spatial roles and relations as
a sequence of two main classification steps.
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In the first step, each word in the sentence is
classified by a sequence-based classifier with re-
spect to the possible spatial roles. It is in line
with other methods based on sequence-based clas-
sifier for SpRL (Kordjamshidi et al., 2011; Kord-
jamshidi et al., 2012b). Our labeling has been in-
spired by the work in (Croce et al., 2012), where
the SVMhmm learning algorithm, formulated in (Al-
tun et al., 2003), has been applied to the classi-
cal FrameNet-based Semantic Role Labeling. The
main contribution in (Croce et al., 2012) is the adop-
tion of shallow grammatical features (e.g. POS-
tag sequences) instead of the full syntax of the sen-
tence, in order to avoid over-fitting over training
data. Moreover, lexical information has been gen-
eralized through the use of a Word Space, in line
with (Schutze, 1998; Sahlgren, 2006): it consists
in a Distributional Model of Lexical Semantics de-
rived from the unsupervised analysis of an unla-
beled large-scale corpus. The result is a geometri-
cal space where words with similar meaning, e.g.
involved in a paradigmatic or almost-synonymic re-
lations, will be projected in similar vectors. As an
example, we expect that a word like “table”, maybe
a LANDMARK in a training example, is more similar
to “chair” as compared with “phone”.

In the second step, all roles found in a sentence are
combined to generate candidate relations, which are
then verified by a Support Vector Machine (SVM)
classifier. As the entire sentence is informative to de-
termine the proper conjunction of all roles, we apply
a kernel function within the classifier, that enhances
both syntactic and lexical information of the exam-
ples. We adopted the Smoothed Partial Tree Kernel
(SPTK), defined in (Croce et al., 2011): it is con-
volution kernel that allows to measure the similar-
ity between syntactic structures, which are partially
similar and whose nodes can differ, but are semanti-
cally related. Each example is represented as a tree
structure directly derived from the sentence depen-
dency parse, thus avoiding the manual definition of
features. Similarity between lexical nodes is mea-
sured in the same Word Space mentioned above.

In the rest of the paper, Section 2 discusses the
SVMhmm based approach. The SPTK-based learn-
ing algorithm will be presented in Section 3. Finally,
results obtained in the competition are discussed in
Section 4.

2 Sequential Tagging for Spatial Role
Classification

The system proposed for the Spatial Role Classi-
fication task is based on the SVMhmm formula-
tion discussed in (Altun et al., 2003). It extends
classical SVMs by learning a discriminative model
isomorphic to a k-order Hidden Markov Model
through the Structural SVM formulation (Tsochan-
taridis et al., 2005). In the discriminative view
of SVMhmm, given an observed input word se-
quence x = (x1 . . . xl) ∈ X of feature vectors
x1 . . . xl, the model predicts a sequence of labels
y = (y1 . . . yl) ∈ Y after learning a linear discrim-
inant function F : X × Y → R over input/output
pairs. Each word is then modeled as a set of linear
features that express lexical information as well as
syntactic information surrogated by POS n-grams.
With respect to other works using SVMhmm for
SpRL, such as (Kordjamshidi et al., 2012b), we in-
vestigate another set of possible features, as the ones
proposed in (Croce et al., 2012): the aim is to pro-
vide an agile system that takes advantages in adopt-
ing only shallow grammatical features, thus ignoring
the full syntactic information of a sentence. The syn-
tactic features derived from a dependency parse pro-
cess are surrogated by POS n-grams. According to
this, our feature modeling adopts the IOB notation
discussed in (Croce et al., 2012). It provides a class
label for each token, mapping them into artificial
classes representing the beginning (B), the inside (I)
or ending (O) of a spatial role, plus the label of the
classified role (i.e. BSPIND for the starting token of a
SPATIAL INDICATOR); words external to every role
are labeled with the special class ( ). According to
this notation, the labeling of Example 1 can be ex-
pressed as follows: “A/BTRAJ man/OTRAJ is/ sitting/
on/BSPIND a/BLAND chair/OLAND and/ . . . ”.

In order to reduce the complexity of the entire
classification task, two phases are applied. In Task
A, as in (Kordjamshidi et al., 2011), the first phase
aims at labeling only SPATIAL INDICATOR, as they
should relate remaining spatial expressions. For the
same reason, in Task C we first label only SPA-
TIAL INDICATOR and MOTION INDICATOR. Roles
classified in this step are considered pivot and they
can be used as features for the classification of the
other roles: TRAJECTORS and LANDMARKS for
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Task A while TRAJECTORS, LANDMARKS, PATHS,
DISTANCES and DIRECTIONS for Task C.

For the classification of SPATIAL and MOTION

INDICATOR, each word, such as the first “on” occur-
rence in the Example 1, is modeled through the fol-
lowing features: its lemma (on) and POS tag (IN);
the left and right lexical contexts, represented by the
n words before (man::NN is::VBZ sitting::VBG) and
after (a::DT chair::NN and::CC); the left and right
syntactic contexts as the POS n-grams occurring be-
fore (i.e. NN VBZ VBZ VBG NN VBZ VBG) and
after (i.e. DT NN NN CC DT NN CC) the word.

For the TRAJECTOR and LANDMARK classifica-
tion in Task A, each word is represented by the same
features described above, plus the following ones
(with respect to Example 1, the token relative to
the word man): lemma of the SPATIAL INDICATOR

(on); Positional Feature: distance from the SPATIAL

INDICATOR in terms of number of tokens (-3); rel-
ative position with respect to the SPATIAL INDICA-
TOR, that is before or after (before); a boolean fea-
ture that indicates whether or not the current token is
a SPATIAL INDICATOR; the number of words com-
posing the SPATIAL INDICATOR (here 1).

In Task C, for the classification with respect to
the complete set of roles, each word is modeled by
the previous features together with the following:
distance from the MOTION INDICATOR in terms
of number of tokens; relative position with respect
to the MOTION INDICATOR (before and after); a
boolean feature that indicates whether or not the cur-
rent token is a MOTION INDICATOR; the number of
words that composes the MOTION INDICATOR. In
both Tasks A and C the symbols SI and MI to rep-
resent a SPATIAL INDICATOR or a MOTION INDI-
CATOR are used respectively to represent the target
pivot role within any n-gram.

In order to increase the robustness of our model-
ing, we extended the lexical information with fea-
tures derived from a distributional analysis over
large texts. In essence, we represent the lexical se-
mantic similarity between different words with sim-
ilar meaning. We extend a supervised approach
through the adoption of vector based models of lex-
ical meaning: a large-scale corpus is statistically an-
alyzed and a Word Space, (Sahlgren, 2006), is ac-
quired as follows. A word-by-context matrix M
is obtained through a large scale corpus analysis.

Then the Latent Semantic Analysis (Landauer and
Dumais, 1997) technique is applied to reduce the
space dimensionality. Moreover it provides a way
to project a generic word wi into a k-dimensional
space where each row corresponds to the representa-
tion vector ~wi. In such a space, the distance between
vectors reflects the similarity between correspond-
ing words. The resulting feature vector representing
wi is then augmented with ~wi, as in (Croce et al.,
2010), where the benefits of such information have
been reported in the FrameNet-based Semantic Role
Labeling task.

3 Relation identification

The UNITOR-HMM-TK system tackles Relation Iden-
tification task by determining which spatial roles,
discovered in the previous classification phase, can
be combined to determine valid spatial relations.
Our method is inspired by the work of (Roberts and
Harabagiu, 2012), where all possible spatial roles
are first generated through heuristics and then com-
binatorially combined to acquire candidate relations;
valid spatial relations are finally determined using a
SVM classifier. We aim at reducing the potentially
huge search space, by considering only spatial roles
proposed by our sequential tagging approach, de-
scribed in Section 2. Most importantly, we avoid the
manual feature engineering phase of (Roberts and
Harabagiu, 2012). Candidate relations are not rep-
resented as vectors, whose dimensions are manually
defined features useful for the target classification.
We directly apply the Smoothed Partial Tree-Kernel
(SPTK), proposed in (Croce et al., 2011), to estimate
the similarity among a specific tree representation.

Tree kernels exploit syntactic similarity through
the idea of convolutions among substructures.
Any tree kernel computes the number of common
substructures between two trees T1 and T2 without
explicitly considering the whole fragment space. Its
general equation is reported hereafter:

TK(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2)

where NT1 and NT2 are the sets of the T1’s and
T2’s nodes respectively, and ∆(n1, n2) is equal to
the number of common fragments rooted in the n1

and n2 nodes1. The SVM classifier is thus trained in
1To have a similarity score between 0 and 1, a normalization
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a implicit very high-dimensional space, where each
dimension reflects a possible tree sub-structure, thus
avoiding the need of an explicit feature definition.
The function ∆ determines the nature of such space.
For example, Syntactic Tree Kernel (STK) are used
to model complete context free rules as in (Collins
and Duffy, 2001).

The algorithm for SPTK (Croce et al., 2011)
pushes for more emphasis on lexical nodes. The
∆ function allows to recursively matches tree struc-
tures and lexical nodes: this allows to match frag-
ments having same structure but different lexical
nodes, by assigning a score proportional to the
product of the lexical similarities, thus generalizing
grammatical and lexical information in training data.
While similarity can be modeled directly over lexi-
cal resources, e.g. WordNet as discussed in (Peder-
sen et al., 2004), their development can be very ex-
pensive, thus limiting the coverage of the resulting
convolution kernel, especially in specific application
domains. Again, a Word Space model is adopted:
given two words, the term similarity function σ is
estimated as the cosine similarity between the corre-
sponding projections.

As proposed in (Croce et al., 2011), the SPTK is
applied to examples modeled according the Gram-
matical Relation Centered Tree (GRCT) representa-
tion, which is derived from the original dependency
parse structure. Figure 1 shows the GRCT for Exam-
ple 1: non-terminal nodes reflect syntactic relations,
such as subject (NSUBJ); pre-terminals are the POS,
such as nouns (NN), and leaves are lexemes, such as
man::n2. Non-terminal nodes associated with a role
are enriched with the role name, e.g. NSUBJTRAJ.
All nodes not covering any role are pruned out, so
that all information not concerning spatial aspects
that would introduce noise is ignored.

In this setting, positive examples are provided by
considering sentences labeled by roles involved in
a valid relation. The definition of negative exam-
ples is more difficult. We considered all roles la-
belled by the SVMhmm based system, discussed in
Section 2. For each incorrect labeling over the an-

in the kernel space, i.e. TK(T1,T2)√
TK(T1,T1)×TK(T2,T2)

is applied.
2Each word is lemmatized to reduce data sparseness, but

they are enriched with POS tags to avoid confusing words from
different grammatical categories.

ROOT

PREPSPIND

POBJLAND

NN

chair::n

DETLAND

DT

a::d

IN

on::i

VBG

sit::v

NSUBJTRAJ

NN

man::n

DETTRAJ

DT

a::d

Figure 1: GRCT representation of a positive example de-
rived from a correct labeling from Example 1

ROOT

CONJ

PREPSPIND

POBJLAND

NN

phone::n

DETLAND

DT

the::d

IN

on::i

VBG

talk::v

VBG

sit::v

NSUBJTRAJ

NN

man::n

DETTRAJ

DT

a::d

Figure 2: GRCT representation of a negative example de-
rived from a wrong labeling from Example 1

notated material, a set of negative examples is ac-
quired by combining all proposed roles. In order
to avoid over-fitting, a n-fold schema has been ap-
plied: it is needed to avoid the SVMhmm label-
ing the same sentences used for training. More-
over, constraints over the relation are imposed to
avoid violations of the Spatial Role theory: in
Task B each relation must be composed at least by
a SPATIAL INDICATOR, LANDMARK and a TRA-
JECTOR or by a SPATIAL INDICATOR, implicit
LANDMARK and a TRAJECTOR. Let us consider
a possible labeling of Example 1: “[A man]TRAJ

is sitting [on]SPIND [a chair]LAND and talking
[on]SPIND[the phone]LAND”; here, the second SPA-
TIAL INDICATOR “on” and the LANDMARK “the
phone” are incorrectly labeled. A negative example
is thus obtained by considering these roles togheter
with the TRAJECTOR “the phone”, as shown in Fig-
ure 2. Other two negative examples can be generated
by combining the remaining two roles.

4 Results

In this section experimental results of the
UNITOR-HMM-TK system in the Spatial Role
Labeling task at SemEval 2013 are reported. In
Tasks A and B, the dataset is a corrected version
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of the same training dataset employed in (Kord-
jamshidi et al., 2012a)3. The dataset for Task C was
part of the Confluence corpus4. More details about
the dataset are provided in (Kolomiyets et al., 2013).
In all experiments, sentences are processed with the
Stanford CoreNLP5, for Part-of-Speech tagging,
lemmatization (Task A and C) and dependency
parsing (Task B).

The sequential labeling system described in Sec-
tion 2 has been made available by the SVMhmm

software6. The estimation of the semantically
Smoothed Partial Tree Kernel (SPTK), described in
Section 3 is made available by an extended ver-
sion of SVM-LightTK software7 (Moschitti, 2006),
implementing the smooth matching between tree
nodes. Similarity between lexical nodes is estimated
as the cosine similarity in the co-occurrence Word
Space described above, as in (Croce et al., 2011).

The co-occurrence Word Space is acquired
through the distributional analysis of the UkWaC
corpus (Baroni et al., 2009). First, all words oc-
curring more than 100 times (i.e. the targets) are
represented through vectors. The original space di-
mensions are generated from the set of the 20,000
most frequent words (i.e. features) in the UkWaC
corpus. One dimension describes the Pointwise Mu-
tual Information score between one feature, as it oc-
curs on a left or right window of 3 tokens around a
target. Left contexts of targets are treated differently
from the right ones, in order to capture asymmetric
syntactic behaviors (e.g., useful for verbs): 40,000
dimensional vectors are thus derived for each tar-
get. The Singular Value Decomposition is applied
and the space dimensionality is reduced to k = 100.

4.1 Results in Task A
Two different runs were submitted for Task A. The
first takes into account all roles labeled accordingly
to the approach described in Section 2. Results, in
term of precision, recall and F-measure for each spa-
tial role are shown in Table 1. The second run con-
siders only those roles composing the relations that

3The initial number of sentences was of 600, but it decreased
after the elimination of 21 duplicated sentences.

4Three of the original 95 files were ignored because of some
issues with their format. See http://confluence.org

5
http://nlp.stanford.edu/software/corenlp.shtml

6
http://www.cs.cornell.edu/People/tj/svm light/svm hmm.html

7
http://disi.unitn.it/moschitti/Tree-Kernel.htm

are positively classified in Task B and it will be dis-
cussed in Section 4.2.

A tuning phase has been carried out through a 10-
fold cross validation: it allowed to find the best clas-
sifier parameters. The evaluation of the system per-
formances is measured using a character based mea-
sure, i.e. considering the number of characters in the
span that overlap a role in the gold-standard test.

Spatial Role Precision Recall F-Measure
SPATIAL INDICATOR 0.967 0.889 0.926
TRAJECTOR 0.684 0.681 0.682
LANDMARK 0.741 0.835 0.785

Table 1: Task A results (first run)

The overall performances of the first run are
very promising in terms of both precision and re-
call. In particular, the SPATIAL INDICATOR label-
ing achieves a significant F-Measure of 0.926 with a
precision of 0.967. The sequence labeling approach
provides good results for the LANDMARK and the
TRAJECTOR roles too. Unfortunately, these results
are not comparable with the performances obtained
the last year edition of the SpRL task, where a gram-
matical head word-based measure has been applied.

The main difficulty in the SPATIAL INDICATOR

classification concerns the tagging of a larger or
smaller span for the roles, as for “at the back” that is
tagged as “at the back of”. On the contrary, for roles
like “to the left and the right” the system produces a
tag covering just the first three words, “to the left”,
because this shortest sequence was far more repre-
sented within the training set. Some roles corre-
sponding to unknown word sequences, such as “on
the very right”, were not labeled, leading to the little
drop in terms of recall for the SPATIAL INDICATOR.

Another issue in the TRAJECTOR and LAND-
MARK labeling is due to the absence of specific role
sequences in the training set, such as LANDMARK-
TRAJECTOR-SPATIAL INDICATOR labeled in the
test sentence “there is a [coffee table]LANDMARK with
a [sofa]TRAJECTOR [around]SP.IND”: the SVMhmm

classifier in fact tends to discard any sequence un-
seen during training. Another issue concerns the
difficulty in assigning the TRAJECTOR role to the
proper SPATIAL INDICATOR: in the sentence “a
bench with a person lying on it” where both “a
bench” and “a person” are tagged as TRAJECTOR.
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4.2 Results in Task B
Task B has been tackled using the SPTK-based Re-
lation Identification approach, described in Section
3. In particular, the SVM classifier is fed with 741
positive examples, corresponding to the number of
gold relations, while the negative examples genera-
tion process, described in Section 3, yielded 2,256
examples. The same Word Space described in the
previous section has been used to compute the se-
mantic similarity within the SPTK. For the tuning
phase, a 80-20 fixed split has been applied.

For this task, two different measures are pre-
sented. The Relaxed measure considers a relation
correct if each role composing it has at least one
character overlapping the corresponding gold role.
The Strict measure considers a relation correct only
if each role in it has all the characters overlapping
with the gold role. The first measure is more com-
parable with the one used in (Kordjamshidi et al.,
2012a), where a relation is considered correct only
if each grammatical head word of the involved roles
were correctly labeled. The results achieved in this
task by our system are reported in Table 2.

Spatial Role Precision Recall F-Measure
RELAXED 0.551 0.391 0.458
STRICT 0.431 0.306 0.358

Table 2: Task B results

The problem for this task is more challenging. In
fact, the overall task is strictly biased by the quality
of the SVMhmm based classifier and inherits all the
limitations underlined in Section 4.2. This mostly
affects the recall, because every error generated dur-
ing the role classification is cumulative and losing
only one role in Task A implies a misclassification
of the whole relation. However, it is important to
notice that these results have been achieved without
any manual feature engineering nor any heuristics or
hand coded lexical resource.

Spatial Role Precision Recall F-Measure
SPATIAL INDICATOR 0.968 0.585 0.729
TRAJECTOR 0.682 0.493 0.572
LANDMARK 0.801 0.560 0.659

Table 3: Task A results (second run)

In the second run of Task A, we evaluate the con-
tribution of this syntactic information to filter out

roles. In Table 3 results of the second run for Task
A are reported (see previous Section). As expected,
the recall measure shows a performance drop with
respect to results shown in Table 1: the results pro-
posed in the first run represents an upperbound to the
recall as any novel role is added here. However, the
precision measure for the LANDMARK role classifi-
cation is improved of about 10%.

Spatial Role Precision Recall F-Measure
SPATIAL INDICATOR 0.609 0.479 0.536
MOTION INDICATOR 0.892 0.294 0.443
TRAJECTOR 0.565 0.317 0.406
LANDMARK 0.662 0.476 0.554
PATH 0.775 0.295 0.427
DIRECTION 0.312 0.229 0.264
DISTANCE 0.946 0.331 0.490

Table 4: Task C results

4.3 Results in Task C
In Task C the extended set of roles is considered.
According to this, the number of possible labels to
be learnt by the system increases, thus making the
problem more challenging. As for Task A, here the
SVMhmm has been trained over the whole training
set, using a 10-fold cross validation in the tuning
phase. Moreover, the sentences of the Confluence
corpus are far more complex than the ones from the
CLEF corpus. Confluence sentences have a more
narrative nature with respect to the CLEF sentences,
that are simple description of images. The combina-
tion of these two factors resulted in a large drop in
the performance, especially for the recall.

As shown by the results in Table 4, DIRECTION

is the most difficult role to be classified, probably
because it is represented by many different word se-
quences. Other roles are found in few instances, but
almost all correct, as for DISTANCE and MOTION

INDICATOR. The high value of Precision for the
DISTANCE role is justified by the fact that when this
role is composed by a number, (i.e. “530 meters”),
the system identified and classified it well, while for
a representation with only words (i.e. “very close”)
the system did not retrieved it at all.
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Abstract

We present a 5-way supervised system based
on syntactic-semantic similarity features. The
model deploys: Text overlap measures,
WordNet-based lexical similarities, graph-
based similarities, corpus-based similarities,
syntactic structure overlap and predicate-
argument overlap measures. These measures
are applied to question, reference answer and
student answer triplets. We take into account
the negation in the syntactic and predicate-
argument overlap measures. Our system uses
the domain-specific data as one dataset to
build a robust system. The results show that
our system is above the median and mean on
all the evaluation scenarios of the SemEval-
2013 task #7.

1 Introduction

In this paper we describe our participation with a
feature-based supervised system to the SemEval-
2013 task #7: The Joint Student Response Analy-
sis and 8th Recognizing Textual Entailment Chal-
lenge (Dzikovska et al., 2013). The goal of our
participation is to build a generic system that is
robust enough across domains and scenarios. A
domain-specific system requires new training ex-
amples when shifting to a new domain. However,
domain-specific data is difficult to obtain and creat-
ing new resources is expensive.

We seek robustness by mixing the instances from
BEETLE and SCIENTSBANK. We show our strategy
is suitable to build a generic system that performs
competitively on any domain in the 5-way task.

The paper proceeds as follows. Section 2 de-
scribes the system presenting the learning features
and the runs. In Section 3 we show the optimiza-
tion details, followed by the results (Section 4) and
a preliminary error analysis (Section 5).

2 System description

Our system aims for robustness using the domain-
specific training data as one dataset. Therefore,
we do not differentiate between examples from the
given domains (BEETLE and SCIENTSBANK) when
training the system. In contrast, our approach dintin-
guishes between new questions (unseen answer vs.
unseen question) as well as question types (how,
what and why) by means of simple heuristics.

The runs are organized according to different sys-
tem designs. Although all the runs use the same fea-
ture set, we split the training set to build more spe-
cialized classifiers. Training examples are grouped
depending on: i) the answer is unseen; ii) the ques-
tion is unseen; and iii) the question type (i.e. what,
how, why). Each run defines a framework to explore
the different ways to approach the problem. While
the first run is the simplest and is the most generic
in nature, the third tries to split the task into simpler
problems and creates more specialized classifiers.

2.1 Similarity learning features

Our model is based on various text similarity fea-
tures. Almost all of the measures are computed be-
tween question, reference answer and student an-
swer triplets. The measures based on syntactic struc-
ture and predicate-argument overlaps are only ap-
plied to the student and reference answer pairs. In
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total, we defined 30 features which can be grouped
as follows:

Text overlap measures The similarity of two texts
is computed based on the number of overlapping
words. We obtain the similarity of two texts based
on the F-Measure, the Dice Coefficient, The Cosine,
and the Lesk measures. For that, we use the imple-
mentation available in the Text::Similarity package1.

WordNet-based lexical similarities All the simi-
larity metrics based on WordNet (Miller, 1995) fol-
low the methodology proposed in (Mihalcea et al.,
2006). For each open-class word in one of the in-
put texts, we obtain the maximun semantic similar-
ity or relatedness value matching the same open-
class words in the other input text. The values of
each matching are summed up and normalized by
the length of the two input texts as explained in
(Mihalcea et al., 2006). We compute the measures
of Resnik, Lin, Jiang-Conrath, Leacock-Chodorow,
Wu-Palmer, Banerjee-Pedersen, and Patwardhan-
Pedersen provided in the WordNet::Similarity pack-
age (Patwardhan et al., 2003).

Graph-based similarities The similarity of two
texts is based on a graph-based representation
(Agirre and Soroa, 2009) of WordNet. The method
is a two-step process: first the personalized PageR-
ank over WordNet is computed for each text. This
produces a probability distribution over WordNet.
Then, the probability distributions are encoded as
vectors and the cosine similarity between those vec-
tors is calculated.

Corpus-based similarities We compute two
corpus-based similarity measures: Latent Semantic
Analysis (Deerwester et al., 1990) and Latent
Dirichlet Allocation (Blei et al., 2003). We estimate
100 dimensions for LSA and 50 topics for LDA.
Both models are obtained from a subset of the En-
glish Wikipedia following the hierarchy of science
categories. We started with a small set of categories
and recovered the articles below the sub-hierarchy.
We only went 3 levels down to avoid noisy articles
as the category system is rather flat. The similarity
of two texts is the cosine similarity between the

1http://www.d.umn.edu/ tpederse/text-similarity.html

resulting vectors associated with each text in the
latent space.

Syntactic structure overlap The role of syntax is
studied by the use of graph subsumption based on
the approach proposed in (McCarthy et al., 2008).
The text is mapped into a graph with nodes rep-
resenting words and links indicating syntactic de-
pendencies between them. The similarity of two
texts is computed based on the overlap of the syn-
tactic structures. Negation is handled explicitly in
the graph.

Predicate-argument overlap The similarity of
two texts is computed by analyzing the overlap of
the predicates and their associated semantic argu-
ments. The system looks for verbal and nominal
predicates. The similarity is also based on the ap-
proach proposed in (McCarthy et al., 2008). The
graph is represented with words as nodes and the
semantic role of arguments as links. First, the ver-
bal propositions and their arguments are automat-
ically obtained (Björkelund et al., 2009) as repre-
sented in PropBank (Palmer et al., 2005). Second,
a generalization of the predicates is obtained based
on VerbNet (Kipper, 2005) and NomBank (Meyers
et al., 2004). Finally, the similarity of two texts
is computed based on the overlap of the predicate-
argument relations.

2.2 Architecture of the runs

Generic Framework RUN1 This is the simplest
framework for the assessment of student answers.
The system relies on a single classifier, which has
been optimized on the unseen question scenario.
The scenario is simulated by splitting the training
set so that each question and its answers are in the
same fold.

Unseen Framework RUN2 This framework relies
on two classifiers. The first is tuned on an unseen
answer scenario and the second is prepared for the
question scenario (cf. RUN1). In order to build the
unseen answer classifier, we split the training set so
that answers to the same question can occur in dif-
ferent folders. In test time, the instance is classified
depending on whether it is an unseen answer or an
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BEETLE SCIENTSBANK OVERALL

Uns-answ Uns-qst All Uns-answ Uns-qst Uns-dom All All
RUN1 0.499 (6) 0.352 (7) 0.404 0.396 (7) 0.283 (4) 0.345 (3) 0.348 0.406
RUN2 0.526 (4) 0.352 (7) 0.413 0.418 (6) 0.283 (4) 0.345 (3) 0.350 0.414
RUN3 0.502 (5) 0.370 (6) 0.415 0.424 (5) 0.260 (8) 0.337 (5) 0.340 0.403
LOWEST 0.170 0.173 - 0.089 0.095 0.121 - -
BEST 0.619 0.552 - 0.478 0.307 0.380 - -
MEAN 0.435 0.343 - 0.341 0.240 0.267 - -
MEDIAN 0.437 0.326 - 0.376 0.259 0.268 - -

Table 1: 5-way results of the runs in F1 macro-average on BEETLE and SCIENTSBANK domains across different
scenarios. Along with the runs, the LOWEST and the BEST system in each scenario are shown. The MEAN and
MEDIAN of the dataset are also presented. Finally, the OVERALL results are showed summing up both domains. Uns-
answ refers to unseen answers scenario, Uns-qst stands for unseen question, Uns-dom unseen domain and All refers
to the sum of all scenarios. The run results are presented together with the ranked position in the task.

unseen question2.

Question-type Framework RUN3 The run con-
sists of a set of question-type expert classifiers. We
divided the training set based on whether an instance
reflected a what, how or why question. We then par-
titioned each question type into unseen answer and
unseen question scenarios. In total, the framework
deploys 6 classifiers, i.e. a test instance is classified
according to the question type and scenario. We set
heuristics to automatically distinguish the instance
type.

3 Optimization on training set

We set a heuristic to create the training instances.
For each student answer, if the matching reference
answer is indicated in it, we create a triplet with the
question, the student answer, and the matching ref-
erence answer. If there is no matching answer, the
reference answer is randomly selected giving pref-
erence to the best reference answers.

Once we have a training set, we split it into dif-
ferent ways to simulate the scenarios described in
Section 2.2. All the models are optimized using 10-
fold cross-validation of the pertaining training set.
For the classifiers in RUN1 and RUN2 we used 8910
training instances. For RUN3 the instances were di-
vided as follows: 1235 instances for how questions,
3089 for what questions and 4589 for why ques-
tions. In total, we obtained 8 models which were
distributed through the runs.

2We treat unseen-domain instances as unseen-question in-
stances.

Our approach uses Support Vector Ma-
chine (Chang and Lin, 2011) to build the classifiers.
As the number of features is not high, we used the
gaussian kernel in order to solve the non-linear
problem. The main parameters of the kernel (γ and
C) were tuned using grid search over the parameter
in the cross-validation setting. We focused on
optimizing the F1 macro average of the classifier
in order to avoid a bias towards the major classes.
Each of the 8 classifiers were tuned independently.

The triplets of question, student answer and ref-
erence answer of the test instances were always cre-
ated selecting the first reference answer of the given
set of answers.

4 Results

A total of 8 teams participated in the 5-way task,
submitting a total of 16 system runs (Dzikovska et
al., 2013). Table 1 shows the performance obtained
by our systems across domains and different scenar-
ios. Our three runs ranked differently based on the
evaluation scenario: beetle-uns-answ (6,4,5 rank for
RUN1, RUN2, RUN3, respectively); beetle-uns-qst
(7,7,6); scientsbank-uns-answ (7,6,5); scientsbank-
uns-qst (4,4,8) and scientsbank-uns-dom (3,3,5). We
also evaluated our runs on the entire domain (All
columns) and on the whole test set (OVERALL).

The results show we built robust systems. Despite
being below the best system of each evaluation sce-
nario, the results show that the runs are competitive.
All our runs are above the median and outperform
the average results on each evaluation. Overall, the
results attained in SCIENTSBANK are lower than in
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BEETLE. This might be due to the questions and
answers being longer in SCIENTSBANK, making it
difficult to obtain good patterns.

As regards our runs, there is no significant overall
difference. While RUN3 performs better in BEETLE

unseen question and SCIENTSBANK unseen answer,
in the rest of scenarios RUN2 outperforms the rest
of the runs. As expected, RUN2 outperforms RUN1
in the unseen answer scenario since the former has
a module specializing in unseen answers. However,
although RUN3 is an ensemble of six classifiers, it is
not the best run. This is probably because the train-
ing sets are not big enough.

Unseen framework (RUN2)
Prec Rec F1

correct 0.552 0.677 0.608
partially correct 0.324 0.323 0.323
contradictory 0.239 0.121 0.160
irrelevant 0.472 0.377 0.419
non domain 0.415 0.849 0.557
Macro average 0.400 0.469 0.414
Micro average 0.443 0.464 0.446

Table 2: results of the RUN2 system on a entire test set.

Table 2 shows the detailed results of the RUN2
system on the entire test set. It is noticeable the
low results obtained on the contradictory class. This
might be because the defined features are not able
to model negation properly and do not deal with
antonymy. Surprisingly, the non domain class is not
the most problematic, even if the system was trained
on a low number of instances.

5 Preliminary Error Analysis

We conducted a preliminary error analysis and stud-
ied some of the misclassified test instances to detect
some problematic issues and to define improvements
to our approach.

Example 5.1 Sam and Jasmine were sitting on a
park bench eating their lunches. A mosquito landed
on Sam’s arm and Sam began slapping at it. When
he did that, he knocked Jasmine’s soda into her lap,
causing her to jump up. What was Sam’s response?

R: Sam’s response was to slap the mosquito.
S1: Sam’s response was to say sorry
S2: To smack the bee.

Some of the detected errors suggest that our use
of syntax and lexical overlap is not sufficient to iden-
tify the correct class. Our system marks the student
answer S1 from Example 5.13 as correct. The ref-
erence answer and the student answer share a great
number of words and the dependency trees are al-
most identical, but not the meanings. In addition, the
question contains additional information that may
require other types of features to correctly classify
the instance.

The predicate-argument overlap feature tries to
generalize the predicate information to find similar-
ities between verbs with the same meaning. How-
ever, our system does not always work in a correct
way. The verb smack in the student answer S2 and
the verb slap in the reference answer mean the same.
Our system classifies the answer incorrectly. If we
look at PropBank and VerbNet, we find that there
is not mapping between PropBank and VerbNet for
these particular verbs.

Example 5.2 Why do you think the other terminals
are being held in a different electrical state than that
of the negative terminal?

R: Terminals 4, 5 and 6 are not connected to the
negative battery terminal

S1: They are connected to the positive battery ter-
minal

We consider the negation as part of the syntac-
tic and predicate-argument overlap measures. How-
ever, our system does not characterize the similar-
ity between not connected to the negative and con-
nected to the positive (Example 5.2). This type of
examples suggest that the system needs to model the
negation and antonyms with additional features.

In the future, further error analysis will be car-
ried out to design features to better model the prob-
lem. We also anticipate creating a specialized fea-
ture space for each question type.
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Abstract

We invent referential translation machines
(RTMs), a computational model for identify-
ing the translation acts between any two data
sets with respect to a reference corpus se-
lected in the same domain, which can be used
for automatically grading student answers.
RTMs make quality and semantic similarity
judgments possible by using retrieved rele-
vant training data as interpretants for reach-
ing shared semantics. An MTPP (machine
translation performance predictor) model de-
rives features measuring the closeness of the
test sentences to the training data, the diffi-
culty of translating them, and the presence of
acts of translation involved. We view question
answering as translation from the question to
the answer, from the question to the reference
answer, from the answer to the reference an-
swer, or from the question and the answer to
the reference answer. Each view is modeled
by an RTM model, giving us a new perspective
on the ternary relationship between the ques-
tion, the answer, and the reference answer. We
show that all RTM models contribute and a
prediction model based on all four perspec-
tives performs the best. Our prediction model
is the 2nd best system on some tasks according
to the official results of the Student Response
Analysis (SRA 2013) challenge.

1 Automatically Grading Student Answers

We introduce a fully automated student answer
grader that performs well in the student response
analysis (SRA) task (Dzikovska et al., 2013) and es-
pecially well in tasks with unseen answers. Auto-

matic grading can be used for assessing the level of
competency for students and estimating the required
tutoring effort in e-learning platforms. It can also
be used to adapt questions according to the average
student performance. Low scored topics can be dis-
cussed further in classrooms, enhancing the overall
coverage of the course material.

The quality estimation task (QET) (Callison-
Burch et al., 2012) aims to develop quality indica-
tors for translations at the sentence-level and pre-
dictors without access to the reference. Bicici et
al. (2013) develop a top performing machine transla-
tion performance predictor (MTPP), which uses ma-
chine learning models over features measuring how
well the test set matches the training set relying on
extrinsic and language independent features.

The student response analysis (SRA)
task (Dzikovska et al., 2013) addresses the fol-
lowing problem. Given a question, a known correct
reference answer, and a student answer, assess the
correctness of the student’s answer. The student
answers are categorized as correct, partially correct
incomplete, contradictory, irrelevant, or non do-
main, in the 5-way task; as correct, contradictory,
or incorrect in the 3-way task; and as correct or
incorrect in the 2-way task.

The student answer correctness prediction prob-
lem involves finding a function f approximating the
student answer correctness given the question (Q),
the answer (A), and the reference answer (R):

f(Q,A,R) ≈ q(A,R). (1)

We approach f as a supervised learning problem
with (Q, A, R, q(A,R)) tuples being the training
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data and q(A,R) being the target correctness score.
We model the problem as a translation task where

one possible interpretation is translating Q (source
to translate, S) to R (target translation, T) and evalu-
ating with A (as reference target, RT) (QRA). Since
the information appearing in the question may be re-
peated in the reference answer or may be omitted in
the student answer, it also makes sense to concate-
nate Q and A when translating to R (QARQA). We
obtain 4 different perspectives on the ternary rela-
tionship between Q, A, and R depending on how we
model their relationship as an instance of translation:

QAR : S = Q, T = A, RT = R.
QRA : S = Q, T = R, RT = A.
ARA : S = A, T = R, RT = A.

QARQA : S = Q+A, T = R, RT = Q+A.

2 The Machine Translation Performance
Predictor (MTPP)

In machine translation (MT), pairs of source and tar-
get sentences are used for training statistical MT
(SMT) models. SMT system performance is af-
fected by the amount of training data used as well
as the closeness of the test set to the training set.
MTPP (Biçici et al., 2013) is a top performing ma-
chine translation performance predictor, which uses
machine learning models over features measuring
how well the test set matches the training set to pre-
dict the quality of a translation without using a ref-
erence translation. MTPP measures the coverage of
individual test sentence features and syntactic struc-
tures found in the training set and derives feature
functions measuring the closeness of test sentences
to the available training data, the difficulty of trans-
lating the sentence, and the presence of acts of trans-
lation involved.

Features for Translation Acts

MTPP uses n-gram features defined over text or
common cover link (CCL) (Seginer, 2007) struc-
tures as the basic units of information over which
similarity calculations are made. Unsupervised
parsing with CCL extracts links from base words
to head words, which allow us to obtain structures
representing the grammatical information instanti-
ated in the training and test data. Feature functions
use statistics involving the training set and the test

sentences to determine their closeness. Since they
are language independent, MTPP allows quality es-
timation to be performed extrinsically. Categories
for the 283 features used are listed below and their
detailed descriptions are presented in (Biçici et al.,
2013) where the number of features are given in {#}.

• Coverage {110}: Measures the degree to
which the test features are found in the train-
ing set for both S ({56}) and T ({54}).
• Synthetic Translation Performance {6}: Calcu-

lates translation scores achievable according to
the n-gram coverage.
• Length {4}: Calculates the number of words

and characters for S and T and their ratios.
• Feature Vector Similarity {16}: Calculates the

similarities between vector representations.
• Perplexity {90}: Measures the fluency of the

sentences according to language models (LM).
We use both forward ({30}) and backward
({15}) LM based features for S and T.
• Entropy {4}: Calculates the distributional sim-

ilarity of test sentences to the training set.
• Retrieval Closeness {24}: Measures the de-

gree to which sentences close to the test set are
found in the training set.
• Diversity {6}: Measures the diversity of co-

occurring features in the training set.
• IBM1 Translation Probability {16}: Calculates

the translation probability of test sentences us-
ing the training set (Brown et al., 1993).
• Minimum Bayes Retrieval Risk {4}: Calculates

the translation probability for the translation
having the minimum Bayes risk among the re-
trieved training instances.
• Sentence Translation Performance {3}: Calcu-

lates translation scores obtained according to
q(T,R) using BLEU (Papineni et al., 2002),
NIST (Doddington, 2002), or F1 (Biçici and
Yuret, 2011b) for q.

3 Referential Translation Machine (RTM)

Referential translation machines (RTMs) we de-
velop provide a computational model for quality and
semantic similarity judgments using retrieval of rel-
evant training data (Biçici and Yuret, 2011a; Biçici,
2011) as interpretants for reaching shared seman-
tics (Biçici, 2008). We show that RTM achieves

586



very good performance in judging the semantic sim-
ilarity of sentences (Biçici and van Genabith, 2013)
and we can also use RTM to automatically assess
the correctness of student answers to obtain better
results than the baselines proposed by (Dzikovska et
al., 2012), which achieve the best performance on
some tasks (Dzikovska et al., 2013).

RTM is a computational model for identifying the
acts of translation for translating between any given
two data sets with respect to a reference corpus se-
lected in the same domain. RTM can be used for
automatically grading student answers. An RTM
model is based on the selection of common train-
ing data relevant and close to both the training set
and the test set where the selected relevant set of
instances are called the interpretants. Interpretants
allow shared semantics to be possible by behaving
as a reference point for similarity judgments and
providing the context. In semiotics, an interpretant
I interprets the signs used to refer to the real ob-
jects (Biçici, 2008). RTMs provide a model for com-
putational semantics using interpretants as a refer-
ence according to which semantic judgments with
translation acts are made. Each RTM model is a data
translation model between the instances in the train-
ing set and the test set. We use the FDA (Feature De-
cay Algorithms) instance selection model for select-
ing the interpretants (Biçici and Yuret, 2011a) from a
given corpus, which can be monolingual when mod-
eling paraphrasing acts, in which case the MTPP
model is built using the interpretants themselves as
both the source and the target side of the parallel cor-
pus. RTMs map the training and test data to a space
where translation acts can be identified. We view
that acts of translation are ubiquitously used during
communication:

Every act of communication is an act of
translation (Bliss, 2012).

Translation need not be between different languages
and paraphrasing or communication also contain
acts of translation. When creating sentences, we use
our background knowledge and translate informa-
tion content according to the current context.

Given a training set train, a test set test, and
some monolingual corpus C, preferably in the same
domain as the training and test sets, the RTM steps
are:

1. T = train ∪ test.
2. select(T, C)→ I
3. MTPP(I,train)→ Ftrain
4. MTPP(I,test)→ Ftest

Step 2 selects the interpretants, I, relevant to the
instances in the combined training and test data.
Steps 3 and 4 use I to map train and test to
a new space where similarities between the transla-
tion acts can be derived more easily. RTM relies on
the representativeness of I as a medium for building
translation models for translating between train
and test.

Our encouraging results in the SRA task provides
a greater understanding of the acts of translation we
ubiquitously use when communicating and how they
can be used to predict the performance of trans-
lation, judging the semantic similarity of text, and
evaluating the quality of student answers. RTM and
MTPP models are not data or language specific and
their modeling power and good performance are ap-
plicable across different domains and tasks. RTM
expands the applicability of MTPP by making it fea-
sible when making monolingual quality and simi-
larity judgments and it enhances the computational
scalability by building models over smaller but more
relevant training data as interpretants.

4 Experiments

SRA involves the prediction on Beetle (student
interactions when learning conceptual knowledge
in the basic electricity and electronics domain)
and SciEntsBank (science assessment questions)
datasets. SciEntsBank is harder due to contain-
ing questions from multiple domains (Dzikovska
et al., 2012). SRA challenge results are eval-
uated with the weighted average F1, Fw

1 =
1
N

∑
c∈C NcF1(c) and the macro average F1, Fm

1 =
1
|C|

∑
c∈C F1(c) (Dzikovska et al., 2012).

The lexical baseline system is based on measures
of lexical overlap using 4 features: the number of
overlapping words, F1, Lesk (Lesk, 1986), and co-
sine scores over the words when comparing A and
R ({4}) and Q and R ({4}). Lesk score is calculated
as: L(A,R) =

∑
p∈M |p|2/(|A||R|), where M con-

tains the maximal overlapping phrases that match in

587



A and R and |p| is the length of a phrase 1. This lex-
ical baseline is highly competitive: no submission
performed better in the 2-way Beetle unseen ques-
tions task.

4.1 RTM Models
We obtain CNGL results for the SRA task as fol-
lows. For each perspective described in Section 1,
we build an RTM model. Each RTM model views
the SRA task from a different perspective using the
283 features extracted dependent on the interpre-
tants using MTPP. We extract the features both on
the training set of 4155 and the test set of 1258 (Q,
A, R) sentence triples for the Beetle task and the
training set of 5251 and the test set of 5835 (Q, A,
R) sentence triples for the SciEntsBank task. The
addition of lexical overlap baseline features slightly
helps. We use the best reference answer if the refer-
ence answer is not identified in the training set.

The training corpus used is the English side of
an out-of-domain corpus on European parliamen-
tary discussions, Europarl (Callison-Burch et al.,
2012) 2, to which we also add the unique sentences
from R. In-domain corpora are likely to improve the
performance. We do not perform any linguistic pro-
cessing or use other external resources. We use only
extrinsic features, or features that are ignorant of any
information intrinsic to, and dependent on, a given
language or domain. We use the training corpus to
build a 5-gram target LM. We use ridge regression
(RR) and support vector regression (SVR) with RBF
kernel (Smola and Schölkopf, 2004). Both of these
models learn a regression function using the features
to estimate a numerical target value. The parameters
that govern the behavior of RR and SVR are the reg-
ularization λ for RR and the C, ε, and γ parameters
for SVR. At testing time, the predictions are bound
so as to have scores in the range [0, 1], [0, 2], or [0, 4]
and rounded for finding the predicted category.

4.2 Training Results
Table 1 lists the 10-fold cross-validation (CV) re-
sults on the training set for RR and SVR for dif-
ferent RTM systems without the parameter op-
timization. As we combine different perspec-
tives, the performance improves and we use the

1http://search.cpan.org/dist/Text-Similarity/
2We use WMT’13 corpora from www.statmt.org/wmt13/.

QAR+QRA+ARA+QARQA system for our submis-
sions using RR for run 1, SVR for run 2. ARA per-
forms the best among individual perspectives. Each
additional perspective adds another 283 features to
the representation.

F m
1 / F w

1 Beetle SciEntsBank
Model RR SVR RR SVR
QAR .38/.49 .45/.57 .21/.30 .28/.36
QRA .33/.50 .33/.53 .22/.31 .29/.42
ARA .45/.54 .50/.60 .21/.30 .30/.38
QARQA .35/.50 .40/.58 .20/.27 .27/.40
QAR+ARA .47/.55 .49/.61 .26/.36 .32/.39
QAR+ARA+QARQA .48/.57 .49/.62 .31/.38 .29/.40
QAR+QRA+ARA+QARQA .48/.56 .48/.61 .31/.38 .29/.40

Table 1: Performance on the training set without tuning.

We perform tuning on a subset of the Beetle
and SciEntsBank datasets separately after including
the baseline lexical overlap features and optimize
against the performance evaluated withR2, the coef-
ficient of determination. SVR performance is given
in Table 2. The CNGL system significantly outper-
forms the lexical overlap baseline in all tasks for
Beetle and in the 2-way task for SciEntsBank. For
3-way and 5-way, CNGL performs slightly better.

Fm
1 / Fw

1 Beetle SciEntsBank
System 2 3 5 2 3 5
Lexical .74/.75 .53/.56 .46/.53 .61/.64 .43/.55 .29/.41
CNGL .84/.84 .61/.63 .55/.63 .74/.75 .47/.56 .30/.41

Table 2: Optimized SVR results vs. lexical overlap base-
line on the training set for 2-way, 3-way, or 5-way tasks.

4.3 SRA Challenge Results

The SRA task test set also contains instances that be-
long to unseen questions (uQ) and unseen domains
(uD), which make it harder to predict. The train-
ing data provided for the task correspond to learning
with unseen answers (uA). Table 3 presents the SRA
challenge results containing the lexical overlap, our
CNGL SVR submission (RR is slightly worse), and
the maximum and mean results 3.

According to the official results, CNGL SVR is
the 2nd best system based on 5-way evaluation (4th

3Max is not the performance of the best performing system
but the maximum result obtained for each metric and subtask.
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Fm
1 / Fw

1 Beetle SciEntsBank
System uA uQ uA uQ uD

2

Lexical .80/.79 .74/.72 .64/.62 .65/.63 .66/.65
CNGL .80/.81 .67/.68 .55/.57 .56/.58 .56/.57
Mean .71/.72 .61/.62 .64/.66 .60/.62 .61/.63
Max .84/.84 .72/.73 .77/.77 .74/.74 .70/.71

3

Lexical .55/.58 .48/.50 .40/.52 .39/.52 .42/.55
CNGL .57/.59 .45/.47 .33/.38 .31/.37 .31/.36
Mean .54/.55 .41/.42 .48/.56 .39/.51 .39/.51
Max .72/.73 .58/.60 .65/.71 .47/.63 .49/.62

5

Lexical .42/.48 .41/.46 .30/.44 .26/.40 .25/.40
CNGL .43/.55 .38/.47 .20/.27 .21/.30 .22/.29
Mean .44/.51 .34/.40 .34/.46 .24/.38 .26/.37
Max .62/.70 .55/.61 .48/.64 .31/.49 .38/.47

Table 3: SRA challenge results: CNGL SVR submission,
the lexical overlap baseline, and the maximum and mean
results for 2-way, 3-way, or 5-way tasks. uA, uQ, and uD
correspond to unseen answers, questions, and domains.

result overall) and the 3rd best system based on 2-
way and 3-way evaluation (5th result overall) on the
uQ Beetle task. The SVR model performs better
than the lexical baseline and the mean result in the
Beetle task but performs worse in the SciEntsBank.
The lower performance is likely to be due to using an
out-of-domain training corpus for building the RTM
models and on the uQ and uD tasks, it may also be
due to optimizing on the uA task only. The lower
performance in SciEntsBank is also due to multiple
question domains (Dzikovska et al., 2012).

SVR Beetle SciEntsBank
F w

1 2 3 5 2 3 5
(a) QAR+ARA .86 .66 .64 .77 .56 .42
(b) QAR+ARA+QARQA .86 .66 .65 .77 .57 .45
(c) QAR+QRA+ARA+QARQA .85 .64 .63 .77 .58 .45

F m
1 2 3 5 2 3 5

(a) QAR+ARA .86 .64 .55 .76 .47 .34
(b) QAR+ARA+QARQA .85 .64 .55 .76 .48 .36
(c) QAR+QRA+ARA+QARQA .85 .62 .54 .76 .49 .35

Table 4: Improved SVR performance on the training set
with tuning for 2-way, 3-way, or 5-way tasks.

4.4 Improved RTM Models
We improve the RTM model with the expansion of
our representation by adding the following features:

• Character n-grams {4}: Calculates the cosine

between the character n-grams (for n=2,3,4,5)
obtained for S and T (Bär et al., 2012).
• LIX {2}: Calculates the LIX readability

score (Wikipedia, 2013; Björnsson, 1968) for
S and T. 4

Table 4 lists the improved results on the training set
after tuning, which shows about 0.04 increase in all
scores when compared with Table 1 and Table 2.

Fm
1 /Fw

1 Beetle SciEntsBank
Model uA uQ uA uQ uD

2
(a) .81/.82 .70/.71 .55/.57 .58/.58 .56/.57
(b) .80/.81 .71/.72 .69/.70 .54/.56 .56/.58
(c) .79/.79 .70/.71 .60/.59 .57/.58 .55/.57

3
(a) .59/.61 .48/.49 .26/.34 .34/.40 .26/.32
(b) .60/.62 .47/.48 .36/.43 .31/.38 .29/.34
(c) .58/.60 .46/.48 .41/.48 .30/.39 .29/.34

5
(a) .47/.56 .37/.45 .19/.22 .22/.33 .22/.29
(b) .43/.56 .36/.45 .26/.37 .23/.33 .21/.30
(c) .42/.52 .40/.48 .27/.39 .24/.33 .20/.30

Table 5: Improved SVR results on the SRA task test set.

Fm
1 /Fw

1 SciEntsBank
Model uA uQ uD

2
(a) .56/.57 .54/.55 .53/.55
(b) .57/.58 .53/.54 .56/.57
(c) .57/.58 .55/.57 .57/.59

3
(a) .36/.45 .33/.44 .39/.49
(b) .35/.40 .36/.44 .39/.48
(c) .37/.46 .36/.48 .40/.50

5
(a) .24/.34 .23/.33 .26/.39
(b) .24/.36 .25/.38 .26/.38
(c) .24/.36 .21/.32 .28/.39

Table 6: Improved TREE results on the SRA task test set.

Table 5 presents the improved SVR results on the
SRA task test set, which shows about 0.03 increase
in all scores when compared with Table 3. SVR be-
comes the 2nd best system and 2nd best result in
2-way evaluation and the 3rd best system from the
top based on 2-way and 3-way evaluation (5th result
overall) on the uQ Beetle task.

4LIX= A
B

+ C 100
A

, where A is the number of words, C is
words longer than 6 characters, B is words that start or end with
any of “.”, “:”, “!”, “?” similar to (Hagström, 2012).
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We observe that decision tree regression (Hastie
et al., 2009) (TREE) generalizes to uQ and uD do-
mains better than the RR or SVR models especially
in the SciEntsBank corpus. Table 6 presents TREE
results on the SRA SciEntsBank test set, which
shows significant increase in uQ and uD tasks when
compared with Table 5.

5 Conclusion

Referential translation machines provide a clean
and intuitive computational model for automatically
grading student answers by measuring the acts of
translation involved and achieve to be the 2nd best
system on some tasks in the SRA challenge. RTMs
make quality and semantic similarity judgments
possible based on the retrieval of relevant training
data as interpretants for reaching shared semantics.
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Abstract

This paper presents CELI’s participation in the
SemEval The Joint Student Response Anal-
ysis and 8th Recognizing Textual Entailment
Challenge (Task7) and Cross-lingual Textual
Entailment for Content Synchronization task
(Task 8).

1 Introduction

Recognizing an existing relation between two text
fragments received a significant interest as NLP task
in the recent years. A lot of the approaches were
focused in the filed of Textual Entailment(TE). TE
has been proposed as as a comprehensive frame-
work for applied semantics (Dagan and Glickman,
2004), where the need for an explicit mapping be-
tween linguistic objects can be, at least partially,
bypassed through the definition of semantic infer-
ences at the textual level. In the TE framework, a
text (T ) is said to entail the hypothesis (H) if the
meaning of H can be derived from the meaning of
T . Initially defined as binary relation between texts
(YES/NO there is an entailment or there is not) the
TE evolved in the third RTE3 (Giampiccolo et al.,
2007) challenge into a set of three relations between
texts: ENTAILMENT, CONTRADICTION and
UNKNOWN. These relations are interpreted as fol-
lows:

• ENTAILMENT - The T entails the H .

• CONTRADICTION - The H contradicts the T

• UNKNOWN - There is no semantic connection
between T and H .

With more and more applications available for
recognizing textual entailment the researches fo-
cused their efforts in finding practical applications
for the developed systems. Thus the Cross-Lingual
Textual Entailment task (CLTE) was created using
textual entailment (TE) to define cross-lingual con-
tent synchronization scenario proposed in (Mehdad
et. al., 2011), (Negri et. al., 2011) (Negri et. al.,
2012). The task is defined by the organizers as fol-
lows: Given a pair of topically related text fragments
(T1 and T2) in different languages, the CLTE task
consists of automatically annotating it with one of
the following entailment judgments:

• Bidirectional: the two fragments entail each
other (semantic equivalence)

• Forward: unidirectional entailment from T1 to
T2

• Backward: unidirectional entailment from T2
to T1

• No Entailment: there is no entailment between
T1 and T2

The textual entailment competition also evolved.
In this year SEMEVAL The Joint Student Response
Analysis and 8th Recognizing Textual Entailment
Challenge - JRSA-RTE8 (Task7) the textual entail-
ment was defined in three subtasks:

5-way task , where the system is required to clas-
sify the student answer according to one of the fol-
lowing judgments:

• Correct, if the student answer is a complete and
correct paraphrase of the reference answer;
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• Partially correct incomplete, if the student an-
swer is a partially correct answer containing
some but not all information from the reference
answer;

• Contradictory, if the student answer explicitly
contradicts the reference answer;

• Irrelevant, if the student answer is ”irrelevant”,
talking about domain content but not providing
the necessary information;

• Non domain, if the student answer expresses a
request for help, frustration or lack of domain
knowledge - e.g., ”I don’t know”, ”as the book
says”, ”you are stupid”.

3-way task , where the system is required to clas-
sify the student answer according to one of the fol-
lowing judgments:

• correct

• contradictory

• incorrect, conflating the categories of par-
tially correct incomplete, irrelevant or
non domain in the 5-way classification

2-way task , where the system is required to clas-
sify the student answer according to one of the fol-
lowing judgments:

• correct

• incorrect, conflating the categories of contra-
dictory and incorrect in the 3-way classifica-
tion.

Following the overall trend, we have decided to
convert our system for recognizing textual entail-
ment EDITS from a simple YES/NO recognition
system into a generic system capable of recognizing
multiple semantic relationships between two texts.

EDITS (Kouylekov and Negri, 2010) and
(Kouylekov et. al., 2011) is an open source pack-
age for recognizing textual entailment, which offers
a modular, flexible, and adaptable working environ-
ment to experiment with the RTE task over different
datasets. The package allows to: i) create an en-
tailment engine by defining its basic components ii)

train such entailment engine over an annotated RTE
corpus to learn a model; and iii) use the entailment
engine and the model to assign an entailment judg-
ments and a confidence score to each pair of an un-
annotated test corpus.

We define the recognition of semantic relations
between two texts as a classification task. In this
task the system takes as an input two texts and clas-
sifies them in one of a set of predefined relations.
We have modified EDITS in order to handle the so
defined task.

Having this in mind we have participated in
JRSA-RTE8 (task 7) and CLTE2 (task 8) with the
same approach. We have merged EDITS with some
features from the TLike system described in our last
participation in CLTE (Kouylekov et. al., 2011). For
each of the tasks we have created a specialized com-
ponents that are integrated in EDITS as one of the
system’s modules.

2 EDITS and Generic Text Pair
Classification

As in the previous versions, the core of EDITS im-
plements a distance-based framework. Within this
framework the system implements and harmonizes
different approaches to distance computation be-
tween texts, providing both edit distance algorithms,
and similarity algorithms. Each algorithm returns
a normalized distance score (a number between 0
and 1). Each algorithm algorithm depends on two
generic modules defined by the system’s user:

• Matcher - a module that is used to align text
fragments. This module uses semantic tech-
niques and entailment rules to find equivalent
textfragments.

• Weight Calculator - a module that is used to
give weight to text fragments. The weights are
used to determine the importance of a text por-
tion to the overall meaning of the text.

In the previous versions of the system at the train-
ing stage, distance scores calculated over annotated
T-H pairs are used to estimate a threshold that best
separates positive (YES) from negative (NO) exam-
ples. The calculated threshold was used at a test
stage to assign an entailment judgment and a con-
fidence score to each test pair. In the new version
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of the system we used a machine learning classifier
to classify the T-H pairs in the appropriate category.
The overall architecture of the system is shown in
Figure 1.

The new architecture is divided in two sets of
modules: Machine Learning and Edit Distance. In
the Edit Distance set various distance algorithms are
used to calculate the distance between the two texts.
Each of these algorithms have a custom matcher and
weight calculator. The distances calculated by each
of these algorithms are used as features for the clas-
sifiers of the Machine Leaning modules. The ma-
chine learning modules are structured in two levels:

• Binary Classifiers - for each semantic relation
we create a binary classifier that distinguishes
between the members of the relation and the
members of the other relations. For example:
For 3way task (Task 7) the system created 3 bi-
nary classifiers one for each relation.

• Classifier - a module that makes final decision
for the text pair taking the output (decision and
confidence) of the binary classifiers as an input.

We have experimented with other configurations
of the machine leaning modules and selected this
one as the best performing on the available datasets
of the previous RTE competitions. In the version
of EDITS avalble online other configurations of the
machine leaning modules will be available using the
flexibility of the system configuration.

We have used the algorithms implemented in
WEKA (Hall et al., 2009) for the classification mod-
ules. The binary modules use SMO algorithm. The
top classifier uses NaiveBayes.

The input to the system is a corpus of text pairs
each classified with one semantic relation. We have
used the format of the previous RTE competitions
in order to be compliant. The goal of the system is
to create classifier that is capable of recognizing the
correct relation for an un-annotated pair of texts.

The new version of EDITS package allows to:

• Create an Classifier by defining its basic com-
ponents (i.e. algorithms, matchers, and weight
calculators);

• Train such Classifier over an annotated corpus

(containing T-H pairs annotated in terms of en-
tailment) to learn a Model;

• Use the Classifier and the Model to assign an
entailment judgment and a confidence score to
each pair of an un-annotated test corpus.

3 Resources

Like our participation in the 2012 SemEval Cross-
lingual Textual Entailment for Content Synchroniza-
tion task (Kouylekov et. al., 2011), our approach is
based on four main resources:

• A system for Natural Language Processing able
to perform for each relevant language basic
tasks such as part of speech disambiguation,
lemmatization and named entity recognition.

• A set of word based bilingual translation mod-
ules.(Employed only for Task 8)

• A semantic component able to associate a se-
mantic vectorial representation to words.

• We use Wikipedia as multilingual corpus.

NLP modules are described in (Bosca and Dini,
2008), and will be no further detailed here.

Word-based translation modules are composed by
a bilingual lexicon look-up component coupled with
a vector based translation filter, such as the one de-
scribed in (Curtoni and Dini, 2008). In the context of
the present experiments, such a filters has been de-
activated, which means that for any input word the
component will return the set of all possible transla-
tions. For unavailable pairs, we make use of trian-
gular translation (Kraaij, 2003).

As for the semantic component we experimented
with a corpus-based distributional approach capable
of detecting the interrelation between different terms
in a corpus; the strategy we adopted is similar to La-
tent Semantic Analysis (Deerwester et. al., 1990)
although it uses a less expensive computational solu-
tion based on the Random Projection algorithm (Lin
et. al., 2003) and (Bingham et. al., 2001). Different
works debate on similar issues: (Turney, 2001) uses
LSA in order to solve synonymy detection questions
from the well-known TOEFL test while the method
presented by (Inkpen, 2001) or by (Baroni and Bisi,
2001) proposes the use of the Web as a corpus to
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Figure 1: EDITS Architecture

compute mutual information scores between candi-
date terms.

We use Wikipedia as a corpus for calculating
word statistics in different languages. We have in-
dexed using Lucene1 the English, Italian, French,
German, Spanish distributions of the resource.

The semantic component and the translation2

modules are used as core components in the matcher
module. IDF calculated on Wikipedia is used as
weight for the words by the weight calculator model.

4 JRSA-RTE8

In the JRSA-RTE8 we consider the reference an-
swers as T (text) and the student answer as H (hy-
pothesis). As the reference answers are often more
than one, we considered as input to the machine
learning algorithms the distance between the student
answer and the closest reference answer. We define
the closest reference answer as the reference answer
with minimum distance according to the distance al-
gorithm.

1http://lucene.apache.org
2Translation module is used only for Task 8.

4.1 Systems

We have submitted two runs in the SemEval JRSA-
RTE8 challenge (Task 7). The systems were exe-
cuted on each of the sub tasks of the main task.

System 1 The distance algorithm used in the first
system is Word Overlap. The algorithm tries to find
the words of a source text between the words of the
target text. We have created two features for each
binary classifier: 1) Feature 1 - word overlap of H
into T (words of H are matched by the words in T;
2) Feature 2 - word overlap T into H (Words of T are
matched by the words in H).

System 2 In the second system the we have used
only Feature 1.

We have created separate models for the Beatle
dataset and the sciEntsBank dataset. The results ob-
tained are shown in Table 1.

4.2 Analysis

The results obtained are in line with our previous
participations in the RTE challenges (Kouylekov et.
al., 2011). Of course as we described before in our
papers (Kouylekov et. al., 2011) the potential of the
edit distance algorithm is limited. Still it provides a
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Task Beatle Q Beatle A sciEntsBank Q sciEntsBank A sciEntsBank D
2way
run 1 0.6400 0.6570 0.5930 0.6280 0.6160
run 2 0.4620 0.4480 0.5560 0.5930 0.5710
3way
run 1 0.5510 0.4950 0.5240 0.5780 0.5490
run 2 0.4150 0.4400 0.4390 0.5030 0.4770
5way
run 1 0.4830 0.4470 0.4130 0.4340 0.4170
run 2 0.3850 0.4320 0.2330 0.2370 0.2540

Table 1: Task 7 Results obtained. (Accuracy)

good performance and provides a solid potential for
some close domain tasks as described in (Negri and
Kouylekov, 2009). We were quite content with the
new machine learning based core. The selected con-
figuration performed in an acceptable manner. The
results obtained were in line with the cross accuracy
obtained by our system on the training set which
shows that it is not susceptible to over-training.

5 CLTE

5.1 Systems
We have submitted two runs in the CLTE task (Task
8).

System 1 The distance algorithm used in the first
system is Word Overlap as we did for task 7. We
have created two features for each binary classifier:
1) Feature 1 - word overlap of H into T (words of H
are matched by the words in T; 2) Feature 2 - word
overlap T into H (Words of T are matched by the
words in H).

System 2 In the second system we have made a
slight modification of the matcher that handled num-
bers.

The matcher module for this task used the transla-
tion modules defined in Section 3. We have created
a model for each language pair.

The results obtained are shown in Table 2.

5.2 Analysis
The results obtained are quite disappointing. Our
system obtained on the test set of the last CLTE com-
petition (CLTE1) quite satisfactory results (clte1-
test). All the results obtained for this competition

are near or above the medium of the best systems.
Our algorithm did not show signs of over-training
(the accuracy of the system on the test and on the
training of CLTE1 were almost equal). Having this
in mind we expected to obtain scores at least in the
margins of 0.45 to 0.5. This does not happen ac-
cording us due to the fact that this year dataset has
characteristics quite different than the last year. To
test this hypothesis we have trained our system on
half of the dataset (clte2-half-training) ,given for test
this year, and test it on the rest (clte-half-test). The
results obtained demonstrate that the dataset given
is more difficult for our system than the last years
one. The results also prove that our system is prob-
ably too conservative when learning from examples.
If the test set is similar to the training it performs
in consistent manner on both, otherwise it demon-
strates severe over-training problems.

6 Conclusions

In this paper we have presented a generic system for
text pair classification. This system was evaluated
on task 7 and task 8 of Semeval 2013 and obtained
satisfactory results. The new machine learning mod-
ule of the system needs improvement and we plan to
focus our future efforts in it.

We plan to release the newly developed system as
version 4 of the open source package EDITS avail-
able at http://edits.sf.net.
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Run Spanish Italian French German
run1 0.34 0.324 0.346 0.349
run2 0.342 0.324 0.34 0.349

clte2-half-training 0.41 0.43 0.40 0.44
clte2-half-test 0.43 0.44 0.41 0.43

clte1-test 0.52 0.51 0.54 0.55

Table 2: Task 8. Results obtained. (Accuracy)
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Abstract

In this paper, we describe a method for as-
sessing student answers, modeled as a para-
phrase identification problem, based on sub-
stitution by Basic English variants. Basic En-
glish paraphrases are acquired from the Sim-
ple English Wiktionary. Substitutions are ap-
plied both on reference answers and student
answers in order to reduce the diversity of
their vocabulary and map them to a common
vocabulary. The evaluation of our approach
on the SemEval 2013 Joint Student Response
Analysis and 8th Recognizing Textual Entail-
ment Challenge data shows promising results,
and this work is a first step toward an open-
domain system able to exhibit deep text un-
derstanding capabilities.

1 Introduction

Automatically assessing student answers is a chal-
lenging natural language processing task (NLP). It
is a way to make test grading easier and improve
adaptive tutoring (Dzikovska et al., 2010), and is the
goal of the SemEval 2013’s task 7, titled Joint Stu-
dent Response Analysis. More specifically, given a
question, a known correct “reference answer” and a
1- or 2-sentence student answer, the goal is to deter-
mine the student’s answer accuracy (Dzikovska et
al., 2013). This can be seen as a paraphrase identi-
fication problem between student answers and refer-
ence answers.

Paraphrase identification searches whether two
sentences have essentially the same meaning (Culi-
cover, 1968). Automatically generating or extract-
ing semantic equivalences for the various units of

language – words, phrases, and sentences – is an im-
portant problem in NLP and is being increasingly
employed to improve the performance of several
NLP applications (Madnani and Dorr, 2010), like
question-answering and machine translation.

Paraphrase identification would benefit from
a precise and broad-coverage semantic language
model. This is unfortunately difficult to obtain to its
full extent for any natural language, due to the size
of a typical lexicon and the complexity of grammat-
ical constructions. Our hypothesis is that the sim-
pler the language lexicon is, the easier it will be to
access and compare meaning of sentences. This as-
sumption is justified by the multiple attempts at con-
trolled natural languages (Schwitter, 2010) and es-
pecially simplified forms of English. One of them,
Basic English (Ogden, 1930), has been adopted by
the Wikipedia Project as the preferred language of
the Simple English Wikipedia1 and its sister project
the Simple English Wiktionary2.

Our method starts with acquiring paraphrases
from the Simple English Wiktionary’s definitions.
Using those, we generate variants of both sentences
whose meanings are to be compared. Finally, we
compute traditional lexical and semantic similarity
measures on those two sets of variants to produce
features to train a classifier on the SemEval 2013
datasets in order to take the final decision.

2 Acquiring simplifying paraphrases

Simple Wiktionary word definitions are different
from usual dictionary definitions. Aside from the

1http://simple.wikipedia.org
2http://simple.wiktionary.org
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simplified language, they often prefer to give a
complete sentence where the word – e.g. a verb – is
used in context, along with an explanation of what it
means. To define the verb link, Simple Wiktionary
states that If you link two or more things, you make a
connection between them (1), whereas the standard
Wiktionary uses the shorter and more cryptic To
connect two or more things.

We notice in this example that the definition
from Simple Wiktionary consists of two clauses,
linked by a subordination relation. It’s actually the
case for a lot of verb definitions: a quick statistical
study shows that 70% of these definitions are
composed of two clauses, an independent clause,
and a subordinate clause (often an adverbial clause).
One clause illustrates how the verb is used, the
other gives the explanation and the actual dictionary
definition, as in example (1). These definitions are
the basis of our method for acquiring paraphrases.

2.1 Pre-processing

We use the Stanford Parser to parse the definitions
and get a dependency graph (De Marneffe and Man-
ning, 2008). Using a few hand-written rules, we then
retrieve both parts of the definition, which we call
the word part and the defining part (see table 1 page
3 for examples). We can do this for definitions of
verbs, but also for nouns, like the giraffe is the tallest
land animal in the world to define giraffe, or adjec-
tives, like if something is bright it gives out or fills
with much light to define bright. We only provide
the details of our method for processing verb defini-
tions, as they correspond to the most complex cases,
but we proceed similarly for noun, adjective and ad-
verb definitions.

2.2 Argument matching

Word and defining parts alone are not paraphrases,
but we can obtain phrasal paraphrases from them. If
we see word part and defining part as two semanti-
cally equivalent predications, we have to identify the
two predicates with their arguments, then match ar-
guments with corresponding meaning, i.e. match ar-
guments which designate the same entity or assume
the same semantic function in both parts, as showed
in Table 2.

For verb definitions, we identify the predicates as

you → you
link → make
∅ → a connection
∅ → between

two or more things → them

Table 2: Complete matching for the definition of verb link

the main verbs in both clauses (hence link matching
with make in table 2) and their arguments as a POS-
filtered list of their syntactic descendants. Then,
our assumption is that every argument of the word
part predicate is present in the defining part, and
the defining part predicate can have extra arguments
(like a connection).

We define s(A, B), the score of the pair of argu-
ments (A, B), with argument A in the word part and
argument B in the defining part. We then define a
matching M as a set of such pairs, such that ev-
ery element of every possible pair of arguments is
found at most one time in M . A complete match-
ing is a matching M that matches every argument
in the word part, i.e., for each word part argument
A, there exists a pair of arguments in M which con-
tains A. Finally, we compute the matching score of
M , S(M), as the sum of scores of all pairs of M .

The score function s(A, B) is a hand-crafted lin-
ear combination of several features computed on a
pair of arguments (A, B) including:

• Raw string similarity. Sometimes the same
word is reused in the defining part.

• Having an equal/compatible dependency rela-
tion with their respective main verb.

• Relative position in clause.

• Relative depth in parsing tree. These last 3 fea-
tures assess if the two arguments play the same
syntactic role.

• Same gender and number. If different, it’s
unlikely that the two arguments designate the
same entity.

• If (A, B) is a pair (noun phrase, pronoun). We
hope to capture an anaphoric expression and its
antecedent.
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Word (POS-tag) Word part Defining part
link (V) you link two or more things you make a connection between them

giraffe (N) the giraffe the tallest land animal in the world
bright (Adj) something is bright it gives out or fills with much light

Table 1: Word part and defining part of some Simple Wiktionary definitions

• WordNet similarity (Pedersen et al., 2004). If
words belong to close synsets, they’re more
likely to identify the same entity.

2.3 Phrasal paraphrases

We compute the complete matching M which maxi-
mizes the matching score S(M). Although it is pos-
sible to enumerate all matchings, it is intractable;
therefore when predicates have more than 4 argu-
ments, we prefer constructing a best matching with a
beam search algorithm. After replacing each pair of
arguments with linked variables, and attaching un-
matched arguments to the predicates, we finally ob-
tain phrasal paraphrases of this form:

〈 X link Y , X make a connection between Y 〉

3 Paraphrasing exercise answers

3.1 Paraphrase generation and pre-ranking

Given a sentence, and our Simple Wiktionary para-
phrases (about 20,650 extracted paraphrases), we
can generate sentential paraphrases by simple syn-
tactic pattern matching –and do so recursively by
taking previous outputs as input–, with the intent
that these new sentences use increasingly more Ba-
sic English. We generate as many variants starting
from both reference answers and student answers as
we can in a fixed amount of time, as an anytime al-
gorithm would do. We prioritize substituting verbs
and adjectives over nouns, and non Basic English
words over Basic English words.

Given a student answer and reference answers, we
then use a simple Jaccard distance (on lowercased
lemmatized non-stopwords) to score the closeness
of student answer variants to reference answer vari-
ants: we measure how close the vocabulary used in
the two statements has become. More specifically,
for each reference answer A, we compute the n clos-
est variants of the student answer to A’s variant set.
In our experiments, n = 10. We finally rank the
reference answers according to the average distance

from their n closest variants to A’s variant set and
keep the top-ranked one for our classification exper-
iment. Figure 1 illustrates the whole process.

RA1

RA2
...

SA
0

1

2

3

4

5

RA2

RA1

1. 1

A B

C 1. 5
2. 3

2. 3
...

...

Figure 1: Variants are generated from all reference an-
swers (RA) and the student answer (SA). For each ref-
erence answer RA, student answer variants are ranked
based on their lexical distance from the variants of RA.
The reference with the n closer variants to the student
variants is kept (here: RA1).

3.2 Classifying student answers
SemEval 2013 task 7 offers 3 problems: a 5-way
task, with 5 different answer judgements, and 3-way
and 2-way tasks, conflating more judgement cate-
gories each time. Two different corpora, Beetle and
SciEntsBank, were labeled with the 5 following la-
bels: Correct, Partially correct incomplete, Contra-
dictory, Irrelevant and Non Domain, as described in
(Dzikovska et al., 2012). We see the n-way task as a
n-way classification problem. The instances of this
problem are the pairs (student answer, reference an-
swer).

We compute for each instance the following fea-
tures: For each of the n closest variants of the stu-
dent answer to some variant of the reference answer
computed in the pre-ranking phase:

• Jaccard similarity coefficient on non-
stopwords.

• A boolean representing if the two statements
have the same polarity or not, where polarity
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is defined as the number of neg dependencies
in the Stanford Parser dependency graph.

• Number of “paraphrasing steps” necessary to
obtain the variant from a raw student answer.

• Highest WordNet similarity of their respective
nouns.

• WordNet similarity of the main verbs.

General features:

• Answer count (how many students typed this
answer), provided in the datasets.

• Length ratio between the student answer and
the closest reference answer.

• Number of (non-stop)words which appear nei-
ther in the question nor the reference answers.

We train an SVM classifier (with a one-against-one
approach to multiclass classification) on both Beetle
and SciEntsBank, for each n-way task.

3.3 Evaluation

Table 3 presents our system’s overall accuracy on the
5-way task, along with the top scores at SemEval
2013, mean scores, and baselines –majority class
and lexical overlap– described in (Dzikovska et al.,
2012).

System
Beetle

unseen answers
SciEntsBank

unseen questions
Majority 0.4010 0.4110
Lexical
overlap

0.5190 0.4130

Mean 0.5326 0.4078
ETS-run-1 0.5740 0.5320
ETS-run-2 0.7150 0.4010

Simple
Wiktio

0.5330 0.4820

Table 3: SemEval 2013 evaluation results.

Our system performs slightly better in overall ac-
curacy on Beetle unseen answers and SciEntsBank
unseen questions than both baselines and the mean
scores. While results are clearly below the best sys-
tem trained on the Beetle corpus questions, we hold

the third best score for the 5-way task on SciEnts-
Bank unseen questions, while not fine-tuning our
system specifically for this corpus. This is rather
encouraging as to how suitable Simple Wiktionary
is as a resource to extract open-domain knowledge
from.

4 Discussion

The system we present in this paper is the first
step towards an open-domain machine reading sys-
tem capable of understanding and reasoning. Di-
rect modeling of the semantics of a full natural lan-
guage appears too difficult. We therefore decide to
first project the English language onto a simpler En-
glish, so that it is easier to model and draw infer-
ences from.

One complementary approach to a minimalistic
language model, is to accept that texts are replete
with gaps: missing information that cannot be in-
ferred by reasoning on the text alone, but require
a certain amount of background knowledge. Penas
and Hovy (2010) show that these gaps can be filled
by maintaining a background knowledge base built
from a large corpus.

Although Simple Wiktionary is not a large corpus
by any means, it can serve our purpose of acquiring
basic knowledge for assessing exercise answers, and
has the advantage to be in constant evolution and ex-
pansion, as well as interfacing very easily with the
richer Wiktionary and Wikipedia.

Our future work will be focused on enriching and
improving the robustness of our knowledge acqui-
sition step from Simple Wiktionary, as well as in-
troducing a true normalization of English to Basic
English.
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Abstract

Assessing student understanding by evaluat-
ing their free text answers to posed questions
is a very important task. However, manually,
it is time-consuming and computationally, it is
difficult. This paper details our shallow NLP
approach to computationally assessing student
free text answers when a reference answer is
provided. For four out of the five test sets, our
system achieved an overall accuracy above the
median and mean.

1 Introduction

Assessing student understanding is one of the holy
grails of education (Redecker et al., 2012). If we
(teachers, tutors, intelligent tutors, potential employ-
ers, parents and school administrators) know what
and how much a student knows, then we know what
the student still needs to learn. And then, can ef-
ficiently and effectively educate the student. How-
ever, the task of assessing what exactly a student un-
derstands about a particular topic can be expensive,
difficult and subjective.

Using multiple choice questionnaires is one of
the most prevalent forms of assessing student under-
standing because it is easy and fast, both manually
and computationally. However there has been a lot
of pushback from educators about the validity of re-
sults gotten from multiple choice questionnaires.

Assessing student understanding by evaluating
student free text answers either written or spoken is
one of the preferred alternatives to multiple choice
questionnaires. As an assessment tool, free text an-
swers can illuminate what and how much a student

knows since the student is forced to recall terms and
make connections between those terms rather than
just picking one out of several options. However,
assessing free text answers manually is tedious, ex-
pensive and time-consuming, hence the search for a
computational option.

There are three main issues that can limit the com-
putational approach and corresponding performance
when assessing free text answers: (1) the unit of
assessment, (2) the reference and (3) the level of
assessment. The unit of assessment can be words,
facets, phrases, sentences, short answers or essays.
The reference is the correct answer and what is
being compared to the student answer. Most re-
searchers generate the reference manually (Noorbe-
hbahani and Kardan, 2011; Graesser et al., 2004) but
some have focused on automatically generating the
reference (Ahmad, 2009). The level of assessment
can be coarse with 2 categories such as correct and
incorrect or more finer-grained with up to 19 cate-
gories as in (Ahmad, 2009). In general, the finer-
grained assessments are more difficult to assess.

2 The Student Response Analysis Task

The student response analysis task was posed as fol-
lows: Given a question, a known correct/reference
answer and a 1 or 2 sentence student answer, classify
the student answer into two, three or five categories.
The two categories were correct and incorrect; the
three categories were correct, contradictory and in-
correct; while the five categories were correct, par-
tially correct but incomplete, contradictory, irrele-
vant and not in the domain (Dzikovska et al., 2013).

We chose to work on the 2-way response task only
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because for our application, we need to simply know
if a student answer is correct or incorrect. Our ap-
plication is an interactive essay-based personalized
learning environment (Bethard et al., 2012).

The overarching goal of our application is to cre-
ate a scalable online service that recommends re-
sources to users based on the their conceptual under-
standing expressed in an essay or short answer form.
Our application automatically constructs a domain
knowledge base from digital library resources and
identifies the core concepts in the domain knowl-
edge base.It detects flaws and gaps in users’ sci-
ence knowledge and recommends digital library re-
sources to address users’ misconceptions and knowl-
edge gaps. The gaps are detected by identifying the
core concepts which the user has not discussed. The
flaws (incorrect understanding/misconceptions) are
currently being identified by a process of (1) seg-
menting a student essay into sentences, (2) align-
ing the student sentence to a sentence in the domain
knowledge base and (3) using the system we devel-
oped for the student response analysis task to deter-
mine if the student sentence is correct or incorrect.

The development of our misconception detection
algorithm has been limited by the alignment task.
However, with the data set from the student response
analysis task containing correct alignments, we hope
to be able to use it to make improvements to our
misconception detection algorithm. We discuss our
current misconception detection system below.

3 System Description

Our system mainly exploits shallow NLP tech-
niques, in particular text overlap, to see how much
we can gain from using a simple system and how
much more some more semantic features could add
to the simple system. Although we have access to
the question which a 1-2 sentence student answer
corresponds to, we chose not to use that in our sys-
tem because in our application we do not have ac-
cess to that information. We were trying to build a
system that would work in our current essay-based
application.

Some of the student answers in the dataset have a
particular reference answer which they match. How-
ever, we do not make use of this information in our
system either. We assume that for a particular ques-

tion, all the corresponding reference answers can be
used to determine the correctness of any of the stu-
dent answers.

3.1 Features

The features we use are:

1. CosineSimilarity : This is the average cosine
similarity (Jurafsky and James, 2000) between
a student answer vector and all the correspond-
ing reference answer vectors. The vectors are
based on word counts. The words were low-
ercased and included stopwords and punctua-
tions.

2. CosineSimilarityNormalized : This is the av-
erage cosine similarity between a student an-
swer vector and all the corresponding reference
answer vectors, with the word counts within
the vectors divided by the word counts in Gi-
gaword, a background corpus. We divided
the raw counts by the counts in Gigaword to
ensure that punctuations, stopwords and other
non-discriminatory words do not artificially in-
crease the cosine similarity.

3. UnigramRefStudent : This is the average un-
igram coverage of the reference answers by a
student answer. To calculate this, the student
answer and all the corresponding reference an-
swers are tokenized into unigrams. Next, for
each reference answer, we count the number of
unigrams in the reference answer that are con-
tained in the student answer and divide it by the
number of unigrams in the reference answer.
The value we get for this feature, is the aver-
age over all the reference answers.

4. UnigramStudentRef : This is the average uni-
gram coverage of the student answer by the ref-
erence answers. To calculate this, the student
answer and all the corresponding reference an-
swers are tokenized into unigrams. Next, for
each reference answer, we count the number
of unigrams in the student answer that are con-
tained in the reference answer and divide it by
the number of unigrams in the student answer.
The value we get for this feature, is the average
over all the reference answers.
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5. BigramRefStudent : This is similar to the Un-
igramRefStudent feature, but using bigrams.

6. BigramStudentRef : This is similar to the Un-
igramStudentRef feature, but using bigrams.

7. LemmaRefStudent : This is similar to the Un-
igramRefStudent feature, but in this case, the
lemmas are used in place of words.

8. LemmaStudentRef : This is similar to the Un-
igramStudentRef feature, but in this case, the
lemmas are used in place of words.

9. UnigramPosRefStudent : This is similar to
the UnigramRefStudent feature, but we use
part-of-speech unigrams for this feature in
place of word unigrams.

10. UnigramPosStudentRef : This is similar to
the UnigramStudentRef feature, but we use
part-of-speech unigrams for this feature in
place of word unigrams.

11. BigramPosRefStudent : This is similar to the
BigramRefStudent feature, but we use part-of-
speech bigrams for this feature in place of word
unigrams.

12. BigramPosStudentRef : This is similar to the
BigramStudentRef feature, but we use part-of-
speech bigrams for this feature in place of word
unigrams.

3.2 Implementation
We used the ClearTK (Ogren et al., 2008) toolkit
within Eclipse to extract features from the student
and reference sentences. We trained a LibSVM
(Chang and Lin, 2011) binary classifier to classify a
feature vector into two classes, correct or incorrect.
We used the default parameters for LibSVM except
for the cost parameter, for which we tried different
values. However, the default value of 1 gave us the
best result on the training set. Our two runs/systems
are essentially the same system but with a cost pa-
rameter of 1 and 10.

4 Results

The Student Response Analysis Task overall re-
sult can be found in the Task description paper

(Dzikovska et al., 2013). The CU system achieved
a ranking of above the mean and median for four
of the five different test sets. We perfomed below
the mean and median on the sciEntsBank unseen an-
swers. The accuracy result for the test data is shown
in Table 4. The results on our training data and
a breakdown of the contribution of each feature is
shown in Table 5. In Table 5 ALL refers to all the
features while ALL-CosineSimilarity is all the fea-
tures excluding the CosineSimilarity feature.

Sys
tem

beetle
un-
seen
an-
swers

beetle
un-
seen
ques-
tions

sciEnts
Bank
un-
seen
an-
swers

sciEnts
Bank
un-
seen
ques-
tions

sciEnts
Bank
un-
seen
do-
mains

CU
run
1

0.786 0.718 0.656 0.674 0.693

CU
run
2

0.784 0.717 0.654 0.671 0.691

Table 1: Overall Accuracy results for CU system on the
test Data

5 Discussion

As can be seen from Table 4 and further elaborated
on in (Dzikovska et al., 2013), there were two main
datasets, Beetle and SciEntsBank. The Beetle data
set has multiple reference answer per question while
the SciEntsBank has one reference answer per ques-
tion. Our system did better on the beetle data set
than the SciEntsBank data set, both during devel-
opment and on the final test sets. This leads us to
believe that our system will do well when there are
multiple reference answers rather than just one.

We analyzed the training data to understand
where our system was failing and what we could do
to make it better. We tried removing stopwords be-
fore constructing the feature vectors but that made
the results worse. Here are two examples where re-
moving the stopwords will make it impossible to as-
certain the validity of the student answer:

• It was connected. becomes connected
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• It will work because that is closing the switch.
becomes work closing switch

Because the student answers are free text and use
pronouns in place of the nouns that were in the ques-
tion, the stop words are important to provide context.

Feature Type Beetle
& sci-
Ents
Bank

1 ALL 0.703
2 ALL - CosineSimilarity 0.702
3 ALL - CosineSimilari-

tyNormalized
0.700

4 ALL - UnigramRefStudent 0.702
5 ALL - UnigramStudentRef 0.701
6 ALL - BigramRefStudent 0.702
7 ALL - BigramStudentRef 0.699
8 ALL - LemmaRefStudent 0.701
9 ALL - LemmaStudentRef 0.700
10 ALL - UnigramPosRefStu-

dent
0.703

11 ALL - UnigramPosStuden-
tRef

0.703

12 ALL - BigramPosRefStu-
dent

0.702

13 ALL - BigramPosStuden-
tRef

0.702

Table 2: Accuracy results for 5X cross validation on the
training data

Currently, we are working on extracting and
adding several features that we did not use for the
task due to time constraints, to see if they improve
our result. Some of the things we are working on
are:

1. Resolving Coreference
We will use the current state-of-art coreference
system and assume that the question precedes
the student answer in a paragraph when resolv-
ing coreference.

2. Compare main predicates
The question is how to assign a value to the se-
mantic similarity between the main predicates.
If the predicates are separate and connect, then

there should be a way to indicate that the men-
tion of one of them in the reference, precludes
the validity of the student answer being correct
if it mentions the other. However, we also have
to take negation into account here. not sepa-
rated and connected should be marked as very
similar if not equal. We plan to include the al-
gorithm from the best system in the semantic
similarity task to our current system.

3. Compare main subject and object from a
syntactic parse or the numbered arguments
in semantic role label arguments
We have to resolve coreference for this to work
well. And again, we run into the problem of
how to assign a semantic similarity value to two
words that might not share the same synset in
ontologies such as Wordnet.

4. Optimize parameters and explore other clas-
sifiers Throughout developing and testing our
system, we used only the LibSVM classifier
and only optimized the cost parameter. How-
ever, there might be a different classifier or
set of options that can model the data better.
We hope to run through most of the classifiers
available and see if using a different one, with
different options improves our accuracy.

6 Conclusion

We have shown that there is value in using shallow
NLP features to judge the validity of free answer text
when the reference answers are given. However,
looking at the sentences that our system labeled as
correct and the gold standard incorrect or vice versa,
it is clear that we have to delve into more seman-
tic features if we want our system to be more accu-
rate. We hope to keep working on this task in sub-
sequent years to ensure continuous improvements in
systems that can assess student knowledge by eval-
uating free answer texts. Such systems will be able
to give students the formative feedback they need
to help them learn better. In addition, such systems
will provide teachers, intelligent tutors and adminis-
trators with feedback about student knowledge, so as
to help them adapt their curriculum, teaching and tu-
toring methods to better serve students’ knowledge
needs.
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Abstract

This paper describes the CoMeT system, our
contribution to the SemEval 2013 Task 7 chal-
lenge, focusing on the task of automatically
assessing student answers to factual questions.
CoMeT is based on a meta-classifier that uses
the outputs of the sub-systems we developed:
CoMiC, CoSeC, and three shallower bag ap-
proaches. We sketch the functionality of all
sub-systems and evaluate their performance
against the official test set of the challenge.
CoMeT obtained the best result (73.1% accu-
racy) for the 3-way unseen answers in Beetle
among all challenge participants. We also dis-
cuss possible improvements and directions for
future research.

1 Introduction

Our contribution to the SemEval 2013 Task 7 chal-
lenge (Dzikovska et al., 2013) presented here is based
on our research in the A4 project1 of the SFB 833,
which is dedicated to the question how meaning can
be computationally compared in realistic situations.
In realistic situations, utterances are not necessarily
well-formed or complete, there may be individual
differences in situative and world knowledge among
the speakers. This can complicate or even preclude
a complete linguistic analysis, leading us to the fol-
lowing research question: Which linguistic repre-
sentations can be used effectively and robustly for
comparing the meaning of sentences and text frag-
ments computationally?

1http://purl.org/dm/projects/sfb833-a4

In order to work on effective and robust processing,
we base our work on reading comprehension exer-
cises for foreign language learners, of which we are
also collecting a large corpus (Ott et al., 2012). Our
first system, CoMiC, is an alignment-based approach
which exists in English and German variants (Meur-
ers et al., 2011a; Meurers et al., 2011b). CoMiC
uses various levels of linguistic abstraction from sur-
face tokens to dependency parses. Further work that
we are starting to tackle includes the utilization of
Information Structure (Krifka, 2007) in the system.

The second approach emerging from the research
project is CoSeC (Hahn and Meurers, 2011; Hahn
and Meurers, 2012), a semantics-based system for
meaning comparison that was developed for German
from the start and was ported to operate on English
for this shared task. As a novel contribution in this
paper, we present CoMeT (Comparing Meaning in
Tübingen), a system that employs a meta-classifier
for combining the output of CoMiC and CoSeC and
three shallower bag approaches.

In terms of the general context of our work, short
answer assessment essentially comes in the two fla-
vors of meaning comparison and grading, the first
trying to determine whether or not two utterances
convey the same meaning, the latter aimed at grading
the abilities of students (cf. Ziai et al., 2012). Short
answer assessment is also closely related to the field
of Recognizing Textual Entailment (RTE, Dagan et
al., 2009), which this year is directly reflected by
the fact that SemEval 2013 Task 7 is the Joint Stu-
dent Response Analysis and 8th Recognizing Textual
Entailment Challenge.
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Turning to the organization of this paper, section 2
introduces the three types of sub-systems and the
meta-classifier. In section 3, we report on the evalu-
ation results of each sub-system both for our devel-
opment set as well as for the official test set of the
shared task. We then discuss possible causes and
implications of the findings we made by participating
in the shared task.

2 Systems

The CoMeT system that we describe in this paper
is a combination of three types of sub-systems in
one meta-classifier. CoSeC and CoMiC are sys-
tems that align linguistic units in the student answer
to those in the reference answer. In contrast, the
bag-based approaches employ a vocabulary of words,
lemmas, and Soundex hashes constructed from all
of the student answers in the training data. In the
meta-classifier, we tried to combine the benefits of the
named sub-systems into one large system that eventu-
ally computed our submission to the SemEval 2013
Task 7 challenge.

2.1 CoMiC
CoMiC (Comparing Meaning in Context) is an
alignment-based system, i.e., it operates on a map-
ping of linguistic units found in a student answer to
those given in a reference answer. CoMiC started off
as a re-implementation of the Content Assessment
Module (CAM) of Bailey and Meurers (2008). It
exists in two flavors: CoMiC-DE for German, de-
scribed in Meurers et al. (2011b), and CoMiC-EN for
English, described in Meurers et al. (2011a). Both
systems are positioned in the landscape of the short
answer assessment field in Ziai et al. (2012). In this
paper, we refer to CoMiC-EN simply as CoMiC.

Sketched briefly, CoMiC operates in three stages:

1. Annotation uses various NLP modules to equip
student answers and reference answers with lin-
guistic abstractions of several types.

2. Alignment creates links between these linguistic
abstractions from the reference answer to the
student answer.

3. Classification uses summary statistics of these
alignment links in machine learning in order to
assign labels to each student answer.

Automatic annotation and alignment are imple-
mented in the Unstructured Information Management
Architecture (UIMA, Ferrucci and Lally, 2004). Our
UIMA modules mainly wrap around standard NLP
tools of which we provide an overview in Table 1.
We used the standard statistical models which are
provided with the NLP tools.

Annotation Task NLP Component
Sentence Detection OpenNLP2

Tokenization OpenNLP
Lemmatization morpha (Minnen et al., 2001)
Spell Checking Edit distance (Levenshtein, 1966),

SCOWL word list3

Part-of-speech Tagging TreeTagger (Schmid, 1994)
Noun Phrase Chunking OpenNLP
Synonyms and WordNet (Fellbaum, 1998)
Semantic Types
Similarity Scores PMI-IR (Turney, 2001)

on UkWaC (Baroni et al., 2009)
Dependency Relations MaltParser (Nivre et al., 2007)
Keyword extraction Heads from dependency parse

Table 1: NLP tools used for CoMiC and Bag Approaches

Annotation ranges from very basic linguistic units
such as sentences and tokens with POS and lemmas,
over NP chunks, up to full dependency parses of
the input. For distributional semantic similarity via
PMI-IR (Turney, 2001), a local search engine based
on Lucene (Gospodnetić and Hatcher, 2005) querying
the UkWaC corpus (Baroni et al., 2009) was used,
since all major search engines meanwhile have shut
down their APIs.

After the annotation of linguistic units has taken
place, candidate alignment links are created within
UIMA. In a simple example case, a candidate align-
ment link is a pair of tokens that is token identical
in the student answer and in the reference answer.
The same token in the student answer may also be
part of a candidate alignment link that maps to an-
other token in the reference answer that, e.g., has the
same lemma, or is a possible synonym, or again is
token identical. Other possible links are based on
spelling-corrected tokens, semantic types, or high
values of the PMI-IR similarity measure.

Words that are present in the reading comprehen-
sion question and that are also found in the student an-
swer are excluded from alignment, resulting in a very

2http://incubator.apache.org/opennlp
3http://wordlist.sourceforge.net
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basic implementation of an approach to givenness
(cf. Halliday, 1967, p. 204 and many others since).

Subsequently, a globally optimal alignment of lin-
guistic units in the reference answer and student an-
swer is determined using the Traditional Marriage
Algorithm (Gale and Shapley, 1962).

At this point, processing within UIMA comes to
an end with an output module that generates the files
containing the features for machine learning. These
features basically are summary statistics of the types
of alignment links. An overview of these numeric
features used is given in Table 2.

Feature Description
1. Keyword Overlap Percent of keywords aligned

(relative to target)
2./3. Token Overlap Percent of aligned

target/learner tokens
4./5. Chunk Overlap Percent of aligned

target/learner chunks
6./7. Triple Overlap Percent of aligned

target/learner triples
8. Token Match Percent of token alignments

that were token-identical
9. Similarity Match Percent of token alignments

that were similarity-resolved
10. Type Match Percent of token alignments

that were type-resolved
11. Lemma Match Percent of token alignments

that were lemma-resolved
12. Synonym Match Percent of token alignments

that were synonym-resolved
13. Variety of Match Number of kinds of

(0-5) token-level alignments

Table 2: Features used in CoMiC’s classification phase

Current versions of CoMiC use the WEKA toolkit
(Hall et al., 2009), allowing us to experiment with
different machine learning strategies. In general, any
type of classification can be trained in this machine
learning phase, a binary correct vs. incorrect de-
cision as in the 2-way task being the simplest case.
The best results with CoMiC on our held-out develop-
ment set were achieved using WEKA’s J48 classifier,
which is an implementation of decision tree based on
Quinlan (1993).

In terms of linguistic abstractions, CoMiC leaves
the choice of representations used to its alignment
step. However, in the final machine learning step, no
concrete information about linguistic units is present

any more. The machine learning component only
sees alignment configurations which are indepen-
dent of concrete words, phrases, or any other lin-
guistic information. This high level of abstraction
suggests that CoMiC should perform better than other
approaches on unseen topics and unseen questions,
since it does not rely on concrete units as, e.g., a
bag-of-words approach does.

2.2 CoSeC
CoSeC (Comparing Semantics in Context) performs
meaning comparison on the basis of an underspec-
ified semantic representation robustly derived from
the learner and the reference answers. The sys-
tem was developed for German (Hahn and Meurers,
2012), on the basis of which we created the English
CoSeC-EN for the SemEval 2013 Task 7 challenge.

Using an explicit semantic formalism in principle
makes it possible to precisely represent meaning dif-
ferences. It also supports a direct representation of
Information Structure as a structuring of semantics
representations (Krifka, 2007).

CoSeC is based on Lexical Resource Semantics
(LRS, Richter and Sailer, 2004). Being an under-
specified semantic formalism, LRS avoids the costly
computation of all readings and provides access to
the building blocks of the semantic representation,
while additional constraints provide the information
about their composition.

As described in Hahn and Meurers (2011), LRS
representations can be derived automatically using
a two-step approach based on part-of-speech tags
assigned by TreeTagger (Schmid, 1994) and depen-
dency parses by MaltParser (Nivre et al., 2007). First,
the dependency structure is transformed into a com-
pletely lexicalized syntax-semantics interface rep-
resentation, which abstracts away from some form
variation at the surface. These representations are
then mapped to LRS representations. The approach
is robust in that it always results in an LRS structure,
even for ill-formed sentences.

CoSeC then aligns the LRS representations of the
reference answer and the student answer to each other
and also to the representation of the question. The
alignment approach takes into account local criteria,
namely the semantic similarity of pairs of elements
that are linked by the alignment, as well as global
criteria measuring the extent to which the alignment
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preserves structure at the levels of variables and the
subterm structure of the semantic formulas.

Local similarity of semantic expressions is esti-
mated using WordNet (Fellbaum, 1998), FrameNet
(Baker et al., 1998), PMI-IR (Turney, 2001) on the
UkWaC (Baroni et al., 2009) as used in CoMiC, the
Minimum Edit Distance (Levenshtein, 1966), and
special parameters for comparing functional elements
such as quantifiers and grammatical function labels.

Based on the alignments, the system marks ele-
ments which are not linked to elements in the ques-
tion or which are linked to the semantic contribution
of an alternative in an alternative question as “fo-
cused”. This is intended as a first approximation of
the concept of focus in the sense of Information Struc-
ture (von Heusinger, 1999; Kruijff-Korbayová and
Steedman, 2003; Krifka, 2007), an active field of re-
search in linguistics addressing the question how the
information in sentences is packaged and integrated
into discourse. Focus elements are expected to be
particularly relevant for determining the correctness
of an answer (Meurers et al., 2011b).

Overall meaning comparison is then done based
on a set of numerical scores computed from the align-
ments and their quality. For each of these scores, a
threshold is empirically determined, over which the
student answer is considered to be correct. Among
the scores discussed by Hahn and Meurers (2011),
weighted-target focus, consistently scored best in the
development set. This score measures the percent-
age of terms in the semantic representation of the
reference answer which are linked to elements of
the student answer in relation to the number of all
elements in the representation of the reference an-
swer. Only terms that were marked as focused in
the preceding step are counted. Functional elements,
i.e., quantifiers, predicates representing grammatical
function labels, or the lambda operator, are weighted
differently from other elements.

This threshold method can only be used to perform
2-way classification. Unlike the machine learning
step in CoMiC, it does not generalize to 3-way or
5-way classification.

The alignment algorithm uses several numerical
parameters, such as weights for the different compo-
nents measuring semantic similarities, weights for
the different overall local and global criteria, and
the weight of the weighted-target focus score. These

parameters are optimized using Powells algorithm
combined with grid-based line optimization (Press et
al., 2002). To avoid overfitting, the parameters and
the threshold are determined on disjoint partitions of
the training set.

In terms of linguistic abstractions, meaning assess-
ment in CoSeC is based entirely on underspecified
semantic representations. Surface forms are indi-
rectly encoded by the structure of the representation
and the predicate names, which are usually derived
from the lemmas. As with CoMiC, parameter opti-
mization and the determination of the thresholds for
the numerical scores do not involve concrete infor-
mation about linguistic objects. Again, the high level
of abstraction suggests that CoSeC should perform
better than other approaches on unseen topics and
unseen questions.

2.3 The Bag Approaches

Inspired by the bag-of-words concept that emerged
from information retrieval (Salton and McGill, 1983),
we designed a system that uses bag representations
of student answers. For each student answer, there
are three bags, each containing one of the following
representations: words, lemmas and Soundex hashes
of that answer. The question ID corresponding to
the answer is added to each bag as a pseudo-word,
allowing the machine learner to adjust to question-
specific properties. Based on the bag representations,
the approach compares a given student answer to a
model trained on all other known student answers.
On the one hand, this method ignores the presence of
reference answers (although they could be added to
the training set as additional correct answers), on the
other hand it makes use of information not taken into
account by alignment-based systems such as CoMiC
or CoSeC.

Concerning pre-processing, the linguistic anal-
yses such as tokenization and lemmatization are
identical to those of CoMiC, since the bag gener-
ator technically is just another output module of the
UIMA-based pipeline used there. No stop-word list
is used. The bags are fed into a support vector-based
machine learner. We used WEKA’s Sequential Min-
imal Optimization (SMO, Platt, 1998) implementa-
tion with the radial basis function (RBF) kernel, since
it yielded good results on our development set and
since it supports output of the estimated probabilities
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for each class. The optimal gamma parameter and
complexity constant were estimated via 10-fold grid
search.

In terms of abstractions, all bag-based approaches
simply disregard word order and in case of binary
bags even word frequency. Still, a bit of the relation
between words is essentially encoded in their mor-
phology. This piece of information is discarded in
the bags of lemmas, eventually, e.g., putting words
like “bulb” and “bulbs” in the same vector slot. Fur-
ther away from the surface are the Soundex hashes,
a phonetic representation of English words patented
by Russell (1918). The well-known algorithm trans-
forms similar-sounding English words into the same
representation of characters and numbers, thereby
ironing out many spelling mistakes and common
confusion cases of homophones such as “there” vs.
“their”. The MorphAdorner4 implementation we used
returns empty Soundex hashes for input tokens that
do not start with a letter of the alphabet. However,
we found in our experiments, that the presence of
these empty hashes in the bags has a positive impact
on performance. This is most likely due to the fact
that it discriminates answers containing punctuation
(not a letter of the alphabet) from those which do not.

Since the bag approaches use Soundex as pho-
netic equivalence classes, but no semantic equiva-
lence classes, they should perform best on the unseen
answers data in which most lexical material from the
test set is likely to already be present in the training
set.

2.4 CoMeT: A Meta-Classifier

As described in the previous sections, our sub-
systems perform short answer evaluation on differ-
ent representations and at different levels of abstrac-
tion. The bag approaches are very surface-oriented,
whereas CoSeC uses a semantic formalism to com-
pare answers to each other. We expected each system
to show its strengths in different test scenarios, so a
way was needed to combine the predictions of differ-
ent systems into the final result.

CoMeT (Comparing Meaning in Tübingen) is a
meta-classifier which builds on the predictions of
our individual systems (feature stacking, see Wolpert,
1992). The rationale is that if systems are comple-

4http://morphadorner.northwestern.edu

mentary, their combination will perform better (or at
least as good) than any individual system on its own.
The design is as follows:

Each system produces predictions on the training
set, using 10-fold cross-validation, and on the test set.
In addition to the predicted class, each system was
also made to output probabilities for each possible
class (cf., e.g., Tetreault et al., 2012a). The class
probabilities were then used as features in the meta
classifier to train a model for the test data. In addition
to the probabilities, we also used the question ID and
module ID in the meta-classifier, in the hope that they
would allow differentiation between scenarios. For
example, an unseen question ID means that we are
not testing on unseen answers and thus predictions
from systems with more abstraction from the surface
may be preferred.

The class probabilities come from different
sources, depending on the system. In the case of
CoMiC, they are extracted directly from the decision
trees. For the bag approaches, we used WEKA’s op-
tion to fit logistic models to the SVM output after
classification in order to estimate probabilities. Fi-
nally, the CoSeC probabilities are derived directly
from its final score. As mentioned in section 2.2,
CoSeC only does binary classification, so those prob-
abilities are used in the meta-classifier for all tasks.

Based on the results on our internal development
set (see section 3.1), we chose different system com-
binations for different scenarios. For unseen topics
and unseen questions, we used only CoMiC in com-
bination with CoSeC, since the inclusion of the bag
approaches had a negative impact on results. For un-
seen answers, we additionally included the bag mod-
els. All meta-classification was done using WEKA’s
Logistic Regression implementation. The results are
discussed in section 3.

3 Evaluation

In this section, we present the results for each of the
sub-systems, both on the custom-made split of the
training data we used in our development, as well as
on the official test data of the SemEval 2013 Task 7
challenge. Subsequently, we discuss possible causes
for issues raised by our evaluation results.
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3.1 Development Set

In order to be as close as possible to the final test
setting, we replicated the official test scenarios on
the training set, resulting in a train/dev/test split for
each of the corpora. For Beetle, we held out all an-
swers to two random questions for each module to
form the unseen questions scenario, and five random
answers from each remaining question to form the
unseen answers scenario. For SciEntsBank, we held
out module LF for dev and module VB for test to
form the unseen topics scenario, because they have
an average number of questions (11). The LF module
turned out to be far more skewed towards incorrect
answers (76.8%) than the training set on average
(57.5%). While this skewedness needs to be taken
into account for the interpretation of the development
results, it did not have a negative effect on our fi-
nal test results. Furthermore, analogous to Beetle,
we held out all answers to one random question for
each remaining module for unseen-questions, and
two random answers from each remaining question
for unseen answers.

The dev set was used for tuning and design deci-
sions concerning which individual systems to com-
bine in the stacked classifier, while we envisaged
the test set to be used as a final checkpoint before
submission.

The accuracy results for all sub-systems on the
development set are reported in detail in Table 3.
The majority baseline reflects the accuracy a system
would achieve by always labelling any student answer
as “incorrect”, hence it is equivalent to the percentage
of incorrect answers in the data. The lexical baseline
is the performance of the system provided by the
challenge organizers.

Beetle SciEntsBank
System d-uA d-uQ d-uA d-uQ d-uT
Maj. Baseline 57.14% 59.28% 54.30% 60.70% 76.84%
Lex. Baseline 75.43% 71.10% 63.44% 66.05% 59.54%
CoMiC 76.57% 71.52% 67.20% 70.23% 64.63%
Bag of Words 85.14% 62.03% 80.65% 54.65% 73.79%
∼ of Lemmas 85.71% 58.02% 80.11% 52.33% 74.55%
∼ of Soundex 86.86% 60.76% 81.18% 53.95% 72.77%
CoSeC 76.00% 74.89% 64.52% 73.49% 68.96%
CoMeT 88.00% 75.95% 81.18% 66.74% 68.45%

Table 3: Development set: accuracy for 2-way task (uA:
unseen answers, uQ: unseen questions, uT: unseen topics)

The systems presented in section 2 performed as
expected: The Bag-of-Soundex system achieved its
best scores on the unseen answers where overlap of
vocabulary was most likely, outperforming CoMiC
and CoSeC with accuracy values as high as 86.86%.
For Beetle unseen answers, the meta-classifier op-
erated as expected and improved the overall results
to 88.86%. For SciEntsBank unseen answers, it re-
mained stable at 81.18%.

As expected, CoMiC and CoSeC with their align-
ment not depending on vocabulary outperformed the
bag approaches in the other scenarios, in which the
question or even the domain were not known during
training. However, both alignment-based systems
failed on SciEntsBank’s unseen topics in comparison
to the rather high majority baseline.

3.2 Official Test Set

For our submission to the SemEval 2013 Task 7 chal-
lenge, we trained our sub-systems on the entire of-
ficial training set. The overall performance of the
CoMeT system on all sub-tasks is shown in Table 4.

Beetle SciEntsBank
uA uQ uA uQ uT

Lexical 2-way 79.7% 74.0% 66.1% 67.4% 67.6%
Overlap 3-way 59.5% 51.2% 55.6% 54.0% 57.7%
Baseline 5-way 51.9% 48.0% 43.7% 41.3% 41.5%
Best 2-way 84.5% 74.1% 77.6% 74.5% 71.1%
System 3-way 73.1% 59.6% 72.0% 66.3% 63.7%

5-way 71.5% 62.1% 64.3% 53.2% 51.2%
CoMeT 2-way 83.8% 70.2% 77.4% 60.3% 67.6%

3-way 73.1% 51.8% 71.3% 54.6% 57.9%
5-way 68.8% 48.8% 60.0% 43.7% 42.1%

Table 4: Official test set: overall accuracy of CoMeT (uA:
unseen answers, uQ: unseen questions, uT: unseen topics)

While CoMeT won the Beetle 3-way task in unseen
answers, our main focus is on the 2-way task. The
results for the 2-way task of our sub-systems on the
official test set are shown in Table 5.
The first row of the table reports the results of the
winning system of the challenge; the two baselines
are computed as before. In general, the accuracy val-
ues of CoMeT exhibit a drop of around 5% from
our development set to the official test set. The
meta-classifier was unable to benefit from the dif-
ferent sub-systems except for the unseen answers in
SciEntsBank that slightly outperformed the best bag
approach.
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Beetle SciEntsBank
System uA uQ uA uQ uT
Best 84.50% 74.10% 77.60% 74.50% 71.10%
Maj. Baseline 59.91% 58.00% 56.85% 58.94% 57.98%
Lex. Baseline 79.70% 74.00% 66.10% 67.40% 67.60%
CoMiC 76.08% 70.57% 67.96% 66.30% 67.97%
Bag of Words 83.14% 67.52% 75.93% 57.84% 59.84%
∼ of Lemmas 83.60% 67.16% 76.67% 58.25% 58.81%
∼ of Soundex 84.05% 68.38% 75.93% 57.57% 58.02%
CoSeC 62.19% 63.61% 67.22% 58.94% 62.36%
CoMeT 83.83% 70.21% 77.41% 60.30% 67.62%
CoSeC* 75.40% 70.82% 72.04% 64.94% 70.60%
CoMeT* 84.51% 71.43% 79.26% 65.35% 69.53%

Table 5: Official test set: accuracy for 2-way task (uA:
unseen answers, uQ: unseen questions, uT: unseen topics)

Even though it does not live up to the standards of
the bag approaches in their area of expertise (unseen
answers), the CoMiC systems outperforms the bags
on the unseen question and unseen topic sub-sets as
expected. Note that on unseen topics, CoMiC still
scores 10% above the majority baseline on the official
test set, in contrast to the drop of more than 10%
below the baseline for the corresponding (skewed)
development set.

However, the results for CoSeC are around 10%
lower on the unseen questions, and almost 7% lower
on the unseen topics of the test data than on the de-
velopment set, a drop that the overall meta-classifier
(CoMeT) was unable to catch. Investigating this drop
in comparison to our development set, we checked
the correctness of the training script and discovered a
bug in the CoSeC setup that led to the parameters and
the thresholds being computed on the same partition
of the training set, i.e., the system overfitted to this
partition, while the remainder of the training set was
not used for training. Correcting the bug resulted in
CoSeC accuracy values broadly comparable to those
of CoMiC, as was the case on the development set.
This confirms that the reason for the drop in the sub-
mission was not a flaw in the CoSeC system as such,
but a programming bug in a peripheral component.

With this bug fixed, CoSeC performs 5%–13%
better on the test set, and the meta-classifier would
have been able to benefit from the regularly perform-
ing CoSeC, improving in performance up to 5%.
These two amended systems are listed as CoSeC*
and CoMeT* in Table 5. For the two unseen an-
swers scenarios, CoMeT* would outperform the best
scoring systems of the challenge in the 2-way task.

3.3 Discussion

In this section, we try to identify some general ten-
dencies from studying the results. Firstly, we can
observe that due to the strong performance of the bag
models, unseen answers scores are generally higher
than their counterparts. It seems that if questions
have been seen before, surface-oriented methods out-
perform more abstract approaches. However, the
picture is different for unseen domains and unseen
questions. We are generally puzzled by the fact that
many systems in the shared task scored worse on
unseen questions, where in-domain training data is
available, than on unseen domains, where this is not
the case. The CoMeT classifier suffered especially in
unseen questions of SciEntsBank, scoring lower than
our best system would have on its own (see Table 5);
even after the CoSeC bug was fixed, CoMeT* still
scored worse there than CoMiC on its own.

In general, we likely would have benefited from
domain adaptation, as described in, e.g., Daume III
(2007). Consider that the input for the meta-classifier
always consists of the same set of features produced
via standard cross-validation, regardless of the test
scenario. Instead, the trained model should have dif-
ferent feature weights depending on what the model
will be tested on.

4 Conclusion and Outlook

We presented our approach to Task 7 of SemEval
2013, consisting of a combination of surface-oriented
bag models and the increasingly abstract alignment-
based systems CoMiC and CoSeC. Predictions of
all systems were combined using a meta classifier in
order to produce the final result for CoMeT.

The results presented show that our approach per-
forms competitively, especially in the unseen answers
test scenarios, where we obtained the best result of all
participants in the 3-way task with the Beetle corpus
(73.1% accuracy). As expected, the unseen topics
scenario proved to be more challenging, with results
at 67.6% accuracy in the 2-way task for CoMeT. Sur-
prisingly, CoMeT performed consistently worse in
the unseen questions scenarios, which we attribute
to rather low CoSeC results there and to the way the
meta classifier is trained, which currently does not
take into account the test scenario it is trained for
and instead uses the module and question IDs as fea-
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tures, which turned out not to be an effective domain
adaptation approach.

In our future research, work on CoMiC will con-
centrate on integrating two aspects of the context:
First, we are planning to develop an automatic ap-
proach to focus identification in order to pinpoint the
essential parts of the student answers. Second, for
data sets where a reading text is available, we will
try to automatically determine the location of the rel-
evant source information given the question, which
can then be used as alternative or additional reference
material for answer evaluation.

The CoMiC system currently also relies on the
Traditional Marriage Algorithm to select the optimal
global alignment between student answer and refer-
ence answer. We plan to replace this algorithm by
a machine learning component that can handle this
selection in a data-driven way.

For CoSeC, we plan to develop an extension that
allows for n-to-m mappings, hence improving the
alignment performance for multi-word units such as,
e.g., phrasal verb constructions.

The bag approaches could be augmented by explor-
ing additional levels of abstractions, e.g., semantic
equivalence classes constructed via WordNet lookup.

In sum, while we will also plan to explore opti-
mizations to the training setup of the meta-classifier
(e.g., domain adaptation along the lines of Daume
III, 2007), the main focus of our further research lies
in improving the individual sub-systems, which then
again are expected to push the overall performance
of the CoMeT meta-classifier system.
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Abstract 

The domain of DDI identification is 

constantly showing a rise of interest from 

scientific community since it represents a 

decrease of time and healthcare cost. In this 

paper we purpose a new approach based on 

shallow linguistic kernel methods to identify 

DDIs in biomedical manuscripts. The 

approach outlines a first step in the usage of 

semantic information for DDI identification. 

The system obtained an F1 measure of 0.534. 

1 Introduction 

In recent years a new discipline appeared in the 

biomedical domain for processing pharmacological 

manuscripts related to drug substances. This 

discipline is the so called Pharmacovigilance, and 

takes care of the management and control of Drug-

Drug interactions (DDI) among other faculties. A 

DDI occurs when one drug influences the effect 

level or activity of another drug. 

Some events such as BioCreative
1
 and BioNLP

2
 

establish a benchmark of comparison in the field of 

natural language processing applied to biomedical 

domain. This is the case of Semeval 2013: 

Extraction of Drug-Drug Interactions from 

BioMedical Texts
3
, where our system has been 

evaluated.  

The field of DDI extraction from biomedical 

text has been faced from different perspectives 

such as rule-based approaches, SVM approaches 

and kernel-methods approaches, among others.  

                                                           
1 http://www.biocreative.org/ 
2 http://2013.bionlp-st.org/ 
3 http://www.cs.york.ac.uk/semeval-2013/task9/ 

Segura-Bedmar et al. (2010) proposed an 

approach to extract DDI from biomedical texts 

based on Shallow Linguistic (SL) Kernel (Giuliano 

et al., 2006) methods obtaining an F1 measure of 

60,01%. The system was evaluated over a 

DrugDDI dataset created in 2010 that contains 579 

biomedical documents collected from the 

pharmacological database DrugBank
4
. The dataset 

contains a total of 3,160 DDIs. 

Recently, the DDIExtraction2011 task
5
 

compared the latest advances in Information 

Extraction techniques applied to the DDI 

identification. The event provided a benchmark 

forum of 10 different approaches.  The evaluation 

of the systems was made over the DrugDDI 

dataset. We now describe the most relevant works.  

Thomas et al. (2011) developed a system by 

combining a preprocessing phase based on 

Charniak-Lease (Lease, Charniak, 2005) and 

Stanford (Marneffe et al., 2006) parsers, with a 

classification phase based on SL kernel (Giuliano 

et al., 2006), k-Band Shortest Path Spectrum 

(kBSPS) kernel (Airola et al., 2008), All Path 

Graphic (APG) kernel (Tikk et al., 2010) and case-

based reasoning (CBR) (Aamodt, Plaza, 1994) 

techniques. The system obtained a F1 measure of 

65.7%.  

Chowdhury et al. (2011) presented a system 

combining a preprocessing phase based on 

Stanford parser and SPECIALIST (Browne, 2000) 

lexicon tool, with a classification phase based on 

Featured-Based kernel such as SL kernel and Tree-

Based kernel such as Dependency tree (DT) kernel 

(Culotta and Sorensen, 2004) and Phrase Structure 

Tree (PST) kernel (Moschitti, 2004). The system 

achieved an F1 of 63.7%. 

                                                           
4 http://www.drugbank.ca/ 
5 http://labda.inf.uc3m.es/DDIExtraction2011/ 
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Björne et al. (2011) proposed a different 

approach by combining a preprocessing phase 

based on a collection of features and n-grams; with 

a classification based on support vector machine 

(SVM) (Vapnik, 1995). The SVM methods 

perform classification tasks by building 

hyperplanes in a multidimensional space that 

divide cases of different classes (binary 

classification). The system yielded an F1 measure 

of 62.99%. 

Kernel methods seem to be the best choice for 

extracting DDI since they obtained the highest 

results. Thus, we decided to use kernel methods to 

identify and classify DDI in our system. 

Furthermore, we hypothesize that using semantic 

features of pharmacological substances, can 

provide valuable knowledge in the classification 

phase. Therefore, we decide to integrate semantic 

information in the classification process of kernel 

methods. 

In this paper we present a kernel-based approach 

to identify and classify DDIs in biomedical text by 

using SL kernels. In section 2 we describe the 

system used for identifying DDIs. Section 3 

present the results obtained by the system and a 

little comparison with other approaches. In section 

4 we expose some conclusions obtained and ideas 

for future work.   

 

2 Description of the systems  

The system (see figure 1) is divided in three 

phases: (i) in the first phase the system makes a 

preprocessing of the documents in order to extract 

grammatical and semantic information about each 

word of the text. (ii) The second phase makes the 

classification of whether a pair of drugs is a DDI or 

not by using SL kernel methods. (iii) In the third 

phase, the system classifies all DDIs into the 

purpose type (advice, effect, mechanism, int) using 

SL kernel methods. 

The corpus is processed sentence by sentence, 

using the identification tag provided for each 

sentence. 

2.1 Preprocessing 

In this phase we make a preprocessing of the 

documents to obtain linguistic and semantic 

information about the words and entities contained 

in the text. Since linguistic and semantic 

Figure 1: Architecture of the system. 
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approaches are based on different types of 

information, our participation in the task will be 

separated in two runs: first run will be based on 

linguistic information and second run will be based 

on semantic information. 

Firstly, we process each sentence and obtain 

linguistic information about part-of-speech  (PoS) 

tagging and lemmatization for each word contained 

in the text. To do so we use the Stanford parser
6
 by 

using the GATE analyzer
7
. The result of this step is 

a list of words and PoS tags, but entity concepts 

are missing. Therefore, we make a multiword 

entities processing to keep the words related to the 

same concept together. For example, the entity 

beta-adrenergic receptor blocker is processed by 

Stanford parser as three different annotations 

nodes: beta-adrenergic as type JJ; receptor as type 

NN; and blocker as type NNS. Thus we unify the 

three words into an only one concept beta-

adrenergic_receptor_blocker as type NNP. This 

information corresponds to the linguistic approach 

of our participation in the task (see figure 2b). 

On the other hand, we process the text and 

collect semantic information about Anatomical 

Therapeutic Chemical (ATC) identification for 

each drug found in the text. The ATC code is a 

widely used classification system provided from 

WHO collaborating centre for Drug statistics 

methodology. The classification divides drugs in 

groups at five different levels according to the 

organ or system on which they act, and their 

                                                           
6 http://nlp.stanford.edu/software/lex-parser.shtml. 
7 http://gate.ac.uk. 

therapeutic, pharmacological and chemical 

properties. The system obtains the ATC code of 

the drugs by searching the drug entities in the ATC 

Index resource
8
. Then, we associate the ATC code 

results with the drug entity. This information 

corresponds to the semantic approach of our 

participation in the task. 

2.2 Identification of DDI 

In this phase the system will predict whether a 

pair of drugs is a DDI or not by the use of Shallow 

linguistic Kernel methods. To do so we use the 

jSRE tool
9
.  

In one hand, the linguistic approach is based on 

shallow linguistic information such as PoS tagging 

and lemmatization. Therefore, the information 

introduced into the SL kernel model consists of: 

token_identifier, ATC_code, token_lemmatization, 

POS_tag, entity_type and entity_label; as show in 

figure 2b.   

On the other hand, the semantic approach uses 

the semantic information of drugs (ATC codes) to 

increase the available knowledge in the kernel 

classification process. To do so, we trained a SL 

kernel model by replacing the token value with the 

ATC code value. In case of a non-drug token, we 

replace the token value with 0. This way the 

information introduced to the SL kernel model 

consists of: token_identifier, ATC_code, 

token_lemmatization, POS_tag, entity_type and 

entity_label; as show in figure 2c. 

                                                           
8 http://www.whocc.no/atc_ddd_index/ 
9 http://hlt.fbk.eu/en/technology/jSRE 

Figure 2a: Example of separated multiword entity. 

 

Figure 2b: Example of linguistic input token into the SL kernel. 

 

Figure 2c: Example of semantic input token into the SL kernel. 
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2.3 Type classification of DDI 

In the third phase, the system makes a 

classification of DDIs to determine the type of the 

interaction. To do so, the system face the 

classification task as a machine learning task, and 

use SL kernel methods. Hence, we train one SL 

kernel model for each possible values of DDI type: 

advice, effect, mechanism, int. To train the kernel 

models we separate by type each DDI of the 

training dataset.  The result is four groups of 

training dataset, where the correspondent type 

class value are set to 1, and 0 otherwise. Once we 

trained the kernel models, each DDI go through 

four different prediction processes. The conflictive 

cases are solved by frequency of appearance. This 

step is the same for both linguistic and semantic 

approach. Finally, we collect the results and 

generate the task output format. 
 

3 Results  

The best result in DDI detection and classification 

(macro-average score) were obtained by the 

linguistic approach (run 2), achieving a F1 measure 

of 0.534. 

  

 
 

 

Focusing on DDI detection results, we can see 

that linguistic approach also overcome the 

semantic approach, obtaining a F1 score of 0.676 

and 0.537 respectively. This can be explained since 

the SL kernel optimizes linguistic information 

rather than semantic information. Therefore, ATC 

code format is not appropriate for SL kernel. 

However, the score obtained by the linguistic 

approach using SL kernel with multiword entities 

processing seems to be higher than the average 

results obtained in DDIExtraction 2011 task. This 

may be due to the great improvement that 

DrugDDI corpus suffered since the last 

competition, by enriching the information of each 

entity. 

Finally, we have a word to notice the decrease 

of the results from DDI detection evaluation to 

DDI detection and classification evaluation. This 

could be due to the complexity of the DDI type 

classification task. However, the final result of 

macro-average score shows huge margin of 

improvement.  
 

4 Conclusion and future work 

In this paper we present a kernel based approach to 

identify and classify DDIs by using SL kernel. The 

result obtained by the system achieves 0.534 F1 

measure. From linguistic approach and semantic 

approach purposed for the participation in the task, 

the linguistic approach shows better results. 

However, we can not discard semantic information 

since we may have not used the appropriate 

semantic information for a shallow linguistic 

kernel.  

Thus, a possible future work could be the 

research in semantic information processing to 

help in the classification process. Therefore, 

another future work could be the integration of 

pharmacological ontologies in the classification 

process since they increase the knowledge 

available for the classification task.  
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Abstract 

Drug name entity recognition focuses on 

identifying concepts appearing in the text that 

correspond to a chemical substance used in 

pharmacology for treatment, cure, prevention 

or diagnosis of diseases. This paper describes 

a system based on ontologies for identifying 

the chemical substances in biomedical text. 

The system achieves an F-1 measure of 0.529 

in the task.  

1 Introduction 

Named entity recognition (NER) involves 

processing text and identifying certain occurrences 

of words belonging to particular categories of 

named entities. In recent years, much attention has 

been paid to the problem of recognizing gene and 

protein mentions in biomedical abstracts for 

different purposes such as information extraction, 

relation extraction or information retrieval. In this 

case we focus on the pharmacological domain. 

Furthermore, some initiatives have promoted the 

evaluation of different systems of named entity 

recognition and relation extraction in the 

pharmacological domain. This is the case of 

Semeval 2013: Recognition and classification of 

drug names task
1
 (Segura-Bedmar et al., 2013), 

where the system presented in this communication 

has been evaluated. 

                                                           
1 http://www.cs.york.ac.uk/semeval-

2013/task9/data/uploads/task-9.1-drug-ner.pdf 

  Following the annotation guidelines of the task, a 

drug is a substance that is used in the treatment, 

cure, prevention or diagnosis of disease. Moreover, 

each drug name entity can be classified in four 

different types: drug, brand, drug_n and group. 

Our system uses biomedical ontologies and 

external resources (containing biomedical 

information) as input to determine whether we are 

treating a drug name entity or not.  

  The resource integration seems to represent an 

improvement since the knowledge available for 

identifying entities is higher. Some biomedical 

resources such as Drugbank
2
, Kegg

3
, Pubchem

4
 or 

Drugs.com
5
 focus on providing a compound of 

information collected from different sources.  

  Section 2 exposes some related work in the field 

of NER. In section 3 we describe the system used 

for identifying drug name entities. Section 4 

presents the results obtained by the system and a 

little comparison with other approaches. In section 

5 we outline some conclusions obtained and ideas 

for future work.  

 

2 Related work 

The field of NER has been very studied in recent 

years, and has been faced in many approaches. 

Since text structures are frequently used to 

characterize documents in text mining algorithms, 

there only stand out those based in terms and 

                                                           
2 http://www.drugbank.ca/ 
3 http://www.genome.jp/kegg/ 
4 http://pubchem.ncbi.nlm.nih.gov/ 
5 http://www.drugs.com/ 
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Figure 1: Architecture of the system. 

concepts. This is due to that concept-based systems 

represent the semantic content with a smaller 

number of characteristics, opposite to the term-

based systems based on characters or words. 

Concept-based and term-based representations 

mainly differ in the implicit or explicit appearance, 

respectively, of the words identified in the 

document. This fact implies that concept-based 

extraction techniques are more complex, requiring 

the use of more advanced computational linguistics 

techniques and a greater dependence on knowledge 

domain. 

  One reference system that focuses on concept 

recognition in the biomedical domain is MetaMap 

(Aronson, 2001). MetaMap is a program developed 

by the National Library of Medicine (NLM) that 

uses the UMLS Metathesaurus for annotating the 

concepts in a given text. The program is designed 

to obtain the concept that best fits a particular 

phrase, finding its origin in an attempt to improve 

the retrieval of biomedical literature indexed in 

MEDLINE/PubMed. MetaMap is a program with 

many strengths, such as the power of linguistic 

analysis, the high performance setting possibilities 

and the variety of processing algorithms included. 

On the other hand, MetaMap shows some 

weaknesses such as the algorithms developing 

focused on English grammar texts, or high 

processing time lapse due to the complexity of the 

algorithms (not suitable for real-time systems). 

Metamap analysis time periods goes from less than 

a minute for short simple text to long hours for 

complex sentences. 

  Gimli (Campos et al., 2013) is an open source and 

high-performance solution for biomedical named 

entity recognition on scientific documents, 

supporting the automatic recognition of gene, 

proteins, DNA, RNA, and cell domain names. This 

tool implements a machine learning approach 

based on conditional random fields (CRF).  

  On the other hand, there exists a more recent 

concept extraction techniques based on ontologies. 

Ontologies link concept labels to their 

interpretations, ie specifications of their meanings 

including concept definitions and relations to other 

concepts. Apart from relations such as isa and 

part-of, generally present in almost any domain, 

ontologies also model domain-specific relations, eg 

clinically-associated-with and has-manifestation 

are specific associations for the biomedical 

domain. Therefore, ontologies reflect the structure 

of the domain and constrain the potential 

interpretations of terms. Thus, ontologies can 

provide rich concept knowledge of domain specific 

name entities. This is the case of Open Biomedical 

Annotator (OBA) (Jonquet et al., 2009), an 

impressive annotation system using ontologies, 

which provides online access for users and for 

other systems as a Web service. There are other 

examples of utilities for extracting concepts using 

ontologies (e.g. Terminizer (Hancock et al., 2009), 

Whatizit (Rebholz-Schuhmann et al., 2008) or 

Reflect (Pafilis et al., 2009)). However, the 

magnitude of ontologies and resources integrated 

under the OBA Web service is difficult to reach by 

other systems (Whetzel et al., 2011): in three years 
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(from 2008 to 2011), they have increased from 72 

to 260 biomedical ontologies. 

  The concept recognition tool used by the OBA 

system -in order to find ontology concepts 

matching the terms extracted from texts- is called 

Mgrep. Although Mgrep is not a free tool, some 

results are presented in (Jonquet et al., 2008). A 

comparison between Mgrep and MetaMap can also 

be found in (Shah et al., 2009), where they make 

an evaluation over a biological and disease terms 

dictionaries with precision (0.87 to 0.71 

respectively) and recall (1548 to 1730 recovered 

terms respectively) metrics. Thus, we decided to 

use Mgrep for identifying drug name entities in the 

system. 
 

3 Description of the system  

The system (see figure 1) is divided in two phases: 

(i) in one hand, the system must scan drug name 

entities without specifying any further information. 

This is the so-called entity identification process; 

(ii) on the other hand, the system classifies by 

using a rule-based process the type of the entities 

discovered previously. This is the so-called entity 

classification process. 

The corpus is processed sentence by sentence, 

using the identification tag provided for each 

sentence.  
 

 

 

 

3.1 Entity identification process  

In this phase we analyze each sentence of the 

corpus with Mgrep analyzer. This tool allows us to 

set the ontologies we want to use in the analysis. 

All additional ontologies used in the analysis 

increases the computational complexity required.  
 

The ontologies used in this first drug name 

identification phase belong to UMLS collection, 

and more specifically to the pharmacological 

domain: 

 Master Drug Data Base6
 (MDDB): National 

Drug Data File ontology provides a codified 

drug dictionary, drug vocabulary, and drug 

pricing for prescription drugs and medication-

based over-the-counter products in the United 

States. It supports the ever-changing world of 

drug information in healthcare. 

 National Drug File
7
 (NDF): this ontology 

contains information about a comprehensive 

set of drug database elements and clinical 

information approved by the U.S. Food and 

Drug Administration (FDA), and dietary 

supplements information. 

 National Drug Data File (NDDF): this is an 

extension of the NDF ontology that includes 

chemical ingredients, clinical kinetics, 

diseases, dose forms, pharmaceutical 

preparations, physiological effects and 

                                                           
6 http://www.medispan.com/medi-span-electronic-drug-

file.aspx 
7 http://www.fdbhealth.com/fdb-medknowledge/ 

Figure 2a: Result of analysis with the Mgrep analyzer. 

Figure 2b: Example of multiword drug entity divided. 
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therapeutic categories. 

 Ontology for Drug Discovery Investigations: 

this ontology contains information about 

description of drug discovery investigations 

from OBO
8
 relation ontology. 

 MESH Thesaurus
9
: this ontology contains sets 

of terms naming descriptors in a hierarchical 

structure. There exist 26,853 descriptors and 

over 213,000 entry terms in 2013 MeSH. 

 

For each drug name entity identified the Mgrep 

analyzer provides information about the ontology 

concept recognized, term information, snippet of 

original text (see figure 2a). After identifying drug 

name entities we noticed some errors in the 

recognized concepts, thus we held a post-

processing of the analysis results. Some entities are 

recognized by several ontologies at the same time, 

so it is necessary to filter repeated instances. 

Biomedical complex name entities are not 

identified. To solve this, we join compound name 

entities by following the charoffset of the sentence. 

The system only links two or more drug entities 

that were next to each other, without punctuation 

between them. For example, potassium chloride 

(see figure 2b) is recognized separately in 

potassium and chloride, so we group it as 

potassium chloride concept.  

As a result of this process we obtain a list of 

clear drug name entities that conforms our run 1 

approach in the task. However, we elaborate a 

second filter based in a gazetteer containing terms 

with no useful meaning for our drug name entity 

identification purpose. This gazetteer contains 

terms such as agent, compound and blocker. The 

results of this second filter conforms our run 2 

approach in the task. As a result of entity 

identification phase we obtain a list of drug name 

entities, but they are not identified as any type yet.  

3.2 Entity classification process  

In this phase we classify the list of pharmaceutical 

terms obtained from analysis phase. To do so, we 

elaborate a rule-based system following the 

annotation methods described in the task 

guidelines. This annotation method was based in 

biomedical resources, such as DrugBank, for 

determining aspects as if the drug entity is 
                                                           
8 http://www.obofoundry.org/ro/ 
9 http://www.nlm.nih.gov/pubs/factsheets/mesh.html 

approved for human use, or if the drug entity is 

registered as a brand name. We can organize the 

general rules of the classification process by 

resources used: 

 DrugBank: These rules search the drug entity 

in DrugBank resource and obtain several 

information: 

o Drug information: information about 

approval state of the drug (approved, 

experimental, illicit). A rule classifies 

a drug entity as drug_n when 

experimental or illicit state is found in 

a drug, otherwise the drug entity is 

catalogued as drug type. 

o Synonym list: list of possible 

registered names of the entity. A 

recursive process searches each 

synonym in DrugBank (obviating the 

synonym list this time), and applies the 

rules as if original drug entity were 

treated. The result of the recursive 

process affect to the original drug 

entity. 

o Brand name list: list of registered 

commercial brand names of the entity. 

If a drug name entity is found in the 

brand name list, then it is catalogued 

as a brand type. 

o Categories: information about general 

category of drug. If the drug is found 

as a category, then it is classified as 

group type. 

 Pubchem: These rules search the drug entity 

and obtain information of drug identification 

and compound information and IUPAC name. 

 ATC Index10
: These rules look for the drug 

entity in ATC Index resource and determine 

whether the entity is drug or group depending 

on the level of ATC code found.  

 Kegg: These rules search the drug entity in this 

resource and obtain information of drug 

categories. If the drug is found as a category, 

then it is classified as group type. 

 MeSH11
:  These rules search information about 

MeSH tree categories classification of the drug 

entity. If the drug is found as a category, then 

it is classified as group type. Another rule 

makes a naïve processing of the MeSH 

                                                           
10 http://www.whocc.no/atc_ddd_index/ 
11 http://www.ncbi.nlm.nih.gov/mesh/67055162 
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description text to evaluate if the drug entity 

were used in humans. If this information is 

found in the text, then the drug entity is 

classified as a drug type. 
  

The described rules are representative examples 

of the complete rule-based system. There were 

assigned priorities to the rules, since some rules are 

more certain to describe a drug type than others. 

Thus, if a drug entity is found to be approved for 

using in humans after processing the MeSH text, 

but when looking the DrugBank state is found as 

illicit state, then the drug is classified as drug_n 

type since DrugBank offers a certain state of the 

drug, instead of a natural text description that may 

be classified as a false positive. Depending on the 

values collected on these biomedical resources the 

rule-based system determines whether the type of 

an entity is a drug, group, brand or drug_n. 
 

 

4 Results 

The best result in entity identification (exact 

matching) obtained by the system correspond to 

run 2, achieving a F1 measure of 0.609. On the 

other hand, the best results achieved in strict 

matching (boundary and type evaluation) 

correspond to run 2 again, with 0.529 F1 score. 
 

 
 

 

 

These results contrast with the result obtained by 

run 1, achieving a F1 measure of 0.528 and 0.458 

in entity identification and strict matching 

evaluation respectively. Thus we can quantify the 

advantage of using a filter based on gazetteer in an 

average increment of 0.079 F1 measure. 

We have noticed that the higher results are 

obtained in partial matching evaluation because of 

the relaxed conditions of the charoffset. This seems 

reasonable since complex multiword entity is hard 

to parse and define an exact charoffset. 

On the other hand, we also noticed that 

evaluating the classification of the type decrement 

the best results obtained by the system from 0.609 

to 0.529 of F1 score. This indicates that there is 

still a lot of improvement work in the rule-based 

system for type classification. A little error 

analysis was done in a set of 10 documents of the 

training dataset. The results show errors in 

conflictive entities that show multiples categories 

in DrugBank resource. Thus, for example cocaine 

drug entity contains tags of illicit and approved in 

DrugBank database, so the system classify this 

entity as drug_n instead of drug.  

 

5 Conclusions and future work 

In this paper we present a system for drug name 

entity recognition based on ontologies as 

participation for “Semeval 2013: Recognition and 

classification of drug names” task. The system is 

based on integration of biomedical resources for 

identification and classification of pharmacological 

entities. The best result of the system obtained an 

F1 measure of 0.529.  

The usage of ontologies in named entity 

recognition task seems to be a good choice since 

we can select specific ontologies. A possible future 

work includes an improvement of rule-based 

system, including a bigger collection of biomedical 

resources.  The entity classification could increase 

the results by creating an hybrid approach between 

rule-based methods and machine learning 

techniques. On the other hand, in the entities 

identification task, the system could include other 

biomedical text analyzers and establish a vote 

system. This would improve whether we consider 

an entity or not. Finally, in error analysis were 

noticed problems related to rule-based module. 

Therefore, an insightful improve could pass 

through making a context analysis in order to clear 

the ambiguity surrounding the drug entity.  
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Abstract

This work describes the participation of the
WBI-DDI team on the SemEval 2013 – Task
9.2 DDI extraction challenge. The task con-
sisted of extracting interactions between pairs
of drugs from two collections of documents
(DrugBank and MEDLINE) and their clas-
sification into four subtypes: advise, effect,
mechanism, and int. We developed a two-step
approach in which pairs are initially extracted
using ensembles of up to five different clas-
sifiers and then relabeled to one of the four
categories. Our approach achieved the sec-
ond rank in the DDI competition. For interac-
tion detection we achieved F1 measures rang-
ing from 73 % to almost 76 % depending on
the run. These results are on par or even higher
than the performance estimation on the train-
ing dataset. When considering the four inter-
action subtypes we achieved an F1 measure of
60.9 %.

1 Introduction

A drug-drug interaction (DDI) can be described as
interplay between drugs taken during joint adminis-
tration. DDIs usually lead to an increase or decrease
in drug effects when compared to isolated treatment.
For instance, sildenafil (Viagra) in combination with
nitrates can cause a potentially live-threatening de-
crease in blood pressure (Cheitlin et al., 1999). It is
therefore crucial to consider potential DDI effects
when co-administering drugs to patients. As the
level of medication generally is raising all over the
world, the potential risk of unwanted side effects,

such as DDIs, is constantly increasing (Haider et al.,
2007).

Only a fraction of knowledge about DDIs is
contained in specialized databases such as Drug-
Bank (Knox et al., 2011). These structured knowl-
edge bases are often the primary resource of infor-
mation for researchers. However, the majority of
new DDI findings are still initially reported in scien-
tific publications, which results in the situation that
structured knowledge bases lag behind recently pub-
lished research results. Thus, there is an urgent need
for researchers and database curators to cope with
the fast growth of biomedical literature (Hunter and
Cohen, 2006).

The SemEval 2013 – Task 9.2 (Extraction of
Drug-Drug Interactions from BioMedical Texts)
is a competitive evaluation of methods for ex-
tracting mentions of drug-drug interactions from
texts (Segura-Bedmar et al., 2013). For training,
the organizers provide a corpus annotated with drug-
names and interactions between them. This corpus
is composed of 572 articles collected from Drug-
Bank and 142 PubMed abstracts. Interactions are
binary (always between two drugs) and undirected,
as target and agent roles are not annotated. Fur-
thermore, the two interacting drugs are always men-
tioned within the same sentence. In contrast to
the previous DDI-challenge 2011 (Segura-Bedmar
et al., 2011), four different DDI-subtypes (advise,
effect, mechanism, and int) have been introduced.
Details about the four subclasses can be found in the
task’s annotation guideline.
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Figure 1: Workflow developed for the SemEval 2013
Task 9.2 challenge.

2 Methods

Binary relationship extraction is often tackled as a
pair-wise classification problem, where all

(n
2

)
co-

occurring entities in a sentence are classified as in-
teracting or not. To account for the four different
subtypes of DDIs, the problem definition could be
translated into a multiclass classification problem
between all co-occurring entities.

Contrary to that, we propose a two step strat-
egy: First, we detect general drug-drug interac-
tions regardless of subtype using a multitude of dif-
ferent machine-learning methods. The output of
these methods is aggregated using a majority vot-
ing approach. Second, detected interactions are re-
classified into one of the four possible DDI cate-
gories. The latter is referred to as DDI relabeling
throughout this paper. A detailed view on the pro-
posed workflow is depicted in Figure 1.

2.1 Preprocessing

Sentences have been parsed using Charniak-Johnson
PCFG reranking-parser (Charniak and Johnson,
2005) with a self-trained re-ranking model aug-
mented for biomedical texts (McClosky, 2010). Re-
sulting constituent parse trees have been converted
into dependency graphs using the Stanford con-
verter (De Marneffe et al., 2006). In the last step, we
created an augmented XML using the open source

Corpus Sentences
Pairs

Positive Negative Total

DrugBank 5,675 3,788 22,217 26,005
MEDLINE 1,301 232 1,555 1,787

Table 1: Basic statistics of the DDI training corpus shown
for DrugBank and MEDLINE separately.

framework from Tikk et al. (2010). This XML file
encompasses tokens with respective part-of-speech
tags, constituent parse tree, and dependency parse
tree information. This format has been subsequently
transformed into a related XML format1 used by two
of the utilized classifiers. Properties of the training
corpus are shown for DrugBank and MEDLINE in
Table 1.

2.2 Machine Learning Methods

Tikk et al. (2010) systematically analyzed nine dif-
ferent machine learning approaches for the extrac-
tion of undirected binary protein-protein interac-
tions. This framework has been successfully applied
to other domains, such as the I2B2 relation extrac-
tion challenge (Solt et al., 2010), the previous DDI
extraction challenge (Thomas et al., 2011), and to
the extraction of neuroanatomical connectivity state-
ments (French et al., 2012).

Drug entities are blinded by replacing the entity
name with a generic string to ensure the generality
of the approach. Without entity blinding drug names
are incorporated as features, which clearly affects
generalization capabilities of a classifier on unseen
entity mentions (Pyysalo et al., 2008).

We decided to use the following methods
provided by the framework: All-paths graph
(APG) (Airola et al., 2008), shallow lin-
guistic (SL) (Giuliano et al., 2006), subtree
(ST) (Vishwanathan and Smola, 2002), subset tree
(SST) (Collins and Duffy, 2001), and spectrum tree
(SpT) (Kuboyama et al., 2007) method. The SL
method uses only shallow linguistic features, i.e.,
token, stem, part-of-speech tag and morphologic
properties of the surrounding words. APG builds
a classifier using surface features and a weighting

1https://github.com/jbjorne/TEES/wiki/
Interaction-XML
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scheme for dependency parse tree features. The
remaining three classifier (ST, SST, and SpT) build
kernel functions based on different subtree repre-
sentations on the constituent parse tree. To calculate
the constituent–tree kernels ST and SST we used
the SVM-LIGHT-TK toolkit (Moschitti, 2006).
Before applying these methods, constituent parse
trees have been reduced to the shortest-enclosed
parse following the recommendations from Zhang
et al. (2006). For a more detailed description
of the different methods we refer to the original
publications.

In addition to the PPI framework, we also
employed the general purpose relationship ex-
traction tool “Turku Event Extraction System”
(TEES) (Björne et al., 2011), a customized version
of the case-based reasoning system Moara (Neves
et al., 2009), and a self-developed feature based
classifier which is referred to as SLW. Regarding
TEES, we have used the edge extraction function-
ality for performing relationship extraction. TEES
considers features related to the tokens (e.g., part-of-
speech tags), dependency chains, dependency path
N-grams, entities (e.g., entity types) and external re-
sources, such as hypernyms in WordNet.

Moara is a case-based reasoning system for the
extraction of relationships and events. During train-
ing, interaction pairs are converted into cases and
saved into a HyperSQL database which are re-
trieved through case similarity during the classifica-
tion. Cases are composed by the following features:
the type of the entities (e.g. Brand and Group),
the part-of-speech tag of the tokens between the two
drugs (inclusive), the tags of the shortest depen-
dency path between the two drugs, and the lemma
of the non-entity tokens of the shortest dependency
path using BioLemmatizer (Liu et al., 2012). We
also consider the PHARE ontology (Coulet et al.,
2011) in the lemma feature: When a lemma matches
any of the synonyms contained in this ontology, the
category of the respective term is considered instead.
Case similarity is calculated by exact feature match-
ing, except for the part-of-speech tags whose com-
parison is based on global alignment using insertion,
deletion, and substitution costs as proposed by Spa-
sic et al. (2005).

SLW is inspired by SL (Giuliano et al., 2006;

Bunescu and Mooney, 2006) and uses the Breeze2

library. We generate n-grams over sequences of
arbitrary features (e.g. POS-tags, morphological
and syntactical features) to describe the global con-
text of an entity pair. Furthermore, we calculate
features from the local context of entities, but in
addition to SL, we include domain-specific fea-
tures used for identifying and classifying pharma-
cological substances (see our paper for DDI Task
9.1 (Rocktäschel et al., 2013)). In addition, we take
the name of the classes of a pair’s two entities as
feature to capture that entities of some class (e.g.
Brand and Group) are more likely to interact than
others (e.g. Brand and Brand).

2.3 Ensemble learning

Several community competitions previously noted
that combinations of predictions from different tools
help to achieve better results than one method
alone (Kim et al., 2009; Leitner et al., 2010). More
importantly, it is well known that ensembles increase
robustness by decreasing the risk of selecting a bad
classifier (Polikar, 2006). In this work we combined
the output of several classifiers by using majority
voting. The ensemble is used to predict DDIs re-
gardless of the four different subtypes. This com-
plies with the partial match evaluation criterion de-
fined by the competition organizers.

2.4 Relabeling

To account for DDI subtypes, we compared two ap-
proaches: (a) using the subtype prediction of TEES;
(b) training a multi-class classifier (SLW) on the
available training data for DDI subtypes. We de-
cided on using TEES, as it generated superior results
over SLW (data not shown). Thus, previously identi-
fied DDIs are relabeled into one of the four possible
subtypes using the most likely interaction subtype
from TEES.

3 Results

3.1 Cross validation

In order to compare the different approaches, we
performed document-wise 10-fold cross validation
(CV) on the training set. It has been shown that such

2http://www.scalanlp.org/
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Type Pairs Precision Recall F1

total 3,119 78.6 78.6 78.6

effect 1,633 79.8 79.1 79.4
mechanism 1,319 79.8 79.2 79.4
advise 826 77.3 76.4 76.9
int 188 68.5 80.9 74.1

Table 4: Performance estimation for relabeling DDIs.
Pairs denotes the number of instances of this type in the
training corpus.

a setting provides more realistic performance esti-
mates than instance-wise CV (Sætre et al., 2008).
All approaches have been tested using the same
splits to ensure comparability. For APG, ST, SST,
and SpT we followed the parameter optimization
strategy defined by Tikk et al. (2010). For TEES
and Moara, we used the cost parameter C (50000)
and best performing features, respectively, based on
the CV results. For SL and SLW, we used the default
parameters.

We performed several different CV experiments:
First, we performed CV on the two corpora (Drug-
Bank and MEDLINE) separately. Second, data
from the other corpus has been additionally used
during the training phase. This allows us to esti-
mate the impact of additional, but potentially differ-
ent text. CV results for DrugBank and MEDLINE
are shown in Table 2 and 3 respectively.

3.2 Relabeling

Performance of relabeling is evaluated by perform-
ing 10-fold CV on the training set using the same
splits as in previous analysis. Note that this experi-
ment is solely performed on positive DDI instances
to estimate separability of the four different DDI-
subtypes. Results for relabeling are shown in Ta-
ble 4.

3.3 Test dataset

For the test set we submitted results using the fol-
lowing three majority voting ensembles. For Run 1
we used Moara+SL+TEES, for Run 2 we used
APG+Moara+SL+SLW+TEES and for Run 3 we
used SL+SLW+TEES. Due to time constraints we
did not use different ensembles for the two corpora.
We rather decided to use ensembles which achieved

generally good results for both training corpora. All
classifiers, except APG, have been retrained on the
combination of MEDLINE and DrugBank using
the parameter setting yielding the highest F1 in the
training phase. For APG, we trained two different
models: One model is trained on MEDLINE and
DrugBank and one model is trained on DrugBank
solely. The first model is applied on the MEDLINE
test set and the latter on the DrugBank test set. Esti-
mated results on the training corpus and official re-
sults on the test corpus are shown in Table 5.

4 Discussion

4.1 Training dataset

Document-wise CV results for the DrugBank corpus
show no clear effect when using MEDLINE as ad-
ditional training data. By using MEDLINE during
the training phase we observe an average decrease of
0.3 percentage points (pp) in F1 and an average in-
crease of 0.7 pp in area under the receiver operating
characteristic curve (AUC). The strongest impact
can be observed for APG with a decrease of 2.3 pp
in F1. We therefore decided to train APG mod-
els for DrugBank without additional MEDLINE
data. For almost all ensembles (with the excep-
tion of APG+SpT+SL) we observe superior results
when using only DrugBank as training data. Inter-
estingly, this effect can mostly be attributed to an
average increase of 3.3 pp in recall, whereas preci-
sion remains fairly stable between ensembles using
DrugBank solely and those with additional training
data.

In contrast for MEDLINE, all methods largely
benefit from additional training data with an aver-
age increase of 9.8 pp and 3.6 pp for F1 and AUC re-
spectively. For the ensemble based approaches, we
observe an average increase of 13.8 pp for F1when
using DrugBank data in addition.

When ranking the different methods by F1 and
calculating correlation between the two differ-
ent corpora, we observe only a weak correlation
(Kendall’s τ = 0.286, p< 1). In other words, ma-
chine learning methods show varying performance-
ranks between the two corpora. This difference is
most pronounced for SL and SpT, with four ranks
difference between DrugBank and MEDLINE. It
is noteworthy that the two corpora are not directly
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Regular CV Combined CV

Method P R F1 AUC P R F1 AUC

SL 61.5 79.0 69.1 92.8 62.1 78.4 69.2 93.0
APG 77.2 62.6 69.0 91.5 75.9 59.8 66.7 91.6
TEES 77.2 62.0 68.6 87.3 75.5 60.9 67.3 86.9
SLW 73.7 60.0 65.9 91.3 73.4 61.2 66.6 91.3
Moara 72.1 55.2 62.5 — 72.0 54.7 62.1 —
SpT 51.4 73.4 60.3 87.3 52.7 71.4 60.6 87.7
SST 51.9 61.2 56.0 85.4 55.1 57.1 56.0 86.1
ST 47.3 64.2 54.2 82.3 48.3 64.3 54.9 82.7

SL+SLW+TEES 76.1 69.9 72.7 — 75.9 65.3 70.1 —
APG+SL+TEES 79.3 69.9 74.2 — 79.2 65.4 71.5 —
Moara+SL+TEES 79.9 69.6 74.2 — 79.6 65.1 71.6 —
Moara+SL+APG 81.4 70.6 75.5 — 81.3 70.3 75.3 —
APG+Moara+SL+SLW+TEES 84.0 68.1 75.1 — 83.7 64.2 72.6 —
APG+SpT+TEES 76.8 68.0 72.1 — 77.1 63.4 69.6 —
APG+SpT+SL 68.7 74.8 71.5 — 69.7 73.8 71.6 —

Table 2: Cross validation results on DrugBank corpus. Regular CV is training and evaluation on DrugBank only.
Combined CV is training on DrugBank and MEDLINE and testing on DrugBank. Higher F1 between these two
settings are indicated in boldface for each method. Single methods are ranked by F1.

Regular CV Combined CV

Method P R F1 AUC P R F1 AUC

TEES 70.7 36.0 44.5 82.2 59.6 46.5 51.4 84.9
SpT 37.8 38.6 34.6 78.6 42.3 55.3 47.1 80.4
APG 46.5 44.3 42.4 82.3 38.1 62.2 46.4 82.8
SST 31.3 37.7 31.8 74.1 36.7 61.7 44.9 79.5
SL 43.7 40.1 38.7 78.9 34.7 67.1 44.7 81.1
SLW 58.0 14.3 20.4 73.4 50.1 38.0 42.0 82.4
Moara 49.8 31.9 37.6 — 45.6 43.2 41.9 —
ST 25.2 43.8 30.1 70.5 36.1 48.3 39.8 74.2

SL+SLW+TEES 73.6 29.0 37.6 — 55.2 52.7 53.1 —
APG+SL+TEES 60.7 37.9 43.4 — 49.9 62.4 54.3 —
Moara+SL+TEES 68.0 33.0 42.2 — 62.1 55.5 57.4 —
Moara+SL+APG 57.7 36.7 42.4 — 48.3 60.9 52.8 —
APG+Moara+SL+SLW+TEES 73.3 28.3 36.8 — 60.6 54.4 56.5 —
APG+SpT+TEES 58.5 37.4 41.7 — 57.5 59.2 57.1 —
APG+SpT+SL 48.3 39.9 40.0 — 43.6 64.3 51.0 —

Table 3: Cross validation results on MEDLINE corpus. Regular CV is training and evaluation on MEDLINE only.
Combined CV is training on DrugBank and MEDLINE and testing on MEDLINE. Higher F1 between these two
settings are indicated in boldface for each method. Single methods are ranked by F1.
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Evaluation
Training Test

Run 1 Run 2 Run 3 Run 1 Run 2 Run 3

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
Partial 78.7 67.3 72.6 82.9 66.4 73.7 75.2 67.6 71.2 84.1 65.4 73.6 86.1 65.7 74.5 80.1 72.2 75.9

Strict 65.7 56.1 60.5 70.0 56.0 62.2 63.0 56.7 59.7 68.5 53.2 59.9 69.5 53.0 60.1 64.2 57.9 60.9
-mechanism 61.8 49.7 55.1 68.1 50.0 57.7 59.2 50.3 54.4 72.2 51.7 60.2 74.9 52.3 61.6 65.3 58.6 61.8
-effect 68.8 57.9 62.9 71.8 57.6 63.9 66.1 57.4 61.5 63.7 57.5 60.4 63.6 55.8 59.5 60.7 61.4 61.0
-advise 64.6 60.5 62.5 68.2 59.7 63.6 61.1 61.5 61.3 73.3 53.4 61.8 74.5 55.7 63.7 69.0 58.4 63.2
-int 68.6 50.0 57.8 75.4 52.1 61.6 70.9 56.9 63.1 67.8 41.7 51.6 67.3 38.5 49.0 67.8 41.7 51.6

Table 5: Relation extraction results on the training and test set. Run 1 builds a majority voting on Moara+SL+TEES,
Run 2 on APG+Moara+SL+SLW+TEES, and Run 3 on SL+SLW+TEES. Partial characterizes only DDI detection
without classification of subtypes, whereas strict requires correct identification of subtypes as well.

comparable, as DrugBank is one order of magnitude
larger in terms of instances than the MEDLINE cor-
pus. Additionally, documents come from different
sources and it is tempting to speculate that there
might be a certain amount of domain specificity be-
tween DrugBank and MEDLINE sentences.

We tested for domain specificity by performing
cross-corpus experiments, i.e., we trained a classi-
fier on DrugBank, applied it on MEDLINE and vice
versa. When training on MEDLINE and testing
on DrugBank, we observe an average decrease of
about 15 pp in F1 in comparison to DrugBank in-
domain CV results. For the other setting, we observe
a lower decrease of approximately 5 pp in compari-
son to MEDLINE in-domain CV results.

From the current results, it seems that the doc-
uments from DrugBank and MEDLINE have dif-
ferent syntactic properties. However, this requires a
more detailed analysis of different aspects like dis-
tribution of sentence length, negations, or passives
between the two corpora (Cohen et al., 2010; Tikk
et al., 2013). We assume that transfer learning tech-
niques could improve results on both corpora (Pan
and Yang, 2010).

The DDI-relabeling capability of TEES is very
balanced with F1 measures ranging from 74.1 % to
79.4 % for all four DDI subclasses. This is unex-
pected since classes like “effect” occur almost ten
times more often than classes like “int” and classi-
fiers often have problems with predicting minority
classes.

4.2 Test dataset

On the test set, our best run achieves an F1 of 76 %
using the partial evaluation schema. This is slightly

better than the performance for DrugBank training
data shown in Table 2 and substantially better than
estimations for MEDLINE (see Table 3). With
F1 measures ranging between 74 % to 76 % only
minor performance differences can be observed be-
tween the three different ensembles.

When switching from partial to strict evaluation
scheme an average decrease of 15 pp in F1 can be ob-
served. As estimated on the training data, relabeling
performance is indeed very similar for the different
DDI-subtypes. Only for the class with the least in-
stances (int), a larger decrease in comparison to the
other three classes can be observed for the test set.
In general, results for test set are on par or higher
than results for the training set.

5 Conclusion

In this paper we presented our approach for the
SemEval 2013 – Task 9.2 DDI extraction challenge.
Our strategy builds on a cascaded (coarse to fine
grained) classification strategy, where a majority
voting ensemble of different methods is initially
used to find generic DDIs. Predicted interactions
are subsequently relabeled into four different sub-
types. DDI extraction seems to be a more difficult
task for MEDLINE abstracts than for DrugBank ar-
ticles. In our opinion, this cannot be fully attributed
to the slightly higher ratio of positive instances in
DrugBank and points towards structural differences
between the two corpora.
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Abstract 

In this paper we describe UMCC_DLSI-

(DDI) system which attempts to detect and 

classify drug entities in biomedical texts. 

We discuss the use of semantic class and 

words relevant domain, extracted with ISR-

WN (Integration of Semantic Resources 

based on WordNet) resource to obtain our 

goal. Following this approach our system 

obtained an F-Measure of 27.5% in the 

DDIExtraction 2013 (SemEval 2013 task 

9). 

1. Introduction 

To understand biological processes, we must 

clarify how some substances interact with our 

body and one to each other. One of these 

important relations is the drug-drug interactions 

(DDIs). They occur when one drug interacts 

with another or when it affects the level, or 

activity of another drug. DDIs can change the 

way medications act in the body, they can cause 

powerful, dangerous and unexpected side 

effects, and also they can make the medications 

less effective. 

As suggested by (Segura-Bedmar et al., 2011), 

“...the detection of DDI is an important research 

area in patient safety since these interactions 

can become very dangerous and increase health 

care costs”. More recent studies (Percha and 

Altman, 2013) reports that “…Recent estimates 

indicate that DDIs cause nearly 74000 

emergency room visits and 195000 

hospitalizations each year in the USA”.  

But, on the other hand, there is an expansion in 

the volume of published biomedical research, 

and therefore the underlying biomedical 

knowledge base (Cohen and Hersh, 2005). 

Unfortunately, as often happens, this 

information is unstructured or in the best case 

scenario semi-structured. 

As we can see in (Tari et al., 2010), “Clinical 

support tools often provide comprehensive lists 

of DDIs, but they usually lack the supporting 

scientific evidences and different tools can 

return inconsistent results”.  

Although, as mentioned (Segura-Bedmar et al., 

2011) “there are different databases supporting 

healthcare professionals in the detection of DDI, 

these databases are rarely complete, since their 

update periods can reach up to three years”. In 

addition to these and other difficulties, the great 

amount of drug interactions are frequently 

reported in journals of clinical pharmacology 

and technical reports, due to this fact, medical 

literature becomes most effective source for 

detection of DDI. Thereby, the management of 

DDI is a critical issue due to the overwhelming 

amount of information available on them 

(Segura-Bedmar et al., 2011). 
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1.1. Task Description 

With the aim of reducing the time the health care 

professionals invest on reviewing the literature, 

we present a feature-based system for drug 

detection and classification in biomedical texts. 

The DDIExtraction2013 task was divided into 

two subtasks: Recognition and classification of 

drug names (Task 9.1) and Extraction of drug-

drug interactions (Task 9.2). Our system was 

developed to be presented in the Task 9.1. In this 

case, participants were to detect and classify the 

drugs that were present in the test data set which 

was a set of sentences related to the biomedical 

domain obtained from a segmented corpus. The 

output consisted of a list mentioning all the 

detected drugs with information concerning the 

sentence it was detected from as well as its 

offset in that sentence (the position of the first 

and the last character of the drug in the sentence, 

0 being the first character of a sentence). Also 

the type of the drug should have been provided. 

As to the type, participants had to classify 

entities in one of these four groups1: 

 Drug: any chemical agent used for 

treatment, cure, prevention or diagnose of 

diseases, which have been approved for 

human usage. 

 Brand: any drug which firstly have been 

developed by a pharmaceutical company. 

 Group: any term in the text designating a 

relation among pharmaceutical substances. 

 No-Human: any chemical agent which 

affects the human organism. An active 

substance non-approved for human usage 

as medication. 

In the next section of the paper, we present 

related works (Section 2). In Section 3, we 

discuss the feature-based system we propose. 

Evaluation results are discussed in Section 4. 

Finally, we conclude and propose future work 

(Section 5). 

2. Related Work 

One of the most important workshops on the 

domain of Bioinformatics has been BioCreAtIve 

(Critical Assessment of Information Extraction 

                                                      

1 http://www.cs.york.ac.uk/semeval-2013/task9 

in Biology) (Hirschman et al., 2005). This 

workshop has improved greatly the Information 

Extraction techniques applied to the biological 

domain. The goal of the first BioCreAtIvE 

challenge was to provide a set of common 

evaluation tasks to assess the state-of-the-art for 

text mining applied to biological problems. The 

workshop was held in Granada, Spain on March 

28-31, 2004. 

According to Hirschman, the first 

BioCreAtIvE assessment achieved a high level 

of international participation (27 groups from 10 

countries). The best system results for a basic 

task (gene name finding and normalization), 

where a balanced 80% precision/recall or better, 

which potentially makes them suitable for real 

applications in biology. The results for the 

advanced task (functional annotation from free 

text) were significantly lower, demonstrating the 

current limitations of text-mining approaches. 

The greatest contribution of BioCreAtIve was 

the creation and release of training and test data 

sets for both tasks (Hirschman et al., 2005). 

One of the seminal works where the issue of 

drug detection was mentioned was (Grönroos et 

al., 1995). Authors argue the problem can be 

solved by using a computerized information 

system, which includes medication data of 

individual patients as well as information about 

non-therapeutic drug-effects. Also, they suggest 

a computerized information system to build 

decision support modules that, automatically 

give alarms or alerts of important drug effects 

other than therapeutic effects. If these warnings 

concern laboratory tests, they would be checked 

by a laboratory physician and only those with 

clinical significance would be sent to clinicians. 

Here, it is important to note the appearance of 

the knowledgebase DrugBank 2 . Since its first 

release in 2006 (Wishart et al., 2008) it has been 

widely used to facilitate in silico drug target 

discovery, drug design, drug docking or 

screening, drug metabolism prediction, drug 

interaction prediction and general 

pharmaceutical education. DrugBank has also 

significantly improved the power and simplicity 

of its structure query and text query searches. 

                                                      

2 http://redpoll.pharmacy.ualberta.ca/drugbank/ 
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Later on, in 2010 Tari propose an approach 

that integrates text mining and automated 

reasoning to derive DDIs (Tari et al., 2010). 

Through the extraction of various facts of drug 

metabolism, they extract, not only the explicitly 

DDIs mentioned in text, but also the potential 

interactions that can be inferred by reasoning. 

This approach was able to find several potential 

DDIs that are not present in DrugBank. This 

analysis revealed that 81.3% of these 

interactions are determined to be correct. 

On the DDIExtraction 2011 (Segura-Bedmar et 

al., 2011) workshop (First Challenge Task on 

Drug-Drug Interaction Extraction) the best 

performance was achieved by the team WBI 

from Humboldt-Universitat, Berlin. This team 

combined several kernels and a case-based 

reasoning (CBR) system, using a voting 

approach. 

In this workshop relation extraction was 

frequently and successfully addressed by 

machine learning methods. Some of the more 

common used features were co-occurrences, 

character n-grams, Maximal Frequent 

Sequences, bag-of-words, keywords, etc. 

Another used technique is distant supervision. 

The first system evaluating distant supervision 

for drug-drug interaction was presented in 

(Bobić et al., 2012), they have proposed a 

constraint to increase the quality of data used for 

training based on the assumption that no self-

interaction of real-world objects are described in 

sentences. In addition, they merge information 

from IntAct and the University of Kansas 

Proteomics Service (KUPS) database in order to 

detect frequent exceptions from the distant 

supervision assumption and make use of more 

data sources. 

Another important work related to Biomedical 

Natural Language Processing was BioNLP 

(Björne et al., 2011) it is an application of 

natural language processing methods to analyze 

textual data on biology and medicine, often 

research articles. They argue that information 

extraction techniques can be used to mine large 

text datasets for relevant information, such as 

relations between specific types of entities. 

Inspired in the previews works the system we 

propose makes use of machine learning methods 

too, using some of the common features 

described above, such as the n-grams and 

keywords and co-occurrences, but we also add 

some semantic information to enrich those 

features. 

3. System Description  

As it has been mentioned before, the system was 

developed to detect and classify drugs in 

biomedical texts, so the process is performed in 

two main phases:  

 drug detection. 

 drug classification. 

Both phases are determined by the following 

stages, described in Figure 1: 

I. Preprocessing 

II. Feature extraction 

III. Classification 

 
 

 
 

 
 

 

Figure 1. Walkthrough system process. 
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of the sentence, by means of Freeling tool 3 . 

After that, it is able to generate candidates 

according to certain parameters (see section 3.3). 

Then, all the generated candidates are 

processed to extract the features needed for the 

learning methods, in order to determine which 

candidates are drugs. 

After the drugs are detected, the system 

generates a tagged corpus, following the 

provided training corpus structure, containing 

the detected entities, and then it proceeds to 

classify each one of them. To do so, another 

supervised learning algorithm was used (see 

section 3.3). 

3.1. Candidates generation 

Drugs and drug groups, as every entity in 

Natural Language, follow certain grammatical 

patterns. For instance, a drug is usually a noun 

or a set of nouns, or even a combination of verbs 

and nouns, especially verbs in the past participle 

tense and gerunds. But, one thing we noticed is 

that both drugs and drug groups end with a noun 

and as to drug groups that noun is often in the 

plural. 

Based on that idea, we decided to generate 

candidates starting from the end of each 

sentence and going forward. 

Generation starts with the search of a pivot 

word, which in this case is a noun. When the 

pivot is found, it is added to the candidates list, 

and then the algorithm takes the word before the 

pivot to see if it complies with one of the 

patterns i.e. if the word is a noun, an adjective, a 

gerund or past participle verb. If it does, then it 

and the pivot form another candidate.  

After that, the algorithm continues until it finds 

a word that does not comply with a pattern. In 

this case, it goes to the next pivot and stops 

when all the nouns in the sentence have been 

processed, or the first word of the sentence is 

reached. 

3.2. Feature Description 

For the DDIExtraction20134 task 9 three runs of 

the same system were performed with different 

                                                      

3 http://nlp.lsi.upc.edu/freeling/ 

features each time. The next sections describes 

the features we used. 

3.2.1. Most Frequent Semantic Classes 

(MFSC) 

Given a word, its semantic class label (Izquierdo 

et al., 2007) is obtained from WordNet using the 

ISR-WN resource (Gutiérrez et al., 2011; 2010). 

The semantic class is that associated to the most 

probable sense of the word. For each entity in 

the training set we take the words in the same 

sentence and for each word its semantic class is 

determined. This way, we identify the 4005 most 

frequent semantic classes associated to words 

surrounding the entities in the training set.  

For a candidate entity we use 400 features to 

encode information with regard to whether or 

not in its same sentence a word can be found 

belonging to one of the most frequent semantic 

classes. 

Each one of these features takes a value 

representing the distance (measured in words) a 

candidate is from the nearest word with same 

semantic class which represents the attribute.  

If the word is to the left of the candidate, the 

attribute takes a negative value, if it is to the 

right, the value is positive, and zero if no word 

with that semantic class is present in the 

sentence the candidate belongs to. 

To better understand that, consider A1 is the 

attribute which indicates if in the sentence of the 

candidate a word can be found belonging to the 

semantic class 1. Thus, the value of A1 is the 

distance the candidate is from the closest word 

with semantic class 1 in the sentence that is 

being analyzed. 

3.2.2. Candidate Semantic Class (CSC) 

The semantic class of candidates is also included 

in the feature set, if the candidate is a multi-

word, then the semantic class of the last word 

(the pivot word) is taken.  

 

                                                                                

4 http://www.cs.york.ac.uk/semeval-2013/task9/ 
5 This value was extracted from our previous experiment. 
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3.2.3. Most Frequent Semantic Classes 

from Entities (EMFSC) 

In order to add more semantic information, we 

decided to find the most frequent semantic 

classes among all the entities that were tagged in 

the training data set. We included, in the feature 

set, all the semantic classes with a frequency of 

eight or more, because all the classes we wanted 

to identify were represented in that threshold. In 

total, they make 29 more features. The values of 

every one of them, is the sum of the number of 

times it appears in the candidate.  

3.2.4. Candidate Semantic Class All 

Words (CSC-All) 

This feature is similar to CSC, but in this case 

the candidate is a multi-word, we not only look 

for the semantic class of the pivot, but also the 

whole candidate as one. 

3.2.5. Drug-related domains (DRD) 

Another group of eight attributes describes how 

many times each one of the candidates belongs 

to one of the following drug-related domains 

(DRD) (medicine, anatomy, biology, chemistry, 

physiology, pharmacy, biochemistry, genetics).  

These domains where extracted from WordNet 

Domains. In order to determine the domain that 

a word belongs to, the proposal of DRelevant 

(Vázquez et al., 2007; Vázquez et al., 2004) was 

used. 

To illustrate how the DRD features take their 

values, consider the following sentence: 

“…until the lipid response to Accutane is 

established.” 

One of the candidates the system generates 

would be “lipid response”. It is a two-word 

candidate, so we take the first word and see if it 

belongs to one of the above domains. If it does, 

then we add one to that feature. If the word does 

not belong to any of the domains, then its value 

will be zero. We do the same with the other 

word. In the end, we have a collection where 

every value corresponds to each one of the 

domains. For the example in question the 

collection would be:  

 

 

medicine 1 

anatomy 0 

biology 0 

chemistry 0 

physiology 1 

pharmacy 0 

biochemistry 0 

genetics 0 

Table 1. DRD value assignment example. 

3.2.6. Candidate word number (WNum) 

Because there are candidates that are a multi-

word and others that are not, it may be the case 

that a candidate, which is a multi-word, has an 

EMFSC bigger than others which are not a 

multi-word, just because more than one of the 

words that conform it, have a frequent semantic 

class.  

We decided to add a feature, called WNum, 

which would help us normalize the values of the 

EMFSC. The value of the feature would be the 

number of words the candidate has. Same thing 

happens with DRD. 

3.2.7. Candidate Domain (CD) 

The value of this nominal feature is the domain 

associated to the candidate. If the candidate is a 

multi-word; we get the domain of all the words 

as a whole. In both cases the domain for a single 

word as well as for a multi-word is determined 

using the relevant domains obtained by 

(Vázquez et al., 2007; Vázquez et al., 2004). 

3.2.8. Maximum Frequent 2-grams, 3-

grams 

Drugs usually contain sequences of characters 

that are very frequent in biomedical domain 

texts. These character sequences are called n-

grams, where n is the number of characters in 

the sequence. Because of that, we decided to add 

the ten most frequent n-grams with n between 

two and three. The selected n-grams are the 

following: “in” (frequency: 8170), “ne” (4789), 

“ine” (3485), “ti” (3234), “id” (2768), “an” 

(2704), “ro” (2688), “nt” (2593), “et” (2423), 

“en” (2414). 

These features take a value of one if the 

candidate has the corresponding character 

sequence and zero if it does not. For instance: if 
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we had the candidate “panobinostat” it will 

generate the following collection:  

“in” 1 

“ne” 0 

“ine” 0 

“ti” 0 

“id” 0 

“an” 1 

“ro” 0 

“nt” 0 

“et” 0 

“en” 0 

Table 2. MF 2-gram, 3-gram. 

3.2.9. Uppercase (UC), Uppercase All 

(UCA). Multi-word (MWord) and 

Number (N) 

Other features say if the first letter of the 

candidate is an uppercase; if all of the letters are 

uppercase (UCA); if it is a multi-word (MWord) 

and also if it is in the singular or in the plural 

(N).  

3.2.10. L1, L2, L3 and R1, R2, R3 

The Part-of-Speech tags of the closest three 

surrounding words of the candidates are also 

included. We named those features L1, L2, and 

L3 for POS tags to the left of the candidate, and 

R1, R2, and R3 for those to the right. 

3.2.11. POS-tagging combination (GC) 

Different values are assigned to candidates, in 

order to identify its POS-tagging combination. 

For instance: to the following entity “combined 

oral contraceptives” taken from DDI13-train-

TEES-analyses-130304.xml6 training file, which 

was provided for task 9.1, corresponds 5120. 

This number is the result of combining the four 

grammatical categories that really matter to us: 

R for adverb, V for verb, J for adjective, N for 

noun.  

A unique number was given to each 

combination of those four letters. We named this 

feature  GC. 

 

                                                      

6 http://www.cs.york.ac.uk/semeval-2013/task9 

3.2.12. In resource feature (InRe) 

A resource was created which contains all the 

drug entities that were annotated in the training 

corpus, so another attribute tells the system if the 

candidate is in the resource.  

Since all of the entities in the training data set 

were in the resource this attribute could take a 

value of one for all instances. Thus the classifier 

could classify correctly all instances in the 

training data set just looking to this attribute, 

which is not desirable. To avoid that problem, 

we randomly set its value to zero every 9/10 of 

the training instances. 

3.3. Classification 

All the features extracted in the previous stages 

are used in this stage to obtain the two models, 

one for drug detection phase, and the other for 

drug classification phase.  

We accomplished an extensive set of 

experiments in order to select the best classifier. 

All algorithms implemented in WEKA, except 

those that were designed specifically for a 

regression task, were tried. In each case we 

perform a 10-fold cross-validation. In all 

experiments the classifiers were settled with the 

default configuration. From those tests we select 

a decision tree, the C4.5 algorithm (Gutiérrez et 

al., 2011; 2010) implemented as the J48 

classifier in WEKA.  This classifier yields the 

better results for both drug detection and drug 

classification. 

The classifier was trained using a set of 463 

features, extracted from the corpus provided by 

SemEval 2013, the task 9 in question. 

As it was mentioned before, three runs were 

performed for the competition. Run (1) used the 

following features for drug detection: MFSC 

(only 200 frequent semantic classes), MF 2-

grams, 3-grams, UC, UCA, MWord, N, L1, L2, 

L3, R1, R2, R3, CSC, CD, WNum, GC and 

InRe.  

Drug classification in this run used the same 

features except for CD, WNum, and GC. Run 

(2) has all the above features, but we added the 

remaining 200 sematic classes that we left out in 

Run (1) to the detection and the classification 

models. In Run (3), we added EMFSC feature to 

the detection and the classification models. 
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4. Results 

In the task, the results of the participants were 

compared to a gold-standard and evaluated 

according to various evaluation criteria:  

 Exact evaluation, which demands not only 

boundary match, but also the type of the 

detected drug has to be the same as that of 

the gold-standard. 

 Exact boundary matching (regardless of 

the type). 

 Partial boundary matching (regardless of 

the type) 

 Type matching. 

Precision and recall were calculated using the 

scoring categories proposed by MUC 7: 

 COR: the output of the system and the 

gold-standard annotation agree. 

 INC: the output of the system and the 

gold-standard annotation disagree. 

 PAR: the output of the system and the 

gold-standard annotation are not identical 

but has some overlapping text. 

 MIS: the number of gold-standard entities 

that were not identify by the system. 

 SPU: the number of entities labeled by the 

system that are not in the gold-standard. 

Table 3 , Table 4 and Table 5 show the system 

results in the DDIExtraction2013 competition 

for Run (1).  

Run (2) and Run (3) results are almost the 

same as Run (1). It is an interesting result since 

in those runs 200 additional features were 

supplied to the classifier.  In feature evaluation, 

using CfsSubsetEval and GeneticSearch with 

WEKA we found that all these new features 

were ranked as worthless for the classification. 

On the other hand, the following features were 

the ones that really influenced the classifiers: 

MFSC (215 features only), MF 2-grams, 3-

grams (“ne”, “ine”, “ti”, “ro”, “et”, “en”), 

WNum, UC, UCA, L1, R1, CSC, CSC-All, CD, 

DRD (anatomy, physiology, pharmacy, 

biochemistry), InRe, GC and EMFS, specifically 

music.n.01, substance.n.01, herb.n.01, 

artifact.n.01, nutriment.n.01, nonsteroidal_anti-

inflammatory.n.01, causal_agent.n.01 have a 

                                                      

7http://www.itl.nist.gov/iaui/894.02/related_projects/muc/m

uc_sw/muc_sw_manual.html 

frequency of 8, 19, 35, 575, 52, 80, 63 

respectively.  

Measure Strict 
Exact 

Matching 

Partial 

Matching 
Type 

COR 319 354 354 388 

INC 180 145 0 111 

PAR 0 0 145 0 

MIS 187 187 187 187 

SPU 1137 1137 1137 1137 

Precision 0.19 0.22 0.22 0.24 

Recall 0.47 0.52 0.62 0.57 

Table 3. Run (1), all scores. 

Measure Drug Brand Group Drug_n 

COR 197 20 93 9 

INC 23 2 43 1 

PAR 0 0 0 0 

MIS 131 37 19 111 

SPU 754 47 433 14 

Precision 0.2 0.29 016 0.38 

Recall 0.56 0.34 0.6 0.07 

F1 0.3 0.31 0.26 0.12 

Table 4. Scores for entity types, exact matching in 

Run (1). 

 Precision Recall F1 

Macro average 0.26 0.39 0.31 

Strict matching 0.19 0.46 0.27 

Table 5. Macro average and Strict matching measures 

in Run (1). 

5. Conclusion and future works 

In this paper we show the description of 

UMCC_DLSI-(DDI) system, which is able to 

detect and classify drugs in biomedical texts 

with acceptable efficacy. It introduces in this 

thematic the use of semantic information such as 

semantic classes and the relevant domain of the 

words, extracted with ISR-WN resource. With 

this approach we obtained an F-Measure of 

27.5% in the Semeval DDI Extraction2013 task 

9.  

As further work we propose to eliminate some 

detected bugs (i.e. repeated instances, 

multiwords missed) and enrich our knowledge 

base (ISR-WN), using biomedical sources as 

UMLS8, SNOMED9 and OntoFis10. 

                                                      

8 http://www.nlm.nih.gov/research/umls 
9 http://www.ihtsdo.org/snomed-ct/ 
10 http://rua.ua.es/dspace/handle/10045/14216 
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Abstract

A drug-drug interaction (DDI) occurs when
one drug affects the level or activity of another
drug. Semeval 2013 DDI Extraction challenge
is going to be held with the aim of identify-
ing the state of the art relation extraction algo-
rithms. In this paper we firstly review some of
the existing approaches in relation extraction
generally and biomedical relations especially.
And secondly we will explain our SVM based
approaches that use lexical, morphosyntactic
and parse tree features. Our combination of
sequence and tree kernels have shown promis-
ing performance with a best result of 0.54 F1
macroaverage on the test dataset.

1 Introduction

A drug-drug interaction occurs when one drug af-
fects the level or activity of another drug, for in-
stance, drug concentrations. This interaction can
result on reducing its effectiveness or possibly in-
creasing its side effects (Stockley, 2007). There are
some helpful DDIs but most of them are danger-
ous (Aronson, 2007), for example, patients that take
clarithromycin and glibenclamide concurrently may
experiment hypoglycaemia.

There is a great amount of information about DDI
described in papers that health experts have to con-
sult in order to be updated. The development of tools
for extracting this type of information from biomed-
ical texts would produce a clear benefit for these pro-
fessionals reducing the time necessary to review the
literature. Semeval 2013 DDI Extraction challenge
decided to being held with the aim of identifying the

state of the art algorithms for automatically extract-
ing DDI from biomedical articles. This challenge
has two tasks: recognition and classification of drug
names and extraction of drug-drug interactions. For
the second task, the input corpus contains annota-
tions with the drug names.

A previous Workshop on Drug-Drug Interaction
Extraction (Segura-Bedmar et al., 2011) was held
in 2011 in Huelva, Spain. The main difference is
that the new challenge includes the classification of
the drug-drug interactions in four types depending
on the information that is described in the sentence
making the task much more complicated than be-
fore. Additionally the current task involves DDIs
from two different corpora with different character-
istics (Segura-Bedmar et al., 2013).

We participated in the task of extracting drug-drug
interactions with two approaches that exploit a rich
set of tree and sequence features. Our implemented
methods utilize a SVM classifier with a linear ker-
nel and a rich set of lexical, morphosyntactic and se-
mantic features (e.g. trigger words) extracted from
texts. In addition some tree features such as shortest
path and subtree features are used.

2 Related work

Due to the importance of detecting biological and
medical relations several methods have been applied
for extracting biological relation information from
text. In (Song et al., 2010) is presented a method for
extracting protein-protein interaction (PPI) through
combination of an active learning technique and a
semi-supervised SVM.

Another motivating work can be found in (Chen et
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al., 2011) in which a PPI Pair Extractor was devel-
oped that consists of a SVM for binary classification
which exploits a linear kernel with a rich set of fea-
tures based on linguistic analysis, contextual words,
interaction words, interaction patterns and specific
domain information.

Another PPI extraction method have been devel-
oped in (Li et al., 2010). They have applied an en-
semble kernel composed of a feature-based kernel
and a structure-based kernel. A more recent research
on tree kernels has been carried out by (Guodong
et al., 2010). They have introduced a context-
sensitive convolution tree kernel, which specifies
both context-free and context-sensitive sub-trees by
taking into account the paths of their ancestor nodes
as their contexts to capture structural information in
the tree structure. A recent work (Simões et al.,
2013) has introduced an approach for Relationship
Extraction (RE) based on labeled graph kernels. The
proposed kernel is a specification of a random walk
kernel that exploits two properties: the words be-
tween the candidate entities and the combination of
information from distinct sources. A comparative
survey regarding different kernel based approaches
and their performance can be found in (Frunza and
Inkpen, 2008).

Using external knowledge and resources to the
target sentence is another research direction in the
relation extraction task that Chan and Roth have
investigated in (Chan and Roth, 2010). They
have reported some improvements by using exter-
nal sources such as Wikipedia, comparing to basic
supervised learning systems. Thomas and his col-
leagues in (Thomas et al., 2011) have developed
a majority voting ensemble of contrasting machine
learning methods using different linguistic feature
spaces.

A more systematic and high quality investigation
about feature selection in kernel based relation ex-
pression can be found in (Jiang and Zhai, 2011).
They have explored a large space of features for re-
lation extraction and assess the effectiveness of se-
quences, syntactic parse trees and dependency parse
trees as feature subspaces and sentence representa-
tion. They conclude that, by means of a set of ba-
sic unit features from each subspace, a reasonably
good performance can be achieved. But when the
three subspaces are combined, the performance can

slightly improve, which shows sequence, syntactic
and dependency relations have much overlap for the
task of relation extraction.

Although most of the previous researches in
biomedical domain has been carried out with respect
to protein-protein interaction extraction, and more
recently on drug-drug interaction extraction, other
types of biomedical relations are being studied: e.g.
gene-disease (Airola et al., 2008), disease-treatment
(Jung et al., 2012) and drug-disease.

3 Dataset

The dataset for the DDIExtraction 2013 task con-
tains documents from two sources. It includes Med-
Line abstracts and documents from the DrugBank
database describing drug-drug interactions (Segura-
Bedmar et al., 2013). These documents are anno-
tated with drug entities and with information about
drug pair interactions: true or false.

In the training corpus the interaction type is also
annotated. There are 4 types of interactions: effect,
mechanism, int, advice.

The challenge corpus is divided into training and
evaluation datasets (Table 1). The DrugBank train-
ing data consists of 572 documents with 5675 sen-
tences. This subset contains 12929 entities and
26005 drug pair interactions. On the other hand, the
MedLine training data consists of 142 abstracts with
1301 sentences, 1836 entities and 1787 pairs.

The distribution of positive and negative exam-
ples are similar in both subsets, 12.98% of positives
instances on MedLine and 14.57% on DrugBank.
With respect to the distribution of categories, the fig-
ures show that there is a small number of positive
instances for categories int and advice on the Med-
Line subset. The effect type is the most frequent,
outmatching itself on the MedLine subset.

The evaluation corpus contains 158 abstracts with
973 sentences and 5265 drug pair interactions from
Drugbank, and 33 abstracts with 326 sentences and
451 drug pair interactions from Medline. It is worth
to emphasize that the distribution of positive and
negative examples is a bit greater (2.22%) in the
DrugBank subset compared to the training data, but
is almost doubled with respect to MedLine (12,98%
to 21,06%). The categories advice and int have very
few positive instances in the MedLine subset.
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Training pairs negative DDIs positive DDIs effect mechanism advice int
DrugBank 26005 22217 3788 1535 1257 818 178
MedLine 1787 1555 232 152 62 8 10
Test pairs negative DDIs positive DDIs effect mechanism advice int
DrugBank 5265 4381 884 298 278 214 94
MedLine 451 356 95 62 24 7 2

Table 1: Basic statistics of the training and test datasets.

4 Method

Initially several experiments have been developed to
explore the performance of shallow linguistic (SL)
and parse tree based methods on a subset of the train-
ing corpus. Although the SL kernel achieved consid-
erably good results we have found that the best op-
tion was the combination of different kernels using
linguistic and tree features.

Our implemented kernel based approach consists
of four different processes that have been applied se-
quentially: preprocessing, feature extraction, feature
selection and classification (Figure 1). Our two sub-
mitted results were obtained by two different strate-
gies. In the first outcome, all the DDIs and type of
interactions were extracted in one step, as a 5-class
categorization problem. The second run was carried
out in two steps, initially the DDIs were detected and
then the positively predicted DDIs were used to de-
termine the type of the interaction. In the next sub-
section the four different processes are described.

4.1 Preprocessing
In this phase we have carried out two types of text
preprocessing steps before training the classifier.

We have removed some stop words in special
places in the sentences that clearly were a matter of
concern and caused some inaccuracy, for example,
removing question marks at the beginning of a sen-
tence. We also carried out a normalization task for
some tokens because of usage of different used en-
codings and processing methods, mainly html tags.

4.2 Feature extraction
Initially 49 feature classes were extracted for each
instance that correspond to a drug pair interaction
between Drug1 and Drug2:

• Word Features: Include Words of Drug1, words
of Drug2, words between Drug1 and Drug2,

Figure 1: The different processes followed for our two
submitted results.

three words before Drug1 and three words after
Drug2. Lemmas and stems of all these words.
We have used TreeTagger to obtain lemmas and
Paice/Husk Stemmer (Paice, 1990) to obtain
stems.

• Morphosyntactic Features: Include Part-of-
speech (POS) tags of each drug words (Drug1
and Drug2), POS of the previous 3 and next 3
words. We have used TreeTagger.

• Constituency parse tree features: Include short-
est path between Drug1 and Drug2 in the con-
stituency parse tree, shortest path between first
token in the sentence and Drug1, and shortest
path between Drug2 and last token in the sen-
tence in the parse tree, and all subtrees gener-
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ated from the constituency parse tree. We have
used Stanford parser 1 for producing tree fea-
tures.

• Conjunction features: We have produced some
new conjunction features by combination of
different word features and morphosyntactic
features such as POSLEMMA and POSSTEM
for all the words before Drug1, words between
Drug1 and Drug2 and words after Drug2.

• verbs features: Include verbs between Drug1
and Drug2, first verb before Drug1 and first
verb after Drug2. Their stem, lemma and their
conjunction features are also included.

• negation features: Only if the sentence contains
negation statements. The features extracted in-
clude the left side tokens of the negation scope,
the right side tokens of the negation scope and
the tokens inside the negation scope. We have
used NegEx2 as negation detection algorithm.

Finally we have deployed a bag of words ap-
proach (BoW) for each feature class in order to ob-
tain the final representation for each instance. We
have limited the size of the vocabulary in the BoW
representation with a different number depending on
the data subset. We carried out several experiments
to fix these numbers and at the end we have used
1000 words/feature class for MedLine and 6000
words/feature class for DrugBank.

4.3 Feature selection
We have conducted some feature selection experi-
ments to select the best features for improving the
results and reducing running time. We have finally
used Information Gain ranker to eliminate the less
effective features. We have computed the informa-
tion gain for each feature class as the linear combi-
nation of the information gain of each corresponding
word. Empirically we have selected the best 42 fea-
ture classes.

On the other hand, we have done a preliminary
study of the effect of the negation related features.
We have found more than 3000 sentences contain-
ing negation, most of them corresponds to sentences

1http://nlp.stanford.edu/software/lex-parser.shtml
2http://code.google.com/p/negex/

associated with negative examples of interactions.
However, these features have been eliminated be-
cause we have not obtained a clear improvement
when we combined them with the other features.

4.4 Classification
First we have performed several experiments with
different supervised machine learning approaches
such as SVM, Naivebayes, Randomtree, Random
forest, Multilayer perceptron in addition to combina-
tion of methods. Finally we decided to use a SVM
approach, the Weka Sequential Minimal Optimiza-
tion (SMO) algorithm. We used the inner product of
the BoW vectors as similarity function.

We have submitted two approaches:

• approach 1: SVM (Weka SMO) with 5 cate-
gories (effect, mechanism, int, advice and null).

• approach 2: We have extracted final results in
two stages. In the first step we have used a
SVM (Weka SMO) with 2 categories (positive
and negative) and then we have used a second
SVM classifier with 4 classes on positive ex-
tracted DDIs to train and extract the type of in-
teraction in the test dataset.

The classifiers have been applied separately with
each data subset, that is, a classifier per approach has
been developed using the DrugBank training subset
and has been evaluated using the DrugBank test sub-
set, and the same process has been applied with the
MedLine training and test subset.

5 Results

In this section we first show the evaluation results
with our two approaches. Secondly an error analy-
sis was carried out with a development set extracted
from the training corpus.

5.1 Test data results
We have submitted two runs that corresponds with
the approaches described in the previous section.
Table 2 shows the results obtained with the first ap-
proach (one step) and Table 3 shows the results with
the second approach (two steps).

It can be observed that the results on detection of
DDI are better with the approach 2: 0.656 against
0.588 on F1. This result is a consequence that we
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Run P R F1
NILUCM1 (All) 0.632 0.464 0.535
NILUCM2 (All) 0.547 0.507 0.526
NILUCM1 (Drugbank) 0.651 0.498 0.565
NILUCM2 (Drugbank) 0.558 0.542 0.550
NILUCM1 (Medline) 0.333 0.074 0.121
NILUCM2 (Medline) 0.221 0.073 0.110

Table 4: Macroaverage test set results.

have more information to obtain the detection of the
interaction if we use the information from all the dif-
ferent types than if we obtain it joining the results
obtained per each category. With respect to detec-
tion and classification the results are also better with
approach 2 for a similar reason: 0.548 against 0.517
on F1.

With respect to the categories, in the more pop-
ulated ones the general tendency of better results
from approach 2 continues, especially in effect type:
0.556 against 0.489. With respect to advice and int,
the recall is better in approach 2 but the improve-
ment in precision is greater in approach1 giving a
better result on F1 to approach 1, especially in int
type: 0.427 against 0.393.

Table 4 shows the macroaverage results separated
by subset data. The best results obtained for ap-
proach 1 are due to that this type of average gives
equal weight to each category, favouring then the
categories with less instances.

Other important insight that can be extracted from
this table is that our results are much better for Drug-
Bank dataset with both approaches. These results
can be justified due to high similarity between sen-
tences in Drugbank training and test corpus. In fact
the Medline corpus commonly has more words un-
related to DDI subjects. In addition to this argument,
the smaller number of training pairs in the Medline
corpus can be other reason to obtain worst results.

5.2 Error analysis

We have extracted a stratified development corpus
from the training corpus in order to perform an error
analysis. We have used a 10% of the training corpus.
It contains 2779 pairs, of which 397 are DDIs. Table
5 shows the results obtained with the two submitted
approaches.

The results with our development corpus shows
the same tendency, that is, approach 2 is better than
approach 1 on detection of DDI and on microav-
erage classification. On the other hand, results are
higher than those on test corpus because the infor-
mation contained in the development corpus is more
similar to the rest of training corpus than informa-
tion on the test set.

We have performed an analysis of the errors pro-
duced for both approaches in the Detection and
Classification of DDI subtask. The errors obtained
are 112 false positives (Fp) and 116 false negatives
(Fn) associated to approach 1, and 111 false posi-
tives (Fp) and 112 false negatives (Fn) to approach
2. Apart from the comments explained in the pre-
vious section about the small number of instances
on the MedLine subset, we think the main problem
is related with the management of long sentences
with complex syntax. These sentences are more dif-
ficult for our approaches because the complexity of
the sentence generates more errors in the tokenizing
and parsing processes affecting the representation of
the instances both in training and test phases. We
show below some false positives and false negatives
examples.

• The effects of ERGOMAR may be potentiated
by triacetyloleandomycin which inhibits the
metabolism of ergotamine. DrugBank. False
negative.

• Prior administration of 4-methylpyrazole (90
mg kg(-1) body weight) was shown to prevent
the conversion of 1,3-difluoro-2-propanol
(100 mg kg(-1) body weight) to (-)-erythro-
fluorocitrate in vivo and to eliminate the
fluoride and citrate elevations seen in 1,3-
difluoro-2-propanol-intoxicated animals Med-
Line. False negative.

• Drug Interactions with Antacids Administra-
tion of 120 mg of fexofenadine hydrochloride
(2 x 60 mg capsule) within 15 minutes of an
aluminum and magnesium containing antacid
(Maalox ) decreased fexofenadine AUC by
41% and cmax by 43%. DrugBank. False pos-
itive.

• Dexamethasone at 10(-10) M or retinyl acetate
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approach 1 Tp Fp Fn total P R F1
Detection of DDI 557 359 422 979 0.608 0.569 0.588
Detection and classification of DDI 490 426 489 979 0.535 0.501 0.517
Score for type mechanism 147 122 155 302 0.546 0.487 0.515
Score for type effect 200 258 160 360 0.437 0.556 0.489
Score for type advice 115 39 106 221 0.747 0.520 0.613
Score for type int 28 7 68 96 0.800 0.292 0.427

Table 2: Test corpus results (approach1).

approach 2 Tp Fp Fn total P R F1
Detection of DDI 631 315 348 979 0.667 0.645 0.656
Detection and classification of DDI 527 419 452 979 0.557 0.538 0.548
Score for type mechanism 146 102 156 302 0.589 0.483 0.531
Score for type effect 210 186 150 360 0.530 0.583 0.556
Score for type advice 139 96 82 221 0.591 0.629 0.610
Score for type int 32 35 64 96 0.478 0.333 0.393

Table 3: Test corpus results (approach2).

approach 1 Tp Fp Fn total P R F1
Detection of DDI: 292 101 105 397 0.743 0.736 0.739
Detection and Classification of DDI: 281 112 116 397 0.715 0.708 0.711
approach 2 Tp Fp Fn total P R F1
Detection of DDI: 296 102 101 397 0.744 0.746 0.745
Detection and Classification of DDI: 285 111 112 397 0.720 0.718 0.719

Table 5: Error analysis with a development corpus.

at about 3 X 10(-9) M inhibits proliferation
stimulated by EGF. MedLine. False positive.

6 Conclusions

In this paper we have shown our approaches for
the Semeval 2013 DDI Extraction challenge. We
have explored different combinations of tree and se-
quence features using the Sequential Minimal Opti-
mization algorithm.

The first approach uses a SVM with 5 categories,
and the second one extracts the final results in two
steps: detection with all the categories, and classifi-
cation on the positive instances. The results are bet-
ter for approach 2 mainly due to the improvement on
the detection subtask because the information from
all the categories is used.

We think some of our errors come from using a
general tool (Stanford parser) to obtain the parse tree

of the sentences. In the future we are going to ex-
plore other biomedical parsers and tokenizers.

With respect to the data used, we think the Med-
Line dataset needs to be greater in order to ob-
tain more significant analysis and results. Our ap-
proaches are especially affected by this issue be-
cause the small number of positive instances on ad-
vice and int categories implies that the algorithm can
not learn to classify new instances accurately. On
the other hand, although n-fold cross validation is
considered as the best model validation technique,
it was time consuming for DDI and need powerful
processors.

Another interesting future work is related with
the application of simplification techniques in order
to solve the problems in the processing of complex
long sentences (Buyko et al., 2011).
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Abstract

The DDIExtraction 2013 task in the SemEval
conference concerns the detection of drug
names and statements of drug-drug interac-
tions (DDI) from text. Extraction of DDIs
is important for providing up-to-date knowl-
edge on adverse interactions between co-
administered drugs. We apply the machine
learning based Turku Event Extraction Sys-
tem to both tasks. We evaluate three fea-
ture sets, syntactic features derived from deep
parsing, enhanced optionally with features de-
rived from DrugBank or from both DrugBank
and MetaMap. TEES achieves F-scores of
60% for the drug name recognition task and
59% for the DDI extraction task.

1 Introduction

Drug-drug interactions (DDI) refer to one drug af-
fecting the function of another when they are co-
administered. These interactions are often adverse,
frequently not well known and a source of poten-
tially life-threatening unintended consequences for
the patients. Databases such as DrugBank and Mi-
cromedex have been developed to store informa-
tion about known DDIs, but at present their cover-
age remains limited and there can be inconsistencies
in supplementary information (Knox et al., 2011;
Wong et al., 2008). Text mining has been proposed
as a solution for providing not only lists of DDIs
but also a connection to the scientific evidence and
supplementary information in the literature (Tari et
al., 2010). Several groups of researchers are devel-
oping text-mining techniques to extract DDIs from

literature and pharmaceutical documents (Tari et al.,
2010; Segura-Bedmar et al., 2011a).

The DDIExtraction 2013 shared task concerns the
detection of drug mentions and statements of DDIs
from unannotated text (Segura-Bedmar et al., 2013).
The first version of the DDIExtraction shared task
was organized in 2011, with 10 teams participat-
ing from various universities (Segura-Bedmar et al.,
2011b). The best result of 65.74% was achieved
by team WBI of Humboldt University of Berlin
(Thomas et al., 2011). University of Turku partic-
ipated also in this task, placing 4th with an F-score
of 62.99%, using the Turku Event Extraction System
(Björne et al., 2011).

The Turku Event Extraction System (TEES)1 is
an open source program for extracting events and re-
lations from biomedical texts. It was originally de-
veloped for extracting events in the BioNLP Shared
Task scheme, and it models event extraction as a
graph generation task, where keywords are nodes
and the event arguments connecting them are edges.
The system can be directly applied to pairwise re-
lation extraction, representing relations as edges and
the words they connect as nodes. The node detection
system is somewhat similar to named entity recog-
nition (NER) tools, and while quite flexible, can in
many tasks exhibit lower performance and higher
processing requirements than dedicated NER sys-
tems.

In the DDIExtraction 2013 task we apply the
Turku Event Extraction system to detecting both
drug name entities (task 9.1) as well as drug-drug
interactions (task 9.2). We evaluate three different

1http://jbjorne.github.com/TEES/
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feature sets for both tasks. As a baseline system deep
syntactic parsing is used to generate large graph-
based feature sets. For additional features, we test
the impact of labeling examples with information
from external sources. We test both the DrugBank
Open Data Drug & Drug Target database (Knox et
al., 2011) as well as the MetaMap tool to enrich the
features derived from the corpus text.

MetaMap is a publicly available program devel-
oped at NLM for automatic mapping of texts to
UMLS Metathesaurus concepts (Aronson, 2001).
The UMLS Metathesaurus is an extensive reposi-
tory of biomedical vocabularies that is derived from
NLM databases and other external sources that con-
tain information about biomedical concepts, syn-
onyms and the relationship among them (Bodenrei-
der, 2004).

The version of TEES used in the 2011 DDIEx-
traction task had been publicly available as an open
source project since July 2012, but as small mod-
ifications were required for compatibility with the
2013 task, we published an updated 2.1 version that
task participants could use. To simplify utilization of
the numerous analyses TEES produces we also pro-
vided our drug-drug interaction predictions freely
available for all DDIExtraction 2013 task partici-
pants in the hope of encouraging further participa-
tion in this interesting shared task.

We demonstrate that TEES has good performance
for both drug name detection as well as drug-drug
interaction detection, achieving an F-score of 60%
in the drug name detection task 9.1 and an F-score of
59% in the drug-drug interaction detection task 9.2.
We show that external information from DrugBank
and MetaMap can considerably improve extraction
performance, but observe that the use of such in-
formation must always depend on the exact require-
ments of each text mining task.

2 Methods

We present a unified approach to drug name and
DDI extraction, utilizing largely the same machine
learning approaches in both tasks. We develop three
variants for tasks 9.1 & 9.2 each, testing the base-
line performance of TEES for these tasks, as well as
the impact of using external databases as additional
training data.

2.1 Turku Event Extraction System

The Turku Event Extraction System is described in
detail in Björne et al. (2012). Here we give a gen-
eral overview about applying the system for the cur-
rent task. TEES processes text in a pipeline of com-
ponents, starting from preprocessing tasks such as
NER and parsing and proceeding to the multiple,
consecutive steps of event extraction. As tasks 9.1
and 9.2 are independent of each other the entity and
interaction detection components of TEES are used
independently, and for preprocessing, only the pars-
ing is done (See Figure 1).

2.2 Training data preparation

TEES is a machine learning system based on sup-
port vector machines (SVM) (Tsochantaridis et al.,
2005). To train the system for a new task, two
datasets are required: a training set on which the
SVM model is trained, and a development set on
which the newly trained model is tested to deter-
mine parameter settings for optimal performance
(See Figure 2). The optimal model can then be
used to detect what it was trained for on unannotated
datasets, such as the hidden shared task test set.

The DDIExtraction 2013 corpus consists of two
parts: A training corpus used for system develop-
ment and a test corpus for evaluating the participat-
ing systems. The annotation of the test corpus is not
revealed to task participants. To develop the system,
we estimate performance on the training corpus us-
ing 10-fold cross validation. To provide the datasets
TEES requires, the training corpus is randomly di-
vided (on the document level) into ten parts. For
predicting drug names or DDIs for each part, seven
of the remaining nine parts are used as a training
set and two as a development set for parameter opti-
mization. When producing the final models for clas-
sifying the test corpus, five parts of the training cor-
pus are used for training and the other five for pa-
rameter optimization. In both cases, the parameter
optimization set is merged with the training set when
producing the final model for classifying the test set.

The DDIExtraction 2013 corpus is provided in an
XML format originally introduced as a unified for-
mat for several pairwise protein-protein interaction
(PPI) corpora (Pyysalo et al., 2008). TEES uses a
variant of this format as its internal data representa-
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Figure 1: TEES graph representation for drug name and interaction extraction, with example sentence DDI-
DrugBank.d372.s2 from the DDIExtraction 2013 training corpus. A) Both the annotation (above the sentence) and the
syntactic parse (below the sentence) are represented as graphs. Tokens form the nodes and dependencies the edges of
the syntactic parse graph. Drug names form the nodes and DDIs the edges of the annotation graph. Drug name entities
are linked to their syntactic head tokens, connecting the two graphs and allowing the parse to be used as a source of
features. For DDI edges, most features are derived from the shortest path of dependencies connecting the two drug
entities. B) For DDI extraction, one example is generated for each interaction type for each undirected pair of drug
entities. The gray neg class edge is a negative example.
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Figure 2: DDIExtraction 2013 corpus. A) To evaluate performance, and to provide analyses for the full training
corpus, the training corpus is divided for 10-fold cross validation. B) Each of the ten parts is classified using seven of
the remaining parts for training the model and the last two for optimizing parameters. After parameter optimization,
all nine parts are used to train the model (with the optimal parameters) for classifying the test set. C) To classify the
hidden DDIExtraction 2013 corpus half of the training corpus is used for training and the other half for determining
optimal parameters. The test corpus is finally classified with a model trained using the full training corpus.
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tion. While close to the DDIExtraction 2013 format,
some differences exist, so we preprocess the corpora
for compatibility with TEES. Namely, ddi elements
are renamed as interaction elements, entity elements
in task 9.2 are tagged with the given attribute to mark
them as pre-annotated data for TEES and all charac-
ter offsets are converted to the TEES format by in-
creasing the end offset by one, resulting in spans de-
noted with the beginning character and end charac-
ter plus one, a common convention in programming
languages such as Java and Python.

Before use, all DDIExtraction 2013 corpora are
parsed with the TEES preprocessing pipeline, using
the BLLIP parser with David McClosky’s biomodel
to produce a Penn-tree style parse which is con-
verted with the Stanford parser tools to the collapsed
CC processed Stanford dependency scheme (Char-
niak and Johnson, 2005; McClosky, 2010; de Marn-
effe et al., 2006).

2.3 Drug name recognition with TEES

For drug name recognition the TEES entity detector
module is used. Baseline syntactic features (model
1) are generated from the parse, using both informa-
tion on the tokens and their linear context, as well
as dependency chains starting from the entity head
token. External data is added to the head token fea-
tures, from where it is combined into more complex
features. One example is generated for each token in
the sentence, and these are classified into negatives
or one of the positive classes.

As a new feature we generate all substrings start-
ing from the first and last characters of the drug
name, with the intention of detecting common pre-
fixes and suffixes among the drug names.

2.4 Drug-drug interaction detection with TEES

For DDI extraction we use the TEES edge detec-
tor module. DDIs are typed, undirected edges, so
one example is generated for each undirected pair of
drug name entities present in the sentence (See Fig-
ure 1). The baseline syntactic features (model 1) are
generated mostly from the shortest path of depen-
dencies connecting the pair of drug name entities’
head tokens. From this shortest path several feature
groups are generated, including N-grams of various
lengths, governor–dependent information for depen-
dencies etc. External data is added into the two drug

name entities, and combined into the path features.
We also use the TEES modification from DDIEx-

traction 2011 task where conj and dependencies are
ignored when calculating the shortest path, with the
aim of including more of the relevant interaction
words in the path.

2.5 Using DrugBank for Domain Knowledge

DrugBank2 is a public database of information on
drugs and drug targets. We use the downloadable
XML version of the database.

For drug name recognition, for each candidate to-
ken, we add as features its presence as a known
drug name in DrugBank and the synonym, brand,
group and category annotations this drug may have.
We also mark whether the candidate token exactly
equals an annotation of one of these types, indicating
cases where the token is e.g. a known brand name.

For DDI extraction, we mark as a feature whether
the drug name pair is listed in DrugBank as having
interactions or not. We also mark if one of the drug
names is not listed in DrugBank.

2.6 Using MetaMap for Domain Knowledge

The MetaMap program has been used extensively
for a wide array of BioNLP studies, such as auto-
matic indexing of biomedical literature and concept-
based text summarization (Reeve et al., 2007;
Quanzhi and Yi-Fang Brook, 2006). For drug-
related information extraction, two recent applica-
tions demonstrated that integrating the MetaMap
program to their existing systems produces high
overall performance in i.) identification and clas-
sification of the pharmaceutical substances and ii.)
extraction of drug indication information (Segura-
Bedmar et al., 2008; Fung et al., 2013).

MetaMap finds Metathesaurus concepts by per-
forming a shallow syntactic analysis of the input
text, producing a set of noun phrases. The noun
phrases are then used to generate sets of variants
which are consequently looked up from the Metathe-
saurus concepts. Matching concepts are evaluated
against the original text and the strength of the map-
pings are calculated. The candidates are finally
combined and the final scores are computed, where
the highest score of a complete mapping represents

2http://www.drugbank.ca/
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MetaMap’s interpretation of the text.
The MetaMap program can be run both lo-

cally and remotely3. We ran the current version,
MetaMap2012, remotely via the batch mode facil-
ity by converting the sentences of the DDIExtrac-
tion corpora into the MetaMap input format. Many
of the applications that integrate MetaMap into their
systems use the default settings that are claimed to
be suitable for general purposes. However, we ap-
plied different options with the aim of increasing
the coverage of Metathesaurus concepts found by
MetaMap. The parameter set that influences the
performance of MetaMap included; using a relaxed
model, selecting the NLM2012AB Metathesaurus
version, including all derivational variants, enabling
unique acronym/abbreviation variants only, allow-
ing candidates from one or two character words, pre-
ferring multiple concepts and using word sense dis-
ambiguation.

The Relaxed Model is provided by MetaMap in
addition to the strict model which is offered as a
default setting in which all types of filterings are
applied. However, we chose the relaxed model in
which only manual and lexical filterings are used.
While the strict model is most appropriate for exper-
iments that require the highest accuracy, it covers
only 53% of the Metathesaurus strings. As we con-
sider high coverage of concepts an important factor,
we applied the relaxed model which consists of up
to 83% of Metathesaurus strings.

The versions of Metathesaurus, Base, USAbase
and NLM, provided with MetaMap are different
in their Metathesaurus coverage and the license
type required for using vocabulary sources. The
NLM2012AB version which is offered at no cost
for research purposes and covers all of the provided
Metathesaurus was used in our work.

Variants, such as inflectional and derivational
variants, are computed by MetaMap to account for
the textual variation in the text. With this setting,
many types of variants are generated recursively, and
only acronyms and abbreviations are restricted to the
unique ones. In addition, the candidates also include
words that can be prepositions, conjunctions or de-
terminers if they occur often enough in Metathe-
saurus.

3http://metamap.nlm.nih.gov/

Prefer multiple concepts causes MetaMap to
score the mappings with more concepts higher than
those with fewer concepts. This option is useful for
discovering higher-order relationships among con-
cepts found in the text and as such is assumed to be
helpful for discovering the DDIs.

Word sense disambiguation attempts to solve lex-
ical ambiguities by identifying the correct meaning
of a word based on its context. By using this option
in MetaMap, the program attempts to solve the am-
biguities among equally scoring concepts by choos-
ing the concept(s) based on semantic type.

We use the XML version of the MetaMap out-
put which is post-processed by TEES to extract rel-
evant features; candidate concepts, preferred con-
cepts, CUI (Concepts Unique Identifier), score, se-
mantic types and sources.

For drug name recognition, these are added as bi-
nary features for the candidate token, with the ex-
ception of the score, the value of which is normal-
ized into the [0, 1] range. For DDI extraction, the
binary features are added for the two drug names,
and combined into the shortest path features.

2.7 Public analyses
The TEES 2.0 system used in DDIExtraction 2011
Shared Task has been public since summer 2012.
While only small modifications are needed to make
the DDIExtraction 2013 corpus usable with the
TEES system, these can be complicated for new
users. Therefore, to make sure our public DDIEx-
traction 2011 system is usable not only in theory,
but easy enough to use in practice, we updated the
system into the 2.1 version capable of automatically
converting the DDIExtraction 2013 corpus and pro-
vided with precalculated models for DDI prediction.

To improve usability, we provided fully precal-
culated analysis files for the DDIExtraction 2013
corpus, produced using TEES 2.1. These analyses
contain the TEES drug-drug interaction predictions,
BLLIP Penn tree-bank style parses (using the Mc-
Closky biomodel), Stanford dependency parses (in
the collapsed CC processed format) and syntactic
head offsets for drug entities.

The analyses were calculated with the base-
line TEES 2.1 system, without using the external
datasets which were tested only later. The analy-
ses were provided for task 9.2, which is the direct

655



continuation of the 2011 task for which the public
TEES system was already available.

The analyses for the DDIExtraction 2013 corpus
were made available on February 25th 2013. De-
spite being published quite late in the training pe-
riod there was interest in this supporting data, and
before the task result submission deadline the analy-
ses were downloaded 14 times. The test set analyses
were provided for registered DDIExtraction 2013
participants during the test period.

3 Results and Discussion

Three feature sets were used to produce the results.
The baseline set (model 1) consisted of the TEES
entity and edge detectors which build a large feature
set from syntactic parses. Model 2 adds DrugBank
features to this baseline and model 3 further extends
model 2 with MetaMap information.

Three runs using these models were submitted for
both tasks 9.1 and 9.2. The results indicate the sys-
tem was capable of detecting both drug names and
drug-drug interactions with reasonable performance.
The best F-scores were 60% for task 9.1 drug name
detection and 59% for task 9.2 DDI extraction.

As task 9.1 is completely new, and task 9.2 was
extended from the 2011 DDI extraction task with
typed interactions and MEDLINE abstracts, the cur-
rent results are not directly comparable with the
2011 ones. The evaluation metric closest to the 2011
task is task 9.2 DDI detection regardless of type, us-
ing only the DrugBank subset of the corpus. With
this metric, our system achieved an F-score of 72%
in 2013 vs. 62.99% in 2011, which may indicate
higher baseline performance, potentially influenced
by a larger training dataset.

3.1 Drug name recognition

The decision to not attempt detection of more than
one token per drug entity proved to be not too detri-
mental to the final performance. In the training cor-
pus, there are 14,765 drug name entities of which
only 2,768 (18.7%) consist of more than one to-
ken, and of these only 38 are disjoint (not form-
ing a continuous span). For our best performing
drug name detection model (number 3) typed, par-
tial span matching was at 78% F-score vs. typed,
strict span matching at 65%. Therefore, detecting

only a single token per entity resulted in a maximum
loss of 13 percentage points (pp), but considering
that a scheme designed to detect multi-token entities
would be inherently more complex, potentially hav-
ing lower performance, and that not all of the spans
would be correctly detected, we feel this tradeoff in
performance is worth it for the considerably more
simple system design it allows.

Adding the external datasets to the classifier mod-
els proved to have a considerable impact on the task
performance (See Table 1). The baseline system
reached an F-score of 47% which was increased by
9 percentage points when including DrugBank infor-
mation and a further 4 percentage points when also
MetaMap information was included.

As seen from the type-specific F-scores (on the
training corpus), brand class entity detection was
improved by 30 pp when DrugBank information was
added, and increased slightly further with MetaMap
information (See Table 2). DrugBank lists brand
names for many drugs, and when this information
is added as a feature for each detected drug, deter-
mining the type of the drug is greatly improved.

The official primary metric in both tasks 9.1 and
9.2 is a macro-averaged F-score, which gives equal
weight to performance in each class, emphasizing
the importance of detecting also the difficult, small
classes. In particular, the class drug n (active sub-
stances not approved for use in humans for medical
purposes) was very difficult to detect for our system.
While performance remained low for all three mod-
els, including the MetaMap information gave a large
relative increase in drug n detection performance,
increasing it from 2% F-score to 8% (See Table 2).
With the macro-averaged overall performance, this
resulted in model three with the MetaMap informa-
tion having notably higher performance.

We hypothesized that the drug n category might
be hard to detect as it could contain entities simi-
lar to the drug category, which may differ only by
approval for use in humans, information that is not
likely present in the corpus. Analysis of classifi-
cation errors (See Table 3) confirms this hypothe-
sis, showing that drug n entities are by far the most
commonly misclassified ones. Addition of Drug-
Bank and MetaMap information considerably re-
duces drug n misclassifications into the drug cate-
gory.
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M task P R F
1 9.1 0.48 (0.70) 0.46 (0.51) 0.47 (0.59)
2 9.1 0.6 (0.77) 0.52 (0.59) 0.56 (0.67)
3 9.1 0.69 (0.76) 0.54 (0.59) 0.6 (0.66)
1 9.2 0.73 (0.69) 0.47 (0.44) 0.57 (0.54)
2 9.2 0.76 (0.69) 0.48 (0.45) 0.59 (0.55)
3 9.2 0.73 (0.68) 0.48 (0.44) 0.58 (0.53)

Table 1: Official results for TEES in the DDIExtrac-
tion 2013 task and in parentheses corresponding 10-fold
cross-validation results on the training corpus. The three
models (M) used are 1) baseline syntactic features, 2)
baseline with DrugBank features and 3) baseline with
both DrugBank and MetaMap features.

Task rules allowed using the test corpus of task
9.2 (with annotated entities) as additional training
data for task 9.1. Due to time constraints we did not
use it for training, but it is likely that performance
could be further enhanced by using it.

3.2 Drug-drug interaction extraction
Performance of the three feature sets in the 9.2 DDI
extraction task are much closer than in the 9.1 drug
name recognition task. Still, additional informa-
tion from DrugBank and MetaMap slightly increase
performance, but DrugBank alone outperforms us-
ing both MetaMap and DrugBank. With the perfor-
mance difference range between the models being
only 2 pp, we think the results remain inconclusive.

That external data did not provide a further in-
crease might indicate that drug-drug interaction de-
tection is mostly a matter of interpreting the syn-
tactic parse, whereas drug-name recognition benefits
more from dictionary matching methods.

As with task 9.1, we analyse the classification er-
rors on the 10-fold classification performed on the
training dataset for which annotations are publicly
available (See Table 4). None of the DDI classes are
as hard to detect as the drug name class drug n, but
the int class has much lower performance than the
other classes, with most examples classified incor-
rectly as negatives.

4 Conclusions

We applied the Turku Event Extraction System 2.1
to detection of both drug names and drug-drug in-
teractions in the DDIExtraction 2013 task. The sys-

model drug brand group drug n
1 0.72 0.6 0.48 0.02
2 0.78 0.9 0.49 0.02
3 0.78 0.91 0.48 0.08

Table 2: Per-class micro-average scores for the drug
name recognition task 9.1.

tem showed good performance for both tasks, but we
must consider that name and interaction detection
were evaluated in isolation. In real world text min-
ing tasks, these steps will be consecutive and as such
result in lower overall performance. TEES achieves
good performance using deep syntactic parsing, but
this is a computationally expensive processing step.
When drug names are detected with TEES, all in-
put sentences need to be parsed, but if some other
method is used for drug name recognition, TEES can
parse just the sentences with drug names, as only
they can potentially contain DDIs, enabling much
faster DDI extraction.

We showed that adding external data from the
DrugBank database and from MetaMap prepro-
cessing can considerably increase extraction perfor-
mance. However, we assume this makes the sys-
tem more dependent on such data being available
for candidate drug names and DDIs in the text be-
ing processed, potentially making it harder to detect
completely new names and interactions. Therefore,
using external data is likely to introduce a tradeoff
of higher performance vs. wider detection. Use of
such data should be chosen according to the task, as
in some cases the goal is to retrieve documents with
known drugs and interactions, in others to maximize
detection of information not yet in the databases.

As with previous TEES versions, we will pro-
vide our source code freely available under an open
source license at the TEES project repository4. We
will also include a wrapper for using the MetaMap
tool via the TEES preprocessing pipeline, allowing
it to be easily integrated into event and relation ex-
traction tasks.

Acknowledgments

We thank CSC — IT Center for Science Ltd, Espoo,
Finland for providing computational resources.

4http://jbjorne.github.com/TEES/

657



neg brand drug n group drug
neg 99.57

99.60
99.60

0.04
0.03
0.03

0.00
0.00
0.01

0.15
0.14
0.14

0.24
0.22
0.22

brand 21.43
8.91
8.63

67.92
89.70
89.98

0.07
0.07
0.07

0.63
0.21
0.28

9.95
1.11
1.04

drug n 49.70
63.27
65.27

2.79
0.00
0.00

12.18
15.37
15.37

0.40
1.00
1.20

34.93
20.36
18.16

group 13.80
14.13
14.04

0.12
0.00
0.06

0.03
0.03
0.06

85.15
84.97
85.00

0.90
0.87
0.84

drug 6.71
5.60
6.20

0.69
0.27
0.32

0.10
0.08
0.08

0.75
0.79
0.69

91.75
93.27
92.72

Table 3: Task 9.1 drug name classification errors for the training corpus. Each cell in the table lists from top to
bottom results for models one to three (baseline, baseline+DrugBank, baseline+DrugBank+MetaMap). The results
are percentage of SVM examples of each class (vertical) classified into each potential class (horizontal).

neg int advise effect mechanism
neg 97.27

97.32
97.40

0.02
0.03
0.03

0.52
0.49
0.47

1.09
1.06
1.04

1.09
1.09
1.05

int 61.70
61.70
70.74

22.87
23.40
19.15

0.53
0.00
0.00

9.57
8.51
7.45

5.32
6.38
2.66

advise 34.50
34.02
33.54

0.12
0.24
0.24

60.17
60.05
60.77

4.24
4.36
4.36

0.97
1.33
1.09

effect 38.59
38.41
39.18

0.41
0.41
0.41

3.85
3.73
3.68

54.06
54.30
53.59

3.08
3.14
3.14

mechanism 50.34
48.75
52.16

0.15
0.15
0.23

2.05
1.82
1.29

5.08
5.08
5.00

42.38
44.20
41.32

Table 4: Task 9.2 drug-drug interaction classification errors for the training corpus. Each cell in the table lists from top
to bottom results for models one to three (baseline, baseline+DrugBank, baseline+DrugBank+MetaMap). The results
are percentage of SVM examples of each class (vertical) classified into each potential class (horizontal).
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Abstract

For participating in the SemEval 2013 chal-
lenge of recognition and classification of
drug names, we adapted our chemical en-
tity recognition approach consisting in Condi-
tional Random Fields for recognizing chemi-
cal terms and lexical similarity for entity res-
olution to the ChEBI ontology. We obtained
promising results, with a best F-measure of
0.81 for the partial matching task when us-
ing post-processing. Using only Conditional
Random Fields the results are slightly lower,
achieving still a good result in terms of F-
measure. Using the ChEBI ontology allowed
a significant improvement in precision (best
precision of 0.93 in partial matching task),
which indicates that taking advantage of an
ontology can be extremely useful for enhanc-
ing chemical entity recognition.

1 Introduction

Most chemical named entity recognition systems
can be classified in two approaches: dictionary
based and machine learning based approaches. Dic-
tionary based approaches are usually easier to im-
plement and maintain, but require a reference chem-
ical term dictionary and are dependent on its com-
pleteness and quality. The availability of public
chemical databases has been an issue until recently,
when several publicly available databases such as
PubChem (Wang et al., 2009), DrugBank (Wishart
et al., 2006) and ChEBI (Degtyarenko et al., 2007)
were released. An example of a popular system that
uses this approach is Whatizit (Rebholz-Schuhmann
et al., 2008). Machine learning based approaches

are not limited to a terminology and are thus better
suited for finding novel chemical terms that are yet
to be inserted in reference databases. However this
approach requires training data for a classifier to be
able to successfully learn and perform the chemi-
cal entity recognition task. Some methods combine
both approaches and thus are hybrid systems that
aim to take the best out of both approaches (Jessop
et al., 2011; Rocktäschel et al., 2012).

An annotated corpus of patent documents was re-
leased by ChEBI, and using such corpus as train-
ing data we developed an chemical entity recogni-
tion system (Grego et al., 2009) that uses a ma-
chine learning approach based on Conditional Ran-
dom Fields (CRF) (Lafferty et al., 2001). We fur-
thermore expanded our method to allow resolution
of recognized entities to the ChEBI ontology (Grego
et al., 2012).

This paper describes how our system (Grego et
al., 2012) was adapted to perform the task of recog-
nition and classification of drug names, and presents
the results obtained in the task 9.1 of the 7th Interna-
tional Workshop on Semantic Evaluation (SemEval
2013).

2 Task and Dataset

The Task 9 of SemEval 2013 involved two sub-tasks:
(9.1) recognition and classification of drug names,
and (9.2) extraction of drug-drug interactions from
Biomedical Texts (SemEval, 2013). The recognition
and classification of drug names (Task 9.1) com-
prises two steps. First is chemical named entity
recognition, that consists in finding in a sentence
the offsets for the start and end of a chemical entity.
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An exact match is achieved by correctly identifying
both the start and end offset, as curators manually
provided them. If there is a mismatch in the offsets
but there is some overlap with a manual annotation,
then it is considered a partial match, otherwise it is
a recognition error.

The second step consists in classifying each rec-
ognized entity in one of four possible entity types:
i) Drug is any pharmaceutical product approved for
human use; ii) Brand is a drug that was first devel-
oped by a pharmaceutical company; iii) Group refers
to a class or group of drugs; iv) Drug n is an ac-
tive substance that has not been approved for human
use. Thus, the evaluation takes into account not only
entity recognition, but also the assigned type. Type
matching assessment considers the entity type evalu-
ation from partial matching entity recognition, while
strict matching considers the entity type evaluation
from exact matching.

For training, the DDI corpus dataset was provided
(Segura-Bedmar et al., 2006). This dataset contains
two sub-datasets. One that consists of MedLine ab-
stracts, and other that contains DrugBank abstracts.
An unannotated test dataset was provided for testing
and evaluating the systems.

3 CRF entity recognition

Our method uses CRFs for building probabilis-
tic models based on training datasets. We used
the MALLET (McCallum, 2002) implementation of
CRFs. MALLET is a Java-based package for sta-
tistical natural language processing, document clas-
sification, clustering, topic modeling, information
extraction, and other machine learning applications
to text, which includes an implementation of linear
chain CRFs.

A required first step in our method in the tok-
enization of the input text. For this task we have
used a specifically adapted tokenizer for chemical
text adapted from an open source project (Corbett et
al., 2007).

Each token is then represented as a set of features.
We kept using a set of features derived in our previ-
ous work (Grego et al., 2009), which includes for
each token:

Stem: The stem of the token.

Prefix: The first three characters of the token.

Suffix: The last three characters of the token.

Number: Boolean that indicates if the token con-
tains digits.

In addition to the set of features, each token is also
given a label in accordance to the training data:

NO: A non-chemical token.

NE: A chemical entity represented by a single to-
ken.

S-NE: The first token of a multi-token chemical en-
tity.

M-NE: A middle token of a multi-token chemi-
cal entity (only exists for entities composed by
three or more tokens).

E-NE: The last token of a multi-token chemical en-
tity.

The task of entity recognition will be the assign-
ment of such labels to new, unannotated text, based
on a model. The assigned label allows for named
entities to be recognized and offsets provided.

For creating a model, it is required as input a set
of annotated documents. Our method was initially
developed using an annotated patent document cor-
pus released to the public by the ChEBI team. This
corpus can be found at 1, and we decided to keep us-
ing it as training data for a model. Together with this
corpus, the DDI corpus training dataset provided for
the task was used. The model produced by using
this combination of training data, that we called All
model, will be suited for general purpose chemical
entity recognition.

We then prepared four datasets based on the DDI
corpus dataset but containing only one type of anno-
tated entities each. With that training data we pre-
pared four more models, each trained only with one
kind on entity type. Thus we have in total prepared
five models:

All: A model trained with all entity types of the DDI
corpus dataset, and the ChEBI released patent
dataset.

1http://chebi.cvs.sourceforge.net/
viewvc/chebi/chapati/patentsGoldStandard/
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Drug: A model trained only with the entities of type
drug in the DDI corpus dataset.

Brand: A model trained only with the entities of
type brand in the DDI corpus dataset.

Group: A model trained only with the entities of
type group in the DDI corpus dataset.

Drug n: A model trained only with the entities of
type drug n in the DDI corpus dataset.

Using the type specific models it is possible to
annotate text with only one entity type. Thus our
method now has the capability of entity type classifi-
cation in addition to named entity recognition, using
these type specific models.

4 ChEBI resolution

After having recognized the named chemical enti-
ties, our method tries to perform their resolution to
the ChEBI ontology. ChEBI (Chemical Entities of
Biological Interest) is a freely available dictionary
of small molecular entities. In addition to molecular
entities, ChEBI contains groups (parts of molecular
entities) and classes of entities, allowing for an onto-
logical classification that specifies the relationships
between molecular entities or classes of entities and
their parents and/or children. The ontology structure
provides an integrated overview of the relationships
between chemical entities, both structural and func-
tional.

The resolution method takes as input the string
identified as being a chemical compound name and
returns the most relevant ChEBI identifier along
with a confidence score.

To perform the search for the most likely ChEBI
term for a given entity an adaptation of FiGO, a
lexical similarity method (Couto et al., 2005). Our
adaptation compares the constituent words in the in-
put string with the constituent words of each ChEBI
term, to which different weights have been assigned
according to its frequency in the ontology vocabu-
lary (Grego et al., 2012). A resolution score between
0 and 1 is provided with the mapping, which corre-
sponds to a maximum value in the case of a ChEBI
term that has the exact name as the input string, and
is lower otherwise.

5 Post-processing

To further improve the quality of the annotations
provided by our method, some naı̈ve rules were cre-
ated and external resources used.

One of the rules implemented is derived from the
resolution process, and corresponds in classifying
an entity as type Group if its ChEBI name is plu-
ral. This is because ChEBI follows the convention
of naming its terms always as a singular name, ex-
cept for terms that represent classes of entities where
a plural name can be used.

We have also used other resources in the post-
processing besides ChEBI, namely a list of brand
names extracted from DrugBank. This list of brand
names was used to check if a given entity was part
of that list, and if it was the entity should be of the
type Brand.

A common English words list was also used as ex-
ternal resource in post-processing. If a recognized
chemical entity was part of this list then it was a
recognition error and should be filtered out and not
be considered a chemical entity.

Some simple rules were also implemented in an
effort to improve the quality of the annotations. For
instance, if the recognized entity was found to be
composed entirely by digits, then it should be fil-
tered out because it is most certainly an annotation
error. Also, if an entity starts or ends with a char-
acter such as “*”, “-”, “.”, “,” or “’”, then those
characters should be removed from the entity and the
offsets corrected accordingly.

With such naı̈ve but efficient rules it was expected
that the performance of entity recognition would im-
prove. An overview of the system architecture is
provided in Figure 1.

6 Testing runs

Using different combinations of the described meth-
ods, three runs were submitted for evaluation and are
now described.

Run 1: This run uses all of the described methods.
Entity recognition is performed using all mod-
els, and the type classification is performed by
using the type specific models in the following
priority: if an entity was recognized using the
Drug n model, then type is Drug n, else if it
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Figure 1: Overview of the system architecture. Based on
annotated corpus, CRF models are created and used to
annotate new documents.

was recognized using the Brand model, then
type is Brand, else if it was recognized using
the Group model, then type is Group, else and
finally it is assigned the type Drug. Resolution
to ChEBI is performed and all of the described
post-processing rules applied.

Run 2: In this run only the classifiers are used. This
means that the entity recognition is performed
using all models, and the type classification is
performed by using the type specific models as
described in Run 1. However no extra process-
ing is performed and the results are submitted
as obtained directly from the classifiers.

Run 3: This run performs entity recognition in
a similar way described in run 1, and per-
forms entity recognition to the ChEBI ontol-
ogy. However, only the entities successfully
mapped to ChEBI, with a resolution score of
at least 0.8, are considered. All the other en-
tities are discarded in this phase. After reso-
lution and the filtering of entities according to

the resolution to ChEBI, all the described post-
processing rules are applied in a similar way to
Run 1.

7 Results and Discussion

The official evaluation results are presented in Ta-
ble 1. We can observe that the obtained results are
better for the DrugBank dataset than for the Med-
Line dataset. This may have happened because the
DrugBank dataset is four times larger than the Med-
Line dataset, but also because while the DrugBank
abstracts are quite focused in drug descriptions and
use mostly systematic names, the MedLine ones are
usually more generic and make more extensive use
of trivial drug names. We obtained for the Run 1 a
top F-measure of 0.81 in the full dataset for a par-
tial matching assessment, and that value decreased
to 0.78 when an exact matching assessment is con-
sidered. The values are very close, which means that
our method is being able to efficiently find the cor-
rect offsets of the entities. However the F-measure
decreases to 0.69 for partial matching and 0.66 for
exact matching when the assignment of the entity
type is considered. This means that there is room to
improve in the task of classifying the chemical enti-
ties to the correct entity type.

Run 2 obtained results very similar to Run 1, only
slightly less F-measure. The difference between
those two runs was that Run 2 used only the classi-
fiers, while Run 1 used rules and external resources
in an effort to improve the results. We can thus con-
clude that the classifiers alone produce already good
results and more sophisticated post-processing is re-
quired to obtain significant performance gains. Our
post-processing was very simple as explained ear-
lier, and can only slightly improve the results ob-
tained with the CRF classifiers alone.

Run 3 obtained improved precision in all assess-
ments. In this run only the entities that were success-
fully mapped to ChEBI were considered, and thus
the precision of recognition was the best of our runs.
This is because ChEBI contains high quality, man-
ually validated chemical terms. If a recognized en-
tity can be successfully mapped to this data source,
then there is a good indication that it is, in fact, a
valid chemical entity. However F-measure has de-
creased because of a loss in recall. ChEBI is still a
young project containing slightly over 30,000 chem-
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Assessment Run MedLine Dataset DrugBank Dataset Full Dataset
P R F1 P R F1 P R F1

Strict matching
1 0.6 0.54 0.57 0.82 0.72 0.77 0.7 0.62 0.66
2 0.54 0.54 0.54 0.82 0.73 0.77 0.65 0.62 0.64
3 0.66 0.48 0.56 0.83 0.58 0.68 0.73 0.52 0.61

Exact matching
1 0.78 0.7 0.74 0.89 0.78 0.83 0.83 0.74 0.78
2 0.73 0.74 0.73 0.88 0.78 0.83 0.79 0.76 0.77
3 0.82 0.6 0.69 0.91 0.63 0.74 0.86 0.61 0.72

Partial matching
1 0.81 0.73 0.77 0.91 0.8 0.85 0.86 0.76 0.81
2 0.76 0.77 0.76 0.91 0.8 0.85 0.82 0.78 0.8
3 0.86 0.63 0.72 0.93 0.65 0.76 0.89 0.64 0.74

Type matching
1 0.64 0.58 0.61 0.85 0.75 0.8 0.73 0.65 0.69
2 0.57 0.58 0.58 0.85 0.75 0.8 0.69 0.66 0.67
3 0.71 0.52 0.6 0.87 0.61 0.71 0.78 0.56 0.65

Table 1: Results obtained in Task 9.1 for the different assessments. Exact and Partial matching do not consider the
entity type, while Strict and Type matching consider the entity type for Exact and Partial matching entity recognition
respectively.

Entity Type Run MedLine Dataset DrugBank Dataset Full Dataset
P R F1 P R F1 P R F1

Drug
1 0.58 0.82 0.68 0.85 0.78 0.82 0.69 0.8 0.74
2 0.51 0.82 0.63 0.83 0.81 0.82 0.64 0.82 0.72
3 0.66 0.74 0.7 0.88 0.67 0.76 0.75 0.7 0.73

Brand
1 1 0.5 0.67 0.77 0.45 0.57 0.79 0.46 0.58
2 0.67 0.33 0.44 0.91 0.4 0.55 0.88 0.39 0.54
3 1 0.5 0.67 0.65 0.21 0.31 0.7 0.24 0.35

Group
1 0.7 0.54 0.61 0.82 0.85 0.83 0.76 0.67 0.71
2 0.64 0.56 0.6 0.82 0.83 0.82 0.72 0.67 0.7
3 0.7 0.47 0.56 0.83 0.69 0.76 0.76 0.56 0.65

Drug n
1 0.48 0.11 0.18 0 0 0 0.42 0.11 0.17
2 0.5 0.12 0.2 0 0 0 0.42 0.12 0.18
3 0.48 0.1 0.17 0 0 0 0.41 0.1 0.16

Table 2: Results obtained in Task 9.1 for each entity type. In this evaluation only the entities of a specific type are
considered at a time.

Run MedLine Dataset DrugBank Dataset Full Dataset
P R F1 P R F1 P R F1

1 0.69 0.50 0.58 0.61 0.52 0.56 0.67 0.51 0.58
2 0.58 0.46 0.51 0.64 0.51 0.57 0.67 0.50 0.57
3 0.71 0.45 0.55 0.59 0.39 0.47 0.66 0.4 0.5

Table 3: Macro-average measures obtained for each run.
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ical entities, which is still a low amount of entities
when compared with other chemical databases (for
example, PubChem contains more than 10 times that
amount). However ChEBI is growing at a steady
pace and we believe its coverage will keep increas-
ing while maintaining the high quality that allows
for an excellent precision. Thus, as ChEBI evolves,
our approach will mantain the high levels of preci-
sion but with a lower reduction in recall.

ChEBI is not only a chemical dictionary, but
an ontology. This allows for a comparison recog-
nized entities through semantic similarity measures
that can be used to further enhance chemical en-
tity recognition (Ferreira and Couto , 2010; Couto
and Silva , 2011). This comparison can also be ex-
tremely useful in other task such as drug-drug inter-
action extraction. Moreover, even if with a relatively
small ChEBI, it can be possible to increase coverage
by integrating other available resources using Ontol-
ogy Matching techniques (Faria et al., 2012).

In Table 2 we have the official results obtained
for each entity type, and we can observe that our
method is efficient in correctly classifying the Drug
and Group types, where it achieves an F-measure
of 0.74 and 0.71 correspondingly. However our
method has some difficulties in correctly classify-
ing entities of the Brand type, where an F-measure
of 0.58 was obtained. The Drug n entity type has
proven to be a very challenging type to be correctly
classified, and our system failed the correct classi-
fication of this type in most situations. This is pos-
sibly because the percentage of entities of this type
is very limited, and also because the difference be-
tween this type and the Drug type is the fact that
the later has been approved for human use, while
the former has not. The feature set used cannot ef-
ficiently discriminate this information and external
information about drug approval for human usage
must be used for efficient detection of this type.

Overall, Run 1 has obtained the best results. How-
ever, the results from Run 2 have been very similar,
which shows that the classifiers have been success-
ful and the post-processing of Run 1 has been mini-
mal. Run 3 was designed for high precision, because
only the entities successfully mapped to the ChEBI
ontology were considered. It does improve the ob-
tained precision, but suffers a drop in recall. Table 3
presents the macro-average measures obtained for

each run.

8 Conclusions

This paper presents our participation in the 7th In-
ternational Workshop on Semantic Evaluation (Se-
mEval 2013) using a CRF-based chemical entity
recognition method and a lexical similarity based
resolution method. We prepared type-specific CRF
models to allow both recognition and type classifi-
cation of the chemical entities. Mapping of the en-
tities to the ChEBI ontology was performed using
a lexical similarity based method, and several post-
processing rules using external resources where im-
plemented.

We submitted different runs on annotated test data
using different combination of such methods, and
obtained a best precision of 0.89 and a best F-
measure of 0.81 in the entity recognition task. For
the task of entity recognitions and classification we
have obtained a best precision of 0.78 and a best F-
measure of 0.69. We concluded that the classifiers
provide already good results by their own, that can
be slightly improved by using some naı̈ve external
resources and rules.

However, using ChEBI allows for a significant in-
crease of precision, which is encouraging. We be-
lieve this result is a good indication that as ChEBI
matures, the methods that take advantage of its on-
tology structure for entity recognition and classifica-
tion will benefit more from its usage, increasing the
F-measure obtained in the task.
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Abstract 

We describe our system for the DDIExtraction-2013 
shared task of classifying Drug-Drug interactions 
(DDIs) given labeled drug mentions. The challenge 
called for a five-way classification of all drug pairs in 
each sentence: a drug pair is either non-interacting, or 
interacting as one of four types. Our approach begins 
with the use of a two-stage weighted SVM classifier 
to handle the highly unbalanced class distribution: the 
first stage for a binary classification of drug pairs as 
interacting or non-interacting, and the second stage for 
further classification of interacting pairs from the first 
stage into one of the four interacting types. Our SVM 
features exploit stemmed words, lemmas, bigrams, 
part of speech tags, verb lists, and similarity measures, 
among others. For each stage, we also developed a set 
of post-processing rules based on observations in the 
training data. Our best system achieved 0.472 F-
measure.  

1 Introduction 

Potential drug-drug interactions (DDIs), defined 
as the co-prescription of two drugs that are 
known to interact, are a significant source of pre-
ventable drug-related harm (i.e., adverse drug 
events, or ADEs) (Nebeker et al., 2004). Gurwitz 
et al, in their cohort study of ADEs among older 
Americans receiving ambulatory care, found that 
13.3% of preventable errors leading to an ADE 
involved the co-prescription of drugs for which a 
“...well established, clinically important interac-
tion” was known (Gurwitz et al., 2003). Nearly 
7% (23/338) of the ADEs experienced by resi-
dents of two academic nursing homes over a 
nine-month period were attributable to DDIs 
(Gurwitz et al., 2005). Sixteen cohort and case-
control studies reported an elevated risk of hospi-

talization in patients who were exposed to DDIs 
(Hines et al., 2011). 
Failure to properly manage a DDI is a medical 
error, and the Institute of Medicine has noted that 
a lack of drug knowledge is one of the most fre-
quent proximal causes of such errors (Committee 
on Identifying and Preventing Medication Errors, 
2007). Indeed, health care providers often have 
inadequate knowledge of what drug interactions 
can occur, of patient specific factors that can in-
crease the risk of harm from an interaction, and 
how to properly manage an interaction when pa-
tient exposure cannot be avoided (Chen et al., 
2005; Hines et al., 2012). 

Unfortunately, there is no single complete and 
authoritative source of DDI knowledge (Hines et 
al., 2012). Rather, there are multiple sources, 
each tasked with extracting, evaluating, and stay-
ing up-to-date with pertinent DDIs reported in 
the literature, and drug product labeling (Boyce 
et al., 2012). The dynamic nature of drug 
knowledge, combined with the enormity of the 
biomedical literature, makes this task extremely 
challenging. Hence, natural language processing 
methods for identifying and extracting DDIs are 
receiving increased attention.   

In 2011, the first shared task challenge for DDI 
extraction, DDIExtraction-2011 (Segura-Bedmar 
et al., 2011), invited participants to develop au-
tomatic methods to extract DDIs. The task fo-
cused on the identification of all possible pairs of 
interacting drugs, without specifying anything 
further about the interactions. By contrast, the 
DDIExtraction-2013 (Segura-Bedmar et al., 
2013) shared task emphasized the importance of 
recognizing what is being asserted about the in-
teraction. Accordingly, the challenge called for a 

667



five-way classification of sentences for each 
drug-pair: 
• Advice: the sentence notes a recommendation 

or advice related to the concomitant use of 
the two drugs (e.g., “… UROXATRAL 
should NOT be used in combination with 
other alpha-blockers.”); 

• Effect: the sentence states the effect of the 
drug interaction, including pharmacodynamic 
effect or mechanism of interaction (e.g., 
“Quinolones may enhance the effects of the 
oral anticoagulant, warfarin, …”); 

• Mechanism: the sentence describes a phar-
macokinetic mechanism (e.g., “Grepafloxa-
cin is a competitive inhibitor of the 
metabolism of theophylline.”). 

• Int: the sentence mentions a drug interaction 
but doesn’t provide any additional infor-
mation (e.g., “The interaction of omeprazole 
and ketoconazole has been established.”). 

• None: the sentence does not show an interac-
tion between the two drugs; 

To focus on, and separately evaluate, different 
aspects of the problem, the 2013 shared task was 
divided into two subtasks. One task focused on 
the recognition and classification of drug names, 
while the other focused on the identification and 
classification of DDIs, with the drug names pro-
vided from the gold standard. In this paper, we 
describe our approach for handling the second 
task, namely, DDI identification and classifica-
tion of all possible pairs of drugs in the provided 
corpus. Our approach combined machine-
learning methods with the use of rules for post-
processing. A key feature of our machine-
learning approach is that it is specifically de-
signed to handle the highly unbalanced class dis-
tribution via the use of a two-stage weighted 
SVM classifier. In addition to a variety of fea-
tures exploited for the classifier, we also devel-
oped a set of post-processing rules, with a 
different set of rules applied after each stage of 
SVM classification. Finally, our approach is also 
aimed towards exploring the efficacy of methods 
that do not need to rely on syntactic-parse based 
features. 

The paper is organized as follows. In the next 
section, we describe the training and test data set 

used in the challenge. In section 3, we describe 
our method, the classifiers used at each stage, 
their features, and post processing. In section 4, 
we present the evaluation and results. We con-
clude in Section 5 with discussion and future 
work.  

2 Data 

The DDIExtraction-2013 challenge provided a 
DDI corpus for development, containing 142 
Medline abstracts on the subject of drug-drug 
interactions, and 572 documents describing drug-
drug interactions from the DrugBank database. 
The corpus includes 6976 sentences that were 
annotated with four types of pharmacological 
entities and four types of DDIs. The DDIs types 
are: advice, effect, mechanism, and int.1 Table 1 
shows the number of instances for each type. Ex-
amples can be seen in Section 1. The test set in-
cludes 33 Medline abstracts and 158 DrugBank 
documents containing 1299 sentences and 5519 
drug pairs. 

Table 1: Number of instances in each class 

3 Methods 

Classification of each drug pair in a sentence in-
volved distinguishing between 5 classes, advice, 
effect, mechanism, int and none. As described in 
Section 2 (see Table 1), a major challenge in this 
task is posed by the unbalanced distribution of 
the classes. First, considering just the positive vs. 
negative classes, just 16.9% (4037/23772) of 
drug pairs are in the positive class, which include 
interacting drug pairs (labeled as advice, effect, 
mechanism and int). Furthermore, the four types 

                                                
1 http://www.cs.york.ac.uk/semeval-
2013/task9/data/uploads/task-9.2-ddi-extraction.pdf 

Type Number 

Positive Advice 827 

Effect 1700 

Mechanism 1322 

Int 188 

Negative None (non-interacting drugs) 23772 

Total 27809 
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within the positive class are also unbalanced, 
with the int type constituting only 4.6% 
(188/4037) of the instances. A classifier trained 
on this data will, therefore, be biased towards the 
majority class(es). We employed a two-stage 
classification approach to cope with this problem, 
as described below. 

3.1 Two-stage classification 

Figure 1 shows the architecture of the system. In 
the first stage, we trained a binary classifier to 
classify drug pairs into positive and negative 
classes. Then, in the second stage, we considered 
only instances that were classified as positive by 
the first classifier, and classified them into ad-
vice, effect, mechanism, and int classes, using a 
multi-class classifier.  A two-stage classifier of-
fers a distinct advantage over a one-stage classi-
fier for the DDI data set, which is highly skewed 
towards one class, but particularly because this 
majority class is also clearly semantically distinct 
from the other positive classes (see Table 1). 
By reframing part of this problem as a binary 
classification task, we can exploit binary clas-
sification techniques and allow the classifier 
to be particularly attentive to features distin-
guishing positive and negative drug pairs, 
while at the same time avoiding the bias 
against each of the non-majority classes. Our 
experiments with the training set confirm this 
idea. 

Despite the above advantage of a two-stage 
SVM, however, the unbalanced class problem 
still remains, especially for training at the 
first stage, where we have 20854 negative 
instances and 4026 positives instances. In the 
second stage, the data is somewhat unbal-
anced as well, with   20.5% as advice, 42.2% 
as effect, 32.6% as mechanism, and only 4.7% 
as int. To handle this problem further, we ex-
plored different approaches and algorithms, 
including SMOTE (Chawla et al. 2002) and 
other resampling algorithms. Our best results 
over the training data were obtained with 
Support Vector Machine (SVM) with differ-
ent class weights. We used LibSVM (Chang 
and Lin, 2011) and set class weights for each 
stage using results of cross-validation over 
the training data (see Table 3 for class 

weights).  

As we wanted to pass the positively classified 
instances from the first stage to the second stage 
classifier, we favored the positive class in the 
first stage. This resulted in a relatively high num-
ber of false positives for the positive instances, 
which we attempted to reduce with a set of post-
processing rules before sending them to the se-
cond stage classifier. A different set of post-
processing rules were also developed to apply on 
the output of the second stage classifier. 

3.2 Pre-processing 

Before classification, all sentence instances in the 
training and test set were pre-processed for the 
following:  
• All letters were changed to lower case. 
• All drug names were normalized by replacing 

them with one of two strings; one used for 
drug mentions that were candidates for clas-

One/more instances 

Pre-Processing 
POS tagger 

Stop Words list Lemmatizer 

Stemmer 

Sentence with more 
than two drugs 

Final Classification 

Post-Processing 

Post-Processing 

Instances classi-
fied as positive 

Instances classi-
fied as negative 

First Stage Binary Classifier 
(Weighted-SVM) 

Second Stage Multi-Class 
Classifier (Weighted-SVM) 

Classified as 
positive 

Classified as 
negative 

Figure 1: The Architecture of the system 
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sification in the instance, and the other used 
for all other drug mentions.  

• All numbers were normalized by replacing 
them with the same string. 

• Stop words and punctuation were removed. 
We used different stop word lists for differ-
ent systems that were submitted to the chal-
lenge. 

• Part of speech (POS) tags were obtained with 
the Stanford NLP tool (Toutanova et al, 
2003). 

• Words were stemmed with the Porter Stem-
mer (Porter, 1980). 

• Words were lemmatized with the dragon tool 
(Zhou et al, 2007). 

• Synsets for words were obtained using 
WordNet (Fellbaum, 1998). 

3.3 Features 

Since each sentence can have more than two drug 
mentions, we generated an instance of the sen-
tence for each drug pair. We used different com-
binations of various features for the three 
different systems submitted to the challenge 
(Section 3.4.3). The following describes all the 
features separated into two categories: features 
per sentence and features per drug-pair instances.  
 
Features per sentence: These are sentence-level 
features that have the same values across all in-
stances of a sentence. 
1- Words: This is a binary feature for all words 

that appeared more than once in the corpus, 
indicating the presence or absence of each 
such word in the sentence. We considered 
stemmed words as well as lemmatized words.  

2- Word bigrams: This is a binary feature for all 
word bigrams that appeared more than once 
in the corpus, indicating the presence or ab-
sence of each such bigram in the sentence 

3- Number of words: This feature represents the 
total number of words in the sentence 

4- Number of drug mentions: This feature repre-
sents the total number of drug mentions in 
the sentence.  

5- Cosine similarity between centroid vector of 
each class and the instance: Inspired by the 
vector space Information Retrieval approach, 
we added new features to represent the co-

sine similarity between a sentence and the 
centroid of normalized vectors for sentences 
assigned the class X. Cosine similarity is cal-
culated based on modified tf*idf. We com-
puted modified tf*idf for a word w in class 
C, based on the following formula: 

 
(TF * IDF)w,C = log(count(w,C)+1)*
log(total # Inst / (# inst _ contains_w+1))

 

 
TF is the logarithm of the number of times the 
word occurs in all sentences assigned to the class. 
IDF is 1.0 divided by the logarithm of number of 
instances in the class divided by the number of 
times the word occurs across all classes. To cal-
culate the centroid vector for class C, a vector is 
created for each sentence in class C by giving 
each word in the sentence a modified TF*IDF 
weight. The centroid vector for class C is the 
mean of all vectors of sentences in class C. The 
Cosine similarity between a given instance and 
the centroid vector of each class is then used a 
feature. 
 
Features per instance (for each drug-pair): In 
contrast to sentence-level features, these features 
may have different values across the different 
drug-pair instances. In each instance, we distin-
guished the two main drugs of interest for the 
instance from all other additional drugs men-
tioned in the instance. 
1- Number of words between two main drugs: 

This represents the total number of words be-
tween the two main drugs.  

2- Number of drugs between two main drugs: 
This represents the total number of additional 
drugs appearing between the two main drugs. 

3- Number of verbs: We used the number of 
verbs in the instance as a feature, but relative 
to their sentential position. In particular, we 
split each instance into three sections: (i) be-
fore the first main drug, (ii) between the two 
main drugs, and (iii) after the second main 
drug. Then, we counted the number of verbs 
in each section, and used them as three dif-
ferent features. 

4- Number of verbs using class-specific verb 
lists: For each class, we extracted two lists of 
verbs. The first list contains verbs that ap-
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peared in just that class but not in the others. 
Thus, the set of verbs extracted for each class 
are unique and different from the verbs asso-
ciated with other classes. The second list in-
cludes all verbs that appeared in that class 
and their synonyms, extracted from Word-
Net. Then, for each of the three sentence sec-
tions, as described above, we created two 
features to represent the number of verbs 
from each of these lists that appeared in the 
section. (An alternative way to represent this 
feature would be to weight the verbs accord-
ing to their relative frequencies in the differ-
ent classes.) 

5- POS of words between two main drugs: This 
is a binary feature for word POS tags ob-
tained from POS tagging, and indicates the 
presence or absence of each POS between the 
two main drugs. 

3.4 Post processing 

As described in Section 3.1, we developed a set 
of post-processing rules for each stage of the 
classifier. Here, we describe these rules, devel-
oped on the basis of observations in the training 
data.  

3.4.1 Post processing after the first stage 

Post-processing rules for the first stage were de-
signed to reduce the number of false positives for 
the positive class, since the weight assignment in 
this stage favors this class. We provide examples 
for each rule: 
 
• The instance is classified as negative if both 

drug mentions have the same name, since a 
drug cannot interact with itself.  
 
“In controlled clinical trials of AUGMENTIN XR, 
22 patients received concomitant allopurinol and 
AUGMENTIN XR.” 
 

• The instance is classified as negative if one 
of the drugs is a plural form of the other one, 
since, as above, they refer to the same drug.   

 
“Oral Anticoagulants: Interaction studies with 
warfarin failed to identify any clinically im-
portant effect on the serum concentrations of the 
anticoagulant or on its anticoagulant effect.” 

 
• The instance is classified as negative if one 

of the drug mentions refers to a drug class 
name of the other, since we don’t expect a 
drug to interact with its class. Drug class 
names were obtained from a classification 
provided by the FDA.2 In the example below, 
“MAOI” is the drug class name for “isocar-
boxazid”.  

 
“You cannot take mazindol if you have taken a 
monoamine oxidase inhibitor (MAOI) such as 
isocarboxazid (Marplan), tranylcypromine (Par-
nate), or phenelzine (Nardil) in the last 14 days.” 
 

• The instance is classified as negative if “,” or 
“, and” appears between the two main drug 
mentions, and is accompanied by an addi-
tional drug mention. This rules identifies 
contexts where drugs are mentioned as a set, 
in interaction with a different drug. The fol-
lowing sentences show “glyburide”, “tolbut-
amide” and “glipzide” as part of a set of 
drugs in interaction with the additional drug 
“DIFLUCAN”.  
 
“DIFLUCAN reduces the metabolism of tolbut-
amide, glyburide, and glipizide and increases the 
plasma concentration of these agents.”  
 
“DIFLUCAN reduces the metabolism of tolbut-
amide, glyburide, and glipizide and increases the 
plasma concentration of these agents.” 
 

• The sentence is classified as negative if “,” 
and additional drugs appear between the 
main drug mentions. Like the previous rule, 
this again recognizes drugs mentioned as a 
set but identifies non-adjacent mentions. For 
example, the following sentence doesn’t ex-
press any interaction between “tolbutamide” 
and “glipizide”, and the rule recognizes them 
as part of a set mention even though they are 
non-adjacent. 

 
“DIFLUCAN reduces the metabolism of tolbut-
amide, glyburide, and glipizide and increases the 
plasma concentration of these agents.” 

 
                                                
2http://www.fda.gov/ForIndustry/DataStandards/StructuredP
roductLabeling/ucm162549.htm 
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• The instance is classified as negative if “or” 
appears between the two main drug mentions 
and the sentence contains additional drug 
mentions. The presence of additional drug 
mentions in the sentence is required here 
since such conjoined pairs can interact with 
each other when they occur alone.  

 
“Concurrent ingestion of antacid (20 mL of ant-
acid containing aluminum hydroxide, magnesium 
hydroxide, and simethicone) did not significantly 
affect the exposure of oxybutynin or desethyloxy-
butynin.” 

3.4.2 Post processing after the second stage 

Post-processing after the second classifier identi-
fies sentences like the following: 
 
“Coadministration of alosetron and strong CYP3A4 
inhibitors, such as clarithromycin, teli thromycin, 
protease inhibitors, voriconazole, and itraconazole 
has not been evaluated but should be undertaken with 
caution because of similar potential drug interac-
tions.” 
 
Examples like these illustrate that if drugs are 
mentioned as a set, then all drugs in the set must 
have the same interaction type with a drug men-
tioned outside the set. Thus, in the example, the 
interaction of each of “clarithromycin”, “teli-
thromycin”, “protease inhibitors”, “voricona-
zole”, and “itraconazole” with “alosetron” 
should be classified in the same way. We used 
several syntactic and lexical cues to identify set 
mentions of drugs. Then, since the SVM classi-
fier can make different decisions for each such 
pair (e.g., it may assign one label to the interac-
tion of “clarithromycin” with  “alosetron” and 

another label to the interaction of “telithromycin” 
with “alosetron”), we applied uniform labeling 
for the interaction of all such pairs. The majority 
label was used as the common label. Ties were 
not encountered in this data, although a solution 
would have to be devised otherwise. 

An important consideration for this rule is that it 
uses both positively and negatively labeled in-
stances. The former are taken from the result of 
the second stage classifier, and the latter from the 
negative instances of the first stage classifier and 
the negative instances of the first post-processor. 
These varied inputs to the rule are illustrated by 
the three ingoing arrows into the second post-
processor in Figure 1.  

3.4.3 Submitted Systems  
 
We used the Weka (Hall et al. 2009) tool for all 
experiments and submitted three systems (Sys-
tem1, System 2, and System 3 in Table 2) to the 
challenge.  All systems used the same two-stage 
approach and SVM classification (LibSVM), but 
differed in the use of some of the features (Sec-
tion 3.3) and in the weights assignment (Table 3). 
We used linear kernel and the cost (C) was 1.2 
and gamma was 0.5.  In System 1, we used 
stemmed words (instead of lemmatized words) 
and a stop word list of 165 words. In System 2, 
we used stemmed words again, but a different 

System Stage Class Weight 
System 1 First 

Stage  
Positive 6.5 
Negative 1.0 

Second 
Stage 

Advice 800.0 
Effect 600.0 
Int 3200.0 
Mechanism 500.0 

System 2 First 
Stage  

Positive 2.5 
Negative 1.0 

Second 
Stage 

Advice 800.0 
Effect 600.0 
Int 3200.0 
Mechanism 500.0 

System 3 First 
Stage  

Positive 6.5 
Negative 1.0 

Second 
Stage 

Advice 80.0 
Effect 60.0 
Int 320.0 
Mechanism 50.0 

Table 3: Class weight assignments in different systems 

System Metric Drug-
Bank 

Medline All 

System 1 Prec 0.44 0.21 0.43 
Rec 0.49 0.23 0.47 
F 0.46 0.22 0.45 

System 2 Prec 0.49 0.30 0.47 
Rec 0.49 0.41 0.47 
F 0.49 0.35 0.47 

System 3 Prec 0.42 0.26 0.40 
Rec 0.51 0.47 0.50 
F 0.46 0.33 0.44 

Table 2. Results of each system. The three systems are 
described in Section 3.4.3. 
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stop word list of 263 words. Finally, in System 3, 
we used lemmatized words and the same stop 
word list of 263 words as in System 2. Weights 
assignment was different across all systems, as 
shown in Table 3. 

4 Results 

Table 2 shows the evaluation results of our sys-
tem over the test set. Our best results are 
achieved with System 2, in which we used 
stemmed words and our 263 stop word list, in 
addition to the other features described in Section 
3.3. Both the stop word list and the use of 
stemmed vs. lemmatized words can be seen to 
affect the performance. Clearly, a larger stop 
word list is more useful, since both System 2 and 
System 3 show an improvement over System 1. 
On the other hand, the use of lemmas (used in 
System 3) seems to be detrimental, compared 
with stemmed words.  

5 Conclusion and future work 

To the best of our knowledge, this is the first 
study to explore the value of a two-stage SVM 
classification process for performing the complex 
task of identifying sentences describing DDIs, 
and making the important distinction between 
statements providing advice, mechanism and ef-
fect, or declaring a pharmacokinetic and pharma-
codynamic DDI: critical distinctions in the fields 
of pharmacology and pharmacy. We find that the 
use of a two-stage classifier to handle the prob-
lem of an unbalanced class distribution for the 
task of identifying and classifying DDIs is feasi-
ble but requires further development. 

It’s valuable to consider these results within the 
context of previous efforts for extracting DDIs. 
Ten research papers were presented at the 2011 
SemEval Conference (Segura-Bedmar et al, 
2011) which used a smaller DDI corpus (Medline 
abstracts were not included) and a simpler classi-
fication task (Segura-Bedmar et al, 2010). The 
best performing system in this challenge utilized 
an ensemble learning approach (Thomas et al, 
2011) and produced an F-measure of 0.657. The  
second best performing method utilized compo-
site kernels, a method that combines feature-
based and kernel-based methods, and was found 

to perform with an F-measure of 0.64 (Chow-
dhury et al, 2011). Other NLP research has fo-
cused exclusively on extracting pharmacokinetic 
DDIs from either Medline (e.g., Airola et al, 
2008) or drug product labeling (e.g., Boyce et al, 
2012). 

Due to time constraints, we couldn’t test other 
classifiers such as Naïve Bayes, JRip and Ran-
domforest in our approach. Future work will test 
if SVM is the best choice for the first stage bina-
ry classifier. It is possible that libShortText (Yu 
et al, 2013) works better than LibSVM because 
this task is for sentence classification. We also 
plan to explore if Naïve Bayes, JRip, or Random-
forest could work better than SVM for the second 
stage multi-class classifier.  

Since only three systems were permitted to the 
challenge, and since the labeled test data was not 
available until the time of writing, we did not 
have the opportunity to test the impact of all the 
features that we considered, or of the post-
processing rules. This will be explored in future 
work.  

We also plan to explore some variations to our 
approach. For example, we will try to incorporate 
some of the rules, especially those in the first 
post-processor, as features in our system. Finally, 
although we did utilize some semantic infor-
mation from WordNet for this work, we would 
like to explore additional rich features, drawing 
on syntax, semantics and discourse.   
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Abstract

Automatic relation extraction provides great
support for scientists and database curators in
dealing with the extensive amount of biomed-
ical textual data. The DDIExtraction 2013
challenge poses the task of detecting drug-
drug interactions and further categorizing
them into one of the four relation classes. We
present our machine learning system which
utilizes lexical, syntactical and semantic based
feature sets. Resampling, balancing and en-
semble learning experiments are performed to
infer the best configuration. For general drug-
drug relation extraction, the system achieves
70.4% in F1 score.

1 Introduction

Drug-drug interactions (DDI) describe possible in-
terference between pharmacological substances and
are of critical importance in drug development and
administration (August et al., 1997). A drug may
alter the metabolism of another, thus causing an en-
hanced, reduced or even toxic effect in certain med-
ical treatments. For example: “Fluvoxamine in-
hibits the CYP2C9 catalyzed biotransformation of
tolbutamide.” Automated extraction of DDI from
biomedical literature allows for a more efficient
maintenance of the drug knowledge databases and
is beneficial for patients, health care professionals
and the pharmaceutical industry.

Having in mind their biomedical importance, the
objective of the first DDIExtraction challenge1 in

1http://labda.inf.uc3m.es/
DDIExtraction2011/

2011 was to motivate the development and to eval-
uate the automatic relation extraction (RE) systems
for DDI. Given annotated drug entities, the partic-
ipants addressed the task of identifying undirected
binary relations among them. The knowledge ex-
traction was performed on the sentence level and the
best system achieved 65.74% F1 score (Thomas et
al., 2011a).

The 2013 DDIExtraction challenge2 (organized
as Task 9 of SemEval 2013 (Segura-Bedmar et al.,
2013)) is based on a similar task definition, but ad-
ditionally includes the disambiguation between four
types of interaction: mechanism, effect, advise and
int. The evaluation of participating systems is two-
fold, i. e. partial and strict. Partial evaluation con-
siders that a prediction is correct when the pair la-
bel matches the gold annotation, while strict eval-
uation requires also a correct relation type to be
assigned. The train and test corpora were gener-
ated from textual resources of DrugBank (Knox et
al., 2011) database and MedLine3 abstracts, dealing
with the topic of DDI.

In the following sections we describe our super-
vised machine learning based approach for the ex-
traction of DDI, using a rich feature vector (see Sec-
tion 2.1). The base system employed LibLINEAR
classifier, generating the first run submitted to the
DDIExtraction challenge. Configurations coming
from the two ensemble strategies (Section 2.2) pro-
duced the remaining prediction runs. Furthermore,
we experimentally investigated the impact of train

2http://www.cs.york.ac.uk/semeval-2013/
task9/

3http://www.ncbi.nlm.nih.gov/pubmed/
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corpora imbalance on DDI detection through resam-
pling strategies (Section 2.3). Finally, relation type
disambiguation methodology is presented in Sec-
tion 2.4.

2 Methods

We formulate the task of relation extraction as
feature-based classification of co-occurring entities
in a sentence. A sentence with n entities contains at
most

(
n
2

)
interacting pairs. For entity pairs that the

classifier detects as “true”, a post-processing step is
performed where one of the four relation types is
assigned, depending on the identified type-specific
trigger words.

2.1 Features

To improve generalization of lexical information
Porter stemming algorithm (Porter, 1980) was ap-
plied. All entities present in the sentence, which
were not a part of the investigated pair, are renamed
to a common neutral name (entity blinding).

For the generation of dependency-based features,
sentences in the provided corpora were parsed using
Charniak-Lease parser (Lease and Charniak, 2005;
Thomas et al., 2011b). The resulting constituent
parse trees were converted into Stanford dependency
graphs (Marneffe et al., 2006). Following the idea of
Thomas et al. (2011b), similar relations are treated
equally by using their common parent type (unifica-
tion of dependency types). An example is generaliz-
ing relations “subj”, “nsubj” and “csubj” to a parent
relation “subj”.

In the following subsections the three groups of
features (lexical, syntactical and semantic) with their
corresponding members are described. Table 1 gives
a more structured overview of the feature vector, or-
ganized by type. It should be noted that the listed
features are used for the generation of all three pre-
diction sets submitted to the DDI challenge.

2.1.1 Lexical features
Lexical features capture the token information

around the inspected entity pair (EP). The sentence
text is divided into three parts: text between the EP,
text before the EP (left from the first entity) and text
after the EP (right from the second entity). It has
been observed that much of the relation information

can be extracted by only considering these three con-
texts (Bunescu and Mooney, 2005b; Giuliano et al.,
2006).

The majority of features are n-grams based, with
n ∈ {1, 2, 3}. They encompass a narrow (win-
dow=3) and wide (window=10) surrounding con-
text, along with the area between the entities. Addi-
tionally, combinations of the tokens from the three
areas is considered, thus forming before-between,
between-after and before-after conjunct features
(narrow context).

2.1.2 Syntactic/Dependency features
Vertices (v) in the dependency graph are analyzed

from a lexical (stemmed token text) and syntacti-
cal (POS tag) perspective, while the edges (e) are
included using the grammatical relation they repre-
sent.

The majority of dependency-based features are
constructed using the properties of edges and ver-
tices along the shortest path (SP) of an entity pair.
The shortest path subtree is conceived to encode
grammatical relations with highest information con-
tent for a specific EP (Bunescu and Mooney, 2005a).

Similarly to lexical features, n-grams of vertices
(edges) along the SP are captured. Furthermore, al-
ternating sequences of vertices and edges (v-walks
and e-walks) of length 3 are accounted for, follow-
ing previous work (Kim et al., 2010; Miwa et al.,
2010).

Apart from the SP-related features, incorporat-
ing information about the entities’ parents and their
common ancestor in the dependency graph is also
beneficial. The lexical and syntactical properties of
these vertices are encoded, along with the grammat-
ical relations on the path from the entities to their
common ancestor.

2.1.3 Semantic features
Semantic group of features deals with understand-

ing and meaning of the context in which a particular
entity pair appears.

A feature that accounts for hypothetical state-
ments was introduced in order to reduce the num-
ber of false positives (phrases that indicate investi-
gation in progress, but not actual facts). Negation
(e. g. “not”) detected close to the entity pair (narrow
context) along with a check whether entities in the
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pair refer to the same real-word object (abbreviation
or a repetition) represent features which also con-
tribute to the reduction of false positive predictions.

Drug entities in the corpora were annotated with
one of four classes (drug, drug n, brand, group),
which provided another layer of relation informa-
tion for the classifier. Prior knowledge about true
DDI coming from the train corpora is used as a fea-
ture, if a previously known EP is observed in the test
data. Presence of other entities (which are not part
of the inspected EP) in the sentence text is captured,
together with their position relative to the EP.

Finally, mentions of general trigger (interaction)
terms are checked in all three context areas. More-
over, interaction phrases specific to a certain DDI
type (see Section 2.4) are accounted for.

2.2 Ensemble learning

Combining different machine learning algorithms
was proposed as a direction for improvement of the
classification accuracy (Bauer and Kohavi, 1999).

A synthesis of predictions using LibLINEAR,
Naı̈ve Bayes and Voting Perceptron classifiers is an
attempt to approach and learn the relation informa-
tion from different angles with a goal of increasing
the system’s performance. The three base models in-
cluded in the ensemble are employed through their
WEKA4 (Hall et al., 2009) implementation with de-
fault parameter values and trained on the full feature
vector described in Section 2.1.

LibLINEAR (Fan et al., 2008) is a linear support
vector machine classifier, which has shown high per-
formance (in runtime as well as model accuracy) on
large and sparse data sets. Support vector machines
(SVM, Cortes and Vapnik (1995)) have gained a lot
of popularity in the past decade and very often are
state-of-the-art approach for text mining challenges.

Naı̈ve Bayes (Domingos and Pazzani, 1996) is
a simple form of Bayesian networks which relies
on the assumption that every feature is independent
from all other features. Despite their naive design
and apparently oversimplified assumptions, Naı̈ve
Bayes can often outperform more sophisticated clas-
sification methods and has worked quite well in
many complex real-world situations. Furthermore,
it can be robust to noise features and is quite insen-

4http://www.cs.waikato.ac.nz/ml/weka/

Corpus Pos Neg Total

MedLine 232 (0.13) 1,555 (0.87) 1,787
DrugBank 3,788 (0.15) 22,217 (0.85) 26,005

Table 2: Ratio of positive and negative instances in the
DrugBank and MedLine train corpora.

sitive to stratification (Provost, 2000), which is of
high value in class imbalance scenarios.

Voting Perceptron (Freund and Schapire, 1999)
combines a series of perceptrons, which are lin-
ear classification algorithms that process elements
in the train set one at a time (“online”). The sys-
tem stores the number of iterations the perceptron
“survives”, i. e. when the training set instances are
classified correctly. The obtained count represents a
weight used for combining the prediction vectors by
a weighted majority vote.

In the ensemble learning scenario we consider
two strategies that aim at increasing the system’s
performance by either favoring precision or recall:

1. “majority” – a pair represents true relation only
if majority of the classifiers support that claim

2. “union” – a pair represents true relation if at
least one of the classifiers supports that claim

2.3 Train corpora imbalance
Analysis of the basic train corpora statistics re-
veals an unequal ratio of positive and negative in-
stances, i. e. under-representation of true interacting
pairs (see Table 2). Class distribution imbalance of-
ten causes machine learning algorithms to perform
poorly on the minority class (Hulse et al., 2007),
thus, in this case, affecting the recall of true rela-
tions.

In order to explore the sensitivity of our system
to the positive/negative ratio, we performed random
undersampling of the data, artificially obtaining a
desirable ratio (50-50). All positive instances in the
dataset were kept, while the same number of neg-
ative instances were randomly chosen. The reverse
approach of oversampling was considered, but given
the ample train data provided by the organizers, such
strategy could pose run-time challenges.

The experimental setting is described as follows.
MedLine and DrugBank train corpora were divided
further into train (exp-train) and test (exp-test) sets,
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Feature

L
ex

ic
al

1. n-grams of tokens between the EP
2. n-grams of tokens before the EP (narrow context, window = 3)
3. n-grams of tokens after the EP (narrow context, window = 3)
4. n-grams of tokens before the EP (wide context, window = 10)
5. n-grams of tokens after the EP (wide context, window = 10)
6. conjucted positions: before-between, between-after and before-after

Sy
nt

ac
tic

al
/D

ep
en

de
nc

y 7. dependency n-grams on the SP
8. syntactical n-grams on the SP
9. lexical n-grams on the SP
10. lexical and syntactical e-walks
11. lexical and syntactical v-walks
12. SP length (number of edges)
13. lexical and syntactical information of the entities’ parents
14. lexical and syntactical information of the entities’ common ancestor
15. dependency n-grams from both entities to their common ancestor
16. common ancestor represents a verb or a noun

Se
m

an
tic

17. hypothetical context
18. negation close to the EP
19. entities refer to the same object
20. type of entities that form the EP
21. prior knowledge (from the train data)
22. other entities present close to the EP
23. DDI trigger words (general)
24. DDI types trigger words (specific)

Table 1: Overview of features used, stratified into groups. EP denotes an entity pair, SP represent the shortest path.
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Figure 1: Contribution of individual feature sets and their combinations to the system’s performance, evaluated by 10-
fold cross-validation on the train corpora. Lex is an abbreviation for lexical, sem for semantic and syn for syntactical
features.
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Corpus Exp-train pairs Exp-test pairs

MedLine 1,259 (70.4%) 528 (29.6%)
DrugBank 18,148 (69.8%) 7,857 (30.2%)

Table 3: Experimental train and test subsets derived from
the MedLine and DrugBank train corpora.

Relation MedLine DrugBank

mechanism 62 (0.27) 1257 (0.33)
effect 152 (0.66) 1535 (0.41)
advise 8 (0.03) 818 (0.21)
int 10 (0.04) 178 (0.05)

Table 4: The number of positive pairs for different DDI
types in the train corpora. Ratios are given in brackets.

with an approximate ratio of 70-30. Instances from
a particular document were always sampled to the
same subset, in order to avoid information leakage.
Table 3 gives an overview of the number of entity
pairs each set comprises. The exp-train corpora were
used for training the model in an original (full-size)
and balanced (subsample) scenario, evaluated on the
exp-test sets.

It should be noted that undersampling experi-
ments were performed on the train corpora in order
to inspect the impact of data imbalance on our sys-
tem (results shown in Section 3.4). However, due
to the challenge limitation of submitting only three
runs, this configuration was ignored in favor of uti-
lizing the complete train corpora.

2.4 Relation type assignment

The DDIExtraction challenge guidelines specify
four classes of relations: advise, mechanism, effect
and int. Table 4 illustrates the ratio of positive pairs
assigned to each type in MedLine and DrugBank
train corpora.

In Section 2.4.1, a brief outlook on the interaction
type characteristics is given, along with some of the
most common relation (trigger) phrases specific to
them. Section 2.4.2 explains the methodology be-
hind the process of relation type assignment.

2.4.1 Relations overview
Advise pertains to recommendations regarding co-

administration of two or more drugs. Sentences de-

scribing these relations usually contain words such
as: should, recommended, advisable, caution, avoid
etc., as seen in the following examples:

• Barbiturates and glutethimide should not be
administered to patients receiving coumarin
drugs.
• Concurrent therapy with ORENCIA and TNF

antagonists is not recommended.
• The co-administration of Fluvoxamine Tablets

and diazepam is generally not advisable.

Effect is a relation type describing the signs or
symptoms linked to the DDI, including the phar-
macodynamic effect, i. e. mechanism of interaction.
Some of the phrases often found to denote this type
of relation are: effect, cause, decrease, increase, in-
hibit, activate, modulate etc. The following exam-
ples present expressions of an effect relation:

• Pretreatment of megakaryocytes with extracel-
lular RR (50 microM) also inhibited InsP(3)-
induced responses.
• It is concluded that neurotensin modulates in

an opposite way the function of the enkephalin-
ergic neurons and the central action of tuftsin.
• Diazepam at doses of 0.25 mg/kg and 2.5

mg/kg injected with morphine was found to
decrease the antinociceptive effect of mor-
phine.

Mechanism illustrates a more detailed description
of the observed pharmacokinetic changes that in-
cludes biochemical information about metabolism,
absorption, biotransformation, excretion etc. Mech-
anism relations often include mentions of effect-
related interaction phrases, but provide an additional
knowledge layer by addressing more complex bio-
logical concepts:

• Cholestyramine, an anionic-binding resin, has
a considerable effect in lowering the rate and
extent of fluvastatin bioavailability.
• Additional iron significantly inhibited the

absorption of cobalt in both dietary cobalt
treatments.
• Macrolide antibiotics inhibit the metabolism of

HMG-CoA reductase inhibitors that are me-
tabolized by CYP3A4.
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Int relation implies sentences which only state
that an interaction occurs, without providing much
additional information about it. Trigger phrases that
can be found in such sentences are usually limited to
different lexical forms of “interaction”:

• Rifampin and warfarin: a drug interaction.
• In vitro interaction of prostaglandin F2alpha

and oxytocin in placental vessels.
• Treatment with antidepressant drugs can di-

rectly interfere with blood glucose levels or
may interact with hypoglycemic agents.

2.4.2 Type disambiguation methodology
We approach the problem of relation type disam-

biguation as a post-processing step, utilizing identi-
fied (sentence level) trigger words as classification
determinants. Precompiled relation trigger lists are
generated by manual inspection of the train corpora,
largely focusing on MedLine. The lists are specific
to the four interaction types and non-overlapping.

Cases when a sentence contains trigger phrases
from different relation classes are resolved by fol-
lowing a priority list:

1. advise
2. mechanism
3. effect
4. int

The rationale behind such priority assignment are
the following observed patterns in the train corpora.
Regardless of effect or mechanism connotation, if
the sentence contains recommendation-like phrases
(e. g. “should”, “advisable”), it is almost always
classified as an advise. Likewise, even though a re-
lation might be describing an effect, if it contains
a more detailed biochemical description, it is most
likely representing mechanism. Finally, effect has
advantage over int due to the simplicity of the int
relation, along with the lowest observed frequency.

3 Results and Discussion

3.1 Baseline relation extraction performance

Performances of the submitted prediction runs are
shown in Table 5, where the first row (run1) repre-
sents a system trained on the original (unbalanced)
train corpora, using LibLINEAR classifier and a rich

feature vector (see Section 2.1). The table offers re-
sults overview on MedLine, DrugBank and joined
test corpora (“All”), using partial evaluation (general
DDI detection).

The difference in performance on MedLine and
Drugbank is apparent, measuring up to almost 25
percentage points (pp) in F1 score (46.2% for Med-
Line and 71.1% for DrugBank). Due to a consid-
erably larger size of the DrugBank corpus, overall
results are greatly influenced by this corpus (F1 =
69.0%).

The results imply system’s sensitivity towards
class imbalance, which manifests in favored preci-
sion over recall. However, this discrepancy is much
less observed on DrugBank test corpus. Despite the
similarity in class ratio, DrugBank is a more com-
pact and homogenous corpus, with a relatively uni-
fied writing style. Coming from a manually curated
database, it has a rather standardized way of describ-
ing interactions, resulting in higher performance of
the relation extraction system. MedLine corpora,
however, are derived from different journals and re-
search groups which gives rise to extremely diverse
writing styles and a more challenging task for infor-
mation extraction.

3.2 Features contribution

Figure 1 illustrates the performance of the LibLIN-
EAR classifier, when all combinations of the three
different feature sets are explored.

It can be observed that the highest performance is
always achieved when all the features are included
during training (lex+syn+sem), resulting in 51.6%
and 72.0% F1 score for 10-fold cross-validation on
MedLine and DrugBank train corpora respectively.

Lexical features appear to be most useful for the
DrugBank corpus, achieving 88.9% of the maxi-
mum performance when used solely. MedLine, on
the other hand, benefits the most from syntactic fea-
tures that reach 79.8% of the best result, compared to
53.3% with lexical features. Semantic group of fea-
tures exhibits a uniform performance for both cor-
pora, achieving 36.4% and 36.9% of F1 score. Fi-
nally, grouping of two or all three feature sets is
always beneficial and results in higher performance
than the constituting base configurations.
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MedLine DrugBank All
Classifier P R F1 P R F1 P R F1

run1: LibLINEAR 68.8 34.7 46.2 83.6 61.9 71.1 82.6 59.2 69.0
run2: Majority 68.6 25.3 36.9 83.7 61.7 71.0 82.9 58.1 68.3
run3: Union 43.1 52.6 47.4 79.6 68.1 73.4 74.8 66.6 70.4

Table 5: Results of the three submitted runs on the test corpora.

Classifier DrugBank MedLine

LibLinear 654 48
Naı̈ve Bayes 854 88
V. Perceptron 608 30

Majority 693 35
Union 980 116

Table 6: Number of positive predictions on MedLine and
DrugBank test corpora, using different configurations.

3.3 Ensemble experiments

Performance of the majority and union ensemble
configurations on the test corpora is presented in Ta-
ble 5. Table 6 gives an overview of the number of
predicted positive pairs by the ensemble, as well as
those by the individual base classifiers.

Voting Perceptron behaves similarly to LibLin-
ear, while Naı̈ve Bayes demonstrates insensitivity
in terms of class imbalance, predicting the high-
est number of positive pairs for both MedLine and
DrugBank test corpora.

Union voting strategy tends to overcome the lim-
itations of poor recall, resulting in highest perfor-
mance on all test corpora (47.4% for MedLine,
73.4% for DrugBank and 70.4% for All) among the
three runs. The superior result is obtained by dimin-
ishing precision in favor or recall, which was shown
as beneficial in these use-cases. However, the F1

score difference is slight (1.2 pp, 2.3 pp and 1.4 pp),
as compared to the baseline system (run1).

Predictions using the union ensemble ranked 3rd

in the general DDI extraction evaluation, achieving
5.5 pp and 9.6 pp of F1 score less than the top two
participating teams.

MedLine DrugBank
Train set P R F1 P R F1

original 48.4 39.6 43.6 75.1 62.4 68.2
balanced 37.2 70.4 48.7 60.8 72.7 66.2

Table 7: Comparison of results on the full train set and
a balanced subsample, as evaluated on the MedLine and
DrugBank train corpora.

3.4 Balanced training corpora

Table 7 presents relation extraction performance for
training on a balanced subset, compared to the orig-
inal unbalanced corpus.

In case of MedLine, an increase of around 5 pp
in F1 score can be observed for the balanced sub-
sample. However, given a relatively high initial per-
formance on DrugBank and the characteristics of
that corpus, training on a subsample results in 2 pp
reduced F1 score. The raise of 30.8 pp in recall
contributes greatly to the increased performance on
MedLine, even though 11.2 pp of precision are lost.
However, in case of DrugBank, a 10.3 pp increase
in recall is not enough to compensate for the 14.3 pp
loss in precision.

It can be observed that although undersampling
approach removes information from the model train-
ing stage, the class balance plays a more significant
role for the final performance.

3.5 Relation type disambiguation

Correct classification of interacting pairs into four
defined classes was evaluated using macro and mi-
cro average measures.

While micro-averaged F1 score is calculated by
constructing a global contingency table and then
calculating precision and recall, macro-averaged F1

score is obtained by first calculating precision and
recall for each relation type and then taking their
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MedLine DrugBank All
P R F1 P R F1 P R F1

micro avg. 62.5 31.6 42.0 51.3 43.9 47.3 55.1 39.5 46.0
macro avg. 42.0 19.7 26.9 66.5 35.3 46.1 66.6 33.8 44.8

mechanism 70.0 29.2 41.2 58.0 39.2 46.8 53.2 39.1 45.0
effect 64.7 35.5 45.8 52.4 44.6 48.2 48.8 43.9 46.2
advise 18.2 28.6 22.2 50.7 65.0 57.0 50.5 63.3 56.2
int 0 0 0 100 1.1 2.1 100 1.0 2.1

Table 8: Results of DDI extraction when relation class detection is evaluated.

average (Segura-Bedmar et al., 2013). Therefore,
macro average takes into consideration the relative
frequency of each interaction class, while micro av-
erage treats all classes equally.

Table 8 shows an overview of performances for
DDI extraction with relation class disambiguation,
evaluated for each type separately, as well as cumu-
latively using micro and macro scores. For Med-
Line test corpus, the micro average F1 score of 42%
ranked 1st among all participating systems. How-
ever, the macro average score is much lower, due to
poor performance on advise and int relation classes
and occupies 5th position. Considering that our
methodology gives advantage to relations which are
observed more frequently, it is more adapted to-
wards the micro measure.

The process of manually generating type-specific
trigger lists was largely based on the MedLine train
corpus due to its size, with the assumption that
the relations in DrugBank are similarly expressed.
However, both micro and macro scores for Drug-
Bank ranked 7th, showing that adaptation of trigger
word lists needs to be done, depending on the target
corpus.

In general, lower performance for relation class
assignment is partially due to incompleteness of the
trigger lists, but also coming intrinsically from the
relation priority hierarchy. Most of classification
errors occur when a trigger word belonging to a
“higher” priority class is identified in the sentence.
In the following example the word “should” im-
plies advise relation, although guanfacine and CNS-
depressant drug express an effect relation:

The potential for increased sedation when guan-
facine is given with other CNS-depressant drug

should be appreciated.
Another example is a sentence mentioning “ef-

fect”, but actually describing a simple int relation:
Chloral hydrate and methaqualone interact

pharmacologically with orally administered antico-
agulant agents, but the effect is not clinically signif-
icant.

Furthermore, a lot of missclassifications occur in
sentences which contain pairs and triggers from dif-
ferent types, resulting in all relations being assigned
to the highest identified type.

4 Conclusion

We present a machine learning based system for
extraction of drug-drug interactions, using lexical,
syntactic and semantic properties of the sentence
text. The system achieves competitive performance
for the general DDI extraction, albeit demonstrat-
ing sensitivity to the train corpora class imbalance.
We show that, depending on the use case, resam-
pling, balancing and ensemble strategies are suc-
cessful in tuning the system to favor recall over pre-
cision. The post-processing step of relation type as-
signment achieves top ranked results for the Med-
Line corpus, however, needs more adaption in case
of DrugBank. Future work includes a comparison
with a multi-classifier approach, which circumvents
the manual task of trigger list generation, supporting
the fully automated scenario of relation extraction.
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Abstract

In this paper, we present our approach to
SemEval-2013 Task 9.2. It is a feature rich
classification using LIBSVM for Drug-Drug
Interactions detection in the BioMedical do-
main. The features are extracted considering
morphosyntactic, lexical and semantic con-
cepts. Tools like openDMAP and TEES are
used to extract semantic concepts from the
corpus. The best F-score that we got for Drug-
Drug Interaction (DDI) detection is 50% and
61% and the best F-score for DDI detection
and classification is 34% and 48% for test and
development data respectively.

Keywords: text mining, event extraction, ma-
chine learning, feature extraction.

1 Introduction

Our approach to the Semeval 2013 drug-drug in-
teraction task explored the potential for integrat-
ing knowledge-based approaches with supervised
machine learning. In practice, most supervised
machine learning systems are actually hybrids of
machine learning and some knowledge-based ap-
proach. However, the integration between the two
is typically quite loose, with the knowledge-based
approach being realized either as heuristic pre-
processing or post-processing of the results. The
work reported here is an attempt to make a tighter
coupling between knowledge-based methods and
machine learning. In particular, we took the ap-
proach of using knowledge-based methods for fea-
ture extraction.

2 Methodology

In this challenge we approach the Drug-Drug inter-
action task 9.2 as a binary classification problem. A
pair of drugs is interacting if there is some kind of
influence between the two. Our approach for Drug-
Drug interaction extraction 2013 mainly makes use
of domain specific morphosyntactic, lexical and se-
mantic features between paired drugs.

We applied Machine Learning classification tech-
niques in order to determine whether a pair of drugs
within a biomedical text is interacting or not. For a
training set of labeled instances

(
Xi, yi

)
= 1, 2, ..., l

where Xi ∈ Rn and y ∈ {1,−1}l, the support vector
machines (SVMs) optimization problem is defined
as(Boser et al., 1992) (Cortes and Vapnik , 1995):

α̂ = arg max
α,w,b

(1
2
W TW + C

l∑
i=1

αi
)

(1)

such that yi
(
W Tφ(Xi) + b

)
> 1− αi,
αi ≥ 0.

2.1 Materials
The corpus is provided from two data sources. There
are 572 documents describing drug-drug interac-
tions from the DrugBank database and 142 abstracts
on the subject of drug-drug interactions from Med-
Line (Isabel et.al., 2011). We prepared datasets
for the entire corpus. Each instance in the dataset
is a set of paired drugs. In our dataset, there are
27787 instances. 93.57% of them are from Drug-
bank database and the remaining are from MedLine
abstracts. DDI shared task 2013 is not only interac-
tion detection but the challenge also includes detec-
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tion of the type of interaction. In our approach, we
treated each interaction type as one class.

2.2 Methods
LIBSVM is a library for support vector machines (
LIBSVM, 2011). We used this tool for classify-
ing the dataset. Basically, the problem is a multi-
class classification problem. We applied the concept
of one-vs-all multi-class classification technique to
handle the multiple classes.

2.3 Feature Extraction
The features that we extracted for this challenge can
be categorized into three types:

2.3.1 Morphosyntactic Features
• Distance feature: this is distance between

paired drugs in number of words. The intuition
here is that the closer two drugs are, the more
chance that they might be interacting. Since
this feature takes word count as its value, the
text is split within white space when counting
number of words. Punctuation marks are not
considered when counting words.

• Part-Of-Speech tags: we chose the GENIA
dependency parser for parsing the corpus for
two reasons.

• Dependency parser related features: we con-
struct the dependency tree using the GENIA
dependency parser. Two features are extracted
from the tree:

– Presence of interaction word in the path
from the target drug node to the root of
the tree.

– Distance from one target drug name to
another one in the tree.

2.3.2 Lexical Features

– Bigrams: a sequence of bigrams is ex-
tracted for input text.

2.3.3 Semantic Features

– Interaction words: we collected the top
100 words that indicate drug-drug inter-
action. The presence of these words is

one feature for our system. The words are
checked before and after each target drug.
Such words include: increase, decrease,
inhibit, interaction, reduce, affect.

– Presence of preposition within target
drugs: the text within the target drugs is
tested to see if it has preposition or not. If
the text has a preposition, the value is 1
otherwise it will have zero value.

– Presence of other drugs within target
drugs: firstly, we collect all drug names
into a list. The text within the target drugs
is searched for the drug names and the
value for this feature will have the num-
ber of hits.

– Concept from OpenDMAP:
OpenDMAP is an ontology-driven,
rule-based concept analysis and infor-
mation extraction system (Hunter et.al.,
2008). We used openDMAP to extract
drug-drug interaction concepts from the
DDI2013 corpus. We extracted pattern
based features using OpenDMAP only if
OpenDMAP recognizes target drugs.

3 Dataset Preparation

The challenge provided datasets from Drug-
Bank database and MedLine abstracts. We split
the dataset into 20% development data and 80%
training data. Table1 shows the percentage of
positive instances in the dataset.

DDI interaction 14.47%
Interaction type effect 6.07%
Interaction type advise 2.97%
Interaction type mechanism 4.75%
Interaction type int 0.68%

Table 1: positive instances for the different class types

The data is not balanced, as shown in table 1.
We penalized the negative classes during train-
ing in order to balance the data.

In section 4 we present results for three runs.
Run1 includes the basic features which are de-
scribed in section 2.3. In Run2 we included fea-
ture values made available by TEES ( Björne
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et.al., 2011). In addition to the features in the
first two runs, in Run3 the list of interaction
words were considered individually as features.
In this run, weight penalty and different opti-
mized LIBSVM parameters were considered.

4 Results

Table 2 shows the results for DDI detection
only, for both development and test data. The
best F1 score is 50% for test data and 61% for
development data.

Runs
1 2 3

test data precision 0.37 0.38 0.4
recall 0.73 0.75 0.64
F1 0.49 0.5 0.49

development data precision 0.28 0.82 0.62
recall 0.78 0.46 0.59
F1 0.41 0.59 0.61

Table 2: Partial Evaluation: only detection of DDI

Table 3 shows results for DDI detection and
classification. The best F1 score is 34% for test
data and 48% for development data.

Runs
1 2 3

test data precision 0.16 0.25 0.27
recall 0.32 0.5 0.44
F1 0.21 0.33 0.34

development data precision 0.13 0.59 0.49
recall 0.37 0.33 0.46
F1 0.2 0.42 0.48

Table 3: Detection and classification of DDI

And finally, the scores for the individual DDI
type for the best run are shown in table 4. Ap-
parently, Run3 outperforms in all the scores as
can be seen in tables 2 through 4.

Run3
precision recall F1

test data mechanism 0.39 0.29 0.33
effect 0.21 0.63 0.31
advise 0.45 0.39 0.42
int 0.4 0.28 0.334

development data mechanism 0.5 0.29 0.37
effect 0.44 0.61 0.51
advise 0.72 0.46 0.56
int 0.08 0.1 0.09

Table 4: Best scores for DDI type, Run3

5 Discussion

Generally speaking, the performance of our
system is better for DDI detection regardless of

their types compared to classifying what kind
of DDI they are.

Among the three runs that we submitted for the
challenge, Run3 outperforms in all the scores
as can be seen in tables 2 through 4 for the fol-
lowing reasons:

– weight penalty techniques are applied in
Run3

– optimal cost and gamma parameters are
selected while training for Run3

– Bag of interaction words are considered
as individual features. This specially in-
creases scores for detecting the individual
DDI types.

The best F-score that we got for DDI detec-
tion is 61% for development data and 50% for
test data as shown in Table 2. The reason why
scores are better for DDI detection is that our
approach is feature rich DDI detection and we
believe that our features mainly target detect-
ing DDIs. A further addition of features that
distinguishes the DDI types will hopefully im-
prove the scores for DDI classification. On the
other hand, it has been observed that scores are
lower for test data compared to development
data. And the reason for this is due to opti-
mization parameters that we heuristically chose
during training are possibly favoring to devel-
opment data than to test data. Another possible
reason could be overfitting.

As shown in section 4, the knowledge-based
lexical features produced our best run. The se-
mantic parser made a smaller contribution to
performance, almost certainly because of low
coverage- - -historically, in past shared tasks
on information extraction, its behavior has been
characterized by very high precision but low re-
call.

5.1 Error Analysis

Table 5 shows false positive predictions col-
lected from the results for Run3. In FP-1, the
system predicts detecting the first pair (etan-
ercept and anakinra) correctly and then clas-
sifying as type effect but it failed to deter-
mine whether etanercept is interacting with
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interleukin-1 antagonist. A close examina-
tion of this sentence shows that the last two
drugs are separated by parentheses and in fact
the last drug is a further explanation of the
second one. The system couldn’t distinguish
this concept — rather it is treating all the three
drugs separately and both pairs i.e. (etanercept,
anakinra) and (etanercept, interleukin-1 antag-
onist) are predicted the same. This is happening
due the syntactic nature of the text. One possi-
ble way to avoid such confusion is to expand
the sentence. In other words, we believe initial
data clean up might improve the performance
of the system. Avoiding punctuation marks
such as parenthesis for this case and other de-
limiters and representing them in words if pos-
sible might improve the performance of the
classifier.

It is also observed that there is poor prediction
for pairs of drugs that have negation. The two
examples, i.e. FP-2 and FP-3 in table 5 are
wrongly predicted because there is no feature
that handles negation in the system.

FP-1 Concurrent administration of etanercept
(another TNF -blocking agent) and anakinra
(an interleukin-1 antagonist) has been as-
sociated with an increased risk of serious in-
fections, and increased risk of neutropenia
and no additional benefit compared to these
m edicinal products alone.

FP-2 When used in external subcutaneous infu-
sion pumps for insulin, NovoLog should not
be mixed with any other insulins or diluent.

FP-3 With the exception of albuterol, there are
no formal studies fully evaluating the in-
teraction effects of ATROVENT Inhalation
Aerosol and these drugs with respect to ef-
fectiveness.

Table 5: False positive samples. In this table false positive DDIs are in bold font.

False negative predictions have a negative ef-
fect on the recall evaluation parameter. In ta-
ble 6 we show false negative predictions and
their possible analysis for the development
data. A close analysis of FN-1 and FN-2 shows
that both sentences have a comma between the
paired drugs. From a linguistic point of view,
the punctuation mark comma can be used to
separate interdependent clauses. Represent-
ing this dependency as a feature might help to

avoid false negatives. FN-3 are a bit differ-
ent and it apprears that there is much knowl-
edge that can be extracted from the given text
which is in number format. Currently, the fea-
tures that we have don’t extract information
written in numbers. Also, the list of interac-
tion words doesn’t include words like admin-
istered, administration though words like co-
administration, coadministered are included.
A further development of the list of interaction
words will avoid such false predictions.

FN-1 Anticholinergic agents: Although iprat-
ropium bromide is minimally absorbed into
the systemic circulation, there is some poten-
tial for an additive interaction with concomi-
tantly used anticholinergic medications.

FN-2 Lymphocytopenia has been reported in pa-
tients receiving CAMPTOSAR, and it is
possible that the administration of dexam-
ethasone as antiemetic prophylaxis may
have enhanced the likelihood of this effect.

FN-3 Betaseron administration to three cancer pa-
tients over a dose range of 0.025 mg to
2.2 mg led to a dose-dependent inhibition
of antipyrine elimination.14 The effect of
alternate-day administration of 0.25 mg of
Betaseron on drug metabolism in MS pa-
tients is unknown.

Table 6: False negative samples. In this table false negative DDIs are in bold format.

6 Conclusion

Our approach to Extraction of Drug-Drug In-
teractions from BioMedical Texts task 9.2 is a
feature rich SVM classification. The perfor-
mance on detecting Drug-Drug interactions is
encouraging but it is a bit lower when it comes
to further classfying the type of the interaction.
As described in section 5.1, addition of fea-
tures such as negation will reduce false posi-
tive prediction and this will increase precision
score. Further development of the list of inter-
action words is also a important task to handle
the different forms of words that could indicate
an interaction type. We have also observed that
pattern-based semantic features are not well ex-
tracted in our system.
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Abstract

This paper presents UoS, a graph-based Word
Sense Induction system which attempts to
find all applicable senses of a target word
given its context, grading each sense accord-
ing to its suitability to the context. Senses
of a target word are induced through use of
a non-parameterised, linear-time clustering al-
gorithm that returns maximal quasi-strongly
connected components of a target word graph
in which vertex pairs are assigned to the same
cluster if either vertex has the highest edge
weight to the other. UoS participated in
SemEval-2013 Task 13: Word Sense Induc-
tion for Graded and Non-Graded Senses. Two
system were submitted; both systems returned
results comparable with those of the best per-
forming systems.

1 Introduction

Word Sense Induction (WSI) is the task of automat-
ically discovering word senses from text. In princi-
ple, WSI avoids reliance on a pre-defined sense in-
ventory.1 Whereas the related task of Word Sense
Disambiguation (WSD) can only assign pre-defined
senses to words on the basis of context, WSI fol-
lows the dictum that “The meaning of a word is its
use in the language.” (Wittgenstein, 1953) to dis-
cover senses through examination of context of use
in large text corpora. WSI, therefore, may be applied

1In practice, evaluation of a WSI system requires the use of
a gold standard sense inventory such as WordNet (Miller et al.,
1990) or OntoNotes (Hovy et al., 2006).

to discover new, rare, or domain specific senses;
senses undefined in existing sense inventories.2

Previous WSI evaluations (Agirre and Soroa,
2007; Manandhar et al., 2010) have approached
sense induction in terms of finding the single most
salient sense of a target word given its context.
However, as shown in Erk and McCarthy (2009), a
graded notion of sense may be more applicable, as
multiple senses of the target word may be perceived
by readers. The SemEval-2013 WSI evaluation de-
scribed in this paper is designed to explore the possi-
bility of finding all perceived senses of a target word
in a single contextual instance. The aim for partici-
pants in the task is therefore to design a system that
will induce a set of graded (weighted) senses of a
target word in a particular context.

The paper is organised as follows: Section 2 in-
troduces SemEval-2013 Task 13: Word Sense In-
duction for Graded and Non-Graded Senses; Sec-
tion 3 presents UoS, the system that participated in
the task; Section 4 reports evaluation results, show-
ing that UoS returns scores comparable with those
of the best performing systems.

2 SemEval-2013 Task 13

2.1 Aim

The aim for participants in SemEval-2013 Task 13:
Word Sense Induction for Graded and Non-Graded
Senses is to construct a system that will: (1) induce
the senses of a given set of target words and (2), label
each test set context (instance) of a target word with

2Surveys of WSI and WSD approaches are found in Navigli
(2009) and Navigli (2012).
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all applicable target word senses. Candidate senses
are drawn from the WordNet 3.1 sense inventory.
Systems must therefore return a set of graded senses
for each target word in a particular context, where a
numeric weight signifies (grades) each sense’s appli-
cability to the context. A non-graded sense is simply
the highest graded (weighted) sense out of all graded
senses.

2.2 Test Set

The test set consists of 4806 instances of 50 target
words: 20 verbs (1901 instances), 20 nouns (1908),
and 10 adjectives (997).3 Instances are extracted
from the Open American National Corpus, being a
mix of both written and spoken contexts of target
words.4 Only 542 instances are assigned more than
one sense by annotators, thus have graded senses.
This figure somewhat detracts from the task’s aim as
just 11.62% of the test set can be assigned graded
senses.

2.3 Evaluation Measures

Systems are evaluated in two ways: (1) in a WSD
task and (2), a clustering task. In the first evalu-
ation, systems are assessed by their ability to cor-
rectly identify which WordNet 3.1 senses of the tar-
get word are applicable in a given instance, and to
quantify, and so, rank, senses according to their level
of applicability. The supervised evaluation method
of previous SemEval WSI tasks (Agirre and Soroa,
2007; Manandhar et al., 2010) is applied to map in-
duced senses to WordNet 3.1 senses, with the map-
ping function of Jurgens (2012) used to account for
the applicability weights. Three evaluation metrics
are used -

• Jaccard Index: measures the overlap between
gold standard senses and those returned by a
WSI system.

• Positionally-Weighted Kendall’s Tau: measures
the ability of a system to rank senses by their
applicability.

3Stated as 4664 instances on the task website. Note that the
figure of 4806 is for the revised test set.

4http://www.americannationalcorpus.org/
OANC/index.html.

• Weighted Normalized Discounted Cumulative
Gain (NDCG): measures the agreement in ap-
plicability ratings, accounting for both the
ranking and difference in weights assigned to
senses.

In the second evaluation, similarity between a partic-
ipant’s clustering solution and that of the gold stan-
dard set of senses is measured using two metrics -

• Fuzzy Normalised Mutual Information (NMI):
extends the method of Lancichinetti et al.
(2009) to compute NMI between overlapping
(fuzzy) clusters. Fuzzy NMI measures the
alignment of system and gold standard senses
independently of the cluster sizes, so returns a
measure of how well a WSI system would per-
form regardless of the sense distribution in a
corpus.

• Fuzzy B-Cubed: adapts the overlapping B-
Cubed measure defined in Amigó et al. (2009)
to the fuzzy clustering setting. As an item-
based, rather than cluster-based, measure,
Fuzzy B-Cubed is sensitive to cluster size skew,
thus captures the expected performance of a
WSI system on a new corpus where the sense
distribution is the same.

3 The UoS System

The UoS system uses a graph-based model of word
co-occurrence to induce target word senses as fol-
lows:

3.1 Constructing a Target Word Graph

A graph G = (V,E) is constructed for each tar-
get word. V is a set of vertices and E ⊆ V × V
a set of edges. Each vertex v ∈ V represents a
word found in a dependency relation with the tar-
get word. Words are extracted from the dependency-
parsed version of ukWaC (Ferraresi et al., 2008). In
this evaluation V consists of the 300 highest ranked
dependency relation words.5 Words are ranked us-
ing the Normalised Pointwise Mutual Information

5|V | = 300 was found to return the best results on the trial
set over the range |V | = [100, 200, 300, ..., 1000].
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(NPMI) measure (Bouma, 2009)6, defined for two
words w1, w2 as:

NPMI(w1, w2) =

(
log p(w1,w2)

p(w1) p(w2)

)
−log p(w1, w2)

. (1)

An edge (vi, vj) ∈ E is a pair of vertices. An edge
represents a symmetrical relationship between ver-
tices vi and vj ; here, that words wi and wj co-occur
in ukWaC contexts. Each edge (vi, vj) is assigned
a weight w(vi, vj) to quantify the significance of
wi, wj co-occurrence, the weight being the value re-
turned by NPMI(wi, wj).

3.2 Clustering the Target Word Graph

A clustering algorithm is applied to the target word
graph, partitioning it to a set of clusters. Each
set of words in a cluster is taken to represent a
sense of the target word. The clustering algorithm
applied is MaxMax, a non-parameterised, linear-
time algorithm shown to return good results in pre-
vious WSI evaluations (Hope and Keller, 2013).
MaxMax transforms the weighted, undirected target
word graph G into an unweighted, directed graph
G′, where edge direction in G′ indicates a maximal
affinity relationship between two vertices. A ver-
tex vi is said to have maximal affinity to a vertex
vj if the edge weight w(vi, vj) is maximal amongst
the weights of all edges incident on vi. Clusters are
identified by finding root vertices of quasi-strongly
connected (QSC) subgraphs in G′ (Thulasiraman
and Swamy, 1992). A directed subgraph is said to
be QSC if, for any vertices vi and vj , there is a root
vertex vk (not necessarily distinct from vi and vj)
with a directed path from vk to vi and a directed path
from vk to vj .7

3.3 Merging Clusters

MaxMax tends to generate many fine-grained sense
clusters. Clusters are therefore merged using two
measures: cohesion and separation (Tan et al.,

6Application of the Log Likelihood Ratio measure (Dun-
ning, 1993) returned the same set of words. Though not re-
quired here, NPMI has the useful properties that: if w1 and w2

always co-occur NPMI = 1; if w1 and w2 are distributed as ex-
pected under independence NPMI = 0, and if w1 and w2 never
occur together, NPMI = −1.

7MaxMax is described in detail in Hope and Keller (2013).

2006). The cohesion of a cluster Ci is defined as:

cohesion(Ci) =

∑
x∈Ci,
y∈Ci

w(x, y)

|Ci|
. (2)

Separation between two clusters Ci, Cj is defined
as:

separation(Ci, Cj) = 1−


∑

x∈Ci,
y∈Cj

w(x, y)

|Ci| × |Cj |

 .

(3)
Cluster pairs with high cohesion and low separation
are merged, the intuition being that words in such
pairs will retain a relatively high degree of semantic
similarity. High cohesion is defined as greater than
average cohesion. Low separation is defined as a re-
ciprocal relationship between two clusters: if a clus-
ter Ci has the lowest separation to a cluster Cj (out
of all clusters) and Cj the lowest separation to Ci,
then the two (high cohesion) clusters are merged.8

3.4 Assigning Graded Word Senses to Target
Words

Each test instance is labelled with graded senses of
the target word. A score is computed for the test in-
stance and each target word cluster as the reciprocal
of the separation measure, where Ci is the set of con-
tent words in the instance (nouns, verbs, adjectives,
and adverbs, minus the target word itself) and Cj ,
the words in the cluster. The cluster with the lowest
separation score is taken to be the most salient sense
of the target word, with all other positive separation
scores taken to be perceived, graded senses of the
target word in that particular instance.

4 Evaluation Results

Two sets of results were submitted. The first, UoS
(top 3), returns the three highest scoring senses for
each instance; the second, UoS (# WN senses), re-
turns the n = number of target word senses in Word-
Net 3.1 most cohesive clusters, as defined by Equa-
tion (2).

Results for the seven participating WSI systems
are reported in Tables 1 and 2. The ten baselines,
provided by the organisers of the task, are -

8The average number of WordNet 3.1 senses for target
words is 8.58. MaxMax returns an average of 59.54 clusters for
target words; merging results in an average of 21.86 clusters.
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System/Baseline Jaccard Index
F-Score

Positionally Weighted Tau
F-Score

Weighted NDCG
F-Score

UoS (top 3) 0.232 0.625 0.374
AI-KU (r5-a1000) 0.244 0.642 0.332
AI-KU 0.197 0.620 0.387
Unimelb (50k) 0.213 0.620 0.371
Unimelb (5p) 0.218 0.614 0.365
UoS (# WN senses) 0.192 0.596 0.315
AI-KU (a1000) 0.197 0.606 0.215
Most Frequent Sense 0.552 0.560 0.718
Senses Eq. Weighted 0.149 0.787 0.436
Senses, Avg. Weight 0.187 0.613 0.499
One sense 0.192 0.609 0.288
1 of 2 random senses 0.220 0.627 0.287
1 of 3 random senses 0.244 0.633 0.287
1 of n random senses 0.290 0.638 0.286
1 sense per instance 0.000 0.945 0.000
SemCor, MFS 0.455 0.465 0.339
SemCor, All Senses 0.149 0.559 0.489

Table 1: Results for the WSD evaluation: all instances.

• SemCor, Most Frequent Sense (MFS): labels
each instance with the MFS in SemCor.9

• SemCor, All Senses: labels each instance with
all SemCor senses, weighting each according
to its frequency in SemCor.

• 1 sense per instance: labels each instance with
a unique induced sense, equivalent to the 1
cluster per instance baseline of the SemEval-
2010 WSI task (Manandhar et al., 2010).

• One sense: labels each instance with the same
induced sense, equivalent to the MFS baseline
of the SemEval-2010 WSI task.

• Most Frequent Sense: labels each instance with
the sense that is most frequently selected by an-
notators for all target word instances.

• Senses Avg.Weighted: labels each instance with
all senses. Each sense is scored according to its
average applicability rating from the gold stan-
dard labelling.

• Senses Eq. Weighted: labels each instance with
all senses, equally weighted.

9http://www.cse.unt.edu/˜rada/downloads.
html#semcor.

• 1 of 2 random senses: labels each instance with
one of two randomly selected induced senses.

• 1 of 3 random senses: labels each instance with
one of three randomly selected induced senses.

• 1 of n random senses: labels each instance with
one of n randomly selected induced senses,
where n is the number of senses for the target
word in WordNet 3.1.10

As noted by the task’s organisers11, the SemCor
scores are the fairest baselines for participating sys-
tems to compare against as they have no knowledge
of the test set sense distribution; the other baselines
are more challenging as they have knowledge of the
test set sense distribution and annotator grading.

4.1 Summary Analysis of Evaluation Results
Given the number of evaluation metrics (16 in total
on the task website), individual analysis of system
results per metric is beyond the scope of this paper.
However, a ranking of systems may be obtained by
taking a summed ranked score; that is, by adding

10For the random senses baselines, induced senses are
mapped to WordNet 3.1 senses using the mapping procedure
described in Agirre and Soroa (2007). The mapping is provided
by the task organisers.

11http://www.cs.york.ac.uk/semeval-2013/
task13/index.php?id=results
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System/Baseline Fuzzy NMI Fuzzy B-Cubed
Precision

Fuzzy B-Cubed
Recall

Fuzzy B-Cubed
F-Score

Unimelb (50k) 0.060 0.524 0.447 0.483
Unimelb (5p) 0.056 0.470 0.449 0.459
AI-KU 0.065 0.838 0.254 0.390
AI-KU (r5-a1000) 0.039 0.502 0.409 0.451
UoS (top 3) 0.045 0.479 0.420 0.448
UoS (# WN senses) 0.047 0.988 0.112 0.201
AI-KU (a1000) 0.035 0.905 0.194 0.320
One sense 0.000 0.989 0.455 0.623
1 of 2 random senses 0.028 0.495 0.456 0.474
1 of 3 random senses 0.018 0.329 0.455 0.382
1 of n random senses 0.016 0.168 0.451 0.245
1 sense per instance 0.071 0.000 0.000 0.000

Table 2: Results for the cluster-based evaluation: all instances.

up each system’s rankings over all evaluation met-
rics. The summed ranking finds that UoS (top 3)
is placed first. If the WSD and cluster-based eval-
uations are considered separately, then UoS (top 3)
is ranked, respectively, first and fourth. However,
this result is countered by the relatively poor per-
formance of UoS (# WN senses), being ranked fifth
overall. Considering baselines, UoS (top 3) equals
or surpasses the SemCor baseline scores 67% of the
time, and 54% for the more challenging baselines;
UoS (# WN senses) scores, respectively, 50% and
44%.

All instances results were supplemented with
single-sense (non-graded) and multi-sense (graded)
splits at a later date.12 These results show (again,
using a ranked score) that for single-sense instances,
AI-KU is the best performing system, with UoS (top
3) placed fifth, and UoS (# WN senses) last. Both
UoS (top 3) and UoS (# WN senses) surpass the
SemCor MFS baseline, with UoS (top 3) surpassing
or equalling the harder baselines 79% of the time,
and UoS (# WN senses) 68% of the time. For multi-
sense instances, AI-KU is, again, the best perform-
ing system, with UoS (# WN senses) placed sec-
ond and UoS (top 3) sixth. UoS (top 3) surpasses
or equals the SemCor baseline scores 67% of the
time; UoS (# WN senses) 83% of the time. UoS
(top3) passes/equals, the harder baselines 63% of the
time, with UoS (# WN senses) doing so 67% of the
time. These results are somewhat confounding as

12http://www.cs.york.ac.uk/semeval-2013/
task13/index.php?id=results (4/4/2013)

one would expect a system that performs well in the
main set of results (all instances), as UoS (top 3)
does, to do so in at least one of the single-sense /
multi-sense splits: this is clearly not the case. In-
deed, the results suggest that UoS (# WN senses),
found to perform poorly over all instances, is better
suited to the task’s aim of finding graded senses.

5 Conclusion

This paper presented UoS, a graph-based WSI sys-
tem that participated in SemEval-2013 Task 13:
Word Sense Induction for Graded and Non-Graded
Senses. UoS applied the MaxMax clustering algo-
rithm to find a set of sense clusters in a target word
graph. The number of clusters was found automati-
cally through identification of root vertices of max-
imal quasi-strongly connected subgraphs. Evalua-
tion results showed the UoS (top 3) system to be
the best performing system (all instances), if a sim-
ple ranking over all evaluation measures is applied.
The second system, UoS (# WN senses), performed
poorly, being ranked fifth out of the seven participat-
ing WSI systems. Note, however, that the number of
evaluation metrics applied, and the wide variability
in each system’s performances over different met-
rics and different splits of instance types, make it
difficult to judge exactly which system is the best
performing. Future research therefore aims to carry
out a detailed analysis of the results and to assess
whether the measures applied in the evaluation ade-
quately reflect the performance of WSI systems.
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