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Abstract

Automatic metaphor identification and inter-
pretation in text have been traditionally con-
sidered as two separate tasks in natural lan-
guage processing (NLP) and addressed in-
dividually within computational frameworks.
However, cognitive evidence suggests that hu-
mans are likely to perform these two tasks si-
multaneously, as part of a holistic metaphor
comprehension process. We present a novel
method that performs metaphor identification
through its interpretation, being the first one
in NLP to combine the two tasks in one
step. It outperforms the previous approaches
to metaphor identification both in terms of ac-
curacy and coverage, as well as providing an
interpretation for each identified expression.

1 Introduction

Metaphor undoubtedly gives our expression more
vividness, distinction and artistry, however, it is also
an important linguistic tool that has long become
part of our every-day language. Metaphors arise
when one concept or domain is viewed in terms
of the properties of another (Lakoff and Johnson,
1980). Consider the examples in (1) and (2).

(1) My car drinks gasoline. (Wilks, 1978)

(2) This policy is strangling business.

The car in (1) and business in (2) are viewed as
living beings and thus they can drink or be stran-
gled respectively. The mapping between the car
(the target concept) and living being (the source
concept) is systematic and results in a number of
metaphorical expressions (e.g. “This oil gives your

car a second life”, “this car has is very temperamen-
tal” etc.) Lakoff and Johnson call such generalisa-
tions a source–target domain mapping, or concep-
tual metaphor.

The ubiquity of metaphor in language has been
established in a number of corpus studies (Cameron,
2003; Martin, 2006; Steen et al., 2010; Shutova
and Teufel, 2010) and the role it plays in human
reasoning has been confirmed in psychological ex-
periments (Thibodeau and Boroditsky, 2011). This
makes its automatic processing an important prob-
lem for NLP and its numerous applications (such
as machine translation, information extraction, opin-
ion mining and many others). For example, the
use of the metaphorical verb strangle in (2) reflects
the speaker’s negative opinion regarding the gov-
ernment’s tight business regulations, which would
be an important fact for an opinion mining system
to discover (Narayanan, 1999). Other experiments
(Agerri, 2008) have investigated and confirmed the
role of metaphor interpretation for textual entailment
resolution (RTE).

The problem of metaphor modeling is rapidly
gaining interest within NLP, with a growing number
of approaches exploiting statistical techniques (Ma-
son, 2004; Gedigian et al., 2006; Shutova, 2010;
Shutova et al., 2010; Turney et al., 2011; Shutova
et al., 2012a). Compared to more traditional ap-
proaches based on hand-coded knowledge (Fass,
1991; Martin, 1990; Narayanan, 1997; Narayanan,
1999; Feldman and Narayanan, 2004; Barnden and
Lee, 2002; Agerri et al., 2007), these more recent
methods tend to have a wider coverage, as well as be
more efficient, accurate and robust. However, even
the statistical metaphor processing approaches so far
often focused on a limited domain or a subset of
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phenomena (Gedigian et al., 2006; Krishnakumaran
and Zhu, 2007), and required training data (Shutova
et al., 2010; Turney et al., 2011), often resulting in
a limited coverage. The metaphor processing task
itself has been most commonly addressed in NLP
as two individual subtasks: metaphor identification
and metaphor interpretation, with the systems focus-
ing only on one of them at a time, or at best comb-
ing the two in a pipeline (Shutova et al., 2012a).
Metaphor identification systems annotate metaphor-
ical language in text, and metaphor interpretation
systems discover literal meanings of the previously
annotated expressions. However, cognitive evidence
suggests that humans are likely to perform identifi-
cation and interpretation simultaneously, as part of
a holistic metaphor comprehension process (Coul-
son, 2008; Utsumi, 2011; Gibbs and Colston, 2012).
In this paper, we also take this stance and present the
first computational method that identifies metaphori-
cal expressions in unrestricted text by means of their
interpretation. Following Shutova (2010), we define
metaphor interpretation as a task of finding a literal
paraphrase for a metaphorically used word and in-
troduce the concept of symmetric reverse paraphras-
ing as a criterion for metaphor identification. The
main assumption behind our method is that the lit-
eral paraphrases of literally-used words should yield
the original phrase when paraphrased in reverse. For
example, when the expression “clean the house” is
paraphrased as “tidy the house”, the reverse para-
phrasing of tidy would generate clean. Our expec-
tation is that such a symmetry in paraphrasing is
indicative of literal use. The metaphorically-used
words are unlikely to exhibit this symmetry prop-
erty when paraphrased in reverse. For example, the
literal paraphrasing of the verb stir in “stir excite-
ment” would yield “provoke excitement”, but the
reverse paraphrasing of provoke would not retrieve
stir, indicating the non-literal use of stir.

We experimentally verify this hypothesis in a set-
ting involving single-word metaphors expressed by
a verb in verb-subject and verb-direct object rela-
tions. We apply the selectional preference-based
metaphor paraphrasing method of Shutova (2010) to
retrieve literal paraphrases of all input verbs and ex-
tend the method to perform metaphor identification.
In summary, our system (1) determines the likeli-
hood of a verb being metaphorical based on its selec-

tional preference strength (Resnik, 1993); (2) identi-
fies a set of literal paraphrases for verbs that may be
used metaphorically using the algorithm of Shutova
(2010); (3) performs reverse paraphrasing of each
of the identified paraphrases, aiming to retrieve the
original expression; and (4) if the original expres-
sion is retrieved then the verb is tagged as literal,
otherwise it is tagged as metaphorical.

We evaluated the performance of the system using
the manually annotated metaphor corpus of Shutova
and Teufel (2010) in precision- and recall-oriented
settings. In addition, we compared its performance
to that of a baseline using selectional preference vi-
olation as an indicator of metaphor, as well as to
two previous metaphor identification approaches of
Shutova et al. (2010) and Turney et al. (2011).

2 Related Work

One of the first attempts to identify and interpret
metaphorical expressions in text is the met* sys-
tem of Fass (1991), that utilizes hand-coded knowl-
edge and detects non-literalness via selectional pref-
erence violation. In case of a violation, the re-
spective phrase is first tested for being metonymic
using hand-coded patterns (e.g. CONTAINER-FOR-
CONTENT). If this fails, the system searches the
knowledge base for a relevant analogy in order to
discriminate metaphorical relations from anomalous
ones. The system of Krishnakumaran and Zhu
(2007) uses WordNet (the hyponymy relation) and
word bigram counts to predict verbal, nominal and
adjectival metaphors at the sentence level. The au-
thors discriminate between conventional metaphors
(included in WordNet) and novel metaphors. Birke
and Sarkar (2006) present a sentence clustering ap-
proach that employs a set of seed sentences an-
notated for literalness and computes similarity be-
tween the new input sentence and all of the seed sen-
tences. The system then tags the sentence as literal
or metaphorical according to the annotation in the
most similar seeds, attaining an f-score of 53.8%.

The first system to discover source–target domain
mappings automatically is CorMet (Mason, 2004).
It does this by searching for systematic variations
in domain-specific verb selectional preferences. For
example, pour is a characteristic verb in both LAB

and FINANCE domains. In the LAB domain it has
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a strong preference for liquids and in the FINANCE

domain for money. From this the system infers the
domain mapping FINANCE – LAB and the concept
mapping money – liquid. Gedigian et al. (2006)
trained a maximum entropy classifier to discrimi-
nate between literal and metaphorical use. They
annotated the sentences from PropBank (Kingsbury
and Palmer, 2002) containing the verbs of MOTION

and CURE for metaphoricity. They used PropBank
annotation (arguments and their semantic types) as
features for classification and report an accuracy
of 95.12% (however, against a majority baseline of
92.90%). The metaphor identification system of
Shutova et al. (2010) starts from a small seed set
of metaphorical expressions, learns the analogies in-
volved in their production and extends the set of
analogies by means of verb and noun clustering. As
a result, the system can recognize new metaphorical
expressions in unrestricted text (e.g. from the seed
“stir excitement” it infers that “swallow anger” is
also a metaphor), achieving a precision of 79%.

Turney et al. (2011) classify verbs and adjectives
as literal or metaphorical based on their level of con-
creteness or abstractness in relation to a noun they
appear with. They learn concreteness rankings for
words automatically (starting from a set of exam-
ples) and then search for expressions where a con-
crete adjective or verb is used with an abstract noun
(e.g. “dark humour” is tagged as a metaphor and
“dark hair” is not). They report an accuracy of 73%.

3 Method

3.1 Selectional Preference Strength Filtering

One of the early influential ideas in the field of com-
putational metaphor processing is that metaphor rep-
resents a violation of selectional preferences (SP)
of a word in a given context (Wilks, 1975; Wilks,
1978). However, applied directly as an identifica-
tion criterion, violation of SPs is also indicative of
many other linguistic phenomena (e.g. metonymy),
and not only metaphor, which is problematic. We
modify this view and apply it to measure the poten-
tial of a word to be used metaphorically based on its
selectional preference strength (SPS). The main in-
tuition behind SPS filtering is that not all verbs have
an equal potential of being a metaphor. For example,
verbs such as choose, remember, describe or like do

not have a strong preference for their direct objects
and are equally likely to appear with many argument
classes. If metaphor represents a violation of SPs,
then the verbs with weak SPS are unlikely to be used
metaphorically in any context. For every verb in the
input text, the filter determines their likelihood of
being a metaphor based on their SPS and discards
the weak ones. The SPS filter is context-free, and
the reverse paraphrasing method is then applied in
the next steps to determine if the remaining verbs
are indeed used metaphorically in the given context.

We automatically acquired selectional preference
distributions for verb-subject and verb-direct object
relations from the British National Corpus (BNC)
(Burnard, 2007) that was parsed using the RASP
parser (Briscoe et al., 2006; Andersen et al., 2008).
We applied the noun clustering method of Sun and
Korhonen (2009) to 2000 most frequent nouns in
the BNC to obtain 200 common selectional prefer-
ence classes. To quantify selectional preferences, we
adopted the SPS measure of Resnik (1993). Resnik
defines SPS of a verb as the difference between the
posterior distribution of noun classes in a particular
relation with the verb and their prior distribution in
that syntactic position (regardless of the verb). He
quantifies this difference using the Kullback-Leibler
divergence:

SR(v) = D(P (c|v)||P (c)) =∑
c

P (c|v) log
P (c|v)

P (c)
,

(1)

where P (c) is the prior probability of the noun class,
P (c|v) is the posterior probability of the noun class
given the verb and R is the grammatical relation.

We calculated SPS for verb-subject and verb-
direct object grammatical relations. The optimal se-
lectional preference strength thresholds were set ex-
perimentally on a small heldout dataset at 0.30 for
verb-subject and 0.70 for verb-direct object relations
(via qualitative analysis of the data). The system ex-
cludes expressions containing the verbs with prefer-
ence strength below these thresholds from the set of
candidate metaphors. Examples of verbs with weak
direct object SPs include e.g. imagine, avoid, con-
tain, dislike, make, admire, separate, remember and
the strong SPs are exhibited by e.g. sip, hobble, roar,
hoover, slam, skim, drink etc.

278



3.2 Literal Paraphrasing

The verbs that can be used metaphorically ac-
cording to the SPS filter are then paraphrased us-
ing the context-based literal paraphrasing method
of Shutova (2010). While Shutova only used
the method to paraphrase manually annotated
metaphors, we extend and apply the method to para-
phrasing of literally used terms and metaphor identi-
fication, eliminating the need for manual annotation
of metaphorical expressions.

The system takes verbs and their context in the
form of subject and direct-object relations as input.
It generates a list of possible paraphrases of the verb
that can occur in the same context and ranks them
according to their likelihood, as derived from the
corpus. It then identifies shared features of the para-
phrases and the verb using the WordNet (Fellbaum,
1998) hierarchy and removes unrelated concepts. It
then identifies literal paraphrases among the remain-
ing candidates based on the verb’s automatically in-
duced selectional preferences and the properties of
the context.

3.2.1 Context-based Paraphrase Ranking
Following Shutova (2010), we compute the like-

lihood L of a particular paraphrase of the verb
v as a joint probability of the paraphrase i co-
occurring with the other lexical items from its con-
text w1, ..., wN in syntactic relations r1, ..., rN .

Li = P (i, (w1, r1), (w2, r2), ..., (wN , rN )). (2)

Assuming statistical independence between the rela-
tions of the terms in a phrase, we obtain:

P (i, (w1, r1), (w2, r2), ..., (wN , rN )) =

P (i) · P ((w1, r1)|i) · ... · P ((wN , rN )|i).
(3)

The probabilities can be calculated using maxi-
mum likelihood estimation as P (i) = f(i)∑

k f(ik)

and P (wn, rn|i) = f(wn,rn,i)
f(i) , where f(i) is the

frequency of the interpretation irrespective of its
arguments,

∑
k f(ik) is the number of times its

part of speech class is attested in the corpus and
f(wn, rn, i) is the number of times the interpreta-
tion co-occurs with context word wn in relation rn.
By performing appropriate substitutions into (3), we

obtain:

P (i, (w1, r1), (w2, r2), ..., (wN , rN )) =

f(i)∑
k f(ik)

· f(w1, r1, i)

f(i)
· ... · f(wN , rN , i)

f(i)
=∏N

n=1 f(wn, rn, i)

(f(i))N−1 ·
∑

k f(ik)
.

(4)
This model is then used to rank the candidate sub-
stitutes of the verb v in the fixed context according
to the data. The parameters of the model were esti-
mated from the RASP-parsed BNC using the gram-
matical relations output created by Andersen et al.
(2008). The goal of this model is to emphasize the
paraphrases that match the context of the verb in the
sentence best.

3.2.2 WordNet Filter
After obtaining the initial list of possible substi-

tutes for the verb v, the system filters out the terms
whose meanings do not share any common proper-
ties with that of the verb. This overlap of properties
is identified using the hyponymy relation in Word-
Net. Within the initial list of paraphrases, the sys-
tem selects the terms that are hypernyms of the verb
v, or share a common hypernym with it. Follow-
ing Shutova, we restrict the hypernym search to a
depth of three levels in the taxonomy. Table 1 shows
the filtered lists of paraphrases for the expressions
“stir excitement” and “campaign surged”. The goal
of the filter is to discard unrelated paraphrases and
thus ensure the meaning retention during paraphras-
ing. Note, however, that we define meaning reten-
tion broadly, as sharing a set of similar basic prop-
erties. Such a broad definition distinguishes our sys-
tem from other WordNet-based approaches to lexi-
cal substitution (McCarthy and Navigli, 2007) and
allows for a transition from metaphorical to literal
language, while preserving the original meaning.

3.2.3 SP-based Re-ranking
The lists of paraphrases which were generated as

described above contain some irrelevant paraphrases
(e.g. “campaign lifted” for “campaign surged”) and
some metaphorically-used paraphrases (e.g. “cam-
paign soared”). However, our aim is to identify lit-
eral paraphrases among the candidates. Shutova’s
method uses selectional preferences of the candi-
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Log-likelihood Paraphrase
Verb-DirectObject
stir excitement:
-14.28 create
-14.84 provoke
-15.53 make
-15.53 elicit
-15.53 arouse
-16.23 stimulate
-16.23 raise
-16.23 excite
-16.23 conjure
Subject-Verb
campaign surge:
-13.01 run
-15.53 improve
-16.23 soar
-16.23 lift

Table 1: The list of paraphrases with the initial ranking

dates for this purpose. Candidates used metaphor-
ically are likely to demonstrate semantic preference
for the source domain, e.g. soar would select for
birds or flying devices as its subject rather than cam-
paigns (the target domain), whereas the ones used
literally would have a higher preference for the tar-
get domain. This is yet another modification of
Wilks’ SP violation view of metaphor. Shutova
(2010) has previously shown that selecting the para-
phrases whose preferences the noun in the context
matches best allows to filter out non-literalness, as
well as unrelated terms.

As in case of the SPS filter, we automatically
acquired selectional preference distributions of the
verbs in the paraphrase lists (for verb-subject and
verb-direct object relations) from the RASP-parsed
BNC. In order to quantify how well a particular ar-
gument class fits the verb, we adopted the selectional
association measure proposed by Resnik (1993). Se-
lectional association is defined as follows:

AR(v, c) =
1

SR(v)
P (c|v) log

P (c|v)

P (c)
, (5)

where P (c) is the prior probability of the noun class,
P (c|v) is the posterior probability of the noun class
given the verb and SR is the overall selectional pref-
erence strength of the verb in the grammatical rela-
tion R.

We use selectional association as a measure of
semantic fitness of the paraphrases into the con-

Association Paraphrase
Verb-DirectObject
stir excitement:
0.0696 provoke
0.0245 elicit
0.0194 arouse
0.0061 conjure
0.0028 create
0.0001 stimulate
≈ 0 raise
≈ 0 make
≈ 0 excite
Subject-Verb
campaign surge:
0.0086 improve
0.0009 run
≈ 0 soar
≈ 0 lift

Table 2: The list of paraphrases re-ranked using SPs

text, which stands for their literalness. The para-
phrases are re-ranked based on their selectional as-
sociation with the noun in the context. The incor-
rect or metaphorical paraphrases are de-emphasized
within this ranking. The new ranking is shown in
Table 2. While the model in 3.2.1 selected the can-
didate paraphrases that match the context better than
all other candidates, the SP model emphasizes the
paraphrases that match this particular context better
than any other context they may appear in. Shutova’s
experiments have shown that the paraphrase in rank
1 (i.e. the verb with which the noun in the context
has the highest selectional association) represents a
literal interpretation in 81% of all cases. Such a level
of accuracy makes Shutova’s method state-of-the-art
in metaphor paraphrasing. We now apply it to the
task of metaphor identification.

3.3 Reverse Paraphrasing

At the heart of our approach to metaphor iden-
tification is the concept of reverse paraphrasing.
The main intuition behind it is that when literally-
used words are paraphrased with their literal substi-
tutes, the reverse literal paraphrasing of that substi-
tute should yield the original expression as one of
the candidates. This is, however, not the case for
metaphor, since its literal paraphrase would yield
another literal expression via literal paraphrasing.
We ran the above paraphrasing method on every
verb in the input text and then again on the top
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Original expression Lit. paraphrase Reverse paraphrase
Verb-DirectObject
stir excitement provoke: elicit, arouse,

cause, create,
stimulate, raise,
make

elicit: provoke, arouse,
see, derive, create,
raise, make

buy a dress
get: change, find, buy,

purchase, take, hit,
alter, ...

purchase: get, buy
Subject-Verb
campaign surge improve: change, turn

run: succeed, direct,
continue, lead, last,
win, extend, ...

prisoner escape flee: escape, run
get: drive, go, turn,

transfer, arrive,
bring, come, ...

Table 3: The list of top two literal paraphrases and their
reverse paraphrases, as identified by the system

two paraphrases it produces. If this process resulted
in retrieving the original expression then the latter
was tagged as literal, otherwise it was tagged as
metaphorical. Some examples of reverse paraphras-
ing results are given in Table 3. One can see from
the table that when the metaphorical verb stir in “stir
excitement” is paraphrased as the literal “provoke”,
the subsequent paraphrasing of “provoke” does not
produce “stir”. In contrast, when the literal expres-
sion “buy a dress” is paraphrased as “purchase”, the
reverse paraphrasing generates “buy” as one of the
candidates, indicating the literalness of the original
expression. The same is true for the metaphorical
surge in “campaign surged” and the literal escape in
“the prisoner escaped”.

4 Evaluation and Discussion

4.1 Baseline

The baseline system is the implementation of the se-
lectional preference violation view of Wilks (1978)
using automatically induced SPs. Such a choice of a
baseline allows us to compare our own modifications
of the SP violation view to the original approach of
Wilks in a computational setting, as well as evaluate
the latter on real-world data. Another motivation be-

hind this choice is that the symmetry of reverse para-
phrasing can be seen as a kind of “normality” test, in
a similar way as the satisfied selectional preferences
are in Wilk’s approach. However, we believe that
the SP-based reverse paraphrasing method captures
significantly more information than SP violations do
and thus compare the performance of the two meth-
ods in an experimental setting.

The baseline SP classes were created as described
above and the preferences were quantified using se-
lectional association as a measure. The baseline sys-
tem then classified the instances where selectional
association of the verb and the noun in the phrase
were below a certain threshold, as metaphorical.
We determined the optimal threshold by qualitative
analysis of the selectional preference distributions of
50 verbs of different frequency and SPS (through the
analysis of literally and metaphorically-used argu-
ments). The threshold was averaged over individual
verbs’ thresholds and equals 0.07 for direct object
relations, and 0.09 for subject relations.

4.2 Evaluation Corpus

We evaluated the system and the baseline against the
corpus of Shutova and Teufel (2010), that was man-
ually annotated for metaphorical expressions. The
corpus is a 14,000-word subset of the BNC, with
the texts selected to retain the original balance of
genre in the BNC itself. The corpus contains ex-
tracts from fiction, newspaper text, radio broadcast
(transcribed speech), essays and journal articles on
politics, social science and literature. Shutova and
Teufel (2010) identified 241 metaphorical expres-
sions in the corpus, out of which 164 were verbal
metaphors.

We parsed the corpus using the RASP parser and
extracted subject and direct object relations from its
output. Among the direct object relations there were
310 literal phrases and 79 metaphorical ones; and
among the subject relations 206 were literal and 67
metaphorical. This constitutes a dataset of 662 rela-
tions for the systems to classify.

4.3 Results and Discussion

The system and baseline performance was evaluated
against the corpus in terms of precision and recall.
Precision, P , measures the proportion of metaphor-
ical expressions that were tagged correctly among
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Relation Bsln P System P Bsln R System R

Verb-DObj 0.20 0.69 0.52 0.63
Verb-Subj 0.13 0.66 0.59 0.70
Average 0.17 0.68 0.55 0.66

Table 4: Baseline and system performance by relation

the ones that were tagged by the system. Recall,
R, measures the proportion of metaphorical expres-
sions that were identified out of all metaphorical ex-
pressions in the gold standard corpus. The system
P = 0.68 and R = 0.66, whereas the baseline only
attains P = 0.17 and R = 0.55. System perfor-
mance by relation is shown in Table 4. The hu-
man ceiling for this task, according to the annotation
experiments of Shutova and Teufel (2010) approxi-
mates to P = 0.80. Figure 1 shows example sen-
tences with metaphors identified and paraphrased by
the system. Table 5 provides a breakdown of the an-
notated instances into true / false positives and true
/ false negatives. As one can see from the table, the
systems can accurately annotate both metaphorical
and literal expressions, providing a balance between
precision and recall.

The system outperforms the baseline for both
verb-subject and verb-direct object constructions.
Its performance is also close to the previous
metaphor identification systems of Turney et al.
(2011) (accuracy of 0.73) and Shutova et al. (2010)
(precision of 0.79), however, the results are not di-
rectly comparable due to different experimental set-
tings. Our method has a strong advantage over the
system of Shutova et al. (2010) in terms of cover-
age: the latter system heavily relied on manually an-
notated seed metaphors which limited its applicabil-
ity in unrestricted text to the set of topics covered by
the seeds. As opposed to this, our method is domain-
independent and can be applied to any data. Shutova
et al. (2010) have not measured the recall of their
system, however indicated its possible coverage lim-
itations.

In addition, our system produces paraphrases for
the identified metaphorical expressions. Since the
identification is directly dependent on the quality
of literal paraphrasing, the majority of the inter-
pretations the system provided for the identified
metaphors appear to be correct. However, we found
a few instances where, despite the correct initial
paraphrasing, the system was not able to identify

FYT Gorbachev inherited a Soviet state which was, in
a celebrated Stalinist formulation, national in form but
socialist in content.
Paraphrase: Gorbachev received a Soviet state which
was, in a celebrated Stalinist formulation, national in
form but socialist in content.

CEK The Clinton campaign surged again and he easily
won the Democratic nomination.
Paraphrase: The Clinton campaign improved again and
he easily won the Democratic nomination.

CEK Their views reflect a lack of enthusiasm among
the British people at large for John Major ’s idea of Eu-
ropean unity.
Paraphrase: Their views show a lack of enthusiasm
among the British people at large for John Major ’s idea
of European unity.

J85 [..] the reasons for this superiority are never spelled
out.
Paraphrase [..] the reasons for this superiority are never
specified.

J85 Anyone who has introduced speech act theory to
students will know that these technical terms are not at
all easy to grasp.
Paraphrase: Anyone who has introduced speech act the-
ory to students will know that these technical terms are
not at all easy to understand.

G0N The man’s voice cut in .
Paraphrase: The man’s voice interrupted.

Figure 1: Metaphors tagged by the system (in bold) and
their paraphrases

the metaphor, usually in case of highly convention-
alized metaphorical expressions. Overall, the most
frequent system errors fall into the following cate-
gories:
Errors due to incorrect parsing: The system failed
to discover some of the metaphorical expressions in
the corpus since their grammatical relations were
missed by the parser. In addition, some of the in-
stances were misclassified, e.g. “pounds paid to
[...]” or “change was greatly accelerated” were la-
beled as subject relations. Overall, the parser missed
9 metaphorical expressions.
Errors due to incorrect paraphrasing: The most
common type of error that leads to false positives is
the incorrect paraphrasing (resulting in a change of
meaning). This makes it nearly impossible for the
system to retrieve the original term. There were also
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Positives Negatives Total
True 99 464 563
False 47 52 99
Total 146 516

Table 5: System tagging statistics

cases where the system could not generate any para-
phrase (usually for literal expressions, e.g. “play an
anthem”).

Errors due to metaphorical paraphrasing: Some
of the system errors are due to metaphorical para-
phrasing. For example, the metaphorical expression
“mend marriage” was paraphrased as “repair mar-
riage”, which is also used metaphorically. And re-
pair in return generated mend, when paraphrased in
reverse. Errors of this type have been mainly trig-
gered by the WordNet filter, and the fact that some
metaphorical senses are included in WordNet.

Errors due to metaphor conventionality: a num-
ber of conventional metaphors were missed by the
system, since the original verb was retrieved due to
its conventionality. Such examples include “impose
a decision”, “put the issue forward”, “lead a life”.
Such cases suggest that the system is better suited to
identify more creative, novel metaphors.

Cases of metonymy: a few cases of gen-
eral metonymy were annotated by the system as
metaphorical, e.g. “shout support”, which stands for
“shout the words of support”, and “humiliate a mo-
ment”, that is likely to mean “humiliate the event of
the moment”. However, there were only 4 errors of
this type in the data.

Baseline Errors: The output of the baseline exhib-
ited two main types of error. The first stemmed from
the conventionality of many metaphorical expres-
sions, which resulted in their literal annotation. Con-
ventionality leads to high selectional association for
verbs with their metaphorical arguments, e.g. em-
brace has {view, ideology, conception etc.} class as
its top ranked direct object argument with the selec-
tional association of 0.18. The second type of error
was the system selecting many language anomalies
that violate selectional preferences and tagging these
as metaphors. This resulted in a high number of false
positives.

5 Conclusions and Future Directions

Previous research on metaphor addressed a num-
ber of its aspects using both symbolic and statisti-
cal techniques. While some of this work met with
success with respect to precision in metaphor an-
notation, the methods often focused on a limited
domain and needed manually-labeled training data.
Their dependence on manually annotated training
data made the systems hard to scale. As a result,
many of these systems are not directly applicable to
aid real-world NLP due to their limited coverage. In
contrast, our method does not require any manually-
labeled data, which makes it more robust and appli-
cable to a wide range of genres. It is also the first
one to perform accurate metaphor identification and
interpretation in one step, as opposed to the previ-
ous systems focusing on one part of the task only.
It identifies metaphor with a precision of 68% and
a recall of 66%, which is a very encouraging result.
We believe that this work has important implications
for computational modeling of metaphor, and is rel-
evant to a range of other semantic tasks within NLP.

Although we have so far tested our system on
verb-subject and verb-object metaphors only, we be-
lieve that the described identification and paraphras-
ing techniques can be similarly applied to a wider
range of syntactic constructions. Extending the sys-
tem to deal with more parts of speech and types of
phrases (e.g. nominal and adjectival metaphors) is
part of our future work.

Another promising future research avenue is inte-
grating the techniques with unsupervised paraphras-
ing and lexical substitution methods, using e.g. dis-
tributional similarity measures (Pucci et al., 2009;
McCarthy et al., 2010) or vector space models of
word meaning (Erk and Padó, 2008; Erk and Padó,
2009; De Cao and Basili, 2009; Shutova et al.,
2012b). These methods could fully or partly replace
the WordNet filter in the detection of similar basic
features of the concepts, or add useful information
to it. Fully replacing the WordNet filter by an un-
supervised method would make the system more ro-
bust and more easily portable across domains and
genres. This may also eliminate some of the system
errors that arise from the inconsistent sense annota-
tion and the inclusion of some metaphorical senses
in WordNet.
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