
Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference
and the Shared Task, pages 176–180, Atlanta, Georgia, June 13-14, 2013. c©2013 Association for Computational Linguistics

DLS@CU-CORE: A Simple Machine Learning Model of Semantic

Textual Similarity

Md. Arafat Sultan, Steven Bethard, Tamara Sumner

Institute of Cognitive Science and Department of Computer Science

University of Colorado, Boulder, CO 80309
{arafat.sultan, steven.bethard, sumner}@colorado.edu

Abstract

We present a system submitted in the Semantic

Textual Similarity (STS) task at the Second

Joint Conference on Lexical and Computa-

tional Semantics (*SEM 2013). Given two

short text fragments, the goal of the system is

to determine their semantic similarity. Our sys-

tem makes use of three different measures of

text similarity: word n-gram overlap, character

n-gram overlap and semantic overlap. Using

these measures as features, it trains a support

vector regression model on SemEval STS 2012

data. This model is then applied on the STS

2013 data to compute textual similarities. Two

different selections of training data result in

very different performance levels: while a cor-

relation of 0.4135 with gold standards was ob-

served in the official evaluation (ranked 63rd

among all systems) for one selection, the other

resulted in a correlation of 0.5352 (that would

rank 21st).

1 Introduction

Automatically identifying the semantic similarity

between two short text fragments (e.g. sentences) is

an important research problem having many im-

portant applications in natural language processing,

information retrieval, and digital education. Exam-

ples include automatic text summarization, question

answering, essay grading, among others.

 However, despite having important applications,

semantic similarity identification at the level of

short text fragments is a relatively recent area of in-

vestigation. The problem was formally brought to

attention and the first solutions were proposed in

2006 with the works reported in (Mihalcea et al.,

2006) and (Li et al., 2006). Work prior to these fo-

cused primarily on large documents (or individual

words) (Mihalcea et al., 2006). But the sentence-

level granularity of the problem is characterized by

factors like high specificity and low topicality of the

expressed information, and potentially small lexical

overlap even between very similar texts, asking for

an approach different from those that were designed

for larger texts.

Since its inception, the problem has seen a large

number of solutions in a relatively small amount of

time. The central idea behind most solutions is the

identification and alignment of semantically similar

or related words across the two sentences, and the

aggregation of these similarities to generate an over-

all similarity score (Mihalcea et al., 2006; Islam and

Inkpen, 2008; Šarić et al., 2012).

The Semantic Textual Similarity task (STS) or-

ganized as part of the Semantic Evaluation Exer-

cises (see (Agirre et al., 2012) for a description of

STS 2012) provides a common platform for evalua-

tion of such systems via comparison with human-

annotated similarity scores over a large dataset.

In this paper, we present a system which was

submitted in STS 2013. Our system is based on very

simple measures of lexical and character-level over-

lap, semantic overlap between the two sentences

based on word relatedness measures, and surface

features like the sentences’ lengths. These measures

are used as features for a support vector regression

model that we train with annotated data from

SemEval STS 2012. Finally, the trained model is ap-

plied on the STS 2013 test pairs.

Our approach is inspired by the success of simi-

lar systems in STS 2012: systems that combine mul-

tiple measures of similarity using a machine learn-

ing model to generate an overall score (Bär et al.,

2012; Šarić et al., 2012). We wanted to investigate

how a minimal system of this kind, making use of

very few external resources, performs on a large da-

taset. Our experiments reveal that the performance

of such a system depends highly on the training

data. While training on one dataset yielded a best

176

correlation (among our three runs, described later in

this document) of only 0.4135 with the gold scores,

training on another dataset showed a considerably

higher correlation of 0.5352.

2 Computation of Text Similarity: System

Overview

In this section, we present a high-level description

of our system. More details on extraction of some of

the measures of similarity are provided in Section 3.

Given two input sentences 𝑆1 and 𝑆2, our algo-

rithm can be described as follows:

1. Compute semantic overlap (8 features):

a. Lemmatize 𝑆1 and 𝑆2 using a memory-

based lemmatizer1 and remove all stop

words.

b. Compute the degree to which the concepts

in 𝑆1 are covered by semantically similar

concepts in 𝑆2 and vice versa (see Section 3

for details). The result of this step is two dif-

ferent ‘degree of containment’ values (𝑆1 in

𝑆2 and vice versa).

c. Compute the minimum, maximum, arith-

metic mean and harmonic mean of the two

values to use as features in the machine

learning model.

d. Repeat steps 1a through 1c for a weighted

version of semantic overlap where each

word in the first sentence is assigned a

weight which is proportional to its specific-

ity in a selected corpus (see Section 3).

2. Compute word 𝑛-gram overlap (16 features):

a. Extract 𝑛-grams (for 𝑛 = 1, 2, 3, 4) of all

words in 𝑆1 and 𝑆2 for four different setups

characterized by the four different value

combinations of the two following varia-

bles: lemmatization (on and off), stop-

WordsRemoved (on and off).

b. Compute the four measures (min, max,

arithmetic and harmonic mean) for each

value of n.

3. Compute character 𝑛-gram overlap (16 fea-

tures):

a. Repeat all steps in 2 above for character 𝑛-

grams (𝑛 = 2, 3, 4, 5).

1 http://www.clips.ua.ac.be/pages/MBSP#lemmatizer
2 http://conceptnet5.media.mit.edu/data/5.1/as-

soc/c/en/cat? filter=/c/en/dog&limit=1

4. Compute sentence length features (2 features):

a. Compute the lengths of 𝑆1 and 𝑆2; and the

minimum and maximum of the two values.

b. Include the ratio of the maximum to the min-

imum and the difference between the maxi-

mum and minimum in the feature set.

5. Train a support vector regression model on the

features extracted in steps 1 through 4 above us-

ing data from SemEval 2012 STS (see Section

4 for specifics on the dataset). We used the

LibSVM implementation of SVR in WEKA.

6. Apply the model on STS 2013 test data.

3 Semantic Overlap Measures

In this section, we describe the computation of the

two sets of semantic overlap measures mentioned in

step 1 of the algorithm in Section 2.

We compute semantic overlap between two sen-

tences by first computing the semantic relatedness

among their constituent words. Automatically com-

puting the semantic relatedness between words is a

well-studied problem and many solutions to the

problem have been proposed. We compute word re-

latedness in two forms: semantic relatedness and

string similarity. For semantic relatedness, we uti-

lize two web services. The first one concerns a re-

source named ConceptNet (Liu and Singh, 2004),

which holds a large amount of common sense

knowledge concerning relationships between real-

world entities. It provides a web service2 that gener-

ates word relatedness scores based on these relation-

ships. We will use the term 𝐶𝑁𝑟𝑒𝑙(𝑤1, 𝑤2) to de-

note the relatedness of the two words 𝑤1 and 𝑤2 as

generated by ConceptNet.

We also used the web service3 provided by an-

other resource named Wikipedia Miner (Milne and

Witten, 2013). While ConceptNet successfully cap-

tures common sense knowledge about words and

concepts, Wikipedia Miner specializes in identify-

ing relationships between scientific concepts pow-

ered by Wikipedia's vast repository of scientific in-

formation (for example, Einstein and relativity). We

will use the term 𝑊𝑀𝑟𝑒𝑙(𝑤1, 𝑤2) to denote the re-

latedness of the two words 𝑤1 and 𝑤2 as generated

by Wikipedia Miner. Using two systems enabled us

3 http://wikipedia-miner.cms.waikato.ac.nz/ser-

vices/compare? term1=cat&term2=dog

177

to increase the coverage of our word similarity com-

putation algorithm.

Each of these web services return a score in the

range [0, 1] where 0 represents no relatedness and 1

represents complete similarity. A manual inspection

of both services indicates that in almost all cases

where the services’ word similarity scores deviate

from what would be the human-perceived similar-

ity, they generate lower scores (i.e. lower than the

human-perceived score). This is why we take the

maximum of the two services’ similarity scores for

any given word pair as their semantic relatedness:

𝑠𝑒𝑚𝑅𝑒𝑙(𝑤1, 𝑤2)

= max{𝐶𝑁𝑟𝑒𝑙(𝑤1, 𝑤2),𝑊𝑀𝑟𝑒𝑙(𝑤1, 𝑤2)}

We also compute the string similarity between

the two words by taking a weighted combination of

the normalized lengths of their longest common

substring, subsequence and prefix (normalization is

done for each of the three by dividing its length with

the length of the smaller word). We will refer to the

string similarity between words 𝑤1 and 𝑤2 as

𝑠𝑡𝑟𝑖𝑛𝑔𝑆𝑖𝑚(𝑤1, 𝑤2). This idea is taken from (Islam

and Inkpen, 2008); the rationale is to be able to find

the similarity between (1) words that have the same

lemma but the lemmatizer failed to lemmatize at

least one of the two surface forms successfully, and

(2) words at least one of which has been misspelled.

We take the maximum of the string similarity and

the semantic relatedness between two words as the

final measure of their similarity:

𝑠𝑖𝑚(𝑤1, 𝑤2)

= max{𝑠𝑒𝑚𝑅𝑒𝑙(𝑤1, 𝑤2), 𝑠𝑡𝑟𝑖𝑛𝑔𝑆𝑖𝑚(𝑤1, 𝑤2)}

At the sentence level, our first set of semantic

overlap measures (step 1b) is an unweighted meas-

ure that treats all content words equally. More spe-

cifically, after the preprocessing in step 1a of the al-

gorithm, we compute the degree of semantic cover-

age of concepts expressed by individual content

words in 𝑆1 by 𝑆2 using the following equation:

𝑐𝑜𝑣𝑢𝑤(𝑆1, 𝑆2) =
∑ [max

𝑡∈𝑆2
{𝑠𝑖𝑚(𝑠, 𝑡)}]𝑠∈𝑆1

|𝑆1|

4 http://googleresearch.blogspot.com/2006/08/all-our-n-

gram-are-belong-to-you.html

where 𝑠𝑖𝑚(𝑠, 𝑡) is the similarity between the two

lemmas 𝑠 and 𝑡.
We also compute a weighted version of semantic

coverage (step 1d in the algorithm) by incorporating

the specificity of each word (measured by its infor-

mation content) as shown in the equation below:

𝑐𝑜𝑣𝑤(𝑆1, 𝑆2) =
∑ [max

𝑡∈𝑆2
{𝑖𝑐(𝑠). 𝑠𝑖𝑚(𝑠, 𝑡)}]𝑠∈𝑆1

|𝑆1|

where 𝑖𝑐(𝑤) stands for the information content of

the word 𝑤. Less common words (across a selected

corpus) have high information content:

𝑖𝑐(𝑤) = ln
∑ 𝑓(𝑤′)𝑤′∈𝐶

𝑓(𝑤)

where C is the set of all words in the chosen corpus

and f(w) is the frequency of the word w in the cor-

pus. We have used the Google Unigram Corpus4 to

assign the required frequencies to these words.

4 Evaluation

The STS 2013 test data consists of four datasets:

two datasets consisting of gloss pairs (OnWN: 561

pairs and FNWN: 189 pairs), a dataset of machine

translation evaluation pairs (SMT: 750 pairs) and a

dataset consisting of news headlines (headlines: 750

pairs). For each dataset, the output of a system is

evaluated via comparison with human-annotated

similarity scores and measured using the Pearson

Correlation Coefficient. Then a weighted sum of the

correlations for all datasets are taken to be the final

score, where each dataset’s weight is the proportion

of sentence pairs in that dataset.

We computed the similarity scores using three

different feature sets (for our three runs) for the sup-

port vector regression model:

1. All features mentioned in Section 2. This set of

features were used in our run 1.

2. All features except word 𝑛-gram overlap (ex-

periments on STS 2012 test data revealed that

using word n-grams actually lowers the perfor-

mance of our model, hence this decision). These

are the features that were used in our run 2.

3. Only character 𝑛-gram and length features (just

to test the performance of the model without

178

any semantic features). Our run 3 was based on

these features.

We trained the support vector regression model

on two different training datasets, both drawn from

STS 2012 data:

1. In the first setup, we chose the training datasets

from STS 2012 that we considered the most

similar to the test dataset. The only exception

was the FNWN dataset, for which we selected

the all the datasets from 2012 because no single

dataset from STS 2012 seemed to have similar-

ity with this dataset. For the OnWN test dataset,

we selected the OnWN dataset from STS 2012.

For both headlines and SMT, we selected SMT-

news and SMTeuroparl from STS 2012. The ra-

tionale behind this selection was to train the ma-

chine learning model on a distribution similar to

the test data.

2. In the second setup, we aggregated all datasets

(train and test) from STS 2012 and used this

combined dataset to train the three models that

were later applied on each STS 2013 test data.

Here the rationale is to train on as much data as

possible.

Table 1 shows the results for the first setup. This

is the performance of the set of scores which we ac-

tually submitted in STS 2013. The first four col-

umns show the correlations of our system with the

gold standard for all runs. The rightmost column

shows the overall weighted correlations. As we can

see, run 1 with all the features demonstrated the best

performance among the three runs. There was a con-

siderable drop in performance in run 3 which did not

utilize any semantic similarity measure.

Table 1. Results for manually selected training data

Run headlines OnWN FNWN SMT Total

1 .4921 .3769 .4647 .3492 .4135

2 .4669 .4165 .3859 .3411 .4056

3 .3867 .2386 .3726 .3337 .3309

As evident from the table, evaluation results did

not indicate a particularly promising system. Our

best system ranked 63rd among the 90 systems eval-

uated in STS 2013. We further investigated to find

out the reason: is the set of our features insufficient

to capture text semantic similarity, or were the train-

ing data inappropriate for their corresponding test

data? This is why we experimented with the second

setup discussed above. Following are the results:

Table 2. Results for combined training data

Run headlines OnWN FNWN SMT Total

1 .6854 .5981 .4647 .3518 .5339

2 .7141 .5953 .3859 .349 .5352

3 .6998 .4826 .3726 .3365 .4971

As we can see in Table 2, the correlations for all

feature sets improved by more than 10% for each

run. In this case, the best system with correlation

0.5352 would rank 21st among all systems in STS

2013. These results indicate that the primary reason

behind the system’s previous bad performance (Ta-

ble 1) was the selection of an inappropriate dataset.

Although it was not clear in the beginning which of

the two options would be the better, this second ex-

periment reveals that selecting the largest possible

dataset to train is the better choice for this dataset.

5 Conclusions

In this paper, we have shown how simple measures

of text similarity using minimal external resources

can be used in a machine learning setup to compute

semantic similarity between short text fragments.

One important finding is that more training data,

even when drawn from annotations on different

sources of text and thus potentially having different

feature value distributions, improve the accuracy of

the model in the task. Possible future expansion in-

cludes use of more robust concept alignment strate-

gies using semantic role labeling, inclusion of struc-

tural similarities of the sentences (e.g. word order,

syntax) in the feature set, incorporating word sense

disambiguation and more robust strategies of con-

cept weighting into the process, among others.

References
Eneko Agirre, Daniel Cer, Mona Diab, and Aitor Gonza-

lez-Agirre. 2012. SemEval-2012 Task 6: a pilot on se-

mantic textual similarity. In Proceedings of the First

Joint Conference on Lexical and Computational Se-

mantics. ACL, Stroudsburg, PA, USA, 385-393.

Daniel Bär, Chris Biemann, Iryna Gurevych, and Torsten

Zesch. 2012. UKP: computing semantic textual simi-

larity by combining multiple content similarity

measures. In Proceedings of the First Joint Confer-

ence on Lexical and Computational Semantics. ACL,

Stroudsburg, PA, USA, 435-440.

Aminul Islam and Diana Inkpen. 2008. Semantic text

similarity using corpus-based word similarity and

string similarity. ACM Trans. Knowl. Discov. Data 2,

2, Article 10 (July 2008), 25 pages.

179

Yuhua Li, David Mclean, Zuhair A. Bandar, James D.

O’Shea, and Keeley Crockett. 2006. Sentence similar-

ity based on semantic nets and corpus statistics. IEEE

Transactions on Knowledge and Data Engineering,

vol.18, no.8, 1138-1150.

Hugo Liu and Push Singh. 2004. ConceptNet — a prac-

tical commonsense reasoning tool-kit. BT Technology

Journal 22, 4 (October 2004), 211-226.

Rada Mihalcea, Courtney Corley, and Carlo Strapparava.

2006. Corpus-based and knowledge-based measures

of text semantic similarity. In Proceedings of the 21st

national conference on Artificial intelligence - Volume

1 (AAAI'06), Anthony Cohn (Ed.), Vol. 1. AAAI

Press 775-780.

David Milne and Ian H. Witten. 2013. An open-source

toolkit for mining Wikipedia. Artif. Intell. 194 (Janu-

ary 2013), 222-239.

Frane Šarić, Goran Glavaš, Mladen Karan, Jan Šnajder,

and Bojana Dalbelo Bašić.Šarić. 2012. TakeLab: sys-

tems for measuring semantic text similarity. In Pro-

ceedings of the First Joint Conference on Lexical and

Computational Semantics. ACL, Stroudsburg, PA,

USA, 441-448.

180

