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Introduction to *SEM 2013

Building on the momentum generated by the spectacular success of the Joint Conference on Lexical and
Computational Semantics (*SEM) in 2012, bringing together the ACL SIGLEX and ACL SIGSEM
communities, we are delighted to bring to you the second edition of the conference, as a top-tier
showcase of the latest research in computational semantics. We accepted 14 papers (11 long and 3
short) for publication at the conference, out of a possible 45 submissions (a 31% acceptance rate).
This is on par with some of the most competitive conferences in computational linguistics, and we are
confident will set the stage for a scintillating conference.

This year, we started a tradition that we intend to maintain in all future iterations of the conference in
integrating a shared task into the conference. The shared task was selected by an independent committee
comprising members from SIGLEX and SIGSEM, based on an open call for proposals, and revolved
around Semantic Textual Similarity (STS). The task turned out to be a huge success with 34 teams
participating, submitting a total of 103 system runs.

*SEM 2013 features a number of highlight events:

Day One, June 13th:

• A timely and impressive panel on Towards Deep Natural Language Understanding,
featuring the following panelists:

– Kevin Knight (USC/Information Sciences Institute)
– Chris Manning (Stanford University)
– Martha Palmer (University of Colorado at Boulder)
– Owen Rambow (Columbia University)
– Dan Roth (University of Illinois at Urbana-Champaign)

• A Reception and Shared Task Poster Session in the evening, thanks to the generous
sponsorship of the DARPA Deft program.

Day Two, June 14th:

• In the morning, a keynote address by David Forsyth from the Computer Science Department
at the University of Illinois at Urbana Champagne on issues of Vision and Language. It
promises to be an extremely stimulating speech, and is not to be missed.

• In the early afternoon, a panel on the relation between and future of *SEM, the *SEM
Shared Task, SemEval and other events on computational semantics. In this panel, we will
attempt to clarify and explain as well as devise plans for these different entities.

• Finally, at the end of the day, an award ceremony for the Best Long Paper and Best Short
Paper.
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As always, *SEM 2013 would not have been possible without the considerable efforts of our area chairs
and an impressive assortment of reviewers, drawn from the ranks of SIGLEX and SIGSEM, and the
computational semantics community at large. We would also like to acknowledge the generous support
for the STS Task from the DARPA Deft Program.

We hope you enjoy *SEM 2013, and look forward to engaging with all of you,

Mona Diab (The George Washington University, General Chair)
Timothy Baldwin (The University of Mebourne, Program Committee Co-Chair)
Marco Baroni (University of Trento, Program Committee Co-Chair)

iv



Introduction to SemEval

The Semantic Evaluation (SemEval) series of workshops focus on the evaluation and comparison
of systems that can analyse diverse semantic phenomena in text with the aim of extending the
current state-of-the-art in semantic analysis and creating high quality annotated datasets in a range of
increasingly challenging problems in natural language semantics. SemEval provides an exciting forum
for researchers to propose challenging research problems in semantics and to build systems/techniques
to address such research problems.

SemEval-2013 is the seventh workshop in the series. The first three workshops, SensEval-1 (1998),
SensEval-2 (2001), and SensEval-3 (2004), were focused on word sense disambiguation, each time
growing in the number of languages offered in the tasks and in the number of participating teams. In
2007 the workshop was renamed SemEval and in the next three workshops SemEval-2007, SemEval-
2010 and SemEval-2012 the nature of the tasks evolved to include semantic analysis tasks outside of
word sense disambiguation. Starting in 2012 SemEval turned into a yearly event associated with *SEM.

This volume contains papers accepted for presentation at the SemEval-2013 International Workshop
on Semantic Evaluation Exercises. SemEval-2013 is co-organized with the *SEM-2013 The Second
Joint Conference on Lexical and Computational Semantics and co-located with The 2013 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL HLT).

SemEval-2013 included the following 12 tasks for evaluation:

• TempEval-3 Temporal Annotation

• Sentiment Analysis in Twitter

• Spatial Role Labeling

• Free Paraphrases of Noun Compounds

• Evaluating Phrasal Semantics

• The Joint Student Response Analysis and 8th Recognizing Textual Entailment Challenge

• Cross-lingual Textual Entailment for Content Synchronization

• Extraction of Drug-Drug Interactions from BioMedical Texts

• Cross-lingual Word Sense Disambiguation

• Evaluating Word Sense Induction & Disambiguation within An End-User Application

• Multilingual Word Sense Disambiguation

• Word Sense Induction for Graded and Non-Graded Senses
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About 100 teams submitted more than 300 systems for the 12 tasks of SemEval-2013. This volume
contains both Task Description papers that describe each of the above tasks and System Description
papers that describe the systems that participated in the above tasks. A total of 12 task description
papers and 101 system description papers are included in this volume.

We are indebted to all program committee members for their high quality, elaborate and thoughtful
reviews. The papers in this proceedings have surely benefited from this feedback. We are grateful
to *SEM 2013 and NAACL-HLT 2013 conference organizers for local organization and the forum.
We most gratefully acknowledge the support of our sponsors, the ACL Special Interest Group on the
Lexicon (SIGLEX) and the ACL Special Interest Group on Computational Semantics (SIGSEM).

Welcome to SemEval-2013!

Suresh Manandhar and Deniz Yuret
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Abstract

The development of compositional distribu-
tional models of semantics reconciling the em-
pirical aspects of distributional semantics with
the compositional aspects of formal seman-
tics is a popular topic in the contemporary lit-
erature. This paper seeks to bring this rec-
onciliation one step further by showing how
the mathematical constructs commonly used
in compositional distributional models, such
as tensors and matrices, can be used to sim-
ulate different aspects of predicate logic.

This paper discusses how the canonical iso-
morphism between tensors and multilinear
maps can be exploited to simulate a full-blown
quantifier-free predicate calculus using ten-
sors. It provides tensor interpretations of the
set of logical connectives required to model
propositional calculi. It suggests a variant
of these tensor calculi capable of modelling
quantifiers, using few non-linear operations.
It finally discusses the relation between these
variants, and how this relation should consti-
tute the subject of future work.

1 Introduction

The topic of compositional distributional semantics
has been growing in popularity over the past few
years. This emerging sub-field of natural language
semantic modelling seeks to combine two seemingly
orthogonal approaches to modelling the meaning of
words and sentences, namely formal semantics and
distributional semantics.

These approaches, summarised in Section 2, dif-
fer in that formal semantics, on the one hand, pro-

vides a neatly compositional picture of natural lan-
guage meaning, reducing sentences to logical rep-
resentations; one the other hand, distributional se-
mantics accounts for the ever-present ambiguity and
polysemy of words of natural language, and pro-
vides tractable ways of learning and comparing
word meanings based on corpus data.

Recent efforts, some of which are briefly re-
ported below, have been made to unify both of
these approaches to language modelling to pro-
duce compositional distributional models of seman-
tics, leveraging the learning mechanisms of distri-
butional semantics, and providing syntax-sensitive
operations for the production of representations of
sentence meaning obtained through combination of
corpus-inferred word meanings. These efforts have
been met with some success in evaluations such
as phrase similarity tasks (Mitchell and Lapata,
2008; Mitchell and Lapata, 2009; Grefenstette and
Sadrzadeh, 2011; Kartsaklis et al., 2012), sentiment
prediction (Socher et al., 2012), and paraphrase de-
tection (Blacoe and Lapata, 2012).

While these developments are promising with
regard to the goal of obtaining learnable-yet-
structured sentence-level representations of lan-
guage meaning, part of the motivation for unifying
formal and distributional models of semantics has
been lost. The compositional aspects of formal se-
mantics are combined with the corpus-based empir-
ical aspects of distributional semantics in such mod-
els, yet the logical aspects are not. But it is these
logical aspects which are so appealing in formal se-
mantic models, and therefore it would be desirable
to replicate the inferential powers of logic within
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compositional distributional models of semantics.
In this paper, I make steps towards addressing this

lost connection with logic in compositional distri-
butional semantics. In Section 2, I provide a brief
overview of formal and distributional semantic mod-
els of meaning. In Section 3, I give mathemati-
cal foundations for the rest of the paper by intro-
ducing tensors and tensor contraction as a way of
modelling multilinear functions. In Section 4, I dis-
cuss how predicates, relations, and logical atoms
of a quantifier-free predicate calculus can be mod-
elled with tensors. In Section 5, I present tenso-
rial representations of logical operations for a com-
plete propositional calculus. In Section 6, I discuss
a variant of the predicate calculus from Section 4
aimed at modelling quantifiers within such tensor-
based logics, and the limits of compositional for-
malisms based only on multilinear maps. I con-
clude, in Section 7, by suggesting directions for fur-
ther work based on the contents of this paper.

This paper does not seek to address the question
of how to determine how words should be trans-
lated into predicates and relations in the first place,
but rather shows how such predicates and relations
can be modelled using multilinear algebra. As such,
it can be seen as a general theoretical contribution
which is independent from the approaches to com-
positional distributional semantics it can be applied
to. It is directly compatible with the efforts of Co-
ecke et al. (2010) and Grefenstette et al. (2013), dis-
cussed below, but is also relevant to any other ap-
proach making use of tensors or matrices to encode
semantic relations.

2 Related work

Formal semantics, from the Montagovian school of
thought (Montague, 1974; Dowty et al., 1981), treats
natural languages as programming languages which
compile down to some formal language such as a
predicate calculus. The syntax of natural languages,
in the form of a grammar, is augmented by seman-
tic interpretations, in the form of expressions from
a higher order logic such as the lambda-beta calcu-
lus. The parse of a sentence then determines the
combinations of lambda-expressions, the reduction
of which yields a well-formed formula of a predi-
cate calculus, corresponding to the semantic repre-

sentation of the sentence. A simple formal semantic
model is illustrated in Figure 1.

Syntactic Analysis Semantic Interpretation

S⇒ NP VP [[VP]]([[NP]])
NP⇒ cats, milk, etc. [[cats]], [[milk]], . . .
VP⇒ Vt NP [[Vt]]([[NP]])
Vt⇒ like, hug, etc. λyx.[[like]](x, y), . . .

[[like]]([[cats]], [[milk]])

[[cats]] λx.[[like]](x, [[milk]])

λyx.[[like]](x, y) [[milk]]

Figure 1: A simple formal semantic model.

Formal semantic models are incredibly powerful,
in that the resulting logical representations of sen-
tences can be fed to automated theorem provers to
perform textual inference, consistency verification,
question answering, and a host of other tasks which
are well developed in the literature (e.g. see (Love-
land, 1978) and (Fitting, 1996)). However, the so-
phistication of such formal semantic models comes
at a cost: the complex set of rules allowing for
the logical interpretation of text must either be pro-
vided a priori, or learned. Learning such represen-
tations is a complex task, the difficulty of which is
compounded by issues of ambiguity and polysemy
which are pervasive in natural languages.

In contrast, distributional semantic models, best
summarised by the dictum of Firth (1957) that “You
shall know a word by the company it keeps,” pro-
vide an elegant and tractable way of learning se-
mantic representations of words from text. Word
meanings are modelled as high-dimensional vectors
in large semantic vector spaces, the basis elements
of which correspond to contextual features such as
other words from a lexicon. Semantic vectors for
words are built by counting how many time a target
word occurs within a context (e.g. within k words
of select words from the lexicon). These context
counts are then normalised by a term frequency-
inverse document frequency-like measure (e.g. TF-
IDF, pointwise mutual information, ratio of proba-
bilities), and are set as the basis weights of the vec-
tor representation of the word’s meaning. Word vec-
tors can then be compared using geometric distance
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furry

stroke

pet

cat

dog

snake

Figure 2: A simple distributional semantic model.

metrics such as cosine similarity, allowing us to de-
termine the similarity of words, cluster semantically
related words, and so on. Excellent overviews of dis-
tributional semantic models are provided by Curran
(2004) and Mitchell (2011). A simple distributional
semantic model showing the spacial representation
of words ‘dog’, ‘cat’ and ‘snake’ within the context
of feature words ‘pet’, ‘furry’, and ‘stroke’ is shown
in Figure 2.

Distributional semantic models have been suc-
cessfully applied to tasks such as word-sense
discrimination (Schütze, 1998), thesaurus extrac-
tion (Grefenstette, 1994), and automated essay
marking (Landauer and Dumais, 1997). However,
while such models provide tractable ways of learn-
ing and comparing word meanings, they do not natu-
rally scale beyond word length. As recently pointed
out by Turney (2012), treating larger segments of
texts as lexical units and learning their representa-
tions distributionally (the ‘holistic approach’) vio-
lates the principle of linguistic creativity, according
to which we can formulate and understand phrases
which we’ve never observed before, provided we
know the meaning of their parts and how they are
combined. As such, distributional semantics makes
no effort to account for the compositional nature of
language like formal semantics does, and ignores is-
sues relating to syntactic and relational aspects of
language.

Several proposals have been put forth over the
last few years to provide vector composition func-
tions for distributional models in order to introduce
compositionality, thereby replicating some of the as-

pects of formal semantics while preserving learn-
ability. Simple operations such as vector addition
and multiplication, with or without scalar or matrix
weights (to take word order or basic relational as-
pects into account), have been suggested (Zanzotto
et al., 2010; Mitchell and Lapata, 2008; Mitchell and
Lapata, 2009).

Smolensky (1990) suggests using the tensor prod-
uct of word vectors to produce representations that
grow with sentence complexity. Clark and Pulman
(2006) extend this approach by including basis vec-
tors standing for dependency relations into tensor
product-based representations. Both of these ten-
sor product-based approaches run into dimensional-
ity problems as representations of sentence mean-
ing for sentences of different lengths or grammati-
cal structure do not live in the same space, and thus
cannot directly be compared. Coecke et al. (2010)
develop a framework using category theory, solving
this dimensionality problem of tensor-based models
by projecting tensored vectors for sentences into a
unique vector space for sentences, using functions
dynamically generated by the syntactic structure of
the sentences. In presenting their framework, which
partly inspired this paper, they describe how a verb
can be treated as a logical relation using tensors in
order to evaluate the truth value of a simple sentence,
as well as how negation can be modelled using ma-
trices.

A related approach, by Baroni and Zamparelli
(2010), represents unary relations such as adjectives
as matrices learned by linear regression from cor-
pus data, and models adjective-noun composition
as matrix-vector multiplication. Grefenstette et al.
(2013) generalise this approach to relations of any
arity and relate it to the framework of Coecke et al.
(2010) using a tensor-based approach to formal se-
mantic modelling similar to that presented in this pa-
per.

Finally, Socher et al. (2012) apply deep learning
techniques to model syntax-sensitive vector compo-
sition using non-linear operations, effectively turn-
ing parse trees into multi-stage neural networks.
Socher shows that the non-linear activation func-
tion used in such a neural network can be tailored to
replicate the behaviour of basic logical connectives
such as conjunction and negation.
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3 Tensors and multilinear maps

Tensors are the mathematical objects dealt with in
multilinear algebra just as vectors and matrices are
the objects dealt with in linear algebra. In fact, ten-
sors can be seen as generalisations of vectors and
matrices by introducing the notion of tensor rank.
Let the rank of a tensor be the number of indices re-
quired to describe a vector/matrix-like object in sum
notation. A vector v in a space V with basis {bV

i }i can
be written as the weighted sum of the basis vectors:

v =
∑

i

cv
i bV

i

where the cv
i elements are the scalar basis weights

of the vector. Being fully described with one index,
vectors are rank 1 tensors. Similarly, a matrix M is
an element of a space V ⊗W with basis {(bV

i ,b
W
j )}i j

(such pairs of basis vectors of V and W are com-
monly written as {bV

i ⊗bW
j }i j in multilinear algebra).

Such matrices are rank 2 tensors, as they can be fully
described using two indices (one for rows, one for
columns):

M =
∑

i j

cM
i j bV

i ⊗ bW
j

where the scalar weights cM
i j are just the i jth ele-

ments of the matrix.
A tensor T of rank k is just a geometric object with

a higher rank. Let T be a member of V1⊗. . .⊗Vk; we
can express T as follows, using k indices α1 . . . αk:

T =
∑
α1...αk

cT
α1...αk

bV1
α1
⊗ . . . ⊗ bVk

αk

In this paper, we will be dealing with tensors of rank
1 (vectors), rank 2 (matrices) and rank 3, which can
be pictured as cuboids (or a matrix of matrices).

Tensor contraction is an operation which allows
us to take two tensors and produce a third. It is a
generalisation of inner products and matrix multipli-
cation to tensors of higher ranks. Let T be a tensor in
V1⊗. . .⊗V j⊗Vk and U be a tensor in Vk⊗Vm⊗. . .⊗Vn.
The contraction of these tensors, written T×U, cor-
responds to the following calculation:

T × U =∑
α1...αn

cT
α1...αk

cU
αk ...αn

bV1
α1
⊗ . . . ⊗ bV j

α j ⊗ bVm
αm
⊗ . . . ⊗ bVn

αn

Tensor contraction takes a tensor of rank k and a
tensor of rank n − k + 1 and produces a tensor of

rank n − 1, corresponding to the sum of the ranks of
the input tensors minus 2. The tensors must satisfy
the following restriction: the left tensor must have
a rightmost index spanning the same number of di-
mensions as the leftmost index of the right tensor.
This is similar to the restriction that a m by n matrix
can only be multiplied with a p by q matrix if n = p,
i.e. if the index spanning the columns of the first ma-
trix covers the same number of columns as the index
spanning the rows of the second matrix covers rows.
Similarly to how the columns of one matrix ‘merge’
with the rows of another to produce a third matrix,
the part of the first tensor spanned by the index k
merges with the part of the second tensor spanned by
k by ‘summing through’ the shared basis elements
bVk
αk of each tensor. Each tensor therefore loses a

rank while being joined, explaining how the tensor
produced by T×U is of rank k+(n−k+1)−2 = n−1.

There exists an isomorphism between tensors and
multilinear maps (Bourbaki, 1989; Lee, 1997), such
that any curried multilinear map

f : V1 → . . .→ V j → Vk

can be represented as a tensor T f ∈ Vk⊗V j⊗ . . .⊗V1
(note the reversed order of the vector spaces), with
tensor contraction acting as function application.
This isomorphism guarantees that there exists such a
tensor T f for every f , such that the following equal-
ity holds for any v1 ∈ V1, . . . , v j ∈ V j:

f v1 . . . v j = vk = T f × v1 × . . . × v j

4 Tensor-based predicate calculi

In this section, I discuss how the isomorphism be-
tween multilinear maps and tensors described above
can be used to model predicates, relations, and log-
ical atoms of a predicate calculus. The four aspects
of a predicate calculus we must replicate here us-
ing tensors are as follows: truth values, the logical
domain and its elements (logical atoms), predicates,
and relations. I will discuss logical connectives in
the next section.

Both truth values and domain objects are the ba-
sic elements of a predicate calculus, and therefore
it makes sense to model them as vectors rather than
higher rank tensors, which I will reserve for rela-
tions. We first must consider the vector space used
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to model the boolean truth values of B. Coecke et al.
(2010) suggest, as boolean vector space, the space B
with the basis {>,⊥}, where > = [1 0]> is inter-
preted as ‘true’, and ⊥ = [0 1]> as ‘false’.

I assign to the domain D, the set of objects in
our logic, a vector space D on R|D| with basis vec-
tors {di}i which are in bijective correspondence with
elements of D. An element of D is therefore rep-
resented as a one-hot vector in D, the single non-
null value of which is the weight for the basis vector
mapped to that element of D. Similarly, a subset of
D is a vector of D where those elements ofD in the
subset have 1 as their corresponding basis weights in
the vector, and those not in the subset have 0. There-
fore there is a one-to-one correspondence between
the vectors in D and the elements of the power set
P(D), provided the basis weights of the vectors are
restricted to one of 0 or 1.

Each unary predicate P in the logic is represented
in the logical model as a set MP ⊆ D containing the
elements of the domain for which the predicate is
true. Predicates can be viewed as a unary function
fP : D → B where

fP(x) =

{
> if x ∈ MP

⊥ otherwise

These predicate functions can be modelled as rank 2
tensors in B ⊗ D, i.e. matrices. Such a matrix MP is
expressed in sum notation as follows:

MP =

∑
i

cMP

1i > ⊗ di

 +

∑
i

cMP

2i ⊥ ⊗ di


The basis weights are defined in terms of the set MP

as follows: cMP

1i = 1 if the logical atom xi associ-
ated with basis weight di is in MP, and 0 otherwise;
conversely, cMP

2i = 1 if the logical atom xi associated
with basis weight di is not in MP, and 0 otherwise.

To give a simple example, let’s consider a do-
main with three individuals, represented as the fol-
lowing one-hot vectors in D: john = [1 0 0]>,
chris = [0 1 0]>, and tom = [0 0 1]>. Let’s
imagine that Chris and John are mathematicians, but
Tom is not. The predicate P for ‘is a mathemati-
cian’ therefore is represented model-theoretically as
the set MP = {chris, john}. Translating this into a
matrix gives the following tensor for P:

MP =

[
1 1 0
0 0 1

]

To compute the truth value of ‘John is a mathemati-
cian’, we perform predicate-argument application as
tensor contraction (matrix-vector multiplication, in
this case):

MP × john =

[
1 1 0
0 0 1

]  0
1
0

 =

[
1
0

]
= >

Likewise for ‘Tom is a mathematician’:

MP × tom =

[
1 1 0
0 0 1

]  0
0
1

 =

[
0
1

]
= ⊥

Model theory for predicate calculus represents
any n-ary relation R, such as a verb, as the set MR

of n-tuples of elements from D for which R holds.
Therefore such relations can be viewed as functions
fR : Dn → B where:

fR(x1, . . . , xn) =

{
> if (x1, . . . , xn) ∈ MR

⊥ otherwise

We can represent the boolean function for such a re-
lation R as a tensor TR in B ⊗ D ⊗ . . . ⊗ D︸        ︷︷        ︸

n

:

TR =

 ∑
α1...αn

cT R

1α1...αn
> ⊗ dα1 ⊗ . . . ⊗ dαn


+

 ∑
α1...αn

cT R

2α1...αn
⊥ ⊗ dα1 ⊗ . . . ⊗ dαn


As was the case for predicates, the weights for re-
lational tensors are defined in terms of the set mod-
elling the relation: cT R

1α1...αn
is 1 if the tuple (x, . . . , z)

associated with the basis vectors dαn . . . dα1 (again,
note the reverse order) is in MR and 0 otherwise; and
cT R

2α1...αn
is 1 if the tuple (x, . . . , z) associated with

the basis vectors dαn . . . dα1 is not in MR and 0 oth-
erwise.

To give an example involving relations, let our
domain be the individuals John ( j) and Mary (m).
Mary loves John and herself, but John only loves
himself. The logical model for this scenario is as
follows:

D = { j,m} Mloves = {( j, j), (m,m), (m, j)}

Distributionally speaking, the elements of the do-
main will be mapped to the following one-hot vec-
tors in some two-dimensional space D as follows:
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j = [1 0]> and m = [0 1]>. The tensor for ‘loves’
can be written as follows, ignoring basis elements
with null-valued basis weights, and using the dis-
tributivity of the tensor product over addition:

Tloves = > ⊗ ((d1 ⊗ d1) + (d2 ⊗ d2) + (d1 ⊗ d2))

+ (⊥ ⊗ d2 ⊗ d1)

Computing “Mary loves John” would correspond to
the following calculation:

(Tloves ×m) × j =

((> ⊗ d2) + (> ⊗ d1)) × j = >

whereas “John loves Mary” would correspond to the
following calculation:

(Tloves × j) ×m =

((> ⊗ d1) + (⊥ ⊗ d2)) ×m = ⊥

5 Logical connectives with tensors

In this section, I discuss how the boolean connec-
tives of a propositional calculus can be modelled us-
ing tensors. Combined with the predicate and rela-
tion representations discussed above, these form a
complete quantifier-free predicate calculus based on
tensors and tensor contraction.

Negation has already been shown to be modelled
in the boolean space described earlier by Coecke et
al. (2010) as the swap matrix:

T¬ =

[
0 1
1 0

]
This can easily be verified:

T¬ × > =

[
0 1
1 0

] [
1
0

]
=

[
0
1

]
= ⊥

T¬ × ⊥ =

[
0 1
1 0

] [
0
1

]
=

[
1
0

]
= >

All other logical operators are binary, and hence
modelled as rank 3 tensors. To make talking about
rank 3 tensors used to model binary operations eas-
ier, I will use the following block matrix notation for
2 × 2 × 2 rank 3 tensors T:

T =

[
a1 b1 a2 b2
c1 d1 c2 d2

]

which allows us to express tensor contractions as
follows:

T × v =

[
a1 b1 a2 b2
c1 d1 c2 d2

] [
α

β

]
=

[
α · a1 + β · a2 α · b1 + β · b2
α · c1 + β · c2 α · d1 + β · d2

]
or more concretely:

T × > =

[
a1 b1 a2 b2
c1 d1 c2 d2

] [
1
0

]
=

[
a1 b1
c1 d1

]
T × ⊥ =

[
a1 b1 a2 b2
c1 d1 c2 d2

] [
0
1

]
=

[
a2 b2
c2 d2

]

Using this notation, we can define tensors for the
following operations:

(∨) 7→ T∨ =

[
1 1 1 0
0 0 0 1

]
(∧) 7→ T∧ =

[
1 0 0 0
0 1 1 1

]
(→) 7→ T→ =

[
1 0 1 1
0 1 0 0

]
I leave the trivial proof by exhaustion that these fit
the bill to the reader.

It is worth noting here that these tensors pre-
serve normalised probabilities of truth. Let us con-
sider a model such at that described in Coecke et
al. (2010) which, in lieu of boolean truth values,
represents truth value vectors of the form [α β]>

where α + β = 1. Applying the above logical op-
erations to such vectors produces vectors with the
same normalisation property. This is due to the fact
that the columns of the component matrices are all
normalised (i.e. each column sums to 1). To give
an example with conjunction, let v = [α1 β1]> and
w = [α2 β2]> with α1 + β1 = α2 + β2 = 1. The con-
junction of these vectors is calculated as follows:

(T∧ × v) × w

=

[
1 0 0 0
0 1 1 1

] [
α1
β1

] [
α2
β2

]
=

[
α1 0
β1 α1 + β1

] [
α2
β2

]
=

[
α1α2

β1α2 + (α1 + β1)β2

]
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To check that the probabilities are normalised we
calculate:

α1α2 + β1α2 + (α1 + β1)β2

= (α1 + β1)α2 + (α1 + β1)β2

= (α1 + β1)(α2 + β2) = 1

We can observe that the resulting probability distri-
bution for truth is still normalised. The same prop-
erty can be verified for the other connectives, which
I leave as an exercise for the reader.

6 Quantifiers and non-linearity

The predicate calculus described up until this point
has repeatedly been qualified as ‘quantifier-free’,
for the simple reason that quantification cannot be
modelled if each application of a predicate or rela-
tion immediately yields a truth value. In perform-
ing such reductions, we throw away the informa-
tion required for quantification, namely the infor-
mation which indicates which elements of a domain
the predicate holds true or false for. In this sec-
tion, I present a variant of the predicate calculus
developed earlier in this paper which allows us to
model simple quantification (i.e. excluding embed-
ded quantifiers) alongside a tensor-based approach
to predicates. However, I will prove that this ap-
proach to quantifier modelling relies on non-linear
functions, rendering them non-suitable for compo-
sitional distributional models relying solely on mul-
tilinear maps for composition (or alternatively, ren-
dering such models unsuitable for the modelling of
quantifiers by this method).

We saw, in Section 4, that vectors in the seman-
tic space D standing for the logical domain could
model logical atoms as well as sets of atoms. With
this in mind, instead of modelling a predicate P as
a truth-function, let us now view it as standing for
some function fP : P(D)→ P(D), defined as:

fP(X) = X ∩ MP

where X is a set of domain objects, and MP is the set
modelling the predicate. The tensor form of such a
function will be some T fP in D ⊗ D. Let this square
matrix be a diagonal matrix such that basis weights
c

T fp
ii = 1 if the atom x corresponding to di is in MP

and 0 otherwise. Through tensor contraction, this

tensor maps subsets ofD (elements of D) to subsets
of D containing only those objects of the original
subset for which P holds (i.e. yielding another vector
in D).

To give an example: let us consider a domain with
two dogs (a and b) and a cat (c). One of the dogs (b)
is brown, as is the cat. Let S be the set of dogs, and P
the predicate “brown”. I represent these statements
in the model as follows:

D = {a, b, c} S = {a, b} MP = {b, c}

The set of dogs is represented as a vector S =

[1 1 0]> and the predicate ‘brown’ as a tensor in
D ⊗ D:

TP =

 0 0 0
0 1 0
0 0 1


The set of brown dogs is obtained by computing
fB(S ), which distributionally corresponds to apply-
ing the tensor TP to the vector representation of S
via tensor contraction, as follows:

TP × S =

 0 0 0
0 1 0
0 0 1


 1

1
0

 =

 0
1
0

 = b

The result of this computation shows that the set of
brown dogs is the singleton set containing the only
brown dog, b. As for how logical connectives fit
into this picture, in both approaches discussed be-
low, conjunction and disjunction are modelled using
set-theoretic intersection and union, which are sim-
ply the component-wise min and max functions over
vectors, respectively.

Using this new way of modelling predicates as
tensors, I turn to the problem of modelling quantifi-
cation. We begin by putting all predicates in vector
form by replacing each instance of the bound vari-
able with a vector 1 filled with ones, which extracts
the diagonal from the predicate matrix.

An intuitive way of modelling universal quantifi-
cation is as follows: expressions of the form “All Xs
are Ys” are true if and only if MX = MX∩MY , where
MX and MY are the set of Xs and the set of Ys, re-
spectively. Using this, we can define the map forall
for distributional universal quantification modelling
expressions of the form “All Xs are Ys” as follows:

forall(X,Y) =

{
> if X = min(X,Y)
⊥ otherwise
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To give a short example, the sentence ‘All Greeks are
human’ is verified by computing X = (Mgreek × 1),
Y = (Mhuman × 1), and verifying the equality X =

min(X,Y).
Existential statements of the form “There exists

X” can be modelled using the function exists, which
tests whether or not MX is empty, and is defined as
follows:

exists(X) =

{
> if |X| > 0
⊥ otherwise

To give a short example, the sentence ‘there exists a
brown dog’ is verified by computing X = (Mbrown ×

1) ∩ (Mdog × 1) and verifying whether or not X is of
strictly positive length.

An important point to note here is that neither of
these quantification functions are multi-linear maps,
since a multilinear map must be linear in all argu-
ments. A counter example for forall is to consider
the case where MX and MY are empty, and multi-
ply their vector representations by non-zero scalar
weights α and β.

αX = X
βY = Y
forall(αX, βY) = forall(X,Y) = >

forall(αX, βY) , αβ>

I observe that the equations above demonstrate that
forall is not a multilinear map.

The proof that exists is not a multilinear map is
equally trivial. Assume MX is an empty set and α is
a non-zero scalar weight:

αX = X
exists(αX) = exists(X) = ⊥

exists(αX) , α⊥

It follows that exists is not a multi-linear function.

7 Conclusions and future work

In this paper, I set out to demonstrate that it was
possible to replicate most aspects of predicate logic
using tensor-based models. I showed that tensors
can be constructed from logical models to represent
predicates and relations, with vectors encoding ele-
ments or sets of elements from the logical domain.

I discussed how tensor contraction allows for evalu-
ation of logical expressions encoded as tensors, and
that logical connectives can be defined as tensors to
form a full quantifier-free predicate calculus. I ex-
posed some of the limitations of this approach when
dealing with variables under the scope of quantifiers,
and proposed a variant for the tensor representation
of predicates which allows us to deal with quantifi-
cation. Further work on tensor-based modelling of
quantifiers should ideally seek to reconcile this work
with that of Barwise and Cooper (1981). In this sec-
tion, I discuss how both of these approaches to pred-
icate modelling can be put into relation, and suggest
further work that might be done on this topic, and on
the topic of integrating this work into compositional
distributional models of semantics.

The first approach to predicate modelling treats
predicates as truth functions represented as tensors,
while the second treats them as functions from sub-
sets of the domain to subsets of the domain. Yet both
representations of predicates contain the same infor-
mation. Let MP and M′P be the tensor represen-
tations of a predicate P under the first and second
approach, respectively. The relation between these
representations lies in the equality diag(pMP) =

M′P, where p is the covector [1 0] (and hence pMP

yields the first row of MP). The second row of MP

being defined in terms of the first, one can also re-
cover MP from the diagonal of M′P.

Furthermore, both approaches deal with separate
aspects of predicate logic, namely applying predi-
cates to logical atoms, and applying them to bound
variables. With this in mind, it is possible to see how
both approaches can be used sequentially by noting
that tensor contraction allows for partial application
of relations to logical atoms. For example, apply-
ing a binary relation to its first argument under the
first tensor-based model yields a predicate. Translat-
ing this predicate into the second model’s form using
the equality defined above then permits us to use it
in quantified expressions. Using this, we can eval-
uate expressions of the form “There exists someone
who John loves”. Future work in this area should
therefore focus on developing a version of this ten-
sor calculus which permits seamless transition be-
tween both tensor formulations of logical predicates.

Finally, this paper aims to provide a starting point
for the integration of logical aspects into composi-
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tional distributional semantic models. The work pre-
sented here serves to illustrate how tensors can sim-
ulate logical elements and operations, but does not
address (or seek to address) the fact that the vectors
and matrices in most compositional distributional
semantic models do not cleanly represent elements
of a logical domain. However, such distributional
representations can arguably be seen as represent-
ing the properties objects of a logical domain hold
in a corpus: for example the similar distributions of
‘car’ and ‘automobile’ could serve to indicate that
these concepts are co-extensive. This suggests two
directions research based on this paper could take.
One could use the hypothesis that similar vectors in-
dicate co-extensive concepts to infer a (probabilis-
tic) logical domain and set of predicates, and use the
methods described above without modification; al-
ternatively one could use the form of the logical op-
erations and predicate tensors described in this pa-
per as a basis for a higher-dimensional predicate cal-
culus, and investigate how such higher-dimensional
‘logical’ operations and elements could be defined
or learned. Either way, the problem of reconciling
the fuzzy ‘messiness’ of distributional models with
the sharp ‘cleanliness’ of logic is a difficult problem,
but I hope to have demonstrated in this paper that a
small step has been made in the right direction.
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Thanks to Ondřej Rypáček, Nal Kalchbrenner
and Karl Moritz Hermann for their helpful com-
ments during discussions surrounding this pa-
per. This work is supported by EPSRC Project
EP/I03808X/1.

References

M. Baroni and R. Zamparelli. Nouns are vectors, adjec-
tives are matrices: Representing adjective-noun con-
structions in semantic space. In Proceedings of the
2010 Conference on Empirical Methods in Natural
Language Processing, pages 1183–1193. Association
for Computational Linguistics, 2010.

J. Barwise and R. Cooper Generalized quantifiers and
natural language. Linguistics and philosophy, pages
159–219. Springer, 1981.

W. Blacoe and M. Lapata. A comparison of vector-based
representations for semantic composition. Proceed-

ings of the 2012 Conference on Empirical Methods in
Natural Language Processing, 2012.

N. Bourbaki. Commutative Algebra: Chapters 1-7.
Springer-Verlag (Berlin and New York), 1989.

S. Clark and S. Pulman. Combining symbolic and distri-
butional models of meaning. In AAAI Spring Sympo-
sium on Quantum Interaction, 2006.

B. Coecke, M. Sadrzadeh, and S. Clark. Mathematical
Foundations for a Compositional Distributional Model
of Meaning. Linguistic Analysis, volume 36, pages
345–384. March 2010.

J. R. Curran. From distributional to semantic similarity.
PhD thesis, 2004.

D. R. Dowty, R. E. Wall, and S. Peters. Introduction to
Montague Semantics. Dordrecht, 1981.

J. R. Firth. A synopsis of linguistic theory 1930-1955.
Studies in linguistic analysis, 1957.

M. Fitting. First-order logic and automated theorem
proving. Springer Verlag, 1996.

E. Grefenstette, G. Dinu, Y. Zhang, M. Sadrzadeh, and
M. Baroni. Multi-step regression learning for com-
positional distributional semantics. In Proceedings of
the Tenth International Conference on Computational
Semantics. Association for Computational Linguistics,
2013.

E. Grefenstette and M. Sadrzadeh. Experimental support
for a categorical compositional distributional model of
meaning. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing,
2011.

G. Grefenstette. Explorations in automatic thesaurus dis-
covery. 1994.

D. Kartsaklis, and M. Sadrzadeh and S. Pulman. A
Unified Sentence Space for Categorical Distributional-
Compositional Semantics: Theory and Experiments.
In Proceedings of 24th International Conference on
Computational Linguistics (COLING 2012): Posters,
2012.

T. K. Landauer and S. T. Dumais. A solution to Plato’s
problem: The latent semantic analysis theory of ac-
quisition, induction, and representation of knowledge.
Psychological review, 1997.

J. Lee. Riemannian manifolds: An introduction to curva-
ture, volume 176. Springer Verlag, 1997.

D. W. Loveland. Automated theorem proving: A logical
basis. Elsevier North-Holland, 1978.

J. Mitchell and M. Lapata. Vector-based models of se-
mantic composition. In Proceedings of ACL, vol-
ume 8, 2008.

J. Mitchell and M. Lapata. Language models based on se-
mantic composition. In Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language
Processing: Volume 1-Volume 1, pages 430–439. As-
sociation for Computational Linguistics, 2009.

9



J. J. Mitchell. Composition in distributional models of
semantics. PhD thesis, 2011.

R. Montague. English as a Formal Language. Formal
Semantics: The Essential Readings, 1974.

H. Schütze. Automatic word sense discrimination. Com-
putational linguistics, 24(1):97–123, 1998.

P. Smolensky. Tensor product variable binding and the
representation of symbolic structures in connection-
ist systems. Artificial intelligence, 46(1-2):159–216,
1990.

R. Socher, B. Huval, C.D. Manning, and A.Y Ng.
Semantic compositionality through recursive matrix-
vector spaces. Proceedings of the 2012 Conference on
Empirical Methods in Natural Language Processing,
pages 1201–1211, 2012.

P. D. Turney. Domain and function: A dual-space model
of semantic relations and compositions. Journal of Ar-
tificial Intelligence Research, 44:533–585, 2012.

F. M. Zanzotto, I. Korkontzelos, F. Fallucchi, and S. Man-
andhar. Estimating linear models for compositional
distributional semantics. In Proceedings of the 23rd
International Conference on Computational Linguis-
tics, pages 1263–1271. Association for Computational
Linguistics, 2010.

10



Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference
and the Shared Task, pages 11–21, Atlanta, Georgia, June 13-14, 2013. c©2013 Association for Computational Linguistics

Montague Meets Markov: Deep Semantics with Probabilistic Logical Form

Islam Beltagy§, Cuong Chau§, Gemma Boleda†, Dan Garrette§, Katrin Erk†,
Raymond Mooney§

§Department of Computer Science
†Department of Linguistics

The University of Texas at Austin
Austin, Texas 78712

§{beltagy,ckcuong,dhg,mooney}@cs.utexas.edu
†gemma.boleda@utcompling.com,katrin.erk@mail.utexas.edu

Abstract

We combine logical and distributional rep-
resentations of natural language meaning by
transforming distributional similarity judg-
ments into weighted inference rules using
Markov Logic Networks (MLNs). We show
that this framework supports both judg-
ing sentence similarity and recognizing tex-
tual entailment by appropriately adapting the
MLN implementation of logical connectives.
We also show that distributional phrase simi-
larity, used as textual inference rules created
on the fly, improves its performance.

1 Introduction

Tasks in natural language semantics are very diverse
and pose different requirements on the underlying
formalism for representing meaning. Some tasks
require a detailed representation of the structure of
complex sentences. Some tasks require the ability to
recognize near-paraphrases or degrees of similarity
between sentences. Some tasks require logical infer-
ence, either exact or approximate. Often it is neces-
sary to handle ambiguity and vagueness in meaning.
Finally, we frequently want to be able to learn rele-
vant knowledge automatically from corpus data.

There is no single representation for natural lan-
guage meaning at this time that fulfills all require-
ments. But there are representations that meet some
of the criteria. Logic-based representations (Mon-
tague, 1970; Kamp and Reyle, 1993) provide an
expressive and flexible formalism to express even
complex propositions, and they come with standard-
ized inference mechanisms. Distributional mod-

hamster(
gerbil(

sim(
#                »

hamster,
#         »

gerbil) = w

8x
�
hamster(x) ! gerbil(x)

�
| f(w)

Figure 1: Turning distributional similarity into a
weighted inference rule

els (Turney and Pantel, 2010) use contextual sim-
ilarity to predict semantic similarity of words and
phrases (Landauer and Dumais, 1997; Mitchell and
Lapata, 2010), and to model polysemy (Schütze,
1998; Erk and Padó, 2008; Thater et al., 2010).
This suggests that distributional models and logic-
based representations of natural language meaning
are complementary in their strengths (Grefenstette
and Sadrzadeh, 2011; Garrette et al., 2011), which
encourages developing new techniques to combine
them.

Garrette et al. (2011; 2013) propose a framework
for combining logic and distributional models in
which logical form is the primary meaning repre-
sentation. Distributional similarity between pairs of
words is converted into weighted inference rules that
are added to the logical form, as illustrated in Fig-
ure 1. Finally, Markov Logic Networks (Richardson
and Domingos, 2006) (MLNs) are used to perform
weighted inference on the resulting knowledge base.
However, they only employed single-word distribu-
tional similarity rules, and only evaluated on a small
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set of short, hand-crafted test sentences.
In this paper, we extend Garrette et al.’s approach

and adapt it to handle two existing semantic tasks:
recognizing textual entailment (RTE) and seman-
tic textual similarity (STS). We show how this sin-
gle semantic framework using probabilistic logical
form in Markov logic can be adapted to support both
of these important tasks. This is possible because
MLNs constitute a flexible programming language
based on probabilistic logic (Domingos and Lowd,
2009) that can be easily adapted to support multiple
types of linguistically useful inference.

At the word and short phrase level, our approach
model entailment through “distributional” similarity
(Figure 1). If X and Y occur in similar contexts, we
assume that they describe similar entities and thus
there is some degree of entailment between them. At
the sentence level, however, we hold that a stricter,
logic-based view of entailment is beneficial, and we
even model sentence similarity (in STS) as entail-
ment.

There are two main innovations in the formalism
that make it possible for us to work with naturally
occurring corpus data. First, we use more expres-
sive distributional inference rules based on the sim-
ilarity of phrases rather than just individual words.
In comparison to existing methods for creating tex-
tual inference rules (Lin and Pantel, 2001b; Szpek-
tor and Dagan, 2008), these rules are computed on
the fly as needed, rather than pre-compiled. Second,
we use more flexible probabilistic combinations of
evidence in order to compute degrees of sentence
similarity for STS and to help compensate for parser
errors. We replace deterministic conjunction by an
average combiner, which encodes causal indepen-
dence (Natarajan et al., 2010).

We show that our framework is able to han-
dle both sentence similarity (STS) and textual en-
tailment (RTE) by making some simple adapta-
tions to the MLN when switching between tasks.
The framework achieves reasonable results on both
tasks. On STS, we obtain a correlation of r = 0.66
with full logic, r = 0.73 in a system with weak-
ened variable binding, and r = 0.85 in an ensemble
model. On RTE-1 we obtain an accuracy of 0.57.
We show that the distributional inference rules ben-
efit both tasks and that more flexible probabilistic
combinations of evidence are crucial for STS. Al-

though other approaches could be adapted to handle
both RTE and STS, we do not know of any other
methods that have been explicitly tested on both
problems.

2 Related work

Distributional semantics Distributional models
define the semantic relatedness of words as the
similarity of vectors representing the contexts in
which they occur (Landauer and Dumais, 1997;
Lund and Burgess, 1996). Recently, such mod-
els have also been used to represent the meaning
of larger phrases. The simplest models compute
a phrase vector by adding the vectors for the indi-
vidual words (Landauer and Dumais, 1997) or by a
component-wise product of word vectors (Mitchell
and Lapata, 2008; Mitchell and Lapata, 2010).
Other approaches, in the emerging area of distribu-
tional compositional semantics, use more complex
methods that compute phrase vectors from word
vectors and tensors (Baroni and Zamparelli, 2010;
Grefenstette and Sadrzadeh, 2011).

Wide-coverage logic-based semantics Boxer
(Bos, 2008) is a software package for wide-coverage
semantic analysis that produces logical forms using
Discourse Representation Structures (Kamp and
Reyle, 1993). It builds on the C&C CCG parser
(Clark and Curran, 2004).

Markov Logic In order to combine logical and
probabilistic information, we draw on existing work
in Statistical Relational AI (Getoor and Taskar,
2007). Specifically, we utilize Markov Logic Net-
works (MLNs) (Domingos and Lowd, 2009), which
employ weighted formulas in first-order logic to
compactly encode complex undirected probabilistic
graphical models. MLNs are well suited for our ap-
proach since they provide an elegant framework for
assigning weights to first-order logical rules, com-
bining a diverse set of inference rules and perform-
ing sound probabilistic inference.

An MLN consists of a set of weighted first-order
clauses. It provides a way of softening first-order
logic by allowing situations in which not all clauses
are satisfied. More specifically, they provide a
well-founded probability distribution across possi-
ble worlds by specifying that the probability of a
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world increases exponentially with the total weight
of the logical clauses that it satisfies. While methods
exist for learning MLN weights directly from train-
ing data, since the appropriate training data is lack-
ing, our approach uses weights computed using dis-
tributional semantics. We use the open-source soft-
ware package Alchemy (Kok et al., 2005) for MLN
inference, which allows computing the probability
of a query literal given a set of weighted clauses as
background knowledge and evidence.

Tasks: RTE and STS Recognizing Textual En-
tailment (RTE) is the task of determining whether
one natural language text, the premise, implies an-
other, the hypothesis. Consider (1) below.

(1) p: Oracle had fought to keep the forms from
being released
h: Oracle released a confidential document

Here, h is not entailed. RTE directly tests whether
a system can construct semantic representations that
allow it to draw correct inferences. Of existing RTE
approaches, the closest to ours is by Bos and Mark-
ert (2005), who employ a purely logical approach
that uses Boxer to convert both the premise and hy-
pothesis into first-order logic and then checks for
entailment using a theorem prover. By contrast, our
approach uses Markov logic with probabilistic infer-
ence.

Semantic Textual Similarity (STS) is the task of
judging the similarity of two sentences on a scale
from 0 to 5 (Agirre et al., 2012). Gold standard
scores are averaged over multiple human annota-
tions. The best performer in 2012’s competition was
by Bär et al. (2012), an ensemble system that inte-
grates many techniques including string similarity,
n-gram overlap, WordNet similarity, vector space
similarity and MT evaluation metrics.

Weighted inference, and combined structural-
distributional representations One approach to
weighted inference in NLP is that of Hobbs et al.
(1993), who proposed viewing natural language in-
terpretation as abductive inference. In this frame-
work, problems like reference resolution and syntac-
tic ambiguity resolution become inferences to best
explanations that are associated with costs. How-
ever, this leaves open the question of how costs are

assigned. Raina et al. (2005) use this framework for
RTE, deriving inference costs from WordNet simi-
larity and properties of the syntactic parse.

Garrette et al. (2011; 2013) proposed an approach
to RTE that uses MLNs to combine traditional log-
ical representations with distributional information
in order to support probabilistic textual inference.
This approach can be viewed as a bridge between
Bos and Markert (2005)’s purely logical approach,
which relies purely on hard logical rules and the-
orem proving, and distributional approaches, which
support graded similarity between concepts but have
no notion of logical operators or entailment.

There are also other methods that combine dis-
tributional and structured representations. Stern et
al. (2011) conceptualize textual entailment as tree
rewriting of syntactic graphs, where some rewrit-
ing rules are distributional inference rules. Socher
et al. (2011) recognize paraphrases using a “tree of
vectors,” a phrase structure tree in which each con-
stituent is associated with a vector, and overall sen-
tence similarity is computed by a classifier that inte-
grates all pairwise similarities. (This is in contrast to
approaches like Baroni and Zamparelli (2010) and
Grefenstette and Sadrzadeh (2011), who do not of-
fer a proposal for using vectors at multiple levels in
a syntactic tree simultaneously.)

3 MLN system

Our system extends that of Garrette et al. (2011;
2013) to support larger-scale evaluation on standard
benchmarks for both RTE and STS. We conceptual-
ize both tasks as probabilistic entailment in Markov
logic, where STS is judged as the average degree of
mutual entailment, i.e. we compute the probability
of both S1 |= S2 and S2 |= S1 and average the re-
sults. Below are some sentence pairs that we use as
examples in the discussion below:

(2) S1: A man is slicing a cucumber.
S2: A man is slicing a zucchini.

(3) S1: A boy is riding a bicycle.
S2: A little boy is riding a bike.

(4) S1: A man is driving.
S2: A man is driving a car.
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System overview. To compute the probability of
an entailment S1 |= S2, the system first constructs
logical forms for each sentence using Boxer and
then translates them into MLN clauses. In example
(2) above, the logical form for S1:

∃x0, e1, x2

(
man(x0) ∧ slice(e1) ∧Agent(e1, x0)∧

cucumber(x2) ∧ Patient(e1, x2)
)

is used as evidence, and the logical form for S2 is
turned into the following formula (by default, vari-
ables are assumed to be universally quantified):

man(x) ∧ slice(e) ∧Agent(e, x)∧
zucchini(y) ∧ Patient(e, y)→ result()

where result() is the query for which we have
Alchemy compute the probability.

However, S2 is not strictly entailed by S1 because
of the mismatch between “cucumber” and “zuc-
chini”, so with just the strict logical-form transla-
tions of S1 and S2, the probability of result() will
be zero. This is where we introduce distributional
similarity, in this case the similarity of “cucumber”
and “zucchini”, cos(

#                  »

cucumber,
#               »

zucchini). We cre-
ate inference rules from such similarities as a form
of background knowledge. We then treat similarity
as degree of entailment, a move that has a long tradi-
tion (e.g., (Lin and Pantel, 2001b; Raina et al., 2005;
Szpektor and Dagan, 2008)). In general, given two
words a and b, we transform their cosine similarity
into an inference-rule weight wt(a, b) using:

wt(a, b) = log(
cos( #»a ,

#»

b )

1− cos( #»a ,
#»

b )
)− prior (5)

Where prior is a negative weight used to initialize
all predicates, so that by default facts are assumed
to have very low probability. In our experiments,
we use prior = −3. In the case of sentence pair
(2), we generate the inference rule:

cucumber(x)→ zucchini(x) | wt(cuc., zuc.)

Such inference rules are generated for all pairs of
words (w1, w2) where w1 ∈ S1 and w2 ∈ S2.1

1We omit inference rules for words (a, b) where cos(a, b) <
θ for a threshold θ set to maximize performance on the training
data. Low-similarity pairs usually indicate dissimilar words.
This removes a sizeable number of rules for STS, while for RTE
the tuned threshold was near zero.

The distributional model we use contains all lem-
mas occurring at least 50 times in the Gigaword cor-
pus (Graff et al., 2007) except a list of stop words.
The dimensions are the 2,000 most frequent of these
words, and cell values are weighted with point-wise
mutual information. 2

Phrase-based inference rules. Garrette et al. only
considered distributional inference rules for pairs of
individual words. We extend their approach to dis-
tributional inference rules for pairs of phrases in or-
der to handle cases like (3). To properly estimate
the similarity between S1 and S2 in (3), we not only
need an inference rule linking “bike” to “bicycle”,
but also a rule estimating how similar “boy” is to
“little boy”. To do so, we make use of existing ap-
proaches that compute distributional representations
for phrases. In particular, we compute the vector for
a phrase from the vectors of the words in that phrase,
using either vector addition (Landauer and Dumais,
1997) or component-wise multiplication (Mitchell
and Lapata, 2008; Mitchell and Lapata, 2010). The
inference-rule weight, wt(p1, p2), for two phrases
p1 and p2 is then determined using Eq. (5) in the
same way as for words.

Existing approaches that derive phrasal inference
rules from distributional similarity (Lin and Pantel,
2001a; Szpektor and Dagan, 2008; Berant et al.,
2011) precompile large lists of inference rules. By
comparison, distributional phrase similarity can be
seen as a generator of inference rules “on the fly”,
as it is possible to compute distributional phrase
vectors for arbitrary phrases on demand as they are
needed for particular examples.

Inference rules are generated for all pairs of con-
stituents (c1, c2) where c1 ∈ S1 and c2 ∈ S2, a
constituent is a single word or a phrase. The log-
ical form provides a handy way to extract phrases,
as they are generally mapped to one of two logical
constructs. Either we have multiple single-variable
predicates operating on the same variable. For ex-
ample the phrase “a little boy” has the logical form
boy(x) ∧ little(x). Or we have two unary predi-
cates connected with a relation. For example, “pizza
slice” and “slice of pizza” are both mapped to the

2It is customary to transform raw counts in a way that cap-
tures association between target words and dimensions, for ex-
ample through point-wise mutual information (Lowe, 2001).
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logical form, slice(x0) ∧ of(x0, x1) ∧ pizza(x1).
We consider all binary predicates as relations.

Average Combiner to determine similarity in the
presence of missing phrases. The logical forms
for the sentences in (4): are

S1: ∃x0, e1

(
man(x0)∧agent(x0, e1)∧drive(e1)

)

S2: ∃x0, e1, x2

(
man(x0) ∧ agent(x0, e1) ∧

drive(e1) ∧ patient(e1, x2) ∧ car(x2)
)

If we try to prove S1 |= S2, the probability of
the result() will be zero: There is no evidence for
a car, and the hypothesis predicates are conjoined
using a deterministic AND. For RTE, this makes
sense: If one of the hypothesis predicates is False,
the probability of entailment should be zero. For the
STS task, this should in principle be the same, at
least if the omitted facts are vital, but it seems that
annotators rated the data points in this task more for
overall similarity than for degrees of entailment. So
in STS, we want the similarity to be a function of
the number of elements in the hypothesis that are
inferable. Therefore, we need to replace the deter-
ministic AND with a different way of combining
evidence. We chose to use the average evidence
combiner for MLNs introduced by Natarajan et al.
(2010). To use the average combiner, the full logi-
cal form is divided into smaller clauses (which we
call mini-clauses), then the combiner averages their
probabilities. In case the formula is a list of con-
juncted predicates, a mini-clause is a conjunction
of a single-variable predicate with a relation predi-
cate(as in the example below). In case the logical
form contains a negated sub-formula, the negated
sub-formula is also a mini-clause. The hypothesis
above after dividing clauses for the average com-
biner looks like this:

man(x0) ∧ agent(x0, e1)→ result(x0, e1, x2) | w
drive(e1) ∧ agent(x0, e1)→ result(x0, e1, x2) | w
drive(e1) ∧ patient(e1, x2)→ result(x0, e1, x2) | w
car(x2) ∧ patient(e1, x2)→ result(x0, e1, x2) | w

where result is again the query predicate. Here,
result has all of the variables in the clause as argu-
ments in order to maintain the binding of variables
across all of the mini-clauses. The weights w are the
following function of n, the number of mini-clauses
(4 in the above example):

w =
1

n
× (log(

p

1− p
)− prior) (6)

where p is a value close to 1 that is set to maximize
performance on the training data, and prior is the
same negative weight as before. Setting w this way
produces a probability of p for the result() in cases
that satisfy the antecedents of all mini-clauses. For
the example above, the antecedents of the first two
mini-clauses are satisfied, while the antecedents of
the last two are not since the premise provides no
evidence for an object of the verb drive. The simi-
larity is then computed to be the maximum probabil-
ity of any grounding of the result predicate, which
in this case is around p

2 .3

An interesting variation of the average combiner
is to omit variable bindings between the mini-
clauses. In this case, the hypothesis clauses look
like this for our example:

man(x) ∧ agent(x, e)→ result() | w
drive(e) ∧ agent(x, e)→ result() | w
drive(e) ∧ patient(e, x)→ result() | w
car(x) ∧ patient(e, x)→ result() | w

This implementation loses a lot of information,
for example it does not differentiate between “A
man is walking and a woman is driving” and “A
man is driving and a woman is walking”. In fact,
logical form without variable binding degrades to a
representation similar to a set of independent syn-
tactic dependencies, 4 while the average combiner
with variable binding retains all of the information
in the original logical form. Still, omitting variable
binding turns out to be useful for the STS task.

It is also worth commenting on the efficiency of
the inference algorithm when run on the three dif-
ferent approaches to combining evidence. The aver-
age combiner without variable binding is the fastest
and has the least memory requirements because all
cliques in the ground network are of limited size
(just 3 or 4 nodes). Deterministic AND is much
slower than the average combiner without variable
binding, because the maximum clique size depends
on the sentence. The average combiner with vari-
able binding is the most memory intensive since the

3One could also give mini-clauses different weights depend-
ing on their importance, but we have not experimented with this
so far.

4However, it is not completely the same since we do not
divide up formulas under negation into mini-clauses.
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number of arguments of the result() predicate can
become large (there is an argument for each individ-
ual and event in the sentence). Consequently, the
inference algorithm needs to consider a combinato-
rial number of possible groundings of the result()
predicate, making inference very slow.

Adaptation of the logical form. As discussed by
Garrette et al. (2011), Boxer’s output is mapped to
logical form and augmented with additional infor-
mation to handle a variety of semantic phenomena.
However, we do not use their additional rules for
handling implicatives and factives, as we wanted to
test the system without background knowledge be-
yond that supplied by the vector space.

Unfortunately, current MLN inference algorithms
are not able to efficiently handle complex formu-
las with nested quantifiers. For that reason, we re-
placed universal quantifiers in Boxer’s output with
existentials since they caused serious problems for
Alchemy. Although this is a radical change to the
semantics of the logical form, due to the nature of
the STS and RTE data, it only effects about 5% of
the sentences, and we found that most of the uni-
versal quantifiers in these cases were actually due
to parsing errors. We are currently exploring more
effective ways of dealing with this issue.

4 Task 1: Recognizing Textual Entailment

4.1 Dataset
In order to compare directly to the logic-based sys-
tem of Bos and Markert (2005), we focus on the
RTE-1 dataset (Dagan et al., 2005), which includes
567 Text-Hypothesis (T-H) pairs in the development
set and 800 pairs in the test set. The data covers a
wide range of issues in entailment, including lexical,
syntactic, logical, world knowledge, and combina-
tions of these at different levels of difficulty. In both
development and test sets, 50% of sentence pairs are
true entailments and 50% are not.

4.2 Method
We run our system for different configurations of in-
ference rules and evidence combiners. For distri-
butional inference rules (DIR), three different lev-
els are tested: without inference rules (no DIR),
inference rules for individual words (word DIR),
and inference rules for words and phrases (phrase

DIR). Phrase vectors were built using vector addi-
tion, as point-wise multiplication performed slightly
worse. To combine evidence for the result() query,
three different options are available: without av-
erage combiner which is just using Deterministic
AND (Deterministic AND), average combiner with
variable binding (AvgComb) and average combiner
without variable binding (AvgComb w/o VarBind).
Different combinations of configurations are tested
according to its suitability for the task; RTE and
STS.

We also tested several “distributional only” sys-
tems. The first such system builds a vector represen-
tation for each sentence by adding its word vectors,
then computes the cosine similarity between the sen-
tence vectors for S1 and S2 (VS-Add). The second
uses point-wise multiplication instead of vector ad-
dition (VS-Mul). The third scales pairwise words
similarities to the sentence level using weighted av-
erage where weights are inverse document frequen-
cies idf as suggested by Mihalcea et al. (2006) (VS-
Pairwise).

For the RTE task, systems were evaluated using
both accuracy and confidence-weighted score (cws)
as used by Bos and Markert (2005) and the RTE-
1 challenge (Dagan et al., 2005). In order to map
a probability of entailment to a strict prediction of
True or False, we determined a threshold that op-
timizes performance on the development set. The
cws score rewards a system’s ability to assign higher
confidence scores to correct predictions than incor-
rect ones. For cws, a system’s predictions are sorted
in decreasing order of confidence and the score is
computed as:

cws =
1

n

n∑

i=1

#correct-up-to-rank-i
i

where n is the number of the items in the test set,
and i ranges over the sorted items. In our systems,
we defined the confidence value for a T-H pair as
the distance between the computed probability for
the result() predicate and the threshold.

4.3 Results

The results are shown in Table 1. They show
that the distributional only baselines perform very
poorly. In particular, they perform worse than strict

16



Method acc cws
Chance 0.50 0.50
Bos & Markert, strict 0.52 0.55
Best system in RTE-1 challenge
(Bayer et al., 2005)

0.59 0.62

VS-Add 0.49 0.53
VS-Mul 0.51 0.52
VS-Pairwise 0.50 0.50
AvgComb w/o VarBind + phrase
DIR

0.52 0.53

Deterministic AND + phrase DIR 0.57 0.57

Table 1: Results on the RTE-1 Test Set.

entailment from Bos and Markert (2005), a system
that uses only logic. This illustrates the important
role of logic-based representations for the entail-
ment task. Due to intractable memory demands of
Alchemy inference, our current system with deter-
ministic AND fails to execute on 118 of the 800 test
pairs, so, by default, the system classifies these cases
as False (non-entailing) with very low confidence.
Comparing the two configurations of our system,
using deterministic AND vs. the average combiner
without variable binding (last two lines in Table 1),
we see that for RTE, it is essential to retain the full
logical form.

Our system with deterministic AND obtains both
an accuracy and cws of 0.57. The best result in
the RTE-1 challenge by Bayer et al. (2005) ob-
tained an accuracy of 0.59 and cws of 0.62. 5 In
terms of both accuracy and cws, our system outper-
forms both “distributional only” systems and strict
logical entailment, showing again that integrating
both logical form and distributional inference rules
using MLNs is beneficial. Interestingly, the strict
entailment system of Bos and Markert incorporated
generic knowledge, lexical knowledge (from Word-
Net) and geographical knowledge that we do not
utilize. This demonstrates the advantage of us-
ing a model that operationalizes entailment between
words and phrases as distributional similarity.

5On other RTE datasets there are higher previous results.
Hickl (2008) achieves 0.89 accuracy and 0.88 cws on the com-
bined RTE-2 and RTE-3 dataset.

5 Task 2: Semantic Textual Similarity

5.1 Dataset

The dataset we use in our experiments is the MSR
Video Paraphrase Corpus (MSR-Vid) subset of the
STS 2012 task, consisting of 1,500 sentence pairs.
The corpus itself was built by asking annotators
from Amazon Mechanical Turk to describe very
short video fragments (Chen and Dolan, 2011). The
organizers of the STS 2012 task (Agirre et al., 2012)
sampled video descriptions and asked Turkers to as-
sign similarity scores (ranging from 0 to 5) to pairs
of sentences, without access to the video. The gold
standard score is the average of the Turkers’ annota-
tions. In addition to the MSR Video Paraphrase Cor-
pus subset, the STS 2012 task involved data from
machine translation and sense descriptions. We do
not use these because they do not consist of full
grammatical sentences, which the parser does not
handle well. In addition, the STS 2012 data included
sentences from the MSR Paraphrase Corpus, which
we also do not currently use because some sentences
are long and create intractable MLN inference prob-
lems. This issue is discussed further in section 6.
Following STS standards, our evaluation compares
a system’s similarity judgments to the gold standard
scores using Pearson’s correlation coefficient r.

5.2 Method

Our system can be tested for different configuration
of inference rules and evidence combiners which
are explained in section 4.2. The tested systems on
the STS task are listed in table 2. Out experiments
showed that using average combiner (AvgComb) is
very memory intensive and MLN inference for 28 of
the 1,500 pairs either ran out of memory or did not
finish in reasonable time. In such cases, we back off
to AvgComb w/o VarBind.

We compare to several baselines; our MLN
system without distributional inference rules
(AvgComb + no DIR), and distributional-only
systems (VS-Add, VS-Mul, VS-Pairwise). These
are the natural baselines for our system, since they
use only one of the two types of information that
we combine (i.e. logical form and distributional
representations).

Finally, we built an ensemble that combines the
output of multiple systems using regression trained
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Method r

AvgComb + no DIR 0.58
AvgComb + word DIR 0.60
AvgComb + phrase DIR 0.66
AvgComb w/o VarBind + no DIR 0.58
AvgComb w/o VarBind + word DIR 0.60
AvgComb w/o VarBind + phrase DIR 0.73
VS-Add 0.78
VS-Mul 0.58
VS-Pairwise 0.77
Ensemble (VS-Add + VS-Mul + VS-
Pairwise)

0.83

Ensemble ([AvgComb + phrase DIR] +
VS-Add + VS-Mul + VS-Pairwise)

0.85

Best MSR-Vid score in STS 2012 (Bär
et al., 2012)

0.87

Table 2: Results on the STS video dataset.

on the training data. We then compare the perfor-
mance of an ensemble with and without our sys-
tem. This is the same technique used by Bär et al.
(2012) except we used additive regression (Fried-
man, 2002) instead of linear regression since it gave
better results.

5.3 Results

Table 2 summarizes the results of our experiments.
They show that adding distributional information
improves results, as expected, and also that adding
phrase rules gives further improvement: Using only
word distributional inference rules improves results
from 0.58 to 0.6, and adding phrase inference rules
further improves them to 0.66. As for variable bind-
ing, note that although it provides more precise in-
formation, the STS scores actually improve when it
is dropped, from 0.66 to 0.73. We offer two expla-
nations for this result: First, this information is very
sensitive to parsing errors, and the C&C parser, on
which Boxer is based, produces many errors on this
dataset, even for simple sentences. When the C&C
CCG parse is wrong, the resulting logical form is
wrong, and the resulting similarity score is greatly
affected. Dropping variable binding makes the sys-
tems more robust to parsing errors. Second, in con-
trast to RTE, the STS dataset does not really test the
important role of syntax and logical form in deter-

mining meaning. This also explains why the “dis-
tributional only” baselines are actually doing better
than the MLN systems.

Although the MLN system on its own does not
perform better than the distributional compositional
models, it does provide complementary information,
as shown by the fact that ensembling it with the rest
of the models improves performance (0.85 with the
MLN system, compared to 0.83 without it). The per-
formance of this ensemble is close to the current best
result for this dataset (0.87).

6 Future Work

The approach presented in this paper constitutes a
step towards achieving the challenging goal of effec-
tively combining logical representations with dis-
tributional information automatically acquired from
text. In this section, we discuss some of limita-
tions of the current work and directions for future
research.

As noted before, parse errors are currently a sig-
nificant problem. We use Boxer to obtain a logi-
cal representation for a sentence, which in turn re-
lies on the C&C parser. Unfortunately, C&C mis-
parses many sentences, which leads to inaccurate
logical forms. To reduce the impact of misparsing,
we plan to use a version of C&C that can produce
the top-n parses together with parse re-ranking (Ng
and Curran, 2012). As an alternative to re-ranking,
one could obtain logical forms for each of the top-
n parses, and create an MLN that integrates all of
them (together with their certainty) as an underspec-
ified meaning representation that could then be used
to directly support inferences such as STS and RTE.

We also plan to exploit a greater variety of dis-
tributional inference rules. First, we intend to in-
corporate logical form translations of existing dis-
tributional inference rule collections (e.g., (Berant
et al., 2011; Chan et al., 2011)). Another issue
is obtaining improved rule weights based on dis-
tributional phrase vectors. We plan to experiment
with more sophisticated approaches to computing
phrase vectors such as those recently presented by
Baroni and Zamparelli (2010) and Grefenstette and
Sadrzadeh (2011). Furthermore, we are currently
deriving symmetric similarity ratings between word
pairs or phrase pairs, when really what we need is di-
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rectional similarity. We plan to incorporate directed
similarity measures such as those of Kotlerman et al.
(2010) and Clarke (2012).

A primary problem for our approach is the limita-
tions of existing MLN inference algorithms, which
do not effectively scale to large and complex MLNs.
We plan to explore “coarser” logical representa-
tions such as Minimal Recursion Semantics (MRS)
(Copestake et al., 2005). Another potential approach
to this problem is to trade expressivity for efficiency.
Domingos and Webb (2012) introduced a tractable
subset of Markov Logic (TML) for which a future
software release is planned. Formulating the infer-
ence problem in TML could potentially allow us to
run our system on longer and more complex sen-
tences.

7 Conclusion

In this paper we have used an approach that com-
bines logic-based and distributional representations
for natural language meaning. It uses logic as
the primary representation, transforms distributional
similarity judgments to weighted inference rules,
and uses Markov Logic Networks to perform in-
ferences over the weighted clauses. This approach
views textual entailment and sentence similarity as
degrees of “logical” entailment, while at the same
time using distributional similarity as an indicator
of entailment at the word and short phrase level. We
have evaluated the framework on two different tasks,
RTE and STS, finding that it is able to handle both
tasks given that we adapt the way evidence is com-
bined in the MLN. Even though other entailment
models could be applied to STS, given that similar-
ity can obviously be operationalized as a degree of
mutual entailment, this has not been done before to
our best knowledge. Our framework achieves rea-
sonable results on both tasks. On RTE-1 we obtain
an accuracy of 0.57. On STS, we obtain a correla-
tion of r = 0.66 with full logic, r = 0.73 in a system
with weakened variable binding, and r = 0.85 in an
ensemble model. We find that distributional word
and phrase similarity, used as textual inference rules
on the fly, leads to sizeable improvements on both
tasks. We also find that using more flexible proba-
bilistic combinations of evidence is crucial for STS.
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Abstract

Wikipedia articles are annotated by volunteer

contributors with numerous links that connect

words and phrases to relevant titles. Links

to general senses of a word are used concur-

rently with links to more specific senses, with-

out being distinguished explicitly. We present

an approach to training coarse to fine grained

sense disambiguation systems in the presence

of such annotation inconsistencies. Experi-

mental results show that accounting for anno-

tation ambiguity in Wikipedia links leads to

significant improvements in disambiguation.

1 Introduction and Motivation

The vast amount of world knowledge available in

Wikipedia has been shown to benefit many types

of text processing tasks, such as coreference res-

olution (Ponzetto and Strube, 2006; Haghighi and

Klein, 2009; Bryl et al., 2010; Rahman and Ng,

2011), information retrieval (Milne, 2007; Li et al.,

2007; Potthast et al., 2008; Cimiano et al., 2009),

or question answering (Ahn et al., 2004; Kaisser,

2008; Ferrucci et al., 2010). In particular, the user

contributed link structure of Wikipedia has been

shown to provide useful supervision for training

named entity disambiguation (Bunescu and Pasca,

2006; Cucerzan, 2007) and word sense disambigua-

tion (Mihalcea, 2007; Ponzetto and Navigli, 2010)

systems. Articles in Wikipedia often contain men-

tions of concepts or entities that already have a cor-

responding article. When contributing authors men-

tion an existing Wikipedia entity inside an article,

they are required to link at least its first mention to

the corresponding article, by using links or piped

links. Consider, for example, the following Wiki

source annotations: The [[capital city|capital]] of

Georgia is [[Atlanta]]. The bracketed strings iden-

tify the title of the Wikipedia articles that describe

the corresponding named entities. If the editor wants

a different string displayed in the rendered text, then

the alternative string is included in a piped link, af-

ter the title string. Based on these Wiki processing

rules, the text that is rendered for the aforementioned

example is: The capital of Georgia is Atlanta.

Since many words and names mentioned in

Wikipedia articles are inherently ambiguous, their

corresponding links can be seen as a useful source

of supervision for training named entity and word

sense disambiguation systems. For example,

Wikipedia contains articles that describe possible

senses of the word “capital”, such as CAPITAL CITY,

CAPITAL (ECONOMICS), FINANCIAL CAPITAL, or

HUMAN CAPITAL, to name only a few. When dis-

ambiguating a word or a phrase in Wikipedia, a con-

tributor uses the context to determine the appropriate

Wikipedia title to include in the link. In the exam-

ple above, the editor of the article determined that

the word “capital” was mentioned with the political

center meaning, consequently it was mapped to the

article CAPITAL CITY through a piped link.

In order to useWikipedia links for training aWSD

system for a given word, one needs first to define a

sense repository that specifies the possible meanings

for that word, and then use the Wikipedia links to

create training examples for each sense in the repos-

itory. This approach might be implemented using

the following sequence of steps:
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In global climate models, the state and properties of the [[atmosphere]] are specified at a number of discrete locations

General = ATMOSPHERE; Specific = ATMOSPHERE OF EARTH; Label = A → A(S)→ AE

The principal natural phenomena that contribute gases to the [[Atmosphere of Earth|atmosphere]] are emissions from volcanoes

General = ATMOSPHERE; Specific = ATMOSPHERE OF EARTH; Label = A → A(S)→ AE

An aerogravity assist is a spacecraft maneuver designed to change velocity when arriving at a body with an [[atmosphere]]

General = ATMOSPHERE; Specific = ATMOSPHERE ⊲ generic; Label = A → A(G)

Assuming the planet’s [[atmosphere]] is close to equilibrium, it is predicted that 55 Cancri d is covered with water clouds

General = ATMOSPHERE; Specific = ATMOSPHERE OF CANCRI ⊲ missing; A→ A(G)

Figure 1: Coarse and fine grained sense annotations in Wikipedia (bold). The proposed hierarchical Label (right).

A(S) = ATMOSPHERE (S), A(G) = ATMOSPHERE (G), A = ATMOSPHERE, AE = ATMOSPHERE OF EARTH.

1. Collect all Wikipedia titles that are linked from

the ambiguous anchor word.

2. Create a repository of senses from all titles that

have sufficient support in Wikipedia i.e., titles

that are referenced at least a predefined min-

imum number of times using the ambiguous

word as anchor.

3. Use the links extracted for each sense in the

repository as labeled examples for that sense

and train a WSD model to distinguish between

alternative senses of the ambiguous word.

Taking the word “atmosphere” as an example, the

first step would result in a wide array of titles,

ranging from the general ATMOSPHERE and its in-

stantiations ATMOSPHERE OF EARTH or ATMO-

SPHERE OF MARS, to titles as diverse as ATMO-

SPHERE (UNIT), MOOD (PSYCHOLOGY), or AT-

MOSPHERE (MUSIC GROUP). In the second step,

the most frequent titles for the anchor word “at-

mosphere” would be assembled into a repository R
= {ATMOSPHERE, ATMOSPHERE OF EARTH, AT-

MOSPHERE OF MARS, ATMOSPHERE OF VENUS,

STELLAR ATMOSPHERE, ATMOSPHERE (UNIT),

ATMOSPHERE (MUSIC GROUP)}. The classifier

trained in the third step would use features ex-

tracted from the context to discriminate between

word senses.

This Wikipedia-based approach to creating train-

ing data for word sense disambiguation has a ma-

jor shortcoming. Many of the training examples ex-

tracted for the title ATMOSPHERE could very well

belong to more specific titles such as ATMOSPHERE

OF EARTH or ATMOSPHERE OF MARS. Whenever

the word “atmosphere” is used in a context with the

sense of “a layer of gases that may surround a ma-

terial body of sufficient mass, and that is held in

place by the gravity of the body,” the contributor

has the option of adding a link either to the title AT-

MOSPHERE that describes this general sense of the

word, or to the title of an article that describes the

atmosphere of the actual celestial body that is re-

ferred in that particular context, as shown in the first

2 examples in Figure 1. As shown in bold in Fig-

ure 1, different occurrences of the same word may

be tagged with either a general or a specific link, an

ambiguity that is pervasive in Wikipedia for words

like ”atmosphere” that have general senses that sub-

sume multiple, popular specific senses. There does

not seem to be a clear, general rule underlying the

decision to tag a word or a phrase with a general

or specific sense link in Wikipedia. We hypothesize

that, in some cases, editors may be unaware that an

article exists in Wikipedia for the actual reference

of a word or for a more specific sense of the word,

and therefore they end up using a link to an article

describing the general sense of the word. There is

also the possibility that more specific articles are in-

troduced only in newer versions of Wikipedia, and

thus earlier annotations were not aware of these re-

cent articles. Furthermore, since annotating words

with the most specific sense available in Wikipedia

may require substantial cognitive effort, editors may

often choose to link to a general sense of the word, a

choice that is still correct, yet less informative than

the more specific sense.

2 Annotation Inconsistencies in Wikipedia

In order to get a sense of the potential magnitude

of the general vs. specific sense annotation ambi-

guity, we extracted all Wikipedia link annotations
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for the words “atmosphere”, “president”, “game”,

“dollar”, “diamond” and “Corinth”, and created

a special subset from those that were labeled by

Wikipedia editors with the general sense links AT-

MOSPHERE, PRESIDENT, GAME, DOLLAR, DIA-

MOND, and CORINTH, respectively. Then, for each

of the 7,079 links in this set, we used the context

to manually determine the corresponding more spe-

cific title, whenever such a title exists in Wikipedia.

The statistics in Tables 1 and 2 show a significant

overlap between the general and specific sense cate-

gories. For example, out of the 932 links from “at-

mosphere” to ATMOSPHERE that were extracted in

total, 518 were actually about the ATMOSPHERE OF

EARTH, but the user linked them to the more general

sense category ATMOSPHERE. On the other hand,

there are 345 links to ATMOSPHERE OF EARTH that

were explicitly made by the user. We manually as-

signed general links (G) whenever the word is used

with a generic sense, or when the reference is not

available in the repository of titles collected for that

word because either the more specific title does not

exist in Wikipedia or the specific title exists, but it

does not have sufficient support – at least 20 linked

anchors – in Wikipedia. We grouped the more spe-

cific links for any given sense into a special cate-

gory suffixed with (S), to distinguish them from the

general links (generic use, or missing reference) that

were grouped into the category suffixed with (G).

For many ambiguous words, the annotation in-

consistencies appear when the word has senses

that are in a subsumption relationship: the ATMO-

SPHERE OF EARTH is an instance of ATMOSPHERE,

whereas a STELLAR ATMOSPHERE is a particular

type of ATMOSPHERE. Subsumed senses can be

identified automatically using the category graph in

Wikipedia. The word “Corinth” is an interesting

case: the subsumption relationship between AN-

CIENT CORINTH and CORINTH appears because of

a temporal constraint. Furthermore, in the case of

the word “diamond”, the annotation inconsistencies

are not caused by a subsumption relation between

senses. Instead of linking to the DIAMOND (GEM-

STONE) sense, Wikipedia contributors often link to

the related DIAMOND sense indicating the mineral

used in the gemstone.

A supervised learning algorithm that uses the ex-

tracted links for training aWSD classification model

atmosphere Size

ATMOSPHERE 932

Atmosphere (S) 559

Atmosphere of Earth 518

Atmosphere of Mars 19

Atmosphere of Venus 9

Stellar Atmosphere 13

Atmosphere (G) 373

ATMOSPHERE OF EARTH 345

ATMOSPHERE OF MARS 37

ATMOSPHERE OF VENUS 26

STELLAR ATMOSPHERE 29

ATMOSPHERE (UNIT) 96

ATMOSPHERE (MUSIC GROUP) 104

president Size

PRESIDENT 3534

President (S) 989

Chancellor (education) 326

President of the United States 534

President of the Philippines 42

President of Pakistan 27

President of France 22

President of India 21

President of Russia 17

President (G) 2545

CHANCELLOR (EDUCATION) 210

PRESIDENT OF THE UNITED STATES 5941

PRESIDENT OF THE PHILIPPINES 549

PRESIDENT OF PAKISTAN 192

PRESIDENT OF FRANCE 151

PRESIDENT OF INDIA 86

PRESIDENT OF RUSSIA 101

Table 1: Wiki (CAPS) and manual (italics) annotations.

to distinguish between categories in the sense repos-

itory assumes implicitly that the categories, and

hence their training examples, are mutually disjoint.

This assumption is clearly violated for words like

“atmosphere,” consequently the learned model will

have a poor performance on distinguishing between

the overlapping categories. Alternatively, we can

say that sense categories like ATMOSPHERE are ill

defined, since their supporting dataset contains ex-

amples that could also belong to more specific sense

categories such as ATMOSPHERE OF EARTH.

We see two possible solutions to the problem of

inconsistent link annotations. In one solution, spe-

cific senses are grouped together with the subsuming

general sense, such that all categories in the result-

ing repository become disjoint. For “atmosphere”,

the general category ATMOSPHERE would be aug-

mented to contain all the links previously annotated
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dollar Size

DOLLAR 379

Dollar (S) 231

United States dollar 228

Canadian dollar 3

Australian dollar 1

Dollar (G) 147

UNITED STATES DOLLAR 3516

CANADIAN DOLLAR 420

AUSTRALIAN DOLLAR 124

DOLLAR SIGN 290

DOLLAR (BAND) 30

DOLLAR, CLACKMANNANSHIRE 30

game Size

GAME 819

Game (S) 99

Video game 55

PC game 44

Game (G) 720

VIDEO GAME 312

PC GAME 24

GAME (FOOD) 232

GAME (RAPPER) 154

diamond Size

DIAMOND 716

Diamond (S) 221

Diamond (gemstone) 221

Diamond (G) 495

DIAMOND (GEMSTONE) 71

BASEBALL FIELD 36

MUSIC RECORDING SALES CERT. 36

Corinth Size

CORINTH 699

Corinth (S) 409

Ancient Corinth 409

Corinth (G) 290

ANCIENT CORINTH 92

CORINTH, MISSISSIPPI 72

Table 2: Wiki (CAPS) and manual (italics) annotations.

as ATMOSPHERE, ATMOSPHERE OF EARTH, AT-

MOSPHERE OF MARS, ATMOSPHERE OF VENUS,

or STELLAR ATMOSPHERE. This solution is

straightforward to implement, however it has the

disadvantage that the resulting WSD model will

never link words to more specific titles in Wikipedia

like ATMOSPHERE OF MARS.

Another solution is to reorganize the original

sense repository into a hierarchical classification

scheme such that sense categories at each classifi-

cation level become mutually disjoint. The resulting

WSD system has the advantage that it can make fine

grained sense distinctions for an ambiguous word,

despite the annotation inconsistencies present in the

training data. The rest of this paper describes a feasi-

ble implementation for this second solution that does

not require any manual annotation beyond the links

that are already provided by Wikipedia volunteers.

3 Learning for Coarse to Fine Grained

Sense Disambiguation

Figure 2 shows our proposed hierarchical classifica-

tion scheme for disambiguation, using “atmosphere”

as the ambiguous word. Shaded leaf nodes show

the final categories in the sense repository for each

word, whereas the doted elliptical frames on the

second level in the hierarchy denote artificial cate-

gories introduced to enable a finer grained classifi-

cation into more specific senses. Thick dotted ar-

rows illustrate the classification decisions that are

made in order to obtain a fine grained disambigua-

tion of the word. Thus, the word “atmosphere”

is first classified to have the general sense ATMO-

SPHERE, i.e. “a layer of gases that may surround a

material body of sufficient mass, and that is held in

place by the gravity of the body”. In the first so-

lution, the disambiguation process would stop here

and output the general sense ATMOSPHERE. In the

second solution, the disambiguation process contin-

ues and further classifies the word to be a reference

to ATMOSPHERE OF EARTH. To get to this final

classification, the process passes through an inter-

mediate binary classification level where it deter-

mines whether the word has a more specific sense

covered in Wikipedia, corresponding to the artificial

category ATMOSPHERE (S). If the answer is no, the

system stops the disambiguation process and out-

puts the general sense category ATMOSPHERE. This

basic sense hierarchy can be replicated depending

on the existence of even finer sense distinctions in

Wikipedia. For example, Wikipedia articles describ-

ing atmospheres of particular stars could be used to

further refine STELLAR ATMOSPHERE with two ad-

ditional levels of the type Level 2 and Level 3. Over-

all, the proposed disambiguation scheme could be

used to relabel the ATMOSPHERE links in Wikipedia

with more specific, and therefore more informative,

senses such as ATMOSPHERE OF EARTH. In gen-

eral, the Wikipedia category graph could be used

to automatically create hierarchical structures for re-
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Figure 2: Hierarchical disambiguation scheme, from coarse to fine grained senses.

lated senses of the same word.

Training word sense classifiers for Levels 1 and 3

is straightforward. For Level 1, Wikipedia links that

are annotated by users as ATMOSPHERE, ATMO-

SPHERE OF EARTH, ATMOSPHERE OF MARS, AT-

MOSPHERE OF VENUS, or STELLAR ATMOSPHERE

are collected as training examples for the general

sense category ATMOSPHERE. Similarly, links that

are annotated as ATMOSPHERE (UNIT) and ATMO-

SPHERE (MUSIC GROUP) will be used as training

examples for the two categories, respectively. A

multiclass classifier is then trained to distinguish be-

tween the three categories at this level. For Level 3,

a multiclass classifiers is trained on Wikipedia links

collected for each of the 4 specific senses.

For the binary classifier at Level 2, we could

use as training examples for the category ATMO-

SPHERE (G) all Wikipedia links that were anno-

tated as ATMOSPHERE, whereas for the category

ATMOSPHERE (S) we could use as training exam-

ples all Wikipedia links that were annotated specif-

ically as ATMOSPHERE OF EARTH, ATMOSPHERE

OF MARS, ATMOSPHERE OF VENUS, or STELLAR

ATMOSPHERE. A traditional binary classification

SVM could be trained on this dataset to distinguish

between the two categories. We call this approach

Naive SVM, since it does not account for the fact that

a significant number of the links that are annotated

by Wikipedia contributors as ATMOSPHERE should

actually belong to the ATMOSPHERE (S) category –

about 60% of them, according to Table 1. Instead,

we propose treating all ATMOSPHERE links as unla-

beled examples. If we consider the specific links in

ATMOSPHERE (S) to be positive examples, then the

problem becomes one of learning with positive and

unlabeled examples.

3.1 Learning with positive and unlabeled

examples

This general type of semi-supervised learning has

been studied before in the context of tasks such

as text classification and information retrieval (Lee

and Liu, 2003; Liu et al., 2003), or bioinformat-

ics (Elkan and Noto, 2008; Noto et al., 2008). In

this setting, the training data consists of positive ex-

amples x ∈ P and unlabeled examples x ∈ U .

Following the notation of Elkan and Noto (2008),

we define s(x) = 1 if the example is positive and

s(x) = −1 if the example is unlabeled. The true

label of an example is y(x) = 1 if the example

is positive and y(x) = −1 if the example is neg-

ative. Thus, x ∈ P ⇒ s(x) = y(x) = 1 and

x ∈ U ⇒ s(x) = −1 i.e., the true label y(x) of an
unlabeled example is unknown. For the experiments

reported in this paper, we use our implementation

of two state-of-the-art approaches to Learning with

Positive and Unlabeled (LPU) examples: the Biased

SVM formulation of Lee and Liu (2003) and the

Weighted Samples SVM formulation of Elkan and

Noto (2008). The original version of Biased SVM

was designed to maximize the product between pre-

cision and recall. In the next section we describe a
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modification to the Biased SVM approach that can

be used to maximize accuracy, a measure that is of-

ten used to evaluate WSD performance.

3.1.1 The Biased SVM

In the Biased SVM formulation (Lee and Liu,

2003; Liu et al., 2003), all unlabeled examples are

considered to be negative and the decision function

f(x) = w
Tφ(x) + b is learned using the standard

soft-margin SVM formulation shown in Figure 3.

minimize:
1

2
‖w‖2 + CP

∑

x∈P

ξx + CU

∑

x∈U

ξx

subject to: s(x)
(

w
Tφ(x) + b

)

≥ 1− ξx

ξx ≥ 0, ∀x ∈ P ∪ U

Figure 3: Biased SVM optimization problem.

The capacity parameters CP and CU control how

much we penalize errors on positive examples vs. er-

rors on unlabeled examples. Since not all unlabeled

examples are negative, one would want to select ca-

pacity parameters satisfying CP > CU , such that

false negative errors are penalized more than false

positive errors. In order to find the best capacity pa-

rameters to use during training, the Biased SVM ap-

proach runs a grid search on a separate development

dataset. This search is aimed at finding values for

the parameters CP and CU that maximize pr, the
product between precision p = p(y = 1|f = 1) and
recall r = p(f = 1|y = 1). Lee and Liu (2003)

show that maximizing the pr criterion is equivalent

with maximizing the objective r2/p(f = 1), where
both r = p(f = 1|y = 1) and p(f = 1) can be es-

timated using the trained decision function f(x) on
the development dataset.

Maximizing the pr criterion in the original Biased
SVM formulation was motivated by the need to opti-

mize the F measure in information retrieval settings,

where F = 2pr(p+ r). In the rest of this section we
show that classification accuracy can be maximized

using only positive and unlabeled examples, an im-

portant result for problems where classification ac-

curacy is the target performance measure.

The accuracy of a binary decision function f(x)
is, by definition, acc = p(f = 1|y = 1) + p(f =

−1|y = −1). Since the recall is r = p(f = 1|y =
1), the accuracy can be re-written as:

acc = r + 1− p(f = 1|y = −1) (1)

Using Bayes’ rule twice, the false positive term
p(f = 1|y = −1) can be re-written as:

p(f = 1|y = −1) =
p(f = 1)p(y = −1|f = 1)

p(y = −1)

=
p(f = 1)

p(y = −1)
× (1− p(y = 1|f = 1))

=
p(f = 1)

p(y = −1)
−

p(f = 1)

p(y = −1)
×

p(y = 1)p(f = 1|y = 1)

p(f = 1)

=
p(f = 1)− p(y = 1)× r

p(y = −1)
(2)

Plugging identity 2 in Equation 1 leads to:

acc = 1 + r +
r × p(y = 1)− p(f = 1)

p(y = −1)

= 1 +
r − p(f = 1)

p(y = −1)
(3)

Since p(y = −1) can be assimilated with a con-

stant, Equation 3 implies that maximizing accu-

racy is equivalent with maximizing the criterion

r − p(f = 1), where both the recall r and p(f = 1)
can be estimated on the positive and unlabeled ex-

amples from a separate development dataset.

In conclusion, one can use the original Biased

SVM formulation to maximize r2/p(f = 1), which
has been shown by Lee and Liu (2003) to maximize

pr, a criterion that has a similar behavior with the

F-measure used in retrieval applications. Alterna-

tively, if the target performance measure is accuracy,

we can choose instead to maximize r − p(f = 1),
which we have shown above to correspond to accu-

racy maximization.

3.1.2 The Weighted Samples SVM

Elkan and Noto (2008) introduced two ap-

proaches for learning with positive and unlabeled

data. Both approaches are based on the assumption

that labeled examples {x|s(x) = 1} are selected at

random from the positive examples {x|y(x) = 1}
i.e., p(s = 1|x, y = 1) = p(s = 1|y = 1). Their

best performing approach uses the positive and unla-

beled examples to train two distinct classifiers. First,

the dataset P ∪ U is split into a training set and a

validation set, and a classifier g(x) is trained on the
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labeling s to approximate the label distribution i.e.

g(x) = p(s = 1|x). The validation set is then used

to estimate p(s = 1|y = 1) as follows:

p(s=1|y=1) = p(s=1|x, y=1) =
1

|P |

∑

x∈P

g(x) (4)

The second and final classifier f(x) is trained on a

dataset of weighted examples that are sampled from

the original training set as follows:

– Each positive example x ∈ P is copied as a

positive example in the new training set with

weight p(y = 1|x, s = 1) = 1.
– Each unlabeled example x ∈ U is duplicated

into two training examples in the new dataset:

a positive example with weight p(y = 1|x, s =
0) and a negative example with weight p(y =
−1|x, s = 0) = 1− p(y = 1|x, s = 0).

Elkan and Noto (2008) show that the weights above
can be derived as:

p(y=1|x, s=0) =
1−p(s=1|y=1)

p(s=1|y=1)
×

p(s=1|x)

1−p(s=1|x)
(5)

The output of the first classifier g(x) is used to

approximate the probability p(s = 1|x), whereas
p(s = 1|y = 1) is estimated using Equation 4.

The two classifiers g and f are trained using

SVMs and a linear kernel. Platt scaling is used with

the first classifier to obtain the probability estimates

g(x) = p(s = 1|x), which are then converted into

weights following Equations 4 and 5, and used dur-

ing the training of the second classifier.

4 Experimental Evaluation

We ran disambiguation experiments on the 6 am-

biguous words atmosphere, president, dollar, game,

diamond andCorinth. The correspondingWikipedia

sense repositories have been summarized in Tables 1

and 2. All WSD classifiers used the same set of stan-

dard WSD features (Ng and Lee, 1996; Stevenson

and Wilks, 2001), such as words and their part-of-

speech tags in a window of 3 words around the am-

biguous keyword, the unigram and bigram content

words that are within 2 sentences of the current sen-

tence, the syntactic governor of the keyword, and

its chains of syntactic dependencies of lengths up to

two. Furthermore, for each example, a Wikipedia

specific feature was computed as the cosine similar-

ity between the context of the ambiguous word and

the text of the article for the target sense or reference.

The Level1 and Level3 classifiers were trained us-

ing the SVMmulti component of the SVMlight pack-

age.1 TheWSD classifiers were evaluated in a 4-fold

cross validation scenario in which 50% of the data

was used for training, 25% for tuning the capacity

parameter C, and 25% for testing. The final accu-

racy numbers, shown in Table 3, were computed by

averaging the results over the 4 folds. Since the word

president has only one sense on Level1, no classifier

needed to be trained for this case. Similarly, words

diamond andCorinth have only one sense on Level3.

atmosphere president dollar

Level1 93.1% — 94.1%

Level3 85.6% 82.2% 90.8%

game diamond Corinth

Level1 82.9% 95.5% 92.7%

Level3 92.9% — —

Table 3: Disambiguation accuracy at Levels 1 & 3.

The evaluation of the binary classifiers at the sec-

ond level follows the same 4-fold cross validation

scheme that was used for Level1 and Level3. The

manual labels for specific senses and references in

the unlabeled datasets are always ignored during

training and tuning and used only during testing.

We compare the Naive SVM, Biased SVM, and

Weighted SVM in the two evaluation settings, using

for all of them the same train/development/test splits

of the data and the same features. We emphasize

that our manual labels are used only for testing pur-

poses – the manual labels are ignored during train-

ing and tuning, when the data is assumed to contain

only positive and unlabeled examples. We imple-

mented the Biased SVM approach on top of the bi-

nary SVMlight package. TheCP andCU parameters

of the Biased SVM were tuned through the c and j
parameters of SVMlight (c = CU and j = CP /CU ).

Eventually, all three methods use the development

data for tuning the c and j parameters of the SVM.

However, whereas the Naive SVM tunes these pa-

rameters to optimize the accuracy with respect to the

noisy label s(x), the Biased SVM tunes the same pa-

rameters to maximize an estimate of the accuracy or

1http://svmlight.joachims.org
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F-measure with respect to the true label y(x). The

Weighted SVM approach was implemented on top

of the LibSVM2 package. Even though the original

Weighted SVM method of Elkan and Noto (2008)

does not specify tuning any parameters, we noticed

it gave better results when the capacity c and weight
j parameters were tuned for the first classifier g(x).

Table 4 shows the accuracy results of the three

methods for Level2, whereas Table 5 shows the F-

measure results. The Biased SVM outperforms the

Naive SVM on all the words, in terms of both ac-

curacy and F-measure. The most dramatic increases

are seen for the words atmosphere, game, diamond,

and Corinth. For these words, the number of pos-

itive examples is significantly smaller compared to

the total number of positive and unlabeled examples.

Thus, the percentage of positive examples relative to

the total number of positive and unlabeled examples

is 31.9% for atmosphere, 29.1% for game, 9.0% for

diamond, and 11.6% for Corinth. The positive to to-

tal ratio is however significantly larger for the other

two words: 67.2% for president and 91.5% for dol-

lar. When the number of positive examples is large,

the false negative noise from the unlabeled dataset

in the Naive SVM approach will be relatively small,

hence the good performance of Naive SVM in these

cases. To check whether this is the case, we have

also run experiments where we used only half of

the available positive examples for the word presi-

dent and one tenth of the positive examples for the

word dollar, such that the positive datasets became

comparable in size with the unlabeled datasets. The

results for these experiments are shown in Tables 4

and 5 in the rows labeled presidentS and dollarS . As

expected, the difference between the performance of

Naive SVM and Biased SVM gets larger on these

smaller datasets, especially for the word dollar.

The Weighted SVM outperforms the Naive SVM

on five out of the six words, the exception being the

word president. Comparatively, the Biased SVM

has a more stable behavior and overall results in a

more substantial improvement over the Naive SVM.

Based on these initial results, we see the Biased

SVM as the method of choice for learning with pos-

itive and unlabeled examples in the task of coarse to

fine grained sense disambiguation in Wikipedia.

2http://www.csie.ntu.edu.tw/˜cjlin/libsvm

Word NaiveSVM BiasedSVM WeightedSVM

atmosphere 39.9% 79.6% 75.0%

president 91.9% 92.5% 89.5%

dollar 96.0% 97.0% 97.1%

game 83.8% 87.1% 84.6%

diamond 70.2% 74.5% 75.1%

Corinth 46.2% 75.1% 51.9%

presidentS 88.1% 90.6% 87.4%

dollarS 70.3% 84.9% 70.6%

Table 4: Disambiguation accuracy at Level2.

Word NaiveSVM BiasedSVM WeightedSVM

atmosphere 30.5% 86.0% 83.2%

president 94.4% 95.0% 92.8%

dollar 97.9% 98.4% 98.5%

game 75.1% 81.8% 77.5%

diamond 8.6% 53.5% 46.3%

Corinth 15.3% 81.2% 68.0%

presidentS 90.0% 92.4% 89.5%

dollarS 77.9% 91.2% 78.2%

Table 5: Disambiguation F-measure at Level2.

In a final set of experiments, we compared the

traditional flat classification approach and our pro-

posed hierarchical classifier in terms of their over-

all disambiguation accuracy. In these experiments,

the sense repository contains all the leaf nodes as

distinct sense categories. For example, the word

atmosphere would correspond to the sense repos-

itory R = {ATMOSPHERE (G), ATMOSPHERE OF

EARTH, ATMOSPHERE OF MARS, ATMOSPHERE

OF VENUS, STELLAR ATMOSPHERE, ATMO-

SPHERE (UNIT), ATMOSPHERE (MUSIC GROUP)}.
The overall accuracy results are shown in Table 6

and confirm the utility of using the LPU framework

in the hierarchical model, which outperforms the tra-

ditional flat model, especially on words with low ra-

tio of positive to unlabeled examples.

atmosphere president dollar

Flat 52.4% 89.4% 90.0%

Hierarchical 79.7% 91.0% 90.1%

game diamond Corinth

Flat 83.6% 65.7% 42.6%

Hierarchical 87.2% 76.8% 72.1%

Table 6: Flat vs. Hierarchical disambiguation accuracy.
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5 Future Work

Annotation inconsistencies in Wikipedia were cir-

cumvented by adapting two existing approaches that

use only positive and unlabeled data to train binary

classifiers. This binary classification constraint led

to the introduction of the artificial specific (S) cat-

egory on Level2 in our disambiguation framework.

In future work, we plan to investigate a direct exten-

sion of learning with positive and unlabeled data to

the case of multiclass classification, which will re-

duce the number of classification levels from 3 to 2.

We also plan to investigate the use of unsupervised

techniques in order to incorporate less popular refer-

ences of a word in the hierarchical classification.

Conclusion

We presented an approach to training coarse to fine

grained sense disambiguation systems that treats

annotation inconsistencies in Wikipedia under the

framework of learning with positive and unlabeled

examples. Furthermore, we showed that the true ac-

curacy of a decision function can be optimized us-

ing only positive and unlabeled examples. For test-

ing purposes, we manually annotated 7,079 links be-

longing to six ambiguous words 3. Experimental

results demonstrate that accounting for annotation

ambiguity in Wikipedia links leads to consistent im-

provements in disambiguation accuracy. The man-

ual annotations were only used for testing and were

ignored during training and development. Conse-

quently, the proposed framework of learning with

positive and unlabeled examples for sense disam-

biguation could be applied on the entire Wikipedia

without any manual annotations. By augmenting

general sense links with links to more specific ar-

ticles, such an application could have a significant

impact on Wikipedia itself.
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Abstract

In Semantic Textual Similarity (STS), sys-
tems rate the degree of semantic equivalence,
on a graded scale from 0 to 5, with 5 be-
ing the most similar. This year we set up
two tasks: (i) a core task (CORE), and (ii)
a typed-similarity task (TYPED). CORE is
similar in set up to SemEval STS 2012 task
with pairs of sentences from sources related
to those of 2012, yet different in genre from
the 2012 set, namely, this year we included
newswire headlines, machine translation eval-
uation datasets and multiple lexical resource
glossed sets. TYPED, on the other hand, is
novel and tries to characterize why two items
are deemed similar, using cultural heritage
items which are described with metadata such
as title, author or description. Several types of
similarity have been defined, including simi-
lar author, similar time period or similar lo-
cation. The annotation for both tasks lever-
ages crowdsourcing, with relative high inter-
annotator correlation, ranging from 62% to
87%. The CORE task attracted 34 participants
with 89 runs, and the TYPED task attracted 6
teams with 14 runs.

1 Introduction

Given two snippets of text, Semantic Textual Simi-
larity (STS) captures the notion that some texts are
more similar than others, measuring the degree of
semantic equivalence. Textual similarity can range
from exact semantic equivalence to complete un-
relatedness, corresponding to quantified values be-
tween 5 and 0. The graded similarity intuitively cap-
tures the notion of intermediate shades of similarity

such as pairs of text differ only in some minor nu-
anced aspects of meaning only, to relatively impor-
tant differences in meaning, to sharing only some
details, or to simply being related to the same topic,
as shown in Figure 1.

One of the goals of the STS task is to create a
unified framework for combining several semantic
components that otherwise have historically tended
to be evaluated independently and without character-
ization of impact on NLP applications. By providing
such a framework, STS will allow for an extrinsic
evaluation for these modules. Moreover, this STS
framework itself could in turn be evaluated intrin-
sically and extrinsically as a grey/black box within
various NLP applications such as Machine Trans-
lation (MT), Summarization, Generation, Question
Answering (QA), etc.

STS is related to both Textual Entailment (TE)
and Paraphrasing, but differs in a number of ways
and it is more directly applicable to a number of NLP
tasks. STS is different from TE inasmuch as it as-
sumes bidirectional graded equivalence between the
pair of textual snippets. In the case of TE the equiv-
alence is directional, e.g. a car is a vehicle, but a ve-
hicle is not necessarily a car. STS also differs from
both TE and Paraphrasing (in as far as both tasks
have been defined to date in the literature) in that,
rather than being a binary yes/no decision (e.g. a ve-
hicle is not a car), we define STS to be a graded sim-
ilarity notion (e.g. a vehicle and a car are more sim-
ilar than a wave and a car). A quantifiable graded
bidirectional notion of textual similarity is useful for
a myriad of NLP tasks such as MT evaluation, infor-
mation extraction, question answering, summariza-
tion, etc.
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• (5) The two sentences are completely equivalent, as they mean the same thing.
The bird is bathing in the sink.
Birdie is washing itself in the water basin.

• (4) The two sentences are mostly equivalent, but some unimportant details differ.
In May 2010, the troops attempted to invade Kabul.
The US army invaded Kabul on May 7th last year, 2010.

• (3) The two sentences are roughly equivalent, but some important information differs/missing.
John said he is considered a witness but not a suspect.
”He is not a suspect anymore.” John said.

• (2) The two sentences are not equivalent, but share some details.
They flew out of the nest in groups.
They flew into the nest together.

• (1) The two sentences are not equivalent, but are on the same topic.
The woman is playing the violin.
The young lady enjoys listening to the guitar.

• (0) The two sentences are on different topics.
John went horse back riding at dawn with a whole group of friends.
Sunrise at dawn is a magnificent view to take in if you wake up early enough for it.

Figure 1: Annotation values with explanations and examples for the core STS task.

In 2012 we held the first pilot task at SemEval
2012, as part of the *SEM 2012 conference, with
great success: 35 teams participated with 88 sys-
tem runs (Agirre et al., 2012). In addition, we held
a DARPA sponsored workshop at Columbia Uni-
versity1. In 2013, STS was selected as the official
Shared Task of the *SEM 2013 conference. Ac-
cordingly, in STS 2013, we set up two tasks: The
core task CORE, which is similar to the 2012 task;
and a pilot task on typed-similarity TYPED between
semi-structured records.

For CORE, we provided all the STS 2012 data
as training data, and the test data was drawn from
related but different datasets. This is in contrast
to the STS 2012 task where the train/test data
were drawn from the same datasets. The 2012
datasets comprised the following: pairs of sentences
from paraphrase datasets from news and video elic-
itation (MSRpar and MSRvid), machine transla-
tion evaluation data (SMTeuroparl, SMTnews) and
pairs of glosses (OnWN). The current STS 2013
dataset comprises the following: pairs of news head-
lines, SMT evaluation sentences (SMT) and pairs of
glosses (OnWN and FNWN).

The typed-similarity pilot task TYPED attempts

1http://www.cs.columbia.edu/˜weiwei/
workshop/

to characterize, for the first time, the reason and/or
type of similarity. STS reduces the problem of judg-
ing similarity to a single number, but, in some appli-
cations, it is important to characterize why and how
two items are deemed similar, hence the added nu-
ance. The dataset comprises pairs of Cultural Her-
itage items from Europeana,2 a single access point
to millions of books, paintings, films, museum ob-
jects and archival records that have been digitized
throughout Europe. It is an authoritative source of
information coming from European cultural and sci-
entific institutions. Typically, the items comprise
meta-data describing a cultural heritage item and,
sometimes, a thumbnail of the item itself.

Participating systems in the TYPED task need to
compute the similarity between items, using the tex-
tual meta-data. In addition to general similarity, par-
ticipants need to score specific kinds of similarity,
like similar author, similar time period, etc. (cf. Fig-
ure 3).

The paper is structured as follows. Section 2 re-
ports the sources of the texts used in the two tasks.
Section 3 details the annotation procedure. Section
4 presents the evaluation of the systems, followed
by the results of CORE and TYPED tasks. Section 6
draws on some conclusions and forward projections.

2http://www.europeana.eu/
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Figure 2: Annotation instructions for CORE task

year dataset pairs source
2012 MSRpar 1500 news
2012 MSRvid 1500 videos
2012 OnWN 750 glosses
2012 SMTnews 750 MT eval.
2012 SMTeuroparl 750 MT eval.
2013 HDL 750 news
2013 FNWN 189 glosses
2013 OnWN 561 glosses
2013 SMT 750 MT eval.
2013 TYPED 1500 Cultural Heritage items

Table 1: Summary of STS 2012 and 2013 datasets.

2 Source Datasets

Table 1 summarizes the 2012 and 2013 datasets.

2.1 CORE task

The CORE dataset comprises pairs of news head-
lines (HDL), MT evaluation sentences (SMT) and
pairs of glosses (OnWN and FNWN).

For HDL, we used naturally occurring news head-
lines gathered by the Europe Media Monitor (EMM)
engine (Best et al., 2005) from several different news
sources. EMM clusters together related news. Our
goal was to generate a balanced data set across the

different similarity ranges, hence we built two sets
of headline pairs: (i) a set where the pairs come
from the same EMM cluster, (ii) and another set
where the headlines come from a different EMM
cluster, then we computed the string similarity be-
tween those pairs. Accordingly, we sampled 375
headline pairs of headlines that occur in the same
EMM cluster, aiming for pairs equally distributed
between minimal and maximal similarity using sim-
ple string similarity. We sample another 375 pairs
from the different EMM cluster in the same manner.

The SMT dataset comprises pairs of sentences
used in machine translation evaluation. We have two
different sets based on the evaluation metric used:
an HTER set, and a HYTER set. Both metrics use
the TER metric (Snover et al., 2006) to measure the
similarity of pairs. HTER typically relies on several
(1-4) reference translations. HYTER, on the other
hand, leverages millions of translations. The HTER
set comprises 150 pairs, where one sentence is ma-
chine translation output and the corresponding sen-
tence is a human post-edited translation. We sam-
ple the data from the dataset used in the DARPA
GALE project with an HTER score ranging from 0
to 120. The HYTER set has 600 pairs from 3 sub-
sets (each subset contains 200 pairs): a. reference
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Figure 3: Annotation instructions for TYPED task

vs. machine translation. b. reference vs. Finite State
Transducer (FST) generated translation (Dreyer and
Marcu, 2012). c. machine translation vs. FST gen-
erated translation. The HYTER data set is used in
(Dreyer and Marcu, 2012).

The OnWN/FnWN dataset contains gloss pairs
from two sources: OntoNotes-WordNet (OnWN)
and FrameNet-WordNet (FnWN). These pairs are
sampled based on the string similarity ranging from
0.4 to 0.9. String similarity is used to measure the
similarity between a pair of glosses. The OnWN
subset comprises 561 gloss pairs from OntoNotes
4.0 (Hovy et al., 2006) and WordNet 3.0 (Fellbaum,
1998). 370 out of the 561 pairs are sampled from the
110K sense-mapped pairs as made available from
the authors. The rest, 291 pairs, are sampled from
unmapped sense pairs with a string similarity rang-
ing from 0.5 to 0.9. The FnWN subset has 189
manually mapped pairs of senses from FrameNet 1.5
(Baker et al., 1998) to WordNet 3.1. They are ran-

domly selected from 426 mapped pairs. In combi-
nation, both datasets comprise 750 pairs of glosses.

2.2 Typed-similarity TYPED task

This task is devised in the context of the PATHS
project,3 which aims to assist users in accessing
digital libraries looking for items. The project
tests methods that offer suggestions about items that
might be useful to recommend, to assist in the inter-
pretation of the items, and to support the user in the
discovery and exploration of the collections. Hence
the task is about comparing pairs of items. The pairs
are generated in the Europeana project.

A study in the PATHS project suggested that users
would be interested in knowing why the system is
suggesting related items. The study suggested seven
similarity types: similar author or creator, similar
people involved, similar time period, similar loca-

3http://www.paths-project.eu
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Figure 4: TYPED pair on our survey. Only general and author similarity types are shown.

tion, similar event or action, similar subject and sim-
ilar description. In addition, we also include general
similarity. Figure 3 shows the definition of each sim-
ilarity type as provided to the annotators.

The dataset is generated in semi-automatically.
First, members of the project manually select 25
pairs of items for each of the 7 similarity types (ex-
cluding general similarity), totalling 175 manually
selected pairs. After removing duplicates and clean-
ing the dataset, we got 163 pairs. Second, we use
these manually selected pairs as seeds to automat-
ically select new pairs as follows: Starting from
those seeds, we use the Europeana API to get similar
items, and we repeat this process 5 times in order to
diverge from the original items (we stored the vis-

ited items to avoid looping). Once removed from
the seed set, we select the new pairs following two
approaches:
• Distance 1: Current item and similar item.
• Distance 2: Current item and an item that is

similar to a similar item (twice removed dis-
tance wise)

This yields 892 pairs for Distance 1 and 445 of
Distance 2. We then divide the data into train and
test, preserving the ratios. The train data contains
82 manually selected pairs, 446 pairs with similarity
distance 1 and 222 pairs with similarity distance 2.
The test data follows a similar distribution.

Europeana items cannot be redistributed, so we
provide their urls and a script which uses the official
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Europeana API to access and extract the correspond-
ing metadata in JSON format and a thumbnail. In
addition, the textual fields which are relevant for the
task are made accessible in text files, as follows:
• dcTitle: title of the item
• dcSubject: list of subject terms (from some vo-

cabulary)
• dcDescription: textual description of the item
• dcCreator: creator(s) of the item
• dcDate: date(s) of the item
• dcSource: source of the item

3 Annotation

3.1 CORE task

Figure 1 shows the explanations and values for
each score between 5 and 0. We use the Crowd-
Flower crowd-sourcing service to annotate the
CORE dataset. Annotators are presented with the
detailed instructions given in Figure 2 and are asked
to label each STS sentence pair on our 6 point scale
using a dropdown box. Five sentence pairs at a time
are presented to annotators. Annotators are paid
0.20 cents per set of 5 annotations and we collect
5 separate annotations per sentence pair. Annota-
tors are restricted to people from the following coun-
tries: Australia, Canada, India, New Zealand, UK,
and US.

To obtain high quality annotations, we create a
representative gold dataset of 105 pairs that are man-
ually annotated by the task organizers. During an-
notation, one gold pair is included in each set of 5
sentence pairs. Crowd annotators are required to
rate 4 of the gold pairs correct to qualify to work
on the task. Gold pairs are not distinguished in any
way from the non-gold pairs. If the gold pairs are
annotated incorrectly, annotators are told what the
correct annotation is and they are given an explana-
tion of why. CrowdFlower automatically stops low
performing annotators – those with too many incor-
rectly labeled gold pairs – from working on the task.

The distribution of scores in the headlines HDL
dataset is uniform, as in FNWN and OnWN, al-
though the scores are slightly lower in FNWN and
slightly higher in OnWN. The scores for SMT are
not uniform, with most of the scores uniformly dis-
tributed between 3.5 and 5, a few pairs between 2
and 3.5, and nearly no pairs with values below 2.

3.2 TYPED task

The dataset is annotated using crowdsourcing. The
survey contains the 1500 pairs of the dataset (750 for
train and 750 for test), plus 20 gold pairs for quality
control. Each participant is shown 4 training gold
questions at the beginning, and then one gold every
2 or 4 questions depending on the accuracy. If accu-
racy dropped to less than 66.7% percent the survey
is stopped and the answers from that particular an-
notator are discarded. Each annotator is allowed to
rate a maximum of 20 pairs to avoid getting answers
from people that are either tired or bored. To ensure
a good comprehension of the items, the task is re-
stricted to only accept annotators from some English
speaking countries: UK, USA, Australia, Canada
and New Zealand.

Participants are asked to rate the similarity be-
tween pairs of cultural heritage items from rang-
ing from 5 to 0, following the instructions shown
in Figure 3. We also add a ”Not Applicable” choice
for cases in which annotators are not sure or didn’t
know. For those cases, we calculate the similarity
score using the values of the rest of the annotators (if
none, we convert it to 0). The instructions given to
the annotators are the ones shown in Figure 3. Fig-
ure 4 shows a pair from the dataset, as presented to
annotators.

The similarity scores for the pairs follow a similar
distribution in all types. Most of the pairs have a
score between 4 and 5, which can amount to as much
as 50% of all pairs in some types.

3.3 Quality of annotation

In order to assess the annotation quality, we measure
the correlation of each annotator with the average of
the rest of the annotators. We then averaged all the
correlations. This method to estimate the quality is
identical to the method used for evaluation (see Sec-
tion 4.1) and it can be thus used as the upper bound
for the systems. The inter-tagger correlation in the
CORE dataset for each of dataset is as follows:
• HDL: 85.0%
• FNWN: 69.9%
• OnWN: 87.2%
• SMT: 65.8%
For the TYPED dataset, the inter-tagger correla-

tion values for each type of similarity is as follows:
• General: 77.0%
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• Author: 73.1%
• People Involved: 62.5%
• Time period: 72.0%
• Location: 74.3%
• Event or Action: 63.9%
• Subject: 74.5%
• Description: 74.9%

In both datasets, the correlation figures are high,
confirming that the task is well designed. The weak-
est correlations in the CORE task are SMT and
FNWN. The first might reflect the fact that some
automatically produced translations are confusing
or difficult to understand, and the second could be
caused by the special style used to gloss FrameNet
concepts. In the TYPED task the weakest correla-
tions are for the People Involved and Event or Action
types, as they might be the most difficult to spot.

4 Systems Evaluation

4.1 Evaluation metrics

Evaluation of STS is still an open issue. STS ex-
periments have traditionally used Pearson product-
moment correlation, or, alternatively, Spearman
rank order correlation. In addition, we also need a
method to aggregate the results from each dataset
into an overall score. The analysis performed in
(Agirre and Amigó, In prep) shows that Pearson and
averaging across datasets are the best suited com-
bination in general. In particular, Pearson is more
informative than Spearman, in that Spearman only
takes the rank differences into account, while Pear-
son does account for value differences as well. The
study also showed that other alternatives need to be
considered, depending on the requirements of the
target application.

We leave application-dependent evaluations for
future work, and focus on average weighted Pear-
son correlation. When averaging, we weight each
individual correlation by the size of the dataset.
In addition, participants in the CORE task are al-
lowed to provide a confidence score between 1 and
100 for each of their scores. The evaluation script
down-weights the pairs with low confidence, follow-
ing weighted Pearson.4 In order to compute sta-
tistical significance among system results, we use

4http://en.wikipedia.org/wiki/Pearson_
product-moment_correlation_coefficient#
Calculating_a_weighted_correlation

a one-tailed parametric test based on Fisher’s z-
transformation (Press et al., 2002, equation 14.5.10).

4.2 The Baseline Systems

For the CORE dataset, we produce scores using a
simple word overlap baseline system. We tokenize
the input sentences splitting at white spaces, and
then represent each sentence as a vector in the mul-
tidimensional token space. Each dimension has 1
if the token is present in the sentence, 0 otherwise.
Vector similarity is computed using the cosine sim-
ilarity metric. We also run two freely available sys-
tems, DKPro (Bar et al., 2012) and TakeLab (Šarić et
al., 2012) from STS 2012,5 and evaluate them on the
CORE dataset. They serve as two strong contenders
since they ranked 1st (DKPro) and 2nd (TakeLab) in
last year’s STS task.

For the TYPED dataset, we first produce XML
files for each of the items, using the fields as pro-
vided to participants. Then we run named entity
recognition and classification (NERC) and date de-
tection using Stanford CoreNLP. This is followed by
calculating the similarity score for each of the types
as follows.
• General: cosine similarity of TF-IDF vectors of

tokens from all fields.
• Author: cosine similarity of TF-IDF vectors for

dc:Creator field.
• People involved, time period and location:

cosine similarity of TF-IDF vectors of loca-
tion/date/people recognized by NERC in all
fields.
• Events: cosine similarity of TF-IDF vectors of

verbs in all fields.
• Subject and description: cosine similarity of

TF-IDF vectors of respective fields.
IDF values are calculated from a subset of the

Europeana collection (Culture Grid collection). We
also run a random baseline several times, yielding
close to 0 correlations in all datasets, as expected.

4.3 Participation

Participants could send a maximum of three system
runs. After downloading the test datasets, they had
a maximum of 120 hours to upload the results. 34
teams participated in the CORE task, submitting 89

5Code is available at http://www-nlp.stanford.
edu/wiki/STS
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Team and run Head. OnWN FNWN SMT Mean # Team and run Head. OnWN FNWN SMT Mean #
baseline-tokencos .5399 .2828 .2146 .2861 .3639 73 KnCe2013-all .3475 .3505 .1073 .1551 .2639 86
DKPro .7347 .7345 .3405 .3256 .5652 - KnCe2013-diff .4028 .3537 .1284 .1804 .2934 84
TakeLab-best .6559 .6334 .4052 .3389 .5221 - KnCe2013-set .0462 -.1526 .0376 -.0605 -.0397 90
TakeLab-sts12 .4858 .6334 .2693 .2787 .4340 - LCL Sapienza-ADW1 .6943 .4661 .3571 .3311 .4880 43
aolney-w3c3 .5248 .4701 .1777 .2744 .3986 67 LCL Sapienza-ADW2 .6520 .5280 .3598 .3681 .5019 32
BGU-1 .5075 .3252 .0768 .1843 .3181 81 LCL Sapienza-ADW3 .6205 .5108 .4462 .3838 .4996 34
BGU-2 .3608 .3777 -.0173 .0698 .2363 88 LIPN-tAll .7063 .6937 .4037 .3005 .5425 16
BGU-3 .3591 .3360 .0072 .2122 .2748 85 LIPN-tSp .5791 .7199 .3522 .3721 .5261 24
BUAP-RUN1 .5005 .2579 .1766 .2322 .3234 78 MayoClinicNLP-r1wtCDT .6584 .7775 .3735 .3605 .5649 6
BUAP-RUN2 .4860 .2872 .2082 .2117 .3216 79 MayoClinicNLP-r2CDT .6827 .6612 .3960 .3946 .5572 8
BUAP-RUN3 .4817 .2711 .2511 .1990 .3156 82 MayoClinicNLP-r3wtCD .6440 .8295 .3202 .3561 .5671 5
CFILT-1 .5336 .2381 .2261 .2906 .3531 75 NTNU-RUN1 .7279 .5952 .3215 .4015 .5519 9
CLaC-RUN1 .6774 .7667 .3793 .3068 .5511 10 NTNU-RUN2 .5909 .1634 .3650 .3786 .3946 68
CLaC-RUN2 .6921 .7366 .3793 .3375 .5587 7 NTNU-RUN3 .7274 .5882 .3115 .4035 .5498 12
CLaC-RUN3 .5276 .6495 .4158 .3082 .4755 47 PolyUCOMP-RUN1 .5176 .1517 .2496 .2914 .3284 77
CNGL-LPSSVR .6510 .6971 .1180 .2861 .4961 36 SOFTCARDINALITY-run1 .6410 .7360 .3442 .3035 .5273 23
CNGL-LPSSVRTL .6385 .6756 .1823 .3098 .4998 33 SOFTCARDINALITY-run2 .6713 .7412 .3838 .2981 .5402 18
CNGL-LSSVR .6552 .6943 .2016 .3005 .5086 30 SOFTCARDINALITY-run3 .6603 .7401 .3347 .2900 .5294 22
CPN-combined.RandSubSpace .6771 .5135 .3314 .3369 .4939 39 sriubc-System1† .6083 .2915 .2790 .3065 .4011 66
CPN-combined.SVM .6685 .5096 .3621 .3408 .4939 38 sriubc-System2† .6359 .3664 .2713 .3476 .4420 57
CPN-individual.RandSubSpace .6771 .5484 .3314 .2769 .4826 45 sriubc-System3† .5443 .2843 .2705 .3275 .3842 70
DeepPurple-length .6542 .5105 .2507 .2803 .4598 56 SXUCFN-run1 .6806 .5355 .3181 .3980 .5198 27
DeepPurple-linear .6878 .5105 .2693 .2787 .4721 50 SXUCFN-run2 .4881 .6146 .4237 .3844 .4797 46
DeepPurple-lineara .6227 .5105 .3265 .2952 .4607 55 SXUCFN-run3 .6761 .6481 .3025 .4003 .5458 14
deft-baseline .6532 .8431 .5083 .3265 .5795 3 SXULLL-1 .4840 .7146 .0415 .1543 .3944 69
deft-baseline2 .5706 .8111 .5503 .3325 .5495 13 UCam-A .5510 .3099 .2385 .1171 .3200 80
DLS@CU-char .3867 .2386 .3726 .3337 .3309 76 UCam-B .6399 .4440 .3995 .3400 .4709 53
DLS@CU-charSemantic .4669 .4165 .3859 .3411 .4056 64 UCam-C .4962 .5639 .1724 .3006 .4207 62
DLS@CU-charWordSemantic .4921 .3769 .4647 .3492 .4135 63 UCSP-NC‡ .1736 .0853 .1151 .1658 .1441 89
ECNUCS-Run1 .5656 .2083 .1725 .2949 .3533 74 UMBC EBIQUITY-galactus .7428 .7053 .5444 .3705 .5927 2
ECNUCS-Run2 .7120 .5388 .2013 .2504 .4720 51 UMBC EBIQUITY-ParingWords .7642 .7529 .5818 .3804 .6181 1
ECNUCS-Run3 .6799 .5284 .2203 .3595 .4967 35 UMBC EBIQUITY-saiyan .7838 .5593 .5815 .3563 .5683 4
HENRY-run1 .7601 .4631 .3516 .2801 .4917 41 UMCC DLSI-1 .5841 .4847 .2917 .2855 .4352 58
HENRY-run2 .7645 .4631 .3905 .3593 .5229 26 UMCC DLSI-2 .6168 .5557 .3045 .3407 .4833 44
HENRY-run3 .7103 .3934 .3364 .3308 .4734 48 UMCC DLSI-3 .3846 .1342 -.0065 .2736 .2523 87
IBM EG-run2 .7217 .6110 .3364 .3460 .5365 19 UNIBA-2STEPSML .4255 .4801 .1832 .2710 .3673 71
IBM EG-run5 .7410 .5987 .4133 .3426 .5452 15 UNIBA-DSM PERM .6319 .4910 .2717 .3155 .4610 54
IBM EG-run6 .7447 .6257 .4381 .3275 .5502 11 UNIBA-STACKING .6275 .4658 .2111 .2588 .4293 61
ikernels-sys1 .7352 .5432 .3842 .3180 .5188 28 Unimelb NLP-bahar .7119 .3490 .3813 .3507 .4733 49
ikernels-sys2 .7465 .5572 .3875 .3409 .5339 21 Unimelb NLP-concat .7085 .6790 .3374 .3230 .5415 17
ikernels-sys3 .7395 .4228 .3596 .3294 .4919 40 Unimelb NLP-stacking .7064 .6140 .1865 .3144 .5091 29
INAOE-UPV-run1 .6392 .3249 .2711 .3491 .4332 59 Unitor-SVRegressor run1 .6353 .5744 .3521 .3285 .4941 37
INAOE-UPV-run2 .6390 .3260 .2662 .3457 .4319 60 Unitor-SVRegressor run2 .6511 .5610 .3580 .3096 .4902 42
INAOE-UPV-run3 .6468 .6295 .4090 .3047 .5085 31 Unitor-SVRegressor run3 .6027 .5489 .3269 .3192 .4716 52
KLUE-approach 1 .6521 .6507 .3996 .3367 .5254 25 UPC-AE .6092 .5679 -.1268 .2090 .4037 65
KLUE-approach 2 .6510 .6869 .4189 .3360 .5355 20 UPC-AED .4136 .4770 -.0852 .1662 .3050 83

UPC-AED T .5119 .6386 -.0464 .1235 .3671 72

Table 2: Results on the CORE task. The first rows on the left correspond to the baseline and to two publicly available
systems, see text for details. Note: † signals team involving one of the organizers, ‡ for systems submitting past the
120 hour window.

system runs. For the TYPED task, 6 teams partici-
pated, submitting 14 system runs.6

Some submissions had minor issues: one team
had a confidence score of 0 for all items (we re-
placed them by 100), and another team had a few
Not-a-Number scores for the SMT dataset, which
we replaced by 5. One team submitted the results
past the 120 hours. This team, and the teams that in-

6Due to lack of space we can’t detail the full names of au-
thors and institutions that participated.The interested reader can
use the name of the runs in Tables 2 and 3 to find the relevant
paper in these proceedings.

cluded one of the organizers, are explicitly marked.
We want to stress that in these teams the organizers
did not allow the developers of the system to access
any data or information which was not available for
the rest of participants. After the submission dead-
line expired, the organizers published the gold stan-
dard in the task website, in order to ensure a trans-
parent evaluation process.

4.4 CORE Task Results
Table 2 shows the results of the CORE task, with
runs listed in alphabetical order. The correlation in
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Team and run General Author People involved Time Location Event Subject Description Mean #
baseline .6691 .4278 .4460 .5002 .4835 .3062 .5015 .5810 .4894 8
BUAP-RUN1 .6798 .6166 .0670 .2761 .0163 .1612 .5167 .5283 .3577 14
BUAP-RUN2 .6745 .6093 .1285 .3721 .0163 .1660 .5094 .5546 .3788 13
BUAP-RUN3 .6992 .6345 .1055 .1461 .0000 -.0668 .3729 .5120 .3004 15
BUT-1 .3686 .7468 .3920 .5725 .3604 .2906 .2270 .5882 .4433 9
ECNUCS-Run1 .6040 .7362 .3663 .4685 .3844 .4057 .5229 .6027 .5113 5
ECNUCS-Run2 .6064 .5684 .3663 .4685 .3844 .4057 .5563 .6027 .4948 7
PolyUCOMP-RUN1 .4888 .6940 .3223 .3820 .3621 .1625 .3962 .4816 .4112 12
PolyUCOMP-RUN2 .4893 .6940 .3253 .3777 .3628 .1968 .3962 .4816 .4155 11
PolyUCOMP-RUN3 .4915 .6940 .3254 .3737 .3667 .2207 .3962 .4816 .4187 10
UBC UOS-RUN1† .7256 .4568 .4467 .5762 .4858 .3090 .5015 .5810 .5103 6
UBC UOS-RUN2† .7457 .6618 .6518 .7466 .7244 .6533 .7404 .7751 .7124 4
UBC UOS-RUN3† .7461 .6656 .6544 .7411 .7257 .6545 .7417 .7763 .7132 3
Unitor-SVRegressor lin .7564 .8076 .6758 .7090 .7351 .6623 .7520 .7745 .7341 2
Unitor-SVRegressor rbf .7981 .8158 .6922 .7471 .7723 .6835 .7875 .7996 .7620 1

Table 3: Results on TYPED task. The first row corresponds to the baseline. Note: † signals team involving one of the
organizers.

each dataset is given, followed by the mean cor-
relation (the official measure), and the rank of the
run. The baseline ranks 73. The highest correla-
tions are for OnWN (84%, by deft) and HDL (78%,
by UMBC), followed by FNWN (58%, by UMBC)
and SMT (40%, by NTNU). This fits nicely with the
inter-tagger correlations (respectively 87, 85, 70 and
65, cf. Section 3). It also shows that the systems get
close to the human correlations in the OnWN and
HDL dataset, with bigger differences for FNWN and
SMT.

The result of the best run (by UMBC) is signif-
icantly different (p-value < 0.05) than all runs ex-
cept the second best. The second best run is only
significantly different to the runs ranking 7th and
below, and the third best to the 14th run and be-
low. The difference between consecutive runs was
not significant. This indicates that many system runs
performed very close to each other.

Only 13 runs included non-uniform confidence
scores. In 10 cases the confidence value allowed
to improve performance, sometimes as much as .11
absolute points. For instance, SXUCFN-run3 im-
proves from .4773 to .5458. The most notable ex-
ception is MayoClinicNLP-r2CDT, which achieves
a mean correlation of .5879 instead of .5572 if they
provide uniform confidence values.

The Table also shows the results of TakeLab
and DKPro. We train the DKPro and TakeLab-
sts12 models on all the training and test STS 2012
data. We additionally train another variant sys-
tem of TakeLab, TakeLab-best, where we use tar-
geted training where the model yields the best per-

formance for each test subset as follows: (1) HDL
is trained on MSRpar 2012 data; (2) OnWN is
trained on all 2012 data; (3) FnWN is trained on
2012 OnWN data; (4) SMT is trained on 2012 SM-
Teuroparl data. Note that Takelab-best is an upper
bound, as the best combination is selected on the
test dataset. TakeLab-sts12, TakeLab-best, DKPro
rank as 58th, 27th and 6th in this year’s system sub-
missions, respectively. The different results yielded
from TakeLab depending on the training data sug-
gests that some STS systems are quite sensitive to
the source of the sentence pairs, indicating that do-
main adaptation techniques could have a role in this
task. On the other hand, DKPro performed ex-
tremely well when trained on all available training,
with no special tweaking for each dataset.

4.5 TYPED Task Results
Table 3 shows the results of TYPED task. The
columns show the correlation for each type of sim-
ilarity, followed by the mean correlation (the offi-
cial measure), and the rank of the run. The best sys-
tem (from Unitor) is best in all types. The baseline
ranked 8th, but the performance difference with the
best system is quite significant. The best result is
significantly different (p-value < 0.02) to all runs.
The second and third best runs are only significantly
different from the run ranking 5th and below. Note
that in this dataset the correlations of the best system
are higher than the inter-tagger correlations. This
might indicate that the task has been solved, in the
sense that the features used by the top systems are
enough to characterize the problem and reach hu-
man performance, although the correlations of some
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aolney-w3c3 x x x
BGU-1 x x x x x x x
BGU-2 x x x x x x x
BGU-3 x x x x x x x

CFILT-APPROACH x x x x x
CLaC-Run1 x x x x x x x x
CLaC-Run2 x x x x x x x x
CLaC-Run3 x x x x x x x x

CNGL-LPSSVR x x x x x
CNGL-LPSSVRTL x x x x x

CNGL-LSSVR x x x x x
CPN-combined.RandSubSpace x x x x x x x x

CPN-combined.SVM x x x x x x x x
CPN-individual.RandSubSpace x x x x x x x x

DeepPurple-length x x x x x x x
DeepPurple-linear x x x x x x x
DeepPurple-lineara x x x x x x x

deft-baseline x x x x
deft-baseline x x x x x x

DLS@CU-charSemantic x x x x
DLS@CU-charWordSemantic x x x x x x
DLS@CU-charWordSemantic x x x

ECNUCS-Run1 x x x x x x x
ECNUCS-Run2 x x x x x x x
ECNUCS-Run3 x x x x x x x

HENRY-run1 x x x x x x x x x
HENRY-run2 x x x x x x x x
IBM EG-run2 x x x x x x
IBM EG-run5 x x x x x x
IBM EG-run6 x x x x x
ikernels-sys1 x x x x x x x x x x x
ikernels-sys2 x x x x x x x x x x x
ikernels-sys3 x x x x x x x x x x x

INAOE-UPV-run1 x x x x x x x
INAOE-UPV-run2 x x x x x x x
INAOE-UPV-run3 x x x x x x x
KLUE-approach 1 x x x x x x x
KLUE-approach 2 x x x x x x

KnCe2013-all x x x x x x x x
KnCe2013-div x x x x x x x x
KnCe2013-div x x x x x x x x

LCL Sapienza-ADW1 x x x
LCL Sapienza-ADW2 x x x
LCL Sapienza-ADW3 x x x

LIPN-tAll x x x x x x x x x x
LIPN-tSp x x x x x x x x x x

MayoClinicNLP-r1wtCDT x x x x x x x x x x x x
MayoClinicNLP-r2CDT x x x x x x x x x x x x
MayoClinicNLP-r3wtCD x x x x x x x x x x x x

NTNU-RUN1 x x x x x x x x x x x x x x x x x x x x x x x
NTNU-RUN2 x x x x x x x x x x x x x x x x x x x x x x x
NTNU-RUN3 x x x x x x x x x x x x x x x x x x x x x x x

PolyUCOMP-RUN1 x x x x
SOFTCARDINALITY-run1 x
SOFTCARDINALITY-run2 x x x
SOFTCARDINALITY-run3 x x x

SXUCFN-run1 x x x
SXUCFN-run2 x x x
SXUCFN-run3 x x x

SXULLL-1 x x
UCam-A x x x x
UCam-B x x x x
UCam-C x x x x

UCSP-NC x x x x x
UMBC EBIQUITY-galactus x x x x x x x

UMBC EBIQUITY-ParingWords x x x x x x
UMBC EBIQUITY-saiyan x x x x x x x

UMCC DLSI-1 x x x x x x x x x x
UMCC DLSI-2 x x x x x x x x x x
UMCC DLSI-3 x x x x x x x x x

UNIBA-2STEPSML x x x x x x x x x x x
UNIBA-DSM PERM x x x x x x
UNIBA-STACKING x x x x x x x x x x x
Unimelb NLP-bahar x x
Unimelb NLP-concat x x x x x x x x x x

Unimelb NLP-stacking x x x x x x x x x x
Unitor-SVRegressor run1 x x x x x x
Unitor-SVRegressor run2 x x x x x x
Unitor-SVRegressor run3 x x x x x x

Total 11 2 12 54 12 5 11 36 7 3 54 3 3 48 40 2 67 14 3 3 10 24 55 3 3 4 9 6 34 9 13 6 6

Table 4: CORE task: Resources and tools used by the systems that submitted a description file. Leftmost columns
correspond to the resources, and rightmost to tools, in alphabetic order.
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types could be too low for practical use.

5 Tools and resources used

The organizers asked participants to submit a de-
scription file, making special emphasis on the tools
and resources that were used. Tables 4 and 5 show
schematically the tools and resources as reported by
some of the participants for the CORE and TYPED
tasks (respectively). In the last row, the totals show
that WordNet and monolingual corpora were the
most used resources for both tasks, followed by
Wikipedia and the use of acronyms (for CORE and
TYPED tasks respectively). Dictionaries, multilin-
gual corpora, opinion and sentiment analysis, and
lists and tables of paraphrases are also used.

For CORE, generic NLP tools such as lemmati-
zation and PoS tagging are widely used, and to a
lesser extent, distributional similarity, knowledge-
based similarity, syntactic analysis, named entity
recognition, lexical substitution and time and date
resolution (in this order). Other popular tools are
Semantic Role Labeling, Textual Entailment, String
Similarity, Tree Kernels and Word Sense Disam-
biguation. Machine learning is widely used to com-
bine and tune components (and so, it is not men-
tioned in the tables). Several less used tools are
also listed but are used by three or less systems.
The top scoring systems use most of the resources
and tools listed (UMBC EBIQUITY-ParingWords,
MayoClinicNLP-r3wtCD). Other well ranked sys-
tems like deft-baseline are only based on distribu-
tional similarity. Although not mentioned in the
descriptions files, some systems used the publicly
available DKPro and Takelab systems.

For the TYPED task, the most used tools are lem-
matizers, Named Entity Recognizers, and PoS tag-
gers. Distributional and Knowledge-base similarity
is also used, and at least four systems used syntactic
analysis and time and date resolution.7

6 Conclusions and Future Work

We presented the 2013 *SEM shared task on Seman-
tic Textual Similarity.8 Two tasks were defined: a

7For a more detailed analysis, the reader is directed to the
papers in this volume.

8All annotations, evaluation scripts and system outputs are
available in the website for the task9. In addition, a collabora-
tively maintained site10, open to the STS community, contains
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BUT-1 x x x x x x x
PolyUCOMP-RUN2 x x x x

ECNUCS-Run1 x x x
ECNUCS-Run2 x x x x x x x

PolyUCOMP-RUN1 x x x x
PolyUCOMP-RUN3 x x x x
UBC UOS-RUN1 x x x x x x x x x x x
UBC UOS-RUN2 x x x x x x x x x x x x
UBC UOS-RUN3 x x x x x x x x x x x x

Unitor-SVRegressor lin x x x x x x x
Unitor-SVRegressor rbf x x x x x x x

Total 4 7 3 7 7 4 11 3 11 11 4 4 2

Table 5: TYPED task: Resources and tools used by
the systems that submitted a description file. Leftmost
columns correspond to the resources, and rightmost to
tools, in alphabetic order.

core task CORE similar to the STS 2012 task, and
a new pilot on typed-similarity TYPED. We had 34
teams participate in both tasks submitting 89 system
runs for CORE and 14 system runs for TYPED, in
total amounting to a 103 system evaluations. CORE
uses datasets which are related to but different from
those used in 2012: news headlines, MT evalua-
tion data, gloss pairs. The best systems attained
correlations close to the human inter tagger corre-
lations. The TYPED task characterizes, for the first
time, the reasons why two items are deemed simi-
lar. The results on TYPED show that the training
data provided allowed systems to yield high corre-
lation scores, demonstrating the practical viability
of this new task. In the future, we are planning on
adding more nuanced evaluation data sets that in-
clude modality (belief, negation, permission, etc.)
and sentiment. Also given the success rate of the
TYPED task, however, the data in this pilot is rel-
atively structured, hence in the future we are inter-
ested in investigating identifying reasons why two
pairs of unstructured texts as those present in CORE
are deemed similar.
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Abstract

We describe three semantic text similarity
systems developed for the *SEM 2013 STS
shared task and the results of the correspond-
ing three runs. All of them shared a word sim-
ilarity feature that combined LSA word sim-
ilarity and WordNet knowledge. The first,
which achieved the best mean score of the 89
submitted runs, used a simple term alignment
algorithm augmented with penalty terms. The
other two runs, ranked second and fourth, used
support vector regression models to combine
larger sets of features.

1 Introduction

Measuring semantic text similarity has been a re-
search subject in natural language processing, infor-
mation retrieval and artificial intelligence for many
years. Previous efforts have focused on compar-
ing two long texts (e.g., for document classification)
or a short text with a long text (e.g., Web search),
but there are a growing number of tasks requiring
computing the semantic similarity between two sen-
tences or other short text sequences. They include
paraphrase recognition (Dolan et al., 2004), Twitter
tweets search (Sriram et al., 2010), image retrieval
by captions (Coelho et al., 2004), query reformula-
tion (Metzler et al., 2007), automatic machine trans-
lation evaluation (Kauchak and Barzilay, 2006) and
schema matching (Han et al., 2012).

There are three predominant approaches to com-
puting short text similarity. The first uses informa-
tion retrieval’s vector space model (Meadow, 1992)
in which each text is modeled as a “bag of words”

and represented using a vector. The similarity be-
tween two texts is then computed as the cosine
similarity of the vectors. A variation on this ap-
proach leverages web search results (e.g., snip-
pets) to provide context for the short texts and en-
rich their vectors using the words in the snippets
(Sahami and Heilman, 2006). The second approach
is based on the assumption that if two sentences or
other short text sequences are semantically equiva-
lent, we should be able to align their words or ex-
pressions. The alignment quality can serve as a
similarity measure. This technique typically pairs
words from the two texts by maximizing the sum-
mation of the word similarity of the resulting pairs
(Mihalcea et al., 2006). The third approach com-
bines different measures and features using machine
learning models. Lexical, semantic and syntactic
features are computed for the texts using a variety
of resources and supplied to a classifier, which then
assigns weights to the features by fitting the model
to training data (Saric et al., 2012).

For evaluating different approaches, the 2013 Se-
mantic Textual Similarity (STS) task asked auto-
matic systems to compute sentence similarity ac-
cording to a scale definition ranging from 0 to 5,
with 0 meaning unrelated and 5 semantically equiv-
alent (Agirre et al., 2012; Agirre et al., 2013). The
example sentence pair “The woman is playing the
violin” and “The young lady enjoys listening to the
guitar” is scored as only1 and the pair “The bird is
bathing in the sink” and “Birdie is washing itself in
the water basin” is given a score of5.

The vector-space approach tends to be too shallow
for the task, since solving it well requires discrimi-
nating word-level semantic differences and goes be-
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yond simply comparing sentence topics or contexts.
Our first run uses analign-and-penalizealgorithm,
which extends the second approach by giving penal-
ties to the words that are poorly aligned. Our other
two runs use a support vector regression model to
combine a large number of general and domain spe-
cific features. An important and fundamental feature
used by all three runs is a powerful semantic word
similarity model based on a combination of Latent
Semantic Analysis (LSA) (Deerwester et al., 1990;
Landauer and Dumais, 1997) and knowledge from
WordNet (Miller, 1995).

The remainder of the paper proceeds as follows.
Section 2 presents the hybrid word similarity model.
Section 3 describes the align-and-penalize approach
used for thePairingWordsrun. In Section 4 we de-
scribe the SVM approach used for theGalactusand
Saiyanruns. Section 5 discusses the results and is
followed by a short conclusion.

2 Semantic Word Similarity Model

Our word similarity model was originally developed
for the Graph of Relations project (UMBC, 2013a)
which maps informal queries with English words
and phrases for an RDF linked data collection into
a SPARQL query. For this, we wanted a metric
in which only the semantics of a word is consid-
ered and not its lexical category. For example, the
verb “marry” should be semantically similar to the
noun “wife”. Another desiderata was that the met-
ric should give highest scores and lowest scores in
its range to similar and non-similar words, respec-
tively. In this section, we describe how we con-
structed the model by combining LSA word simi-
larity and WordNet knowledge.

2.1 LSA Word Similarity

LSA Word Similarity relies on the distributional hy-
pothesis that words occurring in the same contexts
tend to have similar meanings (Harris, 1968).

2.1.1 Corpus Selection and Processing

In order to produce a reliable word co-occurrence
statistics, a very large and balanced text corpus is
required. After experimenting with several cor-
pus choices including Wikipedia, Project Gutenberg
e-Books (Hart, 1997), ukWaC (Baroni et al., 2009),
Reuters News stories (Rose et al., 2002) and LDC

gigawords, we selected the Web corpus from the
Stanford WebBase project (Stanford, 2001). We
used the February 2007 crawl, which is one of the
largest collections and contains 100 million web
pages from more than 50,000 websites. The Web-
Base project did an excellent job in extracting tex-
tual content from HTML tags but still has abun-
dant text duplications, truncated text, non-English
text and strange characters. We processed the collec-
tion to remove undesired sections and produce high
quality English paragraphs. We detected paragraphs
using heuristic rules and only retrained those whose
length was at least two hundred characters. We elim-
inated non-English text by checking the first twenty
words of a paragraph to see if they were valid En-
glish words. We used the percentage of punctuation
characters in a paragraph as a simple check for typi-
cal text. We removed duplicated paragraphs using a
hash table. Finally, we obtained a three billion words
corpus of good quality English, which is available at
(Han and Finin, 2013).

2.1.2 Word Co-Occurrence Generation

We performed POS tagging and lemmatization on
the WebBase corpus using the Stanford POS tagger
(Toutanova et al., 2000). Word/term co-occurrences
are counted in a moving window of a fixed size
that scans the entire corpus1. We generated two co-
occurrence models using window sizes±1 and±4
because we observed different natures of the models.
±1 window produces a context similar to the depen-
dency context used in (Lin, 1998a). It provides a
more precise context but only works for comparing
words within the same POS. In contrast, a context
window of±4 words allows us to compute semantic
similarity between words with different POS.

Our word co-occurrence models were based on
a predefined vocabulary of more than 22,000 com-
mon English words and noun phrases. We also
added to it more than 2,000 verb phrases extracted
from WordNet. The final dimensions of our word
co-occurrence matrices are 29,000× 29,000 when
words are POS tagged. Our vocabulary includes
only open-class words (i.e. nouns, verbs, adjectives
and adverbs). There are no proper nouns in the vo-
cabulary with the only exception of country names.

1We used a stop-word list consisting of only the three arti-
cles “a”, “an” and “the”.
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Word Pair ±4 model ±1 model

1. doctorNN, physicianNN 0.775 0.726

2. carNN, vehicleNN 0.748 0.802

3. personNN, car NN 0.038 0.024

4. carNN, countryNN 0.000 0.016

5. personNN, countryNN 0.031 0.069

6. child NN, marry VB 0.098 0.000

7. wife NN, marry VB 0.548 0.274

8. authorNN, write VB 0.364 0.128

9. doctorNN, hospitalNN 0.473 0.347

10. carNN, driver NN 0.497 0.281

Table 1: Ten examples from the LSA similarity model

2.1.3 SVD Transformation

Singular Value Decomposition (SVD) has been
found to be effective in improving word similar-
ity measures (Landauer and Dumais, 1997). SVD
is typically applied to aword by documentma-
trix, yielding the familiar LSA technique. In
our case we apply it to ourword by word ma-
trix. In literature, this variation of LSA is some-
times called HAL (Hyperspace Analog to Lan-
guage) (Burgess et al., 1998).

Before performing SVD, we transform the raw
word co-occurrence countfij to its log frequency
log(fij + 1). We select the 300 largest singular val-
ues and reduce the 29K word vectors to 300 dimen-
sions. The LSA similarity between two words is de-
fined as the cosine similarity of their corresponding
word vectors after the SVD transformation.

2.1.4 LSA Similarity Examples

Ten examples obtained using LSA similarity are
given in Table 1. Examples 1 to 6 illustrate that the
metric has a good property of differentiating simi-
lar words from non-similar words. Examples 7 and
8 show that the±4 model can detect semantically
similar words even with different POS while the±1
model yields much worse performance. Example 9
and 10 show that highly related but not substitutable
words can also have a strong similarity but the±1
model has a better performance in discriminating
them. We call the±1 model and the±4 model
asconcept similarityandrelation similarity respec-
tively since the±1 model has a good performance
on nouns and the±4 model is good at computing
similarity between relations regardless of POS of

words, such as “marry to” and “is the wife of”.

2.2 Combining with WordNet Knowledge

Statistical word similarity measures have limita-
tions. Related words can have similarity scores as
high as what similar words get, as illustrated by
“doctor” and “hospital” in Table 1. Word similar-
ity is typically low for synonyms having many word
senses since information about different senses are
mashed together (Han et al., 2013). By using Word-
Net, we can reduce the above issues.

2.2.1 Boosting LSA similarity using WordNet

We increase the similarity between two words if any
of the following relations hold.

• They are in the same WordNet synset.

• One word is the direct hypernym of the other.

• One word is the two-link indirect hypernym of
the other.

• One adjective has a directsimilar to relation
with the other.

• One adjective has a two-link indirectsimilar to
relation with the other.

• One word is a derivationally related form of the
other.

• One word is the head of the gloss of the other
or its direct hypernym or one of its direct hy-
ponyms.

• One word appears frequently in the glosses of
the other and its direct hypernym and its direct
hyponyms.

We use the algorithm described in (Collins, 1999)
to find a word gloss header. We require a minimum
LSA similarity of 0.1 between the two words to filter
out noisy data when extracting WordNet relations.

We define a word’s “significant senses” to deal
with the problem of WordNet trivial senses. The
word “year”, for example, has a sense “a body of
students who graduate together” which makes it a
synonym of the word “class”. This causes problems
because “year” and “class” are not similar, in gen-
eral. A sense is significant, if any of the following
conditions are met: (i) it is the first sense; (ii) its
WordNet frequency count is not less than five; or
(iii) its word form appears first in its synset’s word
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form list and it has a WordNet sense number less
than eight.

We assign path distance of zero to the category
1, path distance of one to the category 2, 4 and 6,
and path distance of two to the other categories. The
new similarity between word x and y by combining
LSA similarity and WordNet relations is shown in
the following equation

sim⊕(x, y) = simLSA(x, y) + 0.5e−αD(x,y) (1)

whereD(x, y) is the minimal path distance between
x and y. Using thee−αD(x,y) to transform simple
shortest path length has been demonstrated to be
very effective according to (Li et al., 2003). The pa-
rameterα is set to be 0.25, following their experi-
mental results. The ceiling ofsim⊕(x, y) remains
1.0 and we simply cut the excess.

2.2.2 Dealing with words of many senses

For a wordw with many WordNet senses (currently
ten or more), we use its synonyms with fewer senses
(at most one third of that ofw) as its substitutions in
computing similarity with another word. LetSx and
Sy be the sets of all such substitutions of the words
x andy respectively. The new similarity is obtained
using Equation 2.

sim(x, y) = max( max
sx∈Sx∪{x}

sim⊕(sx, y),

max
sy∈Sy∪{y}

sim⊕(x, sy)) (2)

An online demonstration of a similar model
developed for the GOR project is available
(UMBC, 2013b), but it lacks some of this version’s
features.

3 Align-and-Penalize Approach

First we hypothesize that STS similarity between
two sentences can be computed using

STS = T − P ′ − P ′′ (3)

where T is the term alignments score,P ′ is the
penalty for bad term alignments andP ′′ is the
penalty for syntactic contradictions led by the align-
ments. HoweverP ′′ had not been fully implemented
and was not used in our STS submissions. We show
it here just for completeness.

3.1 Aligning terms in two sentences

We start by applying the Stanford POS tagger to tag
and lemmatize the input sentences. We use our pre-
defined vocabulary, POS tagging data and simple
regular expressions to recognize multi-word terms
including noun and verb phrases, proper nouns,
numbers and time. We ignore adverbs with fre-
quency count larger than500, 000 in our corpus and
stop words with general meaning.

Equation 4 shows our aligning functiong which
finds the counterpart of termt ∈ S in sentenceS′.

g(t) = argmax
t′∈S′

sim′(t, t′) (4)

sim′(t, t′) is a wrapper function oversim(x, y) in
Equation 2 that uses therelation similarity model.
It compares numerical and time terms by their val-
ues. If they are equal,1 is returned; otherwise0.
sim′(t, t′) provides limited comparison over pro-
nouns. It returns1 between subject pronounsI, we,
they, he, she and their corresponding object pro-
nouns. sim′(t, t′) also outputs1 if one term is the
acronym of the other term, or if one term is the head
of the other term, or if two consecutive terms in a
sentence match a single term in the other sentence
(e.g. “long term” and “long-term”).sim′(t, t′) fur-
ther adds support for matching words2 not presented
in our vocabulary using a simple string similarity al-
gorithm. It computes character bigram sets for each
of the two words without using padding characters.
Dice coefficient is then applied to get the degree of
overlap between the two sets. If it is larger than two
thirds,sim′(t, t′) returns a score of1; otherwise0.

g(t) is direction-dependent and does not achieve
one-to-one mapping. This property is useful in mea-
suring STS similarity because two sentences are of-
ten not exact paraphrases of one another. Moreover,
it is often necessary to align multiple terms in one
sentence to a single term in the other sentence, such
as when dealing with repetitions and anaphora or,
e.g., mapping “people writing books” to “writers”.

Let S1 andS2 be the sets of terms in two input
sentences. We define term alignments scoreT as the
following equation shows.
∑

t∈S1
sim′(t, g(t))

2 · |S1|
+

∑

t∈S2
sim′(t, g(t))

2 · |S2|
(5)

2We use the regular expression “[A-Za-z][A-Za-z]*” to
identify them.
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3.2 Penalizing bad term alignments

We currently treat two kinds of alignments as “bad”,
as described in Equation 6. For the setBi, we have
an additional restriction that neither of the sentences
has the form of a negation. In definingBi, we used
a collection of antonyms extracted from WordNet
(Mohammad et al., 2008). Antonym pairs are a spe-
cial case of disjoint sets. The terms “piano” and “vi-
olin” are also disjoint but they are not antonyms. In
order to broaden the setBi we will need to develop
a model that can determine when two terms belong
to disjoint sets.

Ai =
{

〈t, g(t)〉 |t ∈ Si ∧ sim′(t, g(t)) < 0.05
}

Bi = {〈t, g(t)〉 |t ∈ Si ∧ t is an antonymof g(t)}

i ∈ {1, 2} (6)

We show how we computeP ′ in Equation 7.

PA
i =

∑

〈t,g(t)〉∈Ai
(sim′(t, g(t)) + wf (t) · wp(t))

2 · |Si|

PB
i =

∑

〈t,g(t)〉∈Bi
(sim′(t, g(t)) + 0.5)

2 · |Si|

P ′ = PA
1 + PB

1 + PA
2 + PB

2 (7)

Thewf (t) andwp(t) terms are two weighting func-
tions on the termt. wf (t) inversely weights the log
frequency of termt andwp(t) weightst by its part of
speech tag, assigning 1.0 to verbs, nouns, pronouns
and numbers, and 0.5 to terms with other POS tags.

4 SVM approach

We used the scores from the align-and-penalize ap-
proach along with several other features to learn a
support vector regression model. We started by ap-
plying the following preprocessing steps.

• The sentences were tokenized and POS-tagged
using NLTK’s (Bird, 2006) default Penn Tree-
bank based tagger.

• Punctuation characters were removed from the
tokens except for the decimal point in numbers.

• All numbers written as words were converted
into numerals, e.g., “2.2 million” was replaced
by “2200000” and “fifty six” by “56”.

• All mentions of time were converted into mil-
itary time, e.g., “5:40pm” was replaced by
“1740” and “1h30am” by “0130”.

• Abbreviations were expanded using a compiled
list of commonly used abbreviations.

• About 80 stopwords were removed.

4.1 Ngram Matching

The sentence similarities are derived as a function of
the similarity scores of their corresponding paired
word ngrams. These features closely resemble the
ones used in (Saric et al., 2012). For our system, we
used unigrams, bigrams, trigrams and skip-bigrams,
a special form of bigrams which allow for arbitrary
distance between two tokens.

An ngram from the first sentence is exclusively
paired with an ngram from the second which has the
highest similarity score. Several similarity metrics
are used to generate different features. For bigrams,
trigrams and skip-bigrams, the similarity score for
two ngrams is computed as the arithmetic mean of
the similarity scores of the individual words they
contain. For example, for the bigrams “he ate” and
“she spoke”, the similarity score is the average of the
similarity scores between the words “he” and “she”
and the words “ate” and “spoke”.

The ngram overlap of two sentences is defined
as “the harmonic mean of the degree to which
the second sentence covers the first and the de-
gree to which the first sentence covers the second”
(Saric et al., 2012). Given setsS1 andS2 containing
ngrams from sentences 1 and 2, and setsP1 andP2

containing their paired ngrams along with their sim-
ilarity scores, the ngram overlap score for a given
ngram type is computed using the following equa-
tion.

HM

(

∑

nǫP1
w(n).sim(n)

∑

nǫS1
w(n)

,

∑

nǫP2
w(n).sim(n)

∑

nǫS2
w(n)

)

(8)
In this formula,HM is the harmonic mean,w(n) is
the weight assigned for the given ngram andsim(n)
is the similarity score of the paired word.

By default, all the ngrams are assigned a uniform
weight of 1. But since different words carry differ-
ent amount of information, e.g. “acclimatize” vs.
“take”, “cardiologist” vs. “person”, we also use in-
formation content as weights. The information con-
tent of a word is as defined in (Saric et al., 2012).

ic(w) = ln

(

∑

w
′
ǫ C freq(w

′

)

freq(w)

)

(9)
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HereC is the set of words in the corpus andfreq(w)
is the frequency of a word in the corpus. The
weight of an ngram is the sum of its constituent word
weights. We use refined versions of Google ngram
frequencies (Michel et al., 2011) from (Mem, 2008)
and (Saric et al., 2012) to get the information con-
tent of the words. Words not in this list are assigned
the average weight.

We used several word similarity metrics for
ngram matching apart from the similarity metric de-
scribed in section 2. Our baseline similarity metric
was an exact string match which assigned a score
of 1 if two tokens contained the same sequence of
characters and 0 otherwise. We also used NLTK’s
library to compute WordNet based similarity mea-
sures such as Path Distance Similarity, Wu-Palmer
Similarity (Wu and Palmer, 1994) and Lin Similar-
ity (Lin, 1998b). For Lin Similarity, the Semcor cor-
pus was used for the information content of words.

4.2 Contrast Scores

We computed contrast scores between two sen-
tences using three different lists of antonym pairs
(Mohammad et al., 2008). We used a large list con-
taining 3.5 million antonym pairs, a list of about
22,000 antonym pairs from Wordnet and a list of
50,000 pairs of words with their degree of contrast.
Contrast scores between two sentences were derived
as a function of the number of antonym pairs be-
tween them similar to equation 8 but with negative
values to indicate contrast scores.

4.3 Features

We constructed 52 features from different combina-
tions of similarity metrics, their parameters, ngram
types (unigram, bigram, trigram and skip-bigram)
and ngram weights (equal weight vs. information
content) for all sentence pairs in the training data.

• We used scores from the align-and-penalize ap-
proach directly as a feature.

• Using exact string match over different ngram
types and ngram weights, we extracted eight
features (4 ∗ 4). We also developed four addi-
tional features (2 ∗ 2) by includin stopwords in
bigrams and trigrams, motivated by the nature
of MSRvid dataset.

• We used the LSA boosted similarity metric in
three modes: concept similarity, relation simi-
larity and mixed mode, which used the concept
model for nouns and relation model for verbs,
adverbs and adjectives. A total of 24 features
were extracted (4 ∗ 2 ∗ 3).

• For Wordnet-based similarity measures, we
used uniform weights for Path and Wu-Palmer
similarity and used the information content of
words (derived from the Semcor corpus) for
Lin similarity. Skip bigrams were ignored and
a total of nine features were produced (3 ∗ 3).

• Contrast scores used three different lists of
antonym pairs. A total of six features were ex-
tracted using different weight values (3 ∗ 2).

4.4 Support Vector Regression

The features described in 4.3 were used in dif-
ferent combinations to train several support vec-
tor regression (SVR) models. We used LIBSVM
(Chang and Lin, 2011) to learn the SVR models and
ran a grid search provided by (Saric et al., 2012) to
find the optimal values for the parametersC, g and
p. These models were then used to predict the scores
for the test sets.

The Galactussystem was trained on all of STS
2012 data and used the full set of 52 features. The
FnWN dataset was handled slightly differently from
the others. We observed that terms like “frame” and
“entity” were used frequently in the five sample sen-
tence pairs and treated them as stopwords. To ac-
commodate the vast difference in sentence lengths,
equation 8 was modified to compute the arithmetic
mean instead of the harmonic mean.

The Saiyansystem employed data-specific train-
ing and features. The training sets were subsets of
the supplied STS 2012 dataset. More specifically,
the model for headlines was trained on 3000 sen-
tence pairs from MSRvid and MSRpar, SMT used
1500 sentence pairs from SMT europarl and SMT
news, while OnWN used only the 750 OnWN sen-
tence pairs from last year. The FnWN scores were
directly used from the Align-and-Penalize approach.
None of the models forSaiyanused contrast fea-
tures and the model for SMT also ignored similarity
scores from exact string match metric.
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5 Results and discussion

Table 2 presents the official results of our three runs
in the 2013 STS task. Each entry gives a run’s Pear-
son correlation on a dataset as well as the rank of the
run among all 89 runs submitted by the 35 teams.
The last row shows the mean of the correlations and
the overall ranks of our three runs.

We tested performance of the align-and-penalize
approach on all of the 2012 STS datasets. It ob-
tained correlation values of0.819 on MSRvid,0.669
on MSRpar,0.553 on SMTeuroparl,0.567 on SMT-
news and0.722 on OnWN for the test datasets, and
correlation values of0.814 on MSRvid, 0.707 on
MSRpar and0.646 on SMTeuroparl for the training
datasets. The performance of the approach without
using the antonym penalty is also tested, producing
correlation scores of0.795 on MSRvid, 0.667 on
MSRpar,0.554 on SMTeuroparl,0.566 on SMTnew
and0.727 on OnWN, for the test datasets, and0.794
on MSRvid, 0.707 on MSRpar and0.651 on SM-
Teuroparl for the training datasets. The average of
the correlation scores on all eight datasets with and
without the antonym penalty is0.6871 and0.6826,
respectively. Since the approach’s performance was
only slightly improved when the antonym penalty
was used, we decided to not include this penalty in
our PairingWordsrun in the hope that its simplicity
would make it more robust.

During development, our SVM approach
achieved correlations of0.875 for MSRvid, 0.699
for MSRpar, 0.559 for SMTeuroparl, 0.625 for
SMTnews and0.729 for OnWN on the 2012 STS
test data. Models were trained on their respective
training sets while SMTnews used SMTeuroparl and
OnWN used all the training sets. We experimented
with different features and training data to study
their influence on the performance of the models.
We found that the unigram overlap feature, based on
boosted LSA similarity and weighted by informa-
tion content, could independently achieve very high
correlations. Including more features improved the
accuracy slightly and in some cases added noise.
The difficulty in selecting data specific features and
training for novel datasets is indicated bySaiyan’s
contrasting performance on headlines and OnWN
datasets. The model used for Headlines was trained
on data from seemingly different domains (MSRvid,

Dataset Pairing Galactus Saiyan

Headlines (750 pairs) 0.7642 (3) 0.7428 (7) 0.7838 (1)

OnWN (561 pairs) 0.7529 (5) 0.7053 (12) 0.5593 (36)

FNWN (189 pairs) 0.5818 (1) 0.5444 (3) 0.5815 (2)

SMT (750 pairs) 0.3804 (8) 0.3705 (11) 0.3563 (16)

Weighted mean 0.6181 (1) 0.5927 (2) 0.5683 (4)

Table 2: Performance of our three systems on the four
test sets.

MSRpar) while OnWN was trained only on OnWN
from STS 2012. When the model for headlines
dataset was used to predict the scores for OnWN,
the correlation jumped from0.55 to 0.71 indicating
that the earlier model suffered from overfitting.

Overfitting is not evident in the performance of
PairingWordsandGalactus, which have more con-
sistent performance over all datasets. The relatively
simplePairingWordssystem has two advantages: it
is faster, since the currentGalactusrequires comput-
ing a large number of features; and its performance
is more predictable, since training is not needed thus
eliminating noise induced from diverse training sets.

6 Conclusion

We described three semantic text similarity systems
developed for the *SEM 2013 STS shared task and
the results of the corresponding three runs we sub-
mitted. All of the systems used a lexical similarity
feature that combined POS tagging, LSA word sim-
ilarity and WordNet knowledge.

The first run, which achieved the best mean score
out of all 89 submissions, used a simple term align-
ment algorithm augmented with two penalty met-
rics. The other two runs, ranked second and fourth
out of all submissions, used support vector regres-
sion models based on a set of more than 50 addi-
tional features. The runs differed in their feature
sets, training data and procedures, and parameter
settings.
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Abstract

This paper describes the participation of iKer-
nels system in the Semantic Textual Similar-
ity (STS) shared task at *SEM 2013. Different
from the majority of approaches, where a large
number of pairwise similarity features are
used to learn a regression model, our model
directly encodes the input texts into syntac-
tic/semantic structures. Our systems rely on
tree kernels to automatically extract a rich set
of syntactic patterns to learn a similarity score
correlated with human judgements. We ex-
periment with different structural representa-
tions derived from constituency and depen-
dency trees. While showing large improve-
ments over the top results from the previous
year task (STS-2012), our best system ranks
21st out of total 88 participated in the STS-
2013 task. Nevertheless, a slight refinement to
our model makes it rank 4th.

1 Introduction

Comparing textual data to establish the degree of se-
mantic similarity is of key importance in many Nat-
ural Language Processing (NLP) tasks ranging from
document categorization to textual entailment and
summarization. The key aspect of having an accu-
rate STS framework is the design of features that can
adequately represent various aspects of the similar-
ity between texts, e.g. using lexical, syntactic and
semantic similarity metrics.

The majority of approaches to semantic textual
similarity treat the input text pairs as feature vec-
tors where each feature is a score corresponding to a
certain type of similarity. This approach is concep-
tually easy to implement and STS-2012 (Agirre et

al., 2012) has shown that the best systems were built
following this idea, i.e. a number of features encod-
ing similarity of an input text pair were combined in
a single scoring model, such as Linear Regression
or Support Vector Regression (SVR). One potential
limitation of using only similarity features to repre-
sent a text pair is that of low representation power.

The novelty of our approach is that we encode the
input text pairs directly into structural objects, e.g.
trees, and rely on the power of kernel learning to ex-
tract relevant structures. This completely different
from (Croce et al., ), where tree kernels where used
to establish syntactic similarity and then plugged as
similarity features. To link the documents in a pair
we mark the nodes in the related structures with a
special relational tag. In this way effective struc-
tural relational patterns are implicitly encoded in the
trees and can be automatically learned by the kernel-
based machine learning methods. We build our sys-
tems on top of the features used by two best systems
from STS-2012 and combine them with the tree ker-
nel models within the Support Vector Regression to
derive a single scoring model. Since the test data
used for evaluation in STS-2013 (Agirre et al., 2013)
is different from the 2012 data provided for the sys-
tem development, domain adaptation represents an
additional challenge. To address this problem we
augment our feature vector representation with fea-
tures extracted from a text pair as a whole to capture
individual properties of each dataset. Additionally,
we experiment with a corpus type classifier and in-
clude its prediction score as additional features. Fi-
nally, we use stacking to combine several structural
models into the feature vector representation.
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In the following sections we describe our ap-
proach to combine structural representations with
the pairwise similarity features in a single SVR
learning framework. We then report results on both
STS-2012 and 2013 tasks.

2 Structural Relational Similarity

In this section we first describe the kernel framework
to combine structural and vector models, then we
explain how to construct the tree models and briefly
describe tree kernels we use to automatically extract
the features.

2.1 Structural Kernel Learning

In supervised learning, given the labeled data
{(xxxi, yyyi)}ni=1, the goal is to estimate a decision func-
tion h(xxx) = yyy that maps input examples to the tar-
get variables. A conventional approach is to rep-
resent a pair of texts as a set of similarity features
{fi}, s.t. the predictions are computed as h(xxx) =
www · xxx =

∑
iwifi, wherewww is the model weight vec-

tor. Hence, the learning problem boils down to es-
timating the individual weight of each of the sim-
ilarity feature fi. One downside of such approach
is that a great deal of similarity information carried
by a given text pair is lost when modeled by single
real-valued scores.

A more versatile approach in terms of the input
representation relies on kernels. In a typical ker-
nel machine, e.g. SVM, the prediction function for
a test input xxx takes on the following form h(xxx) =∑

i αiyiK(xxx,xxxi), where αi are the model parame-
ters estimated from the training data, yi - target vari-
ables, xxxi are support vectors, and K(·, ·) is a kernel
function.

To encode both structural representation and sim-
ilarity feature vectors of input text pairs xxxi in a sin-
gle model, we treat it as the following tuple: xxxi =
〈xxxa

i ,xxx
b
i〉 = 〈(tttai , vvva

i ), (ttt
b
i , vvv

b
i)〉, where xxxa

i xxx
b
i are the

first and the second document of xxxi, and ttt and vvv de-
note tree and vector representations respectively.

To compute a kernel between two text pairs xxxi

and xxxj we define the following all-vs-all kernel,
where all possible combinations of documents from
each pair are considered: K(xxxi,xxxj) = K(xxxa

i ,xxx
a
j ) +

K(xxxa
i ,xxx

b
j) + K(xxxb

i ,xxx
a
j ) + K(xxxb

i ,xxx
b
j). Each of the

kernel computations K between two documents xxxa

and xxxb can be broken down into the following:
K(xxxa,xxxb) = KTK(ttta, tttb) + Kfvec(vvv

a, vvvb), where
KTK computes a tree kernel and Kfvec is a kernel
over feature vectors, e.g. linear, polynomial or RBF,
etc. Further in the text we refer to structural tree
kernel models as TK and explicit feature vector rep-
resentation as fvec.

Having defined a way to jointly model text pairs
using structural TK representations along with the
similarity features fvec, we next briefly review tree
kernels and our relational structures derived from
constituency and dependency trees.

2.2 Tree Kernels
We use tree structures as our base representation
since they provide sufficient flexibility in represen-
tation and allow for easier feature extraction than,
for example, graph structures. We use a Partial Tree
Kernel (PTK) (Moschitti, 2006) to take care of auto-
matic feature extraction and compute KTK(·, ·).

PTK is a tree kernel function that can be ef-
fectively applied to both constituency and depen-
dency parse trees. It generalizes a subset tree ker-
nel (STK) (Collins and Duffy, 2002) that maps a
tree into the space of all possible tree fragments con-
strained by the rule that the sibling nodes from their
parents cannot be separated. Different from STK
where the nodes in the generated tree fragments are
constrained to include none or all of their direct chil-
dren, PTK fragments can contain any subset of the
features, i.e. PTK allows for breaking the production
rules. Consequently, PTK generalizes STK generat-
ing an extremely rich feature space, which results in
higher generalization ability.

2.3 Relational Structures
The idea of using relational structures to jointly
model text pairs was previously proposed in (Sev-
eryn and Moschitti, 2012), where shallow syntactic
structures derived from chunks and part-of-speech
tags were used to represent question/answer pairs.
In this paper, we define novel relational structures
based on: (i) constituency and (ii) dependency trees.
Constituency tree. Each document in a given text
pair is represented by its constituency parse tree.
If a document contains multiple sentences they are
merged in a single tree with a common root. To
encode the structural relationships between docu-
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Figure 1: A dependency-based structural representation of a text pair. REL tag links related fragments.

ments in a pair a special REL tag is used to link
the related structures. We adopt a simple strategy
to establish such links: words from two documents
that have a common lemma get their parents (POS
tags) and grandparents, non-terminals, marked with
a REL tag.
Dependency tree. We propose to use dependency
relations between words to derive an alternative
structural representation. In particular, dependency
relations are used to link words in a way that words
are always at the leaf level. This reordering of the
nodes helps to avoid the situation where nodes with
words tend to form long chains. This is essential
for PTK to extract meaningful fragments. We also
plug part-of-speech tags between the word nodes
and nodes carrying their grammatical role. Again
a special REL tag is used to establish relations be-
tween tree fragments. Fig. 1 gives an example of
a dependency-based structure taken from STS-2013
headlines dataset.

3 Pairwise similarity features.

Along with the direct representation of input text
pairs as structural objects our framework also en-
codes feature vectors (base), which we describe
below.

3.1 Baseline features

We adopt similarity features from two best perform-
ing systems of STS-2012, which were publicly re-
leased: namely, the Takelab1 system (Šarić et al.,
2012) and the UKP Lab’s system2 (Bar et al., 2012).
Both systems represent input texts with similar-

1http://takelab.fer.hr/sts/
2https://code.google.com/p/dkpro-similarity-

asl/wiki/SemEval2013

ity features which combine multiple text similarity
measures of varying complexity.
UKP provides metrics based on matching of char-
acter, word n-grams and common subsequences. It
also includes features derived from Explicit Seman-
tic Analysis vector comparisons and aggregation of
word similarity based on lexical-semantic resources,
e.g. WordNet. In total it provides 18 features.
Takelab includes n-gram matching of varying size,
weighted word matching, length difference, Word-
Net similarity and vector space similarity where
pairs of input sentences are mapped into Latent Se-
mantic Analysis (LSA) space (Turney and Pantel,
2010). The features are computed over several sen-
tence representations where stop words are removed
and/or lemmas are used in place of raw tokens.
The total number of Takelab’s features is 21. Even
though some of the UKP and Takelab features over-
lap we include all of them in a combined system with
the total of 39 features.

3.2 iKernels features

Here we describe our additional features added to
the fvec representation. First, we note that word
frequencies used to compute weighted word match-
ings and the word-vector mappings to compute LSA
similarities required by Takelab features are pro-
vided only for the vocabulary extracted from 2012
data. Hence, we use both STS-2012 and 2013 data to
obtain the word counts and re-estimate LSA vector
representations. For the former we extract unigram
counts from Google Books Ngrams3, while for the
latter we use additional corpora as described below.
LSA similarity. To construct LSA word-vector
mappings we use the following three sources: (i)

3http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
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Aquaint4, which consists of more than 1 million
newswire documents, (ii) ukWaC (Baroni et al.,
2009) - a 2 billion word corpus constructed from
the Web, and (iii) and a collection of documents
extracted from Wikipedia dump5. To extract LSA
topics we use GenSim6 software. We preprocess
the data by lowercasing, removing stopwords and
words with frequency lower than 5. Finally, we ap-
ply tf-idf weighting. For all representations we fix
the number of dimensions to 250. For all corpora
we use document-level representation, except for
Wikipedia we also experimented with a sentence-
level document representation, which typically pro-
vides a more restricted context for estimating word-
document distributions.
Brown Clusters. In addition to vector represen-
tations derived from LSA, we extract word-vector
mappings using Brown word clusters7 (Turian et al.,
2010), where words are organized into a hierarchy
and each word is represented as a bit-string. We
encode each word by a feature vector where each
entry corresponds to a prefix extracted from its bit-
string. We use prefix lengths in the following range:
k = {4, 8, 12, 16, 20}. Finally, the document is rep-
resented as a feature vector composed by the indi-
vidual word vectors.
Term-overlap features. In addition to the word
overlap features computed by UKP and Takelab
systems we also compute a cosine similarity over
the following representations: (i) n-grams of part-
of-speech tags (up to 4-grams), (ii) SuperSense
tags (Ciaramita and Altun, 2006), (iii) named enti-
ties, and (iv) dependency triplets.
PTK similarity. We use PTK to provide a syn-
tactic similarity score between documents in a pair:
PTK(a, b) = PTK(a, b), where as input represen-
tations we use dependency and constituency trees.
Explicit Semantic Analysis (ESA) similarity.
ESA (Gabrilovich and Markovitch, 2007) represents
input documents as vectors of Wikipedia concepts.
To compute ESA features we use Lucene8 to in-
dex documents extracted from a Wikipedia dump.
Given a text pair we retrieve k top documents (i.e.

4http://www.ldc.upenn.edu/Catalog/docs/LDC2002T31/
5http://dumps.wikimedia.org/
6http://radimrehurek.com/gensim/
7http://metaoptimize.com/projects/wordreprs/
8http://lucene.apache.org/

Wikipedia concepts) and compute the metric by
looking at the overlap of the concepts between the
documents: esak(a, b) = |Wa

⋂
Wb|

k , where Wa is
the set of concepts retrieved for document a. We
compute esa features with k ∈ {10, 25, 50, 100}.

3.3 Corpus type features

Here we describe two complementary approaches
(corpus) in an attempt to alleviate the problem of
domain adaptation, where the datasets used for train-
ing and testing are drawn from different sources.
Pair representation. We treat each pair of texts as a
whole and extract the following sets of corpus fea-
tures: plain bag-of-words, dependency triplets, pro-
duction rules of the syntactic parse tree and a length
feature, i.e. a log-normalized length of the combined
text. Each feature set is normalized and added to the
fvec model.
Corpus classifier. We use the above set of features
to train a multi-class classifier to predict for each in-
stance its most likely corpus type. Our categories
correspond to five dataset types of STS-2012. Pre-
diction scores for each of the dataset categories are
then plugged as features into the final fvec repre-
sentation. Our multi-class classifier is a one-vs-all
binary SVM trained on the merged data from STS-
2012. We apply 5-fold cross-validation scheme, s.t.
for each of the held-out folds we obtain independent
predictions. The accuracy (averaged over 5-folds)
on the STS-2012 data is 92.0%.

3.4 Stacking

To integrate multiple TK models into a single model
we apply a classifier stacking approach (Fast and
Jensen, 2008). Each of the learned TK models is
used to generate predictions which are then plugged
as features into the final fvec representation, s.t.
the final model uses only explicit feature vector
representation. We apply a 5-fold cross-validation
scheme to obtain prediction scores in the same man-
ner as described above.

4 Experimental Evaluation

4.1 Experimental setup

To encode TK models along with the similarity fea-
ture vectors into a single regression scoring model,
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base corpus TK
U T I B O M C D ALL Mean MSRp MSRv SMTe OnWN SMTn
• 0.7060 0.6087 0.6080 0.8390 0.2540 0.6820 0.4470
• 0.7589 0.6863 0.6814 0.8637 0.4950 0.7091 0.5395

• • 0.8079 0.7161 0.7134 0.8837 0.5519 0.7343 0.5607
• • • 0.8187 0.7137 0.7157 0.8833 0.5131 0.7355 0.5809
• • • • 0.8458 0.7047 0.6935 0.8953 0.5080 0.7101 0.5834
• • • • 0.8468 0.6954 0.6717 0.8902 0.4652 0.7089 0.6133
• • • • • 0.8539 0.7132 0.6993 0.9005 0.4772 0.7189 0.6481
• • • • • 0.8529 0.7249 0.7080 0.8984 0.5142 0.7263 0.6700

Sys1 • • • • • • 0.8546 0.7156 0.6989 0.8979 0.4884 0.7181 0.6609
Sys3 • • • • • • 0.8810 0.7416 0.7210 0.8971 0.5912 0.7328 0.6778
Sys2 • • • • • • 0.8705 0.7339 0.7039 0.9012 0.5629 0.7376 0.6656

UKPbest 0.8239 0.6773 0.6830 0.8739 0.5280 0.6641 0.4937

Table 1: System configurations and results on STS-2012. Column set base lists 3 feature sets : UKP (U), Takelab
(T) and iKernels (I); corpus type features (corpus) include plain features (B), corpus classifier (O), and manually
encoded dataset category (M); TK contains constituency (C) and dependency-based (D) models. UKPbest is the best
system of STS-2012. First column shows configuration of our three system runs submitted to STS-2013.

we use an SVR framework implemented in SVM-
Light-TK9. We use the following parameter settings
-t 5 -F 3 -W A -C +, which specifies to use
a combination of trees and feature vectors (-C +),
PTK over trees (-F 3) computed in all-vs-all mode
(-W A) and using polynomial kernel of degree 3 for
the feature vector (active by default).

We report the following metrics employed in the
final evaluation: Pearson correlation for individual
test sets10 and Mean – an average score weighted by
the test set size.

4.2 STS-2012

For STS-2013 task the entire data from STS-2012
was provided for the system development. To com-
pare with the best systems of the previous year we
followed the same setup, where 3 datasets (MSRp,
MSRv and SMTe) are used for training and 5 for test-
ing (two “surprise” datasets were added: OnWN and
SMTn). We use the entire training data to obtain a
single model.

Table 1 summarizes the results using structural
models (TK), pairwise similarity (base) and corpus
type features (corpus). We first note, that com-
bining all three features sets (U, T and I) provides
a good match to the best system UKPbest. Next,
adding TK models results in a large improvement
beating the top results in STS-2012. Furthermore,
using corpus features results in even greater im-

9http://disi.unitn.it/moschitti/Tree-Kernel.htm
10for STS-2012 we also report the results for a concatenation

of all five test sets (ALL)

provement with the Mean = 0.7416 and Pearson
ALL = 0.8810.

4.3 STS-2013

Below we specify the configuration for each of the
submitted runs (also shown in Table 1) and report the
results on the STS-2013 test sets: headlines (head),
OnWN, FNWN, and SMT:
Sys1: combines base features (U, T and I), TK
models (C and D) and plain corpus type features (B).
We use STS-2012 data to train a single model.
Sys2: different from Sys1 where a single model
trained on the entire data is used to make predictions,
we adopt a different training/test setup to account for
the different nature of the data used for training and
testing. After performing manual analysis of the test
data we came up with the following strategy to split
the training data into two sets to learn two differ-
ent models: STMe and OnWN (model1) and MSRp,
SMTn and STMe (model2); model1 is then used to
get predictions for OnWN, FNWN, while model2 is
used for SMT and headlines.
Sys3: same as Sys1 + a corpus type classifier O as
described in Sec. 3.3.

Table 2 shows the resulting performance of our
systems and the best UMBC system published in the
final ranking. Sys2 appears the most accurate among
our systems, which ranked 21st out of 88. Compar-
ing to the best system across four datasets we ob-
serve that it performs reasonably well on the head-
lines dataset (it is 5th best), while completely fails
on the OnWN and FNWN test sets. After performing
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error analysis, we found that TK models underper-
form on FNWN and OnWN sets, which appear un-
derrepresented in the training data from STS-2012.
We build a new system (Sys∗2), which is based on
Sys2, by making two adjustments in the setup: (i)
we exclude SMTe from training to obtain predictions
on SMT and head and (ii) we remove all TK features
to train a model for FNWN and OnWN. This is mo-
tivated by the observation that text pairs from STS-
2012 yield a paraphrase model, since the texts are
syntactically very similar. Yet, two datasets from
STS-2013 FNWN, and OnWN contain text pairs
where documents exhibit completely different struc-
tures. This is misleading for our syntactic similarity
model learned on the STS-2012.

System head OnWN FNWN SMT Mean Rank
UMBC 0.7642 0.7529 0.5818 0.3804 0.6181 1
Sys2 0.7465 0.5572 0.3875 0.3409 0.5339 21
Sys1 0.7352 0.5432 0.3842 0.3180 0.5188 28
Sys3 0.7395 0.4228 0.3596 0.3294 0.4919 40
Sys∗2 0.7538 0.6872 0.4478 0.3391 0.5732 4*

Table 2: Results on STS-2013.

5 Conclusions and Future Work

We have described our participation in STS-2013
task. Our approach treats text pairs as structural
objects which provides much richer representation
for the learning algorithm to extract useful patterns.
We experiment with structures derived from con-
stituency and dependency trees where related frag-
ments are linked with a special tag. Such struc-
tures are then used to learn tree kernel models which
can be efficiently combined with the a feature vector
representation in a single scoring model. Our ap-
proach ranks 1st with a large margin w.r.t. to the
best systems in STS-2012 task, while it is 21st ac-
cording to the final rankings of STS-2013. Never-
theless, a small change in the system setup makes
it rank 4th. Clearly, domain adaptation represents a
big challenge in STS-2013 task. We plan to address
this issue in our future work.
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Abstract
This paper presents the UNITOR system that
participated in the *SEM 2013 shared task on
Semantic Textual Similarity (STS). The task is
modeled as a Support Vector (SV) regression
problem, where a similarity scoring function
between text pairs is acquired from examples.
The proposed approach has been implemented
in a system that aims at providing high ap-
plicability and robustness, in order to reduce
the risk of over-fitting over a specific datasets.
Moreover, the approach does not require any
manually coded resource (e.g. WordNet), but
mainly exploits distributional analysis of un-
labeled corpora. A good level of accuracy is
achieved over the shared task: in the Typed
STS task the proposed system ranks in 1st and
2nd position.

1 Introduction

Semantic Textual Similarity (STS) measures the de-
gree of semantic equivalence between two phrases
or texts. An effective method to compute similarity
between sentences or semi-structured material has
many applications in Natural Language Processing
(Mihalcea et al., 2006) and related areas such as
Information Retrieval, improving the effectiveness
of semantic search engines (Sahami and Heilman,
2006), or databases, using text similarity in schema
matching to solve semantic heterogeneity (Islam and
Inkpen, 2008).

This paper describes the UNITOR system partic-
ipating in both tasks of the *SEM 2013 shared task
on Semantic Textual Similarity (STS), described in
(Agirre et al., 2013):
• the Core STS tasks: given two sentences, s1

and s2, participants are asked to provide a score

reflecting the corresponding text similarity. It is
the same task proposed in (Agirre et al., 2012).
• the Typed-similarity STS task: given two

semi-structured records t1 and t2, containing
several typed fields with textual values, partic-
ipants are asked to provide multiple similarity
scores: the types of similarity to be studied in-
clude location, author, people involved, time,
events or actions, subject and description.

In line with several participants of the STS 2012
challenge, such as (Banea et al., 2012; Croce et al.,
2012a; Šarić et al., 2012), STS is here modeled as
a Support Vector (SV) regression problem, where a
SV regressor learns the similarity function over text
pairs. The semantic relatedness between two sen-
tences is first modeled in an unsupervised fashion
by several similarity functions, each describing the
analogy between the two texts according to a spe-
cific semantic perspective. We aim at capturing sep-
arately syntactic and lexical equivalences between
sentences and exploiting either topical relatedness or
paradigmatic similarity between individual words.
Such information is then combined in a supervised
schema through a scoring function y = f(~x) over
individual measures from labeled data through SV
regression: y is the gold similarity score (provided
by human annotators), while ~x is the vector of the
different individual scores, provided by the chosen
similarity functions.

For the Typed STS task, given the specificity of
the involved information and the heterogeneity of
target scores, individual measures are not applied to
entire texts. Specific phrases are filtered according
to linguistic policies, e.g. words characterized by
specific Part-of-Speech (POS), such as nouns and
verbs, or Named Entity (NE) Category, i.e. men-
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tions to specific name classes, such as of a PER-
SON, LOCATION or DATE. The former allows to
focus the similarity functions over entities (nouns)
or actions (verbs), while the latter allows to focus on
some aspects connected with the targeted similarity
functions, such as person involved, location or time.

The proposed approach has been implemented in
a system that aims at providing high applicability
and robustness. This objective is pursued by adopt-
ing four similarity measures designed to avoid the
risk of over-fitting over each specific dataset. More-
over, the approach does not require any manually
coded resource (e.g. WordNet), but mainly exploits
distributional analysis of unlabeled corpora. Despite
of its simplicity, a good level of accuracy is achieved
over the 2013 STS challenge: in the Typed STS task
the proposed system ranks 1st and 2nd position (out
of 18); in the Core STS task, it ranks around the 37th

position (out of 90) and a simple refinement to our
model makes it 19th.

In the rest of the paper, in Section 2, the employed
similarity functions are described and the applica-
tion of SV regression is presented. Finally, Section
3 discusses results on the *SEM 2013 shared task.

2 Similarity functions, regression and
linguistic filtering

This section describes the approach behind the UN-
ITOR system. The basic similarity functions and
their combination via SV regressor are discussed in
Section 2.1, while the linguistic filters are presented
in Section 2.2.

2.1 STS functions

Each STS function depends on a variety of linguistic
aspects in data, e.g. syntactic or lexical information.
While their supervised combination can be derived
through SV regression, different unsupervised esti-
mators of STS exist.
Lexical Overlap. A basic similarity function is
modeled as the Lexical Overlap (LO) between sen-
tences. Given the sets Wa and Wb of words oc-
curring in two generic texts ta and tb, LO is esti-
mated as the Jaccard Similarity between the sets, i.e.
LO= |Wa∩Wb|

|Wa∪Wb| . In order to reduce data sparseness,
lemmatization is applied and each word is enriched
with its POS to avoid the confusion between words

from different grammatical classes.

Compositional Distributional Semantics. Other
similarity functions are obtained by accounting for
the syntactic composition of the lexical information
involved in the sentences. Basic lexical information
is obtained by a co-occurrence Word Space that is
built according to (Sahlgren, 2006; Croce and Pre-
vitali, 2010). Every word appearing in a sentence is
then projected in such space. A sentence can be thus
represented neglecting its syntactic structure, by ap-
plying an additive linear combination, i.e. the so-
called SUM operator. The similarity function be-
tween two sentences is then the cosine similarity be-
tween their corresponding vectors.

A second function is obtained by applying a Dis-
tributional Compositional Semantics operator, in
line with the approaches introduced in (Mitchell and
Lapata, 2010), and it is adopted to account for se-
mantic composition. In particular, the approach de-
scribed in (Croce et al., 2012c) has been applied.
It is based on space projection operations over ba-
sic geometric lexical representations: syntactic bi-
grams are projected in the so called Support Sub-
space (Annesi et al., 2012), aimed at emphasiz-
ing the semantic features shared by the compound
words. The aim is to model semantics of syntac-
tic bi-grams as projections in lexically-driven sub-
spaces. In order to extend this approach to handle
entire sentences, we need to convert them in syn-
tactic representations compatible with the compo-
sitional operators proposed. A dependency gram-
mar based formalism captures binary syntactic re-
lations between the words, expressed as nodes in
a dependency graph. Given a sentence, the parse
structure is acquired and different triples (w1, w2, r)
are generated, where w1 is the relation governor, w2

is the dependent and r is the grammatical type. In
(Croce et al., 2012c) a simple approach is defined,
and it is inspired by the notion of Soft Cardinal-
ity, (Jimenez et al., 2012). Given a triple set T =
{t1, . . . , tn} extracted from a sentence S and a sim-
ilarity sim(ti, tj), the Soft Cardinality is estimated
as |S|′sim u

∑|T |
ti

(
∑|T |

tj
sim(ti, tj)

p)−1, where pa-
rameter p controls the “softness” of the cardinality:
with p = 1 element similarities are unchanged while
higher value will tend to the Classical Cardinality
measure. Notice that differently from the previous
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usage of the Soft Cardinality notion, we did not ap-
ply it to sets of individual words, but to the sets of
dependencies (i.e. triples) derived from the two sen-
tences. The sim function here can be thus replaced
by any compositional operator among the ones dis-
cussed in (Annesi et al., 2012). Given two sen-
tences, higher Soft Cardinality values mean that the
elements in both sentences (i.e. triples) are different,
while the lower values mean that common triples are
identical or very similar, suggesting that sentences
contain the same kind of information. Given the sets
of triples A and B extracted from the two candidate
sentences, our approach estimates a syntactically re-
stricted soft cardinality operator, the Syntactic Soft
Cardinality (SSC) as SSC(A, B) = 2|A∩B|′

|A|′+|B|′ , as
a “soft approximation” of Dice’s coefficient calcu-
lated on both sets1.

capture::v

VBNROOTmarine::n

NNSPREP-BYmexico::n

NNPPREP-IN

lord::n

NNNSUBJdrug::n

NNNN

Figure 1: Lexical Centered Tree (LCT)

Convolution kernel-based similarity. The similar-
ity function is here the Smoothed Partial Tree Ker-
nel (SPTK) proposed in (Croce et al., 2011). SPTK
is a generalized formulation of a Convolution Ker-
nel function (Haussler, 1999), i.e. the Tree Kernel
(TK), by extending the similarity between tree struc-
tures with a function of node similarity. The main
characteristic of SPTK is its ability to measure the
similarity between syntactic tree structures, which
are partially similar and whose nodes can differ but
are semantically related. One of the most important
outcomes is that SPTK allows “embedding” exter-
nal lexical information in the kernel function only
through a similarity function among lexical nodes,
namely words. Moreover, SPTK only requires this
similarity to be a valid kernel itself. This means that
such lexical information can be derived from lexical
resources or it can be automatically acquired by a
Word Space. The SPTK is applied to a specific tree
representation that allowed to achieve state-of-the-

1Notice that, since the intersection |A ∩ B|′ tends to be too
strict, we approximate it from the union cardinality estimation
|A|′ + |B|′ − |A ∪B|′.

art results on several complex semantic tasks, such
as Question Classification (Croce et al., 2011) or
Verb Classification (Croce et al., 2012b): each sen-
tence is represented through the Lexical Centered
Tree (LCT), as shown in Figure 1 for the sentence
“Drug lord captured by Marines in Mexico”. It is de-
rived from the dependency parse tree: nodes reflect
lexemes and edges encode their syntactic dependen-
cies; then, we add to each lexical node two leftmost
children, encoding the grammatical function and the
POS-Tag respectively.
Combining STSs with SV Regression The similar-
ity functions described above provide scores captur-
ing different linguistic aspects and an effective way
to combine such information is made available by
Support Vector (SV) regression, described in (Smola
and Schölkopf, 2004). The idea is to learn a higher
level model by weighting scores according to spe-
cific needs implicit in training data. Given similar-
ity scores ~xi for the i-th sentence pair, the regressor
learns a function yi = f(~xi), where yi is the score
provided by human annotators. Moreover, since the
combination of kernel is still a kernel, we can ap-
ply polynomial and RBF kernels (Shawe-Taylor and
Cristianini, 2004) to the regressor.

2.2 Semantic constraints for the Typed STS

Typed STS insists on records, i.e. sequence of typed
textual fields, rather than on individual sentences.
Our aim is to model the typed task with the same
spirit as the core one, through a combination of
different linguistic evidences, which are modeled
through independent kernels. The overall similarity
model described in 2.1 has been thus applied also to
the typed task according to two main model changes:

• Semantic Modeling. Although SV regression
is still applied to model one similarity type,
each type depends on a subset of the multiple
evidences originating from individual fields:
one similarity type acts as a filter on the set of
fields, on which kernels will be then applied.

• Learning Constraints. The selected fields pro-
vide different evidences to the regression steps.
Correspondingly, each similarity type corre-
sponds to specific kernels and features for its
fields. These constraints are applied by select-
ing features and kernels for each field.
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dcTitle dcSubject dcDescription dcCreator dcDate dcSource

author - - PER ∗ - -
people inv. PER PER PER - - -
time DATE DATE DATE - ∗ -
location LOC LOC LOC - - -
event N , V , N ∪ V N , V , N ∪ V N , V , N ∪ V - - -
subject N , V , J , N ∪ J ∪ V N , V , J , N ∪ J ∪ V - - - -
description - - N , V , J , N ∪ J ∪ V - - -
general + + + ∗ ∗ ∗

Table 1: Filtering Schema adopted for the Typed STS task.

Notice how some kernels loose significance in the
typed STS task. Syntactic information is no useful
so that no tree kernel and compositional kernel is
applied here. Most of the fields are non-sentential2.
Moreover, not all morpho-syntactic information are
extracted as feature from some fields. Filters usu-
ally specify some syntactic categories or Named En-
tities (NEs): they are textual mentions to specific
real-world categories, such as of PERSONS (PER),
LOCATIONS (LOC) or DATES. They are detected
in a field and made available as feature to the cor-
responding kernel: this introduces a bias on typed
measures and emphasizes specific semantic aspects
(e.g. places LOC or persons PER, in location or au-
thor measures, respectively). For example, in the
sentence “The chemist R.S. Hudson began manufac-
turing soap in the back of his small shop in West
Bomich in 1837”, when POS tag filters are applied,
only verbs (V), nouns (N) or adjectives (J) can be
selected as features. This allows to focus on spe-
cific actions, e.g. the verb “manufacture”, entities,
e.g. nouns “soap” and “shop”, or some properties,
e.g. the adjective “small”. When Named Entity cat-
egories are used, a mention to a person like “R.S.
Hudson” or to a location, e.g. “West Bomich’, or
date, e.g. “1837”, can be useful to model the the
person involved, the location or time similarity mea-
sures, respectively.

The Semantic Modeling and the Learning Con-
straints system adopted to model the Typed STS
task are defined in Table 1. There rows are the
different target similarities, while columns indicate
document fields, such as dcTitle, dcSubject,
dcDescription, dcCreator, dcDate and

2The dcDescription is also made of multiple sen-
tences and it reduces the applicability of SPTK and SSC: parse
trees have no clear alignment.

dcSource, as described in the *SEM 2013 shared
task description. Each entry in the Table represents
the feature set for that fields, i.e. POS tags (i.e. V ,
N , J) or Named Entity classes. The “∗” symbol
corresponds to all features, i.e. no restriction is
applied to any POS tag or NE class. Finally, the
general similarity function makes use of every NE
class and POS tags adopted for that field in any
measure, as expressed by the special notation +, i.e.
“all of the above features”.

Every feature set denoted in the Table 1 sup-
ports the application of a lexical kernel, such as
the LO described in Section 2.1. When different
POS tags are requested (such as N and V ) mul-
tiple feature sets and kernels are made available.
The “-” symbol means that the source field is fully
neglected from the SV regression. As an exam-
ple, the SV regressor for the location similarity
has been acquired considering the fields dcTitle,
dcSubject, dcDescription. Only features used
for the kernel correspond to LOCATIONs (LOC). For
each of the three feature, the LO and SUM simi-
larity function has been applied, giving rise to an
input 6-dimensional feature space for the regressor.
Differently, in the subject similarity, nouns, adjec-
tives and verbs are the only features adopted from
the fields dcSubject, dcTitle, so that 8 feature
sets are used to model these fields, giving rise to a
16-dimensional feature space.

3 Results and discussion

This section describes results obtained in the *SEM
2013 shared task. The experimental setup of differ-
ent similarity functions is described in Section 3.1.
Results obtained over the Core STS task and Typed
STS task are described in Section 3.2 and 3.3.
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3.1 Experimental setup

In all experiments, sentences are processed with the
Stanford CoreNLP3 system, for Part-of-Speech tag-
ging, lemmatization, named entity recognition4 and
dependency parsing.

In order to estimate the basic lexical similarity
function employed in the SUM, SSC and SPTK
operators, a co-occurrence Word Space is acquired
through the distributional analysis of the UkWaC
corpus (Baroni et al., 2009), a Web document col-
lection made of about 2 billion tokens. The same
setting of (Croce et al., 2012a) has been adopted
for the space acquisition. The same setup described
in (Croce et al., 2012c) is applied to estimate the
SSC function. The similarity between pairs of syn-
tactically restricted word compound is evaluated
through a Symmetric model: it selects the best 200
dimensions of the space, selected by maximizing the
component-wise product of each compound as in
(Annesi et al., 2012), and combines the similarity
scores measured in each couple subspace with the
product function. The similarity score in each sub-
space is obtained by summing the cosine similarity
of the corresponding projected words. The “soft car-
dinality” is estimated with the parameter p = 2.

The estimation of the semantically Smoothed Par-
tial Tree Kernel (SPTK) is made available by an ex-
tended version of SVM-LightTK software5 (Mos-
chitti, 2006) implementing the smooth matching
between tree nodes. Similarity between lexical
nodes is estimated as the cosine similarity in the
co-occurrence Word Space described above, as in
(Croce et al., 2011). Finally, SVM-LightTK is em-
ployed for the SV regression learning to combine
specific similarity functions.

3.2 Results over the Core STS

In the Core STS task, the resulting text similarity
score is measured by the regressor: each sentence
pair from all datasets is modeled according to a 13
dimensional feature space derived from the different
functions introduced in Section 2.1, as follows.

The first 5 dimensions are derived by applying
3
http://nlp.stanford.edu/software/corenlp.shtml

4The TIME and DURATION classes are collapsed with
DATE, while the PERSON and LOCATION classes are consid-
ered without any modification.

5
http://disi.unitn.it/moschitti/Tree-Kernel.htm

Run1 Run2 Run3 Run∗1
headlines .635 (50) .651 (39) .603 (58) .671 (30)
OnWN .574 (33) .561 (36) .549 (40) .637 (25)
FNWN .352 (35) .358 (32) .327 (44) .459 (07)
SMT .328 (39) .310 (49) .319 (44) .348 (21)
Mean .494 (37) .490 (42) .472 (52) .537 (19)

Table 2: Results over the Core STS task

the LO operator over lemmatized words in the noun,
verb, adjective and adverb POS categories: 4 ker-
nels look at individual categories, while a fifth ker-
nel insists on the union of all POS. A second set of
5 dimensions is derived by the same application of
the SUM operator to the same syntactic selection of
features. The SPTK is then applied to estimate the
similarity between the LCT structures derived from
the dependency parse trees of sentences. Then, the
SPTK is applied to derive an additional score with-
out considering any specific similarity function be-
tween lexical nodes; in this setting, the SPTK can be
considered as a traditional Partial Tree Kernel (Mos-
chitti, 2006), in order to capture a more strict syn-
tactical similarity between texts. The last score is
generated by applying the SSC operator.

We participated in the *SEM challenge with three
different runs. The main difference between each
run is the dataset employed in the training phase
and the employed kernel within the regressor. With-
out any specific information about the test datasets,
a strategy to prevent the regressor to over-fit train-
ing material has been applied. We decided to use
a training dataset that achieved the best results over
datasets radically different from the training material
in the STS challenge of Semeval 2012. In particular,
for the FNWN and OnWN datasets, we arbitrarily
selected the training material achieving best results
over the 2012 surprise.OnWN; for the headlines and
SMT datasets we maximized performance training
over surprise.SMTnews. In Run1 the SVM regres-
sor is trained using dataset combinations providing
best results according to the above criteria: MSR-
par, MSRvid, SMTeuroparl and surprise.OnWN are
employed against FNWN and OnWN; MSRpar,
SMTeuroparl and surprise.SMTnews are employed
against headline and SMT. A linear kernel is ap-
plied when training the regressor. In Run2, differ-
ently from the previous one, the SVM regressor is
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rank general author people inv. time location event subject description mean
Run1 1 .7981 .8158 .6922 .7471 .7723 .6835 .7875 .7996 .7620
Run2 2 .7564 .8076 .6758 .7090 .7351 .6623 .7520 .7745 .7341

Table 3: Results over the Typed STS task

trained using all examples from the training datasets.
A linear kernel is applied when training the regres-
sor. Finally, in Run3 the same training dataset selec-
tion schema of Run1 is applied and a gaussian kernel
is employed in the regressor.

Table 2 reports the general outcome for the UN-
ITOR systems in term of Pearson Correlation. The
best system, based on the linear kernel, ranks around
the 35th position (out of 90 systems), that reflects
the mean rank of all the systems in the ranking of
the different datasets. The gaussian kernel, em-
ployed for the Run3 does not provide any contri-
bution, as it ranks 50th. We think that the main
reason of these results is due to the intrinsic dif-
ferences between training and testing datasets that
have been heuristically coupled. This is first mo-
tivated by lower rank achieved by Run2. More-
over, it is in line with the experimental findings of
(Croce et al., 2012a), where a performance drop is
shown when the regressor is trained over data that
is not constrained over the corresponding source.
In Run∗1 we thus optimized the system by manu-
ally selecting the training material that does provides
best performance on the test dataset: MSRvid, SM-
Teuroparl and surprise.OnWN are employed against
OnWN; surprise.OnWN against FNWN, SMTeu-
roparl against headlines; SMTeuroparl and sur-
prise.SMTnews against SMT. A linear kernel within
the regressor allow to reach the 19th position, even
reducing the complexity of the representation to a
five dimensional feature space: LO and SUM with-
out any specific filter, SPTK, PTK and SSC.

3.3 Results over the Typed STS

SV regression has been also applied to the Typed
STS task through seven type-specific regressors plus
a general one. Each SV regressor insists on the LO
and SUM kernel as applied to the features in Table
1. Notice that it was mainly due to the lack of rich
syntactic structures in almost all fields.

As described in Section 2.2, a specific modeling
strategy has been applied to derive the feature space

of each target similarity. For example, the regres-
sor associated with the event similarity score is fed
with 18 scores. Each of the 3 fields, , i.e. dcTitle,
dcSubject and dcDescription, provides the 2
kernels (LO and SUM) with 3 feature sets (i.e. N ,
V and N ∪ V ). In particular, the general simi-
larity function considers all extracted features for
each field, giving rise to a space of 51 dimensions.
We participated in the task with two different runs,
whose main difference is the adopted kernel within
the SV regressor. In Run1, a linear kernel is used,
while in Run2 a RBF kernel is applied.

Table 3 reports the general outcome for the UN-
ITOR system. The adopted semantic modeling, as
well as the selection of the proper information, e.g.
the proper named entity, allows the system to rank
in the 1st and 2nd positions (out of 18 systems). The
proposed selection schema in Table 1 is very effec-
tive, as confirmed by the results for almost all typed
similarity scores. Again, the RBF kernel does not
improve result over the linear kernel. The impact
of the proposed approach can be noticed for very
specific scores, such as time and location, especially
for text pairs where structured information is absent,
such as in the dcDate field. Moreover, the regres-
sor is not affected by the differences between train-
ing and test dataset as for the previous Core STS
task. A deep result analysis showed that some simi-
larity scores are not correctly estimated within pairs
showing partial similarities. For example, the events
or actions typed similarity is overestimated for the
texts pairs “The Octagon and Pavilions, Pavilion
Garden, Buxton, c 1875” and “The Beatles, The Oc-
tagon, Pavillion Gardens, St John’s Road, Buxton,
1963” because they mention the same location (i.e.
“Pavillion Gardens”).

Acknowledgements This work has been partially
supported by the Regione Lazio under the project
PROGRESS-IT (FILAS-CR-2011-1089) and the
Italian Ministry of Industry within the “Industria
2015” Framework, project DIVINO (MI01 00234).

64



References
Eneko Agirre, Daniel Cer, Mona Diab, and Aitor

Gonzalez-Agirre. 2012. Semeval-2012 task 6: A pilot
on semantic textual similarity. In *SEM 2012, pages
385–393, Montréal, Canada, 7-8 June.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. *sem 2013 shared
task: Semantic textual similarity, including a pilot on
typed-similarity. In *SEM 2013: The Second Joint
Conference on Lexical and Computational Semantics.
Association for Computational Linguistics.

Paolo Annesi, Valerio Storch, and Roberto Basili. 2012.
Space projections as distributional models for seman-
tic composition. In CICLing (1), Lecture Notes in
Computer Science, pages 323–335. Springer.

Carmen Banea, Samer Hassan, Michael Mohler, and
Rada Mihalcea. 2012. Unt: A supervised synergistic
approach to semantic text similarity. In *SEM 2012,
pages 635–642, Montréal, Canada, 7-8 June. Associa-
tion for Computational Linguistics.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and
Eros Zanchetta. 2009. The wacky wide web: a
collection of very large linguistically processed web-
crawled corpora. Language Resources and Evalua-
tion, 43(3):209–226.

Danilo Croce and Daniele Previtali. 2010. Manifold
learning for the semi-supervised induction of framenet
predicates: An empirical investigation. In Proceed-
ings of the GEMS 2010 Workshop, pages 7–16, Upp-
sala, Sweden.

Danilo Croce, Alessandro Moschitti, and Roberto Basili.
2011. Structured lexical similarity via convolution
kernels on dependency trees. In Proceedings of
EMNLP, Edinburgh, Scotland, UK.

Danilo Croce, Paolo Annesi, Valerio Storch, and Roberto
Basili. 2012a. Unitor: Combining semantic text simi-
larity functions through sv regression. In *SEM 2012,
pages 597–602, Montréal, Canada, 7-8 June.
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Abstract

The paper outlines the work carried out at
NTNU as part of the *SEM’13 shared task
on Semantic Textual Similarity, using an ap-
proach which combines shallow textual, dis-
tributional and knowledge-based features by
a support vector regression model. Feature
sets include (1) aggregated similarity based
on named entity recognition with WordNet
and Levenshtein distance through the calcula-
tion of maximum weighted bipartite graphs;
(2) higher order word co-occurrence simi-
larity using a novel method called “Multi-
sense Random Indexing”; (3) deeper seman-
tic relations based on the RelEx semantic
dependency relationship extraction system;
(4) graph edit-distance on dependency trees;
(5) reused features of the TakeLab and DKPro
systems from the STS’12 shared task. The
NTNU systems obtained 9th place overall (5th
best team) and 1st place on the SMT data set.

1 Introduction

Intuitively, two texts are semantically similar if they
roughly mean the same thing. The task of formally
establishing semantic textual similarity clearly is
more complex. For a start, it implies that we have
a way to formally represent the intended meaning of
all texts in all possible contexts, and furthermore a
way to measure the degree of equivalence between
two such representations. This goes far beyond the
state-of-the-art for arbitrary sentence pairs, and sev-
eral restrictions must be imposed. The Semantic
Textual Similarity (STS) task (Agirre et al., 2012,
2013) limits the comparison to isolated sentences

only (rather than complete texts), and defines sim-
ilarity of a pair of sentences as the one assigned by
human judges on a 0–5 scale (with 0 implying no
relation and 5 complete semantic equivalence). It is
unclear, however, to what extent two judges would
agree on the level of similarity between sentences;
Agirre et al. (2012) report figures on the agreement
between the authors themselves of about 87–89%.

As in most language processing tasks, there are
two overall ways to measure sentence similarity, ei-
ther by data-driven (distributional) methods or by
knowledge-driven methods; in the STS’12 task the
two approaches were used nearly equally much.
Distributional models normally measure similarity
in terms of word or word co-occurrence statistics, or
through concept relations extracted from a corpus.
The basic strategy taken by NTNU in the STS’13
task was to use something of a “feature carpet bomb-
ing approach” in the way of first automatically ex-
tracting as many potentially useful features as possi-
ble, using both knowledge and data-driven methods,
and then evaluating feature combinations on the data
sets provided by the organisers of the shared task.

To this end, four different types of features were
extracted. The first (Section 2) aggregates similar-
ity based on named entity recognition with WordNet
and Levenshtein distance by calculating maximum
weighted bipartite graphs. The second set of features
(Section 3) models higher order co-occurrence sim-
ilarity relations using Random Indexing (Kanerva
et al., 2000), both in the form of a (standard) sliding
window approach and through a novel method called
“Multi-sense Random Indexing” which aims to sep-
arate the representation of different senses of a term
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from each other. The third feature set (Section 4)
aims to capture deeper semantic relations using ei-
ther the output of the RelEx semantic dependency
relationship extraction system (Fundel et al., 2007)
or an in-house graph edit-distance matching system.
The final set (Section 5) is a straight-forward gath-
ering of features from the systems that fared best in
STS’12: TakeLab from University of Zagreb (Šarić
et al., 2012) and DKPro from Darmstadt’s Ubiqui-
tous Knowledge Processing Lab (Bär et al., 2012).

As described in Section 6, Support Vector Regres-
sion (Vapnik et al., 1997) was used for solving the
multi-dimensional regression problem of combining
all the extracted feature values. Three different sys-
tems were created based on feature performance on
the supplied development data. Section 7 discusses
scores on the STS’12 and STS’13 test data.

2 Compositional Word Matching

Compositional word matching similarity is based
on a one-to-one alignment of words from the two
sentences. The alignment is obtained by maximal
weighted bipartite matching using several word sim-
ilarity measures. In addition, we utilise named entity
recognition and matching tools. In general, the ap-
proach is similar to the one described by Karnick
et al. (2012), with a different set of tools used. Our
implementation relies on the ANNIE components in
GATE (Cunningham et al., 2002) and will thus be
referred to as GateWordMatch.

The processing pipeline for GateWordMatch
is: (1) tokenization by ANNIE English Tokeniser,
(2) part-of-speech tagging by ANNIE POS Tagger,
(3) lemmatization by GATE Morphological Anal-
yser, (4) stopword removal, (5) named entity recog-
nition based on lists by ANNIE Gazetteer, (6) named
entity recognition based on the JAPE grammar by
the ANNIE NE Transducer, (7) matching of named
entities by ANNIE Ortho Matcher, (8) computing
WordNet and Levenstein similarity between words,
(9) calculation of a maximum weighted bipartite
graph matching based on similarities from 7 and 8.

Steps 1–4 are standard preprocessing routines.
In step 5, named entities are recognised based on
lists that contain locations, organisations, compa-
nies, newspapers, and person names, as well as date,
time and currency units. In step 6, JAPE grammar

rules are applied to recognise entities such as ad-
dresses, emails, dates, job titles, and person names
based on basic syntactic and morphological features.
Matching of named entities in step 7 is based on
matching rules that check the type of named entity,
and lists with aliases to identify entities as “US”,
“United State”, and “USA” as the same entity.

In step 8, similarity is computed for each pair
of words from the two sentences. Words that are
matched as entities in step 7 get a similarity value
of 1.0. For the rest of the entities and non-entity
words we use LCH (Leacock and Chodorow, 1998)
similarity, which is based on a shortest path between
the corresponding senses in WordNet. Since word
sense disambiguation is not used, we take the simi-
larity between the nearest senses of two words. For
cases when the WordNet-based similarity cannot be
obtained, a similarity based on the Levenshtein dis-
tance (Levenshtein, 1966) is used instead. It is nor-
malised by the length of the longest word in the pair.
For the STS’13 test data set, named entity matching
contributed to 4% of all matched word pairs; LCH
similarity to 61%, and Levenshtein distance to 35%.

In step 9, maximum weighted bipartite matching
is computed using the Hungarian Algorithm (Kuhn,
1955). Nodes in the bipartite graph represent words
from the sentences, and edges have weights that cor-
respond to similarities between tokens obtained in
step 8. Weighted bipartite matching finds the one-to-
one alignment that maximizes the sum of similarities
between aligned tokens. Total similarity normalised
by the number of words in both sentences is used as
the final sentence similarity measure.

3 Distributional Similarity

Our distributional similarity features use Random
Indexing (RI; Kanerva et al., 2000; Sahlgren, 2005),
also employed in STS’12 by Tovar et al. (2012);
Sokolov (2012); Semeraro et al. (2012). It is an
efficient method for modelling higher order co-
occurrence similarities among terms, comparable to
Latent Semantic Analysis (LSA; Deerwester et al.,
1990). It incrementally builds a term co-occurrence
matrix of reduced dimensionality through the use of
a sliding window and fixed size index vectors used
for training context vectors, one per unique term.

A novel variant, which we have called “Multi-
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sense Random Indexing” (MSRI), inspired by
Reisinger and Mooney (2010), attempts to capture
one or more “senses” per unique term in an unsu-
pervised manner, each sense represented as an indi-
vidual vector in the model. The method is similar to
classical sliding window RI, but each term can have
multiple context vectors (referred to as “sense vec-
tors” here) which are updated individually. When
updating a term vector, instead of directly adding the
index vectors of the neighbouring terms in the win-
dow to its context vector, the system first computes a
separate window vector consisting of the sum of the
index vectors. Then cosine similarity is calculated
between the window vector and each of the term’s
sense vectors. Each similarity score is in turn com-
pared to a set similarity threshold: if no score ex-
ceeds the threshold, the sentence vector is added as
a new separate sense vector for the term; if exactly
one score is above the threshold, the window vector
is added to that sense vector; and if multiple scores
are above the threshold, all the involved senses are
merged into one sense vector, together with the win-
dow vector. This accomplishes an incremental clus-
tering of senses in an unsupervised manner while re-
taining the efficiency of classical RI.

As data for training the models we used the
CLEF 2004–2008 English corpus (approx. 130M
words). Our implementation of RI and MSRI is
based on JavaSDM (Hassel, 2004). For classical
RI, we used stopword removal (using a customised
versions of the English stoplist from the Lucene
project), window size of 4+4, dimensionality set to
1800, 4 non-zeros, and unweighted index vector in
the sliding window. For MSRI, we used a simi-
larity threshold of 0.2, a vector dimensionality of
800, a non-zero count of 4, and window size of
5+5. The index vectors in the sliding window were
shifted to create direction vectors (Sahlgren et al.,
2008), and weighted by distance to the target term.
Rare senses with a frequency below 10 were ex-
cluded. Other sliding-window schemes, including
unweighted non-shifted vectors and Random Permu-
tation (Sahlgren et al., 2008), were tested, but none
outperformed the sliding-window schemes used.

Similarity between sentence pairs was calcu-
lated as the normalised maximal bipartite similar-
ity between term pairs in each sentence, resulting
in the following features: (1) MSRI-Centroid:

each term is represented as the sum of its sense
vectors; (2) MSRI-MaxSense: for each term
pair, the sense-pair with max similarity is used;
(3) MSRI-Context: for each term, its neigh-
bouring terms within a window of 2+2 is used as
context for picking a single, max similar, sense
from the target term to be used as its represen-
tation; (4) MSRI-HASenses: similarity between
two terms is computed by applying the Hungarian
Algorithm to all their possible sense pair mappings;
(5) RI-Avg: classical RI, each term is represented
as a single context vector; (6) RI-Hungarian:
similarity between two sentences is calculated us-
ing the Hungarian Algorithm. Alternatively, sen-
tence level similarity was computed as the cosine
similarity between sentence vectors composed of
their terms’ vectors. The corresponding features
are (1) RI-SentVectors-Norm: sentence vec-
tors are created by summing their constituent terms
(i.e., context vectors), which have first been normal-
ized; (2) RI-SentVectors-TFIDF: same as be-
fore, but TF*IDF weights are added.

4 Deeper Semantic Relations

Two deep strategies were employed to accompany
the shallow-processed feature sets. Two existing
systems were used to provide the basis for these fea-
tures, namely the RelEx system (Fundel et al., 2007)
from the OpenCog initiative (Hart and Goertzel,
2008), and an in-house graph-edit distance system
developed for plagiarism detection (Røkenes, 2013).

RelEx outputs syntactic trees, dependency graphs,
and semantic frames as this one for the sentence
“Indian air force to buy 126 Rafale fighter jets”:

Commerce buy:Goods(buy,jet)
Entity:Entity(jet,jet)
Entity:Name(jet,Rafale)
Entity:Name(jet,fighter)
Possibilities:Event(hyp,buy)
Request:Addressee(air,you)
Request:Message(air,air)
Transitive action:Beneficiary(buy,jet)

Three features were extracted from this: first, if
there was an exact match of the frame found in s1

with s2; second, if there was a partial match until the
first argument (Commerce buy:Goods(buy);
and third if there was a match of the frame category
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(Commerce buy:Goods).
In STS’12, Singh et al. (2012) matched Universal

Networking Language (UNL) graphs against each
other by counting matches of relations and univer-
sal words, while Bhagwani et al. (2012) calculated
WordNet-based word-level similarities and created
a weighted bipartite graph (see Section 2). The
method employed here instead looked at the graph
edit distance between dependency graphs obtained
with the Maltparser dependency parser (Nivre et al.,
2006). Edit distance is the defined as the minimum
of the sum of the costs of the edit operations (in-
sertion, deletion and substitution of nodes) required
to transform one graph into the other. It is approx-
imated with a fast but suboptimal algorithm based
on bipartite graph matching through the Hungarian
algorithm (Riesen and Bunke, 2009).

5 Reused Features

The TakeLab ‘simple’ system (Šarić et al., 2012) ob-
tained 3rd place in overall Pearson correlation and
1st for normalized Pearson in STS’12. The source
code1 was used to generate all its features, that is,
n-gram overlap, WordNet-augmented word overlap,
vector space sentence similarity, normalized differ-
ence, shallow NE similarity, numbers overlap, and
stock index features.2 This required the full LSA
vector space models, which were kindly provided
by the TakeLab team. The word counts required for
computing Information Content were obtained from
Google Books Ngrams.3

The DKPro system (Bär et al., 2012) obtained first
place in STS’12 with the second run. We used the
source code4 to generate features for the STS’12
and STS’13 data. Of the string-similarity features,
we reused the Longest Common Substring, Longest
Common Subsequence (with and without normaliza-
tion), and Greedy String Tiling measures. From the
character/word n-grams features, we used Charac-
ter n-grams (n = 2, 3, 4), Word n-grams by Con-
tainment w/o Stopwords (n = 1, 2), Word n-grams

1http://takelab.fer.hr/sts/
2We did not use content n-gram overlap or skip n-grams.
3http://storage.googleapis.com/books/

ngrams/books/datasetsv2.html, version 20120701,
with 468,491,999,592 words

4http://code.google.com/p/
dkpro-similarity-asl/

by Jaccard (n = 1, 3, 4), and Word n-grams by Jac-
card w/o Stopwords (n = 2, 4). Semantic similarity
measures include WordNet Similarity based on the
Resnik measure (two variants) and Explicit Seman-
tic Similarity based on WordNet, Wikipedia or Wik-
tionary. This means that we reused all features from
DKPro run 1 except for Distributional Thesaurus.

6 Systems

Our systems follow previous submissions to the STS
task (e.g., Šarić et al., 2012; Banea et al., 2012) in
that feature values are extracted for each sentence
pair and combined with a gold standard score in or-
der to train a Support Vector Regressor on the result-
ing regression task. A postprocessing step guaran-
tees that all scores are in the [0, 5] range and equal 5
if the two sentences are identical. SVR has been
shown to be a powerful technique for predictive data
analysis when the primary goal is to approximate a
function, since the learning algorithm is applicable
to continuous classes. Hence support vector regres-
sion differs from support vector machine classifica-
tion where the goal rather is to take a binary deci-
sion. The key idea in SVR is to use a cost function
for building the model which tries to ignore noise in
training data (i.e., data which is too close to the pre-
diction), so that the produced model in essence only
depends on a more robust subset of the extracted fea-
tures.

Three systems were created using the supplied
annotated data based on Microsoft Research Para-
phrase and Video description corpora (MSRpar and
MSvid), statistical machine translation system out-
put (SMTeuroparl and SMTnews), and sense map-
pings between OntoNotes and WordNet (OnWN).
The first system (NTNU1) includes all TakeLab and
DKPro features plus the GateWordMatch feature
with the SVR in its default setting.5 The training
material consisted of all annotated data available,
except for the SMT test set, where it was limited to
SMTeuroparl and SMTnews. The NTNU2 system is
similar to NTNU1, except that the training material
for OnWN and FNWN excluded MSRvid and that
the SVR parameter C was set to 200. NTNU3 is
similar to NTNU1 except that all features available
are included.

5RBF kernel, ε = 0.1, C = #samples, γ = 1
#features
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Data NTNU1 NTNU2 NTNU3

MSRpar 0.7262 0.7507 0.7221
MSRvid 0.8660 0.8882 0.8662
SMTeuroparl 0.5843 0.3386 0.5503
SMTnews 0.5840 0.5592 0.5306
OnWN 0.7503 0.6365 0.7200

mean 0.7022 0.6346 0.6779

Table 1: Correlation score on 2012 test data

7 Results

System performance is evaluated using the Pearson
product-moment correlation coefficient (r) between
the system scores and the human scores. Results on
the 2012 test data (i.e., 2013 development data) are
listed in Table 1. This basically shows that except
for the GateWordMatch, adding our other fea-
tures tends to give slightly lower scores (cf. NTNU1
vs NTNU3). In addition, the table illustrates that op-
timizing the SVR according to cross-validated grid
search on 2012 training data (here C = 200), rarely
pays off when testing on unseen data (cf. NTNU1
vs NTNU2).

Table 2 shows the official results on the test data.
These are generally in agreement with the scores on
the development data, although substantially lower.
Our systems did particularly well on SMT, holding
first and second position, reasonably good on head-
lines, but not so well on the ontology alignment data,
resulting in overall 9th (NTNU1) and 12th (NTNU3)
system positions (5th best team). Table 3 lists the
correlation score and rank of the ten best individual
features per STS’13 test data set, and those among
the top-20 overall, resulting from linear regression
on a single feature. Features in boldface are gen-
uinely new (i.e., described in Sections 2–4).

Overall the character n-gram features are the most
informative, particularly for HeadLine and SMT.
The reason may be that these not only capture word
overlap (Ahn, 2011), but also inflectional forms and
spelling variants.

The (weighted) distributional similarity features
based on NYT are important for HeadLine and SMT,
which obviously contain sentence pairs from the
news genre, whereas the Wikipedia based feature is
more important for OnWN and FNWN. WordNet-
based measures are highly relevant too, with variants

NTNU1 NTNU2 NTNU3
Data r n r n r n

Head 0.7279 11 0.5909 59 0.7274 12
OnWN 0.5952 31 0.1634 86 0.5882 32
FNWN 0.3215 45 0.3650 27 0.3115 49
SMT 0.4015 2 0.3786 9 0.4035 1

mean 0.5519 9 0.3946 68 0.5498 12

Table 2: Correlation score and rank on 2013 test data

relying on path length outperforming those based on
Resnik similarity, except for SMT.

As is to be expected, basic word and lemma uni-
gram overlap prove to be informative, with overall
unweighted variants resulting in higher correlation.
Somewhat surprisingly, higher order n-gram over-
laps (n > 1) seem to be less relevant. Longest com-
mon subsequence and substring appear to work par-
ticularly well for OnWN and FNWN, respectively.
GateWordMatch is highly relevant too, in

agreement with earlier results on the development
data. Although treated as a single feature, it is ac-
tually a combination of similarity features where an
appropriate feature is selected for each word pair.
This “vertical” way of combining features can po-
tentially provide a more fine-grained feature selec-
tion, resulting in less noise. Indeed, if two words are
matching as named entities or as close synonyms,
less precise types of features such as character-based
and data-driven similarity should not dominate the
overall similarity score.

It is interesting to find that MSRI outper-
forms both classical RI and ESA (Gabrilovich and
Markovitch, 2007) on this task. Still, the more ad-
vanced features, such as MSRI-Context, gave in-
ferior results compared to MSRI-Centroid. This
suggests that more research on MSRI is needed
to understand how both training and retrieval can
be optimised. Also, LSA-based features (see
tl.weight-dist-sim-wiki) achieve better
results than both MSRI, RI and ESA. Then again,
larger corpora were used for training the LSA mod-
els. RI has been shown to be comparable to LSA
(Karlgren and Sahlgren, 2001), and since a relatively
small corpus was used for training the RI/MSRI
models, there are reasons to believe that better
scores can be achieved by both RI- and MSRI-based
features by using more training data.
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HeadLine OnWN FNWN SMT Mean
Features r n r n r n r n r n

CharacterNGramMeasure-3 0.72 2 0.39 2 0.44 3 0.70 1 0.56 1
CharacterNGramMeasure-4 0.69 3 0.38 5 0.45 2 0.67 6 0.55 2
CharacterNGramMeasure-2 0.73 1 0.37 9 0.34 10 0.69 2 0.53 3
tl.weight-dist-sim-wiki 0.58 14 0.39 3 0.45 1 0.67 5 0.52 4
tl.wn-sim-lem 0.69 4 0.40 1 0.41 5 0.59 10 0.52 5
GateWordMatch 0.67 8 0.37 11 0.34 11 0.60 9 0.50 6
tl.dist-sim-nyt 0.69 5 0.34 28 0.26 23 0.65 8 0.49 7
tl.n-gram-match-lem-1 0.68 6 0.36 16 0.37 8 0.51 14 0.48 8
tl.weight-dist-sim-nyt 0.57 17 0.37 14 0.29 18 0.66 7 0.47 9
tl.n-gram-match-lc-1 0.68 7 0.37 10 0.32 13 0.50 17 0.47 10
MCS06-Resnik-WordNet 0.49 26 0.36 22 0.28 19 0.68 3 0.45 11
TWSI-Resnik-WordNet 0.49 27 0.36 23 0.28 20 0.68 4 0.45 12
tl.weight-word-match-lem 0.56 18 0.37 16 0.37 7 0.50 16 0.45 13
MSRI-Centroid 0.60 13 0.36 17 0.37 9 0.45 19 0.45 14
tl.weight-word-match-olc 0.56 19 0.38 8 0.32 12 0.51 15 0.44 15
MSRI-MaxSense 0.58 15 0.36 15 0.31 14 0.45 20 0.42 16
GreedyStringTiling-3 0.67 9 0.38 6 0.31 15 0.34 29 0.43 17
ESA-Wikipedia 0.50 25 0.30 38 0.32 14 0.54 12 0.42 18
WordNGramJaccard-1 0.64 10 0.37 12 0.25 25 0.33 30 0.40 19
WordNGramContainment-1-stopword 0.64 25 0.38 7 0.25 24 0.32 31 0.40 20
RI-Hungarian 0.58 16 0.33 31 0.10 34 0.42 22 0.36 24
RI-AvgTermTerm 0.56 20 0.33 32 0.11 33 0.37 28 0.34 25
LongestCommonSubstring 0.40 29 0.30 39 0.42 4 0.37 27 0.37 26
ESA-WordNet 0.11 43 0.30 40 0.41 6 0.49 18 0.33 29
LongestCommonSubsequenceNorm 0.53 21 0.39 4 0.19 27 0.18 37 0.32 30
MultisenseRI-ContextTermTerm 0.39 31 0.33 33 0.28 21 0.15 38 0.29 33
MultisenseRI-HASensesTermTerm 0.39 32 0.33 34 0.28 22 0.15 39 0.29 34
RI-SentVectors-Norm 0.34 35 0.35 26 -0.01 51 0.24 35 0.23 39
RelationSimilarity 0.31 39 0.35 27 0.24 26 0.02 41 0.23 40
RI-SentVectors-TFIDF 0.27 40 0.15 50 0.08 40 0.23 36 0.18 41
GraphEditDistance 0.33 38 0.25 46 0.13 31 -0.11 49 0.15 42

Table 3: Correlation score and rank of the best features

8 Conclusion and Future Work

The NTNU system can be regarded as continuation
of the most successful systems from the STS’12
shared task, combining shallow textual, distribu-
tional and knowledge-based features into a support
vector regression model. It reuses features from the
TakeLab and DKPro systems, resulting in a very
strong baseline.

Adding new features to further improve
performance turned out to be hard: only
GateWordMatch yielded improved perfor-
mance. Similarity features based on both classical
and innovative variants of Random Indexing were
shown to correlate with semantic textual similarity,

but did not complement the existing distributional
features. Likewise, features designed to reveal
deeper syntactic (graph edit distance) and semantic
relations (RelEx) did not add to the score.

As future work, we would aim to explore a
vertical feature composition approach similar to
GateWordMatch and contrast it with the “flat”
composition currently used in our systems.
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Abstract 

This paper describes our system submitted to 
*SEM 2013 Semantic Textual Similarity (STS) 
core task which aims to measure semantic si-
milarity of two given text snippets. In this 
shared task, we propose an interpolation STS 
model named Model_LIM integrating Fra-
meNet parsing information, which has a good 
performance with low time complexity com-
pared with former submissions. 

1 Introduction 

The goal of Semantic Textual Similarity (STS) is 
to measure semantic similarity of two given text 
snippets. STS has been recently proposed by 
Agirre et al. (2012) as a pilot task, which has close 
relationship with both tasks of Textual Entailment 
and Paraphrase, but not equivalent with them and it 
is more directly applicable to a number of NLP 
tasks such as Question Answering (Lin and Pantel, 
2001), Text Summarization (Hatzivassiloglou et al., 
1999), etc. And yet, the acquiring of sentence simi-
larity has been the most important and basic task in 
STS. Therefore, the STS core task of *SEM 2013 
conference, is formally defined as the degree of 
semantic equivalence between two sentences as 
follows: 

 
 5: completely equivalent, as they mean 

the same thing.  
 4: mostly equivalent, but some unimpor-

tant details differ. 

 3: roughly equivalent, but some impor-
tant information differs/missing. 

 2: not equivalent, but share some details.  
 1: not equivalent, but are on the same top-

ic. 
 0: on different topics. 

 
In this paper, we attempt to integrate semantic 

information into STS task besides the lower-level 
word and syntactic information. Evaluation results 
show that our STS model could benefit from se-
mantic parsing information of two text snippets. 
The rest of the paper is organized as follows: Sec-
tion 2 reviews prior researches on STS. Section 3 
illustrates three models measuring text similarity. 
Section 4 describes the linear interpolation model 
in detail. Section 5 provides the experimental re-
sults on the development set as well as the official 
results on all published datasets. Finally, Section 6 
summarizes our paper with direction for future 
works. 

2 Related Work  

Several techniques have been developed for STS. 
The typical approach to finding the similarity be-
tween two text segments is to use simple word 
matching method. In order to improve this simple 
method, Mihalcea et al. (2006) combine two cor-
pus-based and six knowledge-based measures of 
word similarity, but the cost of their algorithm is 
expensive. In contrast, our method treats words 
and texts in essentially the same way. 

In 2012 STS task, 35 teams participate and sub-
mit 88 runs. The two top scoring systems are UKP 
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and Takelab. The former system (Bär et al., 2012) 
uses a simple log-linear regression model to com-
bine multiple text similarity measures (related to 
content, structure and style) of varying complexity. 
While the latter system Takelab (Šarić et al., 2012) 
uses a support vector regression model with mul-
tiple features measuring word-overlap similarity 
and syntax similarity. 

The results of them score over 80%, far exceed-
ing that of a simple lexical baseline. But both share 
one characteristic: they integrate lexical and syntax 
information without semantic information, espe-
cially FrameNet parsing information. In addition, 
the complexity of these algorithms is very high. 
Therefore, we propose a different and simple mod-
el integrating FrameNet parsing information in this 
paper. 

3 Linear Interpolation Model  

In this paper, we propose a combination interpola-
tion model which is constructed by the results of 
three similarity models based on words, WordNet, 
FrameNet , which are called simWD(·), simWN(·) and 
simFN(·)  respectively. The overall similarity  
simLIM(S1, S2) between a pair of texts S1, S2 is com-
puted in the following equation: 
 
simLIM(S1, S2)= ω1 · simWD(S1, S2)  

+ω2 · simWN(S1, S2) +ω3 · simFN(S1, S2) 
(1)

 
In which, ω1, ω2 and ω3 are respectively the 
weights of the similarity models, i.e., ω1 +ω2 +ω3 
= 1; and they are all positive hyperparameters. 
Now, we describe the three models used in this 
equation. 

3.1 Similarity Based on Words 

This model is motivated by Vector Space Model 
(Salton et al., 1975). We present each sentence as a 
vector in the multidimensional token space. Let Sc 
denote the set of all words in the c-th text snippets 
(c = 1, 2); the words of bag is W = S1  S2. Hence, 
the similarity of a pair of sentences, formally ex-
pressed as: 

simWD(S1, S2) = 
∑  ௪భ, · ௪మ,

|ೈ|
సభ

ට∑ ௪భ,
మ|ೈ|

సభ  · ට∑ ௪మ,
మ|ೈ|

సభ

 
 
(2)

 
In which, we can find ݓ, א ܹሺ ݇ ൌ 1,2, … , |ܹ|; 

ܿ ൌ 1,2ሻ by solving: 
 

,ݓ ൌ ൜
1, ݂݅ ,ݓ א ܵ

0, ݁ݏ݅ݓݎ݄݁ݐ
 

 

 
(3)

From these two equations above, we can see the 
more identical words in a text pair, the more simi-
lar the two snippets are. Whereas, by intuition, 
many high-frequency functional words would not 
be helpful to the estimation of the similarity given 
in Eq.(2). Therefore, in the preprocessing stage, we 
compute the word frequencies per dataset, and then 
remove the high frequency words (top 1% in fre-
quency list) in each segment. 

3.2 Similarity Based on WordNet 

This model measures semantic similarity with the 
help of such resources that specifically encode re-
lations between words or concepts like WordNet 
(Fellbaum, 1998). We use the algorithms by Lin 
(1998) on WordNet to compute the similarity be-
tween two words a and b, which we call simLin(a, 
b). Let S1, S2 be the two word sets of two given text 
snippets, we use the method below: 
 
simWN(S1, S2)  

=
∑  ୫ୟ୶ ሺ௦ಽሺ௪భ, · ௪మ,ሻሻౣሺ|ೄభ|,|ೄమ|ሻ

సభ

୫୧୬ሺ|ௌభ|,|ௌమ|ሻ
 

 
(4)

In which, ݓ, א ܵሺܿ ൌ 1,2ሻ. In the numerator of 
Eq.(4),we try to max(·), avg(·) and mid(·) respec-
tively, then we find the max(·) is the best. 

3.3 Similarity Based on FrameNet 

FrameNet lexicon (Fillmore et al., 2003) is a rich 
linguistic resource containing expert knowledge 
about lexical and predicate-argument semantics in 
English. In a sentence, word or phrase tokens that 
evoke a frame are known as targets. Each frame 
definition also includes a set of frame elements, or 
roles, corresponding to different aspects of the 
concept represented by the frame, such as partici-
pants, props, and attributes. We use the term ar-
gument to refer to a sequence of word tokens 
annotated as filling a frame role. 

All the data are automatically parsed by 
SEMFOR1 (Das and Smith, 2012; Das and Smith, 

                                                           
1 See http://www.ark.cs.cmu.edu/SEMAFOR/. 
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2011). Figure 1 shows the parser output of a sen-
tence pair given in Microsoft Research Video De-
scription Corpus with annotated targets, frames 
and role argument pairs. It can be noticed that 
FrameNet parsing information could give some 
clues of the similarity of two given snippets and 
we think that integrating this information could 
improve the accuracy of STS task. For example, 
the sentences in the Figure 1 both illustrate “some-
body is moving”. However, our model depends on 
the precision of that parser. If it would be im-
proved, the results in STS task would be better. 

 

 
Figure 1: This is a pair of sentences in 2013 STS train-
ing data: (a) Girls are walking on the stage; (b) Women 
models are walking down a catwalk. The words in bold 
correspond to targets, which evoke semantic frames that 
are denoted in capital letters. Every frame is shown in a 
distinct color; the arguments of each frame are anno-
tated with the same color, and marked below the sen-
tence, at different levels; the spans marked in the block 
of dotted liens fulfill a specific role. 
 

For a given sentence Sc (c = 1,2) with a set of 
evoked frame Fc = < f1,f2, …, fn > (n is the number 
of evoked frames), a set of target word with each 
frame Tc = < t1, t2, …, tn > and the set of roles 
(namely, frame elements) Ըc = {Rc,1, Rc,2, …,Rc,n}, 
each frame contains one or more arguments  
Rc,i = {rj} (i = 1, 2, …, n; j is an integer that is 
greater or equal to zero). Take Figure 1 as an ex-
ample, 

 
T1 = <grils, walking>, 
F1 = <PEOPLE, SELF_MOTION>, 
Ը1 = {R1,1, R1,2 }, 

 R1,1 = {girls},  
R1,2 = {girls, on the stage}; 

 
T2 = <women, models, walking, down>, 
F2 = <PEOPLE, VEHICLE, 

SELF_MOTION, DIRECTION>, 

Ը2 = {R2,1, R2,2, R2,3, R2,4}, 
R2,1 = {women}, R2,2 = {models}, 
R2,3 = {women models}, R2,4 = {down}. 

 
In order to compute simFr(·) simply, we also use 

a interpolation model to combine the similarities 
based on target words simTg(·), frames simFr(·) and 
frame relations simRe(·). They are estimated as the 
following: 

When computing the similarity on target word 
level simTg(S1, S2), we also consider each sentence 
as a vector of target words as is seen in Eq.(5). 

 
T = T1   T2; 

simTg(S1, S2)= 
∑  ௧భ, · ௧మ,

|T|
సభ

ට∑ ௧భ,
మ||

సభ  · ට∑ ௧మ,
మ||

సభ

 

 

 
 
(5)

In which, we can find t, א ܶሺ ݇ ൌ 1,2, … , |ܶ|; 
ܿ ൌ 1,2ሻ by solving: 
 

,ݐ ൌ ቐ
1, ݂݅ ݂, א ,ݐ ࢊࢇ ܨ א ܶ

ሺ݆ ൌ 1,2, … , ሻ|ܨ|
0, ݁ݏ݅ݓݎ݄݁ݐ

 

 

 
(6)

Let simFr(S1, S2) be the similarity on frame level 
as shown in Eq.(7), with each sentence as a vector 
of frames. We define f1,i, f2,i like ݓ, in Eq.(3). 

 
F = F1   F2; 

simFr(S1, S2)= 
∑  భ, · మ,

|ಷ|
సభ

ට∑ భ,
మ|ಷ|

సభ  · ට∑ మ,
మ|ಷ|

సభ

 

 

 
 
(7)

Before computing the role relationship between 
the pair of sentences, we should find the contain-
ment relationship of each pair of frames in one 
sentence. We use a rule to define the containment 
relationship: 

Given two frames fc,i, fc,j in a sentence Sc, if  
,ݐ א ܴ, ሺ݅ ് ݆ሻ, then fc,j contains fc,i - and that is 
fc,i is a child of fc,j. After that we add them into the 
set of frame relationship ܴ݈ݐ  ൌ ൏ۦ ݂,

 , ݂,
 

ۧୀ
ே ൌ ,ۧୀ݈݁ݎۦ 

ே , ሺ݇   0ሻ. 
We consider the relationship between two 

frames in a sentence as a 2-tuple, and again use 
Figure 1 as an example, 

Rlt1 = ۦ<PEOPLE, SELF_MOTION>ۧ; 
Rlt2 = ۦ<PEOPLE, SELF_MOTION>,  

<VEHICLE, SELF_MOTION >ۧ. 
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Besides, we do exactly the same with both 
frames, namely ݈݁ݎ, א  ሺc ൌݐ݈ܴ  1,2ሻ  the value 
of ݈݁ݎ, is 1. The similarity on frame relationship 
level simRe(S1, S2) presents each sentence as a vec-
tor of roles as shown in Eq.(8).  

 
Rlt = Rlt1  Rlt2; 

simRe(S1, S2)= 
∑  భ, · మ,

|ೃ|
సభ

ට∑ భ,
మ|ೃ|

సభ  · ට∑ మ,
మ|ೃ|

సభ

 

 
(8)

Lastly, the shallow semantic similarity between 
two given sentences is computed as: 

 
SimFN(S1, S2)= α · simTg(S1, S2)  

+β · simFr(S1, S2) +γ · simRe(S1, S2) 
 

 
(9)

In which, α + β + γ =1, and they are all positive 
hyperparameters. As shown in Figure 2, we plot 
the Pearson correlation (vertical axis) against the 
combination of parameters (horizontal axis) in all 
2013 STS train data (2012 STS data). We notice 
that generally the Pearson correlation is fluctuates, 
and the correlation peak is found at 32, which in 
Table 1 is α=0.6, β=0.3, γ=0.1. 

 
ID α β γ ID α β γ ID α β γ 
1 1 0 0 23 0.7 0.2 0.1 45 0 0.4 0.6
2 0.9 0 0.1 24 0.6 0.2 0.2 46 0.5 0.5 0 
3 0.8 0 0.2 25 0.5 0.2 0.3 47 0.4 0.5 0.1
4 0.7 0 0.3 26 0.4 0.2 0.4 48 0.3 0.5 0.2
5 0.6 0 0.4 27 0.3 0.2 0.5 49 0.2 0.5 0.3
6 0.5 0 0.5 28 0.2 0.2 0.6 50 0.1 0.5 0.4
7 0.4 0 0.6 29 0.1 0.2 0.7 51 0 0.5 0.5
8 0.3 0 0.7 30 0 0.2 0.8 52 0.4 0.6 0 
9 0.2 0 0.8 31 0.7 0.3 0 53 0.3 0.6 0.1

10 0.1 0 0.9 32 0.6 0.3 0.1 54 0.2 0.6 0.2
11 0 0 1 33 0.5 0.3 0.2 55 0.1 0.6 0.3
12 0.9 0.1 0 34 0.4 0.3 0.3 56 0 0.6 0.4
13 0.8 0.1 0.1 35 0.3 0.3 0.4 57 0.3 0.7 0 
14 0.7 0.1 0.2 36 0.2 0.3 0.5 58 0.2 0.7 0.1
15 0.6 0.1 0.3 37 0.1 0.3 0.6 59 0.1 0.7 0.2
16 0.5 0.1 0.4 38 0 0.3 0.7 60 0 0.7 0.3
17 0.4 0.1 0.5 39 0.6 0.4 0 61 0.2 0.8 0 
18 0.3 0.1 0.6 40 0.5 0.4 0.1 62 0.1 0.8 0.1
19 0.2 0.1 0.7 41 0.4 0.4 0.2 63 0 0.8 0.2
20 0.1 0.1 0.8 42 0.3 0.4 0.3 64 0.1 0.9 0 
21 0 0.1 0.9 43 0.2 0.4 0.4 65 0 0.9 0.1
22 0.8 0.2 0 44 0.1 0.4 0.5 66 0 1 0 

Table 1: Different combinations of α, β, γ (α + β + 
γ =1) with ID that is horizontal axis in Figure 2. 
This table also apples to different combinations of 
ω1, ω2, ω3 (ω1 +ω2 +ω3 =1) with ID that is hori-
zontal axis in Figure 3. 

 
Figure 2: This graph shows the variation of Pearson 
correlation (vertical axis) in all 2013 STS train data 
(2012 STS data), with numbers (horizontal axis) indicat-
ing different combinations α, β, γ in Table 1 and when 
the value of result confidence is 100. The effect values 
are represented by a vertical line (i.e. ID = 32). 
 

4 Tuning Hyperparameters  

Eq.(1) is a very simple linear interpolation model, 
and we tune the hyperparameters on the whole 
2012 STS data. 

As shown in Figure 3,we plot the Pearson corre-
lation (vertical axis) for the different combination 
of parameters ω1, ω2 and ω3 (horizontal axis). We 
notice that generally the Pearson correlation fluc-
tuates with a dropping tendency in most cases, and 
the correlation peak presents at 13, which in Table 
1 is ω1=0.8, ω2=0.1, ω3=0.1. 

 

 
Figure 3: This graph shows the variation of Pearson 
correlation (vertical axis) in all 2013 STS train data 
(2012 STS data), with numbers (horizontal axis) indicat-
ing different combinations ω1, ω2, ω3 in Table 1 and 
when the value of result confidence is 100. The effect 
values are represented by a vertical line (i.e. ID = 13). 
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5 Results 

We submit four runs: the first one (Model_WD) is 
based on word similarity; the second one (Mod-
el_WN) which is only using the similarity based on 
WordNet, is submitted with the team name of 
SXULLL; the third one (Model_FN) which uses 
FrameNet similarity defined in Section 3.3; and the 
last one in which we combine the three similarities 
described in Section 4 together with an interpola-
tion model. In addition, we map our outputs mul-
tiply by five to the [0-5] range. 

It is worth notice that in the first model, we lo-
wercase all words and remove all numbers and 
punctuations. And in the third model, we extract all 
frame-semantic roles with SEMFOR. 

In the experiment, we use eight datasets totally - 
namely MSRpar, MSRvid, SMTeuroparl, OnWN, 
SMTnews, headlines, FNWN and SMT - with their 
gold standard file to evaluate the performance of 
the submitted systems. Evaluation is carried out 
using the official scorer which computes Pearson 
correlation between the human rated similarity 
scores and the system’s output. The final measure 
is the score that is weighted by the number of text 
pairs in each dataset (”Mean”). See Agirre et al. 
(2012) for a full description of the metrics. 

5.1 Experiments on STS 2012 Data 

There is no new train data in 2013, so we use 2012  
data as train data. From Table 2, 3 we can see that 
the Model_LIM has better performance than the 
other three models. 
 

 MSRpar MSRvid SMTeuroparl Mean
Model_WD 0.4532  0.4487   0.6467 0.5153
Model_WN 0.2718  0.5410  0.6225  0.4774
Model_FN 0.4437  0.5530  0.5178  0.5048
Model_LIM 0.4896  0.5533  0.6681  0.5696

Table 2: Performances of the four models on 2012 train 
data. The highest correlation in each column is given in 
bold. 
 

From Table 2, we notice that all the models ex-
cept Model_FN, are apt to handle the SMTeuroparl 
that involves long sentences. For Model_FN, it 
performs well in computing on short and similarly 
structured texts such as MSRvid (This will be con-
firmed in test data later). Although WordNet and 
FrameNet model has a mere weight of 20% in 
Model_LIM (i.e. ω1 +ω2 = 0.2), the run which in-
tegrate more semantic information displays a con-

sistent performance across the three train sets (es-
pecially in SMTeuroparl, the Pearson correlation 
rises from 0.5178 to 0.66808), when compared to 
the other three. 

 
 MSRpar MSRvid SMTeuroparl OnWN SMTnews Mean 

Baseline 0.4334 0.2996 0.4542 0.5864 0.3908 0.4356

Model_WD 0.4404 0.5464 0.5059 0.6751 0.4583 0.5346

Model_WN 0.1247 0.6608 0.0637 0.4089 0.3436 0.3417

Model_FN 0.3830 0.6082 0.3537 0.6091 0.4061 0.4905

Model_LIM 0.4489 0.6301 0.5086 0.6841 0.4872 0.5631

UKP_run2 0.6830 0.8739 0.5280 0.6641 0.4937 0.6773

Table 3: Performances of our three models as well as 
the baseline and UKP_run2 (that is ranked 1 in last STS 
task) results on 2012 test data. The highest correlation in 
each column is given in bold. 
 

The 2012 STS test results obtained by first rank-
ing UKP_run2 and baseline system are shown in 
Table 3, it is interesting to notice that performance 
of Model_WD is similar with Model_LIM except 
on MSRvid, the text segments in which there are 
fewer identical words because of the semantic 
equivalence. For Model_FN, we can see it per-
forms well on short and similarly structured texts 
(MSRvid and OnWN) as mentioned before. This is 
because the precision of FrameNet parser took ef-
fect on the FrameNet-based models performance. 
Compared to UKP_run2, the performance of Mod-
el_LIM is obviously better on OnWN set, while on 
SMTeuroparl and SMTnews this model scores 
slightly lower than UKP_run2. Finally, Mod-
el_LIM did not perform best on MSRpar and 
MSRvid compared with UKP_run2, but it has low 
time complexity and integrates semantic informa-
tion. 

5.2 Official Results on STS 2013 Test Data 

Table 4 provides the official results of our submit-
ted systems, along with the rank on each dataset. 
Generally, all results outperform the baseline, 
based on simple word overlap. However, the per-
formance of Model_LIM is not always the best in 
the three runs for each dataset. From the table we 
can note that a particular model always performs 
well on the dataset including the lexicon on which 
the model is based on e.g. Model_WN in OnWN, 
Model_FN in FNWN. Besides, Model_WD and 
Model_LIM almost have same scores except in 
OnWN set, because in Model_LIM is included 
with WordNet resource. 
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 headlines OnWN FNWN SMT Mean 

Baseline 0.5399 (66)  0.2828 (80) 0.2146 (66)  0.2861 (65) 0.3639 (73)

Model_WD 0.6806 (24)  0.5355 (44) 0.3181 (48)  0.3980 (4)  0.5198 (27)

Model_WN 0.4840 (78)  0.7146 (12) 0.0415 (83)  0.1543 (86) 0.3944 (69)

Model_FN 0.4881 (76)  0.6146 (27) 0.4237 (9)  0.3844 (6)  0.4797 (46)

Model_LIM 0.6761 (29)  0.6481 (23) 0.3025 (51)  0.4003 (3) 0.5458 (14)

Table 4: Performances of our systems as well as base-
line on STS 2013 individual test data, accompanied by 
their rank (out of 90) shown in brackets. Scores in bold 
denote significant improvements over the baseline. 
 

As seen from the system rank in table, the op-
timal runs in the three submitted system remain 
with Model_LIM. Not only Model_LIM performs 
best on two occasions, but also Model_FN ranks 
top ten twice, in FNWN and SMT respectively, we 
owe this result to the contribution of FrameNet 
parsing information. 

6 Conclusion 

We have tested all the models on published STS 
datasets. Compared with the official results, Mod-
el_LIM system is apt to handle the SMT that in-
volves long sentences. Moreover, this system just 
integrates words, WordNet and FrameNet semantic 
information, thus it has low time complexity. 
There is still much room for improvement in our 
work. For example, we will attempt to use multiva-
riate regression software to tuning the hyperpara-
meters. 
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Abstract

We describe a number of techniques for auto-
matically deriving lists of common and proper
nouns, and show that the distinction between
the two can be made automatically using a
vector space model learning algorithm. We
present a direct evaluation on the British Na-
tional Corpus, and application based evalua-
tions on Twitter messages and on automatic
speech recognition (where the system could be
employed to restore case).

1 Introduction

Some nouns are homographs (they have the same
written form, but different meaning) which can be
used to denote either a common or proper noun, for
example the word apple in the following examples:
(1) Apple designs and creates iPod (2) The Apple II
series is a set of 8-bit home computers (3) The apple
is the pomaceous fruit of the apple tree (4) For apple
enthusiasts – tasting notes and apple identification.

The common and proper uses are not always as
clearly distinct as in this example; for example, a
specific instance of a common noun, e.g., District
Court turns court into a proper noun.

While heuristically, proper nouns often start with
a capital letter in English, capitalization can be in-
consistent, incorrect or omitted, and the presence or
absence of an article cannot be relied on.

The problem of distinguishing between common
and proper usages of nouns has not received much
attention within language processing, despite being
an important component for many tasks including
machine translation (Lopez, 2008; Hermjakob et al.,

2008), sentiment analysis (Pang and Lee, 2008; Wil-
son et al., 2009) and topic tracking (Petrović et al.,
2010). Approaches to the problem also have appli-
cations to tasks such as web search (Chen et al.,
1998; Baeza-Yates and Ribeiro-Neto, 2011), and
case restoration (e.g., in automatic speech recogni-
tion output) (Baldwin et al., 2009), but frequently
involve the manual creation of a gazeteer (a list of
proper nouns), which suffer not only from omissions
but also often do not allow the listed words to as-
sume their common role in text.

This paper presents methods for generating lists
of nouns that have both common and proper usages
(Section 2) and methods for identifying the type of
usage (Section 3) which are evaluated using data de-
rived automatically from the BNC (Section 4) and
on two applications (Section 5). It shows that it is
difficult to automatically construct lists of ambigu-
ous nouns but also that they can be distinguished ef-
fectively using standard features from Word Sense
Disambiguation.

2 Generating Lists of Nouns

To our knowledge, no comprehensive list of com-
mon nouns with proper noun usage is available. We
develop a number of heuristics to generate such lists
automatically.

Part of speech tags A number of part of speech
(PoS) taggers assign different tags to common and
proper nouns. Ambiguous nouns are identified by
tagging a corpus and extracting those that have
had both tags assigned, together with the frequency
of occurrence of the common/proper usage. The
CLAWS (Garside, 1987) and the RASP taggers
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(Briscoe et al., 2006) were applied to the British Na-
tional Corpus (BNC) (Leech, 1992) to generate the
lists BNCclaws and BNCrasp respectively. In addi-
tion the RASP tagger was also run over the 1.75 bil-
lion word Gigaword corpus (Graff, 2003) to extract
the list Gigaword.

Capitalization Nouns appearing intra-
sententially with both lower and upper case
first letters are assumed to be ambiguous. This
technique is applied to the 5-grams from the Google
corpus (Brants and Franz, 2006) and the BNC
(creating the lists 5-grams and BNCcaps).

Wikipedia includes disambiguation pages for
ambiguous words which provide information about
their potential usage. Wikipedia pages for nouns
with senses (according to the disambiguation page)
in a set of predefined categories were identified to
form the list Wikipedia.

Named entity recognition The Stanford Named
Entity Recogniser (Finkel et al., 2005) was run over
the BNC and any nouns that occur in the corpus with
both named entity and non-named entity tags are ex-
tracted to form the list Stanford.

WordNet The final heuristic makes use of Word-
Net (Fellbaum, 1998) which lists nouns that are of-
ten used as proper nouns with capitalisation. Nouns
which appeared in both a capitalized and lowercased
form were extracted to create the list WordNet.

Table 1 shows the number of nouns identified by
each technique in the column labeled words which
demonstrates that the number of nouns identified
varies significantly depending upon which heuris-
tic is used. A pairwise score is also shown to in-
dicate the consistency between each list and two ex-
ample lists, BNCclaws and Gigaword. It can be seen
that the level of overlap is quite low and the various
heuristics generate quite different lists of nouns. In
particular the recall is low, in almost all cases less
than a third of nouns in one list appear in the other.

One possible reason for the low overlap between
the noun lists is mistakes by the heuristics used to
extract them. For example, if a PoS tagger mistak-
enly tags just one instance of a common noun as
proper then that noun will be added to the list ex-
tracted by the part of speech heuristic. Two filter-
ing schemes were applied to improve the accuracy of
the lists: (1) minimum frequency of occurrence, the
noun must appear more than a set number of times

words BNCclaws Gigaword
P R P R

BNCclaws 41,110 100 100 31 2
BNCrasp 20,901 52 27 45 17
BNCcaps 18,524 56 26 66 21
5-grams 27,170 45 29 59 28
Gigaword 57,196 22 31 100 100
Wikipedia 7,351 49 9 59 8
WordNet 798 75 1 68 1
Stanford 64,875 43 67 26 29

Table 1: Pairwise comparison of lists. The nouns in each
list are compared against the BNCclaws and Gigaword
lists. Results are computed for P(recision) and R(ecall).

in the corpus and (2) bias, the least common type of
noun usage (i.e., common or proper) must account
for more than a set percentage of all usages.

We experimented with various values for these fil-
ters and a selection of results is shown in Table 2,
where freq is the minimum frequency of occurrence
filter and bias indicates the percentage of the less
frequent noun type.

bias freq words BNCclaws Gigaword
P R P R

BNCclaws 40 100 274 100 1 53 1
BNCrasp 30 100 253 94 1 85 0
5-grams 40 150 305 80 1 67 0
Stanford 40 200 260 87 1 47 0

Table 2: Pairwise comparison of lists with filtering

Precision (against BNCclaws) increased as the fil-
ters become more aggressive. However comparison
with Gigaword does not show such high precision
and recall is extremely low in all cases.

These experiments demonstrate that it is difficult
to automatically generate a list of nouns that exhibit
both common and proper usages. Manual analy-
sis of the lists generated suggest that the heuristics
can identify ambiguous nouns but intersecting the
lists results in the loss of some obviously ambigu-
ous nouns (however, their union introduces a large
amount of noise). We select nouns from the lists
created by these heuristics (such that the distribu-
tion of either the common or proper noun sense in
the data was not less than 45%) for experiments in
the following sections.1

1The 100 words selected for our evaluation are available at
http://pastehtml.com/view/cjsbs4xvl.txt
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3 Identifying Noun Types

We cast the problem of distinguishing between com-
mon and proper usages of nouns as a classification
task and develop the following approaches.

3.1 Most frequent usage

A naive baseline is supplied by assigning each word
its most frequent usage form (common or proper
noun). The most frequent usage is derived from the
training portion of labeled data.

3.2 n-gram system

A system based on n-grams was implemented using
NLTK (Bird et al., 2009). Five-grams, four-grams,
trigrams and bigrams from the training corpus are
matched against a test corpus sentence, and results
of each match are summed to yield a preferred use in
the given context with a higher weight (experimen-
tally determined) being assigned to longer n-grams.
The system backs off to the most frequent usage (as
derived from the training data).

3.3 Vector Space Model (VSM)

Distinguishing between common and proper nouns
can be viewed as a classification problem. Treating
the problem in this manner is reminiscent of tech-
niques commonly employed in Word Sense Disam-
biguation (WSD). Our supervised approach is based
on an existing WSD system (Agirre and Martinez,
2004) that uses a wide range of features:

• Word form, lemma or PoS bigrams and tri-
grams containing the target word.

• Preceding or following lemma (or word form)
content word appearing in the same sentence as
the target word.

• High-likelihood, salient, bigrams.

• Lemmas of all content words in the same sen-
tence as the target word.

• Lemmas of all content words within a±4 word
window of the target word.

• Non stopword lemmas which appear more than
twice throughout the corpus.

Each occurrence of a common / proper noun is
represented as a binary vector in which each position
indicates the presence or absence of a feature. A
centroid vector is created during the training phase
for the common noun and the proper noun instances
of a word. During the test phase, the centroids are
compared to the vector of each test instance using
the cosine metric, and the word is assigned the type
of the closest centroid.

4 Evaluation

The approaches described in the previous section are
evaluated on two data sets extracted automatically
from the BNC. The BNC-PoS data set is created
using the output from the CLAWS tagger. Nouns
assigned the tag NP0 are treated as proper nouns
and those assigned any other nominal tag as com-
mon nouns. (According to the BNC manual the
NP0 tag has a precision 83.99% and recall 97.76%.2)
This data set consists of all sentences in the BNC in
which the target word appears. The second data set,
BNC-Capital, is created using capitalisation infor-
mation and consists of instances of the target noun
that do not appear sentence-initially. Any instances
that are capitalised are treated as proper nouns and
those which are non-capitalised as common nouns.

Experiments were carried out using capitalised
and decapitalized versions of the two test corpora.
The decapitalised versions by lowercasing each cor-
pus and using it for training and testing. Results are
presented in Table 3. Ten fold cross validation is
used for all experiments: i.e. 9/10th of the corpus
were used to acquire the training data centroids and
1/10th was used for evaluation. The average perfor-
mance over the 10 experiments is reported.

The vector space model (VSM) outperforms other
approaches on both corpora. Performance is partic-
ularly high when capitalisation is included (VSM w
caps). However, this approach still outperforms the
baseline without case information (VSM w/o caps),
demonstrating that using this simple approach is less
effective than making use of local context.

2No manual annotation of common and proper nouns in this
corpus exists and thus an exact accuracy figure for this corpus
cannot be obtained.
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Gold standard
BNC-PoS BNC-Capital

Most frequent 79% 67%
n-gram w caps 80% 77%
n-gram w/o caps 68% 56%
VSM w caps 90% 100%
VSM w/o caps 86% 80%

Table 3: BNC evaluation results

5 Applications

We also carried out experiments on two types of
text in which capitalization information may not be
available: social media and ASR output.

5.1 Twitter

As demonstrated in the BNC based evaluations, the
system can be applied to text which does not contain
capitalization information to identify proper nouns
(and, as a side effect, enable the correction of capi-
talization). An example of such a dataset are the (up
to) 140 character messages posted on Twitter.

There are some interesting observations to be
made on messages downloaded from Twitter. Al-
though some users choose to always tweet in lower
case, the overall distribution of capitalization in
tweets is high for the 100 words selected in Section 2
and only 3.7% of the downloaded tweets are entirely
lower case. It also appeared that users who capital-
ize, do so fairly consistently.

This allows the creation of a dataset based on
downloaded Twitter data3:

1. Identify purely lower case tweets containing
the target word. These will form the test data
(and are manually assigned usage).

2. Any non-sentence initial occurrences of the tar-
get word are used as training instances: lower
case indicating a common instance, upper case
indicating a proper instance.

14 words4 were randomly selected from the list
used in Section 4 and their lowercase tweet instances
were manually annotated by a single annotator. The

3http://search.twitter.com/api
4abbot, bull, cathedral, dawn, herald, justice, knight, lily,

lodge, manor, park, president, raven and windows

Training corpus MF n-grams VSM
Twitter 59% 40% 60%
BNCclaw decap 59% 44% 79%

Table 4: Results on the Twitter data

average proportion of proper nouns in the test data
was 59%.

The results for the three systems are presented in
Table 4. As the length of the average sentence in the
Twitter data is only 15 words (compared to 27 words
in the BNCclaws data for the same target words),
the Twitter data is likely to be suffering sparseness
issues. This hypothesis is partly supported by the in-
crease in performance when the BNCclaws decapi-
talized data is added to the training data, however,
the performance of the n-gram system remains be-
low the most frequent use. On closer examination,
this is likely due to the skew in the data – there are
many more examples for the common use of each
noun, and thus each context is much more likely to
have been seen in this setting.

5.2 Automatic speech recognition

Most automatic speech recognition (ASR) systems
do not provide capitalization. However, our sys-
tem does not rely on capitalization information, and
therefore can identify proper / common nouns even
if capitalization is absent. Also, once proper nouns
are identified, the system can be used to restore case
– a feature which allows an evaluation to take place
on this dataset. We use the TDT2 Test and Speech
corpus (Cieri et al., 1999), which contains ASR and
a manually transcribed version of news texts from
six different sources, to demonstrate the usefulness
of this system for this task.

The ASR corpus is restricted to those segments
which contain an equal number of target word oc-
currences in the ASR text and the manually tran-
scribed version, and all such segments are extracted.
The gold standard, and the most frequent usage, are
drawn from the manually transcribed data.

Again, results are based on an average perfor-
mance obtained using a ten fold cross validation.
Three versions of training data are used: the 9/10 of
ASR data (with labels provided by the manual tran-
scription), the equivalent 9/10 of lowercased manu-

83



Training corpus MF n-grams VSM
Manual 66% 42% 73%
ASR 63% 41% 79%

Table 5: Results on the ASR data

ally transcribed data, and a combination of the two.
The results can be seen in Table 5. The perfor-
mance rise obtained with the VSM model when the
ASR data is used is likely due to the repeated errors
within this, which will not be appearing in the man-
ually transcribed texts. The n-gram performance is
greatly affected by the low volume of training data
available, and again, a large skew within this.

6 Conclusion

We automatically generate lists of common and
proper nouns using a number of different techniques.
A vector space model technique for distinguish-
ing common and proper nouns is found to achieve
high performance when evaluated on the BNC. This
greatly outperforms a simple n-gram based system,
due to its better adaptability to sparse training data.
Two application based evaluations also demonstrate
the system’s performance and as a side effect the
system could serve as a technique for automatic case
restoration.
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Abstract
This paper describes methods that were sub-
mitted as part of the *SEM shared task on
Semantic Textual Similarity. Multiple kernels
provide different views of syntactic structure,
from both tree and dependency parses. The
kernels are then combined with simple lex-
ical features using Gaussian process regres-
sion, which is trained on different subsets of
training data for each run. We found that the
simplest combination has the highest consis-
tency across the different data sets, while in-
troduction of more training data and models
requires training and test data with matching
qualities.

1 Introduction

The Semantic Textual Similarity (STS) shared task
consists of several data sets of paired passages of
text. The aim is to predict the similarity that hu-
man annotators have assigned to these aligned pairs.
Text length and grammatical quality vary between
the data sets, so our submissions to the task aimed to
investigate whether models that incorporate syntac-
tic structure in similarity calculation can be consis-
tently applied to diverse and noisy data.

We model the problem as a combination of ker-
nels (Shawe-Taylor and Cristianini, 2004), each of
which calculates similarity based on a different view
of the text. State-of-the-art results on text classifi-
cation have been achieved with kernel-based classi-
fication algorithms, such as the support vector ma-
chine (SVM) (Joachims, 1998), and the methods
here can be adapted for use in multiple kernel classi-
fication, as in Polajnar et al. (2011). The kernels are

combined using Gaussian process regression (GPR)
(Rasmussen and Williams, 2006). It is important
to note that the combination strategy described here
is only a different way of viewing the regression-
combined mixture of similarity measures approach
that is already popular in STS systems, including
several that participated in previous SemEval tasks
(Croce et al., 2012; Bär et al., 2012). Likewise, oth-
ers, such as Croce et al. (2012), have used tree and
dependency parse information as part of their sys-
tems; however, we use a tree kernel approach based
on a novel encoding method introduced by Zanzotto
et al. (2011) and from there derive two dependency-
based methods.

In the rest of this paper we will describe our sys-
tem, which consists of distributional similarity (Sec-
tion 2.1), several kernel measures (Section 2.2), and
a combination method (Section 2.3). This will be
followed by the description of our three submissions
(Section 3), and a discussion of the results (Sec-
tion 4).

2 Methods

At the core of all the kernel methods is either sur-
face, distributional, or syntactic similarity between
sentence constituents. The methods themselves en-
code sentences into vectors or sets of vectors, while
the similarity between any two vectors is calculated
using cosine.

2.1 Distributional Similarity

Target words are the non-stopwords that occur
within our training and test data. The two distri-
butional methods we use here both represent target
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words as vectors that encode word occurrence within
a set of contexts. The first method is a variation on
BEAGLE (Jones and Mewhort, 2007), which con-
siders contexts to be words that surround targets.
The second method is based on ESA (Gabrilovich
and Markovitch, 2007), which considers contexts to
be Wikipedia documents that contain target words.

To gather the distributional data with both of
these approaches we used 316,305 documents from
the September 2012 snapshot of Wikipedia. The
training corpus for BEAGLE is generated by pool-
ing the top 20 documents retrieved by querying the
Wikipedia snapshot index for each target word in the
training and test data sets.

2.1.1 BEAGLE
Random indexing (Kaski, 1998) is a technique for

dimensionality reduction where pseudo-orthogonal
bases are generated by randomly sampling a distri-
bution. BEAGLE is a model where random indexing
is used to represent word co-occurrence vectors in a
distributional model.

Each context word is represented as a D-
dimensional vector of normally distributed random
values drawn from the Gaussian distribution

N (0, σ2), where σ =
1√
D

and D = 4096 (1)

A target word is represented as the sum of the
vectors of all the context words that occur within a
certain context window around the target word. In
BEAGLE this window is considered to be the sen-
tence in which the target word occurs; however, to
avoid segmenting the entire corpus, we assume the
window to include 5 words to either side of the tar-
get. This method has the advantage of keeping the
dimensionality of the context space constant even
if more context words are added, but we limit the
context words to the top 10,000 most frequent non-
stopwords in the corpus.

2.1.2 ESA
ESA represents a target word as a weighted

ranked list of the top N documents that contain the
word, retrieved from a high quality collection. We
used the BM25F (Robertson et al., 2004) weighting
function and the topN = 700 documents. These pa-
rameters were chosen by testing on the WordSim353

dataset.1 The list of retrieved documents can be rep-
resented as a very sparse vector whose dimensions
match the number of documents in the collection,
or in a more computationally efficient manner as
a hash map linking document identifiers to the re-
trieval weights. Similarity between lists was calcu-
lated using the cosine measure augmented to work
on the hash map data type.

2.2 Kernel Measures
In our experiments we use six basic kernel types,
which are described below. Effectively we have
eight kernels, because we also use the tree and de-
pendency kernels with and without distributional in-
formation. Each kernel is a function which is passed
a pair of short texts, which it then encodes into a spe-
cific format and compares using a defined similarity
function. LK uses the regular cosine similarity func-
tion, but LEK, TK, DK, MDK, DGK use the follow-
ing cosine similarity redefined for sets of vectors. If
the texts are represented as sets of vectors X and Y ,
the set similarity kernel function is:

κset(X,Y ) =
∑

i

∑
j

cos(~xi, ~yj) (2)

and normalisation is accomplished in the standard
way for kernels by:

κset−n(X,Y ) =
κset(X,Y )√

(κset(X,X)κset(Y, Y ))
(3)

LK - The lexical kernel calculates the overlap be-
tween the tokens that occur in each of the paired
texts, where the tokens consist of Porter stemmed
(Porter, 1980) non-stopwords. Each text is repre-
sented as a frequency vector of tokens that occur
within it and the similarity between the pair is cal-
culated using cosine.

LEK - The lexical ESA kernel represents each
example in the pair as the set of words that do not
occur in the intersection of the two texts. The simi-
larity is calculated as in Equation (3) with X and Y
being the ESA vectors of each word from the first
and second text representations, respectively.

TK - The tree kernel representation is based on
the definition by Zanzotto et al. (2011). Briefly,

1http://www.cs.technion.ac.il/˜gabr/resources/
data/wordsim353/
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each piece of text is parsed2; the non-terminal
nodes of the parse tree, stopwords, and out-of-
dictionary terms are all assigned a new random vec-
tor (Equation 1); while the leaves that occurred
in the BEAGLE training corpus are assigned their
learned distributional vectors (Section 2.1.1).

Each subtree of a tree is encoded recursively as
a vector, where the distributional vectors represent-
ing each node are combined using the circular con-
volution operator (Plate, 1994; Jones and Mewhort,
2007). The whole tree is represented as a set of vec-
tors, one for each subtree.

DK - The dependency kernel representation en-
codes each dependency pair as a separate vector, dis-
counting the labels. The non-stopword terminals are
represented as their distributional vectors, while the
stopwords and out-of-dictionary terms are given a
unique random vector. The vector for the depen-
dency pair is obtained via a circular convolution of
the individual word vectors.

MDK - The multiple dependency kernel is con-
structed like the dependency kernel, but similarity is
calculated separately between all the the pairs that
share the same dependency label. The combined
similarity for all dependency labels in the parse is
then calculated using least squares linear regression.
While at the later stage we use GPR to combine all
of the different kernels, for MDK we found that lin-
ear regression provided better performance.

DGK - The depgram kernel represents each de-
pendency pair as an ESA vector obtained by search-
ing the ESA collection for the two words in the
dependency pair joined by the AND operator. The
DGK representation only contains the dependencies
that occur in one similarity text or the other, but not
in both.

2.3 Regression

Each of the kernel measures above is used to calcu-
late a similarity score between a pair of texts. The
different similarity scores are then combined using

2Because many of the datasets contained incomplete or un-
grammatical sentences, we had to approximate some parses.
The parsing was done using the Stanford parser (Klein and
Manning, 2003), which failed on some overly long sentences,
which we therefore segmented at conjunctions or commas.
Since our methods only compared subtrees of parses, we simply
took the union of all the partial parses for a given sentence.

Gaussian process regression (GPR) (Rasmussen and
Williams, 2006). GPR is a probabilistic regression
method where the weights are modelled as Gaussian
random variables. GPR is defined by a covariance
function, which is akin to the kernel function in the
support vector machine. We used the squared expo-
nential isotropic covariance function (also known as
the radial basis function):

cov(xi, xj) = p2
1e

(xi−xj)T ·(p2∗I)−1·(xi−xj)

2 + p2
3δij

with parameters p1 = 1, p2 = 1, and p3 = 0.01. We
found that training for parameters increased overfit-
ting and produced worse results in validation exper-
iments.

3 Submitted Runs

We submitted three runs. This is not sufficient for
a full evaluation of the new methods we proposed
here, but it gives us an inkling of general trends. To
choose the composition of the submissions, we used
STS 2012 training data for training, and STS 2012
test data for validation (Agirre et al., 2012). The
final submitted runs also used some of the STS 2012
test data for training.

Basic - With this run we were examining if a sim-
ple introduction of syntactic structure can improve
over the baseline performance. We trained a GPR
combination of the linear and tree kernels (LK-TK)
on the MSRpar training data. In validation experi-
ments we found that this data set in general gave the
most consistent performance for regression training.

Custom - Here we tried to approximate the best
training setup for each type of data. We only had
training data for OnWN and for this dataset we were
able to improve over the LK-TK setup; however, the
settings for the rest of the data sets were guesses
based on observations from the validation experi-
ments and overall performed poorly. OnWN was
trained on MSRpar train with LK and DK. The head-
lines model was trained on MSRpar train and Eu-
roparl test, with LK-LEK-TK-DK-TKND-DKND-
MDK (trained on Europarl).3 FNWN was trained on
MSRpar train and OnWN test with LK-LEK-DGK-
TK-DK-TKND-DKND. Finally, the SMT model

3TKND and DKND are the versions of the tree and depen-
dency kernels where no distributional vectors were used.
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Figure 1: Score distributions of different runs on the OnWN dataset

was trained on MSRpar train and Europarl test with
LK-LEK-TK-DK-TKND-DKND-MDK (trained on
MSRpar).

All - As in the LK-TK experiment, we used
the same model on all of the data sets. It was
trained on all of the training data except MSRvid,
using all eight kernel types defined above. In sum-
mary we used the LK-LEK-TK-TKND-DK-DKND-
MDK-DGK kernel combination. MDK was trained
on the 2012 training portion of MSRpar.

4 Discussion

From the shared task results in Table 1, we can see
that Basic is our highest ranked run. It has also
achieved the best performance on all data sets. The
LK on its own improves slightly on the task baseline
by removing stop words and using stemming, while
the introduction of TK contributes syntactic and dis-
tributional information. With the Custom run, we
were trying to manually estimate which training data
would best reflect properties of particular test data,
and to customise the kernel combination through
validation experiments. The only data set for which
this led to an improvement is OnWN, indicating
that customised settings can be beneficial, but that
a more scientific method for matching of training
and test data properties is required. In the All run,
we were examining the effects that maximising the
amount of training data and the number of kernel

hdlns OnWN FNWN SMT mean rank
BL 0.5399 0.2828 0.2146 0.2861 0.3639 71
Basic 0.6399 0.4440 0.3995 0.3400 0.4709 51
Cstm 0.4962 0.5639 0.1724 0.3006 0.4207 60
All 0.5510 0.3099 0.2385 0.1171 0.3200 78

Table 1: Shared task results: Pearson correlation with the
gold standard

measures has on the output predictions. The results
show that swamping the regression with models and
training data leads to overly normalised output and
a decrease in performance.

While the evaluation measure, Pearson correla-
tion, does not take into account the shape of the out-
put distribution, Figure 1 shows that this informa-
tion may be a useful indicator of model quality and
behaviour. In particular, the role of the regression
component in our approach is to learn a transforma-
tion from the output distributions of the models to
the distribution of the training data gold standard.
This makes it sensitive to the choice of training data,
which ideally would have similar characteristics to
the individual kernels, as well as a similar gold stan-
dard distribution to the test data. We can see in Fig-
ure 1 that the training data and choice of kernels in-
fluence the output distribution.

Analysis of the minimum, first quartile, median,
third quartile, and maximum statistics of the distri-
butions in Figure 1 demonstrates that, while it is dif-
ficult to visually evaluate the similarities of the dif-
ferent distributions, the smallest squared error is be-
tween the gold standard and the Custom run. This
suggests that properties other than the rank order
may also be good indicators in training and testing
of STS methods.
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Montréal, Canada, 7-8 June. Association for Compu-
tational Linguistics.

Daniel Bär, Chris Biemann, Iryna Gurevych, and Torsten
Zesch. 2012. UKP: Computing semantic textual sim-
ilarity by combining multiple content similarity mea-
sures. In Proceedings of the 6th International Work-
shop on Semantic Evaluation, held in conjunction with
the 1st Joint Conference on Lexical and Computa-
tional Semantics, pages 435–440, Montréal, Canada,
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Abstract

The Semantic Textual Similarity (STS)
task aims to exam the degree of semantic
equivalence between sentences (Agirre et
al., 2012). This paper presents the work
of the Hong Kong Polytechnic University
(PolyUCOMP) team which has participated
in the STS core and typed tasks of SemEval-
2013. For the STS core task, the PolyUCOMP
system disambiguates words senses using
contexts and then determine sentence
similarity by counting the number of senses
they shared. For the STS typed task, the string
kernel (Lodhi et al., 2002) is used to compute
similarity between two entities to avoid string
variations in entities.

1 Introduction

Sentence similarity computation plays an important
role in text summarization and social network
applications (Erkan et al., 2004; Jin et al., 2011).
The SemEval 2012 competition initiated a task
targeted at Semantic Textual Similarity (STS)
between sentence pairs (Agirre et al., 2012). Given
a set of sentence pairs, participants are required to
assign to each sentence pair a similarity score.

Because a sentence has only a limited amount of
content words, it is difficult to determine sentence
similarities. To solve this problem, Hatzivassiloglou
et al. (1999) proposed to use linguistic features
as indicators of text similarity to address the
problem of sparse representation of sentences.
Mihalcea et al. (2006) measured sentence similarity
using component words in sentences. Li et al.

(2006) proposed to incorporate the semantic vector
and word order to calculate sentence similarity.
Biemann et al. (2012) applied the log-linear
regression model by combining the simple string
based measures, for example, word ngrams and
semantic similarity measures, for example, textual
entailment. Similarly, Saric et al. (2012) used a
support vector regression model which incorporates
features computed from sentence pairs. The features
are knowledge- and corpus-based word similarity,
ngram overlaps, WordNet augmented word overlap,
syntactic features and so on. Xu et al. (2012)
combined semantic vectors with skip bigrams to
determine sentence similarity, whereas the skip
bigrams take into the sequential order between
words.

In our approach to the STS task, words in
sentences are assigned with appropriate senses using
their contexts. Sentence similarity is computed by
calculating the number of shared senses in both
sentences since it is reasonable to assume that
similar sentences should have more overlapping
senses. For the STS-TYPED task, variations
might occur in author names, people involved,
time expression and location. Thus, string kernel
is applied to compute similarity between entities
because it can capture variations between entities.
Moreover, for the event similarity in STS-TYPED
task, semantic relatedness between verbs is derived
the WordNet.

The rest of this paper is structured as follows.
Section 2 describes sentence similarity using sense
overlapping and string kernel. Section 3 gives the
performance evaluation. Section 4 is the conclusion.
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2 Similarity between Sentences

Words are used to convey meaning in a sentence.
They are tagged with appropriate senses initially and
then sentence similarity is calculated based on the
number of shared senses.

2.1 Sense Overlapping

When comparing word features, we did not compare
their surface equality, but we first conceptualize
these words and then calculate their similarities
based on the hierarchial structure in WordNet. For a
word in a sentence, it will be assigned a WordNet
sense. In this paper, we focus on the Word
Sense Disambiguation (WSD) algorithm taken by
Banerjee and Pederson (2003). They measured the
semantic relatedness between concepts by counting
the shared words in their WordNet glosses.

In WordNet, a word sense is represented by a
synset which has a gloss that defines the concept
that it represents. For example, the words walking,
afoot, ambulate constitute a single synset which has
gloss representations as follows,

walking: the act of traveling by foot
afoot: traveling by foot
ambulate: walk about

To lift the limitations of dictionary glosses which
are fairly short with insufficient vocabulary, we
utilize the glosses of related senses since we assume
that words co-occur in one sentence share related
senses and the more glosses two senses share, the
more similar they are. Therefore, we extract not
only glosses of target synset, but also the glosses
of the hypernym, hyponym, meronym, holonym and
troponym synsets of the target synset to form a
synset context. Finally, we compare the sentence
contexts with different synset contexts to determine
which sense should be assigned to the words.

To disambiguate word senses, a window of
contexts surrounding the the target word is specified
and a set of candidate word senses are extracted for
the content word (noun, verb, adjective) within that
window. Let the current target word index i = 0 that
is,w0, the window size be 2n+1 and−n ≤ i ≤ +n.
Let |wi| be the number of senses for word wi and the
jth sense of wi is si,j , where 1 ≤ j ≤ |wi|. Next is

to assign an appropriate sense k to the target word.
We achieve this by adding together the relatedness
scores calculated by comparing the senses of the
target word and senses of every non-target word
within the window of context. The sense score for
the current target word w0 is defined as,

Sensek =

n∑
i=−n

|wi|∑
j=1

relatedness(s0,k, si,j) (1)

The kth sense which has the biggest sense score
will be chosen as the right sense for the target word
w0. Now remains the question of how to define the
relatedness between two synsets. It is defined as,

relatedness(s0,k, si,j) =

score(gloss(s0,k), gloss(si,j))

+score(hype(s0,k), hype(si,j))

+score(hypo(s0,k), hypo(si,j))

+score(hype(s0,k), gloss(si,j))

+score(gloss(s0,k), hype(si,j))

(2)

In Equation 2, the score function counts the
number of overlapping words between two glosses.
However, if there is a phrasal n-word overlap, then
a score of n2 will be assigned, thus encouraging the
longer n-word overlap. Let V denote the set of n-
word overlaps shared between two glosses, the score
is defined as,

score =
∑
w∈V

‖w‖2 (3)

where ‖w‖ refers to the number of words in w. In
so doing, we can have corresponding senses for the
sentence Castro celebrates 86th birthday Monday
as follows,

castro/10886929-n celebrate/02490877-v
birthday/15250178-n monday/15163979-n

To find the n-word overlap, we found that
contiguous words in two glosses lie in the diagonal
of a matrix, take the senses walk and afoot for
example, their glosses are,

walking: the act of traveling by foot
afoot: traveling by foot
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Place the walking glosses in rows and afoot
glosses in columns, we get the matrix representation
in Figure 1,

Figure 1: n-word overlap representation

Figure 1 shows that travel by foot is a continuous
sequence of words shared by two glosses. Steps to
find n-word overlapping are:

(1) Construct a matrix for two sentences;
(2) Get continuous n-word overlapping, n is

greater than 1;
(3) Set the cell values to 0 if they are contained in

continuous n-word.
(4) Get the words (unigrams) which are shared by

two sentences.
Take a b c d and b c a d for example, we will have

the matrix as follows,

b c a d
a 0 0 1 0
b 1 0 0 0
c 0 1 0 0
d 0 0 0 1

Table 1: Matrix representation for two sentences

By the step 2, we will get the b c and its
corresponding cells cell(1,0) and cell(2,1). We then
set the two cells to zero, and obtain an updated
matrix as follows,

b c a d
a 0 0 1 0
b 0 0 0 0
c 0 0 0 0
d 0 0 0 1

Table 2: Updated matrix representation for two sentences

In Table 2, we found that cell(0,2) and cell(3,3)
have values greater than zero. Therefore, a and b
will be extracted the common terms.

This approach can also be applied to find common

n-word overlaps between sentences, for example,

s1: Olli Heinonen, the Head of the International
Atomic Energy Agency delegation to Iran, declared
yesterday that the agency has reached an agreement
with Tehran on the method of conducting the
negotiations pertaining to its nuclear program.

s2: leader of international atomic energy agency
delegation to iran , olli heinonen said yesterday ,
that the agency concluded a mutual understanding
with tehran on the way to manage talks depending
upon its atomic program .

We will have ngrams with n ranging from 1 to 7,
such as,

unigram: of, to, its, program, yesterday
bigram: olli heinonen
trigram: that the agency
four-gram: with tehran on the
seven-gram: international atomic energy agency

delegation to iran

Similarity between two sentences is calculated by
counting the number of overlapped n-words. The
similarity for s1 and s2 is, (1 + 1 + 1 + 1 + 1) +
(2)2 + (3)2 + (4)2 + (7)2 = 83.

2.2 String kernel

For the STS-TYPED task, when comparing whether
people or authors are similar or not, we found that
some entity mentions may have tiny variations, for
example,

E Vincent Harris and E.Vincent Harris

The difference between the entities lies in fact that
the second entity has one more dot. In this case,
string kernel would be a good choice in verifying
they are similar or not. If we consider n=2, we obtain
79-dimensional feature space where the two entities
are mapped in Table 3.

In Table 3, λ is the decay factor, in the range
of [0,1], that penalizes the longer distance of a
subsequence. Formally, string kernel is defined as,

Kn(s, t) =
∑

u∈
∑n

〈φu(s) · φu(t)〉 (4)
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ev ei en · · · e. · · · rs is
φ(evincentharris) λ2 λ3 + λ13 λ2 + λ4 + λ7 · · · 0 · · · λ3 + λ4 λ2 + λ12

φ(e.vincentharris) λ3 λ4 + λ14 λ2 + λ5 + λ8 · · · λ2 · · · λ3 + λ4 λ2 + λ12

Table 3: Feature mapping for two entities

TEAM headlines OnWN FNWN SMT mean rank
RUN1 0.5176 0.1517 0.2496 0.2914 0.3284 77

Table 4: Experimental results for STS-CORE

where
∑n is the set of all possible subsequences

of length n. u indicates an item in the set, for
example, the subsequence ev in Table 3. φu(s) is
the feature mapping of the subsequences in s. In
so doing, we can have similarity between entities in
Table 3 as follows:
Kn(s, t) = λ2× λ3 + (λ3 + λ13)× (λ4 + λ14) +
· · ·+(λ3+λ4)×(λ3+λ4)+(λ2+λ12)×(λ2+λ12)

To avoid enumeration of all subsequences for
similarity measurement, dynamic programming,
similar to the method by Lodhi et al. (2002) is used
here for similarity calculation.

3 Experiments

The STS-CORE task is to quantify how similar
two sentences are. We simply use the sense
overlapping approach to compute the similarity.
Since this approach needs to find appropriate senses
for each word based on its contexts. The number
of contextual words is set to 5. Experiments
are conducted on four datasets. They are:
headlines mined from news sources by European
Media, OnWN extracted from from WordNet and
OntoNotes, FNWN from WordNet and FrameNet
and SMT dataset from DARPA GALE HTER and
HyTER. The results of our system (PolyUCOMP-
RUN1) are given in Table 4 ,

Our system achieves rather lower performance
in the OnWN and FNWN datasets. This is because
it is difficult to use contextual terms to find the
correct senses for words in sentences of these two
datasets. Take the two sentences in OnWN dataset
for example,

s1: the act of choosing among alternatives
s2: the act of changing one thing for another

thing.

The valid concepts for the two sentences are:

c1: 06532095-n 05790944-n
c2: 00030358-n 00126264-v 00002452-n

00002452-n

c1 and c2 have no shared senses, resulting in a
zero similarity between s1 and s2. However, s1 and
s2 should have the same meaning. Moreover, in the
FNWN dataset, the sentence lengths are unbalanced,
for example,
s1: there exist a number of different possible

events that may happen in the future. in most cases,
there is an agent involved who has to consider which
of the possible events will or should occur. a salient
entity which is deeply involved in the event may also
be mentioned.
s2: doing as one pleases or chooses;

s1 has 48 tokens with punctuations being
excluded and s2 has only 6 tokens. This would affect
our system performance as well.

For the STS-TYPED task, data set is taken
from Europeana, which provides millions of books,
paintings, films, museum objects and archival
records that have been digitised throughout Europe.
Each item has one line per type, where the type
can be the title of a record, list of subject terms,
textual description of the record, creator of the
record and date of the record. Participating systems
are supposed to compute similarities between semi-
structured items. In this task, we take the strategies
in Table 5,
Jaccard denotes the Jaccard similarity measure.

Stringkernel + Jaccard means that two types
are similar if they share many terms, for example,
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TEAM general author people time location event subject description mean rank
RUN1 0.4888 0.6940 0.3223 0.3820 0.3621 0.1625 0.3962 0.4816 0.4112 12
RUN2 0.4893 0.6940 0.3253 0.3777 0.3628 0.1968 0.3962 0.4816 0.4155 11
RUN3 0.4915 0.6940 0.3254 0.3737 0.3667 0.2207 0.3962 0.4816 0.4187 10

Table 6: Experimental results for STS-TYPED

Type Strategy
author String kernel
people String kernel + Jaccard
time String kernel + Jaccard

location String kernel + Jaccard
event WordNet + Jaccard

subject Sense overlapping
description Sense overlapping

Table 5: Strategies for computing similarity

location; and string kernel is used to determine
whether two locations are similar or not. For the
type of event, we extract verbs from records and
count the number of shared verbs between two
records. The verb similarity is obtained through
WordNet. The general similarity is equal to the
average of the 7 scores. Also, Stanford CoreNLP
tool1 is used to extract author, date, time, location
and handle part-of-speech tagging.

In this STS-TYPED task, we use string kernel and
WordNet to determine whether two terms are similar
and increase the number of counts if their similarity
exceeds a certain threshold. Therefore, we have
chosen 0.4, 0.5 and 0.6 in a heuristic manner and
obtained three different runs. Experimental results
are given in Table 6.

Since the types of author, subject and
description are not related to either string kernel
or WordNet, their performances remain unchanged
during three runs.

4 Conclusions and Future Work

In the Semantic Textual Similarity task of SemEval-
2013, to capture the meaning between sentences,
we proposed to disambiguate word senses using
contexts and then determine sentence similarity
by counting the senses they shared. First, word
senses are disambiguated by means of the contextual

1http://nlp.stanford.edu/software/corenlp.shtml

words. When determining similarity between two
senses (synsets), n-word overlapping approach is
used for counting the number of shared words
in two glosses. Besides, string kernel is used
to capture similarity between entities to avoid
variations between entities. Our approach is simple
and we will apply regression models to determine
sentence similarity on the basis of these features in
future work.
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Abstract

This paper describes a system for automat-
ically measuring the semantic similarity be-
tween two texts, which was the aim of the
2013 Semantic Textual Similarity (STS) task
(Agirre et al., 2013). For the 2012 STS task,
Heilman and Madnani (2012) submitted the
PERP system, which performed competitively
in relation to other submissions. However,
approaches including word and n-gram fea-
tures also performed well (Bär et al., 2012;
Šarić et al., 2012), and the 2013 STS task fo-
cused more on predicting similarity for text
pairs from new domains. Therefore, for the
three variations of our system that we were al-
lowed to submit, we used stacking (Wolpert,
1992) to combine PERP with word and n-
gram features and applied the domain adapta-
tion approach outlined by Daume III (2007)
to facilitate generalization to new domains.
Our submissions performed well at most sub-
tasks, particularly at measuring the similarity
of news headlines, where one of our submis-
sions ranked 2nd among 89 from 34 teams, but
there is still room for improvement.

1 Introduction

We aim to develop an automatic measure of the se-
mantic similarity between two short texts (e.g., sen-
tences). Such a measure could be useful for vari-
ous applications, including automated short answer
scoring (Leacock and Chodorow, 2003; Nielsen et
al., 2008), question answering (Wang et al., 2007),

∗ System description papers for this task were required to
have a team ID and task ID (e.g., “HENRY-CORE”) as a prefix.

and machine translation evaluation (Przybocki et al.,
2009).

In this paper, we describe our submissions to the
2013 Semantic Textual Similarity (STS) task (Agirre
et al., 2013), which evaluated implementations of
text-to-text similarity measures. Submissions were
evaluated according to Pearson correlations between
gold standard similarity values acquired from hu-
man raters and machine-produced similarity val-
ues. Teams were allowed to submit up to three
submissions. For each submission, correlations
were calculated separately for four subtasks: mea-
suring similarity between news headlines (“head-
lines”), between machine translation outputs and hu-
man reference translations (“SMT”), between word
glosses from OntoNotes (Pradhan and Xue, 2009)
and WordNet (Fellbaum, 1998) (“OnWN”), and be-
tween frame descriptions from FrameNet (Fillmore
et al., 2003) and glosses from WordNet (“FNWN”).
A weighted mean of the correlations was also com-
puted as an overall evaluation metric (the OnWn and
FNWN datasets were smaller than the headlines and
SMT datasets).

The suggested training data for the 2013 STS
task was the data from the 2012 STS task (Agirre
et al., 2012), including both the training and test
sets for that year. The 2012 task was similar ex-
cept that the data were from a different set of sub-
tasks: measuring similarity between sentences from
the Microsoft Research Paraphrase corpus (Dolan
et al., 2004) (“MSRpar”), between sentences from
the Microsoft Research Video Description corpus
(Chen and Dolan, 2011) (“MSRvid”), and between
human and machine translations of parliamentary
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proceedings (“SMTeuroparl”). The 2012 task pro-
vided training and test sets for those three subtasks
and also included two additional tasks with just test
sets: a similar OnWN task, and measuring similar-
ity between human and machine translations of news
broadcasts (“SMTnews”).

Heilman and Madnani (2012) described the PERP
system and submitted it to the 2012 STS task. PERP
measures the similarity of a sentence pair by find-
ing a sequence of edit operations (e.g., insertions,
deletions, substitutions, and shifts) that converts one
sentence to the other. It then uses various features
of the edits, with weights learned from labeled sen-
tence pairs, to assign a similarity score. PERP per-
formed well, ranking 7th out of 88 submissions from
35 teams according to the weighted mean correla-
tion. However, PERP lacked some of the useful
word and n-gram overlap features included in some
of the other top-performing submissions. In addi-
tion, domain adaptation seemed more relevant for
the STS 2013 task since in-domain data was avail-
able only for one (OnWN) of the four subtasks.

Therefore, in this work, we combine the PERP
system with various word and n-gram features.
We also apply the domain adaptation technique of
Daume III (2007) to support generalization beyond
the domains in the training data.

2 System Details

In this section, we describe the system we devel-
oped, and the variations of it that comprise our sub-
missions to the 2013 STS task.

Our system is a linear model estimated using
ridge regression, as implemented in the scikit-learn
toolkit (Pedregosa et al., 2011). The system uses
a 5-fold cross-validation grid search to tune the α
penalty for ridge regression (with α ∈ 2{−5,−4,...,4}).
During development, we evaluated its performance
on the full STS 2012 data (training and test) us-
ing 10-fold cross-validation, with the 5-fold cross-
validation being used to tune within each training
partition.

2.1 Features

Our full system uses the following features com-
puted from an input sentence pair (s1, s2).

The system standardizes feature values to zero

mean and unit variance by subtracting the feature’s
mean and dividing by its standard deviation. The
means and standard deviations are estimated from
the training set, or from each training partition dur-
ing cross-validation.

2.1.1 n-gram Overlap Features
The system computes Jaccard similarity (i.e., the

ratio of the sizes of the set intersection to the set
union) for the following overlap features:

• character n-gram overlap (n = 1 . . . 12). Note
that this is computed from the entire original
texts for a pair, including punctuation, whites-
pace, etc.

• word n-gram overlap (n = 2 . . . 8). We do not
include n = 1 here because it would be identi-
cal to the n = 1 version for the unordered word
n-gram feature described next.

• unordered word n-gram overlap features (n =
1 . . . 3). By unordered, we mean combina-
tions (in the mathematical sense of “combi-
nations”) of word tokens, regardless of order.
Note that these features are similar to the word
n-gram overlap features except that the words
need not be contiguous to match. For example,
the text “John saw Mary” would result in the
following unordered word n-grams: {john},
{mary}, {saw}, {john, saw}, {mary, saw},
{john, mary}, and {john, mary, saw}.

For the word and unordered n-gram overlap fea-
tures, we computed two variants: one based on all
tokens and one based on just content words, which
we define as words that are not punctuation and do
not appear in the NLTK (Bird et al., 2009) English
stopword list. We lowercase everything for the word
overlap measures but not for character overlap.

2.1.2 Length Features
The system includes various length-related fea-

tures, where Lmax = max(length(s1), length(s2)),
Lmin = min(length(s1), length(s2)), and length(x)
denotes the number of tokens in x. log denotes the
natural logarithm.

• log(Lmax
Lmin

)

• Lmax−Lmin
Lmax
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• log(Lmin)

• log(Lmax)

• log(|Lmax − Lmin|+ 1)

2.1.3 Sentiment Features
The system includes various features based on the

proprietary sentiment lexicon described by Beigman
Klebanov et al. (2012). Each word in this lexicon
is associated with a 3-tuple specifying a distribution
over three classes: positive, negative, and neutral.
These distributions were estimated via crowdsourc-
ing. If a word is not in the lexicon, we assume its
positivity and negativity are zero.

We define the set of sentiment words in a sen-
tence s as σ(s) = {w : positivity(w) > 0.5 ∨
negativity(w) > 0.5}. We also define the pos-
itivity, negativity, and neutrality of a sentence as
the sum over the corresponding values of indi-
vidual words w. For example, positivity(s) =∑

w∈s positivity(w).
The system includes the following features:

• σ(s1)∩σ(s2)
σ(s1)∪σ(s2) (i.e., the Jaccard similarity of the
sentiment words)

• The cosine distance between
(positivity(s1), negativity(s1)) and
(positivity(s2), negativity(s2))

• |positivity(s1)− positivity(s2)|
• |negativity(s1)− negativity(s2)|
• |neutrality(s1)− neutrality(s2)|

2.1.4 PERP with Stacking
The system also incorporates the PERP system

(Heilman and Madnani, 2012) (as briefly described
in §1) as a feature in its model by using 10-fold
stacking (Wolpert, 1992). Stacking is a procedure
similar to k-fold cross-validation that allows one to
use the output of one model as the input to another
model, without requiring multiple training sets. A
PERP model is iteratively trained on nine folds and
then the PERP feature is computed for the tenth,
producing PERP features for the whole training set,
which are then used in the final regression model.

We trained PERP in a general manner using data
from all the STS 2012 subtasks rather than training
subtask-specific models. PERP was trained for 100
iterations.

We refer readers to Heilman and Madnani (2012)
for a full description of PERP. Next, we provide de-
tails about modifications made to PERP since STS
2012. Although these details are not necessary to
understand how the system works in general, we in-
clude them here for completeness.

• We extended PERP to model abbreviations as
zero cost edits, using a list of common abbrevi-
ations extracted from Wikipedia.1

• In a similar vein, we also extended PERP
to model multiword sequences with differing
punctuation (e.g., “Built-In Test” → “Built In
Test”) as zero cost edits.

• We changed the stemming and synonymy edits
in the original PERP (Heilman and Madnani,
2012) to be substitution edits that activate addi-
tional stemming and synonymy indicator fea-
tures.

• We added an incentive to TERp’s (Snover et
al., 2009) original inference algorithm to pre-
fer matching words when searching for a good
edit sequence. We added this to avoid rare
cases where other edits would have a negative
costs, and then the same word in a sentence
pair would be, for example inserted and deleted
rather than matched.

• We fixed a minor bug in the inference algo-
rithm, which appeared to only affect results on
the MSRvid subtask in the STS 2012 task.

• We tweaked the learning algorithm by increas-
ing the learning rate and not performing weight
averaging.

2.2 Domain Adaptation

The system also uses the domain adaptation tech-
nique described by Daume III (2007) to facilitate
generalization to new domains. Instead of having
a single weight for each of the features described
above, the system maintains a generic and a subtask-
specific copy. For example, the content bigram over-
lap feature had six copies: a generic copy and one
for each of the five subtasks in the training data from

1http://en.wikipedia.org/wiki/List_of_
acronyms_and_initialisms, downloaded April 27,
2012
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STS 2012 (i.e., OnWN, MSRpar, MSRvid, SMTeu-
roparl, SMTnews). And then for an instance from
MSRpar, only the generic and MSRpar-specific ver-
sions of the feature will be active. For an instance
from a new subtask (e.g., a test set instance), only
the generic feature will be active.

We also included a generic intercept feature and
intercept features for each subtask (these always had
a value of 1). These help the model capture, for
example, whether high or low similarities are more
frequent in general, without having to use the other
feature weights to do so.

2.3 Submissions

We submitted three variations of the system.

• Run 1: This run used all the features described
above. In addition, we mapped the test subtasks
to the training subtasks as follows so that the
specific features would be active for test data
from previously unseen but related subtasks:
headlines to MSRpar, SMT to SMTnews, and
FNWN to OnWN.

• Run 2: As in Run 1, this run used all the fea-
tures described above. However, we did not
map the STS 2013 subtasks to STS 2012 sub-
tasks. Thus, the specific copies of features were
only active for OnWN test set examples.

• Run 3: This run used all the features except for
the PERP and sentiment features. Like Run 2,
this run did not map subtasks.

3 Results

This section presents results on the STS 2012 data
(our development set) and results for our submis-
sions to STS 2013.

3.1 STS 2012 (development set)

Although we used cross-validation on the entire STS
2012 dataset during preliminary experiments (§2),
in this section, we train the system on the original
STS 2012 training set and report performance on the
original STS 2012 test set, in order to facilitate com-
parison to submissions to that task. It is important to
note that our system’s results here may be somewhat
optimistic since we had access to the STS 2012 test
data and were using it for development, whereas the

participants in the 2012 task only had access to the
training data.

Table 1 presents the results. We include the results
for our three submissions, the results for the top-
ranked submission according to the weighted mean
(“UKP”), the results for the best submission from
Heilman and Madnani (2012) (“PERPphrases”), and
the mean across all submissions. Note that while we
compare to the PERP submission from Heilman and
Madnani (2012), the results are not directly compa-
rable since the version of PERP is not the same and
since PERP was trained differently.

For Run 1 on the STS 2012 data, we mapped
OnWN to MSRpar, and SMTnews to SMTeuroparl,
similar to Heilman and Madnani (2012).

3.2 STS 2013 (unseen test set)

Table 2 presents results for our submissions to the
2013 STS task. We include results for our three sub-
missions, results for the top-ranked submission ac-
cording to the weighted mean, results for the base-
line provided by the task organizers, and the mean
across all submissions and the baseline from the or-
ganizers.2

Note that while our Run 2 submission outper-
formed the top-ranked UMBC submission on the
headlines subtask, as shown in 2, there was another
UMBC submission that performed better than Run 2
for the headlines subtask.

4 Discussion

The weighted mean correlation across tasks for our
submissions was relatively poor compared to the
top-ranked systems for STS 2013: our Run 1, Run 2,
and Run 3 submissions beat the baseline and ranked
41st, 26th, and 48th, respectively, out of 89 submis-
sions.

The primary reason for this result is that perfor-
mance of our submissions was poor for the OnWN
subtask, where, e.g., our Run 2 submission’s corre-
lation was r = .4631, compared to r = .8431 for
the top-ranked submission for that subtask (“deft-
baseline”). Upon investigation, we found that
OnWN training and test data were very different in
terms of their score distributions. The mean gold

2The STS 2013 results are from http://ixa2.si.
ehu.es/sts/.
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Submission MSRpar MSRvid SMTeuroparl OnWN SMTnews W. Mean
Run 1 .6461 .8060 .5014 .7073 .4876 .6577
Run 2 .6461 .8060 .5014 .7274 .4744 .6609
Run 3 .6369 .7904 .5101 .7010 .4985 .6529
UKP (top-ranked) .6830 .8739 .5280 .6641 .4937 .6773
PERPphrases .6397 .7200 .4850 .7124 .5312 .6399
mean-2012 .4894 .7049 .3958 .5557 .3731 .5286

Table 1: Pearson correlations for STS 2012 data for each subtask and then the weighted mean across subtasks. “UKP”
was submitted by Bär et al. (2012), “PERPphrases” was submitted by Heilman and Madnani (2012), and “mean-2012”
is the mean of all submissions to STS 2012.

Submission headlines OnWN FNWN SMT W. Mean
Run 1 .7601 .4631 .3516 .2801 .4917
Run 2 .7645 .4631 .3905 .3593 .5229
Run 3 .7103 .3934 .3364 .3308 .4734
UMBC (top-ranked) .7642 .7529 .5818 .3804 .6181
baseline .5399 .2828 .2146 .2861 .3639
mean-2013 .6022 .5042 .2887 .2989 .4503

Table 2: Pearson correlations for STS 2013 data for each subtask and then the weighted mean across subtasks.
“UMBC” = “UMBC EBIQUITY-ParingWords”, and “mean-2013” is the mean of the submissions to STS 2013 and
the baseline.

standard similarity value for the STS 2012 OnWN
data was 3.87 (with a standard deviation of 1.02),
while the mean for the 2013 OnWN data was 2.31
(with a standard deviation of 1.76). We speculate
that our system performed relatively poorly because
it was expecting the OnWN data to include many
highly similar sentences (as in the 2012 data). We
hypothesize that incorporating more detailed Word-
Net information (only the PERP feature used Word-
Net, and only in a limited fashion, to check syn-
onymy) and task-specific features for comparing
definitions might have helped performance for the
OnWN subtask.

If we ignore the definition comparison subtasks,
and consider performance on just the headlines and
SMT subtasks, the system performed quite well.
Our Run 2 submission had a mean correlation of
r = .5619 for those two subtasks, which would rank
5th among all submissions.

We have not fully explored the effects on perfor-
mance of the domain adaptation approach used in
the system, but our approach of mapping tasks used
for our Run 1 submission did not seem to help. It
seems better to keep a general model, as in Runs 2
and 3.

Additionally, we observe that the performance of
Run 3, which did not use the PERP and sentiment
features, was relatively good compared to Runs 1
and 2, which used all the features. This indicates
that if speed and implementation simplicity are im-
portant concerns for an application, it may suffice to
use relatively simple overlap and length features to
measure semantic similarity.

The contribution of domain adaptation is not
clear. Mapping novel subtasks to tasks for which
training data is available (§2.3), in combination with
the domain adaptation technique we used, did not
generally improve performance. However, we leave
to future work a detailed analysis of whether the
domain adaptation approach (without mapping) is
better than simply training a separate system for
each subtask and using out-of-domain data when in-
domain data is unavailable.

5 Conclusion

In this paper, we described a system for predicting
the semantic similarity of two short texts. The sys-
tem uses stacking to combine a trained edit-based
similarity model (Heilman and Madnani, 2012) with
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simple features such as word and n-gram overlap,
and it uses the technique described by Daume III
(2007) to support generalization to domains not rep-
resented in the training data. We also presented eval-
uation results, using data from the STS 2012 and
STS 2013 shared tasks, that indicate that the system
performs competitively relative to other approaches
for many tasks. In particular, we observed very
good performance on the news headline similarity
and MT evaluation subtasks of the STS 2013 shared
task.
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Abstract

This paper describes our submission for the

*SEM shared task of Semantic Textual Sim-

ilarity. We estimate the semantic similarity

between two sentences using regression mod-

els with features: 1) n-gram hit rates (lexical

matches) between sentences, 2) lexical seman-

tic similarity between non-matching words, 3)

string similarity metrics, 4) affective content

similarity and 5) sentence length. Domain

adaptation is applied in the form of indepen-

dent models and a model selection strategy

achieving a mean correlation of 0.47.

1 Introduction

Text semantic similarity estimation has been an ac-

tive research area, thanks to a variety of potential ap-

plications and the wide availability of data afforded

by the world wide web. Semantic textual similar-

ity (STS) estimates can be used for information ex-

traction (Szpektor and Dagan, 2008), question an-

swering (Harabagiu and Hickl, 2006) and machine

translation (Mirkin et al., 2009). Term-level simi-

larity has been successfully applied to problems like

grammar induction (Meng and Siu, 2002) and affec-

tive text categorization (Malandrakis et al., 2011). In

this work, we built on previous research and our sub-

mission to SemEval’2012 (Malandrakis et al., 2012)

to create a sentence-level STS model for the shared

task of *SEM 2013 (Agirre et al., 2013).

Semantic similarity between words has been

well researched, with a variety of knowledge-based

(Miller, 1990; Budanitsky and Hirst, 2006) and

corpus-based (Baroni and Lenci, 2010; Iosif and

Potamianos, 2010) metrics proposed. Moving to

sentences increases the complexity exponentially

and as a result has led to measurements of simi-

larity at various levels: lexical (Malakasiotis and

Androutsopoulos, 2007), syntactic (Malakasiotis,

2009; Zanzotto et al., 2009), and semantic (Rinaldi

et al., 2003; Bos and Markert, 2005). Machine trans-

lation evaluation metrics can be used to estimate lex-

ical level similarity (Finch et al., 2005; Perez and

Alfonseca, 2005), including BLEU (Papineni et al.,

2002), a metric using word n-gram hit rates. The pi-

lot task of sentence STS in SemEval 2012 (Agirre et

al., 2012) showed a similar trend towards multi-level

similarity, with the top performing systems utilizing

large amounts of partial similarity metrics and do-

main adaptation (the use of separate models for each

input domain) (Bär et al., 2012; Šarić et al., 2012).

Our approach is originally motivated by BLEU

and primarily utilizes “hard” and “soft” n-gram hit

rates to estimate similarity. Compared to last year,

we utilize different alignment strategies (to decide

which n-grams should be compared with which).

We also include string similarities (at the token and

character level) and similarity of affective content,

expressed through the difference in sentence arousal

and valence ratings. Finally we added domain adap-

tation: the creation of separate models per domain

and a strategy to select the most appropriate model.

2 Model

Our model is based upon that submitted for the same

task in 2012 (Malandrakis et al., 2012). To esti-

mate semantic similarity metrics we use a super-

vised model with features extracted using corpus-
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based word-level similarity metrics. To combine

these metrics into a sentence-level similarity score

we use a modification of BLEU (Papineni et al.,

2002) that utilizes word-level semantic similarities,

string level comparisons and comparisons of affec-

tive content, detailed below.

2.1 Word level semantic similarity

Co-occurrence-based. The semantic similarity be-

tween two words, wi and wj , is estimated as their

pointwise mutual information (Church and Hanks,

1990): I(i, j) = log p̂(i,j)
p̂(i)p̂(j) , where p̂(i) and p̂(j) are

the occurrence probabilities of wi and wj , respec-

tively, while the probability of their co-occurrence

is denoted by p̂(i, j). In our previous participation

in SemEval12-STS task (Malandrakis et al., 2012)

we employed a modification of the pointwise mutual

information based on the maximum sense similar-

ity assumption (Resnik, 1995) and the minimization

of the respective error in similarity estimation. In

particular, exponential weights α were introduced in

order to reduce the overestimation of denominator

probabilities. The modified metric Ia(i, j), is de-

fined as:

Ia(i, j)=
1

2

[

log
p̂(i, j)

p̂α(i)p̂(j)
+ log

p̂(i, j)

p̂(i)p̂α(j)

]

. (1)

The weight α was estimated on the corpus of (Iosif

and Potamianos, 2012) in order to maximize word

sense coverage in the semantic neighborhood of

each word. The Ia(i, j) metric using the estimated

value of α = 0.8 was shown to significantly

outperform I(i, j) and to achieve state-of-the-art

results on standard semantic similarity datasets

(Rubenstein and Goodenough, 1965; Miller and

Charles, 1998; Finkelstein et al., 2002).

Context-based: The fundamental assumption

behind context-based metrics is that similarity

of context implies similarity of meaning (Harris,

1954). A contextual window of size 2H + 1 words

is centered on the word of interest wi and lexical

features are extracted. For every instance of wi

in the corpus the H words left and right of wi

formulate a feature vector vi. For a given value of

H the context-based semantic similarity between

two words, wi and wj , is computed as the cosine

of their feature vectors: QH(i, j) =
vi.vj

||vi|| ||vj ||
.

The elements of feature vectors can be weighted

according various schemes [(Iosif and Potamianos,

2010)], while, here we use a binary scheme.

Network-based: The aforementioned similarity

metrics were used for the definition of a semantic

network (Iosif and Potamianos, 2013; Iosif et al.,

2013). A number of similarity metrics were pro-

posed under either the attributional similarity (Tur-

ney, 2006) or the maximum sense similarity (Resnik,

1995) assumptions of lexical semantics1.

2.2 Sentence level similarities

To utilize word-level semantic similarities in the

sentence-level task we use a modified version of

BLEU (Papineni et al., 2002). The model works in

two passes: the first pass identifies exact matches

(similar to baseline BLEU), the second pass com-

pares non-matched terms using semantic similarity.

Non-matched terms from the hypothesis sentence

are compared with all terms of the reference sen-

tence (regardless of whether they were matched dur-

ing the first pass). In the case of bigram and higher

order terms, the process is applied recursively: the

bigrams are decomposed into two words and the

similarity between them is estimated by applying the

same method to the words. All word similarity met-

rics used are peak-to-peak normalized in the [0,1]

range, so they serve as a “degree-of-match”. The se-

mantic similarity scores from term pairs are summed

(just like n-gram hits) to obtain a BLEU-like hit-rate.

Alignment is performed via maximum similarity:

we iterate on the hypothesis n-grams, left-to-right,

and compare each with the most similar n-gram in

the reference. The features produced by this process

are “soft” hit-rates (for 1-, 2-, 3-, 4-grams)2. We also

use the “hard” hit rates produced by baseline BLEU

as features of the final model.

2.3 String similarities

We use the following string-based similarity fea-

tures: 1) Longest Common Subsequence Similarity

(LCSS) (Lin and Och, 2004) based on the Longest

Common Subsequence (LCS) character-based dy-

1The network-based metrics were applied only during the

training phase of the shared task, due to time limitations. They

exhibited almost identical performance as the metric defined by

(1), which was used in the test runs.
2Note that the features are computed twice on each sentence

pair and then averaged.

104



namic programming algorithm. LCSS represents the

length of the longest string (or strings) that is a sub-

string (or are substrings) of two or more strings. 2)

Skip bigram co-occurrence measures the overlap of

skip-bigrams between two sentences or phrases. A

skip-bigram is defined as any pair of words in the

sentence order, allowing for arbitrary gaps between

words (Lin and Och, 2004). 3) Containment is de-

fined as the percentage of a sentence that is con-

tained in another sentence. It is a number between

0 and 1, where 1 means the hypothesis sentence is

fully contained in the reference sentence (Broder,

1997). We express containment as the amount of n-

grams of a sentence contained in another. The con-

tainment metric is not symmetric and is calculated

as: c(X,Y ) = |S(X) ∩ S(Y )|/S(X), where S(X)
and S(Y ) are all the n-grams of sentences X and Y
respectively.

2.4 Affective similarity

We used the method proposed in (Malandrakis et al.,

2011) to estimate affective features. Continuous (va-

lence and arousal) ratings in [−1, 1] of any term are

represented as a linear combination of a function of

its semantic similarities to a set of seed words and

the affective ratings of these words, as follows:

v̂(wj) = a0 +

N
∑

i=1

ai v(wi) dij , (2)

where wj is the term we mean to characterize,

w1...wN are the seed words, v(wi) is the valence rat-

ing for seed word wi, ai is the weight corresponding

to seed word wi (that is estimated as described next),

dij is a measure of semantic similarity between wi

and wj (for the purposes of this work, cosine similar-

ity between context vectors is used). The weights ai

are estimated over the Affective norms for English

Words (ANEW) (Bradley and Lang, 1999) corpus.

Using this model we generate affective ratings for

every content word (noun, verb, adjective or adverb)

of every sentence. We assume that these can ad-

equately describe the affective content of the sen-

tences. To create an “affective similarity metric” we

use the difference of means of the word affective rat-

ings between two sentences.

d̂affect = 2− |µ(v̂(s1))− µ(v̂(s2))| (3)

where µ(v̂(si)) the mean of content word ratings in-

cluded in sentence i.

2.5 Fusion

The aforementioned features are combined using

one of two possible models. The first model is a

Multiple Linear Regression (MLR) model

D̂L = a0 +
k

∑

n=1

an fk, (4)

where D̂L is the estimated similarity, fk are the un-

supervised semantic similarity metrics and an are

the trainable parameters of the model.

The second model is motivated by an assumption

of cognitive scaling of similarity scores: we expect

that the perception of hit rates is non-linearly af-

fected by the length of the sentences. We call this the

hierarchical fusion scheme. It is a combination of

(overlapping) MLR models, each matching a range

of sentence lengths. The first model DL1 is trained

with sentences with length up to l1, i.e., l ≤ l1, the

second model DL2 up to length l2 etc. During test-

ing, sentences with length l ∈ [1, l1] are decoded

with DL1, sentences with length l ∈ (l1, l2] with

model DL2 etc. Each of these partial models is a

linear fusion model as shown in (4). In this work,

we use four models with l1 = 10, l2 = 20, l3 = 30,

l4 =∞.

Domain adaptation is employed, by creating sep-

arate models per domain (training data source). Be-

yond that, we also create a unified model, trained

on all data to be used as a fallback if an appropriate

model can not be decided upon during evaluation.

3 Experimental Procedure and Results

Initially all sentences are pre-processed by the

CoreNLP (Finkel et al., 2005; Toutanova et al.,

2003) suite of tools, a process that includes named

entity recognition, normalization, part of speech tag-

ging, lemmatization and stemming. We evaluated

multiple types of preprocessing per unsupervised

metric and chose different ones depending on the

metric. Word-level semantic similarities, used for

soft comparisons and affective feature extraction,

were computed over a corpus of 116 million web

snippets collected by posing one query for every

word in the Aspell spellchecker (asp, ) vocabulary to

the Yahoo! search engine. Word-level emotional rat-

ings in continuous valence and arousal scales were

produced by a model trained on the ANEW dataset
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and using contextual similarities. Finally, string sim-

ilarities were calculated over the original unmodified

sentences.

Next, results are reported in terms of correla-

tion between the generated scores and the ground

truth, for each corpus in the shared task, as well as

their weighted mean. Feature selection is applied

to the large candidate feature set using a wrapper-

based backward selection approach on the train-

ing data.The final feature set contains 15 features:

soft hit rates calculated over content word 1- to 4-

grams (4 features), soft hit rates calculated over un-

igrams per part-of-speech, for adjectives, nouns, ad-

verbs, verbs (4 features), BLEU unigram hit rates

for all words and content words (2 features), skip

and containment similarities, containment normal-

ized by sum of sentence lengths or product of sen-

tence lengths (3 features) and affective similarities

for arousal and valence (2 features).

Domain adaptation methods are the only dif-

ference between the three submitted runs. For all

three runs we train one linear model per training set

and a fallback model. For the first run, dubbed lin-

ear, the fallback model is linear and model selection

during evaluation is performed by file name, there-

fore results for the OnWN set are produced by a

model trained with OnWN data, while the rest are

produced by the fallback model. The second run,

dubbed length, uses a hierarchical fallback model

and model selection is performed by file name. The

third run, dubbed adapt, uses the same models as

the first run and each test set is assigned to a model

(i.e., the fallback model is never used). The test set -

model (training) mapping for this run is: OnWN →
OnWN, headlines → SMTnews, SMT → Europarl

and FNWN→ OnWN.

Table 1: Correlation performance for the linear model us-

ing lexical (L), string (S) and affect (A) features

Feature headl. OnWN FNWN SMT mean

L 0.68 0.51 0.23 0.25 0.46

L+S 0.69 0.49 0.23 0.26 0.46

L+S+A 0.69 0.51 0.27 0.28 0.47

Results are shown in Tables 1 and 2. Results for

the linear run using subsets of the final feature set

are shown in Table 1. Lexical features (hit rates) are

obviously the most valuable features. String similar-

ities provided us with an improvement in the train-

Table 2: Correlation performance on the evaluation set.

Run headl. OnWN FNWN SMT mean

linear 0.69 0.51 0.27 0.28 0.47

length 0.65 0.51 0.25 0.28 0.46

adapt 0.62 0.51 0.33 0.30 0.46

ing set which is not reflected in the test set. Af-

fect proved valuable, particularly in the most diffi-

cult sets of FNWN and SMT.

Results for the three submission runs are shown

in Table 2. Our best run was the simplest one, using

a purely linear model and effectively no adaptation.

Adding a more aggressive adaptation strategy im-

proved results in the FNWN and SMT sets, so there

is definitely some potential, however the improve-

ment observed is nowhere near that observed in the

training data or the same task of SemEval 2012. We

have to question whether this improvement is an ar-

tifact of the rating distributions of these two sets

(SMT contains virtually only high ratings, FNWN

contains virtually only low ratings): such wild mis-

matches in priors among training and test sets can

be mitigated using more elaborate machine learning

algorithms (rather than employing better semantic

similarity features or algorithms). Overall the sys-

tem performs well in the two sets containing large

similarity rating ranges.

4 Conclusions

We have improved over our previous model of sen-

tence semantic similarity. The inclusion of string-

based similarities and more so of affective content

measures proved significant, but domain adaptation

provided mixed results. While expanding the model

to include more layers of similarity estimates is

clearly a step in the right direction, further work is

required to include even more layers. Using syntac-

tic information and more levels of abstraction (e.g.

concepts) are obvious next steps.
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Abstract 

This paper describes the specifications and 

results of UMCC_DLSI system, which 

participated in the Semantic Textual 

Similarity task (STS) of SemEval-2013. Our 

supervised system uses different types of 

lexical and semantic features to train a 

Bagging classifier used to decide the correct 

option. Related to the different features we 

can highlight the resource ISR-WN used to 

extract semantic relations among words and 

the use of different algorithms to establish 

semantic and lexical similarities. In order to 

establish which features are the most 

appropriate to improve STS results we 

participated with three runs using different 

set of features. Our best run reached the 

position 44 in the official ranking, obtaining 

a general correlation coefficient of 0.61. 

1 Introduction 

SemEval-2013 (Agirre et al., 2013) presents the 

task Semantic Textual Similarity (STS) again. In 

STS, the participating systems must examine the 

degree of semantic equivalence between two 

sentences. The goal of this task is to create a 

unified framework for the evaluation of semantic 

textual similarity modules and to characterize 

their impact on NLP applications. 

STS is related to Textual Entailment (TE) and 

Paraphrase tasks. The main difference is that 

STS assumes bidirectional graded equivalence 

between the pair of textual snippets. 

In case of TE, the equivalence is directional 

(e.g. a student is a person, but a person is not 

necessarily a student). In addition, STS differs 

from TE and Paraphrase in that, rather than 

being a binary yes/no decision, STS is a 

similarity-graded notion (e.g. a student is more 

similar to a person than a dog to a person).  

This graded bidirectional is useful for NLP 

tasks such as Machine Translation (MT), 

Information Extraction (IE), Question 

Answering (QA), and Summarization. Several 

semantic tasks could be added as modules in the 

STS framework, “such as Word Sense 

Disambiguation and Induction, Lexical 

Substitution, Semantic Role Labeling, Multiword 

Expression detection and handling, Anaphora 

and Co-reference resolution, Time and Date 

resolution and Named Entity, among others”1  

1.1 Description of 2013 pilot task 

This edition of SemEval-2013 remain with the 

same classification approaches that in their first 

version in 2012. The output of different systems 

was compared to the reference scores provided 

by SemEval-2013 gold standard file, which 

range from five to zero according to the next 

criterions2: (5) “The two sentences are 

equivalent, as they mean the same thing”. (4) 

“The two sentences are mostly equivalent, but 

some unimportant details differ”. (3) “The two 

sentences are roughly equivalent, but some 

important information differs/missing”. (2) “The 

two sentences are not equivalent, but share some 

details”. (1) “The two sentences are not 

                                                           
1 http://www.cs.york.ac.uk/semeval-2012/task6/ 
2 http://www.cs.york.ac.uk/semeval-

2012/task6/data/uploads/datasets/train-readme.txt 
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equivalent, but are on the same topic”. (0) “The 

two sentences are on different topics”. 

After this introduction, the rest of the paper is 

organized as follows. Section 3 shows the 

Related Works. Section 4 presents our system 

architecture and description of the different runs. 

In section 4 we describe the different features 

used in our system. Results and a discussion are 

provided in Section 5 and finally we conclude in 

Section 6. 

2 Related Works 

There are more extensive literature on measuring 

the similarity between documents than to 

between sentences. Perhaps the most recently 

scenario is constituted by the competition of 

SemEval-2012 task 6: A Pilot on Semantic 

Textual Similarity (Aguirre and Cerd, 2012). In 

SemEval-2012, there were used different tools 

and resources like stop word list, multilingual 

corpora, dictionaries, acronyms, and tables of 

paraphrases, “but WordNet was the most used 

resource, followed by monolingual corpora and 

Wikipedia” (Aguirre and Cerd, 2012). 

According to Aguirre, Generic NLP tools were 

widely used. Among those that stand out were 

tools for lemmatization and POS-tagging 

(Aguirre and Cerd, 2012). On a smaller scale 

word sense disambiguation, semantic role 

labeling and time and date resolution. In 

addition, Knowledge-based and distributional 

methods were highly used. Aguirre and Cerd 

remarked on (Aguirre and Cerd, 2012) that 

alignment and/or statistical machine translation 

software, lexical substitution, string similarity, 

textual entailment and machine translation 

evaluation software were used to a lesser extent. 

It can be noted that machine learning was widely 

used to combine and tune components. 

Most of the knowledge-based methods “obtain 

a measure of relatedness by utilizing lexical 

resources and ontologies such as WordNet 

(Miller et al., 1990b) to measure definitional 

overlap, term distance within a graphical 

taxonomy, or term depth in the taxonomy as a 

measure of specificity” (Banea et al., 2012). 

Some scholars as in (Corley and Mihalcea, 

June 2005) have argue “the fact that a 

comprehensive metric of text semantic similarity 

should take into account the relations between 

words, as well as the role played by the various 

entities involved in the interactions described by 

each of the two sentences”. This idea is resumed 

in the Principle of Compositionality, this 

principle posits that the meaning of a complex 

expression is determined by the meanings of its 

constituent expressions and the rules used to 

combine them (Werning et al., 2005). Corley 

and Mihalcea in this article combined metrics of 

word-to-word similarity, and language models 

into a formula and they pose that this is a 

potentially good indicator of the semantic 

similarity of the two input texts sentences. They 

modeled the semantic similarity of a sentence as 

a function of the semantic similarity of the 

component words (Corley and Mihalcea, June 

2005). 

One of the top scoring systems at SemEval-

2012 (Šarić et al., 2012) tended to use most of 

the aforementioned resources and tools. They 

predict the human ratings of sentence similarity 

using a support-vector regression model with 

multiple features measuring word-overlap 

similarity and syntax similarity. They also 

compute the similarity between sentences using 

the semantic alignment of lemmas. First, they 

compute the word similarity between all pairs of 

lemmas from first to second sentence, using 

either the knowledge-based or the corpus-based 

semantic similarity. They named this method 

Greedy Lemma Aligning Overlap. 

Daniel Bär presented the UKP system, which 

performed best in the Semantic Textual 

Similarity (STS) task at SemEval-2012 in two 

out of three metrics. It uses a simple log-linear 

regression model, trained on the training data, to 

combine multiple text similarity measures of 

varying complexity. 

3 System architecture and description 

of the runs 

As we can see in Figure 1, our three runs begin 

with the pre-processing of SemEval-2013’s 

training set. Every sentence pair is tokenized, 

lemmatized and POS-tagged using Freeling 2.2 

tool (Atserias et al., 2006). Afterwards, several 

methods and algorithms are applied in order to 

extract all features for our Machine Learning 

System (MLS). Each run uses a particular group 

of features. 
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Figure 1. System Architecture. 

The Run 1 (named MultiSemLex) is our main 

run. This takes into account all extracted features 

and trains a model with a Bagging classifier 

(Breiman, 1996) (using REPTree). The training 

corpus has been provided by SemEval-2013 

competition, in concrete by the Semantic Textual 

Similarity task.  

The Run 2 (named MultiLex) and Run 3 

(named MultiSem) use the same classifier, but 

including different features. Run 2 uses (see 

Figure 1) features extracted from Lexical-

Semantic Metrics (LS-M) described in section 

4.1, and Lexical-Semantic Alignment (LS-A) 

described in section 4.2. 

On the other hand, Run 3 uses features 

extracted only from Semantic Alignment (SA) 

described in section 4.3. 

As a result, we obtain three trained models 

capable to estimate the similarity value between 

two phrases. 

Finally, we test our system with the SemEval-

2013 test set (see Table 14 with the results of our 

three runs). The following section describes the 

features extraction process. 

4 Description of the features used in the 

Machine Learning System 

Many times when two phrases are very similar, 

one sentence is in a high degree lexically 

overlapped by the other. Inspired in this fact we 

developed various algorithms, which measure 

the level of overlapping by computing a quantity 

of matching words in a pair of phrases. In our 

system, we used as features for a MLS lexical 

and semantic similarity measures. Other features 

were extracted from a lexical-semantic sentences 

alignment and a variant using only a semantic 

alignment. 

4.1 Similarity measures 

We have used well-known string based 

similarity measures like: Needleman-Wunch 

(sequence alignment), Smith-Waterman 

(sequence alignment), Smith-Waterman-Gotoh, 

Smith-Waterman-Gotoh-Windowed-Affine, 

Jaro, Jaro-Winkler, Chapman-Length-Deviation, 

Chapman-Mean-Length, QGram-Distance, 

Block-Distance, Cosine Similarity, Dice 

Similarity, Euclidean Distance, Jaccard 

Similarity, Matching Coefficient, Monge-Elkan 

and Overlap-Coefficient. These algorithms have 

been obtained from an API (Application 

Program Interface) SimMetrics library v1.5 for 

.NET 2.03. We obtained 17 features for our MLS 

from these similarity measures. 

Using Levenshtein’s edit distance (LED), we 

computed also two different algorithms in order 

to obtain the alignment of the phrases. In the first 

one, we considered a value of the alignment as 

the LED between two sentences. Contrary to 

(Tatu et al., 2006), we do not remove the 

punctuation or stop words from the sentences, 

                                                           
3 Copyright (c) 2006 by Chris Parkinson, available in 

http://sourceforge.net/projects/simmetrics/ 

Run1.Bagging Classifier 

Training set from 
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neither consider different cost for transformation 

operation, and we used all the operations 

(deletion, insertion and substitution).  

The second one is a variant that we named 

Double Levenshtein’s Edit Distance (DLED) 

(see Table 9 for detail). For this algorithm, we 

used LED to measure the distance between the 

phrases, but in order to compare the words, we 

used LED again (Fernández et al., 2012; 

Fernández Orquín et al., 2009). 

Another distance we used is an extension of 

LED named Extended Distance (in spanish 

distancia extendida (DEx)) (see (Fernández et 

al., 2012; Fernández Orquín et al., 2009) for 

details). This algorithm is an extension of the 

Levenshtein’s algorithm, with which penalties 

are applied by considering what kind of 

transformation (insertion, deletion, substitution, 

or non-operation) and the position it was carried 

out, along with the character involved in the 

operation. In addition to the cost matrixes used 

by Levenshtein’s algorithm, DEx also obtains 

the Longest Common Subsequence (LCS) 

(Hirschberg, 1977) and other helpful attributes 

for determining similarity between strings in a 

single iteration. It is worth noting that the 

inclusion of all these penalizations makes the 

DEx algorithm a good candidate for our 

approach.  

In our previous work (Fernández Orquín et al., 

2009), DEx demonstrated excellent results when 

it was compared with other distances as 

(Levenshtein, 1965), (Neeedleman and Wunsch, 

1970), (Winkler, 1999). We also used as a 

feature the Minimal Semantic Distances 

(Breadth First Search (BFS)) obtained between 

the most relevant concepts of both sentences. 

The relevant concepts pertain to semantic 

resources ISR-WN (Gutiérrez et al., 2011; 

2010a), as WordNet (Miller et al., 1990a), 

WordNet Affect (Strapparava and Valitutti, 

2004), SUMO (Niles and Pease, 2001) and 

Semantic Classes (Izquierdo et al., 2007). Those 

concepts were obtained after having applied the 

Association Ratio (AR) measure between 

concepts and words over each sentence. (We 

refer reader to (Gutiérrez et al., 2010b) for a 

further description). 

Another attribute obtained by the system was a 

value corresponding with the sum of the smaller 

distances (using QGram-Distance) between the 

words or the lemmas of the phrase one with each 

words of the phrase two. 

As part of the attributes extracted by the 

system, was also the value of the sum of the 

smaller distances (using Levenshtein) among 

stems, chunks and entities of both phrases. 

4.2 Lexical-Semantic alignment 

Another algorithm that we created is the Lexical-

Semantic Alignment. In this algorithm, we tried 

to align the phrases by its lemmas. If the lemmas 

coincide we look for coincidences among parts-

of-speech4 (POS), and then the phrase is 

realigned using both. If the words do not share 

the same POS, they will not be aligned. To this 

point, we only have taken into account a lexical 

alignment. From now on, we are going to apply 

a semantic variant. After all the process, the non-

aligned words will be analyzed taking into 

account its WordNet’s relations (synonymy, 

hyponymy, hyperonymy, derivationally-related-

form, similar-to, verbal group, entailment and 

cause-to relation); and a set of equivalences like 

abbreviations of months, countries, capitals, days 

and currency. In case of hyperonymy and 

hyponymy relation, words are going to be 

aligned if there is a word in the first sentence 

that is in the same relation (hyperonymy or 

hyponymy) with another one in the second 

sentence. For the relations “cause-to” and 

“implication” the words will be aligned if there 

is a word in the first sentence that causes or 

implicates another one in the second sentence. 

All the other types of relations will be carried 

out in bidirectional way, that is, there is an 

alignment if a word of the first sentence is a 

synonymous of another one belonging to the 

second one or vice versa. 

Finally, we obtain a value we called alignment 

relation. This value is calculated as 𝐹𝐴𝑉 =
 𝑁𝐴𝑊 / 𝑁𝑊𝑆𝑃. Where 𝐹𝐴𝑉 is the final 

alignment value, 𝑁𝐴𝑊 is the number of aligned 

words, and 𝑁𝑊𝑆𝑃 is the number of words of the 

shorter phrase. The  𝐹𝐴𝑉 value is also another 

feature for our system. Other extracted attributes 

they are the quantity of aligned words and the 

quantity of not aligned words. The core of the 

alignment is carried out in different ways, which 

                                                           
4 (noun, verb, adjective, adverbs, prepositions, 

conjunctions, pronouns, determinants, modifiers, etc.) 
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are obtained from several attributes.  Each way 

can be compared by: 

 the part-of-speech. 

 the morphology and the part-of-speech. 

 the lemma and the part-of-speech. 

 the morphology, part-of-speech, and 

relationships of WordNet. 

 the lemma, part-of-speech, and 

relationships of WordNet. 

4.3 Semantic Alignment 

This alignment method depends on calculating 

the semantic similarity between sentences based 

on an analysis of the relations, in ISR-WN, of 

the words that fix them. 

First, the two sentences are pre-processed with 

Freeling and the words are classified according 

to their POS, creating different groups. 

The distance between two words will be the 

distance, based on WordNet, of the most 

probable sense of each word in the pair, on the 

contrary of our previously system in SemEval 

2012. In that version, we assumed the selected 

sense after apply a double Hungarian Algorithm 

(Kuhn, 1955), for more details  please refer to 

(Fernández et al., 2012). The distance is 

computed according to the equation (1): 

𝑑(𝑥, 𝑦) = ∑ 𝑤 ∗ 𝑟(𝐿[𝑖], 𝐿[𝑖 + 1])𝑖=𝑚
𝑖=0 ; (1) 

Where 𝐿 is the collection of synsets 

corresponding to the minimum path between 

nodes 𝑥 and 𝑦, 𝑚 is the length of 𝐿 subtracting 

one, 𝑟 is a function that search the relation 

connecting 𝑥 and 𝑦 nodes, 𝑤 is a weight 

associated to the relation searched by 𝑟 (see 

Table 1). 
Relation Weight 

Hyponym, Hypernym 2 

Member_Holonym, Member_Meronym, 

Cause, Entailment 
5 

Similar_To 10 

Antonym 200 

Other relation different to Synonymy 60 

Table 1. Weights applied to WordNet relations. 

Table 1 shows the weights associated to 

WordNet relations between two synsets. 

Let us see the following example: 

 We could take the pair 99 of corpus 

MSRvid (from training set of SemEval-

2013) with a littler transformation in 

order to a better explanation of our 

method. 

Original pair 

A: A polar bear is running towards a group of 

walruses. 

B: A polar bear is chasing a group of walruses. 

Transformed pair: 

A1: A polar bear runs towards a group of cats. 

B1: A wale chases a group of dogs. 

Later on, using equation (1), a matrix with the 

distances between all groups of both phrases is 

created (see Table 2). 

GROUPS polar bear runs towards group cats 

wale Dist:=3 Dist:=2 Dist:=3 Dist:=5  Dist:=2 

chases Dist:=4 Dist:=3 Dist:=2 Dist:=4  Dist:=3 

group     Dist:=0  

dogs Dist:=3 Dist:=1 Dist:=4 Dist:=4  Dist:=1 

Table 2. Distances between groups. 

Using the Hungarian Algorithm (Kuhn, 1955) 

for Minimum Cost Assignment, each group of 

the first sentence is checked with each element 

of the second sentence, and the rest is marked as 

words that were not aligned. 

In the previous example the words “toward” 

and “polar” are the words that were not aligned, 

so the number of non-aligned words is two. 

There is only one perfect match: “group-group” 

(match with cost=0). The length of the shortest 

sentence is four. The Table 3 shows the results 

of this analysis. 

Number of exact 

coincidence 

Total Distances of 

optimal Matching 

Number of 

non-aligned 

Words 

1 5 2 

Table 3. Features from the analyzed sentences. 

This process has to be repeated for nouns (see 

Table 4), verbs, adjective, adverbs, prepositions, 

conjunctions, pronouns, determinants, modifiers, 

digits and date times. On the contrary, the tables 

have to be created only with the similar groups 

of the sentences. Table 4 shows features 

extracted from the analysis of nouns. 

GROUPS bear group cats 

wale Dist := 2  Dist := 2 

group  Dist := 0  

dogs Dist := 1  Dist := 1 

Table 4. Distances between groups of nouns. 
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Number of 

exact 

coincidence 

Total Distances 

of optimal 

Matching 

Number of non-aligned 

Words 

1 3 0 

Table 5. Feature extracted from analysis of nouns. 

Several attributes are extracted from the pair of 

sentences (see Table 3 and Table 5). Three 

attributes considering only verbs, only nouns, 

only adjectives, only adverbs, only prepositions, 

only conjunctions, only pronouns, only 

determinants, only modifiers, only digits, and 

only date times. These attributes are:  

 Number of exact coincidences 

 Total distance of matching 

 Number of words that do not match 

Many groups have particular features 

according to their parts-of-speech. The group of 

the nouns has one more feature that indicates if 

the two phrases have the same number (plural or 

singular). For this feature, we take the average of 

the number of each noun in the phrase like a 

number of the phrase.  

For the group of adjectives we added a feature 

indicating the distance between the nouns that 

modify it from the aligned adjectives, 

respectively.  

For the verbs, we search the nouns that precede 

it, and the nouns that are next of the verb, and 

we define two groups. We calculated the 

distance to align each group with every pair of 

aligned verbs. The verbs have other feature that 

specifies if all verbs are in the same verbal time.  

With the adverbs, we search the verb that is 

modified by it, and we calculate their distance 

from all alignment pairs.  

With the determinants and the adverbs we 

detect if any of the alignment pairs are 

expressing negations (like don’t, or do not) in 

both cases or not. Finally, we determine if the 

two phrases have the same principal action. For 

all this new features, we aid with Freeling tool. 

As a result, we finally obtain 42 attributes from 

this alignment method. It is important to remark 

that this alignment process searches to solve, for 

each word from the rows (see Table 4) it has a 

respectively word from the columns. 

4.4 Description of the alignment feature 

From the alignment process, we extract different 

features that help us a better result of our MLS. 

Table 6 shows the group of features with lexical 

and semantic support, based on WordNet 

relation (named F1). Each of they were named 

with a prefix, a hyphen and a suffix. Table 7 

describes the meaning of every prefix, and Table 

8 shows the meaning of the suffixes. 

Features 

CPA_FCG, CPNA_FCG, SIM_FCG, CPA_LCG, 

CPNA_LCG, SIM_LCG, CPA_FCGR, 

CPNA_FCGR, SIM_FCGR, CPA_LCGR, 

CPNA_LCGR, SIM_LCGR 

Table 6. F1. Semantic feature group. 

Prefixes Descriptions 

CPA Number of aligned words. 

CPNA Number of non-aligned words. 

SIM Similarity 

Table 7. Meaning of each prefixes. 

Prefixes Compared words for… 

FCG Morphology and POS 

LCG Lemma and POS 

FCGR Morphology, POS and WordNet relation. 

LCGR Lemma, POS and WordNet relation. 

Table 8. Suffixes for describe each type of alignment. 

Features Descriptions 

LevForma Levenshtein Distance between two 

phrases comparing words by 

morphology 

LevLema The same as above, but now 

comparing by lemma. 

LevDoble Idem, but comparing again by 

Levenshtein and accepting words 

match if the distance is ≤ 2. 

DEx Extended Distance 

NormLevF, 

NormLevL 

Normalized forms of LevForma and 

LevLema. 

Table 9. F2. Lexical alignment measures. 

Features 

NWunch, SWaterman, SWGotoh, SWGAffine, Jaro, 

JaroW, CLDeviation, CMLength, QGramD, BlockD, 

CosineS, DiceS, EuclideanD, JaccardS, MaCoef, 

MongeElkan, OverlapCoef. 

Table 10. Lexical Measure from SimMetrics library. 

Features Descriptions 

AxAQGD_L All against all applying QGramD 

and comparing by lemmas of the 

words. 

AxAQGD_F Same as above, but applying 

QGramD and comparing by 

morphology. 

AxAQGD_LF Idem, not only comparing by lemma 

but also by morphology. 

AxALev_LF All against all applying Levenhstein 
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comparing by morphology and 

lemmas. 

AxA_Stems Idem, but applying Levenhstein 

comparing by the stems of the 

words. 

Table 11. Aligning all against all. 

Other features we extracted were obtained 

from the following similarity measures (named 

F2) (see Table 9 for detail). 

We used another group named F3, with lexical 

measure extracted from SimMetric library (see 

Table 10 for detail). 

Finally we used a group of five feature (named 

F4), extracted from all against all alignment (see 

Table 11 for detail). 

4.5 Description of the training phase 

For the training process, we used a supervised 

learning framework, including all the training set 

as a training corpus. Using ten-fold cross 

validation with the classifier mentioned in 

section 3 (experimentally selected). 

As we can see in Table 12, the attributes 

corresponding with the Test 1 (only lexical 

attributes) obtain 0.7534 of correlation. On the 

other side, the attributes of the Test 2 (lexical 

features with semantic support) obtain 0.7549 of 

correlation, and all features obtain 0.7987. Being 

demonstrated the necessity to tackle the problem 

of the similarity from a multidimensional point 

of view (see Test 3 in the Table 12). 

Features 

Correlation on the training data of SemEval-

2013 

Test 1 Test 2 Test 3 

F1 
 0.7549 

0.7987 
F2 

F3 0.7534  

F4   

Table 12. Features influence. Gray cells mean 

features are not taking into account. 

5 Result and discussion 

Semantic Textual Similarity task of SemEval-

2013 offered two official measures to rank the 

systems5: Mean- the main evaluation value, 

Rank- gives the rank of the submission as 

ordered by the "mean" result. 

                                                           
5http://ixa2.si.ehu.es/sts/index.php?option=com_content&vi

ew=article&id=53&Itemid=61 

Test data for the core test datasets, coming 

from the following: 

Corpus Description 

Headlineas: news headlines mined from several news 

sources by European Media Monitor 

using the RSS feed. 

OnWN: mapping of lexical resources OnWN. The 

sentences are sense definitions from 

WordNet and OntoNotes. 

FNWN: the sentences are sense definitions from 

WordNet and FrameNet. 

SMT: SMT dataset comes from DARPA GALE 

HTER and HyTER. One sentence is a 

MT output and the other is a reference 

translation where a reference is generated 

based on human post editing. 

Table 13. Test Core Datasets. 

Using these measures, our second run (Run 2) 

obtained the best results (see Table 14). As we 

can see in Table 14, our lexical run has obtained 

our best result, given at the same time worth 

result in our other runs. This demonstrates that 

tackling this problem with combining multiple 

lexical similarity measure produce better results 

in concordance to this specific test corpora. 

To explain Table 14 we present following 

descriptions: caption in top row mean: 1- 

Headlines, 2- OnWN, 3- FNWN, 4- SMT and 5- 

mean. 

Run 1 R 2 R 3 R 4 R 5 R 

1 0.5841 60 0.4847 54 0.2917 52 0.2855 66 0.4352 58 

2 0.6168 55 0.5557 39 0.3045 50 0.3407 28 0.4833 44 

3 0.3846 85 0.1342 88 -0.0065 85 0.2736 72 0.2523 87 

Table 14. Official SemEval-2013 results over test 

datasets. Ranking (R). 

The Run 1 is our main run, which contains the 

junction of all attributes (lexical and semantic 

attributes).  Table 14 shows the results of all the 

runs for a different corpus from test phase. As 

we can see, Run 1 did not obtain the best results 

among our runs. 

Otherwise, Run 3 uses more semantic analysis 

than Run 2, from this; Run 3 should get better 

results than reached over the corpus of FNWN, 

because this corpus is extracted from FrameNet 

corpus (Baker et al., 1998) (a semantic network). 

FNWN provides examples with high semantic 

content than lexical. 

Run 3 obtained a correlation coefficient of 

0.8137 for all training corpus of SemEval 2013, 
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while Run 2 and Run 1 obtained 0.7976 and 

0.8345 respectively with the same classifier 

(Bagging using REPTree, and cross validation 

with ten-folds). These results present a 

contradiction between test and train evaluation. 

We think it is consequence of some obstacles 

present in test corpora, for example:  

In headlines corpus there are great quantity of 

entities, acronyms and gentilics that we not take 

into account in our system. 

The corpus FNWN presents a non-balance 

according to the length of the phrases. 

In OnWN -test corpus-, we believe that some 

evaluations are not adequate in correspondence 

with the training corpus. For example, in line 7 

the goal proposed was 0.6, however both phrases 

are semantically similar. The phrases are: 

 the act of lifting something 

 the act of climbing something. 

We think that 0.6 are not a correct evaluation 

for this example. Our system result, for this 

particular case, was 4.794 for Run 3, and 3.814 

for Run 2, finally 3.695 for Run 1. 

6 Conclusion and future works 

This paper have introduced a new framework for 

recognizing Semantic Textual Similarity, which 

depends on the extraction of several features that 

can be inferred from a conventional 

interpretation of a text. 

As mentioned in section 3 we have conducted 

three different runs, these runs only differ in the 

type of attributes used. We can see in Table 14 

that all runs obtained encouraging results. Our 

best run was situated at 44th position of 90 runs 

of the ranking of SemEval-2013.  Table 12 and 

Table 14 show the reached positions for the three 

different runs and the ranking according to the 

rest of the teams.  

In our participation, we used a MLS that works 

with features extracted from five different 

strategies: String Based Similarity Measures, 

Semantic Similarity Measures, Lexical-Semantic 

Alignment and Semantic Alignment. 

We have conducted the semantic features 

extraction in a multidimensional context using 

the resource ISR-WN, the one that allowed us to 

navigate across several semantic resources 

(WordNet, WordNet Domains, WordNet Affect, 

SUMO, SentiWordNet and Semantic Classes). 

Finally, we can conclude that our system 

performs quite well. In our current work, we 

show that this approach can be used to correctly 

classify several examples from the STS task of 

SemEval-2013. Compared with the best run of 

the ranking (UMBC_EBIQUITY- ParingWords) 

(see Table 15) our main run has very close 

results in headlines (1), and SMT (4) core test 

datasets. 

Run 1 2 3 4 5 6 

(First) 0.7642 0.7529 0.5818 0.3804 0.6181 1 

(Our) 

RUN 2 
0.6168 0.5557 0.3045 0.3407 0.4833 44 

Table 15. Comparison with best run (SemEval 2013). 

As future work we are planning to enrich our 

semantic alignment method with Extended 

WordNet (Moldovan and Rus, 2001), we think 

that with this improvement we can increase the 

results obtained with texts like those in OnWN 

test set. 

6.1 Team Collaboration 

Is important to remark that our team has been 

working up in collaboration with INAOE 

(Instituto Nacional de Astrofísica, Óptica y 

Electrónica) and LIPN (Laboratoire 

d'Informatique de Paris-Nord), Université Paris 

13 universities, in order to encourage the 

knowledge interchange and open shared 

technology. Supporting this collaboration, 

INAOE-UPV (Instituto Nacional de Astrofísica, 

Óptica y Electrónica and Universitat Politècnica 

de València) team, in concrete in INAOE-UPV-

run 3 has used our semantic distances for nouns, 

adjectives, verbs and adverbs, as well as lexical 

attributes like LevDoble, NormLevF, NormLevL 

and Ext (see influence of these attributes in 

Table 12). 
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Abstract

This paper deals with knowledge-based text
processing which aims at an intuitive notion
of textual similarity. Entities and relations rel-
evant for a particular domain are identified and
disambiguated by means of semi-supervised
machine learning techniques and resulting an-
notations are applied for computing typed-
similarity of individual texts.

The work described in this paper particularly
shows effects of the mentioned processes in
the context of the *SEM 2013 pilot task on
typed-similarity, a part of the Semantic Tex-
tual Similarity shared task. The goal is to
evaluate the degree of semantic similarity be-
tween semi-structured records. As the evalu-
ation dataset has been taken from Europeana
– a collection of records on European cultural
heritage objects – we focus on computing a se-
mantic distance on field author which has the
highest potential to benefit from the domain
knowledge.

Specific features that are employed in our sys-
tem BUT-TYPED are briefly introduced to-
gether with a discussion on their efficient ac-
quisition. Support Vector Regression is then
used to combine the features and to provide a
final similarity score. The system ranked third
on the attribute author among 15 submitted
runs in the typed-similarity task.

1 Introduction

The goal of the pilot typed-similarity task lied in
measuring a degree of semantic similarity between
semi-structured records. The data came from the

Europeana digital library1 collecting millions of
records on paintings, books, films, and other mu-
seum and archival objects that have been digitized
throughout Europe. More than 2,000 cultural and
scientific institutions across Europe have contributed
to Europeana. There are many metadata fields at-
tached to each item in the library, but only fields
title, subject, description, creator, date and source
were used in the task.

Having this collection, it is natural to expect that
domain knowledge on relevant cultural heritage en-
tities and their inter-relations will help to measure
semantic closeness between particular items. When
focusing on similarities in a particular field (a se-
mantic type) that clearly covers a domain-specific
aspect (such as field author/creator in our case), the
significance of the domain knowledge should be the
highest.

Intuitively, the semantic similarity among authors
of two artworks corresponds to strengths of links
that can be identified among the two (groups of)
authors. As the gold standard for the task resulted
from a Mechanical Turk experiment (Paolacci et al.,
2010), it could be expected that close fields corre-
spond to authors that are well known to represent
the same style, worked in the same time or the same
art branch (e. g., Gabriël Metsu and Johannes Ver-
meer), come from the same region (often guessed
from the names), dealt with related topics (not nec-
essarily in the artwork described by the record in
question), etc. In addition to necessary evaluation of
the intersection and the union of two author fields
(leading naturally to the Jaccard similarity coeffi-

1http://www.europeana.eu/
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cient on normalized name records – see below), it
is therefore crucial to integrate means measuring the
above-mentioned semantic links between identified
authors.

Unfortunately, there is a lot of noise in the data
used in the task. Since Europeana does not precisely
define meaning and purpose of each particular field
in the database, many mistakes come directly from
the unmanaged importing process realized by par-
ticipating institutions. Fields often mix content of
various semantic nature and, occasionally, they are
completely misinterpreted (e. g., field creator stands
for the author, but, in many cases, it contains only
the institution the data comes from). Moreover, the
data in records is rather sparse – many fields are left
empty even though the information to be filled in is
included in original museum records (e. g., the au-
thor of an artwork is known but not entered).

The low quality of underlying data can be also
responsible for results reported in related studies.
For example, Aletras et al. (2012) evaluate semantic
similarity between semi-structured items from Euro-
peana. They use several measures including a sim-
ple normalized textual overlap, the extended Lesk
measure, the cosine similarity, a Wikipedia-based
model and the LDA (Latent Dirichlet Allocation).
The study, restricted to fields title, subject and de-
scription, shows that the best score is obtained by
the normalized overlap applied only to the title field.
Any other combination of the fields decreased the
performance. Similarly, sophisticated methods did
not bring any improvement.

The particular gold standard (training/test data)
used in the typed-similarity task is also problematic.
For example, it provides estimates of location-based
similarity even though it makes no sense for partic-
ular two records – no field mentions a location and
it cannot be inferred from other parts). A through-
out analysis of the task data showed that creator is
the only field we could reasonably use in our exper-
iments (although many issues discussed in previous
paragraphs apply for the field as well). That is why
we focus on similarities between author fields in this
study.

While a plenty of measures for computing tex-
tual similarity have been proposed (Lin, 1998; Lan-
dauer et al., 1998; Sahlgren, 2005; Gabrilovich and
Markovitch, 2007) and there is an active research

in the fields of Textual Entailment (Negri et al.,
2012), Paraphrase Identification (Lintean and Rus,
2010) and, recently, the Semantic Textual Similar-
ity (Agirre et al., 2012), the semi-structured record
similarity is a relatively new area of research. Even
though we focus on a particular domain-specific
field in this study, our work builds on previous re-
sults (Croce et al., 2012; Annesi et al., 2012) to
pre-compute semantic closeness of authors based on
available biographies and other related texts.

The rest of the paper is organized as follows: The
next section introduces the key domain-knowledge
processing step of our system which aims at recog-
nizing and disambiguating entities relevant for the
cultural heritage domain. The realized system and
its results are described in Section 3. Finally, Sec-
tion 4 briefly summarizes the achievements.

2 Entity Recognition and Disambiguation

A fundamental step in processing text in particu-
lar fields lies in identifying named entities relevant
for similarity measuring. There is a need for a
named entity recognition tool (NER) which identi-
fies names and classifies referred entities into pre-
defined categories. We take advantage of such a
tool developed by our team within the DECIPHER
project2.

The DECIPHER NER is able to recognize artists
relevant for the cultural heritage domain and, for
most of them, to identify the branch of the arts they
were primarily focused on (such as painter, sculp-
tors, etc.). It also recognizes names of artworks,
genres, art periods and movements and geograph-
ical features. In total, there are 1,880,985 recog-
nizable entities from the art domain and more than
3,000,000 place names. Cultural-heritage entities
come from various sources; the most productive
ones are given in Table 1. The list of place names
is populated from the Geo-Names database3.

The tool takes lists of entities and constructs a fi-
nite state automaton to scan and annotate input texts.
It is extremely fast (50,000 words per second) and
has a relatively small memory footprint (less than
90 MB for all the data).

Additional information attached to entities is
2http://decipher-research.eu/
3http://www.geonames.org/
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Source # of entities
Freebase4 1,288,192
Getty ULAN5 528,921
VADS6 31,587
Arthermitage7 4,259
Artcyclopedia8 3,966

Table 1: Number of art-related entities from various
sources

stored in the automaton too. A normalized form of a
name and its semantic type is returned for each en-
tity. Normalized forms enable identifying equivalent
entities expressed differently in texts, e. g., Gabriël
Metsu refers to the same person as Gabriel Metsu,
US can stand for the United States (of America), etc.
Type-specific information is also stored. It includes
a detailed type (e. g., architect, sculptor, etc.), na-
tionality, relevant periods or movements, and years
of birth and death for authors. Types of geographical
features (city, river), coordinates and the GeoNames
database identifiers are stored for locations.

The tool is also able to disambiguate entities
based on a textual context in which they appeared.
Semantic types and simple rules preferring longer
matches provide a primary means for this. For ex-
ample, a text containing Bobigny – Pablo Picasso,
refers probably to a station of the Paris Metro and
does not necessarily deal with the famous Spanish
artist. A higher level of disambiguation takes form
of classification engines constructed for every am-
biguous name from Wikipedia. A set of most spe-
cific terms characterizing each particular entity with
a shared name is stored together with an entity iden-
tifier and used for disambiguation during the text
processing phase. Disambiguation of geographical
names is performed in a similar manner.

3 System Description and Results

To compute semantic similarity of two non-empty
author fields, normalized textual content is com-
pared by an exact match first. As there is no unified
form defined for author names entered to the field,
the next step applies the NER tool discussed in the
previous section to the field text and tries to identify
all mentioned entities. Table 2 shows examples of
texts from author fields and their respective annota-

tions (in the typewriter font).
Dates and places of birth and death as well as few

specific keywords are put together and used in the
following processing separately. To correctly anno-
tate expressions that most probably refer to names of
people not covered by the DECIPHER NER tool, we
employ the Stanford NER9 that is trained to identify
names based on typical textual contexts.

The final similarity score for a pair of author fields
is computed by means of the SVR combining spe-
cific features characterizing various aspects of the
similarity. Simple Jaccard coefficient on recognized
person names, normalized word overlap of the re-
maining text and its edit distance (to deal with typos)
are used as basic features.

Places of births and deaths, author’s nationality
(e. g., Irish painter) and places of work (active in
Spain and France) provide data to estimate location-
based similarity of authors. Coordinates of each lo-
cation are used to compute an average location for
the author field. The distance between the average
coordinates is then applied as a feature. Since types
of locations (city, state, etc.) are also available, the
number of unique location types for each item and
the overlap between corresponding sets are also em-
ployed as features.

Explicitly mentioned dates as well as information
provided by the DECIPHER NER are compared too.
The time-similarity feature takes into account time
overlap of the dates and time distance of an earlier
and a later event.

Other features reflect an overlap between visual
art branches represented by artists in question (Pho-
tographer, Architect, etc.), an overlap between their
styles, genres and all other information available
from external sources. We also employ a matrix of
artistic influences that has been derived from a large
collection of domain texts by means of relation ex-
traction methods.

Finally, general relatedness of artists is pre-
computed from the above-mentioned collection by
means of Random Indexing (RI), Explicit Seman-
tic Analysis (ESA) and Latent Dirichlet Allocation
(LDA) methods, stored in sparse matrices and en-
tered as a final set of features to the SVR process.

The system is implemented in Python and takes

9http://nlp.stanford.edu/software/CRF-NER.shtml
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Eginton, Francis; West, Benjamin
<author name="Francis Eginton" url="http://www.freebase.com/m/0by1w5n">
Eginton, Francis</author>; <author name="Benjamin West"
url="http://www.freebase.com/m/01z6r6">West, Benjamin</author>

Yossef Zaritsky Israeli, born Ukraine, 1891-1985
<author name="Joseph Zaritsky" url="http://www.freebase.com/m/0bh71xw"
nationality="Israel" place of birth="Ukraine" date of birth="1891"
date of death="1985">Yossef Zaritsky Israeli, born Ukraine,
1891-1985</author>

Man Ray (Emmanuel Radnitzky) 1890, Philadelphia – 1976, Paris
<author name="Man Ray" alternate name="Emmanuel Radnitzky"
url="http://www.freebase.com/m/0gskj" date of birth="1890"
place of birth="Philadelphia" date of death="1976" place of death="Paris">
Man Ray (Emmanuel Radnitzky) 1890, Philadelphia - 1976, Paris</author>

Table 2: Examples of texts in the author field and their annotations

advantage of several existing modules such as gen-
sim10 for RI, ESA and other text-representation
methods, numpy11 for Support Vector Regression
(SVR) with RBF kernels, PyVowpal12 for an effi-
cient implementation of the LDA, and nltk13 for gen-
eral text pre-processing.

The resulting system was trained and tested on the
data provided by the task organizers. The train and
test sets consisted each of 750 pairs of cultural her-
itage records from Europeana along with the gold
standard for the training set. The BUT-TYPED sys-
tem reached score 0.7592 in the author field (cross-
validated results, Pearson correlation) on the train-
ing set where 80 % were used for training whereas
20 % for testing. The score for the field on the test-
ing set was 0.7468, while the baseline was 0.4278.

4 Conclusions

Despite issues related to the low quality of the
gold standard data, the attention paid to the sim-
ilarity computation on the chosen field showed to
bear fruit. The realized system ranked third among
14 others in the criterion we focused on. Domain
knowledge proved to significantly help in measuring
semantic closeness between authors and the results
correspond to an intuitive understanding of the sim-

10http://radimrehurek.com/gensim/
11http://www.numpy.org/
12https://github.com/shilad/PyVowpal
13http://nltk.org/

ilarity between artists.
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Abstract

This paper reports our submissions to the
Semantic Textual Similarity (STS) task in
∗SEM Shared Task 2013. We submitted three
Support Vector Regression (SVR) systems in
core task, using 6 types of similarity mea-
sures, i.e., string similarity, number similar-
ity, knowledge-based similarity, corpus-based
similarity, syntactic dependency similarity and
machine translation similarity. Our third sys-
tem with different training data and different
feature sets for each test data set performs the
best and ranks 35 out of 90 runs. We also sub-
mitted two systems in typed task using string
based measure and Named Entity based mea-
sure. Our best system ranks 5 out of 15 runs.

1 Introduction

The task of semantic textual similarity (STS) is to
measure the degree of semantic equivalence between
two sentences, which plays an increasingly impor-
tant role in natural language processing (NLP) ap-
plications. For example, in text categorization (Yang
and Wen, 2007), two documents which are more
similar are more likely to be grouped in the same
class. In information retrieval (Sahami and Heil-
man, 2006), text similarity improves the effective-
ness of a semantic search engine by providing in-
formation which holds high similarity with the input
query. In machine translation (Kauchak and Barzi-
lay, 2006), sentence similarity can be applied for
automatic evaluation of the output translation and
the reference translations. In question answering
(Mohler and Mihalcea, 2009), once the question and

the candidate answers are treated as two texts, the
answer text which has a higher relevance with the
question text may have higher probability to be the
right one.

The STS task in ∗SEM Shared Task 2013 consists
of two subtasks, i.e., core task and typed task, and
we participate in both of them. The core task aims
to measure the semantic similarity of two sentences,
resulting in a similarity score which ranges from 5
(semantic equivalence) to 0 (no relation). The typed
task is a pilot task on typed-similarity between semi-
structured records. The types of similarity to be
measured include location, author, people involved,
time, events or actions, subject and description as
well as the general similarity of two texts (Agirre et
al., 2013).

In this work we present a Support Vector Re-
gression (SVR) system to measure sentence seman-
tic similarity by integrating multiple measurements,
i.e., string similarity, knowledge based similarity,
corpus based similarity, number similarity and ma-
chine translation metrics. Most of these similari-
ties are borrowed from previous work, e.g., (Bär et
al., 2012), (Šaric et al., 2012) and (de Souza et al.,
2012). We also propose a novel syntactic depen-
dency similarity. Our best system ranks 35 out of
90 runs in core task and ranks 5 out of 15 runs in
typed task.

The rest of this paper is organized as follows. Sec-
tion 2 describes the similarity measurements used in
this work in detail. Section 3 presents experiments
and the results of two tasks. Conclusions and future
work are given in Section 4.
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2 Text Similarity Measurements

To compute semantic textual similarity, previous
work has adopted multiple semantic similarity mea-
surements. In this work, we adopt 6 types of
measures, i.e., string similarity, number similarity,
knowledge-based similarity, corpus-based similar-
ity, syntactic dependency similarity and machine
translation similarity. Most of them are borrowed
from previous work due to their superior perfor-
mance reported. Besides, we also propose two syn-
tactic dependency similarity measures. Totally we
get 33 similarity measures. Generally, these simi-
larity measures are represented as numerical values
and combined using regression model.

2.1 Preprocessing

Generally, we perform text preprocessing before we
compute each text similarity measurement. Firstly,
Stanford parser1 is used for sentence tokenization
and parsing. Specifically, the tokens n’t and ’m are
replaced with not and am. Secondly, Stanford POS
Tagger2 is used for POS tagging. Thirdly, Natu-
ral Language Toolkit3 is used for WordNet based
Lemmatization, which lemmatizes the word to its
nearest base form that appears in WordNet, for ex-
ample, was is lemmatized as is, not be.

Given two short texts or sentences s1 and s2, we
denote the word set of s1 and s2 as S1 and S2, the
length (i.e., number of words) of s1 and s2 as |S1|
and |S2|.

2.2 String Similarity

Intuitively, if two sentences share more strings, they
are considered to have higher semantic similarity.
Therefore, we create 12 string based features in con-
sideration of the common sequence shared by two
texts.
Longest Common sequence (LCS). The widely
used LCS is proposed by (Allison and Dix, 1986),
which is to find the maximum length of a com-
mon subsequence of two strings and here the sub-
sequence need to be contiguous. In consideration of
the different length of two texts, we compute LCS

1http://nlp.stanford.edu/software/lex-parser.shtml
2http://nlp.stanford.edu/software/tagger.shtml
3http://nltk.org/

similarity using Formula (1) as follows:

SimLCS =
Length of LCS

min(|S1|, |S2|)
(1)

In order to eliminate the impacts of various forms
of word, we also compute a Lemma LCS similarity
score after sentences being lemmatized.
word n-grams. Following (Lyon et al., 2001), we
calculate the word n-grams similarity using the Jac-
card coefficient as shown in Formula (2), where p is
the number of n-grams shared by s1 and s2, q and r
are the number of n-grams not shared by s1 and s2,
respectively.

Jacc =
p

p + q + r
(2)

Since we focus on short texts, here only n=1,2,3,4
is used in this work. Similar with LCS, we also com-
pute a Lemma n-grams similarity score.
Weighted Word Overlap (WWO). (Šaric et al.,
2012) pointed out that when measuring sentence
similarity, different words may convey different con-
tent information. Therefore, we consider to assign
more importance to those words bearing more con-
tent information. To measure the importance of each
word, we use Formula (3) to calculate the informa-
tion content for each word w:

ic(w) = ln

∑
w′∈C freq(w′)

freq(w)
(3)

where C is the set of words in the corpus and
freq(w) is the frequency of the word w in the cor-
pus. To compute ic(w), we use the Web 1T 5-gram
Corpus4, which is generated from approximately
one trillion word tokens of text from Web pages.

Obviously, the WWO scores between two sen-
tences is non-symmetric. The WWO of s2 by s1 is
given by Formula (4):

Simwwo(s1, s2) =

∑
w∈S1∩S2

ic(w)∑
w′∈S2

ic(w′)
(4)

Likewise, we can get Simwwo(s2, s1) score.
Then the final WWO score is the harmonic mean of
Simwwo(s1, s2) and Simwwo(s2, s1). Similarly, we
get a Lemma WWO score as well.

4http://www.ldc.upenn.edu/Catalog/docs/LDC2006T13
125



2.3 Knowledge Based Similarity
Knowledge based similarity approaches rely on
a semantic network of words. In this work
all knowledge-based word similarity measures are
computed based on WordNet. For word similarity,
we employ four WordNet-based similarity metrics:
the Path similarity (Banea et al., 2012); the WUP
similarity (Wu and Palmer, 1994); the LCH similar-
ity (Leacock and Chodorow, 1998); the Lin similar-
ity (Lin, 1998). We adopt the NLTK library (Bird,
2006) to compute all these word similarities.

In order to determine the similarity of sentences,
we employ two strategies to convert the word simi-
larity into sentence similarity, i.e., (1) the best align-
ment strategy (align) (Banea et al., 2012) and (2) the
aggregation strategy (agg) (Mihalcea et al., 2006).

The best alignment strategy is computed as below:

Simalign(s1, s2) =
(ω +

∑|φ|
i=1 φi) ∗ (2|S1||S2|)
|S1| + |S2|

(5)
where ω is the number of shared terms between s1

and s2, list φ contains the similarities of non-shared
words in shorter text, φi is the highest similarity
score of the ith word among all words of the longer
text. The aggregation strategy is calculated as be-
low:

Simagg(s1, s2) =

∑
w∈S1

(maxSim(w, S2) ∗ ic(w))∑
w∈{S1} ic(w)

(6)
where maxSim(w,S2) is the highest WordNet-
based score between word w and all words of sen-
tence S2. To compute ic(w), we use the same cor-
pus as WWO, i.e., the Web 1T 5-gram Corpus. The
final score of the aggregation strategy is the mean of
Simagg(s1, s2) and Simagg(s2, s1). Finally we get
8 knowledge based features.

2.4 Corpus Based Similarity
Latent Semantic Analysis (LSA) (Landauer et al.,
1997). In LSA, term-context associations are cap-
tured by means of a dimensionality reduction op-
eration performing singular value decomposition
(SVD) on the term-by-context matrix T , where T
is induced from a large corpus. We use the TASA
corpus5 to obtain the matrix and compute the word

5http://lsa.colorado.edu/

similarity using cosine similarity of the two vectors
of the words. After that we transform word similar-
ity to sentence similarity based on Formula (5).
Co-occurrence Retrieval Model (CRM) (Weeds,
2003). CRM is based on a notion of substitutabil-
ity. That is, the more appropriate it is to substitute
word w1 in place of word w2 in a suitable natural
language task, the more semantically similar they
are. The degree of substitutability of w2 with w1

is dependent on the proportion of co-occurrences of
w1 that are also the co-occurrences of w2, and the
proportion of co-occurrences of w2 that are also the
co-occurrences of w1. Following (Weeds, 2003), the
CRM word similarity is computed using Formula
(7):

SimCRM (w1, w2) =
2 ∗ |c(w1) ∩ c(w2)|
|c(w1)|+ |c(w2)|

(7)

where c(w) is the set of words that co-occur with
w. We use the 5-gram part of the Web 1T 5-gram
Corpus to obtain c(w). If two words appear in one
5-gram, we will treat one word as the co-occurring
word of each other. To obtain c(w), we propose two
methods. In the first CRM similarity, we only con-
sider the word w with |c(w)| > 200, and then take
the top 200 co-occurring words ranked by the co-
occurrence frequency as its c(w). To relax restric-
tions, we also present an extended CRM (denoted
by ExCRM), which extends the CRM list that all w
with |c(w)| > 50 are taken into consideration, but
the maximum of |c(w)| is still set to 200. Finally,
these two CRM word similarity measures are trans-
formed to sentence similarity using Formula (5).

2.5 Syntactic Dependency Similarity

As (Šaric et al., 2012) pointed out that dependency
relations of sentences often contain semantic infor-
mation, in this work we propose two novel syntactic
dependency similarity features to capture their pos-
sible semantic similarity.
Simple Dependency Overlap. First we measure the
simple dependency overlap between two sentences
based on matching dependency relations. Stanford
Parser provides 53 dependency relations, for exam-
ple:

nsubj(remain − 16, leader − 4)
dobj(return − 10, home − 11)
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where nsubj (nominal subject) and dobj (direct ob-
ject) are two dependency types, remain is the gov-
erning lemma and leader is the dependent lemma.
Two syntactic dependencies are considered equal
when they have the same dependency type, govern-
ing lemma, and dependent lemma.

Let R1 and R2 be the set of all dependency rela-
tions in s1 and s2, we compute Simple Dependency
Overlap using Formula (8):

SimSimDep(s1, s2) =
2 ∗ |R1 ∩ R2| ∗ |R1||R2|

|R1|+ |R2|
(8)

Special Dependency Overlap. Several types of de-
pendency relations are believed to contain the pri-
mary content of a sentence. So we extract three roles
from those special dependency relations, i.e., pred-
icate, subject and object. For example, from above
dependency relation dobj, we can extract the object
of the sentence, i.e., home. For each of these three
roles, we get a similarity score. For example, to cal-
culate Simpredicate, we denote the sets of predicates
of two sentences as Sp1 and Sp2. We first use LCH to
compute word similarity and then compute sentence
similarity using Formula (5). Similarly, the Simsubj

and Simobj are obtained in the same way. In the end
we average the similarity scores of the three roles as
the final Special Dependency Overlap score.

2.6 Number Similarity
Numbers in the sentence occasionally carry similar-
ity information. If two sentences contain different
sets of numbers even though their sentence structure
is quite similar, they may be given a low similarity
score. Here we adopt two features following (Šaric
et al., 2012), which are computed as follow:

log(1 + |N1| + |N2|) (9)

2 ∗ |N1 ∩N2|/(|N1|+ |N2|) (10)

where N1 and N2 are the sets of all numbers in s1

and s2. We extract the number information from
sentences by checking if the POS tag is CD (cardinal
number).

2.7 Machine Translation Similarity
Machine translation (MT) evaluation metrics are de-
signed to assess whether the output of a MT sys-
tem is semantically equivalent to a set of reference

translations. The two given sentences can be viewed
as one input and one output of a MT system, then
the MT measures can be used to measure their se-
mantic similarity. We use the following 6 lexical
level metrics (de Souza et al., 2012): WER, TER,
PER, NIST, ROUGE-L, GTM-1. All these measures
are obtained using the Asiya Open Toolkit for Auto-
matic Machine Translation (Meta-) Evaluation6.

3 Experiment and Results

3.1 Regression Model

We adopt LIBSVM7 to build Support Vector Regres-
sion (SVR) model for regression. To obtain the op-
timal SVR parameters C, g, and p, we employ grid
search with 10-fold cross validation on training data.
Specifically, if the score returned by the regression
model is bigger than 5 or less than 0, we normalize
it as 5 or 0, respectively.

3.2 Core Task

The organizers provided four different test sets to
evaluate the performance of the submitted systems.
We have submitted three systems for core task, i.e.,
Run 1, Run 2 and Run 3. Run 1 is trained on all
training data sets with all features except the num-
ber based features, because most of the test data do
not contain number. Run 2 uses the same feature sets
as Run 1 but different training data sets for different
test data as listed in Table 1, where different training
data sets are combined together as they have simi-
lar structures with the test data. Run 3 uses different
feature sets as well as different training data sets for
each test data. Table 2 shows the best feature sets
used for each test data set, where “+” means the fea-
ture is selected and “-” means not selected. We did
not use the whole feature set because in our prelimi-
nary experiments, some features performed not well
on some training data sets, and they even reduced
the performance of our system. To select features,
we trained two SVR models for each feature, one
with all features and another with all features except
this feature. If the first model outperforms the sec-
ond model, this feature is chosen.

Table 3 lists the performance of these three sys-
tems as well as the baseline and the best results on

6http://nlp.lsi.upc.edu/asiya/
7http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Test Training
Headline MSRpar

OnWN+FNWN MSRpar+OnWN
SMT SMTnews+SMTeuroparl

Table 1: Different training data sets used for each test data set

type Features Headline OnWN and FNWN SMT
LCS + + -

Lemma LCS + + -
String N-gram + 1+2gram 1gram
Based Lemma N-gram + 1+2gram 1gram

WWO + + +
Lemma WWO + + +

Path,WUP,LCH,Lin + + +
Knowledge +aligh

Based Path,WUP,LCH,Lin + + +
+ic-weighted

Corpus LSA + + +
Based CRM,ExCRM + + +

Simple Dependency + + +
Syntactic Overlap

Dependency Special Dependency + - +
Overlap

Number Number + - -
WER - + +
TER - + +
PER + + +

MT NIST + + -
ROUGE-L + + +

GTM-1 + + +

Table 2: Best feature combination for each data set

System Mean Headline OnWN FNWN SMT
Best 0.6181 0.7642 0.7529 0.5818 0.3804

Baseline 0.3639 0.5399 0.2828 0.2146 0.2861
Run 1 0.3533 0.5656 0.2083 0.1725 0.2949
Run 2 0.4720 0.7120 0.5388 0.2013 0.2504

Run 3 (rank 35) 0.4967 0.6799 0.5284 0.2203 0.3595

Table 3: Final results on STS core task

STS core task in ∗SEM Shared Task 2013. For the
three runs we submitted to the task organizers, Run
3 performs the best results and ranks 35 out of 90
runs. Run 2 performs much better than Run 1. It in-

dicates that using different training data sets for dif-
ferent test sets indeed improves results. Run 3 out-
performs Run 2 and Run 1. It shows that our feature
selection process for each test data set does help im-
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prove the performance too. From this table, we find
that different features perform different on different
kinds of data sets and thus using proper feature sub-
sets for each test data set would make improvement.

Besides, results on the four test data sets are quite
different. Headline always gets the best result on
each run and OnWN follows second. And results
of FNWN and SMT are much lower than Headline
and OnWN. One reason of the poor performance of
FNWN may be the big length difference of sentence
pairs. That is, sentence from WordNet is short while
sentence from FrameNet is quite longer, and some
samples even have more than one sentence (e.g. “do-
ing as one pleases or chooses” VS “there exist a
number of different possible events that may happen
in the future in most cases, there is an agent involved
who has to consider which of the possible events will
or should occur a salient entity which is deeply in-
volved in the event may also be mentioned”). As
a result, even though the two sentences are similar
in meaning, most of our measures would give low
scores due to quite different sentence length.

In order to understand the contributions of each
similarity measurement, we trained 6 SVR regres-
sion models based on 6 types on MSRpar data set.
Table 4 presents the Pearson’s correlation scores
of the 6 types of measurements on MSRpar. We
can see that the corpus-based measure achieves the
best, then the knowledge-based measure and the MT
measure follow. Number similarity performs sur-
prisingly well, which benefits from the property of
data set that MSRpar contains many numbers in sen-
tences and the sentence similarity depends a lot on
those numbers as well. The string similarity is not
as good as the knowledge-based, the corpus-based
and the MT similarity because of its disability of ex-
tracting semantic characteristics of sentence. Sur-
prisingly, the Syntactic dependency similarity per-
forms the worst. Since we only extract two features
based on sentence dependency, they may not enough
to capture the key semantic similarity information
from the sentences.

3.3 Typed Task
For typed task, we also adopt a SVR model for
each type. Since several previous similarity mea-
sures used for core task are not suitable for evalu-
ation of the similarity of people involved, time pe-

Features results
string 0.4757

knowledge-based 0.5640
corpus-based 0.5842

syntactic dependency 0.3528
number 0.5278

MT metrics 0.5595

Table 4: Pearson correlation of features of the six aspects
on MSRpar

riod, location and event or action involved, we add
two Named Entity Recognition (NER) based fea-
tures. Firstly we use Stanford NER8 to obtain per-
son, location and date information from the whole
text with NER tags of “PERSON”, “LOCATION”
and “DATE”. Then for each list of entity, we get two
feature values using the following two formulas:

SimNER Num(L1NER, L2NER) =

min(|L1NER|, |L2NER|)
max(|L1NER|, |L2NER|)

(11)

SimNER(L1NER, L2NER) =
Num(equalpairs)

|L1NER| ∗ |L2NER|
(12)

where LNER is the list of one entity type from
the text, and for two lists of NERs L1NER and
L2NER, there are |L1NER| ∗ |L2NER| NER pairs.
Num(equalpairs) is the number of equal pairs.
Here we expand the condition of equivalence: two
NERs are considered equal if one is part of another
(e.g. “John Warson” VS “Warson”). Features and
content we used for each similarity are presented in
Table 5. For the three similarities: people involved,
time period, location, we compute the two NER
based features for each similarity with NER type of
“PERSON”, “LOCATION” and “DATE”. And for
event or action involved, we add the above 6 NER
feature scores as its feature set. The NER based sim-
ilarity used in description is the same as event or ac-
tion involved but only based on “dcDescription” part
of text. Besides, we add a length feature in descrip-
tion, which is the ratio of shorter length and longer
length of descriptions.

8http://nlp.stanford.edu/software/CRF-NER.shtml
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Type Features Content used
author string based (+ knowledge based for Run2) dcCreator

people involved NER based whole text
time period NER based whole text

location NER based whole text
event or action involved NER based whole text

subject string based (+ knowledge based for Run2) dcSubject
description string based, NER based,length dcDescription

General the 7 similarities above

Table 5: Feature sets and content used of 8 type similarities of Typed data

We have submitted two runs. Run 1 uses only
string based and NER based features. Besides fea-
tures used in Run 1, Run 2 also adds knowledge
based features. Table 6 shows the performance of
our two runs as well as the baseline and the best re-
sults on STS typed task in ∗SEM Shared Task 2013.
Our Run 1 ranks 5 and Run 2 ranks 7 out of 15 runs.
Run 2 performed worse than Run 1 and the possible
reason may be the knowledge based method is not
suitable for this kind of data. Furthermore, since we
only use NER based features which involves three
entities for these similarities, they are not enough to
capture the relevant information for other types.

4 Conclusion

In this paper we described our submissions to the
Semantic Textual Similarity Task in ∗SEM Shared
Task 2013. For core task, we collect 6 types of simi-
larity measures, i.e., string similarity, number sim-
ilarity, knowledge-based similarity, corpus-based
similarity, syntactic dependency similarity and ma-
chine translation similarity. And our Run 3 with dif-
ferent training data and different feature sets for each
test data set ranks 35 out of 90 runs. For typed task,
we adopt string based measure, NER based mea-
sure and knowledge based measure, our best system
ranks 5 out of 15 runs. Clearly, these similarity mea-
sures are not quite enough. For the core task, in our
future work we will consider the measures to eval-
uate the sentence difference as well. For the typed
task, with the help of more advanced IE tools to ex-
tract more information regarding different types, we
need to propose more methods to evaluate the simi-
larity.
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Abstract

We approach the typed-similarity task using
a range of heuristics that rely on information
from the appropriate metadata fields for each
type of similarity. In addition we train a linear
regressor for each type of similarity. The re-
sults indicate that the linear regression is key
for good performance. Our best system was
ranked third in the task.

1 Introduction

The typed-similarity dataset comprises pairs of Cul-
tural Heritage items from Europeana1, a single ac-
cess point to digitised versions of books, paintings,
films, museum objects and archival records from in-
stitutions throughout Europe. Typically, the items
comprise meta-data describing a cultural heritage
item and, sometimes, a thumbnail of the item itself.
Participating systems need to compute the similarity
between items using the textual meta-data. In addi-
tion to general similarity, the dataset includes spe-
cific kinds of similarity, like similar author, similar
time period, etc.

We approach the problem using a range of sim-
ilarity techniques for each similarity types, these
make use of information contained in the relevant
meta-data fields.In addition, we train a linear regres-
sor for each type of similarity, using the training data
provided by the organisers with the previously de-
fined similarity measures as features.

We begin by describing our basic system in Sec-
tion 2, followed by the machine learning system in

1http://www.europeana.eu/

Section 3. The submissions are explained in Section
4. Section 5 presents our results. Finally, we draw
our conclusions in Section 6.

2 Basic system

The items in this task are taken from Europeana.
They cannot be redistributed, so we used the urls
and scripts provided by the organizers to extract the
corresponding metadata. We analysed the text in the
metadata, performing lemmatization, PoS tagging,
named entity recognition and classification (NERC)
and date detection using Stanford CoreNLP (Finkel
et al., 2005; Toutanova et al., 2003). A preliminary
score for each similarity type was then calculated as
follows:
• General: cosine similarity of TF.IDF vectors of

tokens, taken from all fields.
• Author: cosine similarity of TF.IDF vectors of

dc:Creator field.
• People involved, time period and location:

cosine similarity of TF.IDF vectors of loca-
tion/date/people entities recognized by NERC
in all fields.
• Events: cosine similarity of TF.IDF vectors of

event verbs and nouns. A list of verbs and
nouns possibly denoting events was derived us-
ing the WordNet Morphosemantic Database2.
• Subject and description: cosine similarity of

TF.IDF vectors of respective fields.
IDF values were calculated using a subset of Eu-

ropeana items (the Culture Grid collection), avail-
able internally. These preliminary scores were im-

2urlhttp://wordnetcode.princeton.edu/standoff-
files/morphosemantic-links.xls
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proved using TF.IDF based on Wikipedia, UKB
(Agirre and Soroa, 2009) and a more informed time
similarity measure. We describe each of these pro-
cesses in turn.

2.1 TF.IDF
A common approach to computing document sim-
ilarity is to represent documents as Bag-Of-Words
(BOW). Each BOW is a vector consisting of the
words contained in the document, where each di-
mension corresponds to a word, and the weight is
the frequency in the corresponding document. The
similarity between two documents can be computed
as the cosine of the angle between their vectors. This
is the approached use above.

This approach can be improved giving more
weight to words which occur in only a few docu-
ments, and less weight to words occurring in many
documents (Baeza-Yates and Ribeiro-Neto, 1999).
In our system, we count document frequencies of
words using Wikipedia as a reference corpus since
the training data consists of only 750 items associ-
ated with short textual information and might not be
sufficient for reliable estimations. The TF.IDF sim-
ilarity between items a and b is defined as:

simtf.idf(a, b) = ∑
w∈a,b tfw,a × tfw,b × idf2w√∑

w∈a(tfw,a × idfw)2 ×
√∑

w∈b(tfw,b × idfw)2

where tfw,x is the frequency of the term w in x ∈
{a, b} and idfw is the inverted document frequency
of the word w measured in Wikipedia. We substi-
tuted the preliminary general similarity score by the
obtained using the TF.IDF presented in this section.

2.2 UKB
The semantic disambiguation UKB3 algorithm
(Agirre and Soroa, 2009) applies personalized
PageRank on a graph generated from the English
WordNet (Fellbaum, 1998), or alternatively, from
Wikipedia. This algorithm has proven to be very
competitive in word similarity tasks (Agirre et al.,
2010).

To compute similarity using UKB we represent
WordNet as a graph G = (V,E) as follows: graph
nodes represent WordNet concepts (synsets) and

3http://ixa2.si.ehu.es/ukb/

dictionary words; relations among synsets are rep-
resented by undirected edges; and dictionary words
are linked to the synsets associated to them by di-
rected edges.

Our method is provided with a pair of vectors of
words and a graph-based representation of WordNet.
We first compute the personalized PageRank over
WordNet separately for each of the vector of words,
producing a probability distribution over WordNet
synsets. We then compute the similarity between
these two probability distributions by encoding them
as vectors and computing the cosine between the
vectors. We present each step in turn.

Once personalized PageRank is computed, it
returns a probability distribution over WordNet
synsets. The similarity between two vectors of
words can thus be implemented as the similarity be-
tween the probability distributions, as given by the
cosine between the vectors.

We used random walks to compute improved sim-
ilarity values for author, people involved, location
and event similarity:

• Author: UKB over Wikipedia using person en-
tities recognized by NERC in the dc:Creator
field.

• People involved and location: UKB over
Wikipedia using people/location entities recog-
nized by NERC in all fields.

• Events: UKB over WordNet using event nouns
and verbs recognized in all fields.

Results on the training data showed that perfor-
mance using this approach was quite low (with the
exception of events). This was caused by the large
number of cases where the Stanford parser did not
find entities which were in Wikipedia. With those
cases on mind, we combined the scores returned by
UKB with the similarity scores presented in Section
2 as follows: if UKB similarity returns a score, we
multiply both, otherwise we return the square of the
other similarity score. Using the multiplication of
the two scores, the results on the training data im-
proved.

2.3 Time similarity measure
In order to measure the time similarity between a
pair of items, we need to recognize time expres-
sions in both items. We assume that the year of
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creation or the year denoting when the event took
place in an artefact are good indicators for time sim-
ilarity. Therefore, information about years is ex-
tracted from each item using the following pattern:
[1|2][0 − 9]{3}. Using this approach, each item is
represented as a set of numbers denoting the years
mentioned in the meta-data.

Time similarity between two items is computed
based on the similarity between their associated
years. Similarity between two years is defined as:

simyear(y1, y2) = max{0, 1− |y1− y2| ∗ k}

k is a parameter to weight the difference between
two years, e.g. for k = 0.1 all items that have differ-
ence of 10 years or more assigned a score of 0. We
obtained best results for k = 0.1.

Finally, time similarity between items a and b is
computed as the maximum of the pairwise similarity
between their associated years:

simtime(a, b) = max∀i∈a
∀j∈b
{0, simyear(ai, bj)}

We substituted the preliminary time similarity
score by the measure obtained using the method pre-
sented in this section.

3 Applying Machine Learning

The above heuristics can be good indicators for the
respective kind of similarity, and can be thus applied
directly to the task. In this section, we take those
indicators as features, and use linear regression (as
made available by Weka (Hall et al., 2009)) to learn
models that fit the features to the training data.

We generated further similarity scores for gen-
eral similarity, including Latent Dirichlet Allocation
(LDA) (Blei et al., 2003), UKB and Wikipedia Link
Vector Model (WLVM)(Milne, 2007) using infor-
mation taken from all fields, as explained below.

3.1 LDA

LDA (Blei et al., 2003) is a statistical method that
learns a set of latent variables called topics from a
training corpus. Given a topic model, documents
can be inferred as probability distributions over top-
ics, θ. The distribution for a document i is denoted
as θi. An LDA model is trained using the train-
ing set consisting of 100 topics using the gensim

package4. The hyperparameters (α, β) were set to
1

num of topics . Therefore, each item in the test set is
represented as a topic distribution.

The similarity between a pair of items is estimated
by comparing their topic distributions following the
method proposed in Aletras et al. (2012; Aletras and
Stevenson (2012). This is achieved by considering
each distribution as a vector (consisting of the topics
corresponding to an item and its probability) then
computing the cosine of the angle between them, i.e.

simLDA(a, b) =
~θa · ~θb

|~θa| × | ~θb|

where ~θa is the vector created from the probability
distribution generated by LDA for item a.

3.2 Pairwise UKB

We run UKB (Section 2.2) to generate a probabil-
ity distribution over WordNet synsets for all of the
words of all items. Similarity between two words
is computed by creating vectors from these distri-
butions and comparing them using the cosine of the
angle between the two vectors. If a words does not
appear in WordNet its similarity value to every other
word is set to 0. We refer to that similarity metric as
UKB here.

Similarity between two items is computed by per-
forming pairwise comparison between their words,
for each, selecting the highest similarity score:

sim(a, b) =
1

2

(∑
w1∈a arg maxw2∈b UKB(w1, w2)

|a|

+

∑
w2∈b arg maxw1∈a UKB(w2, w1)

|b|

)

where a and b are two items, |a| the number of
tokens in a and UKB(w1, w2) is the similarity be-
tween words w1 and w2.

3.3 WLVM

An algorithm described by Milne and Witten (2008)
associates Wikipedia articles which are likely to be
relevant to a given text snippet using machine learn-
ing techniques. We make use of that method to rep-
resent each item as a set of likely relevant Wikipedia

4http://pypi.python.org/pypi/gensim
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articles. Then, similarity between Wikipedia arti-
cles is measured using the Wikipedia Link Vector
Model (WLVM) (Milne, 2007). WLVM uses both
the link structure and the article titles of Wikipedia
to measure similarity between two Wikipedia arti-
cles. Each link is weighted by the probability of it
occurring. Thus, the value of the weight w for a link
x→ y between articles x and y is:

w(x→ y) = |x→ y| × log

(
t∑

z=1

t

z → y

)
where t is the total number of articles in Wikipedia.
The similarity of articles is compared by forming
vectors of the articles which are linked from them
and computing the cosine of their angle. For exam-
ple the vectors of two articles x and y are:

x = (w(x→ l1), w(x→ l2), ..., w(x→ ln))

y = (w(y → l1), w(y → l2), ..., w(y → ln))

where x and y are two Wikipedia articles and x→ li
is a link from article x to article li.

Since the items have been mapped to Wikipedia
articles, similarity between two items is computed
by performing pairwise comparison between articles
using WLVM, for each, selecting the highest simi-
larity score:

sim(a, b) =
1

2

(∑
w1∈a arg maxw2∈b WLV M(w1, w2)

|a|

+

∑
w2∈b arg maxw1∈a WLV M(w2, w1)

|b|

)

where a and b are two items, |a| the number of
Wikipedia articles in a and WLVM(w1, w2) is the
similarity between concepts w1 and w2.

4 Submissions

We selected three systems for submission. The first
run uses the similarity scores of the basic system
(Section 2) for each similarity types as follows:
• General: cosine similarity of TF.IDF vectors,

IDF based on Wikipedia (as shown in Section
2.1).
• Author: product of the scores obtained ob-

tained using TF.IDF vectors and UKB (as
shown in Section 2.2) using only the data ex-
tracted from dc:Creator field.

• People involved and location: product of co-
sine similarity of TF.IDF vectors and UKB (as
shown in Section 2.2) using the data extracted
from all fields.
• Time period: time similarity measure (as

shown in Section 2.3).
• Events: product of cosine similarity of TF.IDF

vectors and UKB (as shown in Section 2.2) of
event nouns and verbs recognized in all fields.
• Subject and description: cosine similarity of

TF.IDF vectors of respective fields (as shown
in Section 2).

For the second run we trained a ML model for
each of the similarity types, using the following fea-
tures:

• Cosine similarity of TF.IDF vectors as shown
in Section 2 for the eight similarity types.
• Four new values for general similarity: TF.IDF

(Section 2.1), LDA (Section 3.1), UKB and
WLVM (Section 3.3).
• Time similarity as shown in Section 2.3.
• Events similarity computed using UKB initial-

ized with the event nouns and verbs in all fields.

We decided not to use the product of TF.IDF
and UKB presented in Section 2.2 in this system
because our intention was to measure the power of
the linear regression ML algorithm to learn on the
given raw data.

The third run is similar, but includes all available
features (21). In addition to the above, we included:

• Author, people involved and location similar-
ity computed using UKB initialized with peo-
ple/location recognized by NERC in dc:Creator
field for author, and in all fields for people in-
volved and location.
• Author, people involved, location and event

similarity scores computed by the product of
TF.IDF vectors and UKB values as shown in
Section 2.2.

5 Results

Evaluation was carried out using the official scorer
provided by the organizers, which computes the
Pearson Correlation score for each of the eight sim-
ilarity types plus an additional mean correlation.

135



Team and run General Author People involved Time Location Event Subject Description Mean
UBC UOS-RUN1 0.7269 0.4474 0.4648 0.5884 0.4801 0.2522 0.4976 0.5389 0.5033
UBC UOS-RUN2 0.7777 0.6680 0.6767 0.7609 0.7329 0.6412 0.7516 0.8024 0.7264
UBC UOS-RUN3 0.7866 0.6941 0.6965 0.7654 0.7492 0.6551 0.7586 0.8067 0.7390

Table 1: Results of our systems on the training data, using cross-validation when necessary.

Team and run General Author People involved Time Location Event Subject Description Mean Rank
UBC UOS-RUN1 0.7256 0.4568 0.4467 0.5762 0.4858 0.3090 0.5015 0.5810 0.5103 6
UBC UOS-RUN2 0.7457 0.6618 0.6518 0.7466 0.7244 0.6533 0.7404 0.7751 0.7124 4
UBC UOS-RUN3 0.7461 0.6656 0.6544 0.7411 0.7257 0.6545 0.7417 0.7763 0.7132 3

Table 2: Results of our submitted systems.

5.1 Development

The three runs mentioned above were developed us-
ing the training data made available by the organiz-
ers. In order to avoid overfitting we did not change
the default parameters of the linear regressor, and
10-fold cross-validation was used for evaluating the
models on the training data. The results of our sys-
tems on the training data are shown on Table 1. The
table shows that the heuristics (RUN1) obtain low
results, and that linear regression improves results
considerably in all types. Using the full set of fea-
tures, RUN3 improves slightly over RUN2, but the
improvement is consistent across all types.

5.2 Test

The test dataset was composed of 750 pairs of items.
Table 2 illustrates the results of our systems in the
test dataset. The results of the runs are very similar
to those obtained on the training data, but the dif-
ference between RUN2 and RUN3 is even smaller.
Our systems were ranked #3 (RUN 3), #4 (RUN
2) and #6 (RUN 1) among 14 systems submitted
by 6 teams. Our systems achieved good correlation
scores for almost all similarity types, with the excep-
tion of author similarity, which is the worst ranked
in comparison with the rest of the systems.

6 Conclusions and Future Work

In this paper, we presented the systems submitted
to the *SEM 2013 shared task on Semantic Tex-
tual Similarity. We combined some simple heuris-
tics for each type of similarity, based on the appro-
priate metadata fields. The use of lineal regression
improved the results considerably across all types.
Our system fared well in the competition. We sub-

mitted three systems and the highest-ranked of these
achieved the third best results overall.
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Abstract

In this paper we describe KnCe2013-CORE,
a system to compute the semantic similarity
of two short text snippets. The system com-
putes a number of features which are gath-
ered from different knowledge bases, namely
WordNet, Wikipedia and Wiktionary. The
similarity scores derived from these features
are then fed into several multilayer perceptron
neuronal networks. Depending on the size
of the text snippets different parameters for
the neural networks are used. The final out-
put of the neural networks is compared to hu-
man judged data. In the evaluation our system
performed sufficiently well for text snippets
of equal length, but the performance dropped
considerably once the pairs of text snippets
differ in size.

1 Introduction

The task of the semantic sentence similarity is to as-
sign a score to a given pair of sentences. This score
should reflect the degree by which the two sentences
represent the same meaning. The semantic similar-
ity of two sentences could then be used in a num-
ber of different application scenarios, for example it
could help to improve the performance of informa-
tion retrieval systems.

In the past, systems based on regression mod-
els in combination with well chosen features have
demonstrated good performance on this topic[4] [6].
Therefore we took this approach as a starting point
to develop our semantic similarity system; addition-
ally, we integrated a number of existing knowledge

bases into our system. With it, trained with the data
discussed in the task specification of last year[1], we
participated in the shared task of SEM 2013.

Additionally, to the similarity based on the fea-
tures derived from the external knowledge bases, we
employ a neural network to compute the final simi-
larity score. The motivation to use a supervised ma-
chine learning algorithm has been the observation
that the semantic similarity is heavily influenced by
the context of the human evaluator. A financial ex-
pert for example would judge sentences with finan-
cial topics different to non financial experts, if oc-
curring numbers differ from each other.

The remainder of the paper is organised as fol-
lows: In Section 2 we described our system, the
main features and the neuronal network to combine
different feature sets. In Section 3 the calculation
method of our feature values is discribed. In Sec-
tion 4 we report the results of our system based on
our experiments and the submitted results of the test
data. In Section 5 and 6 we discuss the results and
the outcome of our work.

2 System Overview

2.1 Processing

Initially the system puts the sentence pairs of the
whole training set through our annotation pipeline.
After this process the sentence pairs are compared
to each other by our different feature scoring algo-
rithms. The result is a list of scores for each of these
pairs where every score represents a feature or part
of a feature. The processed sentences are now sep-
arated by their length and used to train the neuronal

138



network models for each length group. The testing
data is also grouped based on the sentence length
and the score for each pair is determined by a rele-
vant model.

2.2 Token Features

The first set of features are simply the tokens from
the two respective sentences. This feature set should
perform well, if exactly the same words are used
within the pair of sentences to be compared. But
as soon as words are replaced by their synonyms or
other semantically related words, this feature set will
not be able to capture the true similarity. Used with-
out other features it could even lead to false posi-
tive matches, for example given sentences with sim-
ilar content but containing antonyms. The tokenizer
used by our system was based on the OpenNLP
maximum entropy tokenizer, which detects token
boundaries based on probability model.

2.3 Wiktionary Features

While the collaboratively created encyclopedia
Wikipedia receives a lot of attention from the gen-
eral public, as well as the research community, the
free dictionary Wiktionary1 is far lesser known. The
Wiktionary dictionary stores the information in a
semi-structured way using Wikimedia syntax, where
a single page represents a single word or phrase.
Therefore we developed a parser to extract relevant
information. In our case we were especially inter-
ested in semantically related terms, where the se-
mantic relationship is:

Representations: Set of word forms for a spe-
cific term. These terms are expected to indicate the
highest semantic similarity. This includes all flex-
ions, for example the ’s’ suffix for plural forms.

Synonyms: List of synonyms for the term.
Hyponyms: List of more specific terms.
Hypernym: Terms which represent more general

terms.
Antonym: List of terms, which represent an op-

posing sense.
Related Terms: Terms, with a semantic relation-

ship, which does not fall in the aforementioned cat-
egories. For example related terms for ’bank’ are

1http://en.wiktionary.org

’bankrupt’. Related terms represent only a weak se-
mantic similarity.

Derived Terms: Terms, with overlapping word
forms, such as ’bank holiday’, ’bankroll’ and ’data-
bank’ for the term ’bank’. From all the semantic
relationship types, derived terms are the weakest in-
dicator for their similarities.

2.4 WordNet Features
The WordNet[5][2] features were generated identi-
cally to the Wiktionary features. We used the Word-
Net off line database and the provided library to get
a broader knowledge base. Therefore we extract the
semantically related terms of each token and saved
each class of relation. Where each dependency class
produced an one value in the final feature score list
of the sentence pairs.

2.5 Wikification Feature
We applied a Named Entity Recognition component,
which has been trained using Wikipedia categories
as input. Given a sentence it will annotate all found
concepts that match a Wikipedia article, together
with a confidence score. So for every found entry
by the annotator there is a list of possible associ-
ated topics. The confidence score can then be used
to score the topic information, in the final step the
evaluation values where calculated as follows:

scorewiki(s1, s2) =
|T1 ∩ T2|

norm(T1, T2)

where T1 and T2 are the set of topics of the two
sentences and norm is the mean of the confidence
scores of the topics.

2.6 Other Features
Although we mainly focused our approach on the
three core features above, others seemed to be useful
to improve the performance of the system of which
some are described below.

Numbers and Financial Expression Feature:
Some sentence pairs showed particular variations
between the main features and their actual score.
Many of these sentence pairs where quite similar
in their semantic topic but contained financial ex-
pressions or numbers that differed. Therefore these
expressions where extracted and compared against
each other with a descending score.
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NGrams Feature: The ngram overlapping fea-
ture is based on a noun-phrase detection which re-
turns the noun-phrases in different ngrams. This
noun-phrase detection is a pos tagger pattern which
matches multiple nouns preceding adjectives and de-
terminers. In both sentences the ngrams where ex-
tracted and compared to each other returning only
the biggest overlapping. In the end, to produce the
evaluation values, the word-count of the overlapping
ngrams were taken.

3 Distance calculation

For the calculation of the distance of the different
features we chose a slightly modified version of the
Jacquard similarity coefficient.

Jsc(w, l) =
w

l

Where in this case w stands for the intersection of
the selected feature, and l for la+lb

2 where la and lb
are the length of the sentences with or without stop-
words depending on the selected feature. The as-
sumption was that for some features the gap between
sentences where one has many stop-words and sen-
tences with none would have a crucial impact but for
others it would be detrimental. In regard to this we
used, depending on the feature, the words or words
excluding stop-words.

3.1 Scoring

One of the main issues at the beginning of our re-
search was how to signal the absence of features to
the neuronal network. As our feature scores depend
on the length of the sentence, the absence of a partic-
ular feature (e.g. financial values) and detected fea-
tures without intersections (e.g. none of the found
financial values in the sentences are intersecting) in
the sentence pairs would lead to the same result.

Therefore we applied two different similarity
scores based on the feature set. They differ in the
result they give, if there is no overlap between the
two feature sets.

For a simple term similarity we defined our simi-
larity score as

score(w, s, l) =

{
−1 : s = 0 or w = 0

Jsc(w, l) : w > 0

where w stands for the intersections and S for the
word-count of the sentences. The system returns the
similarity of -1 for no overlap, which signals no sim-
ilarity at all. For fully overlapping feature sets, the
score is 1.

For other features, where we did not expect them
to occur in every sentence, for example numbers or
financial terms, the similarity score was defined as
follows:

score(w, s, l) =

{
1 : s = 0 or w = 0

Jsc(w, l) : w > 0

In this case the score would yield 1 decreasing for
non overlapping feature sets and will drop to -1 the
more features differentiated. This redefines the nor-
mal state as equivalent to a total similarity of all
found features and only if features differ this value
drops.

3.2 Sentence Length Grouping

From tests with the training data we found that our
system performed very diversly with both long and
short sentences although our features where normal-
ized to the sentence length. To cover this problem
we separated the whole collection of training data
into different groups based on their length, each of
the groups were later used to train their own model.
Finally the testing data were also divided into this
groups and were applied on the group model.

3.3 Neural Network

We applyied multilayer perceptron neuronal net-
works on the individual sentence length groups. So
for each group of sentence length we computed sep-
arately the weights of the neural network. To model
the neural networks we used the open-source library
Neuroph.2. This network was defined with a 48-
input layer, which represented the extracted feature
scores, 4 hidden layers, and a 1-output layer which
represents the similarity score of the sentences. For
the runs referenced by table 1 and 2 we used 400000
iterations, which gave us the best results in our tests,
with a maximum error of 0.001 and a learning rate
of 0.001

2http://neuroph.sourceforge.net
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4 Evaluation and Results

The following results of our system where produced
by our test-run after the challenge deadline. For
the first run we split each training set in halfe, self-
evident without the use of the datasets published af-
ter the challenge, and used the other half to validate
our system. See table 1 for result, which contain our
system.

MSRvid MSRpar SMTeuroparl

Grouping 0.69 0.55 0.50
Without Grouping 0.66 0.52 0.62

Table 1: Run with and without sentence length grouping
on the training set

For the validation the whole 2013 test set was
used as it wasnot used for training. In table 2 the
results of our system on the test-set are listed. When
using the sentence length grouping and without sen-
tence length grouping just using a single neural net-
work for all sentence similarities.

FNWN headlines OnWN SMT

Grouping 0.08 0.66 0.62 0.21
Without Grouping 0.38 0.62 0.39 0.25

Table 2: Results of our system with and without sentence
length grouping on the test set

Finally, we report the results from the original
evaluation of the STS-SharedTask in table 3.

FNWN headlines OnWN SMT

KnCe2013-all 0.11 0.35 0.35 0.16
KnCe2013-diff 0.13 0.40 0.35 0.18
KnCe2013-set 0.04 0.05 -0.15 -0.06

Table 3: The submission to the challenge

5 Discussion

Based on the results we can summarize that our
submitted system, worked well for data with very
short and simple sentences, such as the MSRvid;
however for the longer the sentences the perfor-
mance declined. The grouping based on the input

length worked well for sentences of similar length
when compared, as we used the average length of
both sentences to group them, but it seamed to fail
for sentences with very diverse lengths like in the
FNWN data set as shown in table 2. Comparing the
results of the official submission to the test runs of
our system it underperformed in all datasets. We as-
sume that the poor results in the submission run were
caused by badly chosen training settings.

6 Conclusion

In our system for semantic sentence similarity we
tried to integrate a number of external knowledge
bases to improve its performance. (Viz. WordNet,
Wikipedia, Wiktionary) Furthermore, we integrated
a neural network component to replicate the similar-
ity score assigned by human judges. We used dif-
ferent sets of neural networks, depending on the size
of the sentences. In the evaluation we found that
our system worked well for the most datasets. But
as soon as the pairs of sentences differed too much
in size, or the sentences were very long, the perfor-
mance decreased. In future work we will consider
to tackle this problem with partial matching[3] and
to introduces features to extract core statements of
short texts.
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Abstract

In this paper we discuss our participation to
the 2013 Semeval Semantic Textual Similarity
task. Our core features include (i) a set of met-
rics borrowed from automatic machine trans-
lation, originally intended to evaluate auto-
matic against reference translations and (ii ) an
instance of explicit semantic analysis, built
upon opening paragraphs of Wikipedia 2010
articles. Our similarity estimator relies on a
support vector regressor with RBF kernel. Our
best approach required 13 machine transla-
tion metrics + explicit semantic analysis and
ranked 65 in the competition. Our post-
competition analysis shows that the features
have a good expression level, but overfitting
and —mainly— normalization issues caused
our correlation values to decrease.

1 Introduction

Our participation to the 2013 Semantic Textual Sim-
ilarity task (STS) (Agirre et al., 2013)1 was focused
on the CORE problem: GIVEN TWO SENTENCES,
s1 AND s2, QUANTIFIABLY INFORM ON HOW SIMI -
LAR s1 AND s2 ARE. We considered real-valued fea-
tures from four different sources: (i) a set of linguis-
tic measures computed with the Asiya Toolkit for
Automatic MT Evaluation (Giménez and Màrquez,
2010b), (ii ) an instance of explicit semantic analy-
sis (Gabrilovich and Markovitch, 2007), built on top
of Wikipedia articles, (iii ) a dataset predictor, and
(iv) a subset of the features available in Takelab’s
Semantic Text Similarity system (Šarić et al., 2012).

1http://ixa2.si.ehu.es/sts/

Our approaches obtained an overall modest result
compared to other participants (best position: 65 out
of 89). Nevertheless, our post-competition analysis
shows that the low correlation was caused mainly by
a deficient data normalization strategy.

The paper distribution is as follows. Section 2 of-
fers a brief overview of the task. Section 3 describes
our approach. Section 4 discuss our experiments and
obtained results. Section 5 provides conclusions.

2 Task Overview

Detecting two similar text fragments is a difficult
task in cases where the similarity occurs at seman-
tic level, independently of the implied lexicon (e.g
in cases of dense paraphrasing). As a result, simi-
larity estimation models must involve features other
than surface aspects. The STS task is proposed as
a challenge focused in short English texts of dif-
ferent nature: from automatic machine translation
alternatives to human descriptions of short videos.
The test partition also included texts extracted from
news headlines and FrameNet–Wordnet pairs.

The range of similarity was defined between 0
(no relation) up to 5 (semantic equivalence). The
gold standard values were averaged from different
human-made annotations. The expected system’s
output was composed of a real similarity value, to-
gether with an optional confidence level (our confi-
dence level was set constant).

Table 1 gives an overview of the development
(2012 training and test) and test datasets. Note
that both collections extracted from SMT data are
highly biased towards the maximum similarity val-
ues (more than 75% of the instances have a similar-
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Table 1: Overview of sub-collections in the development andtest datasets, including number of instances and distri-
bution of similarity values (in percentage) as well as mean,minimum, and maximum lengths.

similarity distribution length
dataset instances [0, 1) [1, 2) [2, 3) [3, 4) [4, 5] mean min max
dev-[train + test]

MSRpar 1,500 1.20 8.13 17.13 48.73 24.80 17.84 5 30
MSRvid 1,500 31.00 14.13 15.47 20.87 18.53 6.66 2 24
SMTEuroparl 1,193 0.67 0.42 1.17 12.32 85.4 21.13 1 72
OnWN 750 2.13 2.67 10.40 25.47 59.33 7.57 1 34
SMTnews 399 1.00 0.75 5.51 13.03 79.70 11.72 2 28

test
headlines 750 15.47 22.00 16.27 24.67 21.60 7.21 3 22
OnWN 561 36.54 9.80 7.49 17.11 29.05 7.17 5 22
FNWN 189 34.39 29.63 28.57 6.88 0.53 19.90 3 71
SMT 750 0.00 0.27 3.47 20.40 75.8726.40 1 96

ity higher than 4) and include the longest instances.
On the other hand, the FNWN instances are shifted
towards low similarity levels (more than 60% have a
similarity lower than 2).

3 Approach

Our similarity assessment model relies upon
SVMlight’s support vector regressor, with RBF ker-
nel (Joachims, 1999).2 Our model estimation pro-
cedure consisted of two steps: parameter defini-
tion and backward elimination-based feature selec-
tion. The considered features belong to four fami-
lies, briefly described in the following subsections.

3.1 Machine Translation Evaluation Metrics

We consider a set of linguistic measures originally
intended to evaluate the quality of automatic trans-
lation systems. These measures compute the quality
of a translation by comparing it against one or sev-
eral reference translations, considered as gold stan-
dard. A straightforward application of these mea-
sures to the problem at hand is to considers1 as the
reference ands2 as the automatic translation, or vice
versa. Some of the metrics are not symmetric so we
compute similarity betweens1 ands2 in both direc-
tions and average the resulting scores.

The measures are computed with the Asiya
Toolkit for Automatic MT Evaluation (Giménez and
Màrquez, 2010b). The only pre-processing carried
out was tokenization (Asiya performs additional in-
box pre-processing operations, though). We consid-

2We also tried with linear kernels, but RBF always obtained
better results.

ered a sample from three similarity families, which
was proposed in (Giménez and Màrquez, 2010a) as
a varied and robust metric set, showing good corre-
lation with human assessments.3

Lexical Similarity Two metrics of Translation
Error Rate (Snover et al., 2006) (i.e. the esti-
mated human effort to converts1 into s2): -TER
and -TERpA. Two measures of lexical precision:
BLEU (Papineni et al., 2002) andNIST (Dod-
dington, 2002). One measure of lexical recall:
ROUGEW (Lin and Och, 2004). Finally, four vari-
ants ofMETEOR (Banerjee and Lavie, 2005) (exact,
stemming, synonyms,and paraphrasing), a lexical
metric accounting forF -Measure.

Syntactic Similarity Three metrics that estimate
the similarity of the sentences over dependency
parse trees (Liu and Gildea, 2005):DP-HWCMic-4
for grammatical categories chains,DP-HWCMir-4
over grammatical relations, andDP-Or(⋆) over
words ruled by non-terminal nodes. Also, one mea-
sure that estimates the similarity over constituent
parse trees:CP-STM4 (Liu and Gildea, 2005).

Semantic Similarity Three measures that esti-
mate the similarities over semantic roles (i.e. ar-
guments and adjuncts):SR-Or, SR-Mr(⋆), and
SR-Or(⋆). Additionally, two metrics that es-
timate similarities over discourse representations:
DR-Or(⋆) andDR-Orp(⋆).

3Asiya is available athttp://asiya.lsi.upc.edu.
Full descriptions of the metrics are available in the Asiya Tech-
nical Manual v2.0, pp. 15–21.
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3.2 Explicit Semantic Analysis

We built an instance of Explicit Semantic Analy-
sis (ESA) (Gabrilovich and Markovitch, 2007) with
the first paragraph of100k Wikipedia articles (dump
from 2010).Pre-processing consisted of tokenization
and lemmatization.

3.3 Dataset Prediction

Given the similarity shifts in the different datasets
(cf. Table 1), we tried to predict what dataset an in-
stance belonged to on the basis of its vocabulary. We
built binary maxent classifiers for each dataset in the
development set, resulting in five dataset likelihood
features:dMSRpar, dSMTeuroparl, dMSRvid,
dOnWN, anddSMTnews.4 Pre-processing consisted
of tokenization and lemmatization.

3.4 Baseline

We considered the features included in the Takelab
Semantic Text Similarity system (Šarić et al., 2012),
one of the top-systems in last year competition. This
system is used as a black box. The resulting features
are namedtklab n, wheren = [1, 21].

Our runs departed from three increasing subsets
of features:AE machine translation evaluation met-
rics and explicit semantic analysis,AED the pre-
vious set plus dataset prediction, andAED T the
previous set plus Takelab’s baseline features (cf. Ta-
ble 3). We performed a feature normalization, which
relied on the different feature’s distribution over the
entire dataset. Firstly, features were bounded in the
rangeµ±3∗σ2 in order to reduce the potentially neg-
ative impact of outliers. Secondly, we normalized
according to thez-score (Nardo et al., 2008, pp. 28,
84); i.e. x = (x − µ)/σ. As a result, each real-
valued feature distribution in the dataset hasµ = 0
andσ = 1. During the model tuning stage we tried
with other numerous normalization options: normal-
izing each dataset independently, together with the
training set, and without normalization at all. Nor-
malizing according to the entire dev-test dataset led
to the best results

4We used the Stanford classifier;http://nlp.
stanford.edu/software/classifier.shtml

Table 2: Tuning process: parameter definition and feature
selection. Number of features at thebeginning andend
of the feature selection step included.

run parameter def. feature sel.
c γ ǫ corr b e corr

AE 3.7 0.06 0.3 0.8257 19 14 0.8299
AED 3.8 0.03 0.2 0.8413 24 19 0.8425
AED T 2.9 0.02 0.3 0.8761 45 33 0.8803

4 Experiments and Results

Section 4.1 describes our model tuning strategy.
Sections 4.2 and 4.3 discuss the official and post-
competition results.

4.1 Model Tuning

We used only the dev-train partition (2012 training)
for tuning. By means of a 10-fold cross validation
process, we defined the trade-off (c), gamma (γ),
and tube width (ǫ) parameters for the regressor and
performed a backward-elimination feature selection
process (Witten and Frank, 2005, p. 294), indepen-
dently for the three experiments.

The results for the cross-validation process are
summarized in Table 2. The three runs allow for cor-
relations higher than 0.8. On the one hand, the best
regressor parameters obtain better results as more
features are considered, still with very small differ-
ences. On the other hand, the low correlation in-
crease after the feature selection step shows that a
few features are indeed irrelevant.

A summary of the features considered in each ex-
periment (also after feature selection) is displayed in
Table 3. The correlation obtained over the dev-test
partition arecorrAE = 0.7269, corrAED = 0.7638,
andcorrAEDT

= 0.8044 —it would have appeared
in the top-10 ranking of the 2012 competition.

4.2 Official Results

We trained three new regressors with the features
considered relevant by the tuning process, but using
the entire development dataset. The test 2013 parti-
tion was normalized again by means ofz-score, con-
sidering the means and standard deviations of the en-
tire test dataset. Table 4 displays the official results.
Our best approach —AE—, was positioned in rank
65. The worst results of runAED can be explained
by the difference in the nature of the test respect to

145



Table 3: Features considered at the beginning of each run, represented as empty squares (�). Filled squares (�)
represent features considered relevant after feature selection.

Feature AE AED AED T Feature AE AED AED T Feature AED T
DP-HWCM c-4 � � � METEOR-pa � � � tklab 7 �

DP-HWCM r-4 � � � METEOR-st � � � tklab 8 �

DP-Or(*) � � � METEOR-sy � � � tklab 9 �

CP-STM-4 � � � ESA � � � tklab 10 �

SR-Or(*) � � � dMSRpar � � tklab 11 �

SR-Mr(*) � � � dSMTeuroparl � � tklab 12 �

SR-Or � � � dMSRvid � � tklab 13 �

DR-Or(*) � � � dOnWN � � tklab 14 �

DR-Orp(*) � � � dSMTnews � � tklab 15 �

BLEU � � � tklab 1 � tklab 16 �

NIST � � � tklab 2 � tklab 17 �

-TER � � � tklab 3 � tklab 18 �

-TERp-A � � � tklab 4 � tklab 19 �

ROUGE-W � � � tklab 5 � tklab 20 �

METEOR-ex � � � tklab 6 � tklab 21 �

Table 4: Official results for the three runs (rank included).
run headlines OnWN FNWN SMT mean
AE (65) 0.6092 0.5679 -0.1268 0.2090 0.4037
AED (83) 0.4136 0.4770 -0.0852 0.1662 0.3050
AED T (72) 0.5119 0.6386 -0.0464 0.1235 0.3671

the development dataset.AED T obtains worst re-
sults thanAE on theheadlinesand SMT datasets.
The reason behind this behavior can be in the dif-
ference of vocabularies respect to that stored in the
Takelab system (it includes only the vocabulary of
the development partition). This could be the same
reason behind the drop in performance with respect
to the results previously obtained on the dev-test par-
tition (cf. Section 4.1).

4.3 Post-Competition Results

Our analysis of the official results showed the main
issue was normalization. Thus, we performed a
manifold of new experiments, using the same con-
figuration as in runAE, but applying other normal-
ization strategies: (a) z-score normalization, but ig-
noring the FNWN dataset (given its shift through
low values); (b) z-score normalization, but consid-
ering independent means and standard deviations for
each test dataset; and (c) without normalizing any of
dataset (including the regressor one).

Table 5 includes the results. (a) makes evident
that the instances in FNWN represent “anomalies”
that harm the normalized values of the rest of sub-
sets. Run (b) shows that normalizing the test sets

Table 5: Post-competition experiments results
run headlines OnWN FNWN SMT mean
AE (a) 0.6210 0.5905 -0.0987 0.2990 0.4456
AE (b) 0.6072 0.4767 -0.0113 0.3236 0.4282
AE (c) 0.6590 0.6973 0.1547 0.3429 0.5208

independently is not a good option, as the regressor
is trained considering overall normalizations, which
explains the correlation decrease. Run (c) is com-
pletely different: not normalizing any dataset —
both in development and test— reduces the influ-
ence of the datasets to each other and allows for the
best results. Indeed, this configuration would have
advanced practically forty positions at competition
time, locating us in rank 27.

Estimating the adequate similarities overFNWN
seems particularly difficult for our systems. We ob-
serve two main factors. (i) FNWN presents an im-
portant similarity shift respect to the other datasets:
nearly 90% of the instances similarity is lower than
2.5 and (ii ) the average lengths ofs1 ands2 are very
different: 30 vs 9 words. These characteristics made
it difficult for our MT evaluation metrics to estimate
proper similarity values (be normalized or not).

We performed two more experiments over
FNWN: training regressors with ESA as the only
feature, before and after normalization. The correla-
tion was 0.16017 and 0.3113, respectively. That is,
the normalization mainly affects the MT features.
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5 Conclusions

In this paper we discussed on our participation to the
2013 Semeval Semantic Textual Similarity task. Our
approach relied mainly upon a combination of au-
tomatic machine translation evaluation metrics and
explicit semantic analysis. Building an RBF support
vector regressor with these features allowed us for a
modest result in the competition (our best run was
ranked 65 out of 89).
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Abstract

The Semantic Textual Similarity (STS) task

examines semantic similarity at a sentence-

level. We explored three representations of

semantics (implicit or explicit): named enti-

ties, semantic vectors, and structured vectorial

semantics. From a DKPro baseline, we also

performed feature selection and used source-

specific linear regression models to combine

our features. Our systems placed 5th, 6th, and

8th among 90 submitted systems.

1 Introduction

The Semantic Textual Similarity (STS) task (Agirre

et al., 2012; Agirre et al., 2013) examines semantic

similarity at a sentence-level. While much work has

compared the semantics of terms, concepts, or doc-

uments, this space has been relatively unexplored.

The 2013 STS task provided sentence pairs and a

0–5 human rating of their similarity, with training

data from 5 sources and test data from 4 sources.

We sought to explore and evaluate the usefulness

of several semantic representations that have had

recent significance in research or practice. First,

information extraction (IE) methods often implic-

itly consider named entities as ad hoc semantic rep-

resentations, for example, in the clinical domain.

Therefore, we sought to evaluate similarity based on

named entity-based features. Second, in many appli-

cations, an effective means of incorporating distri-

butional semantics is Random Indexing (RI). Thus

we consider three different representations possi-

ble within Random Indexing (Kanerva et al., 2000;

Sahlgren, 2005). Finally, because compositional

distributional semantics is an important research

topic (Mitchell and Lapata, 2008; Erk and Padó,

2008), we sought to evaluate a principled compo-

sition strategy: structured vectorial semantics (Wu

and Schuler, 2011).

The remainder of this paper proceeds as follows.

Section 2 overviews our similarity metrics, and Sec-

tion 3 overviews the systems that were defined on

these metrics. Competition results and additional

analyses are in Section 4. We end with discussion

on the results in Section 5.

2 Similarity measures

Because we expect semantic similarity to be multi-

layered, we expect that we will need many similar-

ity measures to approximate human similarity judg-

ments. Rather than reinvent the wheel, we have cho-

sen to introduce features that complement existing

successful feature sets. We utilized 17 features from

DKPro Similarity and 21 features from TakeLab,

i.e., the two top-performing systems in the 2012 STS

task, as a solid baseline.

These are summarized in Table 1. We introduce 3

categories of new similarity metrics, 9 metrics in all.

2.1 Named entity measures

Named entity recognition provides a common ap-

proximation of semantic content for the informa-

tion extraction perspective. We define three simple

similarity metrics based on named entities. First,

we computed the named entity overlap (exact string

matches) between the two sentences, where NEk

was the set of named entities found in sentence

Sk. This is the harmonic mean of how closely S1
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Table 1: Full feature pool in MayoClinicNLP systems. The proposed MayoClinicNLP metrics are meant to comple-

ment DKPro (Bär et al., 2012) and TakeLab (Šarić et al., 2012) metrics.
DKPro metrics (17) TakeLab metrics (21) Custom MayoClinicNLP metrics (9)

n-grams/WordNGramContainmentMeasure 1 stopword-filtered t ngram/UnigramOverlap

n-grams/WordNGramContainmentMeasure 2 stopword-filtered t ngram/BigramOverlap

n-grams/WordNGramJaccardMeasure 1 t ngram/TrigramOverlap

n-grams/WordNGramJaccardMeasure 2 stopword-filtered t ngram/ContentUnigramOverlap

n-grams/WordNGramJaccardMeasure 3 t ngram/ContentBigramOverlap

n-grams/WordNGramJaccardMeasure 4 t ngram/ContentTrigramOverlap

n-grams/WordNGramJaccardMeasure 4 stopword-filtered

t words/WeightedWordOverlap custom/StanfordNerMeasure overlap.txt

t words/GreedyLemmaAligningOverlap custom/StanfordNerMeasure aligngst.txt

t words/WordNetAugmentedWordOverlap custom/StanfordNerMeasure alignlcs.txt

esa/ESA Wiktionary t vec/LSAWordSimilarity NYT custom/SVSePhrSimilarityMeasure.txt

esa/ESA WordNet t vec/LSAWordSimilarity weighted NYT custom/SVSeTopSimilarityMeasure.txt

t vec/LSAWordSimilarity weighted Wiki custom/SemanticVectorsSimilarityMeasure d200 wr0.txt

custom/SemanticVectorsSimilarityMeasure d200 wr6b.txt

custom/SemanticVectorsSimilarityMeasure d200 wr6d.txt

custom/SemanticVectorsSimilarityMeasure d200 wr6p.txt

n-grams/CharacterNGramMeasure 2 t other/RelativeLengthDifference

n-grams/CharacterNGramMeasure 3 t other/RelativeInfoContentDifference

n-grams/CharacterNGramMeasure 4 t other/NumbersSize

string/GreedyStringTiling 3 t other/NumbersOverlap

string/LongestCommonSubsequenceComparator t other/NumbersSubset

string/LongestCommonSubsequenceNormComparator t other/SentenceSize

string/LongestCommonSubstringComparator t other/CaseMatches

t other/StocksSize

t other/StocksOverlap

matches S2, and how closely S2 matches S1:

simneo(S1, S2) = 2 ⋅
∣NE1 ∩NE2∣
∣NE1∣ + ∣NE2∣

(1)

Additionally, we relax the constraint of requiring

exact string matches between the two sentences by

using the longest common subsequence (Allison and

Dix, 1986) and greedy string tiling (Wise, 1996) al-

gorithms. These metrics give similarities between

two strings, rather than two sets of strings as we

have with NE1 and NE2. Thus, we follow previ-

ous work in greedily aligning these named entities

(Lavie and Denkowski, 2009; Šarić et al., 2012) into

pairs. Namely, we compare each pair (nei,1, nej,2)
of named entity strings in NE1 and NE2. The

highest-scoring pair is entered into a set of pairs, P .

Then, the next highest pair is added to P if neither

named entity is already in P , and discarded other-

wise; this continues until there are no more named

entities in either NE1 or NE2.

We then define two named entity aligning mea-

sures that use the longest common subsequence

(LCS) and greedy string tiling (GST) fuzzy string

matching algorithms:

simnea(S1, S2) =

∑
(ne1,ne2)∈P

f(ne1, ne2)

max (∣NE1∣, ∣NE2∣)
(2)

where f(⋅) is either the LCS or GST algorithm.

In our experiments, we performed named entity

recognition with the Stanford NER tool using the

standard English model (Finkel et al., 2005). Also,

we used UKP’s existing implementation of LCS and

GST (Šarić et al., 2012) for the latter two measures.

2.2 Random indexing measures

Random indexing (Kanerva et al., 2000; Sahlgren,

2005) is another distributional semantics framework

for representing terms as vectors. Similar to LSA

(Deerwester et al., 1990), an index is created that

represents each term as a semantic vector. But

in random indexing, each term is represented by

an elemental vector et with a small number of

randomly-generated non-zero components. The in-

tuition for this means of dimensionality reduction is

that these randomly-generated elemental vectors are

like quasi-orthogonal bases in a traditional geomet-

ric semantic space, rather than, e.g., 300 fully or-

thogonal dimensions from singular value decompo-

sition (Landauer and Dumais, 1997). For a standard

model with random indexing, a contextual term vec-

tor ct,std is the the sum of the elemental vectors cor-

responding to tokens in the document. All contexts

for a particular term are summed and normalized to

produce a final term vector vt,std.

Other notions of context can be incorporated into
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this model. Local co-occurrence context can be ac-

counted for in a basic sliding-window model by con-

sidering words within some window radius r (in-

stead of a whole document). Each instance of the

term t will have a contextual vector ct,win = et−r +
⋯ + et−1 + et+1 +⋯ + et+r; context vectors for each

instance (in a large corpus) would again be added

and normalized to create the overall vector vt,win.

A directional model doubles the dimensionality of

the vector and considers left- and right-context sepa-

rately (half the indices for left-context, half for right-

context), using a permutation to achieve one of the

two contexts. A permutated positional model uses a

position-specific permutation function to encode the

relative word positions (rather than just left- or right-

context) separately. Again, vt would be summed

and normalized over all instances of ct.

Sentence vectors from any of these 4 Random

Indexing-based models (standard, windowed, direc-

tional, positional) are just the sum of the vectors for

each term vS = ∑t∈S vt. We define 4 separate simi-

larity metrics for STS as:

simRI(S1, S2) = cos(vS1,vS2) (3)

We used the semantic vectors package (Widdows

and Ferraro, 2008; Widdows and Cohen, 2010) in

the default configuration for the standard model. For

the windowed, directional, and positional models,

we used a 6-word window radius with 200 dimen-

sions and a seed length of 5. All models were

trained on the raw text of the Penn Treebank Wall

Street Journal corpus and a 100,075-article subset of

Wikipedia.

2.3 Semantic vectorial semantics measures

Structured vectorial semantics (SVS) composes dis-

tributional semantic representations in syntactic

context (Wu and Schuler, 2011). Similarity met-

rics defined with SVS inherently explore the quali-

ties of a fully interactive syntax–semantics interface.

While previous work evaluated the syntactic contri-

butions of this model, the STS task allows us to eval-

uate the phrase-level semantic validity of the model.

We summarize SVS here as bottom-up vector com-

position and parsing, then continue on to define the

associated similarity metrics.

Each token in a sentence is modeled generatively

as a vector eγ of latent referents iγ in syntactic con-

text cγ ; each element in the vector is defined as:

eγ[iγ] = P(xγ ∣ lciγ), for preterm γ (4)

where lγ is a constant for preterminals.

We write SVS vector composition between two

word (or phrase) vectors in linear algebra form,1 as-

suming that we are composing the semantics of two

children eα and eβ in a binary syntactic tree into

their parent eγ :

eγ =M⊙ (Lγ×α ⋅ eα)⊙ (Lγ×β ⋅ eβ) ⋅ 1 (5)

M is a diagonal matrix that encapsulates probabilis-

tic syntactic information; the L matrices are linear

transformations that capture how semantically rele-

vant child vectors are to the resulting vector (e.g.,

Lγ×α defines the the relevance of eα to eγ). These

matrices are defined such that the resulting eγ is a

semantic vector of consistent P(xγ ∣ lciγ) probabil-

ities. Further detail is in our previous work (Wu,

2010; Wu and Schuler, 2011).

Similarity metrics can be defined in the SVS

space by comparing the distributions of the com-

posed eγ vectors — i.e., our similarity metric is

a comparison of the vector semantics at different

phrasal nodes. We define two measures, one cor-

responding to the top node c△ (e.g., with a syntactic

constituent c△ = ‘S’), and one corresponding to the

left and right largest child nodes (e.g.,, c∠ = ‘NP’

and c ∠= ‘VP’ for a canonical subject–verb–object

sentence in English).

simsvs-top(S1, S2) = cos(e△(S1),e△(S2)) (6)

simsvs-phr(S1, S2) =max(

avgsim(e∠(S1),e∠(S2);e ∠(S1),e ∠(S2)),

avgsim(e∠(S1),e ∠(S2);e ∠(S1),e∠(S2))) (7)

where avgsim() is the harmonic mean of the co-

sine similarities between the two pairs of arguments.

Top-level similarity comparisons in (6) amounts to

comparing the semantics of a whole sentence. The

phrasal similarity function simsvs-phr(S1, S2) in (7)

thus seeks to semantically align the two largest sub-

trees, and weight them. Compared to simsvs-top,

1We define the operator ⊙ as point-by-point multiplication

of two diagonal matrices and 1 as a column vector of ones, col-

lapsing a diagonal matrix onto a column vector.
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the phrasal similarity function simsvs-phr(S1, S2) as-

sumes there might be some information captured in

the child nodes that could be lost in the final compo-

sition to the top node.

In our experiments, we used the parser described

in Wu and Schuler (2011) with 1,000 headwords

and 10 relational clusters, trained on the Wall Street

Journal treebank.

3 Feature combination framework

The similarity metrics of Section 2 were calculated

for each of the sentence pairs in the training set, and

later the test set. In combining these metrics, we ex-

tended a DKPro Similarity baseline (3.1) with fea-

ture selection (3.2) and source-specific models and

classification (3.3).

3.1 Linear regression via DKPro Similarity

For our baseline (MayoClinicNLPr1wtCDT), we

used the UIMA-based DKPro Similarity system

from STS 2012 (Bär et al., 2012). Aside from the

large number of sound similarity measures, this pro-

vided linear regression through the WEKA package

(Hall et al., 2009) to combine all of the disparate

similarity metrics into a single one, and some pre-

processing. Regression weights were determined on

the whole training set for each source.

3.2 Feature selection

Not every feature was included in the final linear re-

gression models. To determine the best of the 47

(DKPro–17, TakeLab–21, MayoClinicNLP–9) fea-

tures, we performed a full forward-search on the

space of similarity measures. In forward-search, we

perform 10-fold cross-validation on the training set

for each measure, and pick the best one; in the next

round, that best metric is retained, and the remaining

metrics are considered for addition. Rounds con-

tinue until all the features are exhausted, though a

stopping-point is noted when performance no longer

increases.

3.3 Subdomain source models and

classification

There were 5 sources of data in the training set:

paraphrase sentence pairs (MSRpar), sentence pairs

from video descriptions (MSRvid), MT evaluation

sentence pairs (MTnews and MTeuroparl) and gloss

pairs (OnWN). In our submitted runs, we trained

a separate, feature-selected model based on cross-

validation for each of these data sources. In train-

ing data on cross-validation tests, training domain-

specific models outperformed training a single con-

glomerate model.

In the test data, there were 4 sources, with 2

appearing in training data (OnWN, SMT) and 2

that were novel (FrameNet/Wordnet sense defini-

tions (FNWN), European news headlines (head-

lines)). We examined two different strategies for ap-

plying the 5-source trained models on these 4 test

sets. Both of these strategies rely on a multiclass

random forest classifier, which we trained on the 47

similarity metrics.

First, for each sentence pair, we considered the

final similarity score to be a weighted combination

of the similarity score from each of the 5 source-

specific similarity models. The combination weights

were determined by utilizing the classifier’s confi-

dence scores. Second, the final similarity was cho-

sen as the single source-specific similarity score cor-

responding to the classifier’s output class.

4 Evaluation

The MayoClinicNLP team submitted three systems

to the STS-Core task. We also include here a post-

hoc run that was considered as a possible submis-

sion.

r1wtCDT This run used the 47 metrics from

DKPro, TakeLab, and MayoClinicNLP as a

feature pool for feature selection. Source-

specific similarity metrics were combined with

classifier-confidence-score weights.

r2CDT Same feature pool as run 1. Best-match (as

determined by classifier) source-specific simi-

larity metric was used rather than a weighted

combination.

r3wtCD TakeLab features were removed from the

feature pool (before feature selection). Same

source combination as run 1.

r4ALL Post-hoc run using all 47 metrics, but train-

ing a single linear regression model rather than

source-specific models.
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Table 2: Performance comparison.
TEAM NAME headlines rank OnWN rank FNWN rank SMT rank mean rank

UMBC EBIQUITY-ParingWords 0.7642 0.7529 0.5818 0.3804 0.6181 1

UMBC EBIQUITY-galactus 0.7428 0.7053 0.5444 0.3705 0.5927 2

deft-baseline 0.6532 0.8431 0.5083 0.3265 0.5795 3

MayoClinicNLP-r4ALL 0.7275 0.7618 0.4359 0.3048 0.5707

UMBC EBIQUITY-saiyan 0.7838 0.5593 0.5815 0.3563 0.5683 4

MayoClinicNLP-r3wtCD 0.6440 43 0.8295 2 0.3202 47 0.3561 17 0.5671 5

MayoClinicNLP-r1wtCDT 0.6584 33 0.7775 4 0.3735 26 0.3605 13 0.5649 6

CLaC-RUN2 0.6921 0.7366 0.3793 0.3375 0.5587 7

MayoClinicNLP-r2CDT 0.6827 23 0.6612 20 0.396 17 0.3946 5 0.5572 8

NTNU-RUN1 0.7279 0.5952 0.3215 0.4015 0.5519 9

CLaC-RUN1 0.6774 0.7667 0.3793 0.3068 0.5511 10

4.1 Competition performance

Table 2 shows the top 10 runs of 90 submitted in

the STS-Core task are shown, with our three sys-

tems placing 5th, 6th, and 8th. Additionally, we can

see that run 4 would have placed 4th. Notice that

there are significant source-specific differences be-

tween the runs. For example, while run 4 is better

overall, runs 1–3 outperform it on all but the head-

lines and FNWN datasets, i.e., the test datasets that

were not present in the training data. Thus, it is

clear that the source-specific models are beneficial

when the training data is in-domain, but a combined

model is more beneficial when no such training data

is available.

4.2 Feature selection analysis
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Figure 1: Performance curve of feature selection for

r1wtCDT, r2CDT, and r4ALL

Due to the source-specific variability among the

runs, it is important to know whether the forward-

search feature selection performed as expected. For

source specific models (runs 1 and 3) and a com-

bined model (run 4), Figure 1 shows the 10-fold

cross-validation scores on the training set as the next

feature is added to the model. As we would ex-

pect, there is an initial growth region where the first

features truly complement one another and improve

performance significantly. A plateau is reached for

each of the models, and some (e.g., SMTnews) even

decay if too many noisy features are added.

The feature selection curves are as expected. Be-

cause the plateau regions are large, feature selection

could be cut off at about 10 features, with gains in

efficiency and perhaps little effect on accuracy.

The resulting selected features for some of the

trained models are shown in Table 3.

4.3 Contribution of MayoClinicNLP metrics

We determined whether including MayoClinicNLP

features was any benefit over a feature-selected

DKPro baseline. Table 4 analyzes this question

by adding each of our measures in turn to a base-

line feature-selected DKPro (dkselected). Note that

this baseline was extremely effective; it would have

ranked 4th in the STS competition, outperforming

our run 4. Thus, metrics that improve this baseline

must truly be complementary metrics. Here, we see

that only the phrasal SVS measure is able to improve

performance overall, largely by its contributions to

the most difficult categories, FNWN and SMT. In

fact, that system (dkselected + SVSePhrSimilari-

tyMeasure) represents the best-performing run of

any that was produced in our framework.
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Table 3: Top retained features for several linear regression models.
OnWN - r1wtCDT and r2CDT (15 shown/19 selected) SMTnews - r1wtCDT and r2CDT (15 shown/17 selected) All - r4ALL (29 shown/29 selected)

t ngram/ContentUnigramOverlap t other/RelativeInfoContentDifference t vec/LSAWordSimilarity weighted NYT

t other/RelativeInfoContentDifference n-grams/CharacterNGramMeasure 2 n-grams/CharacterNGramMeasure 2

t vec/LSAWordSimilarity weighted NYT t other/CaseMatches string/LongestCommonSubstringComparator

esa/ESA Wiktionary string/GreedyStringTiling 3 t other/NumbersOverlap

t ngram/ContentBigramOverlap custom/RandomIndexingMeasure d200 wr6p t words/WordNetAugmentedWordOverlap

n-grams/CharacterNGramMeasure 2 custom/StanfordNerMeasure overlap n-grams/WordNGramJaccardMeasure 1

t words/WordNetAugmentedWordOverlap t vec/LSAWordSimilarity weighted NYT n-grams/CharacterNGramMeasure 3

t ngram/BigramOverlap t other/SentenceSize t other/SentenceSize

string/GreedyStringTiling 3 custom/RandomIndexingMeasure d200 wr0 t other/RelativeInfoContentDifference

string/LongestCommonSubsequenceNormComparator custom/SVSePhrSimilarityMeasure t ngram/ContentBigramOverlap

custom/RandomIndexingMeasure d200 wr0 esa/ESA Wiktionary n-grams/WordNGramJaccardMeasure 4

custom/StanfordNerMeasure aligngst string/LongestCommonSubstringComparator t other/NumbersSize

custom/StanfordNerMeasure alignlcs t other/NumbersSize t other/NumbersSubset

custom/StanfordNerMeasure overlap n-grams/WordNGramContainmentMeasure 2 stopword-filtered custom/SVSePhrSimilarityMeasure

custom/SVSePhrSimilarityMeasure custom/SVSeTopSimilarityMeasure custom/SemanticVectorsSimilarityMeasure d200 wr6p

esa/ESA WordNet

OnWN - r3wtCD (7 shown/7 selected) SMTnews - r3wtCD (15 shown/23 selected) esa/ESA Wiktionary

esa/ESA Wiktionary string/GreedyStringTiling 3 string/LongestCommonSubsequenceComparator

string/LongestCommonSubsequenceComparator custom/StanfordNerMeasure overlap string/LongestCommonSubsequenceNormComparator

string/GreedyStringTiling 3 n-grams/CharacterNGramMeasure 2 n-grams/WordNGramContainmentMeasure 1 stopword-filtered

string/LongestCommonSubsequenceNormComparator custom/RandomIndexingMeasure d200 wr6p word-sim/MCS06 Resnik WordNet

string/LongestCommonSubstringComparator n-grams/CharacterNGramMeasure 3 t ngram/ContentUnigramOverlap

word-sim/MCS06 Resnik WordNet string/LongestCommonSubsequenceComparator n-grams/WordNGramContainmentMeasure 2 stopword-filtered

n-grams/WordNGramContainmentMeasure 2 stopword-filtered custom/StanfordNerMeasure aligngst n-grams/WordNGramJaccardMeasure 2 stopword-filtered

custom/SVSePhrSimilarityMeasure t ngram/UnigramOverlap

esa/ESA Wiktionary t ngram/BigramOverlap

esa/ESA WordNet t other/StocksSize

n-grams/WordNGramContainmentMeasure 2 stopword-filtered t words/GreedyLemmaAligningOverlap

n-grams/WordNGramJaccardMeasure 1 t other/StocksOverlap

string/LongestCommonSubstringComparator

custom/RandomIndexingMeasure d200 wr6d

custom/RandomIndexingMeasure d200 wr0

Table 4: Adding customized features one at a time into optimized DKPro feature set. Models are trained across all

sources.

headlines OnWN FNWN SMT mean

dkselected 0.70331 0.79752 0.38358 0.31744 0.571319

dkselected + SVSePhrSimilarityMeasure 0.70178 0.79644 0.38685 0.32332 0.572774

dkselected + RandomIndexingMeasure d200 wr0 0.70054 0.79752 0.38432 0.31615 0.570028

dkselected + SVSeTopSimilarityMeasure 0.69873 0.79522 0.38815 0.31723 0.569533

dkselected + RandomIndexingMeasure d200 wr6d 0.69944 0.79836 0.38416 0.31397 0.569131

dkselected + RandomIndexingMeasure d200 wr6b 0.69992 0.79788 0.38435 0.31328 0.568957

dkselected + RandomIndexingMeasure d200 wr6p 0.69878 0.79848 0.37876 0.31436 0.568617

dkselected + StanfordNerMeasure aligngst 0.69446 0.79502 0.38703 0.31497 0.567212

dkselected + StanfordNerMeasure overlap 0.69468 0.79509 0.38703 0.31466 0.567200

dkselected + StanfordNerMeasure alignlcs 0.69451 0.79486 0.38657 0.31394 0.566807

(dk + all custom) selected 0.70311 0.79887 0.37477 0.31665 0.570586

Also, we see some source-specific behavior. None

of our introduced measures are able to improve the

headlines similarities. However, random indexing

improves OnWN scores, several strategies improve

the FNWN metric, and simsvs-phr is the only viable

performance improvement on the SMT corpus.

5 Discussion

Mayo Clinic’s submissions to Semantic Textual

Similarity 2013 performed well, placing 5th, 6th,

and 8th among 90 submitted systems. We intro-

duced similarity metrics that used different means

to do compositional distributional semantics along

with some named entity-based measures, finding

some improvement especially for phrasal similar-

ity from structured vectorial semantics. Through-

out, we utilized forward-search feature selection,

which enhanced the performance of the models. We

also used source-based linear regression models and

considered unseen sources as mixtures of existing

sources; we found that in-domain data is neces-

sary for smaller, source-based models to outperform

larger, conglomerate models.
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Abstract

In this year’s Semantic Textual Similarity
evaluation, we explore the contribution of
models that provide soft similarity scores
across spans of multiple words, over the pre-
vious year’s system. To this end, we ex-
plored the use of neural probabilistic language
models and a TF-IDF weighted variant of Ex-
plicit Semantic Analysis. The neural language
model systems used vector representations of
individual words, where these vectors were
derived by training them against the context
of words encountered, and thus reflect the dis-
tributional characteristics of their usage. To
generate a similarity score between spans, we
experimented with using tiled vectors and Re-
stricted Boltzmann Machines to identify simi-
lar encodings. We find that these soft similar-
ity methods generally outperformed our previ-
ous year’s systems, albeit they did not perform
as well in the overall rankings. A simple anal-
ysis of the soft similarity resources over two
word phrases is provided, and future areas of
improvement are described.

1 Introduction

For this year’s Semantic Textual Similarity (STS)
evaluation, we built upon the best performing sys-
tem we deployed last year with several methods for
exploring the soft similarity between windows of
words, instead of relying just on single token-to-
token similarities. From the previous year’s eval-
uation, we were impressed by the performance of
features derived from bigrams and skip bigrams. Bi-
grams capture the relationship between two concur-
rent words, while skip bigrams can capture longer

distance relationships. We found that characterizing
the overlap in skip bigrams between the sentences in
a STS problem pair proved to be a major contributor
to last year’s system’s performance.

Skip bigrams were matched on two criteria, lexi-
cal matches, and via part of speech (POS). Lexical
matching is brittle, and even if the match were made
on lemmas, we lose the ability to match against syn-
onyms. We could rely on the token-to-token simi-
larity methods to account for these non-lexical sim-
ilarities, but these do not account for sequence nor
dependencies in the sentencees. Using POS based
matching allows for a level of generalization, but at
a much broader level. What we would like to have
is a model that can capture these long distance re-
lationships at a level that is less broad than POS
matching, but allows for a soft similarity scoring be-
tween words. In addition, the ability to encompass
a larger window without having to manually insert
skips would be desirable as well.

To this end we decided to explore the use of neu-
ral probabilistic language models (NLPM) for cap-
turing this kind of behavior (Bengio et al., 2003).
NLPMs represent individual words as real valued
vectors, often at a much lower dimensionality than
the original vocabulary. By training these rep-
resentations to maximize a criterion such as log-
likelihood of target word given the other words in its
neighborhood, the word vectors themselves can cap-
ture commonalities between words that have been
used in similar contexts. In previous studies, these
vectors themselves can capture distributionally de-
rived similarities, by directly comparing the word
vectors themselves using simple measures such as
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Euclidean distance (Collobert and Weston, 2008).
In addition, we fielded a variant of Explicit

Semantic Analysis (Gabrilovich and Markovitch,
2009) that used TF-IDF weightings, instead of using
the raw concept vectors themselves. From previous
experiments, we found that using TF-IDF weight-
ings on the words in a pair gave a boost in perfor-
mance over sentence length comparisons and above,
so this simple modification was incorporated into
our system.

In order to identify the contribution of these soft
similarity methods against last year’s system, we
fielded three systems:

1. System 1, the system from the previous year,
incorporating semantic similarity resources,
precision focused and Bilingual Evaluation Un-
derstudy (BLEU) overlaps (Papineni et al.,
2002), and several types of skip-bigrams.

2. System 2, features just the new NLPM scores
and TFIDF-ESA.

3. System 3, combines System 1 and System 2.

For the rest of this system description, we briefly
describe the previous year’s system (System 1), the
TFIDF weighted Explicit Semantic Analysis, and
the NLPM systems. We then describe the experi-
ment setup, and follow up with results and analysis.

2 System 1

The system we used in SemEval 2012 consisted of
the following components:

1. Resource based word-to-word similarities,
combined using a Semantic Matrix (Fernando
and Stevenson, 2008).

2. Cosine-based lexical overlap measure.

3. Bilingual Evaluation Understudy (BLEU) (Pa-
pineni et al., 2002) lexical overlap.

4. Precision focused part-of-speech (POS) fea-
tures.

5. Lexical match skip-bigram overlap.

6. Precision focused skip-bigram POS features.

The Semantic Matrix assesses similarity between
a pair s1 and s2 by summing over all of the word
to word similarities between the pair, subject to nor-
malization, as given by Formula 1.

sim(s1, s2) =
vT

1 Wv2

‖v1‖ ‖v2‖
(1)

The matrix W is a symmetric matrix that en-
codes the word to word similarities, derived from
the underlying resources this is drawn from. From
the previous year’s assessment, we used similarities
derived from Personalized PageRank (Agirre et al.,
2010) over WordNet (Fellbaum, 1998), the Explicit
Semantic Analysis (Gabrilovich and Markovitch,
2009) concept vector signatures for each lemma, and
the Dekang Lin Proximity-based Thesaurus 1.

The cosine-based lexical overlap measure simply
measures the cosine similarity, using strict lexical
overlap, between the sentence pairs. The BLEU,
precision focused POS, and skip-bigrams are direc-
tional measures, which measure how well a target
sentence matches a source sentence. To score pair of
sentences, we simply averaged the score where one
sentence is the source, the other the target, and then
vice versa. These directional measures were origi-
nally used as a precision focused means to assess the
quality of machine translations output against ref-
erence translations. Following (Finch et al., 2005),
these measures have also been shown to be good for
assessing semantic similarity between pairs of sen-
tences.

For BLEU, we measured how well ngrams of or-
der one through four were matched by the target sen-
tence, matching solely on lexical matches, or POS
matches. Skip bigrams performed similarly, except
the bigrams were not contiguous. The precision fo-
cused POS features assess how well each POS tag
found in the source sentence has been matched in
the target sentence, where the matches are first done
via a lemma match.

To combine the scores from these features, we
used the LIBSVM Support Vector Regression (SVR)
package (Chang and Lin, 2011), trained on the train-
ing pair gold scores. Per the previous year, we used
a radial basis kernel with a degree of three.

1http://webdocs.cs.ualberta.ca/ lindek/downloads.htm
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For a more in-depth description of System 1,
please refer to (Yeh and Agirre, 2012).

3 TFIDF-ESA

This year instead of using Explicit Semantic Anal-
ysis (ESA) to populate a word-by-word similarity
matrix, we used ESA to derive a similarity score be-
tween the sentences in a STS pair. For a given sen-
tence, we basically treated it as an IR query against
the ESA concept-base: we tokenized the words, ex-
tracted the ESA concept vectors, and performed a
TFIDF weighted average to arrive at the sentence
vector. A cutoff of the top 1000 scoring concepts
was further applied, per previous experience, to im-
prove performance. The similarity score for two
sentence vectors was computed using cosine simi-
larity.

4 Neural Probabilistic Language Models

Neural probabilistic language models represent
words as real valued vectors, where these vectors are
trained to jointly capture the distributional statistics
of their context words and the positions these words
occur at. These representations are usually at a much
lower dimensionality than that of the original vocab-
ulary, forcing some form of compression to occur in
the vocabulary. The intent is to train a model that
can account for words that have not been observed
in a given context before, but that word vector has
enough similarity to another word that has been en-
countered in that context before.

Earlier models simply learnt how to model the
next word in a sequence, where each word in the vo-
cabulary is initially represented by a randomly ini-
tialized vector. For each instance, a larger vector is
assembled from the concatenation of the vectors of
the words observed, and act as inputs into a model.
This model itself is optimized to maximize the like-
lihood of the next word in the observed sequence,
with the errors backpropagated through the vectors,
with the parameters for the vectors being tied (Ben-
gio et al., 2003).

In later studies, these representations are the
product of training a neural network to maxi-
mize the margin between the scores it assigns to
observed “correct” examples, which should have
higher scores, and “corrupted examples,” where the

"heart"
dim=50

"attack"
dim=50

"heart attack"
dim=100

Figure 1: Vector Window encoding for the phrase “heart
attack.”

token of interest is swapped out to produce an in-
correct example and preferably a lower score. As
shown in (Collobert and Weston, 2008) and then
(Huang et al., 2012), simple distance measures us-
ing the representations derived from this process are
both useful for assessing word similarity and relat-
edness. For this study, we used the contextually
trained language vectors provided by (Huang et al.,
2012), which were trained to maximize the margin
between training pairs and to account for document
context as well. The dimensionality of these vectors
was 50.

As we are interested in capturing information at
a level greater than individual words, we used two
methods to combine these NLPM word vectors to
represent an order n ngram: a Vector Window
where we simply concatenated the word vectors, and
one that relied on encodings learnt by Restricted
Boltzmann Machines.

For this work, we experimented with generating
encodings for ngrams sized 2,3,5,10, and 21. The
smaller sizes correspond to commonly those com-
monly used to match ngrams, while the larger ones
were used to take advantage of the reduced sparsity.
Similarities between a pair of ngram encodings is
given similarity of their vector encodings.

4.1 Vector Window

The most direct way to encode an order n ngram as
a vector is to concatenate the n NLPM word vectors
together, in order. For example, to encode “heart
attack”, the vectors for “heart” and “attack”, both
with dimensionality 50, are linked together to form
a larger vector with dimensionality 100 (Figure 1).

For size n vector windows where the total number
of tokens is less than n, we pad the left and right
sides of the window with a “negative” token, which
was selected to be a vector that, on the average, is
anticorrelated with all the vectors in the vocabulary.
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"heart attack"

compressed encoding

RBM trained encoder

original vector

Figure 2: Using a RBM trained compressor to generate a
compressed encoding of “heart attack.”

4.2 Restricted Boltzmann Machines

Although the word vectors we used were trained
against a ten word context, the vector windows may
not be able to describe similarities at multiword
level, as the method is still performing comparisons
at a word-to-word level. For example the vector win-
dow score for the related phrases heart attack and
cardiac arrest is 0.35. In order to account for sim-
ilarities at a multiword level, we trained Restricted
Boltzmann Machines (RBM) to further encode these
vector windows (Hinton, 2002). A RBM is a bi-
partite undirected graphical model, where the only
edges are between a layer of input variables and a
layer of latent variables. The latent layer consists of
sigmoid units, allowing for non-linear combinations
of the inputs. The training objective is to learn a set
of weights that maximize the likelihood of training
observations, and given the independences inherent,
in the model it can be trained quickly and effectively
via Contrastive Divergence. The end effect is the
system attempts to force the latent layer to learn an
encoding of the input variables, usually at a lower di-
mensionality. In our case, by compressing their dis-
tributional representations we hope to amplify sig-
nificant similarities between multiword expressions,
albeit for those of the same size.

To derive a RBM based encoding, we first gen-
erate a vector window for the ngram, and then used
the trained RBM to arrive at the compressed vector
(Figure 2). As before, we derive a similarity score
between two RBM based encodings by comparing
their cosine distance.

Following the above example, the vectors from an
RBM trained system for heart attack and cardiac ar-
rest score the pair at a higher similarity, 0.54. For
phrases that are unrelated, comparing door key with

cardiac arrest gives a score of -0.14 with the vector
window, and RBM this is -0.17.

To train a RBM encoder for order n ngrams,
we generated n sized vector windows over ngrams
drawn from the English language articles in
Wikipedia. The language dump was filtered to larger
sized articles, in order to avoid pages likely to be
content-free, such as redirects. The training set
size consisted of 35,581,434 words, which was split
apart into 1,519,256 sentences using the OpenNLP
sentence splitter tool 2. The dimensionality of the
encoding layer was set to 50 for window sizes 2,3,5,
and 200 for the larger windows.

4.3 Combining word and ngram similarity
scores

In order to produce an overall similarity score, we
used a variant of the weighted variant of the simi-
larity combination method given in (Mihalcea et al.,
2006). Here, we generated a directional similarity
score from a source to target by the following,

sim(S, T ) =

∑
s∈S maxSim(s, T )

|S|
(2)

where maxSim(s, T ) represents the maximum
similarity between the token s and the set of tokens
in the target sentence, T . In the case of ngrams with
order 2 or greater, we treat each ngram as a token for
the combination.

avgsim(T1, T2) =
1

2
(sim(T1, T2) + sim(T2, T1))

(3)
Unlike the original method, we treated each term

equally, in order to account for ngrams with order
2 and above. We also did not filter based off of the
part of speech, relying on the scores themselves to
help perform the filtering.

In addition to the given word window sizes,
we also directly assess the word-to-word similarity
scores by comparing the word vectors directly, using
a window size of one.

5 Evaluation Setup

System 2, the TFIDF-ESA score for a pair is a fea-
ture. For each of the given ngram sizes, we treated

2http://opennlp.apache.org/
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Training (2012) Test (2013)
Surprise1 (ONWN) FNWN
MSRPar Headlines
Surprise1 (ONWN) ONWN
Surprise2 (SMT) SMT

Table 1: Train (2012) and Test (2013) sets used to train
the regressors.

the ngram similarity scores from the Vector Window
and RBM methods as individual features. System
3 combines the features from System 2 with those
from System 1. For Systems 2 and 3, the SVR setup
used by System 1 was used to develop scorers. As no
training immediate training sets were provided for
the evaluation sets, we used the train and test parti-
tions given in Table 1, training on both the 2012 train
and test data, where gold scores were available.

6 Results and Discussion

The results of our three runs are given in the top half
of Table 2. To get a better sense of the contribution
of the new components, we also ran the NLPM vec-
tor window and RBM window models and TFIDF-
ESA components individually against the test sets.
The NLPM system was trained using the same SVR
setup as the main experiment.

In order to provide a lexical match comparison for
the NLPM system, we experimented with a ngram
matching system, where ngrams of size 1,2,3,5,10,
and 21 were used to generate similarity scores via
the same combination method as the NLPM models.
Here, hard matching was performed, where match-
ing ngrams were given a score of 1, else 0. Again,
we used the main experiment SVR setup to combine
the scores from the various ngram sizes.

We found that overall the previous year’s sys-
tem did not perform adequately on the evaluation
datasets, short of the headlines dataset. Oddly
enough, TFIDF-ESA by itself would have arrived at
a good correlation with OnWN: one possible expla-
nation for this would be the fact that TFIDF-ESA
by itself is essentially an order-free “bag of words”
model that assesses soft token to token similarity. As
the other systems incorporate either some notion of
sequence and/or require strict lexical matching, it is
possible that characterization does not help with the

OnWN sense definitions.
Combining the new features with the previous

year’s system gave poorer performance; a prelimi-
nary assessment over the training sets showed some
degree of overfitting, likely due to high correlation
between the NLPM features and last year’s direc-
tional measures.

When using the same combination method, ngram
matching via lexical content over ngrams gave
poorer results than those from NLPM models, as
given in Table 2. This would also argue for identi-
fying better combination methods than the averaged
maximum similarity method used here.

What is interesting to note is that the NLPM and
TFIDF-ESA systems do not rely on any part of
speech information, nor hand-crafted semantic sim-
ilarity resources. Instead, these methods are de-
rived from large scale corpora, and generally out-
performed the previous year’s system which relied
on that extra information.

To get a better understanding of the NLPM and
TFIDF-ESA models, we compared how the com-
ponents would score the similarity between pairs of
two word phrases, given in Table 3. At least over this
small sampling we genearted, we found that in gen-
eral the RBM method tended to have a much wider
range of scores than the Vector Window, although
both methods were very correlated. Both systems
had very low correlation with TFIDF-ESA.

7 Future Work

One area of improvement would be to develop a bet-
ter method for combining the various ngram simi-
larity scores provided by the NLPMs. When using
lexical matching of ngrams, we found that the com-
bination method used here proved inferior to the di-
rectional measures from the previous year’s systems.
This would argue for a better way to use the NLPMs.
As training STS pairs are available with gold scores,
this would argue for some form of supervised train-
ing. For training similarities between multiword ex-
pressions, proxy measures for similarity, such as the
Normalized Google Distance (Cilibrasi and Vitányi,
2004), may be feasible.

Another avenue would be to allow the NLPM
methods to encode arbitrary sized text spans, as the
current restriction on spans being the same size is
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System headlines OnWN FNWN SMT mean rank
SRIUBC-system1 (Baseline) 0.6083 0.2915 0.2790 0.3065 0.4011 66
SRIUBC-system2 (NLPM, TFIDF-ESA) 0.6359 0.3664 0.2713 0.3476 0.4420 57
SRIUBC-system3 (Combined) 0.5443 0.2843 0.2705 0.3275 0.3842 70
NLPM 0.5791 0.3157 0.3211 0.2698 0.3714
TFIDF-ESA 0.5739 0.7222 0.1781 0.2980 0.4431
Lex-only 0.5455 0.3237 0.2095 0.3146 0.3483

Table 2: Pearson correlation of systems against the test datasets (top). The test set performance for the new Neural
Probabilistic Language Model (NLPM) and TFIDF-ESA components are given, along with a lexical-only variant for
comparison (bottom).

String 1 String 2 Vec. Window RBM Window TFIDF-ESA
heart attack cardiac arrest 0.354 0.544 0.182
door key cardiac arrest -0.14 -0.177 0
baby food cat food 0.762 0.907 0.079
dog food cat food 0.886 0.914 0.158
rotten food baby food 0.482 0.473 0.071
frozen solid thawed out 0.046 -0.331 0.102
severely burnt frozen stiff -0.023 -0.155 0
uphill slog raced downhill 0.03 -0.322 0.043
small cat large dog 0.817 0.905 0.007
ran along sprinted by 0.31 0.238 0.004
ran quickly jogged rapidly 0.349 0.327 0.001
deathly ill very sick 0.002 0.177 0.004
ran to raced to 0.815 0.829 0.013
free drinks drinks free 0.001 0.042 1
door key combination lock 0.098 0.093 0.104
frog blast vent core 0.003 0.268 0.004

Table 3: Cosine similarity of two input strings, as given by the vectors generated from the Vector Window size 2, RBM
Window size 2, and TFIDF-ESA.

unrealistic. One possibility is to use recurrent neural
network techniques to generate this type of encod-
ing.

Finally, the size of the Wikipedia dump used to
train the Restricted Boltzmann Machines could be
at issue, as 35 million words could be considered
small compared to the full range of expressions we
would wish to capture, especially for the larger win-
dow spans. A larger training corpus may be needed
to fully see the benefit from RBMs.
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Abstract

This paper describes the system used by the
LIPN team in the Semantic Textual Similarity
task at *SEM 2013. It uses a support vector re-
gression model, combining different text sim-
ilarity measures that constitute the features.
These measures include simple distances like
Levenshtein edit distance, cosine, Named En-
tities overlap and more complex distances like
Explicit Semantic Analysis, WordNet-based
similarity, IR-based similarity, and a similar-
ity measure based on syntactic dependencies.

1 Introduction

The Semantic Textual Similarity task (STS) at
*SEM 2013 requires systems to grade the degree of
similarity between pairs of sentences. It is closely
related to other well known tasks in NLP such as tex-
tual entailment, question answering or paraphrase
detection. However, as noticed in (Bär et al., 2012),
the major difference is that STS systems must give a
graded, as opposed to binary, answer.

One of the most successful systems in *SEM
2012 STS, (Bär et al., 2012), managed to grade pairs
of sentences accurately by combining focused mea-
sures, either simple ones based on surface features
(ie n-grams), more elaborate ones based on lexical
semantics, or measures requiring external corpora
such as Explicit Semantic Analysis, into a robust
measure by using a log-linear regression model.

The LIPN-CORE system is built upon this idea of
combining simple measures with a regression model
to obtain a robust and accurate measure of tex-
tual similarity, using the individual measures as fea-

tures for the global system. These measures include
simple distances like Levenshtein edit distance, co-
sine, Named Entities overlap and more complex dis-
tances like Explicit Semantic Analysis, WordNet-
based similarity, IR-based similarity, and a similar-
ity measure based on syntactic dependencies.

The paper is organized as follows. Measures are
presented in Section 2. Then the regression model,
based on Support Vector Machines, is described in
Section 3. Finally we discuss the results of the sys-
tem in Section 4.

2 Text Similarity Measures

2.1 WordNet-based Conceptual Similarity
(Proxigenea)

First of all, sentences p and q are analysed in or-
der to extract all the included WordNet synsets. For
each WordNet synset, we keep noun synsets and put
into the set of synsets associated to the sentence, Cp

and Cq, respectively. If the synsets are in one of the
other POS categories (verb, adjective, adverb) we
look for their derivationally related forms in order
to find a related noun synset: if there is one, we put
this synsets in Cp (or Cq). For instance, the word
“playing” can be associated in WordNet to synset
(v)play#2, which has two derivationally related
forms corresponding to synsets (n)play#5 and
(n)play#6: these are the synsets that are added
to the synset set of the sentence. No disambiguation
process is carried out, so we take all possible mean-
ings into account.

GivenCp andCq as the sets of concepts contained
in sentences p and q, respectively, with |Cp| ≥ |Cq|,
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the conceptual similarity between p and q is calcu-
lated as:

ss(p, q) =

∑
c1∈Cp

max
c2∈Cq

s(c1, c2)

|Cp|
(1)

where s(c1, c2) is a conceptual similarity measure.
Concept similarity can be calculated by different
ways. For the participation in the 2013 Seman-
tic Textual Similarity task, we used a variation of
the Wu-Palmer formula (Wu and Palmer, 1994)
named “ProxiGenea” (from the french Proximité
Généalogique, genealogical proximity), introduced
by (Dudognon et al., 2010), which is inspired by the
analogy between a family tree and the concept hi-
erarchy in WordNet. Among the different formula-
tions proposed by (Dudognon et al., 2010), we chose
the ProxiGenea3 variant, already used in the STS
2012 task by the IRIT team (Buscaldi et al., 2012).
The ProxiGenea3 measure is defined as:

s(c1, c2) =
1

1 + d(c1) + d(c2)− 2 · d(c0)
(2)

where c0 is the most specific concept that is present
both in the synset path of c1 and c2 (that is, the Least
Common Subsumer or LCS). The function returning
the depth of a concept is noted with d.

2.2 IC-based Similarity
This measure has been proposed by (Mihalcea et
al., 2006) as a corpus-based measure which uses
Resnik’s Information Content (IC) and the Jiang-
Conrath (Jiang and Conrath, 1997) similarity metric:

sjc(c1, c2) =
1

IC(c1) + IC(c2)− 2 · IC(c0)
(3)

where IC is the information content introduced by
(Resnik, 1995) as IC(c) = − logP (c).

The similarity between two text segments T1 and
T2 is therefore determined as:

sim(T1, T2) =
1

2


∑

w∈{T1}
max

w2∈{T2}
ws(w, w2) ∗ idf(w)∑

w∈{T1}
idf(w)

+

∑
w∈{T2}

max
w1∈{T1}

ws(w, w1) ∗ idf(w)∑
w∈{T2}

idf(w)

(4)

where idf(w) is calculated as the inverse document
frequency of word w, taking into account Google

Web 1T (Brants and Franz, 2006) frequency counts.
The semantic similarity between words is calculated
as:

ws(wi, wj) = max
ci∈Wi,cjinWj

sjc(ci, cj). (5)

where Wi and Wj are the sets containing all synsets
in WordNet corresponding to word wi and wj , re-
spectively. The IC values used are those calcu-
lated by Ted Pedersen (Pedersen et al., 2004) on the
British National Corpus1.

2.3 Syntactic Dependencies

We also wanted for our systems to take syntac-
tic similarity into account. As our measures are
lexically grounded, we chose to use dependen-
cies rather than constituents. Previous experiments
showed that converting constituents to dependen-
cies still achieved best results on out-of-domain
texts (Le Roux et al., 2012), so we decided to use
a 2-step architecture to obtain syntactic dependen-
cies. First we parsed pairs of sentences with the
LORG parser2. Second we converted the resulting
parse trees to Stanford dependencies3.

Given the sets of parsed dependenciesDp andDq,
for sentence p and q, a dependency d ∈ Dx is a
triple (l, h, t) where l is the dependency label (for in-
stance, dobj or prep), h the governor and t the depen-
dant. We define the following similarity measure be-
tween two syntactic dependencies d1 = (l1, h1, t1)
and d2 = (l2, h2, t2):

dsim(d1, d2) = Lev(l1, l2)

∗ idfh ∗ sWN (h1, h2) + idft ∗ sWN (t1, t2)

2
(6)

where idfh = max(idf(h1), idf(h2)) and idft =
max(idf(t1), idf(t2)) are the inverse document fre-
quencies calculated on Google Web 1T for the gov-
ernors and the dependants (we retain the maximum
for each pair), and sWN is calculated using formula
2, with two differences:

• if the two words to be compared are antonyms,
then the returned score is 0;

1
http://www.d.umn.edu/˜tpederse/similarity.html

2
https://github.com/CNGLdlab/LORG-Release

3We used the default built-in converter provided with the
Stanford Parser (2012-11-12 revision).
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• if one of the words to be compared is not in
WordNet, their similarity is calculated using
the Levenshtein distance.

The similarity score between p and q, is then cal-
culated as:

sSD(p, q) = max


∑

di∈Dp

max
djinDq

dsim(di, dj)

|Dp|
,

∑
di∈Dq

max
djinDp

dsim(di, dj)

|Dq|


(7)

2.4 Information Retrieval-based Similarity
Let us consider two texts p and q, an Information Re-
trieval (IR) system S and a document collection D
indexed by S. This measure is based on the assump-
tion that p and q are similar if the documents re-
trieved by S for the two texts, used as input queries,
are ranked similarly.

Let be Lp = {dp1 , . . . , dpK} and Lq =
{dq1 , . . . , dqK}, dxi ∈ D the sets of the top K docu-
ments retrieved by S for texts p and q, respectively.
Let us define sp(d) and sq(d) the scores assigned by
S to a document d for the query p and q, respectively.
Then, the similarity score is calculated as:

simIR(p, q) = 1−

∑
d∈Lp∩Lq

√
(sp(d)−sq(d))2

max(sp(d),sq(d))

|Lp ∩ Lq|
(8)

if |Lp ∩ Lq| 6= ∅, 0 otherwise.
For the participation in this task we indexed a

collection composed by the AQUAINT-24 and the
English NTCIR-85 document collections, using the
Lucene6 4.2 search engine with BM25 similarity.
The K value was empirically set to 20 after some
tests on the STS 2012 data.

2.5 ESA
Explicit Semantic Analysis (Gabrilovich and
Markovitch, 2007) represents meaning as a

4
http://www.nist.gov/tac/data/data_desc.html#AQUAINT-2

5
http://metadata.berkeley.edu/NTCIR-GeoTime/

ntcir-8-databases.php
6
http://lucene.apache.org/core

weighted vector of Wikipedia concepts. Weights
are supposed to quantify the strength of the relation
between a word and each Wikipedia concept using
the tf-idf measure. A text is then represented as a
high-dimensional real valued vector space spanning
all along the Wikipedia database. For this particular
task we adapt the research-esa implementation
(Sorg and Cimiano, 2008)7 to our own home-made
weighted vectors corresponding to a Wikipedia
snapshot of February 4th, 2013.

2.6 N-gram based Similarity

This feature is based on the Clustered Keywords Po-
sitional Distance (CKPD) model proposed in (Bus-
caldi et al., 2009) for the passage retrieval task.

The similarity between a text fragment p and an-
other text fragment q is calculated as:

simngrams(p, q) =

∑
∀x∈Q

h(x, P )
1

d(x, xmax)∑n
i=1wi

(9)

Where P is the set of n-grams with the highest
weight in p, where all terms are also contained in q;
Q is the set of all the possible n-grams in q and n
is the total number of terms in the longest passage.
The weights for each term and each n-gram are cal-
culated as:

• wi calculates the weight of the term tI as:

wi = 1− log(ni)

1 + log(N)
(10)

Where ni is the frequency of term ti in the
Google Web 1T collection, and N is the fre-
quency of the most frequent term in the Google
Web 1T collection.

• the function h(x, P ) measures the weight of
each n-gram and is defined as:

h(x, Pj) =

{ ∑j
k=1wk if x ∈ Pj

0 otherwise
(11)

7
http://code.google.com/p/research-esa/
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Where wk is the weight of the k-th term (see
Equation 10) and j is the number of terms that
compose the n-gram x;

• 1
d(x,xmax) is a distance factor which reduces the
weight of the n-grams that are far from the
heaviest n-gram. The function d(x, xmax) de-
termines numerically the value of the separa-
tion according to the number of words between
a n-gram and the heaviest one:

d(x, xmax) = 1 + k· ln(1 + L) (12)

where k is a factor that determines the impor-
tance of the distance in the similarity calcula-
tion and L is the number of words between a
n-gram and the heaviest one (see Equation 11).
In our experiments, k was set to 0.1, the default
value in the original model.

2.7 Other measures

In addition to the above text similarity measures, we
used also the following common measures:

2.7.1 Cosine
Given p = (wp1 , . . . , wpn) and q =

(wq1 , . . . , wqn) the vectors of tf.idf weights asso-
ciated to sentences p and q, the cosine distance is
calculated as:

simcos(p,q) =

n∑
i=1

wpi × wqi√
n∑

i=1
wpi

2 ×
√

n∑
i=1

wqi
2

(13)

The idf value was calculated on Google Web 1T.

2.7.2 Edit Distance
This similarity measure is calculated using the

Levenshtein distance as:

simED(p, q) = 1− Lev(p, q)

max(|p|, |q|)
(14)

where Lev(p, q) is the Levenshtein distance be-
tween the two sentences, taking into account the
characters.

2.7.3 Named Entity Overlap
We used the Stanford Named Entity Recognizer

by (Finkel et al., 2005), with the 7 class model
trained for MUC: Time, Location, Organization,
Person, Money, Percent, Date. Then we calculated a
per-class overlap measure (in this way, “France” as
an Organization does not match “France” as a Loca-
tion):

ONER(p, q) =
2 ∗ |Np ∩Nq|
|Np|+ |Nq|

(15)

where Np and Nq are the sets of NEs found, respec-
tively, in sentences p and q.

3 Integration of Similarity Measures

The integration has been carried out using the
ν-Support Vector Regression model (ν-SVR)
(Schölkopf et al., 1999) implementation provided
by LIBSVM (Chang and Lin, 2011), with a radial
basis function kernel with the standard parameters
(ν = 0.5).

4 Results

In order to evaluate the impact of the different fea-
tures, we carried out an ablation test, removing one
feature at a time and training a new model with the
reduced set of features. In Table 2 we show the re-
sults of the ablation test for each subset of the *SEM
2013 test set; in Table 1 we show the same test on the
whole test set. Note: the results have been calculated
as the Pearson correlation test on the whole test set
and not as an average of the correlation scores cal-
culated over the composing test sets.

Feature Removed Pearson Loss
None 0.597 0
N-grams 0.596 0.10%
WordNet 0.563 3.39%
SyntDeps 0.602 −0.43%
Edit 0.584 1.31%
Cosine 0.596 0.10%
NE Overlap 0.603 −0.53%
IC-based 0.598 −0.10%
IR-Similarity 0.510 8.78%
ESA 0.601 −0.38%

Table 1: Ablation test for the different features on the
whole 2013 test set.
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FNWN Headlines OnWN SMT
Feature Pearson Loss Pearson Loss Pearson Loss Pearson Loss
None 0.404 0 0.706 0 0.694 0 0.301 0
N-grams 0.379 2.49% 0.705 0.12% 0.698 −0.44% 0.289 1.16%
WordNet 0.376 2.80% 0.695 1.09% 0.682 1.17% 0.278 2.28%
SyntDeps 0.403 0.08% 0.699 0.70% 0.679 1.49% 0.284 1.62%
Edit 0.402 0.19% 0.689 1.70% 0.667 2.72% 0.286 1.50%
Cosine 0.393 1.03% 0.683 2.38% 0.676 1.80% 0.303 −0.24%
NE Overlap 0.410 −0.61% 0.700 0.67% 0.680 1.37% 0.285 1.58%
IC-based 0.391 1.26% 0.699 0.75% 0.669 2.50% 0.283 1.76%
IR-Similarity 0.426 −2.21% 0.633 7.33% 0.589 10.46% 0.249 5.19%
ESA 0.391 1.22% 0.691 1.57% 0.702 −0.81% 0.275 2.54%

Table 2: Ablation test for the different features on the different parts of the 2013 test set.

FNWN Headlines OnWN SMT ALL
N-grams 0.285 0.532 0.459 0.280 0.336
WordNet 0.395 0.606 0.552 0.282 0.477
SyntDeps 0.233 0.409 0.345 0.323 0.295
Edit 0.220 0.536 0.089 0.355 0.230
Cosine 0.306 0.573 0.541 0.244 0.382
NE Overlap 0.000 0.216 0.000 0.013 0.020
IC-based 0.413 0.540 0.642 0.285 0.421
IR-based 0.067 0.598 0.628 0.241 0.541
ESA 0.328 0.546 0.322 0.289 0.390

Table 3: Pearson correlation calculated on individual features.

The ablation test show that the IR-based feature
showed up to be the most effective one, especially
for the headlines subset (as expected), and, quite sur-
prisingly, on the OnWN data. In Table 3 we show
the correlation between each feature and the result
(feature values normalised between 0 and 5): from
this table we can also observe that, on average, IR-
based similarity was better able to capture the se-
mantic similarity between texts. The only exception
was the FNWN test set: the IR-based similarity re-
turned a 0 score 178 times out of 189 (94.1%), indi-
cating that the indexed corpus did not fit the content
of the FNWN sentences. This result shows also the
limits of the IR-based similarity score which needs
a large corpus to achieve enough coverage.

4.1 Shared submission with INAOE-UPV

One of the files submitted by INAOE-UPV,
INAOE-UPV-run3 has been produced using seven
features produced by different teams: INAOE, LIPN

and UMCC-DLSI. We contributed to this joint sub-
mission with the IR-based, WordNet and cosine fea-
tures.

5 Conclusions and Further Work

In this paper we introduced the LIPN-CORE sys-
tem, which combines semantic, syntactic an lexi-
cal measures of text similarity in a linear regression
model. Our system was among the best 15 runs for
the STS task. According to the ablation test, the best
performing feature was the IR-based one, where a
sentence is considered as a query and its meaning
represented as a set of documents indexed by an IR
system. The second and third best-performing mea-
sures were WordNet similarity and Levenshtein’s
edit distance. On the other hand, worst perform-
ing similarity measures were Named Entity Over-
lap, Syntactic Dependencies and ESA. However, a
correlation analysis calculated on the features taken
one-by-one shows that the contribution of a feature
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on the overall regression result does not correspond
to the actual capability of the measure to represent
the semantic similarity between the two texts. These
results raise the methodological question of how to
combine semantic, syntactic and lexical similarity
measures in order to estimate the impact of the dif-
ferent strategies used on each dataset.

Further work will include richer similarity mea-
sures, like quasi-synchronous grammars (Smith and
Eisner, 2006) and random walks (Ramage et al.,
2009). Quasi-synchronous grammars have been
used successfully for paraphrase detection (Das and
Smith, 2009), as they provide a fine-grained model-
ing of the alignment of syntactic structures, in a very
flexible way, enabling partial alignments and the in-
clusion of external features, like Wordnet lexical re-
lations for example. Random walks have been used
effectively for paraphrase recognition and as a fea-
ture for recognizing textual entailment. Finally, we
will continue analyzing the question of how to com-
bine a wide variety of similarity measures in such a
way that they tackle the semantic variations of each
dataset.
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Abstract

This paper describes the UNIBA participation
in the Semantic Textual Similarity (STS) core
task 2013. We exploited three different sys-
tems for computing the similarity between two
texts. A system is used as baseline, which rep-
resents the best model emerged from our pre-
vious participation in STS 2012. Such system
is based on a distributional model of seman-
tics capable of taking into account also syn-
tactic structures that glue words together. In
addition, we investigated the use of two dif-
ferent learning strategies exploiting both syn-
tactic and semantic features. The former uses
ensemble learning in order to combine the
best machine learning techniques trained on
2012 training and test sets. The latter tries to
overcome the limit of working with different
datasets with varying characteristics by select-
ing only the more suitable dataset for the train-
ing purpose.

1 Introduction

Semantic Textual Similarity is the task of comput-
ing the similarity between any two given texts. The
task, in its core formulation, aims at capturing the
different kinds of similarity that emerge from texts.
Machine translation, paraphrasing, synonym substi-
tution or text entailment are some fruitful methods
exploited for this purpose. These techniques, along
with other methods for estimating the text similar-
ity, were successfully employed via machine learn-
ing approaches during the 2012 task.

However, the STS 2013 core task (Agirre et al.,
2013) differs from the 2012 formulation in that it

provides a test set which is similar to the training,
but not drawn from the same set of data. Hence,
in order to generalize the machine learning models
trained on a group of datasets, we investigate the use
of combination strategies. The objective of combi-
nation strategies, known under the name of ensem-
ble learning, is that of reducing the bias-variance
decomposition through reducing the variance error.
Hence, this class of methods should be more ro-
bust with respect to previously unseen data. Among
the several ensemble learning alternatives, we ex-
ploit the stacked generalization (STACKING) algo-
rithm (Wolpert, 1992). Moreover, we investigate the
use of a two-steps learning algorithm (2STEPSML).
In this method the learning algorithm is trained us-
ing only the dataset most similar to the instance to
be predicted. The first step aims at predicting the
dataset more similar to the given pair of texts. Then
the second step makes use of the previously trained
algorithm to predict the similarity value. The base-
line for the evaluation is represented by our best sys-
tem (DSM PERM) resulting from our participation
in the 2012 task. After introducing the general mod-
els behind our systems in Section 2, Section 3 de-
scribes the evaluation setting of our systems along
with the experimental results. Then, some conclu-
sions and remarks close the paper.

2 General Models

2.1 Dependency Encoding via Vector
Permutations

Distributional models are effective methods for rep-
resenting word paradigmatic relations in a simple
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way through vector spaces (Mitchell and Lapata,
2008). These spaces are built taking into account
the word context, hence the resulting vector repre-
sentation is such that the distance between vectors
reflects their similarity. Although several definitions
of context are possible (e.g. a sliding window of
text, the word order or syntactic dependencies), in
their plain definition these kinds of models account
for just one type of context at a time. To overcome
this limitation, we exploit a method to encode more
definitions of context in the same vector exploiting
the vector permutations (Caputo et al., 2012). This
technique, which is based on Random Indexing as
a means for computing the distributional model, is
based on the idea that when the components of a
highly sparse vector are shuffled, the resulting vec-
tor is nearly orthogonal to the original one. Hence,
vector permutation represents a way for generat-
ing new random vectors in a predetermined manner.
Different word contexts can be encoded using dif-
ferent types of permutations. In our distributional
model system (DSM PERM), we encode the syn-
tactic dependencies between words rather than the
mere co-occurrence information. In this way, word-
vector components bear the information about both
co-occurring and syntactically related words. In this
distributional space, a text can be easily represented
as the superposition of its words. Then, the vec-
tor representation of a text is given by adding the
vector representation of its words, and the similarity
between texts come through the cosine of the angle
between their vector representations.

2.2 Stacking

Stacking algorithms (Wolpert, 1992) are a way of
combining different types of learning algorithms re-
ducing the variance of the system. In this model,
the meta-learner tries to predict the real value of
an instance combining the outputs of other machine
learning methods.

Figure 1 shows how the learning process takes
place. The level-0 represents the ensemble of dif-
ferent models to be trained on the same dataset. The
level-0 outputs build up the level-1 dataset: an in-
stance at this level is represented by the numeric
values predicted by each level-0 model along with
the gold standard value. Then, the objective of the
level-1 learning model is to learn how to combine

the level-0 outputs in order to provide the best pre-
diction.

le
ve

l-
0

le
ve

l-
1

model1 model2 · · · modeln

meta-learner

prediction

Figure 1: Stacking algorithm

2.3 Two steps learning algorithm

Given an ensemble of datasets with different charac-
teristics, this method is based on the idea that when
instances come from a specific dataset, the learn-
ing algorithm trained on that dataset outperforms the
same algorithm trained on the whole ensemble.

Hence, the two steps algorithm tries to overcome
the problem of dealing with different datasets hav-
ing different characteristics through a classification
model.

st
ep

-1

st
ep

-2

dataset1 dataset2 · · · datasetn

classifier

input

output: dataset class

learning algorithm

predicted dataset

prediction

Figure 2: Two steps machine learning algorithm

In the first step (Figure 2), a different class is as-
signed to each dataset. The classifier is trained on
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a set of instances whose classes correspond to the
dataset numbers. Then, given a new instance the
output of this step will be the dataset to be used
for training the learning algorithm in the step 2. In
the second step, the learning algorithm is trained on
the dataset choose in the first step. The output of
this step is the predicted similarity between the two
texts. Through these steps, it is possible to select
the dataset with the characteristics more similar to
a given instance, and exploit just this set of data for
learning the algorithm.

2.4 Features

Both STACKING and 2STEPSML systems rely on
several kinds of features, which vary from lexical to
semantic ones. Features are grouped in seven main
classes, as follows:

1. Character/string/annotation-based features:
the length of the longest common contiguous
substring between the texts; the Jaccard index
of both tokens and lemmas; the Levenshtein
distance between texts; the normalized number
of common 2-grams, 3-grams and 4-grams; the
total number of tokens and characters; the dif-
ference in tokens and characters between texts;
the normalized difference with respect to the
max text length in tokens and characters be-
tween texts. Exploiting other linguistic anno-
tations extracted by Stanford CoreNLP1, we
compute the Jaccard index between PoS-tags
and named entities. Using WordNet we extract
the Jaccard index between the first sense and its
super-sense tag.

2. Textual Similarity-based features: a set of fea-
tures based on the textual similarity proposed
by Mihalcea (Mihalcea et al., 2006). Given two
texts T1 and T2 the similarity is computed as
follows:

sim(T1, T2) =
1

2
(

∑
w∈T1

maxSim(w, T2)∑
w∈T1

idf(w)

+

∑
w∈T2

maxSim(w, T1)∑
w∈T2

idf(w)
)

(1)

1Available at: http://nlp.stanford.edu/software/corenlp.shtml

We adopt several similarity measures using
semantic distributional models (see Section
2.5), the Resnik’s knowledge-based approach
(Resnik, 1995) and the point-wise mutual infor-
mation as suggested by Turney (Turney, 2001)
computed on British National Corpus2. For all
the features, the idf is computed relying on
UKWaC corpus3 (Baroni et al., 2009).

3. Head similarity-based features: this measure
takes into account the maximum similarity be-
tween the roots of each text. The roots are ex-
tracted using the dependency parser provided
by Stanford CoreNLP. The similarity is com-
puted according to the distributional semantic
models proposed in Section 2.5.

4. ESA similarity: computes the similarity
between texts using the Explicit Semantic
Analysis (ESA) approach (Gabrilovich and
Markovitch, 2007). For each text we extract the
ESA vector built using the English Wikipedia,
and then we compute the similarity as the co-
sine similarity between the two ESA vectors.

5. Paraphrasing features: this is a very simple
measure which counts the number of possi-
ble paraphrasings belonging to the two texts.
Given two texts T1 and T2, for each token in T1

a list of paraphrasings is extracted using a dic-
tionary4. If T2 contains one of the paraphrasing
in the list, the score is incremented by one. The
final score is divided by the number of tokens
in T1. The same score is computed taking into
account T2. Finally, the two score are added
and divided by 2.

6. Greedy Lemma Aligning Overlap features:
this measure computes the similarity between
texts using the semantic alignment of lemmas
as proposed by Šarić et al. (2012). In order
to compute the similarity between lemmas, we
exploit the distributional semantic models de-
scribed in Section 2.5.

2Available at: http://www.natcorp.ox.ac.uk/
3Available at: http://wacky.sslmit.unibo.it/
4English Thesaurus for StarDict available at

https://aur.archlinux.org/packages/stardict-thesaurus-ee/
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7. Compositional features: we build several simi-
larity features using the distributional semantic
models described in Section 2.5 and a compo-
sitional operator based on sum. This approach
is thoroughly explained in Section 2.6

2.5 Distributional semantic models

In several features proposed in our approaches, the
similarity between words is computed using Dis-
tributional Semantic Models. These models repre-
sent word meanings through contexts: the different
meanings of a word can be accounted for by look-
ing at the different contexts wherein the word oc-
curs. This insight can beautifully be expressed by
the geometrical representation of words as vectors
in a semantic space. Each term is represented as a
vector whose components are contexts surrounding
the term. In this way, the meaning of a term across
a corpus is thoroughly conveyed by the contexts it
appears in, where a context may typically be the set
of co-occurring words in a document, in a sentence
or in a window of surrounding terms.

In particular, we take into account two main
classes of models: Simple Distributional Spaces and
Structured Semantic Spaces. The former considers
as context the co-occurring words, the latter takes
into account both co-occurrence and syntactic de-
pendency between words.

Simple Distributional Spaces rely on Latent
Semantic Analysis (LSA) and Random Indexing
(RI) in order to reduce the dimension of the co-
occurrences matrix. Moreover, we use an approach
which applies LSA to the matrix produced by RI.

Structured Semantic Spaces are based on two
techniques to encode syntactic information into the
vector space. The first approach uses the vector per-
mutation of random vector in RI to encode the syn-
tactic role (head or dependent) of a word. The sec-
ond method is based on Holographic Reduced Rep-
resentation, in particular using convolution between
vectors, to encode syntactic information.

Adopting distributional semantic models, each
word can be represented as a vector in a geomet-
ric space. The similarity between two words can be
easily computed taking into account the cosine sim-
ilarity between word vectors.

All models are described in Basile et al. (2012).

2.6 Compositional features
In Distributional Semantic Models, given the vector
representations of two words, it is always possible
to compute their similarity as the cosine of the angle
between them.

However, texts are composed by several terms,
so in order to compute the similarity between them
we need a method to compose words occurring in
these texts. It is possible to combine words through
the vector addition (+). This operator is similar to
the superposition defined in connectionist systems
(Smolensky, 1990), and corresponds to the point-
wise sum of components:

p = u + v (2)

where pi = ui + vi

The addition is a commutative operator, which
means that it does not take into account any order
or underlying structures existing between words. In
this first study, we do not exploit more complex
methods to combine word vectors. We plan to in-
vestigate them in future work.

Given a text p, we denote with p its vector repre-
sentation obtained applying addition operator (+) to
the vector representation of terms it is composed of.
Furthermore, it is possible to compute the similar-
ity between two texts exploiting the cosine similarity
between vectors.

Formally, if a = a1, a2...an and b = b1, b2...bm

are two texts, we build two vectors a and b which
represent respectively the two texts in a semantic
space. Vector representations for the two texts are
built applying the addition operator to the vector rep-
resentation of words belonging to them:

a = a1 + a2 + . . . + an

b = b1 + b2 . . . + bm
(3)

The similarity between a and b is computed as the
cosine similarity between them.

3 Experimental evaluation

SemEval-2013 STS is the second attempt to provide
a “unified framework for the evaluation of modular
semantic textual similarity and to characterize their
impact on NLP applications”. The task consists
in computing the similarity between pair of texts,
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returning a similarity score. The test set is com-
posed by data coming from the following datasets:
news headlines (headlines); mapping of lexical re-
sources from Ontonotes to Wordnet (OnWN) and
from FrameNet to WordNet (FNWN); and evalua-
tion of machine translation (SMT).

The training data for STS-2013 is made up by
training and testing data from the previous edition
of STS-2012 task. During the 2012 edition, STS
provided participants with three training data: MSR-
Paraphrase, MSR-Video, STMeuropar; and five test-
ing data: MSR-Paraphrase, MSR-Video, STMeu-
ropar, SMTnews and OnWN. It is important to note
that part of 2012 test sets were made up from the
same sources of the training sets. On the other
hand, STS-2013 training and testing are very differ-
ent, making the prediction task a bit harder.

Humans rated each pair of texts with values from
0 to 5. The evaluation is performed by compar-
ing the humans scores against system performance
through Pearson’s correlation with the gold standard
for the four datasets.

3.1 System setup

For the evaluation, we built the distributional spaces
using the WaCkypedia EN corpus5. WaCkype-
dia EN is based on a 2009 dump of the English
Wikipedia (about 800 million tokens) and includes
information about: part-of-speech, lemma and a full
dependency parsing performed by MaltParser (Nivre
et al., 2007). The structured spaces described in
Subsections 2.1 and 2.5 are built exploiting infor-
mation about term windows and dependency pars-
ing supplied by WaCkypedia. The total number of
dependencies amounts to about 200 million.

The RI system is implemented in Java and re-
lies on some portions of code publicly available in
the Semantic Vectors package (Widdows and Fer-
raro, 2008), while for LSA we exploited the publicly
available C library SVDLIBC6.

We restricted the vocabulary to the 50,000 most
frequent terms, with stop words removal and forc-
ing the system to include terms which occur in the
dataset.

Semantic space building involves some parame-

5http://wacky.sslmit.unibo.it/doku.php?id=corpora
6http://tedlab.mit.edu/ dr/SVDLIBC/

ters. In particular, each semantic space needs to set
up the dimension k of the space. All spaces use a
dimension of 500 (resulting in a 50,000×500 ma-
trix). The number of non-zero elements in the ran-
dom vector is set to 10. When we apply LSA to the
output space generated by the Random Indexing we
hold all the 500 dimensions, since during the tuning
we observed a drop in performance when a lower
dimension was set. The co-occurrence distance w
between terms was set up to 4.

In order to compute the similarity between
the vector representations of text using UNIBA-
DSM PERM, we used the cosine similarity, and
then we multiplied by 5 the obtained value.

The two supervised methods, UNIBA-2STEPML
and UNIBA-STACKING, are developed in Java
using Weka7 to implement the learning algo-
rithms. Regarding the stacking approach (UNIBA-
STACKING) we used for the level-0 the follow-
ing models: Gaussian Process with polynomial ker-
nel, Gaussian Process with RBF kernel, Linear Re-
gression, Support Vector regression with polynomial
kernel, and decision tree. The level-1 model uses
a Gaussian Process with RBF kernel. In the first
step of UNIBA-2STEPML we adopt Support Vec-
tor Machine, while in the second one we use Sup-
port Vector Machine for regression. In both steps,
the RBF-Kernel is used. Features are normalized
removing non alphanumerics characters. In all the
learning algorithms, we use the default parameters
set by Weka. As future work, we plan to perform a
tuning step in order to set the best parameters.

The choice of the learning algorithms for both
UNIBA-STACKING and UNIBA-2STEPSML sys-
tems was performed after a tuning phase where only
the STS-2012 training datasets were exploited. Ta-
ble 1 reports the values obtained by our three sys-
tems on the STS-2012 test sets. After the tuning,
we came up with the learning algorithms to employ
in the level-0 and level-1 of UNIBA-STACKING
and in step-1 and step-2 of UNIBA-2STEPSML.
Then, the training of both UNIBA-STACKING and
UNIBA-2STEPSML was performed on all STS-
2012 datasets (training and test data).
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MSRpar MSRvid SMTeuroparl OnWN SMTnews mean
UNIBA-2STEPSML .6056 .8573 .6233 .5079 .4533 .7016
UNIBA-DSM PERM .4349 .7592 .5324 .6593 .4559 .6172
UNIBA-STACKING .6473 .8727 .5344 .6646 .4604 .7714

Table 1: STS-2012 test results of Pearson’s correlation.

headlines OnWN FNWN SMT mean rank
UNIBA- 2STEPSML .4255 .4801 .1832 .2710 .3673 71
UNIBA- DSM PERM .6319 4910 .2717 .3155 .4610 54
UNIBA- STACKING .6275 .4658 .2111 .2588 .4293 61

Table 2: Evaluation results of Pearson’s correlation for individual datasets.

3.2 Evaluation results

Evaluation results on the STS-2013 data are reported
in Table 2. Among the three systems, UNIBA-
DSM PERM obtained the best performances on
both individual datasets and in the overall evalua-
tion metric (mean), which computes the Pearson’s
correlation considering all datasets combined in a
single one. The best system ranked 54 over a to-
tal of 90 submissions, while UNIBA-STACKING
and UNIBA-2STEPSML ranked 61 and 71 re-
spectively. These results are at odds with those
reported in Table 1. During the test on 2012
dataset, UNIBA-STACKING gave the best result,
followed by UNIBA-2STEPSML, while UNIBA-
DSM PERM gave the worst performance. The
UNIBA-STACKING system corroborated our hy-
pothesis giving also the best results on those datasets
not exploited during the training phase of the sys-
tem (OnWN, SMTnews). Conversely, UNIBA-
2STEPSML reported a different trend showing its
weakness with respect to a high variance in the data,
and performing worse than UNIBA-DSM PERM on
the OnWN and SMTnews datasets.

However, the evaluation results have refuted our
hypothesis, even with the use of the stacking sys-
tem. The independence from a training set makes
the UNIBA-DSM PERM system more robust than
other supervised algorithms, even though it is not
able to give always the best performance on individ-
ual datasets, as highlighted by results in Table 1.

7http://www.cs.waikato.ac.nz/ml/weka/

4 Conclusions

This paper reports on UNIBA participation in Se-
mantic Textual Similarity 2013 core task. In this
task edition, we exploited both distributional mod-
els and machine learning techniques to build three
systems. A distributional model, which takes into
account the syntactic structure that relates words in a
corpus, has been used as baseline. Moreover, we in-
vestigate the use of two machine learning techniques
as a means to make our systems more independent
from the training data. However, the evaluation re-
sults have highlighted the higher robustness of the
distributional model with respect to these systems.
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Abstract 

We present a system submitted in the Semantic 

Textual Similarity (STS) task at the Second 

Joint Conference on Lexical and Computa-

tional Semantics (*SEM 2013). Given two 

short text fragments, the goal of the system is 

to determine their semantic similarity. Our sys-

tem makes use of three different measures of 

text similarity: word n-gram overlap, character 

n-gram overlap and semantic overlap. Using 

these measures as features, it trains a support 

vector regression model on SemEval STS 2012 

data. This model is then applied on the STS 

2013 data to compute textual similarities. Two 

different selections of training data result in 

very different performance levels: while a cor-

relation of 0.4135 with gold standards was ob-

served in the official evaluation (ranked 63rd 

among all systems) for one selection, the other 

resulted in a correlation of 0.5352 (that would 

rank 21st).  

1 Introduction 

Automatically identifying the semantic similarity 

between two short text fragments (e.g. sentences) is 

an important research problem having many im-

portant applications in natural language processing, 

information retrieval, and digital education. Exam-

ples include automatic text summarization, question 

answering, essay grading, among others.  

   However, despite having important applications, 

semantic similarity identification at the level of 

short text fragments is a relatively recent area of in-

vestigation. The problem was formally brought to 

attention and the first solutions were proposed in 

2006 with the works reported in (Mihalcea et al., 

2006) and (Li et al., 2006). Work prior to these fo-

cused primarily on large documents (or individual 

words) (Mihalcea et al., 2006). But the sentence-

level granularity of the problem is characterized by 

factors like high specificity and low topicality of the 

expressed information, and potentially small lexical 

overlap even between very similar texts, asking for 

an approach different from those that were designed 

for larger texts. 

Since its inception, the problem has seen a large 

number of solutions in a relatively small amount of 

time. The central idea behind most solutions is the 

identification and alignment of semantically similar 

or related words across the two sentences, and the 

aggregation of these similarities to generate an over-

all similarity score (Mihalcea et al., 2006; Islam and 

Inkpen, 2008; Šarić et al., 2012). 

The Semantic Textual Similarity task (STS) or-

ganized as part of the Semantic Evaluation Exer-

cises (see (Agirre et al., 2012) for a description of 

STS 2012) provides a common platform for evalua-

tion of such systems via comparison with human-

annotated similarity scores over a large dataset.  

In this paper, we present a system which was 

submitted in STS 2013. Our system is based on very 

simple measures of lexical and character-level over-

lap, semantic overlap between the two sentences 

based on word relatedness measures, and surface 

features like the sentences’ lengths. These measures 

are used as features for a support vector regression 

model that we train with annotated data from 

SemEval STS 2012. Finally, the trained model is ap-

plied on the STS 2013 test pairs. 

Our approach is inspired by the success of simi-

lar systems in STS 2012: systems that combine mul-

tiple measures of similarity using a machine learn-

ing model to generate an overall score (Bär et al., 

2012; Šarić et al., 2012). We wanted to investigate 

how a minimal system of this kind, making use of 

very few external resources, performs on a large da-

taset. Our experiments reveal that the performance 

of such a system depends highly on the training 

data. While training on one dataset yielded a best 
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correlation (among our three runs, described later in 

this document) of only 0.4135 with the gold scores, 

training on another dataset showed a considerably 

higher correlation of 0.5352.  

2 Computation of Text Similarity: System 

Overview 

In this section, we present a high-level description 

of our system. More details on extraction of some of 

the measures of similarity are provided in Section 3. 

Given two input sentences 𝑆1 and 𝑆2, our algo-

rithm can be described as follows: 

1. Compute semantic overlap (8 features): 

a. Lemmatize 𝑆1 and 𝑆2 using a memory-

based lemmatizer1 and remove all stop 

words. 

b. Compute the degree to which the concepts 

in 𝑆1 are covered by semantically similar 

concepts in 𝑆2 and vice versa (see Section 3 

for details). The result of this step is two dif-

ferent ‘degree of containment’ values (𝑆1 in 

𝑆2 and vice versa). 

c. Compute the minimum, maximum, arith-

metic mean and harmonic mean of the two 

values to use as features in the machine 

learning model. 

d. Repeat steps 1a through 1c for a weighted 

version of semantic overlap where each 

word in the first sentence is assigned a 

weight which is proportional to its specific-

ity in a selected corpus (see Section 3). 

2. Compute word 𝑛-gram overlap (16 features): 

a. Extract 𝑛-grams (for 𝑛 = 1, 2, 3, 4) of all 

words in 𝑆1 and 𝑆2 for four different setups 

characterized by the four different value 

combinations of the two following varia-

bles: lemmatization (on and off), stop-

WordsRemoved (on and off). 

b. Compute the four measures (min, max, 

arithmetic and harmonic mean) for each 

value of n. 

3. Compute character 𝑛-gram overlap (16 fea-

tures):  

a. Repeat   all steps in 2 above for character 𝑛-

grams (𝑛 = 2, 3, 4, 5). 

                                                           
1 http://www.clips.ua.ac.be/pages/MBSP#lemmatizer 
2 http://conceptnet5.media.mit.edu/data/5.1/as-

soc/c/en/cat? filter=/c/en/dog&limit=1 

4. Compute sentence length features (2 features): 

a. Compute the lengths of 𝑆1 and 𝑆2; and the 

minimum and maximum of the two values. 

b. Include the ratio of the maximum to the min-

imum and the difference between the maxi-

mum and minimum in the feature set. 

5. Train a support vector regression model on the 

features extracted in steps 1 through 4 above us-

ing data from SemEval 2012 STS (see Section 

4 for specifics on the dataset). We used the 

LibSVM implementation of SVR in WEKA. 

6. Apply the model on STS 2013 test data. 

3 Semantic Overlap Measures 

In this section, we describe the computation of the 

two sets of semantic overlap measures mentioned in 

step 1 of the algorithm in Section 2. 

We compute semantic overlap between two sen-

tences by first computing the semantic relatedness 

among their constituent words. Automatically com-

puting the semantic relatedness between words is a 

well-studied problem and many solutions to the 

problem have been proposed. We compute word re-

latedness in two forms: semantic relatedness and 

string similarity. For semantic relatedness, we uti-

lize two web services. The first one concerns a re-

source named ConceptNet (Liu and Singh, 2004), 

which holds a large amount of common sense 

knowledge concerning relationships between real-

world entities. It provides a web service2 that gener-

ates word relatedness scores based on these relation-

ships. We will use the term 𝐶𝑁𝑟𝑒𝑙(𝑤1, 𝑤2) to de-

note the relatedness of the two words 𝑤1 and 𝑤2 as 

generated by ConceptNet. 

We also used the web service3 provided by an-

other resource named Wikipedia Miner (Milne and 

Witten, 2013). While ConceptNet successfully cap-

tures common sense knowledge about words and 

concepts, Wikipedia Miner specializes in identify-

ing relationships between scientific concepts pow-

ered by Wikipedia's vast repository of scientific in-

formation (for example, Einstein and relativity). We 

will use the term 𝑊𝑀𝑟𝑒𝑙(𝑤1, 𝑤2) to denote the re-

latedness of the two words 𝑤1 and 𝑤2 as generated 

by Wikipedia Miner. Using two systems enabled us 

3 http://wikipedia-miner.cms.waikato.ac.nz/ser-

vices/compare?  term1=cat&term2=dog 
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to increase the coverage of our word similarity com-

putation algorithm.  

Each of these web services return a score in the 

range [0, 1] where 0 represents no relatedness and 1 

represents complete similarity. A manual inspection 

of both services indicates that in almost all cases 

where the services’ word similarity scores deviate 

from what would be the human-perceived similar-

ity, they generate lower scores (i.e. lower than the 

human-perceived score). This is why we take the 

maximum of the two services’ similarity scores for 

any given word pair as their semantic relatedness: 

𝑠𝑒𝑚𝑅𝑒𝑙(𝑤1, 𝑤2) 

= max{𝐶𝑁𝑟𝑒𝑙(𝑤1, 𝑤2),𝑊𝑀𝑟𝑒𝑙(𝑤1, 𝑤2)} 

We also compute the string similarity between 

the two words by taking a weighted combination of 

the normalized lengths of their longest common 

substring, subsequence and prefix (normalization is 

done for each of the three by dividing its length with 

the length of the smaller word). We will refer to the 

string similarity between words 𝑤1 and 𝑤2 as 

𝑠𝑡𝑟𝑖𝑛𝑔𝑆𝑖𝑚(𝑤1, 𝑤2). This idea is taken from (Islam 

and Inkpen, 2008); the rationale is to be able to find 

the similarity between (1) words that have the same 

lemma but the lemmatizer failed to lemmatize at 

least one of the two surface forms successfully, and 

(2) words at least one of which has been misspelled. 

We take the maximum of the string similarity and 

the semantic relatedness between two words as the 

final measure of their similarity: 

𝑠𝑖𝑚(𝑤1, 𝑤2) 

= max{𝑠𝑒𝑚𝑅𝑒𝑙(𝑤1, 𝑤2), 𝑠𝑡𝑟𝑖𝑛𝑔𝑆𝑖𝑚(𝑤1, 𝑤2)} 

At the sentence level, our first set of semantic 

overlap measures (step 1b) is an unweighted meas-

ure that treats all content words equally. More spe-

cifically, after the preprocessing in step 1a of the al-

gorithm, we compute the degree of semantic cover-

age of concepts expressed by individual content 

words in 𝑆1 by 𝑆2 using the following equation: 

𝑐𝑜𝑣𝑢𝑤(𝑆1, 𝑆2) =
∑ [max

𝑡∈𝑆2
{𝑠𝑖𝑚(𝑠, 𝑡)}]𝑠∈𝑆1

|𝑆1|
 

                                                           
4 http://googleresearch.blogspot.com/2006/08/all-our-n-

gram-are-belong-to-you.html 

where 𝑠𝑖𝑚(𝑠, 𝑡) is the similarity between the two 

lemmas 𝑠 and 𝑡. 
We also compute a weighted version of semantic 

coverage (step 1d in the algorithm) by incorporating 

the specificity of each word (measured by its infor-

mation content) as shown in the equation below:  

𝑐𝑜𝑣𝑤(𝑆1, 𝑆2) =
∑ [max

𝑡∈𝑆2
{𝑖𝑐(𝑠). 𝑠𝑖𝑚(𝑠, 𝑡)}]𝑠∈𝑆1

|𝑆1|
 

where 𝑖𝑐(𝑤) stands for the information content of 

the word 𝑤. Less common words (across a selected 

corpus) have high information content: 

𝑖𝑐(𝑤) = ln
∑ 𝑓(𝑤′)𝑤′∈𝐶

𝑓(𝑤)
 

where C is the set of all words in the chosen corpus 

and f(w) is the frequency of the word w in the cor-

pus. We have used the Google Unigram Corpus4 to 

assign the required frequencies to these words. 

4 Evaluation 

The STS 2013 test data consists of four datasets: 

two datasets consisting of gloss pairs (OnWN: 561 

pairs and FNWN: 189 pairs), a dataset of machine 

translation evaluation pairs (SMT: 750 pairs) and a 

dataset consisting of news headlines (headlines: 750 

pairs). For each dataset, the output of a system is 

evaluated via comparison with human-annotated 

similarity scores and measured using the Pearson 

Correlation Coefficient. Then a weighted sum of the 

correlations for all datasets are taken to be the final 

score, where each dataset’s weight is the proportion 

of sentence pairs in that dataset. 

We computed the similarity scores using three 

different feature sets (for our three runs) for the sup-

port vector regression model: 

1. All features mentioned in Section 2. This set of 

features were used in our run 1. 

2. All features except word 𝑛-gram overlap (ex-

periments on STS 2012 test data revealed that 

using word n-grams actually lowers the perfor-

mance of our model, hence this decision). These 

are the features that were used in our run 2. 

3. Only character 𝑛-gram and length features (just 

to test the performance of the model without 
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any semantic features). Our run 3 was based on 

these features. 

We trained the support vector regression model 

on two different training datasets, both drawn from 

STS 2012 data: 

1. In the first setup, we chose the training datasets 

from STS 2012 that we considered the most 

similar to the test dataset. The only exception 

was the FNWN dataset, for which we selected 

the all the datasets from 2012 because no single 

dataset from STS 2012 seemed to have similar-

ity with this dataset. For the OnWN test dataset, 

we selected the OnWN dataset from STS 2012. 

For both headlines and SMT, we selected SMT-

news and SMTeuroparl from STS 2012. The ra-

tionale behind this selection was to train the ma-

chine learning model on a distribution similar to 

the test data. 

2. In the second setup, we aggregated all datasets 

(train and test) from STS 2012 and used this 

combined dataset to train the three models that 

were later applied on each STS 2013 test data. 

Here the rationale is to train on as much data as 

possible. 

Table 1 shows the results for the first setup. This 

is the performance of the set of scores which we ac-

tually submitted in STS 2013. The first four col-

umns show the correlations of our system with the 

gold standard for all runs. The rightmost column 

shows the overall weighted correlations. As we can 

see, run 1 with all the features demonstrated the best 

performance among the three runs. There was a con-

siderable drop in performance in run 3 which did not 

utilize any semantic similarity measure. 

Table 1. Results for manually selected training data 

Run headlines OnWN FNWN SMT Total 

1 .4921 .3769 .4647 .3492 .4135 

2 .4669 .4165 .3859 .3411 .4056 

3 .3867 .2386 .3726 .3337 .3309 

As evident from the table, evaluation results did 

not indicate a particularly promising system. Our 

best system ranked 63rd among the 90 systems eval-

uated in STS 2013. We further investigated to find 

out the reason: is the set of our features insufficient 

to capture text semantic similarity, or were the train-

ing data inappropriate for their corresponding test 

data? This is why we experimented with the second 

setup discussed above. Following are the results:  

Table 2. Results for combined training data 

Run headlines OnWN FNWN SMT Total 

1 .6854 .5981 .4647 .3518 .5339 

2 .7141 .5953 .3859 .349 .5352 

3 .6998 .4826 .3726 .3365 .4971 

As we can see in Table 2, the correlations for all 

feature sets improved by more than 10% for each 

run. In this case, the best system with correlation 

0.5352 would rank 21st among all systems in STS 

2013. These results indicate that the primary reason 

behind the system’s previous bad performance (Ta-

ble 1) was the selection of an inappropriate dataset. 

Although it was not clear in the beginning which of 

the two options would be the better, this second ex-

periment reveals that selecting the largest possible 

dataset to train is the better choice for this dataset. 

5 Conclusions 

In this paper, we have shown how simple measures 

of text similarity using minimal external resources 

can be used in a machine learning setup to compute 

semantic similarity between short text fragments. 

One important finding is that more training data, 

even when drawn from annotations on different 

sources of text and thus potentially having different 

feature value distributions, improve the accuracy of 

the model in the task. Possible future expansion in-

cludes use of more robust concept alignment strate-

gies using semantic role labeling, inclusion of struc-

tural similarities of the sentences (e.g. word order, 

syntax) in the feature set, incorporating word sense 

disambiguation and more robust strategies of con-

cept weighting into the process, among others. 
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Abstract

This paper describes our system entered for the
*SEM 2013 shared task on Semantic Textual
Similarity (STS). We focus on the core task
of predicting the semantic textual similarity of
sentence pairs.

The current system utilizes machine learn-
ing techniques trained on semantic similarity
ratings from the *SEM 2012 shared task; it
achieved rank 20 out of 90 submissions from
35 different teams. Given the simple nature of
our approach, which uses only WordNet and
unannotated corpus data as external resources,
we consider this a remarkably good result, mak-
ing the system an interesting tool for a wide
range of practical applications.

1 Introduction

The *SEM 2013 shared task on Semantic Textual
Similarity (Agirre et al., 2013) required participants
to implement a software system that is able to pre-
dict the semantic textual similarity (STS) of sentence
pairs. Being able to reliably measure semantic simi-
larity can be beneficial for many applications, e.g. in
the domains of MT evaluation, information extrac-
tion, question answering, and summarization.

For the shared task, STS was measured on a scale
ranging from 0 (indicating no similarity at all) to 5
(semantic equivalence). The system predictions were
evaluated against manually annotated data.

2 Description of our approach

Our system KLUE-CORE uses two approaches to
estimate STS between pairs of sentences: a distri-

butional bag-of-words model inspired by Schütze
(1998), and a simple alignment model that links each
word in one sentence to the semantically most similar
word in the other sentence. For the alignment model,
word similarities were obtained from WordNet (using
a range of state-of-the-art path-based similarity mea-
sures) and from two distributional semantic models
(DSM).

All similarity scores obtained in this way were
passed to a ridge regression learner in order to obtain
a final STS score. The predictions for new sentence
pairs were then transformed to the range [0,5], as
required by the task definition.

2.1 The training data

We trained our system on manually annotated sen-
tence pairs from the STS task at SemEval 2012
(Agirre et al., 2012). Pooling the STS 2012 training
and test data, we obtained 5 data sets from differ-
ent domains, comprising a total of 5343 sentence
pairs annotated with a semantic similarity score in
the range [0,5]. The data sets are paraphrase sen-
tence pairs (MSRpar), sentence pairs from video de-
scriptions (MSRvid), MT evaluation sentence pairs
(MTnews and MTeuroparl), and glosses from two
different lexical semantic resources (OnWN).

All sentence pairs were pre-processed with Tree-
Tagger (Schmid, 1995)1 for part-of-speech annota-
tion and lemmatization.

1http://www.ims.uni-stuttgart.de/forschung/
ressourcen/werkzeuge/treetagger.html
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2.2 Similarity on word level

Our alignment model (Sec. 2.3.1) is based on similar-
ity scores for pairs of words. We obtained a total of
11 different word similarity measures from WordNet
(Miller et al., 1990) and in a completely unsupervised
manner from distributional semantic models.

2.2.1 WordNet
We computed three state-of-the-art WordNet simi-
larity measures, namely path similarity, Wu-Palmer
similarity and Leacock-Chodorow similarity (Budan-
itsky and Hirst, 2006). As usual, for each pair of
words the synsets with the highest similarity score
were selected. For all three measures, we made use of
the implementations provided as part of the Natural
Language ToolKit for Python (Bird et al., 2009).

2.2.2 Distributional semantics
Word similarity scores were also obtained from two
DSM: Distributional Memory (Baroni and Lenci,
2010) and a model compiled from a version of the
English Wikipedia.2 For Distributional Memory, we
chose the collapsed W ×W matricization, resulting
in a 30686×30686 matrix that was further reduced
to 300 latent dimensions using randomized SVD
(Halko et al., 2009). For the Wikipedia DSM, we
used a L2/R2 context window and mid-frequency
feature terms, resulting in a 77598×30484 matrix.
Co-occurrence frequency counts were weighted us-
ing sparse log-likelihood association scores with a
square root transformation, and reduced to 300 latent
dimensions with randomized SVD. In both cases, tar-
get terms are POS-disambiguated lemmas of content
words, and the angle between vectors was used as a
distance measure (equivalent to cosine similarity).

For each DSM, we computed the following se-
mantic distances: (i) angle: the angle between the
two word vectors; (ii) fwdrank: the (logarithm of
the) forward neighbour rank, i.e. which rank the sec-
ond word occupies among the nearest neighbours
of the first word; (iii) bwdrank: the (logarithm of
the) backward neighbour rank, i.e. which rank the
first word occupies among the nearest neighbours of
the second word; (iv) rank: the (logarithm of the)
arithmetic mean of forward and backward neighbour

2For this purpose, we used the pre-processed and linguis-
tically annotated Wackypedia corpus available from http://
wacky.sslmit.unibo.it/.

rank; (v) lowrank: the (logarithm of the) harmonic
mean of forward and backward neighbour rank.

A composite similarity score in the range [0,1]
was obtained by linear regression on all five distance
measures, using the WordSim-353 noun similarity
ratings (Finkelstein et al., 2002) for parameter esti-
mation. This score is referred to as similarity below.
Manual inspection showed that word pairs with simi-
larity < 0.7 were completely unrelated in many cases,
so we also included a “strict” version of similarity
with all lower scores set to 0. We further included
rank and angle, which were linearly transformed to
similarity values in the range [0,1].

2.3 Similarity on sentence level

Similarity scores for sentence pairs were obtained in
two different ways: with a simple alignment model
based on the word similarity scores from Sec. 2.2
(described in Sec. 2.3.1) and with a distributional
bag-of-words model (described in Sec. 2.3.2).

2.3.1 Similarity by word alignment
The sentence pairs were preprocessed in the follow-
ing way: input words were transformed to lower-
case; common stopwords were eliminated; and dupli-
cate words within each sentence were deleted. For
the word similarity scores from Sec. 2.2.2, POS-
disambiguated lemmas according to the TreeTagger
annotation were used.

Every word of the first sentence in a given pair
was then compared with every word of the second
sentence, resulting in a matrix of similarity scores
for each of the word similarity measures described
in Sec. 2.2. Since we were not interested in an asym-
metric notion of similarity, matrices were set up so
that the shorter sentence in a pair always corresponds
to the rows of the matrix, transposing the similarity
matrix if necessary. From each matrix, two similar-
ity scores for the sentence pair were computed: the
arithmetic mean of the row maxima (marked as short
in Tab. 4), and the artihmetic mean of the column
maxima (marked as long in Tab. 4).

This approach corresponds to a simple word align-
ment model where each word in the shorter sentence
is aligned to the semantically most similar word in
the longer sentence (short), and vice versa (long).
Note that multiple source words may be aligned to
the same target word, and target words can remain
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unaligned without penalty. Semantic similarities are
then averaged across all alignment pairs.

In total, we obtained 22 sentence similarity scores
from this approach.

2.3.2 Distributional similarity

We computed distributional similarity between the
sentences in each pair directly using bag-of-words
centroid vectors as suggested by Schütze (1998),
based on the two word-level DSM introduced in
Sec. 2.2.2.

For each sentence pair and DSM, we computed (i)
the angle between the centroid vectors of the two sen-
tences and (ii) a z-score relative to all other sentences
in the same data set of the training or test collection.
Both values are measures of semantic distance, but
are automatically transformed into similarity mea-
sures by the regression learner (Sec. 2.4).

For the z-scores, we computed the semantic dis-
tance (i.e. angle) between the first sentence of a given
pair and the second sentences of all word pairs in the
same data set. The resulting list of angles was stan-
dardized to z-scores, and the z-score corresponding
to the second sentence from the given pair was used
as a measure of forward similarity between the first
and second sentence. In the same way, a backward
z-score between the second and first sentence was
determined. We used the average of the forward and
backward z-score as our second STS measure.

The z-transformation was motivated by our obser-
vation that there are substantial differences between
the individual data sets in the STS 2012 training and
test data. For some data sets (MSRpar and MSRvid),
sentences are often almost identical and even a single-
word difference can result in low similarity ratings;
for other data sets (e.g. OnWN), similarity ratings
seem to be based on the general state of affairs de-
scribed by the two sentences rather than their par-
ticular wording of propositional content. By using
other sentences in the same data set as a frame of
reference, corpus-based similarity scores can roughly
be calibrated to the respective notion of STS.

In total, we obtained 4 sentence (dis)similarity
scores from this approach. Because of technical is-
sues, only the z-score measures were used in the
submitted system. The experiments in Sec. 3 also
focus on these z-scores.

2.4 The regression model

The 24 individual similarity scores described in
Sec. 2.3.1 and 2.3.2 were combined into a single
STS prediction by supervised regression.

We conducted experiments with various machine
learning algorithms implemented in the Python li-
brary scikit-learn (Pedregosa et al., 2011). In partic-
ular, we tested linear regression, regularized linear
regression (ridge regression), Bayesian ridge regres-
sion, support vector regression and regression trees.
Our final system submitted to the shared task uses
ridge regression, a shrinkage method applied to linear
regression that uses a least-squares regularization on
the regression coefficients (Hastie et al., 2001, 59).
Intuitively speaking, the regularization term discour-
ages large value of the regression coefficients, which
makes the learning technique less prone to overfit-
ting quirks of the training data, especially with large
numbers of features.

We tried to optimise our results by training the indi-
vidual regressors for each test data set on appropriate
portions of the training data. For our task submis-
sion, we used the following training data based on
educated guesses inspired by the very small amount
of development data provied: for the headlines test
set we trained on both glosses and statistical MT
data, for the OnWN and FNWN test sets we trained
on glosses only (OnWN), and for the SMT test set
we trained on statistical MT data only (MTnews and
MTeuroparl). We decided to omit the Microsoft Re-
search Paraphrase Corpus (MSRpar and MSRvid)
because we felt that the types of sentence pairs in this
corpus were too different from the development data.

For our submission, we used all 24 features de-
scribed in Sec. 2.3 as input for the ridge regression
algorithm. Out of 90 submissions by 35 teams, our
system ranked on place 20.3

3 Experiments

In this section, we describe some post-hoc experi-
ments on the STS 2013 test data, which we performed
in order to find out whether we made good decisions
regarding the machine learning method, training data,

3This paper describes the run listed as KLUE-approach_2 in
the official results. The run KLUE-approach_1 was produced by
the same system without the bag-of-words features (Sec. 2.3.2);
it was only submitted as a safety backup.
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similarity features, and other parameters. Results of
our submitted system are typeset in italics, the best
results in each column are typeset in bold font.

3.1 Machine learning algorithms

Tab. 1 gives an overview of the performance of vari-
ous machine learning algorithms. All regressors were
trained on the same combinations of data sets (see
Sec. 2.4 above) using all available features, and eval-
uated on the STS 2013 test data. Overall, our choice
of ridge regression is justified. Especially for the
OnWN test set, however, support vector regression
is considerably better (it would have achieved rank
11 instead of 17 on this test set). If we had happened
to use the best learning algorithm for each test set,
we would have achieved a mean score of 0.54768
(putting our submission at rank 14 instead of 20).

3.2 Regularization strength

We also experimented with different regularization
strengths, as determined by the parameter α of the
ridge regression algorithm (see Tab. 2). Changing α

from its default value α = 1 does not seem to have
a large impact on the performance of the regressor.
Setting α = 2 for all test sets would have minimally
improved the mean score (rank 19 instead of 20).
Even choosing the optimal α for each test set would
only have resulted in a slightly improved mean score
of 0.53811 (also putting our submission at rank 19).

3.3 Composition of training data

As described above, we suspected that using different
combinations of the training data for different test
sets might lead to better results. The overview in
Tab. 3 confirms our expectations. We did, however,
fail to correctly guess the optimal combinations for
each test set. We would have obtained the best re-
sults by training on glosses (OnWN) for the headlines
test set (rank 35 instead of 40 in this category), by
training on MSR data (MSRpar and MSRvid) for the
OnWN (rank 11 instead of 17) and FNWN test sets
(rank 9 instead of 10), and by combining glosses and
machine translation data (OnWN, MTnews MTeu-
roparl) for the SMT test set (rank 30 instead of 33).
Had we found the optimal training data for each test
set, our system would have achieved a mean score of
0.55021 (rank 11 instead of 20).

3.4 Features

For our submission, we used all the features de-
scribed in Sec. 2. Tab. 4 shows what results each
group of features would have achieved by itself (all
runs use ridge regression, default α = 1 and the same
combinations of training data as in our submission).

In Tab. 4, the line labelled wp500 shows the re-
sults obtained using only word-alignment similarity
scores (Sec. 2.3.1) based on the Wikipedia DSM
(Sec. 2.2.2) as features. The following two lines give
separate results for the alignments from shorter to
longer sentence, i.e. row maxima (wp500-short) and
from longer to shorter sentence, i.e. column maxima
(wp500-long), respectively. Below are corresponding
results for word alignments based on Distributional
Memory (dm, dm-short, dm-long) and WordNet simi-
larity as described in Sec. 2.2.1 (WN, WN-short, WN-
long). The line labelled bow represents the two z-
score similarities obtained from distributional bag-of-
words models (Sec. 2.3.2); bow-wp500 (Wikipedia
DSM) and bow-dm (Distributional Memory) each
correspond to a single distributional feature.

Combining all the available features indeed results
in the highest mean score. However, for OnWN and
SMT a subset of the features would have led to better
results. Using only the bag-of-words scores would
have improved the results for the OnWN test set by
a considerable margin (rank 8 instead of 17), using
only the alignment scores based on WordNet would
have improved the results for the SMT test set (rank
17 instead of 33). If we had used the optimal subset
of features for each test set, the mean score would
have increased to 0.55556 (rank 9 instead of 20).

4 Conclusion

Our experiments show that it is essential for high-
quality semantic textual similarity to adapt a corpus-
based system carefully to each particular data set
(choice of training data, feature engineering, tuning
of machine learning algorithm). Many of our edu-
cated guesses for parameter settings turned out to be
fairly close to the optimal values, though there would
have been some room for improvement.

Overall, our simple approach, which makes very
limited use of external resources, performs quite well
– achieving rank 20 out of 90 submissions – and will
be a useful tool for many real-world applications.
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headlines OnWN FNWN SMT mean

Ridge Regression 0.65102 0.68693 0.41887 0.33599 0.53546
Linear Regression 0.65184 0.68118 0.39707 0.32756 0.52966
Bayesian Ridge 0.65164 0.68962 0.42344 0.33003 0.53474
SVM SVR 0.52208 0.73330 0.40479 0.30810 0.49357
Decision Tree 0.29320 0.50633 0.05022 0.17072 0.28510

Table 1: Evaluation results for different machine learning algorithms

α headlines OnWN FNWN SMT mean

1 0.65102 0.68693 0.41887 0.33599 0.53546
0.01 0.65184 0.68129 0.39773 0.32773 0.52980
0.1 0.65186 0.68224 0.40246 0.32900 0.53087
0.5 0.65161 0.68492 0.41346 0.33311 0.53374
0.9 0.65114 0.68660 0.41816 0.33560 0.53523
2 0.64941 0.68917 0.42290 0.33830 0.53659
5 0.64394 0.69197 0.42265 0.33669 0.53491

Table 2: Evaluation results for different regularization strengths of the ridge regression learner

headlines OnWN FNWN SMT mean

def 0.65440 0.68693 0.41887 0.32694 0.53357
smt 0.65322 0.62643 0.24895 0.33599 0.50684
def+smt 0.65102 0.59665 0.24953 0.33867 0.49962
msr 0.63633 0.73396 0.43073 0.33168 0.54185
def+smt+msr 0.65008 0.65093 0.39636 0.28645 0.50777
approach2 0.65102 0.68693 0.41887 0.33599 0.53546

Table 3: Evaluation results for different training sets (“approach2” refers to our shared task submission, cf. Sec. 2.4)

headlines OnWN FNWN SMT mean

wp500 0.57099 0.59199 0.31740 0.31320 0.46899
wp500-long 0.57837 0.59012 0.30909 0.30075 0.46614
wp500-short 0.58271 0.58845 0.34205 0.29474 0.46794
dm 0.42129 0.55945 0.21139 0.27426 0.38910
dm-long 0.40709 0.56511 0.28993 0.23826 0.38037
dm-short 0.44780 0.53555 0.28709 0.24484 0.38853
WN 0.63654 0.65149 0.41025 0.35624 0.52783
WN-long 0.62749 0.63828 0.39684 0.33399 0.51297
WN-short 0.64986 0.66175 0.41441 0.33350 0.52759
bow 0.52384 0.74046 0.31917 0.24611 0.46808
bow-wp500 0.52726 0.73624 0.32797 0.24460 0.46841
bow-dm 0.21908 0.66873 0.17096 0.20176 0.32138
all 0.65102 0.68693 0.41887 0.33599 0.53546

Table 4: Evaluation results for different sets of similarity scores as features (cf. Sec. 3.4)
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Abstract

We  present  in  this  paper  the  systems  we 
participated  with  in  the  Semantic  Textual 
Similarity  task  at  SEM  2013.  The  Semantic 
Textual Similarity Core task  (STS)  computes the 
degree  of  semantic  equivalence  between  two 
sentences  where  the  participant  systems  will  be 
compared to the manual scores, which range from 
5  (semantic  equivalence)  to  0  (no  relation).  We 
combined  multiple  text  similarity  measures  of 
varying complexity.  The experiments illustrate the 
different  effect  of  four  feature  types  including 
direct  lexical  matching,  idf-weighted  lexical 
matching,  modified BLEU N-gram matching and 
named entities matching. Our team submitted three 
runs  during  the  task  evaluation  period  and  they 
ranked  number  11,  15  and  19  among  the  90 
participating  systems  according  to  the  official 
Mean Pearson correlation metric for the task. We 
also  report  an  unofficial  run  with  mean  Pearson 
correlation  of  0.59221  on  STS2013  test  dataset, 
ranking  as  the  3rd  best  system  among  the  90 
participating systems.

1 Introduction

The  Semantic  Textual  Similarity  (STS)  task  at 
SEM 2013 is  to measure  the degree of semantic 
equivalence between pairs of sentences as a graded 
notion  of  similarity.  Text  Similarity  is  very 
important  to  many  Natural  Language  Processing 
applications, like extractive summarization (Salton 
et al., 1997), methods for automatic evaluation of 
machine translation (Papineni et al., 2002), as well 
as  text  summarization  (Lin  and  Hovy,  2003).  In 
Text  Coherence  Detection  (Lapata  and  Barzilay, 

2005), sentences are linked together by similar or 
related  words.  For  Word  Sense  Disambiguation, 
researchers  (Banerjee  and  Pedersen,  2003;  Guo 
and  Diab,  2012a)  introduced  a  sense  similarity 
measure using the sentence similarity of the sense 
definitions. In this paper we illustrate the different 
effect of four feature types including direct lexical 
matching, idf-weighted lexical matching, modified 
BLEU  N-gram  matching  and  named  entities 
matching.  The rest  of  this  paper  will  proceed as 
follows, Section 2 describes the four text similarity 
features  used.  Section  3  illustrates  the  system 
description,  data  resources  as  well  as  Feature 
combination.  Experiments  and  Results  are 
illustrated  in  section  4.  then  we  report  our 
conclusion and future work. 

2 Text Similarity Features

Our  system  measures  the  semantic  textual 
similarity between two sentences through a number 
of matching features which should cover four main 
dimensions: i) Lexical Matching ii)  IDF-weighted 
Lexical  Matching  iii)  Contextual  sequence 
Matching (Modified BLEU Score), and iv) Named 
Entities Matching.

First we introduce the alignment technique used. 
For a sentence pair {s1, s2} matching is done in 
each direction separately to detect the sub-sentence 
of  s1  matched  to  s2  and  then  detect  the  sub-
sentence of s2 matched to s1. For each word wi in 
s1 we search for its match  wj in s2 according to 
matching features.

S1: w0 w1 w2 w3 w4 …... wi …... wn
S2: w0 w1 w2 w3 w4 ….......wj …......... wm
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2.1 Lexical Matching:

In this feature we handle the two sentences as bags 
of  words  to  be  matched  using  three  types  of 
matching, given that all stop words are cleaned out 
before matching:
I) Exact word matching.
II) Stemmed word matching: I used Porter 

Stemming algorithm (M.F. Porter, 1980) in 
matching, where  it is a process for removing 
the commoner morphological and inflectional 
endings from words in English. Stemming 
will render inflections like “requires, required, 
requirements, ...” to “requir” so they can be 
easily matched

III) Synonyms matching: we used a corpus based 
dictionary of 58,921 entries and their 
equivalent synonyms. The next section 
describes how we automatically generated this 
language resource. 

2.2 IDF-weighted Lexical Matching

We used the three matching criteria used in 
Lexical Matching after weighting them with 
Inverse-Document-Frequency. we applied the 
aggregation strategy by Mihalcea et al. (2006): The 
sum of the idf-weighted similarity scores of each 
word with the best-matching counterpart in the 
other text is computed in both directions. For a 
sentence pair s1, s2, if s1 consists of m words {w0, 
w1, …., w(m-1)} and s2 consists of n words {w0, 
w1, …., w(n-1)} ,after cleaning stop words from 
both, and the matched words are 
“@Matched_word_List” of “k” words, then 

2.3 Contextual Sequence Matching (Modified 
BLEU score)

We used a modified version of Bleu score to 
measure n-gram sequences matching, where for 
sentence pair s1, s2 we align the matched words 
between them (through exact, stem, synonyms 
match respectively). Bleu score as presented by (K. 
Papineni et al., 2002) is an automated method for 
evaluating Machine Translation. It compares n-
grams of the candidate translation with the n-grams 
of the reference human translation and counts the 
number of matches. These matches are position 
independent, where candidate translations with 
unmatched length to reference translations are 
penalized with Sentence brevity penalty. 
This helps in measuring n-gram similarity in 
sentences structure. We define “matched 
sequence” of a sentence S1 as the sequence of 
words {wi, wi+1, wi+2, ….. wj}, where wi, and wj 
are the first and last words in sentence S1 that are 
matched with words in S2.
For example in sentence pair S1, S2:
S1: Today's great Pax Europa and today's pan-
European prosperity depend on this.
S2: Large Pax Europa of today, just like current 
prosperity paneuropéenne, depends on it.
After stemming:
S1: todai's great pax europa and todai's pan-
european prosper depend on thi.
S2: larg pax europa of todai, just like current 
prosper paneuropéenn, depend on it.

“Matched sequence of S1”:
[todai 's great pax europa todai 's pan - european 
prosper depend]
“Matched sequence of S2”:
[pax europa todai just like current prosper 
paneuropéenn depend]

We measure the Bleu score such that:
Bleu{S1, S2} = &BLEU(S1_stemmed,"Matched 
sequence of S2");
Bleu{S2, S1} = &BLEU(S2_stemmed,"Matched 
sequence of S1");
The objective of trimming the excess words 
outside the “Matched Sequence” range, before 
matching is to make use of the  Sentence brevity  
penalty in case sentence pair S1, S2 may be not 
similar but having matched lengths.
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2.4 Named Entities Matching

Named entities carry an important portion of 
sentence semantics. For example:
Sentence1: In Nigeria , Chevron has been accused 
by the All - Ijaw indigenous people of instigating 
violence against them and actually paying 
Nigerian soldiers to shoot protesters at the Warri 
naval base .
Sentence2: In Nigeria , the whole ijaw indigenous 
showed Chevron to encourage the violence 
against them and of up to pay Nigerian soldiers to 
shoot the demonstrators at the naval base from 
Warri .
The underlined words are Named entities of 
different types “COUNTRY, ORG, PEOPLE, 
LOC, EVENT_VIOLENCE” which capture 
the most important information in each 
sentence. Thus named entities matching is a 
measure of semantic matching between the 
sentence pair.

3 System Description

3.1 Data Resources and Processing 

All  data  is  tokenized,  stemmed,  and  stop 
words are cleaned.

Corpus based resources:
i. Inverse Document Frequency (IDF) 

language resource: The  document frequency 
df(t) of a term t is defined as the number of 
documents in a large collection of documents 
that contain a term “t”. Terms that are likely 
to appear in most of the corpus documents 
reflect less importance than words that appear 
in specific documents only. That's why the 
Inverse Document Frequency is used as a 
measure of term importance in information 
retrieval and text mining tasks. We used the 
LDC English Gigaword Fifth Edition 
(LDC2011T07) to generate our idf dictionary. 
LDC Gigaword contains a huge collection of 
newswire from (afp, apw, cna, ltw, nyt, wpb, 
and xin). The generated idf resource contains 
5,043,905 unique lower cased entries, and 
then we generated a stemmed version of the 
idf dictionary contains 4,677,125 entries. The 

equation below represents the idf of term t 
where N is the total number of documents in 
the  corpus.

ii. English  Synonyms  Dictionary:  Using  the 
Phrase  table  of  an  Arabic-to-English  Direct 
Translation Model,  we generated English-to-
English phrase table using the double-link of 
English-to-Arabic  and  Arabic-to-English 
phrase translation probabilities over all pivot 
Arabic  phrases.  Then  English-to-English 
translation  probabilities  are  normalized  over 
all  generated  English  synonyms.  (Chris 
Callison-Burch  et  al,  2006) used  a  similar 
technique to generate paraphrases to improve 
their SMT system. Figure (1) shows the steps:

Figure(1) English phrase-to-phrase synonyms 
generation from E2A phrase table.

In our system we used the phrase table of the 
Direct Translation Model 2 (DTM2) (Ittycheriah 
and Roukos, 2007) SMT system, where each 
sentence pair in the training corpus was word-
aligned, e.g. using a MaxEnt aligner (Ittycheriah 
and Roukos, 2005) or an HMM aligner (Ge, 2004). 
then Block Extraction step is done. The generated 
phrase table contains candidate phrase to phrase 
translation pairs with source-to-target and target-to 
source translation probabilities. However the open 
source Moses SMT system (Koehn et al., 2007) 

For each English Phrase “e1”
 {
    @ar_phrases = list of Arabic Phrases aligned to “e”   
    in the phrase table;
    For each a (@ar_phrases)
     {

@en_phrases = list of English phrases aligned 
to “a” in the phrase table;

For each e2 (@en_phrases)
{
    $Prob(e2\e1) = Prob(a\e1)*Prob(e2\a);
}

     }
 }
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can be used in the same way to generate a 
synonyms dictionary from phrase table.

By applying the steps in figure (1):
a) English phrase-to-phrase synonyms table (or 
English-to-English phrase table), by applying the 
steps in a generic way.
b) English word-to-word synonyms table, by 
limiting the generation over English single word 
phrases. 
For example, to get all possible synonyms of the 
English word “bike”, we used all the Arabic 
phrases that are aligned to “bike” in the phrase 
table { البسكليت, البسكلت, الدراجات , دراجة  }, 
P: 1905645 14 0.0142582 0.170507 |  دراجة | bike |   
P: 1910841 25 0.0262152 0.221198 |  الدراجات  | bike | 
P: 2127826 4 0.0818182 0.0414747 |  البسكليت | bike |
P: 2396796 2 0.375 0.0138249 |  البسكلت | bike |
then we get all the English words in the phrase 
table aligned to these Arabic translations { ,دراجة  

البسكليت, البسكلت, الدراجات   }
This results in an English word-to-word synonyms 
list for the word “bike” like this:

bike:
motorcycle      0.365253185010659
bicycle 0.198195663512781
cycling 0.143290354808692
motorcycles     0.0871686646772204
bicycles        0.0480779974950311
cyclists        0.0317670845504069
motorcyclists   0.0304152910853553
cyclist 0.0278451740161998
riding  0.0215366691148431
motorbikes      0.0148697281155676

Dictionary based resources:
• WordNet (Miller, 1995): is a large lexical 

database of English. Nouns, verbs, adjectives 
and adverbs are grouped into sets of cognitive 
synonyms (synsets), each expressing a distinct 
concept. Synsets are interlinked by means of 
conceptual-semantic and lexical relations. 
WordNet groups words together based on 
their meanings and interlinks not just word 
forms—strings of letters—but specific senses 
of words. As a result, words that are found in 
close proximity to one another in the network 
are semantically disambiguated. Second, 
WordNet labels the semantic relations among 
words.  Using WordNet, we can measure the 
semantic similarity or relatedness between a 

pair of concepts (or word senses), and by 
extension, between a pair of sentences. We 
use the similarity measure described in (Wu 
and Palmer, 1994) which finds the path length 
to the root node from the least common 
subsumer (LCS) of the two word senses which 
is the most specific word sense they share as 
an ancestor.

3.2 Feature Combination

The feature combination step uses the pre-
computed  similarity  scores.  Each  of  the 
text  similarity  features  can  be  given  a 
weight  that  sets  its  importance. 
Mathematically,  the  text  similarity  score 
between two sentences can be formulated 
using  a  cost  function  weighting  the 
similarity  features  as  follows:  N.B.:  The 
similarity score according to the features 
above is considered as a directional score.

Similarity(s1, s2) = [w1*Lexical_Score(s1, s2) +     
               w2*IDF_Lexical_Score(s1, s2) +
               w3*Modified_BLEU(s1, s2) +
               w4*NE_Score(s1, s2)] / (w1+w2+w3+w4)

Similarity(s2, s1) = [w1*Lexical_Score(s2, s1) +     
w2*IDF_Lexical_Score(s2, s1) +
w3*Modified_BLEU(s2, s1) +

                w4*NE_Score(s2, s1)] / (w1+w2+w3+w4)
Overall_Score = 5/2*[Similarity(s1, s2)+Similarity(s2, s1)]

where w1, w2, w3, w4 are the weights assigned to 
the similarity features (lexical, idf-weighted, 
modified_BLEU, and NE_Match features 
respectively).  The similarity score will be 
normalized over (w1+w2+w3+w4).
In our experiments, the weights are tuned manually 
without applying machine learning techniques. We 
used both *SEM 2012 training and testing data sets 
for tuning these weights to get the best feature 
weighting combination to get highest Pearson 
Correlation score. 

4 Experiments and Results

Submitted Runs
Our experiments showed that some features are 
more dominant in affecting the similarity scoring 
than others. We performed a separate experiment 
for each of the four feature types to illustrate their 
effect on textual semantic similarity measurement 
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using direct lexical matching, stemming matching, 
synonyms matching,  as well as (stem+synonyms) 
matching. Table (1) reports the mean Pearson 
correlation results of these experiments on 
STS2012-test dataset

Direct Stem 
only

Synonyms 
only

Synonyms + 
Stem

NE  0.303 0.297 0.306 0.304
BLEU 0.439 0.446 0.469 0.453

Lexical 0.59 0.622 0.611 0.624

IDF 0.488 0.632 0.504 0.634
Table (1) reports the mean Pearson score for NE, 
BLEU, Lexical, and idf-weighted matching features 
respectively on STS2012-test dataset.

The submitted runs IBM_EG-run2, IBM_EG-run5, 
IBM_EG-run6 are the three runs with feature 
weighting and experiment set up that performed 
best on STS 2012 training and testing data sets.

Run 2: In this run the word matching was done on 
exact, and synonyms match only. Stemmed word 
matching was not introduced in this experiment. 
we tried the following weighting  between 
similarity feature scores, where we decreased the 
weight of BLEU scoring feature to  0.5, and 
increased the idf_Lexical match weight of 3.5. this 
is because our initial tuning experiments showed 
that increasing the idf lexical weight compared to 
BLEU weight gives improved results. The NE 
matching feature weight was as follows:

NE_weight = 1.5* percent of NE word to sentence word count
                   = 1.5* (NE_words_count/Sentence_word_count)

Run 5: In this experiment we introduced Porter 
stemming word matching, as well as stemmed 
synonyms matching (after generating a stemmed 
version of the synonyms dictionary). BLEU score 
feature was removed from this experiment, while 
keeping the idf-weight= 3, lexical-weight = 1, and 
NE-matching feature weight = 1.

Run 6: For this run we kept only IDF-weighted 
lexical matching feature which proved to be the 
dominant feature in the previous runs, in addition 
to Porter stemming word matching, and stemmed 
synonyms matching.

Data:  the training data of STS 2013 Core task 
consist of the STS 2012 train and test data. This 
data covers 5 datasets: paraphrase sentence pairs 
(MSRpar), sentence pairs from video descriptions 
(MSRvid), MT evaluation sentence pairs 
(SMTnews and SMTeuroparl) and gloss pairs 
(OnWN). 

Results on Training Data
System outputs will be evaluated according to the 
official scorer  which computes weighted Mean 
Pearson Correlation across the evaluation datasets, 
where the weight depends on the number of pairs 
in each dataset. 
Table (2), reports the results achieved on each of 
the STS 2012 training dataset. While table (3), 
reports the results achieved on STS 2012 test 
dataset.  

IBM_run2 IBM_run5 IBM_run6

Mean 0.59802 0.64170 0.68395
MSRpar 0.61607 0.63870 0.62629
MSRvid 0.70356 0.80879 0.83722
SMTeuroparl 0.47173 0.47403 0.58627

Table (2) Results on STS 2012 training datasets.

IBM_run2 IBM_run5 IBM_run6

Mean 0.59408 0.62614 0.63365
MSRpar 0.56059 0.59108 0.61306

MSRvid 0.73189 0.79960 0.87154

SMTeuroparl 0.51480 0.50563 0.41298

OnWN 0.62927 0.65760 0.67136

SMTnews 0.42305 0.44551 0.40819
Table (3) Results on STS 2012 test datasets.

Results on Test Data:

The  best  configuration  of  our  system  was 
IBM_EG-run6 which  was  ranked  #11  for  the 
evaluation metric Mean  (r  =  0.5502)  when 
submitted during the task evaluation period . Run6 
as illustrated before was planned to measure idf-
weighted lexical matching feature only, over Porter 
stemmed,  and  stemmed  synonyms  words. 
However when  revising  this  experiment  set  up 
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during  preparing  the  paper,  after  the  evaluation 
period,  we  found  that  the  English-to-English 
synonyms  table  was  not  correctly  loaded  during 
matching,  thus  skipping  synonyms  matching 
feature  from  this  run.  So  the  official  result 
IBM_EG-run6 reports  only  idf-weighted 
matching over Porter stemmed bag of words. By 
fixing  this  and  replicating  the  experiment 
IBM_EG-run6-UnOfficial  as  planned to  be,  the 
mean  Pearson  correlation  jumps  4  points  (r  = 
0.59221)  which  ranks  this  system  as  the  3rd 

system  among  90  submitted  systems  very 
slightly  below  the  2nd system  (only  0.0006 
difference on the mean correlation metric).  In 
table (4), we report the official results achieved on 
STS 2013 test data.  While  table (5),  reports the 
unofficial  results  achieved  after   activating  the 
synonyms  matching  feature  in  IBM_EG-run6 
(unofficial) and comparing this run to the best two 
reported systems.

IBM_EG-
run2

IBM_EG-
run5

IBM_EG-
run6

headlines 0.7217 0.7410 0.7447
OnWN 0.6110 0.5987 0.6257
FNWN 0.3364 0.4133 0.4381
SMT 0.3460 0.3426 0.3275

Mean 0.5365 0.5452 0.5502
Rank #19 #15 #11

Table (4) Official Results on STS 2013 test datasets.

UMBC_EB
IQUITY-
ParingWor
ds

UMBC_EB
IQUITY-
galactus

IBM_EG-
run6 
(UnOfficial)

headlines 0.7642 0.7428 0.77241
OnWN 0.7529 0.7053 0.70103
FNWN 0.5818 0.5444 0.44356
SMT 0.3804 0.3705 0.36807
Mean 0.6181 0.5927 0.59221
Rank #1 #2 #3

 Table (5) UnOfficial Result after activating the 
synonyms matching feature in IBM_EG-run6 
compared to the best two performing systems in the 
evaluation.

 Results of un-official run:
One  unofficial  run  was  performed  after  the 
evaluation  submission  deadline  due  to  the  tight 
schedule  of  the  evaluation.  This  experiment 
introduces the effect of WordNet  Wu and Palmer 
similarity  measure  on  the  configuration  of  Run5 
(Porter stemming word matching,  with  synonyms 
matching, zero weight for   BLEU score feature, 
while keeping the idf-weight= 3, lexical-weight = 
1, and NE-matching feature weight = 1) 
Table (6) reports the unofficial result achieved on 
STS 2013 test data, compared to the Official run 
IBM_Eg-run5.  

Unofficial-Run IBM_EG-run5

Mean 0.52682 0.5452

headlines 0.70018 0.7410

OnWN 0.60371 0.5987

FNWN 0.35691 0.4133

SMT 0.33875 0.3426
Table (6) Un-Official Result on STS 2013 test datasets.

From the results in Table (6) it is clear that Corpus 
based synonyms matching outperforms dictionary-
based WordNet matching over SEM2013 testset.

5 Conclusion

We  proposed  an  unsupervised  approach  for 
measuring  semantic  textual  similarity  based  on 
Lexical  matching  features  (with porter  stemming 
matching  and  synonyms  matching),  idf-Lexical 
matching  features,  Ngram  Frquency  (Modified 
BLEU)  matching  feature,  as  well  as  Named 
Entities matching feature combined together with a 
weighted cost  function.  Our experiments  proved 
that idf-weighted Lexical matching in addition to 
porter stemming and synonyms-matching features 
perform best on most released evaluation datasets. 
Our  best  system  officially  ranked  number  11 
among 90 participating system reporting a Pearson 
Mean  correlation  score  of  0.5502.  However  our 
best  experimental  set  up  “idf-weighted  Lexical 
matching  in  addition  to  porter  stemming  and 
synonyms-matching” reported in an unofficial run 
a mean correlation score of  0.59221 which ranks 
the system as number 3 among the 90 participating 
systems. In our future work we intend to try some 
machine  learning  algorithms  (like  AdaBoost  for 
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example)  for  weighting  our  similarity  matching 
feature scores. Also we plan to extend the usage of 
synonyms matching from the word level to the n-
gram  phrase  matching  level,  by  modifying  the 
BLEU Score N-gram matching function to handle 
synonym phrases matching.
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Abstract

Soft cardinality has been shown to be a very
strong text-overlapping baseline for the task of
measuring semantic textual similarity (STS),
obtaining 3rd place in SemEval-2012. At
*SEM-2013 shared task, beside the plain text-
overlapping approach, we tested within soft
cardinality two distributional word-similarity
functions derived from the ukWack corpus.
Unfortunately, we combined these measures
with other features using regression, obtain-
ing positions 18th, 22nd and 23rd among the
90 participants systems in the official rank-
ing. Already after the release of the gold stan-
dard annotations of the test data, we observed
that using only the similarity measures with-
out combining them with other features would
have obtained positions 6th, 7th and 8th; more-
over, an arithmetic average of these similarity
measures would have been 4th(mean=0.5747).
This paper describes both the 3 systems as
they were submitted and the similarity mea-
sures that would obtained those better results.

1 Introduction

The task of textual semantic similarity (STS) con-
sists in providing a similarity function on pairs of
texts that correlates with human judgments. Such
a function has many practical applications in NLP
tasks (e.g. summarization, question answering, tex-
tual entailment, paraphrasing, machine translation
evaluation, among others), which makes this task
particularly important. Numerous efforts have been
devoted to this task (Lee et al., 2005; Mihalcea et al.,
2006) and major evaluation campaigns have been

held at SemEval-2012 (Agirre et al., 2012) and in
*SEM-2013 (Agirre et al., 2013).

The experimental setup of STS in 2012 consisted
of three data sets, roughly divided in 50% for train-
ing and for testing, which contained text pairs manu-
ally annotated as a gold standard. Furthermore, two
data sets were provided for surprise testing. The
measure of performance was the average of the cor-
relations per data set weighted by the number of
pairs in each data set (mean). The best performing
systems were UKP (Bär et al., 2012) mean=0.6773,
TakeLab (Šaric et al., 2012) mean=0.6753 and soft
cardinality (Jimenez et al., 2012) mean=0.6708.
UKP and TakeLab systems used a large number of
resources (see (Agirre et al., 2012)) such as dictio-
naries, a distributional thesaurus, monolingual cor-
pora, Wikipedia, WordNet, distributional similar-
ity measures, KB similarity, POS tagger, machine
learning and others. Unlike those systems, the soft
cardinality approach used mainly text overlapping
and conventional text preprocessing such as remov-
ing of stop words, stemming and idf term weighting.
This shows that the additional gain in performance
from using external resources is small and that the
soft cardinality approach is a very challenging base-
line for the STS task. Soft cardinality has been
previously shown (Jimenez and Gelbukh, 2012) to
be also a good baseline for other applications such
as information retrieval, entity matching, paraphrase
detection and recognizing textual entailment.

Soft cardinality approach to constructing similar-
ity functions (Jimenez et al., 2010) consists in using
any cardinality-based resemblance coefficient (such
as Jaccard or Dice) but substituting the classical set
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cardinality with a softened counting function called
soft cardinality. For example, the soft cardinality of
a set containing three very similar elements is close
to (though larger than) 1, while for three very dif-
ferent elements it is close to (though less than) 3.
To use the soft cardinality with texts, they are repre-
sented as sets of words, and a word-similarity func-
tion is used for the soft counting of the words. For
the sake of completeness, we give a brief overview
of the soft-cardinality method in Section 3.

The resemblance coefficient used in our participa-
tion is a modified version of Tversky’s ratio model
(Tversky, 1977). Apart from the two parameters of
this coefficient, a new parameter was included and
functions max and min were used to make it sym-
metrical. The rationale for this new coefficient is
given in Section 2.

Three word similarity features used in our sys-
tems are described in Section 4. The one is a mea-
sure of character q-gram overlapping, which reuses
the coefficient proposed in Section 2; this measure is
described in subsection 4.1. The other two ones are
distributional measures obtained from the ukWack
corpus (Baroni et al., 2009), which is a collection of
web-crawled documents containing about 1.9 billion
words in English. The second measure is, again, a
reuse of the coefficient specified in Section 2, but us-
ing instead sets of occurrences (and co-occurrences)
of words in sentences in the ukWack corpus; this
measure is described in subsection 4.2. Finally, the
third one, which is a normalized version of point-
wise mutual information (PMI), is described in sub-
section 4.3.

The parameters of the three text-similarity func-
tions derived from the combination of the proposed
coefficient of resemblance (Section 2), the soft car-
dinality (Section 3) and the three word-similarity
measures (Section 4) were adjusted to maximize the
correlation with the 2012 STS gold standard data.
At this point, these soft-cardinality similarity func-
tions can provide predictions for the test data. How-
ever, we decided to test the approach of learning a
resemblance function from the training data instead
of using a preset resemblance coefficient. Basically,
most resemblance coefficients are ternary functions
F (x, y, z) where x = |A|, y = |B| and z = |A∩B|:
e.g. Dice coefficient is F (x, y, z) = 2z/x+y and Jac-
card is F (x, y, z) = z/x+y−z. Thus, this function

can be learned using a regression model, providing
cardinalities x, y and z as features and the gold stan-
dard value as the target function. The results ob-
tained for the text-similarity functions and the re-
gression approach are presented in Section 7.

Unfortunately, when using a regressor trained
with 2012 STS data and tested with 2013 surprise
data we observed that the results worsened rather
than improved. A short explanation of this is over-
fitting. A more detailed discussion of this, together
with an assessment of the performance gain obtained
by the use of distributional measures is provided in
Section 8.

Finally, in Section 9 the conclusions of our partic-
ipation in this evaluation campaign are presented.

2 Symmetrical Tversky’s Ratio Model

In the field of mathematical psychology Tversky
proposed the ratio model (TRM) (Tversky, 1977)
motivated by the imbalance that humans have on
the selection of the referent to compare things. This
model is a parameterized resemblance coefficient to
compare two sets A and B given by the following
expression:

trm(A,B) =
|A ∩B|

α|A \B|+ β|B \A|+ |A ∩B|
,

Having α, β ≥ 0. The numerator represents the
commonality between A and B, and the denomina-
tor represents the referent for comparison. Parame-
ters α and β represent the preference in the selection
of A or B as referent. Tversky associated the set
cardinality, to the stimuli of the objects being com-
pared. Let us consider a Tversky’s example of the
70s: A is North Corea, B is red China and stimuli
is the prominence of the country. When subjects as-
sessed the similarity between A and B, they tended
to select the country with less prominence as ref-
erent. Tversky observed that α was larger than β
when subjects compared countries, symbols, texts
and sounds. Our motivation is to use this model by
adjusting the parameters α and β for better modeling
human similarity judgments for short texts.

However, this is not a symmetric model and the
parameters α and β, have the dual interpretation of
modeling the asymmetry in the referent selection,
while controlling the balance between |A ∩ B| and
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|A−B|+ |B −A| as well. The following reformu-
lation, called symmetric TRM (strm), is intended to
address these issues:

strm(A,B) =
c

β (αa+ (1− α) b) + c
, (1)

a = min(|A − B|, |B − A|), b = max(|A −
B|, |B − A|) and c = |A ∩ B| + bias. In strm, α
models only the balance between the differences in
the cardinalities of A and B, and β models the bal-
ance between |A∩B| and |A−B|+|B−A|. Further-
more, the use of functions min and max makes the
measure to be symmetric. Although the motivation
for the bias parameter is empirical, we believe that
this reduces the effect of the common features that
are frequent and therefore less informative, e.g. stop
words. Note that for α = 0.5,β = 1 and bias = 0,
strm is equivalent to Dice’s coefficient. Similarity,
for α = 0.5,β = 2 and bias = 0, strm is equivalent
to the Jaccard’s coefficient.

3 Soft Cardinality

The cardinality of a set is its number of elements. By
definition, the sets do not allow repeated elements,
so if a collection of elements contains repetitions its
cardinality is the number of different elements. The
classical set cardinality does not take into account
similar elements, i.e. only the identical elements
in a collection counted once. The soft cardinality
(Jimenez et al., 2010) considers not only identical
elements but also similar using an auxiliary similar-
ity function sim, which compares pairs of elements.
This cardinality can be calculated for a collection of
elements A with the following expression:

|A|′ =
n∑

i=1

wi

 n∑
j=1

sim(ai, aj)
p

−1

(2)

A ={a1, a2, . . . , an}; wi ≥ 0; p ≥ 0; 1 >
sim(x, y) ≥ 0, x 6= y; and sim(x, x) = 1. The
parameter p controls the degree of "softness" of
the cardinality. This formulation has the property
of reproducing classical cardinality when p is large
and/or when sim is a rigid function that returns 1
only for identical elements and 0 otherwise. The co-
efficients wi are the weights associated with each el-
ement. In text applications elements ai are words

and weights wi represent the importance or infor-
mative character of each word (e.g. idf weights).
The apostrophe is used to differentiate soft cardinal-
ity from the classic set cardinality.

4 Word Similarity

Analogous to the STS, the word similarity is the task
of measuring the relationship of a couple of words
in a way correlated with human judgments. Since
when Rubenstein and Goodenough (1965) provided
the first data set, this task has been addressed pri-
marily through semantic networks (Resnik, 1999;
Pedersen et al., 2004) and distributional measures
(Agirre et al., 2009). However, other simpler ap-
proaches such as edit-distance (Levenshtein, 1966)
and stemming (Porter, 1980) can also be used. For
instance, the former identifies the similarity between
"song" and "sing", and later that between "sing" and
"singing". This section presents three approaches
for word similarity that can be plugged into the soft
cardinality expression in eq. 2.

4.1 Q-grams similarity

Q-grams are the collection of consecutive-
overlapped sub-strings of length q obtained
from the character string in a word. For instance,
the 2-grams (bi-grams) and 3-grams (trigrams) rep-
resentation of the word “sing” are {’#s’, ’si’, ’in’,
’ng’, ’g#’} and {’#si’, ’sin’, ’ing’, ’ng#’} respec-
tively. The character ’#’ is a padding character that
distinguishes q-grams at the beginning and ending
of a word. If the number of characters in a word is
greater or equal than q its representation in q-grams
is the word itself (e.g. the 6-grams in “sing” are
{’sing’}). Moreover, the 1-grams (unigrams) and
0-grams representations of “sing” are {’s’, ’i’, ’n’,
’g’} and {’sing’}. A word can also be represented
by combining multiple representations of q-grams.
For instance, the combined representation of “sing”
using 0-grams, unigrams, and bi-grams is {’sing’,
’s’, ’i’, ’n’, ’g’, ’#s’, ’si’, ’in’, ’ng’, ’g#’}, denoted
by [0:2]-grams. In practice a range [q1 : q2] of
q-grams can be used having 0 ≤ q1 < q2.

The proposed word-similarity function (named
qgrams) first represents a pair of words using
[q1 : q2]-grams and then compares them reusing
the strm coefficient (eq.1). The parameters of the
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qgrams function are q1, q2, αqgrams, βqgrams, and
biasqgrams. These parameters are sub-scripted to
distinguish them from their counterparts at the text-
similarity functions.

4.2 Context-Set Distributional Similarity

The hypothesis of this measure is that the co-
occurrence of two words in a sentence is a hint of
the possible relationship between them. Let us de-
fine sf(t) as the sentence frequency of a word t in
a corpus. The sentence frequency is equivalent to
the well known document frequency but uses sen-
tences instead of documents. Similarly sf(tA ∧ tB)
is the number of sentences where words tA and tB
co-occur. The idea is to compute a similarity func-
tion between tA and tB representing them as A and
B, which are sets of the sentences where tA and tB
occur. Similarly, A∩B is the set of sentences where
both words co-occur. The required cardinalities can
be obtained from the sentence frequencies by: |A| =
sf(tA); |B| = sf(tB) and |A ∩ B| = sf(tA ∧ tB).
These cardinalities are combined reusing again the
strm coefficient (eq. 1) to obtain a word-similarity
function. The parameters of this function, which we
refer to it as csds, are αcsds, βcsds and biascsds.

4.3 Normalized Point-wise Mutual Information

The pointwise mutual information (PMI) is a mea-
sure of relationship between two random variables.
PMI is calculated by the following expression:

pmi(tA, tB) = log2

(
P (tA ∧ tB)

P (tA) · P (tB)

)
PMI has been used to measure the relatedness of

pairs of words using the number of the hits returned
by a search engine (Turney, 2001; Bollegala et al.,
2007). However, PMI cannot be used directly as
sim function in eq.2. The alternative is to normal-
ize it dividing it by log2(P (tA ∧ tB)) obtaining a
value in the [1,−1] interval. This measure returns
1 for complete co-occurrence, 0 for independence
and -1 for “never” co-occurring. Given that the re-
sults in the interval (0,-1] are not relevant, the final
normalized-trimmed expression is:

npmi(tA, tB) = max

[
pmi(tA, tB)

log2(P (tA ∧ tB))
, 0

]
(3)

The probabilities required by PMI can be obtained
by MLE using sentence frequencies in a large cor-
pus: P (tA) ≈ sf(tA)

S , P (tB) ≈ sf(tB)
S ,and P (tA ∧

tB) ≈ sf(tA∧tB)
S . Where S is the total number of

sentences in the corpus.

5 Text-similarity Functions

The “building blocks” proposed in sections 2,
3 and 4, are assembled to build three text-
similarity functions, namely STSqgrams, STScsds

and STSnpmi. The first component is the strm re-
semblance coefficient (eq. 1), which takes as argu-
ments a pair of texts represented as bags of words
with importance weights associated with each word.
In the following subsection 5.1 a detailed descrip-
tion of the procedure for obtaining such weighted
bag-of-words is provided.

The strm coefficient is enhanced by replac-
ing the classical cardinality by the soft cardinality,
which exploits two resources: importance weights
associated with each word (weights wi) and pair-
wise comparisons among words (sim). Unlike
STSqgrams measure, STScsds and STSnpmi mea-
sures require statistics from a large corpus. A brief
description of the used corpus and the method for
obtaining such statistics is described in subsection
5.2. Finally, the three proposed text-similarity func-
tions contain free parameters that need to be ad-
justed. The method used to get those parameters is
described in subsection 5.3.

5.1 Preprocessing and Term Weighting

All training and test texts were preprocessed with
the following sequence of actions: i) text strings
were tokenized, ii) uppercase characters are con-
verted into lower-cased equivalents, iii) stop-words
were removed, iv) punctuation marks were removed,
and v) words were stemmed using Porter’s algorithm
(1980). Then each stemmed word was weighted
with idf (Jones, 2004) calculated using the entire
collection of texts.

5.2 Sentence Frequencies from Corpus

The sentence frequencies sf(t) and sf(tA ∧ tB) re-
quired by csds and npmi word-similarity func-
tions were obtained from the ukWack corpus (Ba-
roni et al., 2009). This corpus has roughly 1.9 bil-
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lion words, 87.8 millions of sentences and 2.7 mil-
lions of documents. The corpus was iterated sen-
tence by sentence with the same preprocessing that
was described in the previous section, looking for
all occurrences of words and word pairs from the
full training and test texts. The target words were
stored in a trie, making the entire corpus iteration
took about 90 minutes in a laptop with 4GB and a
1.3Ghz processor.

5.3 Parameter optimization

The three proposed text-similarity functions have
several parameters: p exponent in the soft car-
dinality; α, β, and bias in strm coefficient;
their sub-scripted versions in qgrams and csds
word-similarity functions; and finally q1and q2 for
qgrams function. Parameter sets for each of the
three text-similarity functions were optimized us-
ing the full STS-SemEval-2012 data. The function
to maximize was the correlation between similar-
ity scores against the gold standard in the training
data. The set of parameters for each similarity func-
tion were optimized using a greedy hill-climbing ap-
proach by using steps of 0.01 for all parameters ex-
cept q1 and q2 that used 1 as step. The initial values
were p = 1, α = 0.5, β = 1, bias = 0, q1 = 2 and
q2 = 3. All parameters were optimized until im-
provement in the function to maximize was below
0.0001. The obtained values are :

STSqgrams p = 1.32,α = 0.52, β = 0.64, bias =
−0.45, q1 = 0, q2 = 2, αqgrams = 0.95,
βqgrams = 1.44, biasqgrams = −0.44.

STScsds p = 0.5, α = 0.63, β = 0.69, bias =
−2.05, αcsds = 1.34, βcsds = 2.57, biascsds =
−1.22 .

STSnpmi p = 6.17,α = 0.83, β = 0.64, bias =
−2.11.

6 Regression for STS

The use of regression is motivated by the follow-
ing experiment. First, a synthetic data set with
1,000 instances was generated with the following
three features: |A| = RandomBetween(1, 100),
|B| = RandomBetween(1, 100) and |A ∩ B| =
RandomBetween(0,min[|A|, |B|]). Secondly, a

#1 STSsim #11 |A∩B|′/|A|′

#2 |A|′ #12 |A∩B|′/|B|′

#3 |B|′ #13 |A|′ · |B|′

#4 |A ∩B|′ #14 |A∩B|′/|A∪B|′

#5 |A ∪B|′ #15 2·|A∩B|′/|A|′+|B|′

#6 |A \B|′ #16 |A∩B|/min[|A|,|B|]

#7 |B \A|′ #17 |A∩B|′/max[|A|′,|B|′]

#8 |A ∪B −A ∩B|′ #18 |A∩B|′/
√
|A|′·|B|′

#9 |A−B|′/|A|′ #19 |A∩B|′+|A|′+|B|′
2·|A|′·|B|′

#10 |B−A|′/|B|′ #20 gold standard

Table 1: Feature set for regression

linear regressor was trained using the Dice’s coef-
ficient (i.e. 2|A ∩ B|/|A| + |B|) as target function.
The Pearson correlation obtained using 4-fold cross-
validation as method of evaluation was r = 0.93.
Besides, a Reduced Error Pruning (REP) tree (Wit-
ten and Frank, 2005) boosted with 30 iterations of
Bagging (Breiman, 1996) was used instead of the
linear regressor obtaining r = 0.99. We concluded
that a particular resemblance coefficient can be ac-
curately approximated using a nonlinear regression
algorithm and training data.

This approach can be used for replacing the strm
coefficient by a similarity function learned from STS
training data. The three features used in the previ-
ous experiment were extended to a total of 19 (see
table 1) plus the gold standard as target. The feature
#1 is the score of the corresponding text-similarity
function described in the previous section. Three
sets of features were constructed, each with 19 fea-
tures using the soft cardinality in combination with
the word-similarity functions qgrams, csds and
npmi. Let us name these feature sets as fs:qgrams,
fs:csds and fs:npmi. The submission labeled run1
was obtained using the feature set fs:qgrams (19 fea-
tures). The submission labeled run2 was obtained
using the aggregation of fs:qgrams and fs:csds (19×
2 = 38 features). Finally, run3 was the aggregation
of fs:grams, fs:csds and fs:npmi (19 × 3 = 57 fea-
tures).

7 Results in *SEM 2013 Shared Task

In this section three groups of systems are described
by using the functions and models proposed in the
previous sections. The first group (and simplest)
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Data set STSqgrams STScsds STSnpmi average

headlines 0.7625 0.7243 0.7379 0.7562
OnWN 0.7022 0.7050 0.6832 0.7063
FNWM 0.2704 0.3713 0.4215 0.3940

SMT 0.3151 0.3325 0.3408 0.3402
mean 0.5570 0.5592 0.5653 0.5747
rank 8 7 6 4

Table 2: Unofficial results using text-similarity functions

Data set run1 run2 run3

headlines 0.7591 0.7632 0.7640
OnWN 0.7159 0.7239 0.7485
FNWM 0.2806 0.3679 0.3487

SMT 0.2820 0.2786 0.2952
mean 0.5491 0.5586 0.5690
rank 14 8 4

Table 3: Unofficial results using linear regression

of systems consist in using the scores of the three
text-similarity functions STSqgrams, STScsds and
STSnpmi. Table 2 shows the unofficial results of
these three systems. The bottom row shows the posi-
tions that these systems would have obtained if they
had been submitted to the *SEM shared task 2013.
The last column shows the results of a system that
combines the scores of three measures on a single
score calculating the arithmetic mean. This is the
best performing system obtained with the methods
described in this paper.

Tables 3 and 4 show unofficial and official re-
sults of the method described in section 6 using
linear regression and Bagging (30 iterations)+REP
tree respectively. These results were obtained using
WEKA (Hall et al., 2009).

8 Discussion

Contrary to the observation we made in training
data, the methods that used regression to predict the
gold standard performed poorly compared with the
text similarity functions proposed in Section 5. That
is, the results in Table 2 overcome those in Tables 3
and 4. Also in training data, Bagging+REP tree sur-
passed linear regression, but, as can be seen in tables
3 and 4 the opposite happened in test data. This is
a clear symptom of overfitting. However, the OnWN

Data set run1 run2 run3

headlines 0.6410 0.6713 0.6603
OnWN 0.7360 0.7412 0.7401
FNWM 0.3442 0.3838 0.3347

SMT 0.3035 0.2981 0.2900
mean 0.5273 0.5402 0.5294
rank 23 18 22

Table 4: Official results of the submitted runs to STS
*SEM 2013 shared task using Bagging + REP tree for
regression

data set was an exception, which obtained the best
results using linear regression. OnWN was the only
one among the 2013 data sets that was not a sur-
prise data set. Probably the 5.97% relative improve-
ment obtained in run3 by the linear regression versus
the best result in Table 2 may be justified owing to
some patterns discovered by the linear regressor in
the OnWN’2012 training data which are projected
on the OnWN’2013 test data.

It is worth noting that in all three sets of results,
the lowest mean was consistently obtained by the
text-overlapping methods, namely STSqgrams and
run1. The relative improvement in mean due to
the use of distributional measures against the text-
overlapping methods was 3.18%, 3.62% and 2.45%
in each set of results (see Tables 2, 3 and 4). In
FNWM data set, the biggest improvements achieved
55.88%, 31.11% and 11.50% respectively in the
three groups of results, followed by SMT data set.
Both in FNWN data set as in SMT, the texts are sys-
tematically longer than those found in OnWN and
headlines. This result suggests that the improvement
due to distributional measures is more significant in
longer texts than in the shorter ones.

Lastly, it is also important to notice that
the STSqgrams text-similarity function obtained
mean = 0.5570, which proved again to be a very
strong text-overlapping baseline for the STS task.

9 Conclusions

We participated in the CORE-STS shared task in
*SEM 2013 with satisfactory results obtaining po-
sitions 18th, 22nd, and 23rd in the official ranking.
Our systems were based on a new parameterized
resemblance coefficient derived from the Tversky’s
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ratio model in combination with the soft cardinal-
ity. The three proposed text-similarity functions
used q-grams overlapping and distributional mea-
sures obtained from the ukWack corpus. These text-
similarity functions would have been attained posi-
tions 6th, 7th and 8th in the official ranking, besides
a simple average of them would have reached the
4thplace. Another important conclusion was that the
plain text-overlapping method was consistently im-
proved by the incremental use of the proposed distri-
butional measures. This result was most noticeable
in long texts.

In conclusion, the proposed text-similarity func-
tions proved to be competitive despite their simplic-
ity and the few resources used.
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Abstract

CLaC-CORE, an exhaustive feature combina-
tion system ranked 4th among 34 teams in the
Semantic Textual Similarity shared task STS
2013. Using a core set of 11 lexical features
of the most basic kind, it uses a support vector
regressor which uses a combination of these
lexical features to train a model for predicting
similarity between sentences in a two phase
method, which in turn uses all combinations
of the features in the feature space and trains
separate models based on each combination.
Then it creates a meta-feature space and trains
a final model based on that. This two step pro-
cess improves the results achieved by single-
layer standard learning methodology over the
same simple features. We analyze the correla-
tion of feature combinations with the data sets
over which they are effective.

1 Introduction

The Semantic Textual Similarity (STS) shared task
aims to find a unified way of measuring similarity
between sentences. In fact, sentence similarity is
a core element of tasks trying to establish how two
pieces of text are related, such as Textual Entailment
(RTE) (Dagan et al., 2006), and Paraphrase Recog-
nition (Dolan et al., 2004). The STS shared task was
introduced for SemEval-2012 and was selected as its
first shared task. Similar in spirit, STS differs from
the well-known RTE shared tasks in two important
points: it defines a graded similarity scale to mea-
sure similarity of two texts, instead of RTE’s binary
yes/no decision and the similarity relation is consid-

ered to be symmetrical, whereas the entailment rela-
tion of RTE is inherently unidirectional.

The leading systems in the 2012 competition used
a variety of very simple lexical features. Each sys-
tem combines a different set of related features.
CLaC Labs investigated the different combination
possibilities of these simple lexical features and
measured their performance on the different data
sets. Originally conceived to explore the space of
all possible feature combinations for ‘feature com-
bination selection’, a two-step method emerged that
deliberately compiles and trains all feature combina-
tions exhaustively and then trains an SVM regressor
using all combination models as its input features.
It turns out that this technique is not nearly as pro-
hibitive as imagined and achieves statistically sig-
nificant improvements over the alternative of feature
selection or of using any one single combination in-
dividually.

We propose the method as a viable approach when
the characteristics of the data are not well under-
stood and no satisfactory training set is available.

2 Related Work

Recently, systems started to approach measuring
similarity by combining different resources and
methods. For example, the STS-2012 shared task’s
leading UKP (Bär et al., 2012) system uses n-grams,
string similarity, WordNet, and ESA, and a regres-
sor. In addition, they use MOSES, a statistical ma-
chine translation system (Koehn et al., 2007), to
translate each English sentence into Dutch, German,
and Spanish and back into English in an effort to in-
crease their training set of similar text pairs.
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TakeLab (Šaric et al., 2012), in place two of the
2012 STS shared task, uses n-gram models, two
WordNet-based measures, LSA, and dependencies
to align subject-verb-object predicate structures. In-
cluding named-entities and number matching in the
feature space improved performance of their support
vector regressor.

(Shareghi and Bergler, 2013) illustrates two ex-
periments with STS-2012 training and test sets us-
ing the basic core features of these systems, outper-
forming the STS-2012 task’s highest ranking sys-
tems. The STS-2013 submission CLaC-CORE uses
the same two-step approach.

3 CLaC Methodology

Preprocessing consists of tokenizing, lemmatizing,
sentence splitting, and part of speech (POS) tagging.
We extract two main categories of lexical features:
explicit and implicit.

3.1 Explicit Lexical Features
Sentence similarity at the explicit level is based
solely on the input text and measures the similar-
ity between two sentences either by using an n-gram
model (ROUGE-1, ROUGE-2, ROUGE-SU4) or by
reverting to string similarity (longest common sub-
sequence, jaro, ROUGE-W):

Longest Common Subsequence (Allison and
Trevor, 1986) compare the length of the
longest sequence of characters, not necessarily
consecutive ones, in order to detect similarities

Jaro (Jaro, 1989) identifies spelling variation be-
tween two inputs based on the occurrence of
common characters between two text segments
at a certain distance

ROUGE-W (Lin et al., 2004a), a weighted version
of longest common subsequence, takes into ac-
count the number of the consecutive characters
in each match, giving higher score for those
matches that have larger number of consecu-
tive characters in common. This metric was de-
veloped to measure the similarity between ma-
chine generated text summaries and a manually
generated gold standard

ROUGE-1 unigrams (Lin et al., 2004a)

ROUGE-2 bigrams (Lin et al., 2004a)

ROUGE-SU4 4-Skip bigrams (including Uni-
grams) (Lin et al., 2004a)

3.2 Implicit Lexical Features
Sentence similarity at the implicit level uses exter-
nal resources to make up for the lexical gaps that
go otherwise undetected at the explicit level. The
synonymy of bag and suitcase is an example of an
implicit similarity. This type of implicit similarity
can be detected using knowledge sources such as
WordNet or Roget’s Thesaurus based on the Word-
Net::Similarity package (Pedersen et al., 2004) and
combination techniques (Mihalcea et al., 2006). For
the more semantically challenging non-ontologigal
relations, for example sanction and Iran, which lex-
ica do not provide, co-occurrence-based measures
like ESA are more robust. We use:

Lin (Lin, 1998) uses the Brown Corpus of Ameri-
can English to calculate information content of
two concepts’ least common subsumer. Then
he scales it using the sum of the information
content of the compared concepts

Jiang-Conrath (Jiang and Conrath, 1997) uses the
conditional probability of encountering a con-
cept given an instance of its parent to calculate
the information content. Then they define the
distance between two concepts to be the sum
of the difference between the information con-
tent of each of the two given concepts and their
least common subsumer

Roget’s Thesaurus is another lexical resource and
is based on well-crafted concept classifica-
tion and was created by professional lexicogra-
phers. It has a nine-level ontology and doesn’t
have one of the major drawbacks of WordNet,
which is lack of links between part of speeches.
According to the schema proposed by (Jarmasz
and Szpakowicz, 2003) the distance of two
terms decreases within the interval of [0,16],
as the the common head that subsumes them
moves from top to the bottom and becomes
more specific. The electronic version of Ro-
get’s Thesaurus which was developed by (Jar-
masz and Szpakowicz, 2003) was used for ex-
tracting this score
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Explicit Semantic Analyzer (Gabrilovich and
Markovitch, 2007) In order to have broader
coverage on word types not represented in
lexical resources, specifically for named enti-
ties, we add explicit semantic analyzer (ESA)
generated features to our feature space

3.3 CLaC-CORE
CLaC-CORE first generates all combinations of the
11 basic features (jaro, Lemma, lcsq, ROUGE-W,
ROUGE-1, ROUGE-2, ROUGE-SU4, roget, lin, jcn,
esa), that is 211 − 1 = 2047 non-empty combina-
tions. The Two Phase Model Training step trains
a separate Support Vector Regressor (SVR) for
each combination creating 2047 Phase One Models.
These 2N − 1 predicted scores per text data item
form a new feature vector called Phase Two Fea-
tures, which feed into a SVR to train our Phase Two
Model.

On a standard 2 core computer with ≤100 GB
of RAM using multi-threading (thread pool of size
200, a training process per thread) it took roughly 15
hours to train the 2047 Phase One Models on 5342
text pairs and another 17 hours to build the Phase
Two Feature Space for the training data. Building
the Phase Two Feature Space for the test sets took
roughly 7.5 hours for 2250 test pairs.

For the current submissions we combine all train-
ing sets into one single training set used in all of our
submissions for the STS 2013 task.

4 Analysis of Results

Our three submission for STS-2013 compare a base-
line of Standard Learning (RUN-1)with two ver-
sions of our Two Phase Learning (RUN-2, RUN-
3). For the Standard Learning baseline, one regres-
sor was trained on the training set on all 11 Basic
Features and tested on the test sets. For the remain-
ing runs the Two Phase Learning method was used.
All our submissions use the same 11 Basic Features.
RUN-2 is our main contribution. RUN-3 is identical
to RUN-2 except for reducing the number of support
vectors and allowing larger training errors in an ef-
fort to assess the potential for speedup. This was
done by decreasing the value of γ (in the RBF ker-
nel) from 0.01 to 0.0001, and decreasing the value of
C (error weight) from 1 to 0.01. These parameters
resulted in a smoother and simpler decision surface

but negatively affected the performance for RUN-3
as shown in Table 1.

The STS shared task-2013 used the Pearson Cor-
relation Coefficient as the evaluation metric. The re-
sults of our experiments are presented in Table 1.
The results indicate that the proposed method, RUN-

rank headlines OnWN FNWN SMT
RUN-1 10 0.6774 0.7667 0.3793 0.3068
RUN-2 7 0.6921 0.7367 0.3793 0.3375
RUN-3 46 0.5276 0.6495 0.4158 0.3082
STS-bl 73 0.5399 0.2828 0.2146 0.2861

Table 1: CLaC-CORE runs and STS baseline perfor-
mance

2, was successful in improving the results achieved
by our baseline RUN-1 ever so slightly (the confi-
dence invervals at 5% differ to .016 at the upper end)
and far exceeds the reduced computation version of
RUN-3.

4.1 Successful Feature Combinations

Having trained separate models based on each sub-
set of features we can use the predicted scores gen-
erated by each of these models to calculate their cor-
relations to assess which of the feature combinations
were more effective in making predictions and how
this most successful combination varies bewteen the
different datasets.

best worst
headlines [ ROUGE-1 ROUGE-

SU4 esa lem]
[jcn lem lcsq]

0.7329 0.3375
OnWN [ROUGE-1 ROUGE-

SU4 esa lin jcn roget
lem lcsq ROUGE-W ]

[jaro]

0.7768 0.1425
FNWN [roget ROUGE-1

ROUGE-SU4]
[ROUGE-2 lem lcsq]

0.4464 -0.0386
SMT [lin jcn roget

ROUGE-1]
[esa lcsq]

0.3648 0.2305

Table 2: Best and worst feature combination performance
on test set

Table 2 lists the best and worst feature combina-
tions on each test set. ROUGE-1 (denoted by RO-
1), unigram overlap, is part of all four best perform-
ing subsets. The features ROUGE-SU4 and Roget’s
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appear in three of the best four feature combina-
tions, making Roget’s the best performing lexicon-
based feature outperforming WordNet features on
this task. esa, lin, jcn are part of two of the best
subsets, where lin and jcn occur together both times,
suggesting synergy. Looking at the worst perform-
ing feature combinations is also instructive and sug-
gests that lcsq was not an effective feature (despite
being at the heart of the more successful ROUGE-W
measure).

We also analyze performance of individual fea-
tures over different datasets. Table 3 lists all the fea-
tures and, instead of looking at only the best com-
bination, takes the top three best combinations for
each test and compares how many times each fea-
ture has occurred in the resulting 12 combinations
(first column). Three clear classes of effectiveness
emerge, high (10-7), medium (6-4), and low (3-0).
Next, we observe that the test sets differ in the aver-
age length of the data: headlines and OnWN glosses
are very short, in contrast to the other two. Table 3
shows in fact contrastive feature behavior for these
two categories (denoted by short and long). The last
column reports the number of time a feature has oc-
curred in the best combinations (out of 4). Again,
ROUGE-1, ROUGE-SU4, and roget prove effective
across different test sets. esa and lem seem most re-
liable when we deal with short text fragments, while
roget and ROUGE-SU4 are most valuable on longer
texts. The individual most valuable features overall
are ROUGE-1, ROUGE-SU4, and roget.

Features total (/12) short (/6) long (/6) best (/4)
esa 6 6 0 2
lin 6 3 3 2
jcn 4 1 3 2
roget 9 3 6 3
lem 6 6 0 2
jaro 0 0 0 0
lcsq 3 3 0 1
ROUGE-W 7 4 3 1
ROUGE-1 10 6 4 4
ROUGE-2 3 1 2 0
ROUGE-SU4 10 5 5 3

Table 3: Feature contribution to the three best results over
four datasets

5 Conclusion

CLaC-CORE investigated the performance possibil-
ities of different feature combinations for 11 basic
lexical features that are frequently used in seman-
tic distance measures. By exhaustively training all
combinations in a two-phase regressor, we were able
to establish a few interesting observations.

First, our own baseline of simply training a SVM
regressor on all 11 basic features achieves rank 10
and outperforms the baseline used for the shared
task. It should probably become the new standard
baseline.

Second, our two-phase exhaustive model, while
resource intensive, is not at all prohibitive. If the
knowledge to pick appropriate features is not avail-
able and if not enough training data exists to per-
form feature selection, the exhaustive method can
produce results that outperform our baseline and one
that is competitive in the current field (rank 7 of 88
submissions). But more importantly, this method al-
lows us to forensically analyze feature combination
behavior contrastively. We were able to establish
that unigrams and 4-skip bigrams are most versatile,
but surprisingly that Roget’s Thesaurus outperforms
the two leading WordNet-based distance measures.
In addition, ROUGE-W, a weighted longest com-
mon subsequence algorithm that to our knowledge
has not previously been used for similarity mea-
surements shows to be a fairly reliable measure for
all data sets, in contrast to longest common subse-
quence, which is among the lowest performers.

We feel that the insight we gained well justified
the expense of our approach.
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Abstract

In this paper we present our systems for cal-
culating the degree of semantic similarity be-
tween two texts that we submitted to the Se-
mantic Textual Similarity task at SemEval-
2013. Our systems predict similarity using
a regression over features based on the fol-
lowing sources of information: string similar-
ity, topic distributions of the texts based on
latent Dirichlet allocation, and similarity be-
tween the documents returned by an informa-
tion retrieval engine when the target texts are
used as queries. We also explore methods for
integrating predictions using different training
datasets and feature sets. Our best system was
ranked 17th out of 89 participating systems.
In our post-task analysis, we identify simple
changes to our system that further improve our
results.

1 Introduction

Semantic Textual Similarity (STS) measures the de-
gree of semantic similarity or equivalence between
a pair of short texts. STS is related to many natural
language processing applications such as text sum-
marisation (Aliguliyev, 2009), machine translation,
word sense disambiguation, and question answering
(De Boni and Manandhar, 2003; Jeon et al., 2005).

Two short texts are considered similar if they both
convey similar messages. Often it is the case that
similar texts will have a high degree of lexical over-
lap, although this isn’t always so. For example,
SC dismissed government’s review plea in Vodafone
tax case and SC dismisses govt’s review petition on
Vodafone tax verdict are semantically similar. These

texts have matches in terms of exact words (SC,
Vodafone, tax), morphologically-related words (dis-
missed and dismisses), and abbreviations (govern-
ment’s and govt’s). However, the usages (senses) of
plea and petition, and case and verdict are also sim-
ilar.

One straightforward way of estimating semantic
similarity of two texts is by using approaches based
on the similarity of the surface forms of the words
they contain. However, such methods are not capa-
ble of capturing similarity or relatedness at the lexi-
cal level, and moreover, they do not exploit the con-
text in which individual words are used in a target
text. Nevertheless, a variety of knowledge sources
— including part-of-speech, collocations, syntax,
and domain — can be used to identify the usage or
sense of words in context (McRoy, 1992; Agirre and
Martinez, 2001; Agirre and Stevenson, 2006) to ad-
dress these issues.

Despite their limitations, string similarity mea-
sures have been widely used in previous seman-
tic similarity tasks (Agirre et al., 2012; Islam and
Inkpen, 2008). Latent variable models have also
been used to estimate the semantic similarity be-
tween words, word usages, and texts (Steyvers and
Griffiths, 2007; Lui et al., 2012; Guo and Diab,
2012; Dinu and Lapata, 2010).

In this paper, we consider three different ways of
measuring semantic similarity based on word and
word usage similarity:

1. String-based similarity to measure surface-
level lexical similarity, taking into account
morphology and abbreviations (e.g., dismisses
and dismissed, and government’s and govt’s);
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2. Latent variable models of similarity to cap-
ture words that have different surface forms,
but that have similar meanings or that can be
used in similar contexts (e.g., petition and plea,
verdict and case); and

3. Topical/domain similarity of the texts with re-
spect to the similarity of documents in an ex-
ternal corpus (based on information-retrieval
methods) that are relevant to the target texts.

We develop features based on all three of these
knowledge sources to capture semantic similarity
from a variety of perspectives. We build a regres-
sion model, trained on STS training data which has
semantic similarity scores for pairs of texts, to learn
weights for the features and rate the similarity of test
instances. Our approach to the task is to explore the
utility of novel features or features that have not per-
formed well in previous research, rather than com-
bine these features with the myriad of features that
have been proposed by others for the task.

2 Text Similarity Measures

In this section we describe the various features used
in our system.

2.1 String Similarity Measures (SS)
Our first set of features contains various string simi-
larity measures (SS), which compare the target texts
in terms of the words they contain and the order
of the words (Islam and Inkpen, 2008). In the Se-
mEval 2012 STS task (Agirre et al., 2012) such
features were used by several participants (Biggins
et al., 2012; Bär et al., 2012; Heilman and Mad-
nani, 2012), including the first-ranked team (Bär et
al., 2012) who considered string similarity measures
alongside a wide range of other features.

For our string similarity features, the texts were
lemmatized using the implementation of Lancaster
Stemming in NLTK 2.0 (Bird, 2006), and all punc-
tuation was removed. Limited stopword removal
was carried out by eliminating the words a, and, and
the. The output of each string similarity measure
is normalized to the range of [0, 1], where 0 indi-
cates that the texts are completely different, while 1
means they are identical. The normalization method
for each feature is described in Salehi and Cook (to

appear), wherein the authors applied string similar-
ity measures successfully to the task of predicting
the compositionality of multiword expressions.

Identical Unigrams (IU): This feature measures
the number of words shared between the two texts,
irrespective of word order.

Longest Common Substring (LCS): This mea-
sures the longest sequence of words shared between
the two texts. For example, the longest common
substring between the following sentences is bolded:

A woman and man are dancing in the
rain.
A couple are dancing in the street.

Levenshtein (LEV1): Levenshtein distance (also
known as edit distance) calculates the number of
basic word-level edit operations (insertion, deletion
and substitution) to transform one text into the other:

Levenshtein with substitution penalty (LEV2):
This feature is a variant of LEV1 in which substi-
tution is considered as two edit operations: an inser-
tion and a deletion (Baldwin, 2009).

Smith Waterman (SW): This method is designed
to locally align two sequences of amino acids (Smith
and Waterman, 1981). The algorithm looks for
the longest similar regions by maximizing the num-
ber of matches and minimizing the number of in-
sertion/deletion/substitution operations necessary to
align the two sequences. In other words, it finds the
longest common sequence while tolerating a small
number of differences. We call this sequence, the
“aligned sequence”. It has length equal to or greater
than the longest common sequence.

Not Aligned Words (NAW): As mentioned
above, SW looks for similar regions in the given
texts. Our last string similarity feature shows the
number of identical words not aligned by the SW al-
gorithm. We used this feature to examine how simi-
lar the unaligned words are.

These six features (IU, LCS, LEV1, LEV2, SW,
and NAW) form our string similarity (SS) features.
LEV2, SW, and NAW have not been previously con-
sidered for STS.
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2.2 Topic Modelling Similarity Measures (TM)
The topic modelling features (TM) are based on La-
tent Dirichlet Allocation (LDA), a generative prob-
abilistic model in which each document is mod-
eled as a distribution over a finite set of topics, and
each topic is represented as a distribution over words
(Blei et al., 2003). We build a topic model on a back-
ground corpus, and then for each target text we cre-
ate a topic vector based on the topic allocations of
its content words, based on the method developed
by Lui et al. (2012) for predicting word usage simi-
larity.

The choice of the number of topics, T , can
have a big impact on the performance of this
method. Choosing a small T might give overly-
broad topics, while a large T might lead to un-
interpretable topics (Steyvers and Griffiths, 2007).
Moreover smaller numbers of topics have been
shown to perform poorly on both sentence simi-
larity (Guo and Diab, 2012) and word usage sim-
ilarity tasks (Lui et al., 2012). We therefore build
topic models for 33 values of T in the range
2, 3, 5, 8, 10, 50, 80, 100, 150, 200, ...1350.

The background corpus used for generating the
topic models is similar to the COL-WTMF sys-
tem (Guo and Diab, 2012) from the STS-2012 task,
which outperformed LDA. In particular, we use
sense definitions from WordNet, Wiktionary and all
sentences from the Brown corpus. Similarity be-
tween two texts is measured on the basis of the simi-
larity between their topic distributions. We consider
three vector-based similarity measures here: Cosine
similarity, Jensen-Shannon divergence and KL di-
vergence. Thus for each target text pair we extract
99 features corresponding to the 3 similarity mea-
sures for each of the 33 T settings. These features
are used as the TM feature set in the systems de-
scribed below.

2.3 IR Similarity Measures (IR)
The information retrieval–based features (IR) were
based on a dump of English Wikipedia from Novem-
ber 2009. The entire dump was stripped of markup
and tokenised using the OpenNLP tokeniser. The
tokenised documents were then parsed into TREC
format, with each article forming an individual doc-
ument. These documents were indexed using the

Indri IR engine1 with stopword removal. Each
of the two target texts was issued as a full text
query (without any phrases) to Indri, and the first
1000 documents for each text were returned, based
on Okapi term weighting (Robertson and Walker,
1994). These resultant document lists were then
converted into features using a number of set- and
rank-based measures: Dice’s coefficient, Jaccard in-
dex, average overlap, and rank-biased overlap (the
latter two are described in Webber et al. (2010)).
The first two are based on simple set overlap and
ignore the ranks; average overlap takes into account
the rank, but equally weights high- and low-ranking
documents; and rank-biased overlap weights higher-
ranked items higher.

In addition to comparisons of the document rank-
ings for a given target text pair, we also consid-
ered a method that compared the top-ranking doc-
uments themselves. To compare two texts, we ob-
tain the top-100 documents using each text as a
query as above. We then calculate the similarity be-
tween these two sets of resultant documents using
the χ2-based corpus similarity measure of Kilgarriff
(2001). In this method the χ2 statistic is calculated
for the 500 most frequent words in the union of the
two sets of documents (corpora), and is interpreted
as the similarity between the sets of documents.

These 5 IR features (4 rank-based, and 1
document-based) are novel in the context of STS,
and are used in the compound systems described be-
low.

3 Compound systems

3.1 Ridge regression
Each of our features represents a (potentially noisy)
measurement of the semantic textual similarity be-
tween two texts. However, the scale of our fea-
tures varies, e.g., [0, 1] for the string similarity fea-
tures vs. unbounded for KL divergence (one of the
topic modelling features). To learn the mapping be-
tween these features and the graded [0, 5] scale of
the shared task, we made use of a statistical tech-
nique known as ridge regression, as implemented in
scikit-learn.2 Ridge regression is a form of
linear regression where the loss function is the ordi-

1http://www.lemurproject.org/indri/
2http://scikit-learn.org
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nary least squares, but with an additional L2 regular-
ization term. In our empirical evaluation, we found
that ridge regression outperformed linear regression
on our feature set. For brevity, we only present re-
sults from ridge regression.

3.2 Domain Adaptation
Domain adaptation (Daumé and Marcu, 2006) is the
general term applied to techniques for using labelled
data from a related distribution to label data from a
target distribution. For the 2013 Shared Task, no
training data was provided for the target datasets,
making domain adaptation an important considera-
tion. In this work, we assume that each dataset rep-
resents a different domain, and on this basis develop
approaches that are sensitive to inter-domain differ-
ences.

We tested two simple approaches to including do-
main information in our trained model. The first ap-
proach, which we will refer to as flagging, simply in-
volves appending a boolean vector to each training
instance to indicate which training dataset it came
from. The vector has length D, equal to the number
of training datasets (3 for this task, because we train
on the STS 2012 training data). All the values of the
vector are 0, except for a single 1 according to the
dataset that the training instance is drawn from. For
test data, the entire vector consists of 0s.

The second approach we considered is based on
metalearning, and we will refer to it as domain
stacking. In domain stacking, we train a regressor
for each domain (the level 0 regressors (Wolpert,
1992)). Each of these regressors is then applied
to a test instance to produce a predicted value (the
level 0 prediction). These predictions are then com-
bined using a second regressor (the level 1 regres-
sor), to produce a final prediction for each instance
(the level 1 prediction). This approach is closely
related to feature stacking (Lui, 2012) and stacked
generalization (Wolpert, 1992). A general princi-
ple of metalearning is to combine multiple weaker
(“less accurate”) predictors — termed level 0 pre-
dictors — to produce a stronger (“more accurate”)
predictor — the level 1 predictor. In stacked gener-
alization, the level 0 predictors are different learning
algorithms. In feature stacking, they are the same
algorithm trained on different subsets of features, in
this work corresponding to different methods for es-

timating STS (Section 2). In domain stacking, the
level 0 predictions are obtained from subsets of the
training data, where each subset corresponds to all
the instances from a single dataset (e.g. MSRpar or
SMTeuroparl). In terms of subsampling the training
data, this technique is related to bagging (Breiman,
1996). However, rather than generating new train-
ing sets by uniform sampling across the whole pool
of training data, we treat each domain in the train-
ing dataset as a unique sample. Finally, we also ex-
periment with feature-domain stacking, in which the
level 0 predictions are obtained from the cross prod-
uct of subsets of the training data (as per domain
stacking) and subsets of the feature set (as per fea-
ture stacking). We report results for all 3 variants in
Section 5.

This framework of feature-domain stacking can
be applied with any regression or classification al-
gorithm (indeed, the level 0 and level 1 predictors
could be trained using different algorithms). In this
work, all our regressors are trained using ridge re-
gression (Section 3.1).

4 Submitted Runs

In this section we describe the three official runs we
submitted to the shared task.

4.1 Run1 — Bahar
For this run we used just the SS feature set, aug-
mented with flagging for domain adaptation. Ridge
regression was used to train a regressor across the
three training datasets (MSRvid, MSRpar, SMTeu-
roparl). Each instance was then labelled using the
output of the regressor, and the output range was lin-
early re-scaled to [0, 5] as it occasionally produced
values outside of this range. Although this approach
approximates STS using only lexical textual similar-
ity, it was our best-performing system on the training
data (Table 1). Furthermore the SS features are ap-
pealing because of their simplicity and because they
do not make use of any external resources.

4.2 Run2 — Concat
In this run, we concatenated the feature vectors
from all three of our feature sets (SS, TM and
IR), and again trained a regressor on the union of
the MSRvid, MSRpar and SMTeuroparl training
datasets. As in Run1, the output of the regression
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FSet FL FS DS MSRpar MSRvid SMTeuroparl Ave
SS 0.522 0.537 0.526 0.528

(*) SS X 0.552 0.533 0.562 0.549
TM 0.270 0.479 0.425 0.391
TM X 0.250 0.580 0.427 0.419
IR 0.264 0.759 0.407 0.477
IR X 0.291 0.754 0.400 0.482

(+) ALL 0.401 0.543 0.513 0.485
ALL X 0.377 0.595 0.516 0.496
ALL X 0.385 0.587 0.520 0.497
ALL X 0.452 0.637 0.472 0.521
ALL X X 0.429 0.619 0.526 0.524
ALL X X 0.429 0.627 0.526 0.527

(−) ALL X X X 0.441 0.645 0.527 0.538

Table 1: Pearson’s ρ for each feature set (FSet),
as well as combinations of feature sets and adap-
tation strategies, on each training dataset, and the
micro-average over all training datasets. (*), (+),
and (−) denote Run1, Run2, and Run3, respectively,
our submissions to the shared task; FL=Flagging,
FS=Feature stacking, DS=Domain stacking.

was also linearly re-scaled to the [0, 5] range. Un-
like the previous run, the flagging approach to do-
main adaptation was not used. This approach re-
flects a simple application of machine learning to in-
tegrating data from multiple feature sets and training
datasets, and provides a useful point of comparison
against more sophisticated approaches (i.e., Run3).

4.3 Run3 — Stacking
In this run, we focused on an alternative method
to integrating information from multiple feature sets
and training datasets, namely feature-domain stack-
ing, as discussed in Section 3.2. In this approach, we
train nine regressors using ridge regression on each
combination of the three training datasets and three
feature sets. Thus, the level 1 representation for each
instance is a vector of nine predictions. For the train-
ing data, when computing the level 1 features for the
same training dataset from which a given instance is
drawn, 10-fold cross-validation is used. Ridge re-
gression is again used to combine the level 1 repre-
sentations and produce the final prediction for each
instance. In addition to this, we also simultaneously
apply the flagging approach to domain adaptation.
This approach incorporates all of our domain adap-
tation efforts, and in initial experiments on the train-
ing data (Table 1) it was our second-best system.

FSet FL FS DS OnWN FNWN Headlines SMT Ave
SS 0.340 0.366 0.688 0.325 0.453

(*) SS X 0.349 0.381 0.711 0.350 0.473
TM 0.648 0.358 0.516 0.209 0.433
TM X 0.701 0.368 0.614 0.287 0.506

IR 0.561 -0.006 0.610 0.228 0.419
IR X 0.596 0.002 0.621 0.256 0.441

(+) ALL 0.679 0.337 0.709 0.323 0.542
ALL X 0.704 0.365 0.718 0.344 0.560
ALL X 0.673 0.298 0.714 0.324 0.539
ALL X 0.618 0.264 0.717 0.357 0.534
ALL X X 0.658 0.309 0.721 0.330 0.540
ALL X X 0.557 0.142 0.694 0.280 0.475

(−) ALL X X X 0.614 0.186 0.706 0314 0.509

Table 2: Pearson’s ρ for each feature set (FSet),
as well as combinations of feature sets and adap-
tation strategies, on each test dataset, and the
micro-average over all test datasets. (*), (+), and
(−) denote Run1, Run2, and Run3, respectively,
our submissions to the shared task; FL=Flagging,
FS=Feature stacking, DS=Domain stacking.

5 Results

For the STS 2013 task, the organisers advised par-
ticipants to make use of the STS 2012 data; we took
this to mean only the training data. In our post-task
analysis, we realised that the entire 2012 dataset, in-
cluding the testing data, could be used. All our of-
ficial runs were trained only on the training data for
the 2012 task (made up of MSRpar, MSRvid and
SMTeuroparl). We first discuss preliminary find-
ings training and testing on the (STS 2012) training
data, and then present results for the (2013) test data.
Post-submission, we re-trained our systems includ-
ing the 2012 test data.

5.1 Experiments on Training Data
We evaluated our models based on a leave-one-out
cross-validation across the 3 training datasets. Thus,
for each of the training datasets, we trained a sep-
arate model using features from the other two. We
considered approaches based on each individual fea-
ture set, with and without flagging. We further con-
sidered combinations of feature sets using feature
concatenation, as well as feature and domain stack-
ing, again with and without flagging.3 Results are

3We did not consider domain stacking with flagging.
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FSet FL FS DS OnWN (δ) FNWN (δ) Headlines (δ) SMT (δ) Ave (δ)
SS 0.3566 (+.0157) 0.3741 (+.0071) 0.6994 (+.0111) 0.3386 (+.0131) 0.4663 (+.0133)

(*) SS X 0.3532 (+.0042) 0.3809 (−.0004) 0.7122 (+.0003) 0.3417 (−.0090) 0.4714 (−.0016)
TM 0.6748 (+.0265) 0.3939 (+.0349) 0.5930 (+.0770) 0.2563 (+.0472) 0.4844 (+.0514)
TM X 0.6269 (−.0743) 0.3519 (−.0162) 0.5999 (−.0142) 0.2653 (−.0223) 0.4743 (−.0317)

IR 0.6632 (+.1015) 0.1026 (+.1093) 0.6383 (−.0281) 0.2987 (+.0701) 0.4863 (+.0673)
IR X 0.6720 (+.0755) 0.0861 (+.0841) 0.6316 (+.0097) 0.2811 (+.0244) 0.4790 (+.0680)

(+) ALL 0.6976 (+.0006) 0.4350 (+.0976) 0.7071 (−.0014) 0.3329 (+.0099) 0.5571 (+.0151)
ALL X 0.6667 (−.0373) 0.4138 (+.0490) 0.7210 (+.0029) 0.3335 (−.0105) 0.5524 (−.0076)
ALL X 0.6889 (+.0149) 0.4620 (+.1636) 0.7309 (+.0167) 0.3538 (+.0295) 0.5721 (+.0331)
ALL X 0.6765 (−.0185) 0.4675 (+.1578) 0.7337 (+.0126) 0.3552 (+.0252) 0.5709 (+.0369)
ALL X X 0.6369 (+.0208) 0.3615 (+.0970) 0.7233 (+.0060) 0.3736 (+.0157) 0.5554 (+.0154)
ALL X X 0.6736 (+.1165) 0.4250 (+.2821) 0.7237 (+0.0297) 0.3404 (+0.0603) 0.5583(+.0833)

(−) ALL X X X 0.6772 (+.0632) 0.3992 (+.2127) 0.7315 (+.0251) 0.3300 (+0.0186) 0.5572 (+.0482)

Table 3: Pearson’s ρ for each feature set (FSet), as well as combinations of feature sets and adaptation
strategies, on each test dataset, and the micro-average over all test datasets, using features from all 2012
data (test + train). (*), (+), and (−) denote Run1, Run2, and Run3, respectively, our submissions to the
shared task; FL=Flagging, FS=Feature stacking, DS=Domain stacking. δ denotes the difference in system
performance after adding the additional training data.

reported in Table 1.
The best results on the training data were achieved

using only our SS feature set with flagging (Run1),
with an average Pearson’s ρ of 0.549. This fea-
ture set also gave the best performance on MSR-
par and SMTeuroparl, although the IR feature set
was substantially better on MSRvid. On the training
datasets, our approaches that combine feature sets
did not give an improvement over the best individ-
ual feature set on any dataset, or overall.

5.2 Test Set Results
STS 2013 included four different test sets. Table 2
presents the Pearson’s ρ for the same methods as
Section 5.1 — including our submitted runs — on
the test data. Run1 drops in performance on the test
set as compared to the training set, where the other
two runs are more consistent, suggesting that lexi-
cal similarity does not generalise well cross-domain.
Table 4 shows that all of our systems performed
above the baseline on each dataset, except Run3 on
FNWN. Table 4 also shows that Run2 consistently
performed well on all the datasets when compared
to the median of all the systems submitted to the task
(Agirre et al., to appear).

Run2, which was based on the concatenation of
all the feature sets, performed well compared to the
stacking-based approaches on the test set, whereas
the stacking approaches all outperformed Run2 on
the training datasets. This is likely due to the

SS features being more effective for STS predic-
tion in the training datasets as compared to the test
datasets. Based on the training datasets, the stack-
ing approaches placed greater weight on the pre-
dictions from the SS feature set. This hypothe-
sis is supported by the result on Headlines, where
the SS feature set does relatively well, and thus the
stacking approaches tend to outperform the simple
concatenation-based method. Finally, an extension
of Run2 with flagging (not submitted to the shared
task) was the best of our methods on the test data.

5.3 Error Analysis
To better understand the behaviour of our systems,
we examined test instances and made the following
observations. Systems based entirely on the TM fea-
tures and domain adaptation consistently performed
well on sentence pairs for which all of our other sys-
tems performed poorly. One example is the follow-
ing OnWN pair, which corresponds to definitions of
newspaper: an enterprise or company that publishes
newsprint and a business firm that publishes news-
papers. Because these texts do not share many com-
mon words, the SS features cannot capture their se-
mantic similarity.

Stacking based approaches performed well on text
pairs which are complex to comprehend, e.g., Two
German tourists, two pilots killed in Kenya air crash
and Senator Reid involved in Las Vegas car crash,
where the individual methods tend to score lower
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System Headlines OnWN FNWN SMT Ave
(+) Run1 .711 (15) .349 (71) .381 (23) .351 (18) .473 (49)
(+) Run2 .709 (17) .679 (18) .337 (33) .323 (43) .542 (17)
(+) Run3 .706 (18) .614 (28) .187 (71) .314 (47) .509 (29)

Best .718 (14) .704 (15) .365 (28) .344 (24) .560 (7)
(∗) Run1 .712 (14) .353 (70) .381 (23) .341 (25) .471 (54)
(∗) Run2 .707 (18) .697 (14) .435 (9) .332 (35) .557 (9)
(∗) Run3 .731 (11) .677 (19) .399 (17) .330 (38) .557 (8)
(∗) Best .730 (11) .688 (17) .462 (7) .353 (18) .572 (4)
Baseline .540 (67) .283 (81) .215 (67) .286 (65) .364 (73)
Median .640 (45) .528 (45) .327 (45) .318 (45) .480 (45)

Best-Score .783 (1) .843 (1) .581 (1) .403 (1) .618 (1)

Table 4: Pearson’s ρ (and projected ranking) of runs.
The upper 4 runs are trained only on STS 2012 train-
ing data. (+) denotes runs that were submitted for
evaluation. (∗) denotes systems trained on STS 2012
training and test data. For comparison, we include
“Best”, the highest-scoring parametrization of our
system from our post-task analysis (Table 3). We
also include the organiser’s baseline, as well as the
median and best systems for each dataset across all
competitors.

than the human rating, but stacking was able to pre-
dict a higher score (presumably based on the fact
that no method predicted the text pair to be strongly
dissimilar; rather, all methods predicted there to be
somewhat low similarity).

In some cases, the texts are on a similar topic,
but semantically different, e.g., Nigeria mourns over
193 people killed in plane crash and Nigeria opens
probe into deadly air crash. In such cases, systems
based on SS features and stacking perform well.
Systems based on TM and IR features, on the other
hand, tend to predict overly-high scores because the
texts relate to similar topics and tend to have similar
relevant documents in an external corpus.

5.4 Results with the Full Training dataset
We re-trained all the above systems by extending the
training data to include the 2012 test data. Scores on
the 2013 test datasets and the change in Pearson’s ρ
after adding the extra training data (denoted δ) are
presented in Table 3.

In general, the addition of the 2012 test data to
the training dataset improves the performance of the
system, though this is often not the case for the flag-

ging approach to domain adaptation, which in some
instances drops in performance after adding the ad-
ditional training data. The biggest improvements
were seen for feature-domain stacking, particularly
on FNWN. This suggests that feature-domain stack-
ing is more sensitive to the similarity between train-
ing data and test data than flagging, but also that it
is better able to cope with variety in training do-
mains than flagging. Given that the pool of anno-
tated data for the STS task continues to increase,
feature-domain stacking is a promising approach to
exploiting the differences between domains to im-
prove overall STS performance.

To facilitate comparison with the published re-
sults for the 2013 STS task, we present a condensed
summary of our results in Table 4, which shows the
absolute score as well as the projected ranking of
each of our systems. It also includes the median and
baseline results for comparison.

6 Conclusions and Future Work

In this paper we described our approach to the
STS SemEval-2013 shared task. While we did not
achieve high scores relative to the other submit-
ted systems on any of the datasets or overall, we
have identified some novel feature sets which we
show to have utility for the STS task. We have
also compared our proposed method’s performance
with a larger training dataset. In future work, we
intend to consider alternative ways for combining
features learned from different domains and training
datasets. Given the strong performance of our string
similarity features on particular datasets, we also in-
tend to consider combining string and distributional
similarity to capture elements of the texts that are not
currently captured by our string similarity features.
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Abstract

This paper describes the system that was sub-
mitted in the *SEM 2013 Semantic Textual
Similarity shared task. The task aims to find
the similarity score between a pair of sen-
tences. We describe a Universal Network-
ing Language (UNL) based semantic extrac-
tion system for measuring the semantic simi-
larity. Our approach combines syntactic and
word level similarity measures along with the
UNL based semantic similarity measures for
finding similarity scores between sentences.

1 Introduction

Semantic Textual Similarity is the task of finding
the degree of semantic equivalence between a pair
of sentences. The core Semantic Textual Similar-
ity shared task of *SEM 2013 (Agirre et al., 2013)
is to generate a score in the range 0-5 for a pair
of sentences depending on their semantic similar-
ity. Textual similarity finds applications in infor-
mation retrieval and it is closely related to textual
entailment. Universal Networking Language (UNL)
(Uchida, 1996) is an ideal mechanism for seman-
tics representation. Our system first converts the
sentences into a UNL graph representation and then
matches the graphs to generate the semantic relat-
edness score. Even though the goal is to judge sen-
tences based on their semantic relatedness, our sys-
tem incorporates some lexical and syntactic similar-
ity measures to make the system robust in the face
of data sparsity.

Section 2 give a brief introduction to UNL. Sec-
tion 3 decribes the English Enconverter developed

Figure 1: UNL Graph for ’The boy chased the dog’

Figure 2: UNL Graph for ’The dog was chased by the
boy’

by us. Section 4 discusses the various similarity
measures used for the task. Section 5 mentions
the corpus used for training and testing. Section 6
describes the method used to train the system and
Section 7 presents the results obtained on the task
datasets.

2 Universal Networking Language

Universal Networking Language (UNL) is an inter-
lingua that represents a sentence in a language inde-
pendent, unambiguous form. The three main build-
ing blocks of UNL are relations, universal words
and attributes. UNL representations have a graphical
structure with concepts being represented as nodes
(universal words) and interactions between concepts
being represented by edges (relations) between the
nodes. Figure 1 shows the UNL graph correspond-
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ing to the sentence ’The boy chased the dog.’ The
conversion from a source language to UNL is called
enconversion. The reverse process of generating a
natural language sentence from UNL is called de-
conversion. The enconversion process is markedly
more difficult than the deconversion process due to
the inherent ambiguity and idiosyncracy of natural
language.

UNL representation captures the semantics inde-
pendent of the structure of the language. Figures
1 and 2 show the UNL representation of two struc-
turally different sentences which convey the same
meaning. The UNL graph structure remains the
same with an additional attribute on the main verb
of figure 2 indicating the voice of the sentence.

2.1 Universal Words
Universal words (UWs) are language independent
concepts that are linked to various language re-
sources. The UWs used by us are linked to
the Princeton WordNet and various other language
WordNet synsets. UWs consist of a head word
which is the word in its lemma form. For example,
in figure 2 the word chased is shown in its lemma
form as chased. The head word is followed by a
constraint list which is used to disambiguate it. For
example, chase icl (includes) pursue indicates that
chase as a type of pursuing is indicated here. Com-
plex concepts are represented by hypernodes, which
are UNL graphs themselves.

2.2 Relations
Relations are two place functions that imdicate the
relationship between UWs. Some of the commonly
used relations are agent (agt), object (obj), instru-
ment (ins), place (plc). For example, in figure 1 the
relation agt between boy and chase indicates that the
boy is the doer of the action.

2.3 Attribute
Attributes are one place functions that convey vari-
ous morphological and pragmatic information. For
example, in figure 1 the attribute past indicates that
the verb is in the past tense.

3 UNL Generation

The conversion from English to UNL involves aug-
menting the sentence with various factors such as

POS tags, NER tags and dependency parse tree
relations and paths. The suitable UW generation
is achieved through a word sense disambiguation
(WSD) system trained on a tourism corpus. The
WSD system maps the words to Wordnet 2.1 synset
ids. The attribute and relation generation is achieved
through a combination of rule-base and classifiers
trained on a small corpus. We use a nearest neighbor
classifier trained on the EOLSS corpus for generat-
ing relations. The attributes are generated by con-
ditional random fields trained on the IGLU corpus.
The attribute generation is a word level phenomena,
hence attributes for complex UWs cannot be gener-
ated by the classifiers. The steps are described in
detail.

3.1 Parts of Speech Tagging

The Stanford POS tagger using the WSJ corpus
trained PCFG model is used to tag the sentences.
Penn Treebank style tags are generated.

3.2 Word Sense Disambiguation

A Supervised Word Sense Disambiguation (WSD)
tool trained in Tourism domain is used. The WSD
system takes a sequence of tagged words and pro-
vides the WordNet synset ids of all nouns, verbs, ad-
jectives and adverbs in the sequence. The accuracy
of the system is depends on the length of the input
sentence.

3.3 Named Entity Recognition

Stanford Named Entity Recognizer is used to tag the
words in the sentence. The tags may be PERSON,
LOCATION or ORGANIZATION.

3.4 Parsing and Clause Marking

Stanford Parser is used to parse the sentences. Rules
based on the constituency parse are used to identify
the clause boundaries. The dependency parse is used
for clause type detection. It is also used in the later
stages of UNL generation.

The clauses are converted into separate sim-
ple sentences for further processing. Independent
clauses can be trivially separated since they have
complete sentential structure of their own. Depen-
dent clauses are converted into complete sentences
using rules based on the type of clause. For exam-
ple, for the sentence, That he is a good sprinter, is
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known to all, containing a nominal clause, the sim-
ple sentences obtained are he is a good sprinter and
it is known to all. Here the dependent clause is re-
placed by the anaphora it to generate the sentence
corresponding to the main clause.

3.5 UW Generation
WordNet synset ids obtained from the WSD system
and the parts of speech tags are used to generate the
UWs. The head word is the English sentence in its
lemma form. The constraint list is generated from
the WordNet depending on the POS tag.

3.6 Relation Generation
Relations are generated by a combination of rule
base and corpus based techniques. Rules are writ-
ten using parts of speech tags, named entity tags and
parse dependency relations. The corpus based tech-
niques are used when insufficient rules exist for re-
lation generation. We use a corpus of about 28000
sentences consisting of UNL graphs for WordNet
glosses obtained from the UNDL foundation. This
technique tries to find similar examples from the cor-
pus and assigns the observed relation label to the
new part of the sentence.

3.7 Attribute Generation
Attributes are a combination of morphological fea-
tures and pragmatic information. Attribute genera-
tion can be considered to be a sequence labeling task
on the words. A conditional random field trained on
the corpus described in section 5.1 is used for at-
tribute generation.

4 Similarity Measures

We broadly define three categories of similarity
measures based on our classification of perception
of similarity.

4.1 Word based Similarity Measure
Word based similarity measures consider the sen-
tences as sets-of-words. These measures are mo-
tivated by our view that sentences having a lot of
common words will appear quite similar to a human
user. The sentences are tokenized using Stanford
Parser. The Jaccard coefficient (Agirre and Ghosh
and Mooney, 2000) compares the similarity or diver-
sity of two sets. It is the ratio of size of intersection

to the size of union of two sets. We define a new
measure based on the Jaccard similarity coefficient
that captures the relatedness between words. The
tokens in the set are augmented with related words
from Princeton WordNet. (Pedersen and Patward-
han and Michelizzi, 2004) As a preprocessing step,
all the tokens are stemmed using WordNet Stemmer.
For each possible sense of each stem, its synonyms,
antonyms, hypernyms and holonyms are added to
the set as applicable. For example, hypernyms are
added only when the token appears as a noun or verb
in the WordNet. The scoring function used is defined
as

ExtJSim(S1, S2) =
|ExtS1 ∩ ExtS2|
|S1 ∪ S2|

The following example illustrates the intuition be-
hind this similarity measure.

• I am cooking chicken in the house.

• I am grilling chicken in the kitchen.

The measure generates a similarity score of 1
since grilling is a kind of cooking (hypernymy) and
kitchen is a part of house (holonymy).

4.2 Syntactic Similarity Measures
Structural similarity as an indicator of textual sim-
ilarity is captured by the syntactic similarity mea-
sures. Parses are obtained for the pair of English
sentences using Stanford Parser. The parser is run on
the English PCFG model. The dependency graphs of
the two sentences are matched to generate the simi-
larity score. A dependency graph consists of a num-
ber of dependency relations of the form dep(word1,
word2) where dep is the type of relation and word1
and word2 are the words between which the rela-
tion holds. A complete match of a dependency re-
lation contributes 1 to the score whereas a match of
only the words in the relation contributes 0.75 to the
score.

SynSim(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

+ 0.75∗∑
a∈S1,b∈S2[[a.w1 = b.w1&a.w2 = b.w2]]

|S1 ∪ S2|

Here S1 and S2 represent the set of dependency
relations.
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An extended syntactic similarity measure in
which exact word matchings are replaced by a match
within a set formed by extending the word with re-
lated words as described in 4.1 is also used.

4.3 Semantic Similarity Measure

Semantic similarity measures try to capture the sim-
ilarity in the meaning of the sentences. The UNL
graphs generated for the two sentences are compared
using the formula given below. In addition, syn-
onymy is no more used for enriching the word bank
since UWs by design are mapped to synsets, hence
all synonyms are equivalent in a UNL graph.

SemSim(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

+
∑

a∈S1,b∈S2

(0.75∗

[[a.w1 = b.w1&a.w2 = b.w2]]

|S1 ∪ S2|
+ 0.75∗

[[a.r = b.r&a.Ew1 = b.Ew1&a.Ew2 = b.Ew2]]

|S1 ∪ S2|

+0.6 ∗ [[a.Ew1 = b.Ew1&a.Ew2 = b.Ew2]]

|S1 ∪ S2|
)

5 Corpus

The system is trained on the Semantic Textual Sim-
ilarity 2012 task data. The training dataset consists
of 750 pairs from the MSR-Paraphrase corpus, 750
sentences from the MSR-Video corpus and 734 pairs
from the SMTeuroparl corpus.

The test set contains headlines mined from sev-
eral news sources mined by European Media Moni-
tor, sense definitions from WordNet and OntoNotes,
sense definitions from WordNet and FrameNet, sen-
tences from DARPA GALE HTER and HyTER,
where one sentence is a MT output and the other is
a reference translation.

Each corpus contains pairs of sentences with an
associated score from 0 to 5. The scores are given
based on whether the sentences are on different top-
ics (0), on the same topic but have different con-
tent (1), not equivalent but sharing some details (2),
roughly equivalent with some inportant information
missing or differing (3), mostly important while dif-
fering in some unimportant details (4) or completely
equivalent (5).

Table 1: Results
Corpus CFILT Best Results

Headlines 0.5336 0.7642
OnWN 0.2381 0.7529
FNWN 0.2261 0.5818
SMT 0.2906 0.3804
Mean 0.3531 0.6181

6 Training

The several scores are combined by training a Lin-
ear Regression model. We use the inbuilt libaries of
Weka to learn the weights. To compute the proba-
bility of a test sentence pair, the following formula
is used.

score(S1, S2) = c+

5∑
i=1

λiscorei(S1, S2)

7 Results

The test dataset contained many very long sentences
which could not be parsed by the Stanford parser
used by the UNL system. In addition, the perfor-
mance of the WSD system led to numerous false
negatives. Hence erroneous output were produced in
these cases. In these cases, the word based similar-
ity measures somewhat stabilized the scores. Table
1 summarizes the results.

The UNL system is not robust enough to han-
dle large sentences with long distance relationships
which leads to poor performance on the OnWN and
FNWN datasets.

8 Conclusion and Future Work

The approach discussed in the paper shows promise
for the small sentences. The ongoing development
of UNL is expected to improve the accuracy of the
system. Tuning the scoring parameters on a develop-
ment set instead of arbitrary values may improve re-
sults. A log-linear model instead of the linear com-
bination of scores may capture the relationships be-
tween the scores in a better way.
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Abstract

This article provides a detailed overview of the
CPN text-to-text similarity system that we par-
ticipated with in the Semantic Textual Similar-
ity task evaluations hosted at *SEM 2013. In
addition to more traditional components, such
as knowledge-based and corpus-based met-
rics leveraged in a machine learning frame-
work, we also use opinion analysis features to
achieve a stronger semantic representation of
textual units. While the evaluation datasets are
not designed to test the similarity of opinions,
as a component of textual similarity, nonethe-
less, our system variations ranked number 38,
39 and 45 among the 88 participating systems.

1 Introduction

Measures of text similarity have been used for a long
time in applications in natural language processing
and related areas. One of the earliest applications
of text similarity is perhaps the vector-space model
used in information retrieval, where the document
most relevant to an input query is determined by
ranking documents in a collection in reversed or-
der of their angular distance with the given query
(Salton and Lesk, 1971). Text similarity has also
been used for relevance feedback and text classifi-
cation (Rocchio, 1971), word sense disambiguation
(Lesk, 1986; Schutze, 1998), and extractive summa-
rization (Salton et al., 1997), in the automatic evalu-
ation of machine translation (Papineni et al., 2002),

∗carmen.banea@gmail.com
† rada@cs.unt.edu

text summarization (Lin and Hovy, 2003), text co-
herence (Lapata and Barzilay, 2005) and in plagia-
rism detection (Nawab et al., 2011).

Earlier work on this task has primarily focused on
simple lexical matching methods, which produce a
similarity score based on the number of lexical units
that occur in both input segments. Improvements
to this simple method have considered stemming,
stopword removal, part-of-speech tagging, longest
subsequence matching, as well as various weight-
ing and normalization factors (Salton and Buckley,
1997). While successful to a certain degree, these
lexical similarity methods cannot always identify the
semantic similarity of texts. For instance, there is an
obvious similarity between the text segments “she
owns a dog” and “she has an animal,” yet these
methods will mostly fail to identify it.

More recently, researchers have started to con-
sider the possibility of combining the large number
of word-to-word semantic similarity measures (e.g.,
(Jiang and Conrath, 1997; Leacock and Chodorow,
1998; Lin, 1998; Resnik, 1995)) within a semantic
similarity method that works for entire texts. The
methods proposed to date in this direction mainly
consist of either bipartite-graph matching strate-
gies that aggregate word-to-word similarity into a
text similarity score (Mihalcea et al., 2006; Islam
and Inkpen, 2009; Hassan and Mihalcea, 2011;
Mohler et al., 2011), or data-driven methods that
perform component-wise additions of semantic vec-
tor representations as obtained with corpus mea-
sures such as latent semantic analysis (Landauer et
al., 1997), explicit semantic analysis (Gabrilovich
and Markovitch, 2007), or salient semantic analysis
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(Hassan and Mihalcea, 2011).
In this paper, we describe the system variations

with which we participated in the *SEM 2013 task
on semantic textual similarity (Agirre et al., 2013).
The system builds upon our earlier work on corpus-
based and knowledge-based methods of text seman-
tic similarity (Mihalcea et al., 2006; Hassan and
Mihalcea, 2011; Mohler et al., 2011; Banea et al.,
2012), while also incorporating opinion aware fea-
tures. Our observation is that text is not only similar
on a semantic level, but also with respect to opin-
ions. Let us consider the following text segments:
“she owns a dog” and “I believe she owns a dog.”
The question then becomes how similar these text
fragments truly are. Current systems will consider
the two sentences semantically equivalent, yet to a
human, they are not. A belief is not equivalent to a
fact (and for the case in point, the person may very
well have a cat or some other pet), and this should
consequently lower the relatedness score. For this
reason, we advocate that STS systems should also
consider the opinions expressed and their equiva-
lence. While the *SEM STS task is not formulated
to evaluate this type of similarity, we complement
more traditional corpus and knowledge-based meth-
ods with opinion aware features, and use them in
a meta-learning framework in an arguably first at-
tempt at incorporating this type of information to in-
fer text-to-text similarity.

2 Related Work

Over the past years, the research community has
focused on computing semantic relatedness using
methods that are either knowledge-based or corpus-
based. Knowledge-based methods derive a measure
of relatedness by utilizing lexical resources and on-
tologies such as WordNet (Miller, 1995) to measure
definitional overlap, term distance within a graph-
ical taxonomy, or term depth in the taxonomy as
a measure of specificity. We explore several of
these measures in depth in Section 3.3.1. On the
other side, corpus-based measures such as Latent
Semantic Analysis (LSA) (Landauer et al., 1997),
Explicit Semantic Analysis (ESA) (Gabrilovich
and Markovitch, 2007), Salient Semantic Analysis
(SSA) (Hassan and Mihalcea, 2011), Pointwise Mu-
tual Information (PMI) (Church and Hanks, 1990),
PMI-IR (Turney, 2001), Second Order PMI (Islam

and Inkpen, 2006), Hyperspace Analogues to Lan-
guage (Burgess et al., 1998) and distributional simi-
larity (Lin, 1998) employ probabilistic approaches
to decode the semantics of words. They consist
of unsupervised methods that utilize the contextual
information and patterns observed in raw text to
build semantic profiles of words. Unlike knowledge-
based methods, which suffer from limited coverage,
corpus-based measures are able to induce a similar-
ity between any given two words, as long as they
appear in the very large corpus used as training.

3 Semantic Textual Similarity System

3.1 Task Setup
The STS task consists of labeling one sentence pair
at a time, based on the semantic similarity existent
between its two component sentences. Human as-
signed similarity scores range from 0 (no relation)
to 5 (semantivally equivalent). The *SEM 2013 STS
task did not provide additional labeled data to the
training and testing sets released as part of the STS
task hosted at SEMEVAL 2012 (Agirre et al., 2012);
our system variations were trained on SEMEVAL

2012 data.
The test sets (Agirre et al., 2013) consist of

text pairs extracted from headlines (headlines,
750 pairs), sense definitions from WordNet and
OntoNotes (OnWN, 561 pairs), sense definitions
from WordNet and FrameNet (FNWN, 189 pairs),
and data used in the evaluation of machine transla-
tion systems (SMT, 750 pairs).

3.2 Resources
Various subparts of our framework use several re-
sources that are described in more detail below.

Wikipedia1 is the most comprehensive encyclo-
pedia to date, and it is an open collaborative effort
hosted on-line. Its basic entry is an article which in
addition to describing an entity or an event also con-
tains hyperlinks to other pages within or outside of
Wikipedia. This structure (articles and hyperlinks)
is directly exploited by semantic similarity methods
such as ESA (Gabrilovich and Markovitch, 2007),
or SSA (Hassan and Mihalcea, 2011)2.

1www.wikipedia.org
2In the experiments reported in this paper, all the corpus-

based methods are trained on the English Wikipedia download
from October 2008.
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WordNet (Miller, 1995) is a manually crafted lex-
ical resource that maintains semantic relationships
such as synonymy, antonymy, hypernymy, etc., be-
tween basic units of meaning, or synsets. These rela-
tionships are employed by various knowledge-based
methods to derive semantic similarity.

The MPQA corpus (Wiebe and Riloff, 2005) is
a newswire data set that was manually annotated
at the expression level for opinion-related content.
Some of the features derived by our opinion extrac-
tion models were based on training on this corpus.

3.3 Features
Our system variations derive the similarity score of a
given sentence-pair by integrating information from
knowledge, corpus, and opinion-based sources3.

3.3.1 Knowledge-Based Features
Following prior work from our group (Mihalcea

et al., 2006; Mohler and Mihalcea, 2009), we em-
ploy several WordNet-based similarity metrics for
the task of sentence-level similarity. Briefly, for each
open-class word in one of the input texts, we com-
pute the maximum semantic similarity4 that can be
obtained by pairing it with any open-class word in
the other input text. All the word-to-word similarity
scores obtained in this way are summed and normal-
ized to the length of the two input texts. We provide
below a short description for each of the similarity
metrics employed by this system.
The shortest path (Path) similarity is equal to:

Simpath =
1

length
(1)

where length is the length of the shortest path be-
tween two concepts using node-counting.
The Leacock & Chodorow (Leacock and
Chodorow, 1998) (LCH) metric is equal to:

Simlch = − log
length

2 ∗D
(2)

where length is the length of the shortest path be-
tween two concepts using node-counting, and D is
the maximum depth of the taxonomy.

The Lesk (Lesk) similarity of two concepts is de-
fined as a function of the overlap between the cor-
responding definitions, as provided by a dictionary.

3The abbreviation in italics accompanying each method al-
lows for cross-referencing with the results listed in Table 2.

4We use the WordNet::Similarity package (Pedersen et al.,
2004).

It is based on an algorithm proposed by Lesk (1986)
as a solution for word sense disambiguation.
The Wu & Palmer (Wu and Palmer, 1994) (WUP )
similarity metric measures the depth of two given
concepts in the WordNet taxonomy, and the depth
of the least common subsumer (LCS), and combines
these figures into a similarity score:

Simwup =
2 ∗ depth(LCS)

depth(concept1) + depth(concept2)
(3)

The measure introduced by Resnik (Resnik, 1995)
(RES) returns the information content (IC) of the
LCS of two concepts:

Simres = IC(LCS) (4)

where IC is defined as:

IC(c) = − log P (c) (5)

and P (c) is the probability of encountering an in-
stance of concept c in a large corpus.
The measure introduced by Lin (Lin, 1998) (Lin)
builds on Resnik’s measure of similarity, and adds
a normalization factor consisting of the information
content of the two input concepts:

Simlin =
2 ∗ IC(LCS)

IC(concept1) + IC(concept2)
(6)

We also consider the Jiang & Conrath (Jiang and
Conrath, 1997) (JCN ) measure of similarity:

Simjnc =
1

IC(concept1) + IC(concept2)− 2 ∗ IC(LCS)
(7)

3.3.2 Corpus Based Features
While most of the corpus-based methods induce

semantic profiles in a word-space, where the seman-
tic profile of a word is expressed in terms of its co-
occurrence with other words, LSA, ESA and SSA
rely on a concept-space representation, thus express-
ing a word’s semantic profile in terms of the im-
plicit (LSA), explicit (ESA), or salient (SSA) con-
cepts. This departure from the sparse word-space to
a denser, richer, and unambiguous concept-space re-
solves one of the fundamental problems in semantic
relatedness, namely the vocabulary mismatch.

Latent Semantic Analysis (LSA) (Landauer et al.,
1997). In LSA, term-context associations are cap-
tured by means of a dimensionality reduction op-
erated by a singular value decomposition (SVD)
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on the term-by-context matrix T, where the ma-
trix is induced from a large corpus. This reduc-
tion entails the abstraction of meaning by collaps-
ing similar contexts and discounting noisy and ir-
relevant ones, hence transforming the real world
term-context space into a word-latent-concept space
which achieves a much deeper and concrete seman-
tic representation of words5.

Random Projection (RP ) (Dasgupta, 1999). In RP,
a high dimensional space is projected onto a lower
dimensional one, using a randomly generated ma-
trix. (Bingham and Mannila, 2001) show that unlike
LSA or principal component analysis (PCA), RP
is computationally efficient for large corpora, while
also retaining accurate vector similarity and yielding
comparable results.

Explicit Semantic Analysis (ESA) (Gabrilovich
and Markovitch, 2007). ESA uses encyclopedic
knowledge in an information retrieval framework to
generate a semantic interpretation of words. It relies
on the distribution of words inside Wikipedia arti-
cles, thus building a semantic representation for a
given word using a word-document association.

Salient Semantic Analysis (SSA) (Hassan and Mi-
halcea, 2011). SSA incorporates a similar seman-
tic abstraction as ESA, yet it uses salient con-
cepts gathered from encyclopedic knowledge, where
a “concept” represents an unambiguous expression
which affords an encyclopedic definition. Saliency
in this case is determined based on the word being
hyperlinked in context, implying that it is highly rel-
evant to the given text.

In order to determine the similarity of two text
fragments, we employ two variations: the typical
cosine similarity (cos) and a best alignment strat-
egy (align), which we explain in more detail in
the paragraph below. Both variations were paired
with the ESA, and SSA systems resulting in four
similarity scores that were used as features by our
meta-system, namely ESAcos, ESAalign, SSAcos,
and SSAalign; in addition, we also used BOWcos,
LSAcos, and RPcos.

Best Alignment Strategy (align). Let Ta and Tb be
two text fragments of size a and b respectively. After
removing all stopwords, we first determine the num-

5We use the LSA implementation available at code.
google.com/p/semanticvectors/.

ber of shared terms (ω) between Ta and Tb. Second,
we calculate the semantic relatedness of all possible
pairings between non-shared terms in Ta and Tb. We
further filter these possible combinations by creating
a list ϕ which holds the strongest semantic pairings
between the fragments’ terms, such that each term
can only belong to one and only one pair.

Sim(Ta, Tb) =
(ω +

∑|ϕ|
i=1

ϕi)× (2ab)

a + b
(8)

where ϕi is the similarity score for the ith pairing.

3.3.3 Opinion Aware Features
We design opinion-aware features to capture sen-

tence similarity on the subjectivity level based on the
output of three subjectivity analysis systems. Intu-
itively, two sentences are similar in terms of sub-
jectivity if there exists similar opinion expressions
which also share similar opinion holders.

OpinionFinder (Wilson et al., 2005) is a publicly
available opinion extraction model that annotates the
subjectivity of new text based on the presence (or
absence) of words or phrases in a large lexicon. The
system consists of a two step process, by feeding
the sentences identified as subjective or objective
by a rule-based high-precision classifier to a high-
recall classifier that iteratively learns from the re-
maining corpus. For each sentence in a STS pair,
the two classifiers provide two predictions; a subjec-
tivity similarity score (SUBJSL) is computed as fol-
lows. If both sentences are classified as subjective
or objective, the score is 1; if one is subjective and
the other one is objective, the score is -1; otherwise
it is 0. We also make use of the output of the sub-
jective expression identifier in OpinionFinder. We
first record how many expressions the two sentences
have: feature NUMEX1 and NUMEX2. Then we
compare how many tokens these expressions share
and we normalize by the total number of expressions
(feature EXPR).

We compute the difference between the probabil-
ities of the two sentences being subjective (SUBJD-
IFF), by employing a logistic regression classifier
using LIBLINEAR (Fan et al., 2008) trained on the
MPQA corpus. The smaller the difference, the more
similar the sentences are in terms of subjectivity.

We also employ features produced by the opinion-
extraction model of Yang and Cardie (Yang and
Cardie, 2012), which is better suited to process ex-
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pressions of arbitrary length. Specifically, for each
sentence, we extract subjective expressions and gen-
erate the following features. SUBJCNT is a binary
feature which is equal to 1 if both sentences con-
tain a subjective expression. DSEALGN marks the
number of shared words between subjective expres-
sions in two sentences, while DSESIM represents
their similarity beyond the word level. We repre-
sent the subjective expressions in each sentence as
a feature vector, containing unigrams extracted from
the expressions, their part-of-speech, their WordNet
hypernyms and their subjectivity label6, and com-
pute the cosine similarity between the feature vec-
tors. The holder of the opinion expressions is ex-
tracted with the aid of a dependency parser7. In most
cases, the opinion holder and the opinion expression
are related by the dependency relation subj. This re-
lation is used to expand the verb dependents in the
opinion expression and identify the opinion holder
or AGENT.

3.4 Meta-learning
Each metric described above provides one individ-
ual score for every sentence-pair in both the train-
ing and test set. These scores then serve as in-
put to a meta-learner, which adjusts their impor-
tance, and thus their bearing on the overall similar-
ity score predicted by the system. We experimented
with regression and decision tree based algorithms
by performing 10-fold cross validation on the 2012
training data; these types of learners are particularly
well suited to maintain the ordinality of the seman-
tic similarity scores (i.e. a score of 4.5 is closer
to either 4 or 5, implying that the two sentences
are mostly or fully equivalent, while also being far
further away from 0, implying no semantic relat-
edness between the two sentences). We obtained
consistent results when using support vector regres-
sion with polynomial kernel (Drucker et al., 1997;
Smola and Schoelkopf, 1998) (SV R) and random
subspace meta-classification with tree learners (Ho,
1998) (RandSubspace)8.

We submitted three system variations based
on the training corpus (first word in the sys-

6Label is based on the OpinionFinder subjectivity lexicon
(Wiebe et al., 2005).

7nlp.stanford.edu/software/
8Included with the Weka framework (Hall et al., 2009); we

used the default values for both algorithms.

System FNWN headlines OnWN SMT Mean
comb.RandSubSpace 0.331 0.677 0.514 0.337 0.494
comb.SVR 0.362 0.669 0.510 0.341 0.494
indv.RandSubspace 0.331 0.677 0.548 0.277 0.483
baseline-tokencos 0.215 0.540 0.283 0.286 0.364

Table 1: Evaluation results (Agirre et al., 2013).

tem name) or the learning methodology (second
word) used: comb.RandSubspace, comb.SV R and
indv.RandSubspace. For comb, training was per-
formed on the merged version of the entire 2012 SE-
MEVAL dataset. For indv, predictions for OnWN
and SMT test data were based on training on
matching OnWN and SMT 9 data from 2012, pre-
dictions for the other test sets were computed using
the combined version (comb).

4 Results and Discussion

Table 2 lists the correlations obtained between
the scores assigned by each one of the features
we used and the scores assigned by the human
judges. It is interesting to note that overall, corpus-
based measures are stronger performers compared to
knowledge-based measures. The top contenders in
the former group are ESAalign, SSAalign, LSAcos,
and RPcos, indicating that these methods are able to
leverage a significant amount of semantic informa-
tion from text. While LSAcos achieves high corre-
lations on many of the datasets, replacing the singu-
lar value decomposition operation by random pro-
jection to a lower-dimension space (RP ) achieves
competitive results while also being computation-
ally efficient. This observation is in line with prior
literature (Bingham and Mannila, 2001). Among
the knowledge-based methods, JCN and Path
achieve high performance on more than five of the
datasets. In some cases, particularly on the 2013
test data, the shortest path method (Path) peforms
better or on par with the performance attained by
other knowledge-based measures, despite its com-
putational simplicity. While opinion-based mea-
sures do not exhibit the same high correlation, we
should remember that none of the datasets displays
consistent opinion content, nor were they anno-
tated with this aspect in mind, in order for this in-
formation to be properly leveraged and evaluated.

9The SMT training set is a combination of SMTeuroparl
(in this paper abbreviated as SMTep) and SMTnews data.
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Train 2012 Test 2012 Test 2013
Feature SMTep MSRpar MSRvid SMTep MSRpar MSRvid OnWN SMTnews FNWN headlines OnWN SMT
Knowledge-based measures
JCN 0.51 0.49 0.63 0.48 0.48 0.64 0.62 0.28 0.38 0.72 0.71 0.34
LCH 0.45 0.48 0.49 0.47 0.49 0.54 0.54 0.3 0.39 0.69 0.69 0.32
Lesk 0.5 0.48 0.59 0.5 0.47 0.63 0.64 0.4 0.4 0.71 0.7 0.33
Lin 0.48 0.49 0.54 0.48 0.48 0.56 0.57 0.27 0.28 0.65 0.66 0.3
Path 0.5 0.49 0.62 0.48 0.49 0.65 0.62 0.35 0.43 0.72 0.73 0.34
RES 0.48 0.47 0.55 0.49 0.47 0.6 0.62 0.33 0.28 0.64 0.7 0.31
WUP 0.42 0.46 0.38 0.44 0.48 0.42 0.48 0.26 0.19 0.55 0.6 0.25
Corpus-based measures
BOW cos 0.51 0.47 0.69 0.32 0.44 0.71 0.66 0.37 0.34 0.68 0.52 0.32
ESA cos 0.53 0.34 0.71 0.44 0.3 0.77 0.63 0.44 0.34 0.55 0.35 0.27
ESA align 0.55 0.56 0.75 0.49 0.52 0.78 0.69 0.38 0.46 0.71 0.47 0.34
SSA cos 0.4 0.34 0.63 0.4 0.22 0.71 0.6 0.42 0.35 0.48 0.47 0.26
SSA align 0.54 0.56 0.74 0.49 0.51 0.77 0.68 0.38 0.44 0.69 0.46 0.34
LSA cos 0.65 0.48 0.76 0.36 0.45 0.79 0.67 0.45 0.25 0.63 0.61 0.32
RP cos 0.6 0.49 0.78 0.46 0.43 0.79 0.7 0.45 0.38 0.68 0.57 0.34
Opinion-aware measures
AGENT 0.16 0.15 0.05 0.11 0.12 0.03 n/a -0.01 n/a 0.08 -0.04 0.11
DSEALGN 0.18 0.2 0.11 0.05 0.11 0.11 0.07 0.06 -0.1 0.08 0.13 0.1
DSESIM 0.12 0.15 0.05 0.1 0.08 0.07 0.04 0.08 0.05 0.08 0.04 0.08
EXPR 0.17 0.19 0.06 0.18 0.18 0.02 0.07 0 0.13 0.08 0.18 0.17
NUMEX1 0.12 0.22 -0.03 0.07 0.16 -0.05 -0.01 -0.01 -0.01 -0.03 0.08 0.1
NUMEX2 -0.25 0.19 0.01 0.06 0.14 -0.03 0.01 0.06 0.09 -0.05 0.03 0.11
SUBJCNT 0.14 0.19 0.01 0.09 0.07 0.03 0.02 0.08 0.05 0.05 0.05 0.09
SUBJDIFF -0.07 -0.07 -0.17 -0.27 -0.13 -0.22 -0.17 -0.12 -0.04 -0.12 -0.2 -0.12
SUBJSL 0.15 -0.11 0.07 0.23 0.01 0.07 0.11 -0.08 0.15 0.07 -0.03 0

Table 2: Correlation of individual features for the training and test sets with the gold standard.

Nonetheless, we notice several promising features,
such as DSEALIGN and EXPR. Lower cor-
relations seem to be associated with shorter spans
of text, since when averaging all opinion-based cor-
relations per dataset, MSRvid (x2), OnWN (x2),
and headlines display the lowest average correla-
tion, ranging from 0 to 0.03. This matches the
expectation that opinionated content can be easier
identified in longer contexts, as additional subjective
elements amount to a stronger prediction. The other
seven datasets consist of longer spans of text; they
display an average opinion-based correlation be-
tween 0.07 and 0.12, with the exception of FNWN
and SMTnews at 0.04 and 0.01, respectively.

Our systems performed well, ranking 38, 39 and
45 among the 88 competing systems in *SEM 2013
(see Table 1), with the best being comb.SVR and
comb.RandSubspace, both with a mean correlation
of 0.494. We noticed from our participation in
SEMEVAL 2012 (Banea et al., 2012), that training
and testing on the same type of data achieves the
best results; this receives further support when con-
sidering the performance of the indv.RandSubspace
variation on the OnWN data10, which exhibits a

10The SMT test data is not part of the same corpus as either

0.034 correlation increase over our next best sys-
tem (comb.RandSubspace). While we do surpass the
bag-of-words cosine baseline (baseline-tokencos)
computed by the task organizers by a 0.13 differ-
ence in correlation, we fall short by 0.124 from the
performance of the best system in the STS task.

5 Conclusions

To participate in the STS *SEM 2013 task, we con-
structed a meta-learner framework that combines
traditional knowledge and corpus-based methods,
while also introducing novel opinion analysis based
metrics. While the *SEM data is not particularly
suited for evaluating the performance of opinion fea-
tures, this is nonetheless a first step toward conduct-
ing text similarity research while also considering
the subjective dimension of text. Our system varia-
tions ranked 38, 39 and 45 among the 88 participat-
ing systems.
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Abstract 

This paper presents three methods to evaluate 

the Semantic Textual Similarity (STS). The 

first two methods do not require labeled train-

ing data; instead, they automatically extract 

semantic knowledge in the form of word asso-

ciations from a given reference corpus. Two 

kinds of word associations are considered: co-

occurrence statistics and the similarity of 

word contexts. The third method was done in 

collaboration with groups from the Universi-

ties of Paris 13, Matanzas and Alicante. It 

uses several word similarity measures as fea-

tures in order to construct an accurate predic-

tion model for the STS. 

1 Introduction 

Even with the current progress of the natural lan-

guage processing, evaluating the semantic text 

similarity is an extremely challenging task. Due to 

the existence of multiple semantic relations among 

words, the measuring of text similarity is a multi-

factorial and highly complex task (Turney, 2006). 

Despite the difficulty of this task, it remains as 

one of the most attractive research topics for the 

NLP community. This is because the evaluation of 

text similarity is commonly used as an internal 

module in many different tasks, such as, informa-

tion retrieval, question answering, document sum-

marization, etc. (Resnik, 1999). Moreover, most of 

these tasks require determining the “semantic” 

similarity of texts showing stylistic differences or 

using polysemicwords (Hliaoutakis et al., 2006). 

The most popular approach to evaluate the se-

mantic similarity of words and texts consists in 

using the semantic knowledge expressed in ontolo-

gies (Resnik, 1999); commonly, WorldNet is used 

for this purpose (Fellbaum, 2005). Unfortunately, 

despite the great effort that has been the creation of 

WordNet, it is still far to cover all existing words 

and senses (Curran, 2003).Therefore, the semantic 

similarity methods that use this resource tend to 

reduce their applicability to a restricted domain 

and to a specific language. 

We recognize the necessity of having and using 

manually-constructed semantic-knowledge sources 

in order to get precise assessments of the semantic 

similarity of texts, but, in turn, we also consider 

that it is possible to obtain good estimations of 

these similarities using less-expensive, and perhaps 

broader, information sources. In particular our 

proposal is to automatically extract the semantic 

knowledge from large amounts of raw data sam-

ples i.e. document corpora without labels. 

In this paper we describe two different strategies 

to compute the semantic similarity of words from a 

reference corpus. The first strategy uses word co-

occurrence statistics. It determines that two words 

are associated (in meaning) if they tend to be used 

together, in the same documents or contexts. The 

second strategy measures the similarity of words 

by taking into consideration second order word co-

occurrences. It defines two words as associated if 

they are used in similar contexts (i.e., if they co-

occur with similar words). The following section 

describes the implementation of these two strate-

gies for our participation at the STS-SEM 2013 

task, as well as their combination with the meas-

ures designed by the groups from the Universities 

of Matanzas, Alicante and Paris 13. 
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2 Participation in STS-SEM2013 

The Semantic Textual Similarity (STS) task con-

sists of estimated the value of semantic similarity 

between two texts,𝐷1 and 𝐷2 for now on. 

As we mentioned previously, our participation in 

the STS task of SEM 2013 considered two differ-

ent approaches that aimed to take advantage of the 

language knowledge latent in a given reference 

corpus. By applying simple statistics we obtained a 

semantic similarity measure between words, and 

then we used this semantic word similarity (SWS) 

to get a sentence level similarity estimation. We 

explored two alternatives for measuring the seman-

tic similarity of words, the first one, called 

𝑆𝑊𝑆𝑜𝑐𝑢𝑟𝑟 , uses the co-occurrence of words in a 

limited context
1
,and the second, 𝑆𝑊𝑆𝑐𝑜𝑛𝑡𝑒𝑥𝑡 , com-

pares the contexts of the words using the vector 

model and cosine similarity to achieve this com-

parison. It is important to point out that using the 

vector space model directly, without any spatial 

transformation as those used by other approaches
2
, 

we could get greater control in the selection of the 

features used for the extraction of knowledge from 

the corpus. It is also worth mentioning that we 

applied a stemming procedure to the sentences to 

be compared as well as to all documents from the 

reference corpus. We represented the texts 𝐷1 and 

𝐷2 by bags of tokens, which means that our ap-

proaches did not take into account the word order.  

Following we present our baseline method, then, 

we introduce the two proposed methods as well as 

a method done in collaboration with other groups. 

The idea of this shared-method is to enhance the 

estimation of the semantic textual similarity by 

combining different and diverse strategies for 

computing word similarities. 

2.1 STS-baseline method 

Given texts𝐷1 and 𝐷2, their textual similarity is 

given by: 

 
𝑆𝑇𝑆 − 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑀𝐼𝑁(𝑆𝐼𝑀 𝐷1 ,𝐷2 , 𝑆𝐼𝑀(𝐷2 ,𝐷1)) 

 

where 

                                                           
1 In the experiments we considered a window (context) formed 

of 15 surrounding words. 
2Such as Latent Semantic Analysis (LSA) (Turney, 2005). 

𝑆𝐼𝑀 𝐷𝑖 ,𝐷𝑗  =
1

|𝐷𝑖|
 1(𝑡𝑘  ∈  𝐷𝑗 )

𝑡𝑘∈𝐷𝑖

 

 

This measure is based on a direct matching of to-

kens. It simply counts the number of tokens from 

one text 𝐷𝑖  that also exist in the other text 𝐷𝑗 . Be-

cause STS is a symmetrical attribute, unlike Tex-

tual Entailment (Agirre et al., 2012), we designed 

it as a symmetric measure. We assumed that the 

relationship between both texts is at least equal to 

their smaller asymmetric similarity. 

2.2 The proposed STS methods 

These methods incorporate semantic knowledge 

extracted from a reference corpus. They aim to 

take advantage of the latent semantic knowledge 

from a large document collection. Because the 

extracted knowledge from the reference corpus is 

at word level, these methods for STS use the same 

basic –word matching– strategy for comparing the 

sentences like the baseline method. Nevertheless, 

they allow a soft matching between words by in-

corporating information about their semantic simi-

larity. 

The following formula shows the proposed 

modification to the SIM function in order to incor-

porate information of the semantic word similarity 

(SWS). This modification allowed us not only to 

match words with exactly the same stem but also 

to link different but semantically related words. 
 

𝑆𝐼𝑀 𝐷𝑖 ,𝐷𝑗  =  𝑀𝐴𝑋  𝑆𝑊𝑆(𝑡𝑚 , 𝑡𝑛)

𝑡𝑛∈𝐷𝑗

 

𝑡𝑚∈𝐷𝑖

 

 

We propose two different strategies to compute 

the semantic word similarity (SWS), 𝑆𝑇𝑆𝑂𝑐𝑐𝑢𝑟  and 

𝑆𝑇𝑆𝐶𝑜𝑛𝑡𝑒𝑥 . The following subsections describe in 

detail these two strategies. 

2.2.1 STS based on word co-occurrence 

𝑆𝑊𝑆𝑂𝑐𝑐𝑢𝑟 uses a reference corpus to get a numeri-

cal approximation of the semantic similarity be-

tween two terms 𝑡𝑖and 𝑡𝑗  (when these terms have 

not the same stem). As shown in the following 

formula, 𝑆𝑊𝑆𝑜𝑐𝑐𝑢𝑟  takes values between 0 and 1; 

0 indicates that it does not exist any text sample in 

the corpus that contains both terms, whereas, 1 

indicates that they always occur together. 
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𝑆𝑊𝑆𝑜𝑐𝑐𝑢𝑟  𝑡𝑖 , 𝑡𝑗 =  

𝑡𝑖 = 𝑡𝑗                1               

𝑜𝑡ℎ𝑒𝑟
#(𝑡𝑖 , 𝑡𝑗 )

𝑀𝐼𝑁(#(𝑡𝑖), #(𝑡𝑗 ))

  

 

where# 𝑡𝑖 , 𝑡𝑗  is the number of times that 𝑡𝑖  and 

𝑡𝑗  co-occur and # 𝑡𝑖  and # 𝑡𝑗  are the number of 

times that terms 𝑡𝑖  and 𝑡𝑗  occur in the reference 

corpus respectively. 

2.2.2 STS based on context similarity 

𝑆𝑊𝑆𝑐𝑜𝑛𝑡𝑒𝑥𝑡 is based on the idea that two terms are 

semantically closer if they tend to be used in simi-

lar contexts. This measure uses the well-known 

vector space model and cosine similarity to com-

pare the terms’ contexts. In a first step, we created 

a context vector for each term, which captures all 

the terms that appear around it in the whole refer-

ence corpus. Then, we computed the semantic 

similarity of two terms by the following formula. 
 

𝑆𝑊𝑆𝑐𝑜𝑛𝑡𝑒𝑥𝑡  𝑡𝑖 , 𝑡𝑗 =  
𝑡𝑖 = 𝑡𝑗                1               

𝑜𝑡ℎ𝑒𝑟 𝑆𝐼𝑀𝐶𝑂𝑆 𝑇  𝑖 ,𝑇  𝑗  
  

 

where the cosine similarity, SIMCOS, is calcu-

lated on the vectors 𝑇  𝑖and 𝑇  𝑗 corresponding to the 

vector space model representation of terms 𝑡𝑖  and 

𝑡𝑗 , as indicated in the following equation: 

 

𝑆𝐼𝑀𝐶𝑂𝑆(𝑇  𝑖 ,𝑇  𝑗 ) =
 𝑡𝑖𝑘 ∙ 𝑡𝑗𝑘𝑘  ∈ |𝑉|

|𝑇  𝑖| ∙ |𝑇  𝑗 |
 

 

It is important to point out that SIMCOS is cal-

culated on a “predefined” vocabulary of interest; 

the appropriate selection of this vocabulary helps 

to get a better representation of terms, and, conse-

quently, a more accurate estimation of their seman-

tic similarities. 

2.3 STS based on a combination of measures 

In addition to our main methods we also developed 

a method that combines our SWS measures with 

measures proposed by other two research groups, 

namely: 

 

 LIPN (Laboratoire d'Informatique de Paris-

Nord, Université Paris 13, France). 

 UMCC_DLSI (Universidad de Matanzas Cami-

lo Cienfuegos, Cuba, in conjuction with the 

Departamento de Lenguajes y Sistemas In-

formáticos, Universidad de Alicante, Spain). 

 

The main motivation for this collaboration was to 

investigate the relevance of using diverse strategies 

for computing word similarities and the effective-

ness of their combination for estimating the seman-

tic similarity of texts. 

The proposed method used a set of measures 

provided by each one of the groups. These meas-

ures were employed as features to obtained a pre-

diction model for the STS. Table 1 summarizes the 

used measures. For the generation and fitting of the 

model we used three approaches: linear regression, 

a Gaussian process and a multilayer neural net-

work. 

 

Description Team #  
Mean 

Rank 

Best 

Rank 

Based on IR measures LIPN 2 2.0 1 

Based on distance on WordNet LIPN 2 8.5 2 

STS-Context 
INAOE-

UPV 
1 4.0 4 

Complexity of the sentences 
INAOE-
UPV 

34 27.8 5 

STS-Occur 
INAOE-

UPV 
1 7.0 7 

Based on the alignment of 

particulars POS. 

UMCC_ 

DLSI 
12 40.9 18 

n-gram overlap LIPN 1 20.0 20 

Based on Edit distance 
UMCC_ 

DLSI 
4 42.6 27 

Syntactic dependencies overlap LIPN 1 29.0 29 

Levenshtein’s distance LIPN 1 42.0 42 

Named entity overlap LIPN 1 57.0 57 

Table 1. General description of the features used by the shared me-
thod. The second column indicates the source team for each group of 

features; the third column indicates the number of used features from 

each group; the last two columns show the information gain rank of 
each group of features over the training set.  

3 Implementation considerations  

The extraction of knowledge for the computation 

of the SWS was performed over the Reuters-21578 

collection. This collection was selected because it 

is a well-known corpus and also because it in-

cludes documents covering a wide range of topics. 

Due to time and space restrictions we could not 

consider all the vocabulary from the reference cor-

pus; the vocabulary selection was conducted by 

taking the best 20,000 words according to the tran-
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sition point method (Pinto et al., 2006). This me-

thod selects the terms associated to the main topics 

of the corpus, which presumably contain more 

information for estimating the semantic similarity 

of words. We also preserved the vocabulary from 

the evaluation samples, provided they also occur in 

the reference corpus. The size of the vocabulary 

used in the experiments and the size of the corpus 

and test set vocabularies are shown in Table 2. 

 
Experiment’s  

Vocabulary 

Selected 

Vocabulary 
Ref. Corpus 

Vocabulary 
Evaluation 

Vocabulary 
 

26724 20000 31213 11491 

Table 2. Number of different stems from each of the 
considered vocabularies 

4 Evaluation and Results 

The methods proposed by our group do not require 

to be trained, i.e., they do not require tagged data, 

only a reference corpus, therefore, it was possible 

to evaluate them on the whole training set available 

this year. Table 3 shows their results on this set. 
 

Method Correlation 

STS-Baseline 0.455 

STS-Occur 0.500 

STS-Contex 0.511 

Table 3. Correlation values of the proposed methods and 

our baseline method with human judgments. 
 

Results in Table 3 show that the use of the co-

occurrence information improves the correlation 

with human judgments. It also shows that the use 

of context information further improves the results. 

One surprising finding was the competitive per-

formance of our baseline method; it is considerably 

better than the previous year’s baseline result 

(0.31). 

In order to evaluate the method done in collabo-

ration with LIPN and UMCC_DLSI, we carried 

out several experiments using the features provided 

by each group independently and in conjunction 

with the others. The experiments were performed 

over the whole training set by means of two-fold 

cross-validation. The individual and global results 

are shown in Table 4. 

As shown in Table 4, the result corresponding to 

the combination of all features clearly outper-

formed the results obtained by using each team´s 

features independently. Moreover, the best combi-

nation of features, containing selected features 

from the three teams, obtained a correlation value 

very close to last year's winner result. 

 

Featured by  Group Perdition Model Correlation 

LIPN Gaussian Process 0.587 

LIPN Lineal Regression 0.701 

LIPN Multilayer-NN 0.756 

UMCC_DLSI Gaussian Process 0.388 

UMCC_DLSI Lineal Regression 0.388 

UMCC_DLSI Multilayer-NN 0.382 

INAOE-UPV Gaussian Process 0.670 

INAOE-UPV Lineal Regression 0.674 

INAOE-UPV Multilayer-NN 0.550 

ALL Gaussian Process 0.770 

ALL Lineal Regression 0.777 

ALL Multilayer-NN 0.633 

SELECTED-SET Multilayer-NN 0.808 

LAST YEAR´S 
WINNER 

Simple 
log-linear regression 

0.823 

Table 4. Results obtained by the different subsets of 

features, from the different participating groups. 
 

4.1 Officials Runs 

For the official runs (refer to Table 5) we submit-

ted the results corresponding to the 𝑆𝑇𝑆𝑂𝑐𝑐𝑢𝑟  and 

𝑆𝑇𝑆𝐶𝑜𝑛𝑡𝑒𝑥𝑡  methods. We also submitted a result 

from the method done in collaboration with LIPN 

and UMCC_DLSI. Due to time restrictions we 

were not able to submit the results from our best 

configuration; we submitted the results for the 

linear regression model using all the features 

(second best result from Table 4).Table 5 shows 

the results in the four evaluation sub-collections; 

Headlines comes from news headlines, OnWN  

and FNWN contain pair senses definitions from 

WordNet and other resources, finally, SMT are  

translations from automatic machine translations 

and from the reference human translations. 

As shown in Table 5, the performances of the 

two proposed methods by our group were very 

close. We hypothesize that this result could be 

caused by the use of a larger vocabulary for the 

computation of co-occurrence statistics than for the 

calculation of the context similarities. We had to 

use a smaller vocabulary for the later because its 

higher computational cost. 

Finally, Table 5 also shows that the method 

done in collaboration with the other groups ob-
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tained our best results, confirming that using more 

information about the semantic similarity of words 

allows improving the estimation of the semantic 

similarity of texts. The advantage of this approach 

over the two proposed methods was especially 

clear on the OnWN and FNWN datasets, which 

were created upon WordNet information. Some-

how this result was predictable since several meas-

ures from this “share-method” use WordNet 

information to compute the semantic similarity of 

words. However, this pattern was not the same for 

the other two (WordNet unrelated) datasets. In 

these other two collections, the average perfor-

mance of our two proposed methods, without using 

any expensive and manually constructed resource, 

improved by 4% the results from the share-method. 

 

Method Headlines OnWN FNWN SMT MEAN 

STS-Occur 0.639 0.324 0.271 0.349 0.433 

STS-Contex 0.639 0.326 0.266 0.345 0.431 

Collaboration 0.646 0.629 0.409 0.304 0.508 

Table 4. Correlation values from our official runs over the 

four sub-datasets.  

5 Conclusions 

The main conclusion of this experiment is that it is 

possible to extract useful knowledge from raw 

corpora for evaluating the semantic similarity of 

texts.  Other important conclusion is that the com-

bination of methods (or word semantic similarity 

measures) helps improving the accuracy of STS.  

As future work we plan to carry out a detailed 

analysis of the used measures, with the aim of de-

termining their complementariness and a better 

way for combining them. We also plan to evaluate 

the impact of the size and vocabulary richness of 

the reference corpus on the accuracy of the pro-

posed STS methods. 
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Abstract

We invent referential translation machines
(RTMs), a computational model for identify-
ing the translation acts between any two data
sets with respect to a reference corpus selected
in the same domain, which can be used for
judging the semantic similarity between text.
RTMs make quality and semantic similarity
judgments possible by using retrieved rele-
vant training data as interpretants for reach-
ing shared semantics. An MTPP (machine
translation performance predictor) model de-
rives features measuring the closeness of the
test sentences to the training data, the diffi-
culty of translating them, and the presence of
acts of translation involved. We view seman-
tic similarity as paraphrasing between any two
given texts. Each view is modeled by an RTM
model, giving us a new perspective on the bi-
nary relationship between the two. Our pre-
diction model is the 15th on some tasks and
30th overall out of 89 submissions in total ac-
cording to the official results of the Semantic
Textual Similarity (STS 2013) challenge.

1 Semantic Textual Similarity Judgments

We introduce a fully automated judge for semantic
similarity that performs well in the semantic textual
similarity (STS) task (Agirre et al., 2013). STS is
a degree of semantic equivalence between two texts
based on the observations that “vehicle” and “car”
are more similar than “wave” and “car”. Accurate
prediction of STS has a wide application area in-
cluding: identifying whether two tweets are talk-
ing about the same thing, whether an answer is cor-
rect by comparing it with a reference answer, and

whether a given shorter text is a valid summary of
another text.

The translation quality estimation task (Callison-
Burch et al., 2012) aims to develop quality indicators
for translations at the sentence-level and predictors
without access to a reference translation. Bicici et
al. (2013) develop a top performing machine transla-
tion performance predictor (MTPP), which uses ma-
chine learning models over features measuring how
well the test set matches the training set relying on
extrinsic and language independent features.

The semantic textual similarity (STS) task (Agirre
et al., 2013) addresses the following problem. Given
two sentences S1 and S2 in the same language, quan-
tify the degree of similarity with a similarity score,
which is a number in the range [0, 5]. The semantic
textual similarity prediction problem involves find-
ing a function f approximating the semantic textual
similarity score given two sentences, S1 and S2:

f(S1, S2) ≈ q(S1, S2). (1)

We approach f as a supervised learning problem
with (S1, S2, q(S1, S2)) tuples being the training
data and q(S1, S2) being the target similarity score.

We model the problem as a translation task where
one possible interpretation is obtained by translat-
ing S1 (the source to translate, S) to S2 (the target
translation, T). Since linguistic processing can re-
veal deeper similarity relationships, we also look at
the translation task at different granularities of infor-
mation: plain text (R for regular) , after lemmatiza-
tion (L), after part-of-speech (POS) tagging (P), and
after removing 128 English stop-words (S) 1. Thus,

1http://anoncvs.postgresql.org/cvsweb.cgi/pgsql/
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we obtain 4 different perspectives on the binary re-
lationship between S1 and S2.

2 Referential Translation Machine (RTM)

Referential translation machines (RTMs) we de-
velop provide a computational model for quality and
semantic similarity judgments using retrieval of rel-
evant training data (Biçici and Yuret, 2011a; Biçici,
2011) as interpretants for reaching shared seman-
tics (Biçici, 2008). We show that RTM achieves very
good performance in judging the semantic similarity
of sentences and we can also use RTM to automat-
ically assess the correctness of student answers to
obtain better results (Biçici and van Genabith, 2013)
than the state-of-the-art (Dzikovska et al., 2012).

RTM is a computational model for identifying
the acts of translation for translating between any
given two data sets with respect to a reference cor-
pus selected in the same domain. RTM can be used
for automatically judging the semantic similarity be-
tween texts. An RTM model is based on the selec-
tion of common training data relevant and close to
both the training set and the test set where the se-
lected relevant set of instances are called the inter-
pretants. Interpretants allow shared semantics to be
possible by behaving as a reference point for simi-
larity judgments and providing the context. In semi-
otics, an interpretant I interprets the signs used to
refer to the real objects (Biçici, 2008). RTMs pro-
vide a model for computational semantics using in-
terpretants as a reference according to which seman-
tic judgments with translation acts are made. Each
RTM model is a data translation model between the
instances in the training set and the test set. We use
the FDA (Feature Decay Algorithms) instance se-
lection model for selecting the interpretants (Biçici
and Yuret, 2011a) from a given corpus, which can
be monolingual when modeling paraphrasing acts,
in which case the MTPP model (Section 2.1) is built
using the interpretants themselves as both the source
and the target side of the parallel corpus. RTMs map
the training and test data to a space where translation
acts can be identified. We view that acts of transla-
tion are ubiquitously used during communication:

Every act of communication is an act of
translation (Bliss, 2012).

src/backend/snowball/stopwords/

Translation need not be between different languages
and paraphrasing or communication also contain
acts of translation. When creating sentences, we use
our background knowledge and translate informa-
tion content according to the current context.

Given a training set train, a test set test, and
some monolingual corpus C, preferably in the same
domain as the training and test sets, the RTM steps
are:

1. T = train ∪ test.
2. select(T, C)→ I
3. MTPP(I,train)→ Ftrain
4. MTPP(I,test)→ Ftest
5. learn(M,Ftrain)→M
6. predict(M,Ftest)→ q̂

Step 2 selects the interpretants, I, relevant to the
instances in the combined training and test data.
Steps 3, 4 use I to map train and test to a new
space where similarities between translation acts can
be derived more easily. Step 5 trains a learning
model M over the training features, Ftrain, and
Step 6 obtains the predictions. RTM relies on the
representativeness of I as a medium for building
translation models for translating between train
and test.

Our encouraging results in the STS task provides
a greater understanding of the acts of translation we
ubiquitously use when communicating and how they
can be used to predict the performance of transla-
tion, judging the semantic similarity between text,
and evaluating the quality of student answers. RTM
and MTPP models are not data or language specific
and their modeling power and good performance are
applicable across different domains and tasks. RTM
expands the applicability of MTPP by making it fea-
sible when making monolingual quality and simi-
larity judgments and it enhances the computational
scalability by building models over smaller but more
relevant training data as interpretants.

2.1 The Machine Translation Performance
Predictor (MTPP)

In machine translation (MT), pairs of source and tar-
get sentences are used for training statistical MT
(SMT) models. SMT system performance is af-
fected by the amount of training data used as well
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as the closeness of the test set to the training set.
MTPP (Biçici et al., 2013) is a top performing ma-
chine translation performance predictor, which uses
machine learning models over features measuring
how well the test set matches the training set to pre-
dict the quality of a translation without using a ref-
erence translation. MTPP measures the coverage of
individual test sentence features and syntactic struc-
tures found in the training set and derives feature
functions measuring the closeness of test sentences
to the available training data, the difficulty of trans-
lating the sentence, and the presence of acts of trans-
lation for data transformation.

2.2 MTPP Features for Translation Acts
MTPP uses n-gram features defined over text or
common cover link (CCL) (Seginer, 2007) struc-
tures as the basic units of information over which
similarity calculations are made. Unsupervised
parsing with CCL extracts links from base words
to head words, which allow us to obtain structures
representing the grammatical information instanti-
ated in the training and test data. Feature functions
use statistics involving the training set and the test
sentences to determine their closeness. Since they
are language independent, MTPP allows quality es-
timation to be performed extrinsically. Categories
for the 289 features used are listed below and their
detailed descriptions are presented in (Biçici et al.,
2013) where the number of features are given in {#}.
• Coverage {110}: Measures the degree to

which the test features are found in the train-
ing set for both S ({56}) and T ({54}).
• Synthetic Translation Performance {6}: Calcu-

lates translation scores achievable according to
the n-gram coverage.
• Length {4}: Calculates the number of words

and characters for S and T and their ratios.
• Feature Vector Similarity {16}: Calculates the

similarities between vector representations.
• Perplexity {90}: Measures the fluency of the

sentences according to language models (LM).
We use both forward ({30}) and backward
({15}) LM based features for S and T.
• Entropy {4}: Calculates the distributional sim-

ilarity of test sentences to the training set.
• Retrieval Closeness {24}: Measures the de-

gree to which sentences close to the test set are
found in the training set.

• Diversity {6}: Measures the diversity of co-
occurring features in the training set.
• IBM1 Translation Probability {16}: Calculates

the translation probability of test sentences us-
ing the training set (Brown et al., 1993).
• Minimum Bayes Retrieval Risk {4}: Calculates

the translation probability for the translation
having the minimum Bayes risk among the re-
trieved training instances.
• Sentence Translation Performance {3}: Calcu-

lates translation scores obtained according to
q(T,R) using BLEU (Papineni et al., 2002),
NIST (Doddington, 2002), or F1 (Biçici and
Yuret, 2011b) for q.
• Character n-grams {4}: Calculates the cosine

between the character n-grams (for n=2,3,4,5)
obtained for S and T (Bär et al., 2012).
• LIX {2}: Calculates the LIX readability

score (Wikipedia, 2013; Björnsson, 1968) for
S and T. 2

3 Experiments

STS contains sentence pairs from news headlines
(headlines), sense definitions from semantic lexical
resources (OnWN is from OntoNotes (Pradhan et
al., 2007) and WordNet (Miller, 1995) and FNWN is
from FrameNet (Baker et al., 1998) and WordNet),
and statistical machine translation (SMT) (Agirre et
al., 2013). STS challenge results are evaluated with
the Pearson’s correlation score (r).

The test set contains 2250 (S1, S2) sentence pairs
with 750, 561, 189, and 750 sentences from each
type respectively. The training set contains 5342
sentence pairs with 1500 each from MSRpar and
MSRvid (Microsoft Research paraphrase and video
description corpus (Agirre et al., 2012)), 1592 from
SMT, and 750 from OnWN.

3.1 RTM Models
We obtain CNGL results for the STS task as fol-
lows. For each perspective described in Section 1,
we build an RTM model. Each RTM model views
the STS task from a different perspective using the
289 features extracted dependent on the interpre-
tants using MTPP. We extract the features both on

2LIX= A
B

+ C 100
A

, where A is the number of words, C is
words longer than 6 characters, B is words that start or end with
any of “.”, “:”, “!”, “?” similar to (Hagström, 2012).
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S1 → S2
RR .7904 .7502 .8200 .7788 .8074 .8232 .8101 .8247 .8218 .8509 .8266 .8172 .8304 .8530 .8323 .8499

SVR .8311 .8060 .8443 .8330 .8404 .8517 .8498 .8501 .8593 .8556 .8496 .8422 .8586 .8579 .8527 .8564

S2 → S1
RR .7922 .7651 .8169 .7891 .8064 .8196 .8136 .8219 .8257 .8257 .8226 .8164 .8284 .8284 .8313 .8324

SVR .8308 .8165 .8407 .8302 .8361 .8506 .8467 .8510 .8567 .8567 .8525 .8460 .8588 .8588 .8575 .8574

S1 � S2
RR .8079 .787 .8279 .8101 .8216 .8333 .8275 .8346 .8375 .8409 .8361 .8312 .8412 .8434 .8432 .844

SVR .8397 .8237 .8554 .841 .8432 .857 .851 .8557 .8605 .8626 .8505 .8505 .8591 .8622 .8602 .8588

Table 1: CV performance on the training set with tuning. Underlined are the settings we use in our submissions. RTM
models in directions S1 → S2, S2 → S1, and the bi-directional models S1 � S2 are displayed.

the training set and the test set. The training cor-
pus used is the English side of an out-of-domain
corpus on European parliamentary discussions, Eu-
roparl (Callison-Burch et al., 2012) 3. In-domain
corpora are likely to improve the performance. We
use the Stanford POS tagger (Toutanova et al., 2003)
to obtain the perspectives P and L. We use the train-
ing corpus to build a 5-gram target LM.

We use ridge regression (RR) and support vec-
tor regression (SVR) with RBF kernel (Smola and
Schölkopf, 2004). Both of these models learn a re-
gression function using the features to estimate a nu-
merical target value. The parameters that govern the
behavior of RR and SVR are the regularization λ
for RR and the C, ε, and γ parameters for SVR. At
testing time, the predictions are bounded to obtain
scores in the range [0, 5]. We perform tuning on a
subset of the training set separately for each RTM
model and optimize against the performance evalu-
ated with R2, the coefficient of determination.

We do not build a separate model for different
types of sentences and instead use all of the train-
ing set for building a large prediction model. We
also use transductive learning since using only the
relevant training data for training can improve the
performance (Biçici, 2011). Transductive learning
is performed at the sentence level where for each test
instance, we select 1250 relevant training instances
using the cosine similarity metric over the feature
vectors and build an individual model for the test in-
stance and predict the similarity score.

3We use WMT’13 corpora from www.statmt.org/wmt13/.

3.2 Training Results

Table 1 lists the 10-fold cross-validation (CV) re-
sults on the training set for RR and SVR for differ-
ent RTM systems using optimized parameters. As
we combine different perspectives, the performance
improves and we use the L+S with SVR for run 1
(LSSVR), L+P+S with SVR for run 2 (LPSSVR),
and L+P+S with SVR using transductive learning
for run 3 (LPSSVRTL) all in the translation direc-
tion S1 → S2. Lemmatized RTM, L, performs the
best among the individual perspectives. We also
build RTM models in the direction S2 → S1, which
gives similar results. The last main row combines
them to obtain the bi-directional results, S1 � S2,
which improves the performance. Each additional
perspective adds another 289 features to the repre-
sentation and the bi-directional results double the
number of features. Thus, S1 � S2 L+P+S is us-
ing 1734 features.

3.3 STS Challenge Results

Table 2 presents the STS challenge r and ranking
results containing our CNGL submissions, the best
system result, and the mean results over all submis-
sions. There were 89 submissions from 35 compet-
ing systems (Agirre et al., 2013). The results are
ranked according to the mean r obtained. We also
include the mean result over all of the submissions
and its corresponding rank.

According to the official results, CNGL-LSSVR
is the 30th system from the top based on the mean r
obtained and CNGL-LPSSVR is 15th according to
the results on OnWN out of 89 submissions in total.
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System head OnWN FNWN SMT mean rank
CNGL-LSSVR .6552 .6943 .2016 .3005 .5086 30
CNGL-LPSSVRTL .6385 .6756 .1823 .3098 .4998 33
CNGL-LPSSVR .6510 .6971 .1180 .2861 .4961 36
UMBC-EB.-PW .7642 .7529 .5818 .3804 .6181 1
mean .6071 .5089 .2906 .3004 .4538 57

Table 2: STS challenge r and ranking results ranked ac-
cording to the mean r obtained. head is headlines and
mean is the mean of all submissions.

CNGL submissions perform unexpectedly low in the
FNWN task and only slightly better than the average
in the SMT task. The lower performance is likely to
be due to using an out-of-domain corpus for building
the RTM models and it may also be due to using and
optimizing a single model for all types of tasks.

3.4 Bi-directional RTM Models

The STS task similarity score is directional invari-
ant: q(S1, S2) = q(S2, S1). We develop RTM mod-
els in the reverse direction and obtain bi-directional
RTM models by combining both. Table 3 lists the
bi-directional results on the STS challenge test set
after tuning, which shows that slight improvement in
the scores are possible when compared with Table 2.
Transductive learning improves the performance in
general. We also compare with the performance ob-
tained when combining uni-directional models with
mean, min, or max functions. Taking the minimum
performs better than other combination approaches
and can achieve r = 0.5129 with TL. One can also
take the individual confidence scores obtained for
each score when combining scores.

4 Conclusion

Referential translation machines provide a clean
and intuitive computational model for automatically
measuring semantic similarity by measuring the acts
of translation involved and achieve to be the 15th on
some tasks and 30th overall in the STS challenge out
of 89 submissions in total. RTMs make quality and
semantic similarity judgments possible based on the
retrieval of relevant training data as interpretants for
reaching shared semantics.

System head OnWN FNWN SMT mean

LS

mean .6552 .6943 .2016 .3005 .5086
mean TL .6397 .6808 .1776 .3147 .5028
min .6512 .6947 .2003 .2984 .5066
min TL .6416 .6853 .1903 .3143 .5055
max .6669 .6680 .1867 .2737 .4958
max TL .6493 .6805 .1846 .3127 .5059
S1 � S2 .6388 .6695 .1667 .2999 .4938
S1 � S2 TL .6285 .6686 .0918 .2931 .4816

LPS

mean .6510 .6971 .1179 .2861 .4961
mean TL .6524 .6918 .1940 .3176 .5121
min .6608 .6953 .1704 .2922 .5053
min TL .6509 .6864 .1792 .3156 .5084
max .6588 .6800 .1355 .2868 .4961
max TL .6493 .6805 .1846 .3127 .5059
S1 � S2 .6251 .6843 .0677 .2994 .4845
S1 � S2 TL .6370 .6978 .0951 .2980 .4936

RLPS

mean .6517 .7136 .1002 .2880 .4996
mean TL .6383 .6841 .2434 .3063 .5059
min .6615 .7099 .1644 .2877 .5072
min TL .6606 .6987 .1972 .3059 .5129
max .6589 .7019 .0995 .2935 .5008
max TL .6362 .6896 .2044 .3153 .5063
S1 � S2 .6300 .7011 .0817 .2798 .4850
S1 � S2 TL .6321 .6956 .1995 .3128 .5052

Table 3: Bi-directional STS challenge r and ranking re-
sults ranked according to the mean r obtained. We com-
bine the two directions by taking the mean, min, or the
max or use the bi-directional RTM model S1 � S2.
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Ergun Biçici and Josef van Genabith. 2013. CNGL:
Grading student answers by acts of translation. In
*SEM 2013: The First Joint Conference on Lexical
and Computational Semantics and Proceedings of the
Seventh International Workshop on Semantic Evalua-
tion (SemEval 2013), Atlanta, Georgia, USA, 14-15
June. Association for Computational Linguistics.
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Ergun Biçici and Deniz Yuret. 2011b. RegMT system for
machine translation, system combination, and evalua-
tion. In Proceedings of the Sixth Workshop on Sta-
tistical Machine Translation, pages 323–329, Edin-
burgh, Scotland, July. Association for Computational
Linguistics.
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Abstract

We created a dataset of syntactic-ngrams
(counted dependency-tree fragments) based
on a corpus of 3.5 million English books. The
dataset includes over 10 billion distinct items
covering a wide range of syntactic configura-
tions. It also includes temporal information,
facilitating new kinds of research into lexical
semantics over time. This paper describes the
dataset, the syntactic representation, and the
kinds of information provided.

1 Introduction

The distributional hypothesis of Harris (1954) states
that properties of words can be captured based on
their contexts. The consequences of this hypoth-
esis have been leveraged to a great effect by the
NLP community, resulting in algorithms for in-
ferring syntactic as well as semantic properties of
words (see e.g. (Turney and Pantel, 2010; Baroni
and Lenci, 2010) and the references therein).

In this paper, we describe a very large dataset
of syntactic-ngrams, that is, structures in which the
contexts of words are based on their respective po-
sition in a syntactic parse tree, and not on their se-
quential order in the sentence: the different words in
the ngram may be far apart from each other in the
sentence, yet close to each other syntactically. See
Figure 1 for an example of a syntactic-ngram.

The utility of syntactic contexts of words for con-
structing vector-space models of word meanings is
well established (Lin, 1998; Lin and Pantel, 2001;
Padó and Lapata, 2007; Baroni and Lenci, 2010).
Syntactic relations are successfully used for mod-
eling selectional preferences (Erk and Padó, 2008;

∗Work performed while at Google.

Erk et al., 2010; Ritter et al., 2010; Séaghdha,
2010), and dependency paths are also used to in-
fer binary relations between words (Lin and Pantel,
2001; Wu and Weld, 2010). The use of syntactic-
ngrams holds promise also for improving the accu-
racy of core NLP tasks such as syntactic language-
modeling (Shen et al., 2008) and syntactic-parsing
(Chen et al., 2009; Sagae and Gordon, 2009; Co-
hen et al., 2012), though most successful attempts
to improve syntactic parsing by using counts from
large corpora are based on sequential rather than
syntactic information (Koo et al., 2008; Bansal and
Klein, 2011; Pitler, 2012), we believe this is be-
cause large-scale datasets of syntactic counts are not
readily available. Unfortunately, most work utiliz-
ing counts from large textual corpora does not use a
standardized corpora for constructing their models,
making it very hard to reproduce results and chal-
lenging to compare results across different studies.

Our aim in this work is not to present new meth-
ods or results, but rather to provide a new kind of a
large-scale (based on corpora about 100 times larger
than previous efforts) high-quality and standard re-
source for researchers to build upon. Instead of fo-
cusing on a specific task, we aim to provide a flexi-
ble resource that could be adapted to many possible
tasks.

Specifically, the contribution of this work is in
creating a dataset of syntactic-ngrams which is:

• Derived from a very large (345 billion words)
corpus spanning a long time period.

• Covers a wide range of syntactic phenomena
and is adaptable to many use cases.

• Based on state-of-the-art syntactic processing
in a modern syntactic representation.

• Broken down by year of occurrence, as well
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Figure 1: A syntactic ngram appearing 112 times in
the extended-biarcs set, which include structures contain-
ing three content words (see Section 4). Grayed items
are non-content words and are not included in the word
count. The dashed auxiliary “have” is a functional marker
(see Section 3), appearing only in the extended-* sets.

as some coarse-grained regional and genre dis-
tinctions (British, American, Fiction).

• Freely available for non-commercial use. 1

After describing the underlying syntactic represen-
tation, we will present our definition of a syntactic-
ngram, and detail the kinds of syntactic-ngrams we
chose to include in the dataset. Then, we present de-
tails of the corpus and the syntactic processing we
performed.
With respect to previous efforts, the dataset has the
following distinguishing characteristics:
Temporal Dimension A unique aspect of our
dataset is the temporal dimension, allowing inspec-
tion of how the contexts of different words vary
over time. For example, one could examine how the
meaning of a word evolves over time by looking at
the contexts it appears in within different time peri-
ods. Figure 2 shows the cosine similarity between
the word “rock” and the words “stone” and “jazz”
from year 1930 to 2000, showing that rock acquired
a new meaning around 1968.
Large syntactic contexts Previous efforts of provid-
ing syntactic counts from large scale corpora (Ba-
roni and Lenci, 2010) focus on relations between
two content words. Our dataset include structures
covering much larger tree fragments, some of them
including 5 or more content words. By including
such structures we hope to encourage research ex-
ploring higher orders of interactions, for example
modeling the relation between adjectives of two con-
joined nouns, the interactions between subjects and
objects of verbs, or fine-grained selectional prefer-
ences of verbs and nouns.

1The dataset is made publicly available under the Cre-
ative Commons Attribution-Non Commercial ShareAlike 3.0
Unported License: http://creativecommons.org/licenses/by-nc-
sa/3.0/legalcode.

Figure 2: Word-similarity over time: The word “rock” starts
to become similar to “jazz” around 1968. The plot shows the
cosine similarity between the immediate syntactic contexts of
of the word “rock” in each year, to the immediate syntactic con-
texts of the words “jazz” (in red) and “stone” (in blue) aggre-
gated over all years.

A closely related effort to add syntactic anno-
tation to the books corpus is described in Lin et
al. (2012). That effort emphasize an interactive
query interface covering several languages, in which
the underlying syntactic representations are linear-
ngrams enriched with universal part-of-speech tags,
as well as first order unlabeled dependencies. In
contrast, our emphasis is not on an easy-to-use query
interface but instead a useful and flexible resource
for computational-minded researchers. We focus
on English and use finer-grained English-specific
POS-tags. The syntactic analysis is done using a
more accurate parser, and we provide counts over la-
beled tree fragments, covering a diverse set of tree-
fragments many of which include more than two
content words.
Counted Fragments instead of complete trees
While some efforts provide complete parse trees
from large corpora (Charniak, 2000; Baroni et al.,
2009; Napoles et al., 2012), we instead provide
counted tree fragments. We believe that our form of
aggregate information is of more immediate use than
the raw parse trees. While access to the parse trees
may allow for somewhat greater flexibility in the
kinds of questions one could ask, it also comes with
a very hefty price tag in terms of the required com-
putational resources: while counting seems trivial,
it is, in fact, quite demanding computationally when
done on such a scale, and requires a massive infras-
tructure. By lifting this burden of NLP researchers,
we hope to free them to tackle interesting research
questions.
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2 Underlying Syntactic Representation

We assume the part-of-speech tagset of the Penn
Treebank (Marcus et al., 1993). The syntactic rep-
resentation we work with is based on dependency-
grammar. Specifically, we use labeled dependency
trees following the “basic” variant of the Stanford-
dependencies scheme (de Marneffe and Manning,
2008b; de Marneffe and Manning, 2008a).

Dependency grammar is a natural choice, as it
emphasizes individual words and explicitly mod-
els the connections between them. Stanford de-
pendencies are appealing because they model rela-
tions between content words directly, without in-
tervening functional markers (so in a construction
such as “wanted to know” there is a direct rela-
tion (wanted, know) instead of two relation
(wanted, to) and (to, know). This facil-
itates focusing on meaning-bearing content words
and including the maximal amount of information
in an ngram.

3 Syntactic-ngrams

We define a syntactic-ngram to be a rooted con-
nected dependency tree over k words, which is a
subtree of a dependency tree over an entire sentence.
For each of the k words in the ngram, we provide in-
formation about the word-form, its part-of-speech,
and its dependency relation to its head. The ngram
also indicates the relative ordering between the dif-
ferent words (the order of the words in the syntactic-
ngram is the same as the order in which the words
appear in the underlying sentence) but not the dis-
tance between them, nor an indication whether there
is a missing material between the nodes. Examples
of syntactic-ngrams are provided in Figures 1 and 3.
Content-words and Functional-markers We dis-
tinguish between content-words which are mean-
ing bearing elements and functional-markers, which
serve to add polarity, modality or definiteness in-
formation to the meaning bearing elements, but do
not carry semantic meaning of their own, such as
the auxiliary verb “have” in Figure 1. Specifi-
cally, we treat words with a dependency-label of
det, poss, neg, aux, auxpass, ps, mark,
complm and prt as functional-markers. With the
exception of poss, these are all closed-class cat-
egories. All other words except for prepositions

and conjunctions are treated as content-words. A
syntactic-ngram of order n includes exactly n con-
tent words. It may optionally include all of the
functional-markers that modify the content-words.
Conjunctions and Prepositions Conjunctions and
Prepositions receive a special treatment. When a co-
ordinating word (“and”, “or”, “but”) appears as part
of a conjunctive structure (e.g. “X, Y, and Z”), it
is treated as a non-content word. Instead, it is al-
ways included in the syntactic-ngrams that include
the conjunctive relation it is a part of, allowing to
differentiate between the various kinds of conjunc-
tions. An example is seen in Figure 3d, in which
the relation conj(efficient, effective)
is enriched with the coordinating word “or”. When
a coordinating word does not explicitly take part in
a conjunction relation (e.g. “But, . . . ”) it is treated
as a content word.

When a preposition is part of a prepositional mod-
ification (i.e. in the middle of the pair (prep,
pcomp) or (prep, pobj)), such as the word
“of” in Figures 1 and 3h and the word “as” in Figure
3e, it is treated as a non-content word, and is always
included in a syntactic-ngram whenever the words it
connects are included. In cases of ellipsis or other
cases where there is no overt pobj or pcomp (“he
is hard to deal with”) the preposition is treated as a
content word.2

Multiword Expressions Some multiword expres-
sions are recognized by the parser. Whenever a con-
tent word in an ngram has modifiers with the mwe
relation, they are included in the ngram.

4 The Provided Ngram Types
We aimed to include a diverse set of relations, with
maximal emphasis on relations between content-
bearing words, while still retaining access to defi-

2This treatment of prepositions and conjunction is similar to
the “collapsed” variant of Stanford Dependencies (de Marneffe
and Manning, 2008a), in which preposition- and conjunction-
words do not appear as nodes in the tree but are instead anno-
tated on the dependency label between the content words they
connect, e.g. prep with(saw, telescope). However,
we chose to represent the preposition or conjunction as a node
in the tree rather than moving it to the dependency label as it
retains the information about the location of the function word
with respect to the other words in the structure, is consistent
with cases in which one of the content words is not present, and
does not blow up the label-set size.
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niteness, modality and polarity if they are desired.
The dataset includes the following types of syntactic
structures:
nodes (47M items) consist of a single content word,
and capture the syntactic role of that word (as in Fig-
ure 3a). For example, we can learn that the pro-
noun “he” is predominantly used as a subject, and
that “help” as a noun is over 4 times more likely to
appear in object than in subject position.
arcs (919M items) consist of two content words, and
capture direct dependency relations such as “subject
of”, “adverbial modifier of” and so on (see Figure
3c,3d for examples). These correspond to “depen-
dency triplets” as used in Lin (1998) and most other
work on syntax-based semantic similarity.
biarcs (1.78B items) consist of three content words
(either a word and its two daughters, or a child-
parent-grandparent chain) and capture relations such
as “subject verb object”, “a noun and two adjectivial
modifiers”, “verb, object and adjectivial modifier of
the object” and many others.
triarcs (1.87B items) consist of four content words
(example in Figure 3f). The locality of the depen-
dency representation causes this set of three-arcs
structures to be large, sparse and noisy – many of
the relations may appear random because some arcs
are in many cases almost independent given the oth-
ers. However, some of the relations are known to be
of interest, and we hope more of them will prove to
be of interest in the future. Some of the interesting
relations include:
- modifiers of the head noun of the subject or object
in an SVO construction: ((small,boy), ate, cookies),
(boy, ate, (tasty, cookies)), and with abstraction: ad-
jectives that a boy likes to eat: (boy, ate, (tasty, *) )
- arguments of an embeded verb (said, (boy, ate,
cookie) ), (said, ((small, boy), ate) )
- modifiers of conjoined elements ( (small, boy)
(young, girl) ) , ( (small, *) (young, *) )
- relative clause constructions ( boy, (girl, with-
cookies, saw) )
quadarcs (187M items) consist of 5 content words
(example in Figure 3h). In contrast to the previous
datasets, this set includes only a subset of the pos-
sible relations involving 5 content words. We chose
to focus on relations which are attested in the liter-
ature (Padó and Lapata 2007; Appendix A), namely
structures consisting of two chains of length 2 with a

single head, e.g. ( (small, boy), ate, (tasty, cookie) ).
extended-nodes, extended-arcs, extended-biarcs,
extended-triarcs, extended-quadarcs (80M,
1.08B, 1.62B, 1.71B, and 180M items) Like the
above, but the functional markers of each content
words are included as well (see examples in Figures
3b, 3e, 3g). These structures retain information
regarding aspects such as modality, polarity and
definiteness, distinguishing, e.g. “his red car” from
“her red car”, “will go” from “should go” and “a
best time” from “the best time”.
verbargs (130M items) This set of ngrams consist
of verbs with all their immediate arguments, and
can be used to study interactions between modi-
fiers of a verb, as well as subcategorization frames.
These structures are also useful for syntactic lan-
guage modeling, as all the daughters of a verb are
guaranteed to be present.
nounargs (275M items) This set of ngrams consist
of nouns with all their immediate arguments.
verbargs-unlex, nounargs-unlex (114M, 195M
items) Like the above, but only the head word and
the top-1000 occurring words in the English-1M
subcorpus are lexicalized – other words are replaced
with a *W* symbol. By abstracting away from non-
frequent words, we include many of the larger syn-
tactic configurations that will otherwise be pruned
away by our frequency threshold. These could be
useful for inspecting fine-grained syntactic subcate-
gorization frames.

5 Corpora and Syntactic Processing

The dataset is based on the English Google Books
corpus. This is the same corpus used to derive the
Google Books Ngrams, and is described in detail in
Michel et al. (2011). The corpus consists of the text
of 3,473,595 English books which were published
between 1520 and 2008, with the majority of the
content published after 1800. We provide counts
based on the entire corpus, as well as on several sub-
sets of it:
English 1M Uniformly sampled 1 million books.
Fiction Works of Fiction.
American English Books published in the US.
British English Books published in Britain.
The sizes of the different corpora are detailed in Ta-
ble 1.
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Figure 3: Syntactic-ngram examples. Non-content words are
grayed, functional markers appearing only in the extended-*
collections are dashed. (a) node (b) extended-node (c) arcs (d)
arcs, including the coordinating word (e) extended-arcs, includ-
ing a preposition (f) triarcs (g) extended-triarcs (h) quadarcs,
including a preposition.

Counts Each syntactic ngram in each of the sub-
corpora is coupled with a corpus-level count as well
as counts from each individual year. To keep the

Corpus # Books # Pages # Sentences # Tokens
All 3.5M 925.7M 17.6B 345.1B
1M 1M 291.1M 5.1B 101.3B
Fiction 817K 231.3M 4.7B 86.1B
American 1.4M 387.6M 7.9B 146.2B
British 423K 124.9M 2.4B 46.1B

Table 1: Corpora sizes.

data manageable, we employ a frequency threshold
of 10 on the corpus-level count.

Data Processing We ignored pages with over 600
white-spaces (which are indicative of OCR errors or
non-textual content), as well as sentences of over 60
tokens. Table 1 details the sizes of the various cor-
pora.

After OCR, sentence splitting and tokenization,
the corpus went through several stages of syntactic
processing: part-of-speech tagging, syntactic pars-
ing, and syntactic-ngrams extraction.

Part-of-speech tagging was performed using a
first order CRF tagger, which was trained on a union
of the Penn WSJ Corpus (Marcus et al., 1993), the
Brown corpus (Kucera and Francis, 1967) and the
Questions Treebank (Judge et al., 2006). In addition
to the diverse training material, the tagger makes use
of features based on word-clusters derived from tri-
grams of the Books corpus. These cluster-features
make the tagger more robust on the books domain.
For further details regarding the tagger, see Lin et al.
(2012).

Syntactic parsing was performed using a re-
implementation of a beam-search shift-reduce de-
pendency parser (Zhang and Clark, 2008) with a
beam of size 8 and the feature-set described in
Zhang and Nivre (2011). The parser was trained
on the same training data as the tagger after 4-way
jack-knifing so that the parser is trained on data with
predicted part-of-speech tags. The parser provides
state-of-the-art syntactic annotations for English.3

3Evaluating the quality of syntactic annotation on such a var-
ied dataset is a challenging task on its own right – the underly-
ing corpus includes many different genres spanning different
time periods, as well as varying levels of digitization and OCR
quality. It is extremely difficult to choose a representative sam-
ple to manually annotate and evaluate on, and we believe no
single number will do justice to describing the annotation qual-
ity across the entire dataset. On top of that, we then aggregate
fragments and filter based on counts, further changing the data
distribution. We feel that it is better not to provide any numbers
than to provide inaccurate, misleading or uninformative num-
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6 Conclusion

We created a dataset of syntactic-ngrams based on
a very large literary corpus. The dataset contains
over 10 billion unique items covering a wide range
of syntactic structures, and includes a temporal di-
mension.

The dataset is available for download at
http://storage.googleapis.com/
books/syntactic-ngrams/index.html
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Abstract

We propose an unsupervised method for au-
tomatically calculating word usage similar-
ity in social media data based on topic mod-
elling, which we contrast with a baseline dis-
tributional method and Weighted Textual Ma-
trix Factorization. We evaluate these meth-
ods against a novel dataset made up of human
ratings over 550 Twitter message pairs anno-
tated for usage similarity for a set of 10 nouns.
The results show that our topic modelling ap-
proach outperforms the other two methods.

1 Introduction

In recent years, with the growing popularity of so-
cial media applications, there has been a steep rise
in the amount of “post”-based user-generated text
(including microblog posts, status updates and com-
ments) (Bennett, 2012). This data has been iden-
tified as having potential for applications ranging
from trend analysis (Lau et al., 2012a) and event de-
tection (Osborne et al., 2012) to election outcome
prediction (O’Connor et al., 2010). However, given
that posts are generally very short, noisy and lack-
ing in context, traditional NLP approaches tend to
perform poorly over social media data (Hong and
Davison, 2010; Ritter et al., 2011; Han et al., 2012).

This is the first paper to address the task of lexi-
cal semantic interpretation in microblog data based
on word usage similarity. Word usage similar-
ity (USIM: Erk et al. (2009)) is a relatively new
paradigm for capturing similarity in the usages of
a given word independently of any lexicon or sense
inventory. The task is to rate on an ordinal scale the

similarity in usage between two different usages of
the same word. In doing so, it avoids common issues
in conventional word sense disambiguation, relating
to sense underspecification, the appropriateness of a
static sense inventory to a given domain, and the in-
ability to capture similarities/overlaps between word
senses. As an example of USIM, consider the fol-
lowing pairing of Twitter posts containing the target
word paper:

1. Deportation of Afghan Asylum Seekers from
Australia : This paper aims to critically evalu-
ate a newly signed agree.

2. @USER has his number on a piece of paper
and I walkd off!

The task is to predict a real-valued number in the
range [1, 5] for the similarity in the respective us-
ages of paper, where 1 indicates the usages are com-
pletely different and 5 indicates they are identical.

In this paper we develop a new USIM dataset
based on Twitter data. In experiments on this dataset
we demonstrate that an LDA-based topic modelling
approach outperforms a baseline distributional se-
mantic approach and Weighted Textual Matrix Fac-
torization (WTMF: Guo and Diab (2012a)). We
further show that context expansion using a novel
hashtag-based strategy improves both the LDA-
based method and WTMF.

2 Related Work

Word sense disambiguation (WSD) is the task of
determining the particular sense of a word from a
given set of pre-defined senses (Navigli, 2009). It
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contrasts with word sense induction (WSI), where
the senses of a given target word are induced from
an unannotated corpus of usages, and the induced
senses are then used to disambiguate each token us-
age of the word (Manandhar et al., 2010; Lau et
al., 2012b). WSD and WSI have been the predomi-
nant paradigms for capturing and evaluating lexical
semantics, and both assume that each usage corre-
sponds to exactly one of a set of discrete senses of
the target word, and that any prediction other than
the “correct” sense is equally wrong.

Erk et al. (2009) showed that, given a sense in-
ventory, there is a high likelihood of multiple senses
being compatible with a given usage, and proposed
USIM as a means of capturing the similarity in us-
age between a pairing of usages of a given word.
As part of their work, they released a dataset, which
Lui et al. (2012) recently developed a topic mod-
elling approach over. Based on extensive experi-
mentation, they demonstrated the best results with
a single topic model for all target words based on
full document context. Our topic modelling-based
approach to USIM builds off the approach of Lui
et al. (2012). Guo and Diab (2012a) observed that,
when applied to short texts, the effectiveness of la-
tent semantic approaches can be boosted by expand-
ing the text to include “missing” words. Based on
this, they proposed Weighted Textual Matrix Factor-
ization (WTMF), based on weighted matrix factor-
ization (Srebro and Jaakkola, 2003). Here we ex-
periment with both LDA based topic modeling and
WTMF to estimate word similarities in twitter data.
LDA based topic modeling has been earlier studied
on Twitter data for tweet classification (Ramage et
al., 2010) and tweet clustering (Jin et al., 2011).

3 Data Preparation

This section describes the construction of the USIM-
tweet dataset based on microblog posts (“tweets”)
from Twitter. We describe the pre-processing steps
taken to sample the tweets in our datasets, outline
the annotation process, and then describe the back-
ground corpora used in our experiments.

3.1 Data preprocessing
Around half of Twitter is non-English (Hong et al.,
2011), so our first step was to automatically identify

English tweets using langid.py (Lui and Bald-
win, 2012). We next performed lexical normaliza-
tion using the dictionary of Han et al. (2012) to con-
vert lexical variants (e.g., tmrw) to their standard
forms (e.g., tomorrow) and reduce data sparseness.
As our target words, we chose the 10 nouns from
the original USIM dataset of Erk et al. (2009) (bar,
charge, execution, field, figure, function, investiga-
tor, match, paper, post), and identified tweets con-
taining the target words as nouns using the CMU
Twitter POS tagger (Owoputi et al., 2012).

3.2 Annotation Settings and Data
To collect word usage similarity scores for Twitter
message pairs, we used a setup similar to that of
Erk et al. (2009) using Amazon Mechanical Turk:
we asked the annotators to rate each sentence pair
with an integer score in the range [1, 5] using sim-
ilar annotation guidelines to Erk et al. We ran-
domly sampled twitter messages from the TREC
2011 microblog dataset,1 and for each of our 10
nouns, we collected 55 pairs of messages satisfying
the preprocessing described in Section 3.1. These
55 pairs are chosen such that each tweet has at least
4 content words (nouns, verbs, adjectives and ad-
verbs) and at least 70+% of its post-normalized to-
kens in the Aspell dictionary (v6.06)2; these restric-
tions were included in an effort to ensure the tweets
would contain sufficient linguistic content to be in-
terpretable.3 We created 110 Mechanical Turk jobs
(referred to as HITs), with each HIT containing 5
randomly-selected message pairs. For this annota-
tion the tweets were presented in their original form,
i.e., without lexical normalisation applied. Each HIT
was completed by 10 “turkers”, resulting in a total
of 5500 annotations. The annotation was restricted
to turkers based in the United States having had at
least 95% of their previous HITs accepted. In total,
the annotation was carried out by 68 turkers, each
completing between 1 and 100 HITs.

To detect outlier annotators, we calculated the av-
erage Spearman correlation score (ρ) of every an-
notator by correlating their annotation values with
every other annotator and taking the average. We

1http://trec.nist.gov/data/tweets/
2http://aspell.net/
3In future analyses we intend to explore the potential impact

of these restrictions on the resulting dataset.
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Word Orig Exp Word Orig Exp
bar 180k 186k function 26k 27k
charge 41k 43k investigator 17k 19k
execution 28k 30k field 72k 75k
figure 28k 29k match 126k 133k
paper 210k 218k post 299k 310k

Table 1: The number of tweets for each word in each
background corpus (“Orig” = ORIGINAL; “Exp”
= EXPANDED; RANDEXPANDED, not shown, con-
tains the same number of tweets as EXPANDED).

accepted all the annotations of annotators whose av-
erage ρ is greater than 0.6; this corresponded to 95%
of the annotators. Two annotators had a negative
average ρ and their annotations (only 4 HITs to-
tal) were discarded. For the other annotators (i.e.,
0 ≤ ρ ≤ 0.6), we accepted each of their HITs on
a case by case basis; a HIT was accepted only if
at least 2 out of 5 of the annotations for that HIT
were within ±2.0 of the mean for that annotation
based on the judgments of the other turkers. (21
HITS were discarded using this heuristic.) We fur-
ther eliminated 7 HITS which have incomplete judg-
ments. In total only 32 HITs (of the 1100 HITs com-
pleted) were discarded through these heuristics. The
weighted average Spearman correlation over all an-
notators after this filtering is 0.681, which is some-
what higher than the inter-annotator agreement of
0.548 reported by Erk et al. (2009). This dataset is
available for download.

3.3 Background Corpus
We created three background corpora based on data
from the Twitter Streaming API in February 2012
(only tweets satisfying the preprocessing steps in
Section 3.1 were chosen).

ORIGINAL: 1 million tweets which contain at least
one of the 10 target nouns;

EXPANDED: ORIGINAL plus an additional 40k
tweets containing at least 1 hashtag attested in
ORIGINAL with an average frequency of use of
10–35 times/hour (medium frequency);

RANDEXPANDED: ORIGINAL plus 40k randomly

sampled tweets containing the same target
nouns.

We select medium-frequency hashtags because low-
frequency hashtags tend to be ad hoc and non-
thematic in nature, while high-frequency hash-
tags are potentially too general to capture us-
age similarity. Statistics for ORIGINAL and EX-
PANDED/RANDEXPANDED are shown in Table 1.
RANDEXPANDED is sampled such that it has the
same number of tweets as EXPANDED.

4 Methodology

We propose an LDA topic modelling-based ap-
proach to the USIM task, which we contrast with
a baseline distributional model and WTMF. In all
these methods, the similarity between two word us-
ages is measured using cosine similarity between the
vector representation of each word usage.

4.1 Baseline
We represent each target word usage in a tweet as a
second-order co-occurrence vector (Schütze, 1998).
A second-order co-occurrence vector is built from
the centroid (summation) of all the first-order co-
occurrence vectors of the context words in the same
tweet as the target word.

The first-order co-occurrence vector for a given
target word represents the frequency with which that
word co-occurs in a tweet with other context words.
Each first-order vector is built from all tweets which
contain a context word and the target word catego-
rized as noun in the background corpus, thus sensi-
tizing the first-order vector to the target word. We
use the most frequent 10000 words (excluding stop-
words) in the background corpus as our first-order
vector dimensions/context words. Context words
(dimensions) in the first-order vectors are weighted
by mutual information.

Second-order co-occurrence is used as the context
representation to reduce the effects of data sparse-
ness in the tweets (which cannot be more than 140
codepoints in length).

4.2 Weighted Textual Matrix Factorization
WTMF (Guo and Diab, 2012b) addresses the data
sparsity problem suffered by many latent variable
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Model ORIGINAL EXPANDED RANDEXPANDED

Baseline 0.09 0.08 0.09
WTMF 0.02 0.09 0.06
LDA 0.20 0.29 0.18

Table 2: Spearman rank correlation (ρ) for each
method based on each background corpus. The best
result for each corpus is shown in bold.

models by predicting “missing” words on the ba-
sis of the message content, and including them in
the vector representation. Guo and Diab showed
WTMF to outperform LDA on the SemEval-2012
semantic textual similarity task (STS) (Agirre et al.,
2012). The semantic space required for this model
as applied here is built from the background tweets
corresponding to the target word. We experimented
with the missing weight parameter wm of WTMF
in the range [0.05, 0.01, 0.005, 0.0005] and with di-
mensions K=100 and report the best results (wm =
0.0005).

4.3 Topic Modelling
Latent Dirichlet Allocation (LDA) (Blei et al., 2003)
is a generative model in which a document is mod-
eled as a finite mixture of topics, where each topic is
represented as a multinomial distribution of words.
We treat each tweet as a document. Topics sensi-
tive to each target word are generated from its corre-
sponding background tweets. We topic model each
target word individually,4 and create a topic vector
for each word usage based on the topic allocations of
the context words in that usage. We use Gibbs sam-
pling in Mallet (McCallum, 2002) for training and
inference of the LDA model. We experimented with
the number of topics T for each target word ranging
from 2 to 500. We optimized the hyper parameters
by choosing those which best fit the data every 20 it-
erations over a total of 800 iterations, following 200
burn-in iterations.

4Unlike Lui et al. (2012) we found a single topic model for
all target words to perform very poorly.
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Figure 1: Spearman rank correlation (ρ) for LDA for
varying numbers of topics (T ) using different back-
ground corpora.

5 Results

We evaluate the above methods for word usage sim-
ilarity on the dataset constructed in Section 3.2. We
evaluate our models against the mean human ratings
using Spearman’s rank correlation. Table 2 presents
results for each method using each background cor-
pus. The results for LDA are for the optimal set-
ting for T (8, 5, and 20 for ORIGINAL, EXPANDED,
and RANDEXPANDED, respectively). LDA is su-
perior to both the baseline and WTMF using each
background corpus. The performance of LDA im-
proves for EXPANDED but not RANDEXPANDED,
over ORIGINAL, demonstrating the effectiveness of
our hashtag based corpus expansion strategy.

In Figure 1 we plot the rank correlation of LDA
across all words against the number of topics (T ).
As the number of topics increases beyond a certain
number, the rank correlation decreases. LDA trained
on EXPANDED consistently outperforms ORIGINAL

and RANDEXPANDED for lower values of T (i.e.,
T <= 20).

In Table 3, we show results for LDA over each tar-
get word, for ORIGINAL and EXPANDED. (Results
for RANDEXPANDED are not shown but are similar
to ORIGINAL.) Results are shown for the optimal
T for each lemma, and the optimal T over all lem-
mas. Optimizing T for each lemma gives an indica-
tion of the upperbound of the performance of LDA,
and unsurprisingly gives better performance than us-
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Lemma
ORIGINAL EXPANDED

Per lemma Global Per lemma Global
ρ (T ) ρ (T =8) ρ (T ) ρ (T =5)

bar 0.39 (10) 0.28 0.35 (50) 0.1
charge 0.27 (30) 0.04 0.33 (20) −0.08
execution 0.43 (8) 0.43 0.58 (5) 0.58
field 0.46 (5) 0.33 0.53 (10) 0.32
figure 0.24 (150) 0.06 0.24 (250) 0.14
function 0.44 (8) 0.44 0.40 (10) 0.27
investigator 0.3 (30) 0.05 0.50 (5) 0.50
match 0.28 (5) 0.26 0.45 (5) 0.45
paper 0.29 (30) 0.20 0.32 (30) 0.22
post 0.1 (3) −0.13 0.2 (30) −0.01

Table 3: Spearman’s ρ using LDA for the optimal T
for each lemma (Per lemma) and the best T over all
lemmas (Global) using ORIGINAL and EXPANDED.
ρ values that are significant at the 0.05 level are
shown in bold.

ing a fixed T for all lemmas. This suggests that ap-
proaches that learn an appropriate number of topics
(e.g., HDP, (Teh et al., 2006)) could give further im-
provements; however, given the size of the dataset,
the computational cost of HDP could be a limitation.

Contrasting our results with a fixed number of
topics to those of Lui et al. (2012), our highest rank
correlation of 0.29 (T = 5 using EXPANDED) is
higher than the 0.11 they achieved over the origi-
nal USIM dataset (where the documents offer an or-
der of magnitude more context). The higher inter-
annotator agreement for USIM-tweet compared to
the original USIM dataset (Section 3.2), combined
with this finding, demonstrates that USIM over mi-
croblog data is indeed a viable task.

Returning to the performance of LDA relative
to WTMF in Table 2, the poor performance of
WTMF is somewhat surprising here given WTMF’s
encouraging performance on the somewhat similar
SemEval-2012 STS task. This difference is possi-
bly due to the differences in the tasks: usage simi-
larity measures the similarity of the usage of a tar-
get word while STS measures the similarity of two
texts. Differences in domain — i.e., Twitter here
and more standard text for STS — could also be a
factor. WTMF attempts to alleviate the data spar-
sity problem by adding information from “missing”

words in a text by assigning a small weight to these
missing words. Because of the prevalence of lexical
variation on Twitter, some missing words might be
counted multiple times (e.g., coool, kool, and kewl
all meaning roughly cool) thus indirectly assigning
higher weights to the missing words leading to the
lower performance of WTMF compared to LDA.

6 Summary

We have analysed word usage similarity in mi-
croblog data. We developed a new dataset (USIM-
tweet) for usage similarity of nouns over Twitter.
We applied a topic modelling approach to this task,
and contrasted it with baseline and benchmark meth-
ods. Our results show that the LDA-based approach
outperforms the other methods over microblog data.
Moreover, our novel hashtag-based corpus expan-
sion strategy substantially improves the results.

In future work, we plan to expand our annotated
dataset, experiment with larger background corpora,
and explore alternative corpus expansion strategies.
We also intend to further analyse the difference in
performance LDA and WTMF on similar data.

Acknowledgements

We are very grateful to Timothy Baldwin for his
tremendous help with this work. We additionally
thank Diana McCarthy for her insightful comments
on this paper. We also acknowledge the European
Erasmus Mundus Masters Program in Language and
Communication Technologies from the European
Commission.

NICTA is funded by the Australian government
as represented by Department of Broadband, Com-
munication and Digital Economy, and the Australian
Research Council through the ICT Centre of Excel-
lence programme.

References
Eneko Agirre, Daniel Cer, Mona Diab, and Aitor

Gonzalez-Agirre. 2012. Semeval-2012 task 6: A pilot
on semantic textual similarity. In Proceedings of the
Sixth International Workshop on Semantic Evaluation
(SemEval 2012), pages 385–393, Montreal, Canada.

Shea Bennett. 2012. Twitter on track for
500 million total users by March, 250 mil-
lion active users by end of 2012. http:
//www.mediabistro.com/alltwitter/
twitter-active-total-users_b17655.

252



David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent Dirichlet allocation. Journal of Machine
Learning Research, 3:993–1022.

Katrin Erk, Diana McCarthy, and Nicholas Gaylord.
2009. Investigations on word senses and word usages.
In Proceedings of the Joint conference of the 47th An-
nual Meeting of the Association for Computational
Linguistics and the 4th International Joint Conference
on Natural Language Processing of the Asian Feder-
ation of Natural Language Processing (ACL-IJCNLP
2009), pages 10–18, Singapore.

Weiwei Guo and Mona Diab. 2012a. Modeling sen-
tences in the latent space. In Proc. of the 50th Annual
Meeting of the Association for Computational Linguis-
tics, pages 864–872, Jeju, Republic of Korea.

Weiwei Guo and Mona Diab. 2012b. Weiwei: A sim-
ple unsupervised latent semantics based approach for
sentence similarity. In Proceedings of the First Joint
Conference on Lexical and Computational Semantics
(*SEM 2012), pages 586–590, Montreal, Canada.

Bo Han, Paul Cook, and Timothy Baldwin. 2012. Au-
tomatically constructing a normalisation dictionary for
microblogs. In Proceedings of the Joint Conference on
Empirical Methods in Natural Language Processing
and Computational Natural Language Learning 2012,
pages 421–432, Jeju, Republic of Korea.

Liangjie Hong and Brian D Davison. 2010. Empirical
study of topic modeling in twitter. In Proc. of the First
Workshop on Social Media Analytics, pages 80–88.

Lichan Hong, Gregoria Convertino, and Ed H. Chi. 2011.
Language matters in Twitter: A large scale study. In
Proceedings of the 5th International Conference on
Weblogs and Social Media (ICWSM 2011), pages 518–
521, Barcelona, Spain.

Ou Jin, Nathan N Liu, Kai Zhao, Yong Yu, and Qiang
Yang. 2011. Transferring topical knowledge from
auxiliary long texts for short text clustering. In Proc.
of the 20th ACM International Conference on Informa-
tion and Knowledge Management, pages 775–784.

Jey Han Lau, Nigel Collier, and Timothy Baldwin.
2012a. On-line trend analysis with topic models:
#twitter trends detection topic model online. In
Proceedings of the 24th International Conference on
Computational Linguistics (COLING 2012), pages
1519–1534, Mumbai, India.

Jey Han Lau, Paul Cook, Diana McCarthy, David New-
man, and Timothy Baldwin. 2012b. Word sense in-
duction for novel sense detection. In Proceedings
of the 13th Conference of the European Chapter of
the Association for Computational Linguistics (EACL
2012), pages 591–601, Avignon, France.

Marco Lui and Timothy Baldwin. 2012. langid.py: An
off-the-shelf language identification tool. In Proceed-
ings of the 50th Annual Meeting of the Association for

Computational Linguistics (ACL 2012) Demo Session,
pages 25–30, Jeju, Republic of Korea.

Marco Lui, Timothy Baldwin, and Diana McCarthy.
2012. Unsupervised estimation of word usage simi-
larity. In Proceedings of the Australasian Language
Technology Workshop 2012 (ALTW 2012), pages 33–
41, Dunedin, New Zealand.

Suresh Manandhar, Ioannis Klapaftis, Dmitriy Dligach,
and Sameer Pradhan. 2010. SemEval-2010 Task 14:
Word sense induction & disambiguation. In Proceed-
ings of the 5th International Workshop on Semantic
Evaluation, pages 63–68, Uppsala, Sweden.

Andrew Kachites McCallum. 2002. Mallet: A machine
learning for language toolkit. http://mallet.
cs.umass.edu.

Roberto Navigli. 2009. Word sense disambiguation: A
survey. ACM Computing Surveys, 41(2).

Brendan O’Connor, Ramnath Balasubramanyan,
Bryan R. Routledge, and Noah A. Smith. 2010.
From tweets to polls: Linking text sentiment to
public opinion time series. In Proceedings of the
4th International Conference on Weblogs and Social
Media, pages 122–129, Washington, USA.

Miles Osborne, Sasa Petrović, Richard McCreadie, Craig
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Abstract

Object recognition is a little like translation: a pic-
ture (text in a source language) goes in, and a de-
scription (text in a target language) comes out. I
will use this analogy, which has proven fertile, to
describe recent progress in object recognition.

We have very good methods to spot some objects
in images, but extending these methods to produce
descriptions of images remains very difficult. The
description might come in the form of a set of words,
indicating objects, and boxes or regions spanned by
the object. This representation is difficult to work
with, because some objects seem to be much more
important than others, and because objects interact.
An alternative is a sentence or a paragraph describ-
ing the picture, and recent work indicates how one
might generate rich structures like this. Further-
more, recent work suggests that it is easier and more
effective to generate descriptions of images in terms
of chunks of meaning (”person on a horse”) rather
than just objects (”person”; ”horse”).

Finally, if the picture contains objects that are un-
familiar, then we need to generate useful descrip-
tions that will make it possible to interact with them,
even though we don’t know what they are.

About the Speaker

David Forsyth is currently a full professor at U. Illi-
nois at Urbana-Champaign, where he moved from
U.C Berkeley, where he was also full professor. He
has published over 130 papers on computer vision,
computer graphics and machine learning. He has
served as program chair and as general chair for var-
ious international conferences on computer vision.
He received an IEEE technical achievement award
for 2005 for his research and became an IEEE fellow
in 2009. His textbook, ”Computer Vision: A Mod-
ern Approach” (joint with J. Ponce and published by
Prentice Hall) is widely adopted as a course text. A
second edition appeared in 2011. He was named ed-
itor in chief of IEEE TPAMI for a term starting in
Jan 2013.
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Abstract

This paper explores two hypotheses regarding
vector space models that predict the compo-
sitionality of German noun-noun compounds:
(1) Against our intuition, we demonstrate that
window-based rather than syntax-based distri-
butional features perform better predictions,
and that not adjectives or verbs but nouns rep-
resent the most salient part-of-speech. Our
overall best result is state-of-the-art, reach-
ing Spearman’s ρ = 0.65 with a word-
space model of nominal features from a 20-
word window of a 1.5 billion word web cor-
pus. (2) While there are no significant dif-
ferences in predicting compound–modifier vs.
compound–head ratings on compositionality,
we show that the modifier (rather than the
head) properties predominantly influence the
degree of compositionality of the compound.

1 Introduction

Vector space models and distributional information
have been a steadily increasing, integral part of lex-
ical semantic research over the past 20 years. On
the one hand, vector space models (see Turney and
Pantel (2010) and Erk (2012) for two recent sur-
veys) have been exploited in psycholinguistic (Lund
and Burgess, 1996) and computational linguistic re-
search (Schütze, 1992) to explore the notion of “sim-
ilarity” between a set of target objects within a ge-
ometric setting. On the other hand, the distribu-
tional hypothesis (Firth, 1957; Harris, 1968) has
been exploited to determine co-occurrence features
for vector space models that best describe the words,
phrases, sentences, etc. of interest.

While the emergence of vector space models is in-
creasingly pervasive within data-intensive lexical se-
mantics, and even though useful features have been
identified in general terms:1 when it comes to a spe-
cific semantic phenomenon, we need to explore the
relevant distributional features in order to investigate
the respective phenomenon. Our research is inter-
ested in the meaning of German compounds. More
specifically, we aim to predict the degrees of compo-
sitionality of German noun-noun compounds (e.g.,
Feuerwerk ‘fire works’) with regard to the mean-
ings of their constituents (e.g., Feuer ‘fire’ and Werk
‘opus’). This prediction uses vector space models,
and our goal is to identify salient features that de-
termine the degree of compositionality of the com-
pounds by relying on the distributional similarities
between the compounds and their constituents.

In this vein, we systematically explore window-
based and syntax-based contextual clues. Since the
targets in our vector space models are all nouns
(i.e., the compound nouns, the modifier nouns, and
the head nouns), our hypothesis is that adjectives
and verbs are expected to provide salient distri-
butional properties, as adjective/verb meaning and
noun meaning are in a strong interdependent rela-
tionship. Even more, we expect adjectives and verbs
that are syntactically bound to the nouns under con-
sideration (syntax-based, i.e., attributive adjectives
and subcategorising verbs) to outperform those that
“just” appear in the window contexts of the nouns
(window-based). In order to investigate this first

1See Agirre et al. (2009) and Bullinaria and Levy (2007;
2012), among others, for systematic comparisons of co-
occurrence features on various semantic relatedness tasks.
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hypothesis, we compare window-based and syntax-
based distributional features across parts-of-speech.

Concerning a more specific aspect of compound
meaning, we are interested in the contributions of
the modifier noun versus head noun properties with
regard to the meaning of the noun-noun compounds.
While there has been prior psycholinguistic research
on the constituent contributions (e.g., Gagné and
Spalding (2009; 2011)), computational linguistics
has not yet paid much attention to this issue, as
far as we know. Our hypothesis is that the dis-
tributional properties of the head constituents are
more salient than the distributional properties of
the modifier constituents in predicting the degree
of compositionality of the compounds. In order to
assess this second hypothesis, we compare the vec-
tor space similarities between the compounds and
their modifier constituents with those of the com-
pounds and their head constituents, with regard to
the overall most successful features.

The paper is organised as follows. Section 2 in-
troduces the compound data that is relevant for this
paper, i.e., the noun-noun compounds and the com-
positionality ratings. Section 3 performs and dis-
cusses the vector space experiments to explore our
hypotheses, and Section 4 describes related work.

2 Data

2.1 German Noun-Noun Compounds
Compounds are combinations of two or more sim-
plex words. Traditionally, a number of criteria (such
as compounds being syntactically inseparable, and
that compounds have a specific stress pattern) have
been proposed, in order to establish a border be-
tween compounds and non-compounds. However,
Lieber and Stekauer (2009a) demonstrated that none
of these tests are universally reliable to distinguish
compounds from other types of derived words.

Compounds have thus been a recurrent focus
of attention within theoretical, cognitive, and in
the last decade also within computational linguis-
tics. Recent evidence of this strong interest are the
Handbook of Compounding (Lieber and Stekauer,
2009b) on theoretical perspectives, and a series of
workshops2 and special journal issues with respect
to multi-word expressions (including various types

2www.multiword.sourceforge.net

of compounds) and the computational perspective
(Journal of Computer Speech and Language, 2005;
Language Resources and Evaluation, 2010; ACM
Transactions on Speech and Language Processing,
to appear).

Our focus of interest is on German noun-noun
compounds (see Fleischer and Barz (2012) for a de-
tailed overview and Klos (2011) for a recent de-
tailed exploration), such as Ahornblatt ‘maple leaf’,
Feuerwerk ‘fireworks’, and Obstkuchen ‘fruit cake’
where both the grammatical head (in German, this
is the rightmost constituent) and the modifier are
nouns. More specifically, we are interested in the
degrees of compositionality of German noun-noun
compounds, i.e., the semantic relatedness between
the meaning of a compound (e.g., Feuerwerk) and
the meanings of its constituents (e.g., Feuer ‘fire’
and Werk ‘opus’).

Our work is based on a selection of noun com-
pounds by von der Heide and Borgwaldt (2009),
who created a set of 450 concrete, depictable Ger-
man noun compounds according to four compo-
sitionality classes: compounds that are transpar-
ent with regard to both constituents (e.g., Ahorn-
blatt ‘maple leaf’); compounds that are opaque
with regard to both constituents (e.g., Löwenzahn
‘lion+tooth → dandelion’); compounds that are
transparent with regard to the modifier but opaque
with regard to the head (e.g., Feuerzeug ‘fire+stuff
→ lighter’); and compounds that are opaque with
regard to the modifier but transparent with regard to
the head (e.g., Fliegenpilz ‘fly+mushroom → toad-
stool’).

From the compound set by von der Heide and
Borgwaldt, we disregarded noun compounds with
more than two constituents (in some cases, the mod-
ifier or the head was complex itself) as well as com-
pounds where the modifiers were not nouns. Our
final set comprises a subset of their compounds in-
cluding 244 two-part noun-noun compounds.

2.2 Compositionality Ratings
von der Heide and Borgwaldt (2009) collected hu-
man ratings on compositionality for all their 450
compounds. The compounds were distributed over
5 lists, and 270 participants judged the degree of
compositionality of the compounds with respect to
their first as well as their second constituent, on
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Compounds Mean Ratings and Standard Deviations
whole literal meanings of constituents whole modifier head mean range

Ahornblatt ‘maple leaf’ maple leaf 6.03 ± 1.49 5.64 ± 1.63 5.71 ± 1.70
(1) high/high

Postbote ‘post man’ mail messenger 6.33 ± 0.96 5.87 ± 1.55 5.10 ± 1.99
Seezunge ‘sole’ sea tongue 1.85 ± 1.28 3.57 ± 2.42 3.27 ± 2.32

(2) mid/mid
Windlicht ‘storm lamp’ wind light 3.52 ± 2.08 3.07 ± 2.12 4.27 ± 2.36
Löwenzahn ‘dandelion’ lion tooth 1.66 ± 1.54 2.10 ± 1.84 2.23 ± 1.92

(3) low/low
Maulwurf ‘mole’ mouth throw 1.58 ± 1.43 2.21 ± 1.68 2.76 ± 2.10
Fliegenpilz ‘toadstool’ fly/bow tie mushroom 2.00 ± 1.20 1.93 ± 1.28 6.55 ± 0.63

(4) low/high
Flohmarkt ‘flea market’ flea market 2.31 ± 1.65 1.50 ± 1.22 6.03 ± 1.50
Feuerzeug ‘lighter’ fire stuff 4.58 ± 1.75 5.87 ± 1.01 1.90 ± 1.03

(5) high/low
Fleischwolf ‘meat chopper’ meat wolf 1.70 ± 1.05 6.00 ± 1.44 1.90 ± 1.42

Table 1: Examples of compound ratings.

a scale between 1 (definitely opaque) and 7 (defi-
nitely transparent). For each compound–constituent
pair, they collected judgements from 30 participants,
and calculated the rating mean and the standard de-
viation. We refer to this set as our compound–
constituent ratings.

A second experiment collected human ratings on
compositionality for our subset of 244 noun-noun
compounds. In this case, we asked the participants
to provide a unique score for each compound as
a whole, again on a scale between 1 and 7. The
collection was performed via Amazon Mechanical
Turk (AMT)3. We randomly distributed our subset
of 244 compounds over 21 batches, with 12 com-
pounds each, in random order. In order to control for
spammers, we also included two German fake com-
pound nouns into each of the batches, in random po-
sitions of the lists. If participants did not recognise
the fake words, all of their ratings were rejected. We
collected between 27 and 34 ratings per target com-
pound. For each of the compounds we calculated the
rating mean and the standard deviation. We refer to
this second set as our compound whole ratings.

Table 1 presents example mean ratings for the
compound–constituent ratings as well as for the
compound whole ratings, accompanied by the stan-
dard deviations. We selected two examples each
for five categories of mean ratings: the compound–
constituent ratings were (1) high or (2) mid or (3)
low with regard to both constituents; the compound–
constituent ratings were (4) low with regard to the
modifier but high with regard to the head; (5) vice
versa. Roller et al. (2013) performed a thorough

3www.mturk.com

Figure 1: Distribution of compound ratings.

analysis of the two sets of ratings, and assessed their
reliability from several perspectives.

Figure 1 shows how the mean ratings for the com-
pounds as a whole, for the compound–modifier pairs
as well as for the compound–head pairs are dis-
tributed over the range [1, 7]: For each set, we in-
dependently sorted the 244 values and plotted them.
The purpose of the figure is to illustrate that the rat-
ings for our 244 noun-noun compounds are not par-
ticularly skewed to any area within the range.4

Figure 2 again shows the mean ratings for the
compounds as a whole as well as for the compound–
constituent pairs, but in this case only the compound
whole ratings were sorted, and the compound–
constituent ratings were plotted against the com-
pound whole ratings. According to the plot, the
compound–modifier ratings (red) seem to correlate
better with the compound whole ratings than the
compound–head ratings (yellow) do. This intuition
will be confirmed in Section 3.1.

4The illustration idea was taken from Reddy et al. (2011b).
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Figure 2: Compounds ratings sorted by whole ratings.

3 Vector Space Models (VSMs)

The goal of our vector space models is to identify
distributional features that are salient to predict the
degree of compositionality of the compounds, by re-
lying on the similarities between the compound and
constituent properties.

In all our vector space experiments, we used co-
occurrence frequency counts as induced from Ger-
man web corpora, and calculated local mutual in-
formation (LMI)5 values (Evert, 2005), to instantiate
the empirical properties of our target nouns with re-
gard to the various corpus-based features. LMI is a
measure from information theory that compares the
observed frequencies O with expected frequencies
E, taking marginal frequencies into account:

LMI = O × log O
E ,

with E representing the product of the marginal fre-
quencies over the sample size.6 In comparison to
(pointwise) mutual information (Church and Hanks,
1990), LMI improves the problem of propagating
low-frequent events, by multiplying mutual infor-
mation by the observed frequency.

Relying on the LMI vector space models, the co-
sine determined the distributional similarity between
the compounds and their constituents, which was in
turn used to predict the compositionality between
the compound and the constituents, assuming that
the stronger the distributional similarity (i.e., the co-
sine values), the larger the degree of compositional-
ity.

5Alternatively, we also used the raw frequencies in all ex-
periments below. The insights into the various features were
identical to those based on LMI, but the predictions were worse.

6See http://www.collocations.de/AM/ for a
more detailed illustration of association measures (incl. LMI).

The vector space predictions were evaluated
against the human ratings on the degree of compo-
sitionality, using the Spearman Rank-Order Correla-
tion Coefficient ρ (Siegel and Castellan, 1988). The
ρ correlation is a non-parametric statistical test that
measures the association between two variables that
are ranked in two ordered series. In Section 3.3 we
will compare the overall effect of the various fea-
ture types and correlate all 488 compound–modifier
and compound–head predictions against the ratings
at the same time; in Section 3.4 we will compare
the different effects of the features for compound–
modifier pairs vs. compound–head pairs and thus
correlate 244 predictions in both cases.

After introducing a baseline and an upper bound
for our vector space experiments in Section 3.1 as
well as our web corpora in Section 3.2, Section 3.3
presents window-based in comparison to syntax-
based vector space models (distinguishing various
part-of-speech features). In Section 3.4 we then fo-
cus on the contribution of modifiers vs. heads in the
vector space models, with regard to the overall most
successful features.

3.1 Baseline and Upper Bound

Table 2 presents the baseline and the upper bound
values for the vector space experiments. The
baseline in the first two lines follows a proce-
dure performed by Reddy et al. (2011b), and re-
lies on a random assignment of rating values [1, 7]
to the compound–modifier and the compound–
head pairs. The 244 random values for the
compound–constituent pairs were then each corre-
lated against the compound whole ratings. The
random compound–modifier ratings show a base-
line correlation of ρ = 0.0959 with the compound
whole ratings, and the random compound–head rat-
ings show a baseline correlation of ρ = 0.1019 with
the compound whole ratings.

The upper bound in the first two lines shows the
correlations between the human ratings from the two
experiments, i.e., between the 244 compound whole
ratings and the respective compound–modifier and
compound–head ratings. The compound–modifier
ratings exhibit a strong correlation with the com-
pound whole ratings (ρ = 0.6002), while the cor-
relation between the compound–head ratings and
the compound whole ratings is not even moderate
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Function
ρ

Baseline Upper Bound
modifier only .0959 .6002
head only .1019 .1385
addition .1168 .7687
multiplication .1079 .7829

Table 2: Baseline/Upper bound ρ correlations.

(ρ = 0.1385). Obviously, the semantics of the mod-
ifiers had a much stronger impact on the semantic
judgements of the compounds, thus confirming our
intuition from Section 2.2.

The lower part of the table shows the respec-
tive baseline and upper bound values when the
compound–modifier ratings and the compound–
head ratings were combined by standard arith-
metic operations, cf. Widdows (2008) and
Mitchell and Lapata (2010), among others: the
compound–modifier and compound–head ratings
were treated as vectors, and the vector fea-
tures (i.e., the compound–constituent ratings) were
added/multiplied to predict the compound whole rat-
ings. As in the related work, the arithmetic op-
erations strengthen the predictions, and multiplica-
tion reached an upper bound of ρ = 0.7829, thus
outperforming not only the head-only but also the
modifier-only upper bound.

3.2 German Web Corpora

Most of our experiments rely on the sdeWaC corpus
(Faaß et al., 2010), a cleaned version of the German
web corpus deWaC created by the WaCky group (Ba-
roni et al., 2009). The corpus cleaning had focused
mainly on removing duplicates from the deWaC, and
on disregarding sentences that were syntactically ill-
formed (relying on a parsability index provided by a
standard dependency parser (Schiehlen, 2003)). The
sdeWaC contains approx. 880 million words and can
be downloaded from http://wacky.sslmit.
unibo.it/.

While the sdeWaC is an attractive corpus choice
because it is a web corpus with a reasonable size,
and yet has been cleaned and parsed (so that we
can induce syntax-based distributional features), it
has one serious drawback for a window-based ap-
proach (and, in general, for corpus work going be-
yond the sentence border): The sentences in the cor-
pus have been sorted alphabetically, so going be-

yond the sentence border is likely to entering a sen-
tence that did not originally precede or follow the
sentence of interest. So window co-occurrence in
the sdeWaC actually refers to x words to the left and
right BUT within the same sentence. Thus, enlarg-
ing the window size does not effectively change the
co-occurrence information any more at some point.
For this reason, we additionally use WebKo, a pre-
decessor version of the sdeWaC, which comprises
more data (approx. 1.5 billion words in compari-
son to 880 million words) and is not alphabetically
sorted, but is less clean and had not been parsed (be-
cause it was not clean enough).

3.3 Window-based vs. Syntax-based VSMs

Window-based Co-Occurrence When applying
window-based co-occurrence features to our vec-
tor space models, we specified a corpus, a part-of-
speech and a window size, and then determined the
co-occurrence strengths of our compound nouns and
their constituents with regard to the respective con-
text words. For example, when restricting the part-
of-speech to adjectives and the window size to 5, we
counted how often our targets appeared with any ad-
jectives in a window of five words to the left and
to the right. We looked at lemmas, and deleted
any kind of sentence punctuation. In general, we
checked windows of sizes 1, 2, 5, 10, and 20. In one
case we extended the window up to 100 words.

The window-based models compared the effect
of varying the parts-of-speech of the co-occurring
words, motivated by the hypothesis that adjectives
and verbs were expected to provide salient distribu-
tional properties. So we checked which parts-of-
speech provided specific insight into the distribu-
tional similarity between nominal compounds and
nominal constituents: We used common nouns vs.
adjectives vs. main verbs that co-occurred with the
target nouns in the corpora. Figure 3 illustrates the
behaviour of the Spearman Rank-Order Correlation
Coefficient values ρ over the window sizes 1, 2, 5,
10, and 20 within sdeWaC (sentence-internal) and
WebKo (beyond sentence borders), when restricting
and combining the co-occurring parts-of-speech. It
is clear from the figure that relying on nouns was
the best choice, even better than combining nouns
with adjectives and verbs. The differences for nouns
vs. adjectives or verbs in the 20-word windows were
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Figure 3: Window-based sdeWaC and WebKo ρ correlations across part-of-speech features.

significant.7 Furthermore, the larger WebKo data
outperformed the cleaned sdeWaC data, reaching an
optimal prediction of ρ = 0.6497.8 The corpus dif-
ferences for NN and NN+ADJ+VV were significant.

As none of the window lines had reached an op-
timal correlation with a window size of 20 yet (i.e.,
the correlation values were still increasing), we en-
larged the window size up to 100 words, in order
to check on the most successful window size. We
restricted the experiment to nominal features (with
nouns representing the overall most successful fea-
tures). The correlations did not increase with larger
windows: the optimal prediction was still performed
at a window size of 20.

Syntax-based Co-Occurrence When applying
syntax-based co-occurrence features to our vector
space models, we relied only on the sdeWaC cor-
pus because WebKo was not parsed and thus did
not provide syntactic information. We specified a
syntax-based feature type and then determined the
co-occurrence strengths of our compounds and con-
stituents with regard to the respective context words.

In order to test our hypothesis that syntax-based
information is more salient than window-based in-
formation to predict the compositionality of our
compound nouns, we compared a number of po-
tentially salient syntactic features for noun similar-
ity: the syntactic functions of nouns in verb subcat-
egorisation (intransitive and transitive subjects; di-
rect and PP objects), and those categories that fre-

7All significance tests in this paper were performed by
Fisher r-to-z transformation.

8For a fair corpus comparison, we repeated the experiments
with WebKo on sentence-internal data. It still outperformed the
sdeWaC corpus.

quently modify nouns or are modified by nouns (ad-
jectives and prepositions). With regard to subcate-
gorisation functions, verbs subcategorising our tar-
get nouns represented the dimensions in the vector
space models. For example, we used all verbs as
vector dimensions that took our targets as direct ob-
jects, and vector values were based on these syntac-
tic co-occurrences. For a noun like Buch ‘book’,
the strongest verb dimensions were lesen ‘read’,
schreiben ‘write’, and kaufen ‘buy’. With regard
to modification, we considered the adjectives and
prepositions that modified our target nouns, as well
as the prepositions that were modified by our target
nouns. For the noun Buch, strong modifying adjec-
tive dimensions were neu ‘new’, erschienen ‘pub-
lished’, and heilig ‘holy’; strong modifying prepo-
sition dimensions were in ‘in’, mit ‘with’, and zu
‘on’; and strong modified preposition dimensions
were von ‘by’, über ‘about’, and für ‘for’.

Figure 4 demonstrates that the potentially salient
syntactic functions had different effects on predict-
ing compositionality. The top part of the figure
shows the modification-based correlations, the mid-
dle part shows the subcategorisation-based corre-
lations, and at the bottom of the figure we repeat
the ρ correlation values for window-based adjec-
tives and verbs (within a window of 20 words)
from the sdeWaC. The syntax-based predictions by
modification and subcategorisation were all signif-
icantly worse than the predictions by the respec-
tive window-based parts-of-speech. Furthermore,
the figure shows that there are strong differences
with regard to the types of syntactic functions,
when predicting compositionality: Relying on our
target nouns as transitive subjects of verbs is al-
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Figure 4: Syntax-based correlations.

most useless (ρ = 0.1194); using the intransi-
tive subject function improves the prediction (ρ =
0.2121); interestingly, when abstracting over subject
(in)transitivity, i.e., when we use all verbs as vector
space features that appeared with our target nouns as
subjects –independently whether this was an intran-
sitive or a transitive subject– was again more suc-
cessful (ρ = 0.2749). Relying on our noun targets as
direct objects is again slightly better (ρ = 0.2988);
as pp objects it is again slightly worse (ρ = 0.2485).
None of these differences were significant, though.

Last but not least, we concatenated all syntax-
based features to a large syntactic VSM (and we
also considered variations of syntax-based feature
set concatenations), but the results of any unified
combinations were clearly below the best individ-
ual predictions. So the best syntax-based predic-
tors were adjectives that modified our compound and
constituent nouns, with ρ = 0.3455, which how-
ever just (non-significantly) outperformed the best
adjective setting in our window-based vector space
(ρ = 0.3394). Modification by prepositions did
not provide salient distributional information, with
ρ = 0.2044/0.1725 relying on modifying/modified
prepositions.

In sum, attributive adjectives and verbs that sub-
categorised our target nouns as direct objects were
the most salient syntax-based distributional fea-
tures but nevertheless predicted worse than “just”
window-based adjectives and verbs, respectively.

3.4 Role of Modifiers vs. Heads

This section tests our hypothesis that the distribu-
tional properties of the head constituents are more
salient than the distributional properties of the mod-
ifier constituents in predicting the degree of compo-

sitionality of the compounds. Our rating data enables
us to explore the modifier/head distinction with re-
gard to two perspectives.

Perspective (i): Salient Features for Compound–
Modifier vs. Compound–Head Pairs Instead of
correlating all 488 compound–constituent predic-
tions against the ratings, we distinguished between
the 244 compound–modifier predictions and the 244
compound–head predictions. This perspective al-
lowed us to distinguish between the salience of the
various feature types with regard to the semantic
relatedness between compound–modifier pairs vs.
compound–head pairs.

Figure 5 presents the correlation values when
predicting the degrees of compositionality of
compound–modifier (M in the left panel) vs.
compound–head (H in the right panel) pairs, as
based on the window features and the various parts-
of-speech. The prediction of the parts-of-speech is

NN > NN+ADJ+VV > VV > ADJ
and –with few exceptions– the predictions are im-
proving with increasing window sizes, as the over-
all predictions in the previous section did. But
while in smaller window sizes the predictions of
the compound–head ratings are better than those of
the compound–modifier ratings, this difference van-
ishes with larger windows. With regard to a win-
dow size of 20 there is no significant difference be-
tween predicting the semantic relatedness between
compound–modifier vs. compound–head pairs.

When using the syntactic features to predict the
degrees of compositionality of compound–modifier
vs. head–compound pairs, in all but one of the
syntactic feature types the verb subcategorisation as
well as the modification functions allowed a stronger
prediction of compound–head ratings in compari-
son to compound–modifier ratings. The only syn-
tactic feature that was significantly better to predict
compound–modifier ratings was relying on transi-
tive subjects. In sum, the predictions based on syn-
tactic features in most but not all cases behaved in
accordance with our hypothesis.

As in our original experiments in Section 3.3,
the syntax-based features were significantly outper-
formed by the window-based features. The syn-
tactic features reached an optimum of ρ = 0.2224
and ρ = 0.3502 for predicting modifier–compound
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Figure 5: Window-based correlations (modifiers vs. heads).

vs. head–compound degrees of compositionality (in
both cases relying on attributive adjectives), in com-
parison to ρ = 0.5698 and ρ = 0.5745 when relying
on nouns in a window of 20 words.

Perspective (ii): Contribution of Modifiers/Heads
to Compound Meaning This final analysis ex-
plores the contributions of the modifiers and of the
heads with regard to the compound meaning, by cor-
relating only one type of compound–constituent pre-
dictions with the compound whole ratings. I.e., we
predicted the compositionality of the compound by
the distributional similarity between the compound
and only one of its constituents, checking if the
meaning of the compound is determined more by the
meaning of the modifier or the head. This analysis is
in accordance with the upper bound in Section 3.1,
where the compound–constituent ratings were cor-
related with the compound whole ratings.

Figure 6 presents the correlation values when
determining the compound whole ratings by
only compound–modifier predictions, or only
compound–head predictions, or by adding or multi-
plying the modifier and head predictions. The under-
lying features rely on a 20-word window (adjectives,
verbs, nouns, and across parts-of-speech). It is strik-
ing that in three out of four cases the predictions of
the compound whole ratings were performed simi-
larly well (i) by only the compound–modifier pre-
dictions, and (ii) by multiplying the compound–
modifier and the compound–head predictions. So,
as in the calculation of the upper bound, the dis-
tributional semantics of the modifiers had a much
stronger impact on the semantics of the compound
than the distributional semantics of the heads did.

Figure 6: Predicting the compound whole ratings.

3.5 Discussion

The vector space models explored two hypotheses
to predict the compositionality of German noun-
noun compounds by distributional features. Re-
garding hypothesis 1, we demonstrated that –against
our intuitions– not adjectives or verbs whose mean-
ings are strongly interdependent with the mean-
ings of nouns provided the most salient distribu-
tional information, but that relying on nouns was
the best choice, in combination with a 20-word win-
dow, reaching state-of-the-art ρ = 0.6497. The
larger but less clean web corpus WebKo outper-
formed the smaller but cleaner successor sdeWaC.
Furthermore, the syntax-based predictions by adjec-
tive/preposition modification and by verb subcate-
gorisation (as well as various concatenations of syn-
tactic VSMs) were all worse than the predictions by
the respective window-based parts-of-speech.

Regarding hypothesis 2, we distinguished the
contributions of modifiers vs. heads to the com-
pound meaning from two perspectives. (i) The pre-
dictions of the compound–modifier vs. compound–
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head ratings did not differ significantly when us-
ing features from increasing window sizes, but with
small window sizes the compound–head ratings
were predicted better than the compound–modifier
ratings. This insight fits well to the stronger im-
pact of syntax-based features on compound–head
in comparison to compound–modifier predictions
because –even though German is a language with
comparably free word order– we can expect many
syntax-based features (especially attributive adjec-
tives and prepositions) to appear in close vicinity
to the nouns they depend on or subcategorise. We
conclude that the features that are salient to predict
similarities between the compound–modifier vs. the
compound–head pairs are different, and that based
on small windows the distributional similarity be-
tween compounds and heads is stronger than be-
tween compounds and modifiers, but based on larger
contexts this difference vanishes. (ii) With regard
to the overall meaning of the compound, the influ-
ence of the modifiers was not only much stronger
in the human ratings (cf. Section 2) and in the up-
per bound (cf. Section 3.1), but also in the vector
space models (cf. Figure 6). While this insight con-
tradicts our second hypothesis (that the head proper-
ties are more salient than the modifier properties in
predicting the compositionality of the compound),
it fits into a larger picture that has primarily been
discussed in psycholinguistic research on compound
meaning, where various factors such as the semantic
relation between the modifier and the head (Gagné
and Spalding, 2009) and the modifier properties, in-
ferential processing and world knowledge (Gagné
and Spalding, 2011) were taken into account. How-
ever, also in psycholinguistic studies that explore
the semantic role of modifiers and heads in noun
compounds there is no agreement about which con-
stituent properties are inherited by the compound.

4 Related Work

Most computational approaches to model the mean-
ing or compositionality of compounds have been
performed for English, including work on parti-
cle verbs (McCarthy et al., 2003; Bannard, 2005;
Cook and Stevenson, 2006); adjective-noun com-
binations (Baroni and Zamparelli, 2010; Boleda et
al., 2013); and noun-noun compounds (Reddy et

al., 2011b; Reddy et al., 2011a). Most closely re-
lated to our work is Reddy et al. (2011b), who
relied on window-based distributional models to
predict the compositionality of English noun-noun
compounds. Their gold standard also comprised
compound–constituent ratings as well as compound
whole ratings, but the resources had been cleaned
more extensively, and they reached ρ = 0.714.

Concerning vector space explorations and seman-
tic relatedness in more general terms, Bullinaria and
Levy (2007; 2012) also systematically assessed a
range of factors in VSMs (corpus type and size,
window size, association measures, and corpus pre-
processing, among others) against four semantic
tasks, however not including compositionality rat-
ings. Similarly, Agirre et al. (2009) compared and
combined a WordNet-based and various distribu-
tional models to predict the pair similarity of the 65
Rubenstein and Goodenough word pairs and the 353
word pairs in WordSim353. They varied window
sizes, dependency relations and raw words in the
models. On WordSim353, they reached ρ = 0.66,
which is slightly better than our best result, but at
the same time the dataset is smaller.

Concerning computational models of German
compounds, there is not much previous work. Our
own work (Schulte im Walde, 2005; Kühner and
Schulte im Walde, 2010) has addressed the degrees
of compositionality of German particle verbs. Zins-
meister and Heid (2004) are most closely related to
our current study. They suggested a distributional
model to identify lexicalised German noun com-
pounds by comparing the verbs that subcategorise
the noun compound with those that subcategorise
the head noun as direct objects.

5 Conclusion

This paper presented experiments to predict the
compositionality of German noun-noun compounds.
Our overall best result is state-of-the-art, reaching
Spearman’s ρ = 0.65 with a word-space model of
nominal features from a 20-word window of a 1.5
billion word web corpus. Our experiments demon-
strated that (1) window-based features outperformed
syntax-based features, and nouns outperformed ad-
jectives and verbs; (2) the modifier properties pre-
dominantly influenced the compositionality.
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Abstract

In this paper, we propose a simple, language-

independent and highly effective method for

predicting the degree of compositionality of

multiword expressions (MWEs). We compare

the translations of an MWE with the trans-

lations of its components, using a range of

different languages and string similarity mea-

sures. We demonstrate the effectiveness of

the method on two types of English MWEs:

noun compounds and verb particle construc-

tions. The results show that our approach is

competitive with or superior to state-of-the-art

methods over standard datasets.

1 Compositionality of MWEs

A multiword expression (MWE) is any combina-

tion of words with lexical, syntactic or semantic

idiosyncrasy (Sag et al., 2002; Baldwin and Kim,

2009), in that the properties of the MWE are not

predictable from the component words. For exam-

ple, with ad hoc, the fact that neither ad nor hoc are

standalone English words, makes ad hoc a lexically-

idiosyncratic MWE; with shoot the breeze, on the

other hand, we have semantic idiosyncrasy, as the

meaning of “to chat” in usages such as It was good

to shoot the breeze with you1 cannot be predicted

from the meanings of the component words shoot

and breeze.

Semantic idiosyncrasy has been of particular in-

terest to NLP researchers, with research on bi-

nary compositional/non-compositional MWE clas-

1The example is taken from http://www.

thefreedictionary.com

sification (Lin, 1999; Baldwin et al., 2003), or

a three-way compositional/semi-compositional/non-

compositional distinction (Fazly and Stevenson,

2007). There has also been research to suggest that

MWEs span the entire continuum from full compo-

sitionality to full non-compositionality (McCarthy et

al., 2003; Reddy et al., 2011).

Investigating the degree of MWE compositional-

ity has been shown to have applications in informa-

tion retrieval and machine translation (Acosta et al.,

2011; Venkatapathy and Joshi, 2006). As an exam-

ple of an information retrieval system, if we were

looking for documents relating to rat race (mean-

ing “an exhausting routine that leaves no time for

relaxation”2), we would not be interested in docu-

ments on rodents. These results underline the need

for methods for broad-coverage MWE composition-

ality prediction.

In this research, we investigate the possibility of

using an MWE’s translations in multiple languages

to measure the degree of the MWE’s compositional-

ity, and investigate how literal the semantics of each

component is within the MWE. We use Panlex to

translate the MWE and its components, and compare

the translations of the MWE with the translations

of its components using string similarity measures.

The greater the string similarity, the more composi-

tional the MWE is.

Whereas past research on MWE compositionality

has tended to be tailored to a specific MWE type

(McCarthy et al., 2007; Kim and Baldwin, 2007;

Fazly et al., 2009), our method is applicable to

any MWE type in any language. Our experiments

2This definition is from WordNet 3.1.
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over two English MWE types demonstrate that our

method is competitive with state-of-the-art methods

over standard datasets.

2 Related Work

Most previous work on measuring MWE composi-

tionality makes use of lexical, syntactic or semantic

properties of the MWE. One early study on MWE

compositionality was Lin (1999), who claimed that

the distribution of non-compositional MWEs (e.g.

shoot the breeze) differs significantly from the dis-

tribution of expressions formed by substituting one

of the components with a semantically similar word

(e.g. shoot the wind). Unfortunately, the method

tends to fall down in cases of high statistical id-

iosyncrasy (or “institutionalization”): consider fry-

ing pan which is compositional but distributionally

very different to phrases produced through word-

substitution such as sauteing pan or frying plate.

Some research has investigated the syntactic

properties of MWEs, to detect their composition-

ality (Fazly et al., 2009; McCarthy et al., 2007).

The assumption behind these methods is that non-

compositional MWEs are more syntactically fixed

than compositional MWEs. For example, make a de-

cision can be passivised, but shoot the breeze cannot.

One serious problem with syntax-based methods is

their lack of generalization: each type of MWE has

its own characteristics, and these characteristics dif-

fer from one language to another. Moreover, some

MWEs (such as noun compounds) are not flexible

syntactically, no matter whether they are composi-

tional or non-compositional (Reddy et al., 2011).

Much of the recent work on MWEs focuses on

their semantic properties, measuring the semantic

similarity between the MWE and its components us-

ing different resources, such as WordNet (Kim and

Baldwin, 2007) or distributional similarity relative

to a corpus (e.g. based on Latent Semantic Analysis:

Schone and Jurafsky (2001), Bannard et al. (2003),

Reddy et al. (2011)). The size of the corpus is im-

portant in methods based on distributional similarity.

Unfortunately, however, large corpora are not avail-

able for all languages.

Reddy et al. (2011) hypothesize that the num-

ber of common co-occurrences between a given

MWE and its component words indicates the de-

gree of compositionality of that MWE. First, the co-

occurrences of a given MWE/word are considered

as the values of a vector. They then measure the

Cosine similarity between the vectors of the MWE

and its components. Bannard et al. (2003) presented

four methods to measure the compositionality of En-

glish verb particle constructions. Their best result

is based on the previously-discussed method of Lin

(1999) for measuring compositionality, but uses a

more-general distributional similarity model to iden-

tify synonyms.

Recently, a few studies have investigated using

parallel corpora to detect the degree of composi-

tionality (Melamed, 1997; Moirón and Tiedemann,

2006; de Caseli et al., 2010; Salehi et al., 2012).

The general approach is to word-align the source

and target language sentences and analyse align-

ment patterns for MWEs (e.g. if the MWE is al-

ways aligned as a single “phrase”, then it is a strong

indicator of non-compositionality). de Caseli et

al. (2010) consider non-compositional MWEs to be

those candidates that align to the same target lan-

guage unit, without decomposition into word align-

ments. Melamed (1997) suggests using mutual in-

formation to investigate how well the translation

model predicts the distribution of words in the tar-

get text given the distribution of words in the source

text. Moirón and Tiedemann (2006) show that en-

tropy is a good indicator of compositionality, be-

cause word alignment models are often confused by

non-compositional MWEs. However, this assump-

tion does not always hold, especially when deal-

ing with high-frequency non-compositional MWEs.

Salehi et al. (2012) tried to solve this problem with

high frequency MWEs by using word alignment in

both directions.3 They computed backward and for-

ward entropy to try to remedy the problem with es-

pecially high-frequency phrases. However, their as-

sumptions were not easily generalisable across lan-

guages, e.g., they assume that the relative frequency

of a specific type of MWE (light verb constructions)

in Persian is much greater than in English.

Although methods using bilingual corpora are in-

tuitively appealing, they have a number of draw-

backs. The first and the most important problem

3The IBM models (Brown et al., 1993), e.g., are not bidi-

rectional, which means that the alignments are affected by the

alignment direction.
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is data: they need large-scale parallel bilingual cor-

pora, which are available for relatively few language

pairs. Second, since they use statistical measures,

they are not suitable for measuring the composition-

ality of MWEs with low frequency. And finally,

most experiments have been carried out on English

paired with other European languages, and it is not

clear whether the results translate across to other

language pairs.

3 Resources

In this research, we use the translations of MWEs

and their components to estimate the relative de-

gree of compositionality of a MWE. There are

several resources available to translate words into

various languages such as Babelnet (Navigli and

Ponzetto, 2010),4 Wiktionary,5 Panlex (Baldwin et

al., 2010) and Google Translate.6 As we are ide-

ally after broad coverage over multiple languages

and MWEs/component words in a given language,

we exclude Babelnet and Wiktionary from our cur-

rent research. Babelnet covers only six languages

at the time of writing this paper, and in Wiktionary,

because it is constantly being updated, words and

MWEs do not have translations into the same lan-

guages. This leaves translation resources such as

Panlex and Google Translate. However, after man-

ually analysing the two resources for a range of

MWEs, we decided not to use Google Translate for

two reasons: (1) we consider the MWE out of con-

text (i.e., we are working at the type level and do not

consider the usage of the MWE in a particular sen-

tence), and Google Translate tends to generate com-

positional translations of MWEs out of context; and

(2) Google Translate provides only one translation

for each component word/MWE. This left Panlex.

Panlex is an online translation database that is

freely available. It contains lemmatized words and

MWEs in a large variety of languages, with lemma-

based (and less frequently sense-based) links be-

tween them. The database covers more than 1353

languages, and is made up of 12M lemmas and ex-

pressions. The translations are sourced from hand-

made electronic dictionaries, making it more accu-

4
http://lcl.uniroma1.it/babelnet/

5
http://www.wiktionary.org/

6
http://translate.google.com/

rate than translation dictionaries generated automat-

ically, e.g. through word alignment. Usually there

are several direct translations for a word/MWE

from one language to another, as in translations

which were extracted from electronic dictionaries. If

there is no direct translation for a word/MWE in the

database, we can translate indirectly via one or more

pivot languages (indirect translation: Soderland et

al. (2010)). For example, English ivory tower has

direct translations in only 13 languages in Panlex,

including French (tour d’ivoire) but not Esperanto.

There is, however, a translation of tour d’ivoire into

Esperanto (ebura turo), allowing us to infer an indi-

rect translation between ivory tower and ebura turo.

4 Dataset

We evaluate our method over two datasets, as de-

scribed below.

REDDY (Reddy et al., 2011): 90 English (binary)

noun compounds (NCs), where the overall NC and

each component word has been annotated for com-

positionality on a scale from 0 (non-compositional)

to 5 (compositional). In order to avoid issues

with polysemy, the annotators were presented with

each NC in a sentential context. The authors tried

to achieve a balance of compositional and non-

compositional NCs: based on a threshold of 2.5, the

dataset consists of 43 (48%) compositional NCs, 46

(51%) NCs with a compositional usage of the first

component, and 54 (60%) NCs with a compositional

usage of the second component.

BANNARD (Bannard, 2006): 160 English verb

particle constructions (VPCs) were annotated for

compositionality relative to each of the two compo-

nent words (the verb and the particle). Each annota-

tor was asked to annotate each of the verb and parti-

cle as yes, no or don’t know. Based on the ma-

jority annotation, among the 160 VPCs, 122 (76%)

are verb-compositional and 76 (48%) are particle-

compositional.

We compute the proportion of yes tags to get the

compositionality score. This dataset, unlike REDDY,

does not include annotations for the compositional-

ity of the whole VPC, and is also less balanced, con-

taining more VPCs which are verb-compositional

than verb-non-compositional.
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Figure 1: Schematic of our proposed method

5 Method

To predict the degree of compositionality of an

MWE, we require a way to measure the semantic

similarity of the MWE with its components. Our

hypothesis is that compositional MWEs are more

likely to be word-for-word translations in a given

language than non-compositional MWEs. Hence, if

we can locate the translations of the components in

the translation of the MWE, we can deduce that it

is compositional. Our second hypothesis is that the

more languages we use as the basis for determin-

ing translation similarity between the MWE and its

component words, the more accurately we will be

able to estimate compositionality. Thus, rather than

using just one translation language, we experiment

with as many languages as possible.

Figure 1 provides a schematic outline of our

method. The MWE and its components are trans-

lated using Panlex. Then, we compare the transla-

tion of the MWE with the translations of its compo-

nents. In order to locate the translation of each com-

ponent in the MWE translation, we use string simi-

English Persian Translation

kick the bucket mord

kick zad

the –

bucket satl

make a decision tasmim gereft

make sakht

a yek

decision tasmim

public service khadamaat omumi

public omumi

service khedmat

Table 1: English MWEs and their components with their

translation in Persian. Direct matches between the trans-

lation of a MWE and its components are shown in bold;

partial matches are underlined.

larity measures. The score shown in Figure 1 is de-

rived from a given language. In Section 6, we show

how to combine scores across multiple languages.

As an example of our method, consider the

English-to-Persian translation of kick the bucket as

a non-compositional MWE and make a decision as

a semi-compositional MWE (Table 1).7 By locating

the translation of decision (tasmim) in the translation

ofmake a decision (tasmim gereftan), we can deduce

that it is semi-compositional. However, we cannot

locate any of the component translations in the trans-

lation of kick the bucket. Therefore, we conclude

that it is non-compositional. Note that in this simple

example, the match is word-level, but that due to the

effects of morphophonology, the more likely situa-

tion is that the components don’t match exactly (as

we observe in the case of khadamaat and khedmat

for the public service example), which motivates our

use of string similarity measures which can capture

partial matches.

We consider the following string similarity mea-

sures to compare the translations. In each case,

we normalize the output value to the range [0, 1],
where 1 indicates identical strings and 0 indicates

completely different strings. We will indicate the

translation of the MWE in a particular language t as

MWE t, and the translation of a given component in

7Note that the Persian words are transliterated into English

for ease of understanding.
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language t as component t.

Longest common substring (LCS): The LCS

measure finds the longest common substring be-

tween two strings. For example, the LCS between

ABABC and BABCAB is BABC. We calculate a nor-

malized similarity value based on the length of the

LCS as follows:

LongestCommonString (MWE t, component t)

min(len(MWE t), len(component t))

Levenshtein (LEV1): The Levenshtein distance

calculates for the number of basic edit operations re-

quired to transpose one word into the other. Edits

consist of single-letter insertions, deletions or sub-

stitutions. We normalize LEV1 as follows:

1−
LEV1 (MWE t, component t)

max(len(MWE t), len(component t))

Levenshtein with substitution penalty (LEV2):

One well-documented feature of Levenshtein dis-

tance (Baldwin, 2009) is that substitutions are in fact

the combination of an addition and a deletion, and as

such can be considered to be two edits. Based on this

observation, we experiment with a variant of LEV1

with this penalty applied for substitutions. Similarly

to LEV1, we normalize as follows:

1−
LEV2 (MWE t, component t)

len(MWE t) + len(component t)

Smith Waterman (SW) This method is based on

the Needleman-Wunsch algorithm,8 and was devel-

oped to locally-align two protein sequences (Smith

and Waterman, 1981). It finds the optimal simi-

lar regions by maximizing the number of matches

and minimizing the number of gaps necessary to

align the two sequences. For example, the opti-

mal local sequence for the two sequences below is

AT−−ATCC, in which “-” indicates a gap:

8The Needleman-Wunsch (NW) algorithm, was designed to

align two sequences of amino-acids (Needleman and Wunsch,

1970). The algorithm looks for the sequence alignment which

maximizes the similarity. As with the LEV score, NW min-

imizes edit distance, but also takes into account character-to-

character similarity based on the relative distance between char-

acters on the keyboard. We exclude this score, because it is

highly similar to the LEV scores, and we did not obtain encour-

aging results using NW in our preliminary experiments.

Seq1: ATGCATCCCATGAC

Seq2: TCTATATCCGT

As the example shows, it looks for the longest com-

mon string but has an in-built mechanism for includ-

ing gaps in the alignment (with penalty). This char-

acteristic of SW might be helpful in our task, be-

cause there may be morphophonological variations

between the MWE and component translations (as

seen above in the public service example). We nor-

malize SW similarly to LCS:

len(alignedSequence)

min(len(MWE t), len(component t))

6 Computational Model

Given the scores calculated by the aforementioned

string similarity measures between the translations

for a given component word and the MWE, we need

some way of combining scores across component

words.9 First, we measure the compositionality of

each component within the MWE (s1 and s2):

s1 = f1(sim1(w1,MWE), ..., simi(w1,MWE ))

s2 = f1(sim1(w2,MWE), ..., simi(w2,MWE ))

where sim is a string similarity measure, simi indi-

cates that the calculation is based on translations in

language i, and f1 is a score combination function.

Then, we compute the overall compositionality of

the MWE (s3) from s1 and s2 using f2:

s3 = f2(s1, s2)

Since we often have multiple translations for a given

component word/MWE in Panlex, we exhaustively

compute the similarity between each MWE transla-

tion and component translation, and use the highest

similarity as the result of simi. If an instance does

not have a direct/indirect translation in Panlex, we

assign a default value, which is the mean of the high-

est and lowest annotation score (2.5 for REDDY and

0.5 for BANNARD). Note that word order is not an

issue in our method, as we calculate the similarity

independently for each MWE component.

In this research, we consider simple functions for

f1 such as mean, median, product, min and max. f2

9Note that in all experiments we only combine scores given

by the same string similarity measure.
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NC

Language Frequency Family

Czech 100 Slavic

Norwegian 100 Germanic

Portuguese 100 Romance

Thai 99 Kam-thai

French 95 Romance

Chinese 94 Chinese

Dutch 93 Germanic

Romanian 91 Romance

Hindi 67 Indic

Russian 43 Slavic

Table 2: The 10 best languages for REDDY using LCS.

was selected to be the same as f1 in all situations,

except when we use mean for f1. Here, following

Reddy et al. (2011), we experimented with weighted

mean:

f2(s1, s2) = αs1 + (1− α)s2

Based on 3-fold cross validation, we chose α = 0.7
for REDDY.10

Since we do not have judgements for the com-

positionality of the full VPC in BANNARD (we in-

stead have separate judgements for the verb and

particle), we cannot use f2 for this dataset. Ban-

nard et al. (2003) observed that nearly all of the

verb-compositional instances were also annotated as

particle-compositional by the annotators. In line

with this observation, we use s1 (based on the verb)

as the compositionality score for the full VPC.

7 Language Selection

Our method is based on the translation of an MWE

into many languages. In the first stage, we chose 54

languages for which relatively large corpora were

available.11 The coverage, or the number of in-

stances which have direct/indirect translations in

Panlex, varies from one language to another. In

preliminary experiments, we noticed that there is

a high correlation (about 0.50 for BANNARD and

10We considered values of α from 0 to 1, incremented by 0.1.
11In future work, we intend to look at the distribution of trans-

lations of the given MWE and its components in corpora for

many languages. The present method does not rely on the avail-

ability of large corpora.

VPC:verb

Language Frequency Family

Basque 100 Basque

Lithuanian 100 Baltic

Slovenian 100 Slavic

Hebrew 99 Semitic

Arabic 98 Semitic

Czech 95 Slavic

Slovak 92 Slavic

Latin 79 Italic

Tagalog 74 Austronesian

Polish 44 Slavic

Table 3: The 10 best languages for the verb component

of BANNARD using LCS.

VPC:particle

Language Frequency Family

French 100 Romance

Icelandic 100 Germanic

Thai 100 Kam-thai

Indonesian 92 Indonesian

Spanish 90 Romance

Tamil 87 Dravidian

Turkish 83 Turkic

Catalan 79 Romance

Occitan 76 Romance

Romanian 69 Romance

Table 4: The 10 best languages for the particle compo-

nent of BANNARD using LCS.

about 0.80 for REDDY) between the usefulness of

a language and its translation coverage on MWEs.

Therefore, we excluded languages with MWE trans-

lation coverage of less than 50%. Based on nested

10-fold cross validation in our experiments, we se-

lect the 10 most useful languages for each cross-

validation training partition, based on the Pearson

correlation between the given scores in that language

and human judgements.12 The 10 best languages

are selected based only on the training set for each

fold. (The languages selected for each fold will later

be used to predict the compositionality of the items

in the testing portion for that fold.) In Tables 2, 3

12Note that for VPCs, we calculate the compositionality of

only the verb part, because we don’t have the human judge-

ments for the whole VPC.
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f1 sim() N1 N2 NC

Mean

SW 0.541 0.396 0.637

LCS 0.525 0.431 0.649

LEV1 0.405 0.200 0.523

LEV2 0.481 0.263 0.577

Prod

SW 0.451 0.287 0.410

LCS 0.430 0.233 0.434

LEV1 0.299 0.128 0.311

LEV2 0.294 0.188 0.364

Median

SW 0.443 0.334 0.544

LCS 0.408 0.365 0.553

LEV1 0.315 0.054 0.376

LEV2 0.404 0.134 0.523

Min

SW 0.420 0.176 0.312

LCS 0.347 0.225 0.307

LEV1 0.362 0.310 0.248

LEV2 0.386 0.345 0.338

Max

SW 0.371 0.408 0.345

LCS 0.406 0.430 0.335

LEV1 0.279 0.362 0.403

LEV2 0.380 0.349 0.406

Table 5: Correlation on REDDY (NCs). N1, N2 and NC,

are the first component of the noun compound, its second

component, and the noun compound itself, respectively.

and 4, we show how often each language was se-

lected in the top-10 languages over the combined

100 (10×10) folds of nested 10-fold cross valida-

tion, based on LCS.13 The tables show that the se-

lected languages were mostly consistent over the

folds. The languages are a mixture of Romance,

Germanic and languages from other families (based

on Voegelin and Voegelin (1977)), with no standout

language which performs well in all cases (indeed,

no language occurs in all three tables). Additionally,

there is nothing in common between the verb and the

particle top-10 languages.

8 Results

As mentioned before, we perform nested 10-fold

cross-validation to select the 10 best languages on

the training data for each fold. The selected lan-

guages for a given fold are then used to compute s1

13Since our later results show that LCS and SW have higher

results, we only show the best languages using LCS. These

largely coincide with those for SW.

f1 sim() Verb Particle

Mean

SW 0.369 0.510

LCS 0.406 0.509

LEV1 0.335 0.454

LEV2 0.340 0.460

Prod

SW 0.315 0.316

LCS 0.339 0.299

LEV1 0.322 0.280

LEV2 0.342 0.284

Median

SW 0.316 0.409

LCS 0.352 0.423

LEV1 0.295 0.387

LEV2 0.309 0.368

Min

SW 0.262 0.210

LCS 0.329 0.251

LEV1 0.307 0.278

LEV2 0.310 0.281

Max

SW 0.141 0.288

LCS 0.268 0.299

LEV1 0.145 0.450

LEV2 0.170 0.398

Table 6: Correlation on BANNARD (VPC), based on the

best-10 languages for the verb and particle individually

and s2 (and s3 for NCs) for each instance in the test

set for that fold. The scores are compared with hu-

man judgements using Pearson’s correlation. The

results are shown in Tables 5 and 6. Among the five

functions we experimented with for f1, Mean per-

forms much more consistently than the others. Me-

dian is less prone to noise, and therefore performs

better than Prod, Max and Min, but it is still worse

than Mean.

For the most part, LCS and SW perform better

than the other measures. There is little to separate

these two methods, partly because they both look for

a sequence of similar characters, unlike LEV1 and

LEV2 which do not consider contiguity of match.

The results support our hypothesis that using mul-

tiple target languages rather than one, results in a

more accurate prediction of MWE compositionality.

Our best result using the 10 selected languages on

REDDY is 0.649, as compared to the best single-

language correlation of 0.497 for Portuguese. On

BANNARD, the best LCS result for the verb com-

ponent is 0.406, as compared to the best single-
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language correlation of 0.350 for Lithuanian.

Reddy et al. (2011) reported a correlation of 0.714

on REDDY. Our best correlation is 0.649. Note that

Reddy et al. (2011) base their method on identifi-

cation of MWEs in a corpus, thus requiring MWE-

specific identification. Given that this has been

shown to be difficult for MWE types including En-

glish VPCs (McCarthy et al., 2003; Baldwin, 2005),

the fact that our method is as competitive as this is

highly encouraging, especially when you consider

that it can equally be applied to different types of

MWEs in other languages. Moreover, the computa-

tional processing required by methods based on dis-

tributional similarity is greater than our method, as

it does not require processing a large corpus.

Finally, we experimented with combining our

method (STRINGSIMMEAN) with a reimplementation

of the method of Reddy et al. (2011), based on sim-

ple averaging, as detailed in Table 7. The results are

higher than both component methods and the state-

of-the-art for REDDY, demonstrating the comple-

mentarity between our proposed method and meth-

ods based on distributional similarity.

In Table 8, we compare our results

(STRINGSIMMEAN) with those of Bannard et

al. (2003), who interpreted the dataset as a binary

classification task. The dataset used in their study

is a subset of BANNARD, containing 40 VPCs, of

which 29 (72%) were verb compositional and 23

(57%) were particle compositional. By applying a

threshold of 0.5 over the output of our regression

model, we binarize the VPCs into the compositional

and non-compositional classes. According to the

results shown in Table 6, LCS is a better similarity

measure for this task. Our proposed method has

higher results than the best results of Bannard et

al. (2003), in part due to their reliance on VPC

identification, and the low recall on the task, as

reported in the paper. Our proposed method does

not rely on a corpus or MWE identification.

9 Error Analysis

We analyse items in REDDY which have a high dif-

ference (more than 2.5) between the human anno-

tation and our scores (using LCS and Mean). The

words are cutting edge, melting pot, gold mine and

ivory tower, which are non-compositional accord-

ing to REDDY. After investigating their translations,

we came to the conclusion that the first three MWEs

have word-for-word translations in most languages.

Hence, they disagree with our hypothesis that word-

for-word translation is a strong indicator of compo-

sitionality. The word-for-word translations might be

because of the fact that they have both compositional

and non-compositional senses, or because they are

calques (loan translations). However, we have tried

to avoid such problems with calques by using trans-

lations into several languages.

For ivory tower (“a state of mind that is discussed

as if it were a place”)14 we noticed that we have a di-

rect translation into 13 languages. Other languages

have indirect translations. By checking the direct

translations, we noticed that, in French, the MWE is

translated to tour and tour d’ivoire. A noisy (wrong)

translation of tour “tower” resulted in wrong indirect

translations for ivory tower and an inflated estimate

of compositionality.

10 Conclusion and Future Work

In this study, we proposed a method to predict MWE

compositionality based on the translation of the

MWE and its component words into multiple lan-

guages. We used string similarity measures between

the translations of the MWE and each of its compo-

nents to predict the relative degree of composition-

ality. Among the four similarity measures that we

experimented with, LCS and SW were found to be

superior to edit distance-based methods. Our best re-

sults were found to be competitive with state-of-the-

art results using vector-based approaches, and were

also shown to complement state-of-the-art methods.

In future work, we are interested in investigating

whether alternative ways of combining our proposed

method with vector-based models can lead to fur-

ther enhancements in results. These models could

be especially effective when comparing translations

which are roughly synonymous but not string-wise

similar.
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sim() STRINGSIMMEAN STRINGSIMMEAN + Reddy et al.

SW 0.637 0.735

LCS 0.649 0.742

LEV1 0.523 0.724

LEV2 0.577 0.726

Table 7: Correlation after combining Reddy et al.’s method and our method with Mean for f1 (STRINGSIMMEAN ). The

correlation using Reddy et al.’s method is 0.714.

Method Precision Recall F-score (β = 1) Accuracy

Bannard et al. (2003) 0.608 0.666 0.636 0.600

STRINGSIMMEAN 0.862 0.718 0.774 0.693

Table 8: Results for the classification task. STRINGSIMMEAN is our method using Mean for f1
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Abstract

Automatic metaphor identification and inter-
pretation in text have been traditionally con-
sidered as two separate tasks in natural lan-
guage processing (NLP) and addressed in-
dividually within computational frameworks.
However, cognitive evidence suggests that hu-
mans are likely to perform these two tasks si-
multaneously, as part of a holistic metaphor
comprehension process. We present a novel
method that performs metaphor identification
through its interpretation, being the first one
in NLP to combine the two tasks in one
step. It outperforms the previous approaches
to metaphor identification both in terms of ac-
curacy and coverage, as well as providing an
interpretation for each identified expression.

1 Introduction

Metaphor undoubtedly gives our expression more
vividness, distinction and artistry, however, it is also
an important linguistic tool that has long become
part of our every-day language. Metaphors arise
when one concept or domain is viewed in terms
of the properties of another (Lakoff and Johnson,
1980). Consider the examples in (1) and (2).

(1) My car drinks gasoline. (Wilks, 1978)

(2) This policy is strangling business.

The car in (1) and business in (2) are viewed as
living beings and thus they can drink or be stran-
gled respectively. The mapping between the car
(the target concept) and living being (the source
concept) is systematic and results in a number of
metaphorical expressions (e.g. “This oil gives your

car a second life”, “this car has is very temperamen-
tal” etc.) Lakoff and Johnson call such generalisa-
tions a source–target domain mapping, or concep-
tual metaphor.

The ubiquity of metaphor in language has been
established in a number of corpus studies (Cameron,
2003; Martin, 2006; Steen et al., 2010; Shutova
and Teufel, 2010) and the role it plays in human
reasoning has been confirmed in psychological ex-
periments (Thibodeau and Boroditsky, 2011). This
makes its automatic processing an important prob-
lem for NLP and its numerous applications (such
as machine translation, information extraction, opin-
ion mining and many others). For example, the
use of the metaphorical verb strangle in (2) reflects
the speaker’s negative opinion regarding the gov-
ernment’s tight business regulations, which would
be an important fact for an opinion mining system
to discover (Narayanan, 1999). Other experiments
(Agerri, 2008) have investigated and confirmed the
role of metaphor interpretation for textual entailment
resolution (RTE).

The problem of metaphor modeling is rapidly
gaining interest within NLP, with a growing number
of approaches exploiting statistical techniques (Ma-
son, 2004; Gedigian et al., 2006; Shutova, 2010;
Shutova et al., 2010; Turney et al., 2011; Shutova
et al., 2012a). Compared to more traditional ap-
proaches based on hand-coded knowledge (Fass,
1991; Martin, 1990; Narayanan, 1997; Narayanan,
1999; Feldman and Narayanan, 2004; Barnden and
Lee, 2002; Agerri et al., 2007), these more recent
methods tend to have a wider coverage, as well as be
more efficient, accurate and robust. However, even
the statistical metaphor processing approaches so far
often focused on a limited domain or a subset of
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phenomena (Gedigian et al., 2006; Krishnakumaran
and Zhu, 2007), and required training data (Shutova
et al., 2010; Turney et al., 2011), often resulting in
a limited coverage. The metaphor processing task
itself has been most commonly addressed in NLP
as two individual subtasks: metaphor identification
and metaphor interpretation, with the systems focus-
ing only on one of them at a time, or at best comb-
ing the two in a pipeline (Shutova et al., 2012a).
Metaphor identification systems annotate metaphor-
ical language in text, and metaphor interpretation
systems discover literal meanings of the previously
annotated expressions. However, cognitive evidence
suggests that humans are likely to perform identifi-
cation and interpretation simultaneously, as part of
a holistic metaphor comprehension process (Coul-
son, 2008; Utsumi, 2011; Gibbs and Colston, 2012).
In this paper, we also take this stance and present the
first computational method that identifies metaphori-
cal expressions in unrestricted text by means of their
interpretation. Following Shutova (2010), we define
metaphor interpretation as a task of finding a literal
paraphrase for a metaphorically used word and in-
troduce the concept of symmetric reverse paraphras-
ing as a criterion for metaphor identification. The
main assumption behind our method is that the lit-
eral paraphrases of literally-used words should yield
the original phrase when paraphrased in reverse. For
example, when the expression “clean the house” is
paraphrased as “tidy the house”, the reverse para-
phrasing of tidy would generate clean. Our expec-
tation is that such a symmetry in paraphrasing is
indicative of literal use. The metaphorically-used
words are unlikely to exhibit this symmetry prop-
erty when paraphrased in reverse. For example, the
literal paraphrasing of the verb stir in “stir excite-
ment” would yield “provoke excitement”, but the
reverse paraphrasing of provoke would not retrieve
stir, indicating the non-literal use of stir.

We experimentally verify this hypothesis in a set-
ting involving single-word metaphors expressed by
a verb in verb-subject and verb-direct object rela-
tions. We apply the selectional preference-based
metaphor paraphrasing method of Shutova (2010) to
retrieve literal paraphrases of all input verbs and ex-
tend the method to perform metaphor identification.
In summary, our system (1) determines the likeli-
hood of a verb being metaphorical based on its selec-

tional preference strength (Resnik, 1993); (2) identi-
fies a set of literal paraphrases for verbs that may be
used metaphorically using the algorithm of Shutova
(2010); (3) performs reverse paraphrasing of each
of the identified paraphrases, aiming to retrieve the
original expression; and (4) if the original expres-
sion is retrieved then the verb is tagged as literal,
otherwise it is tagged as metaphorical.

We evaluated the performance of the system using
the manually annotated metaphor corpus of Shutova
and Teufel (2010) in precision- and recall-oriented
settings. In addition, we compared its performance
to that of a baseline using selectional preference vi-
olation as an indicator of metaphor, as well as to
two previous metaphor identification approaches of
Shutova et al. (2010) and Turney et al. (2011).

2 Related Work

One of the first attempts to identify and interpret
metaphorical expressions in text is the met* sys-
tem of Fass (1991), that utilizes hand-coded knowl-
edge and detects non-literalness via selectional pref-
erence violation. In case of a violation, the re-
spective phrase is first tested for being metonymic
using hand-coded patterns (e.g. CONTAINER-FOR-
CONTENT). If this fails, the system searches the
knowledge base for a relevant analogy in order to
discriminate metaphorical relations from anomalous
ones. The system of Krishnakumaran and Zhu
(2007) uses WordNet (the hyponymy relation) and
word bigram counts to predict verbal, nominal and
adjectival metaphors at the sentence level. The au-
thors discriminate between conventional metaphors
(included in WordNet) and novel metaphors. Birke
and Sarkar (2006) present a sentence clustering ap-
proach that employs a set of seed sentences an-
notated for literalness and computes similarity be-
tween the new input sentence and all of the seed sen-
tences. The system then tags the sentence as literal
or metaphorical according to the annotation in the
most similar seeds, attaining an f-score of 53.8%.

The first system to discover source–target domain
mappings automatically is CorMet (Mason, 2004).
It does this by searching for systematic variations
in domain-specific verb selectional preferences. For
example, pour is a characteristic verb in both LAB

and FINANCE domains. In the LAB domain it has
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a strong preference for liquids and in the FINANCE

domain for money. From this the system infers the
domain mapping FINANCE – LAB and the concept
mapping money – liquid. Gedigian et al. (2006)
trained a maximum entropy classifier to discrimi-
nate between literal and metaphorical use. They
annotated the sentences from PropBank (Kingsbury
and Palmer, 2002) containing the verbs of MOTION

and CURE for metaphoricity. They used PropBank
annotation (arguments and their semantic types) as
features for classification and report an accuracy
of 95.12% (however, against a majority baseline of
92.90%). The metaphor identification system of
Shutova et al. (2010) starts from a small seed set
of metaphorical expressions, learns the analogies in-
volved in their production and extends the set of
analogies by means of verb and noun clustering. As
a result, the system can recognize new metaphorical
expressions in unrestricted text (e.g. from the seed
“stir excitement” it infers that “swallow anger” is
also a metaphor), achieving a precision of 79%.

Turney et al. (2011) classify verbs and adjectives
as literal or metaphorical based on their level of con-
creteness or abstractness in relation to a noun they
appear with. They learn concreteness rankings for
words automatically (starting from a set of exam-
ples) and then search for expressions where a con-
crete adjective or verb is used with an abstract noun
(e.g. “dark humour” is tagged as a metaphor and
“dark hair” is not). They report an accuracy of 73%.

3 Method

3.1 Selectional Preference Strength Filtering

One of the early influential ideas in the field of com-
putational metaphor processing is that metaphor rep-
resents a violation of selectional preferences (SP)
of a word in a given context (Wilks, 1975; Wilks,
1978). However, applied directly as an identifica-
tion criterion, violation of SPs is also indicative of
many other linguistic phenomena (e.g. metonymy),
and not only metaphor, which is problematic. We
modify this view and apply it to measure the poten-
tial of a word to be used metaphorically based on its
selectional preference strength (SPS). The main in-
tuition behind SPS filtering is that not all verbs have
an equal potential of being a metaphor. For example,
verbs such as choose, remember, describe or like do

not have a strong preference for their direct objects
and are equally likely to appear with many argument
classes. If metaphor represents a violation of SPs,
then the verbs with weak SPS are unlikely to be used
metaphorically in any context. For every verb in the
input text, the filter determines their likelihood of
being a metaphor based on their SPS and discards
the weak ones. The SPS filter is context-free, and
the reverse paraphrasing method is then applied in
the next steps to determine if the remaining verbs
are indeed used metaphorically in the given context.

We automatically acquired selectional preference
distributions for verb-subject and verb-direct object
relations from the British National Corpus (BNC)
(Burnard, 2007) that was parsed using the RASP
parser (Briscoe et al., 2006; Andersen et al., 2008).
We applied the noun clustering method of Sun and
Korhonen (2009) to 2000 most frequent nouns in
the BNC to obtain 200 common selectional prefer-
ence classes. To quantify selectional preferences, we
adopted the SPS measure of Resnik (1993). Resnik
defines SPS of a verb as the difference between the
posterior distribution of noun classes in a particular
relation with the verb and their prior distribution in
that syntactic position (regardless of the verb). He
quantifies this difference using the Kullback-Leibler
divergence:

SR(v) = D(P (c|v)||P (c)) =∑
c

P (c|v) log
P (c|v)

P (c)
,

(1)

where P (c) is the prior probability of the noun class,
P (c|v) is the posterior probability of the noun class
given the verb and R is the grammatical relation.

We calculated SPS for verb-subject and verb-
direct object grammatical relations. The optimal se-
lectional preference strength thresholds were set ex-
perimentally on a small heldout dataset at 0.30 for
verb-subject and 0.70 for verb-direct object relations
(via qualitative analysis of the data). The system ex-
cludes expressions containing the verbs with prefer-
ence strength below these thresholds from the set of
candidate metaphors. Examples of verbs with weak
direct object SPs include e.g. imagine, avoid, con-
tain, dislike, make, admire, separate, remember and
the strong SPs are exhibited by e.g. sip, hobble, roar,
hoover, slam, skim, drink etc.
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3.2 Literal Paraphrasing

The verbs that can be used metaphorically ac-
cording to the SPS filter are then paraphrased us-
ing the context-based literal paraphrasing method
of Shutova (2010). While Shutova only used
the method to paraphrase manually annotated
metaphors, we extend and apply the method to para-
phrasing of literally used terms and metaphor identi-
fication, eliminating the need for manual annotation
of metaphorical expressions.

The system takes verbs and their context in the
form of subject and direct-object relations as input.
It generates a list of possible paraphrases of the verb
that can occur in the same context and ranks them
according to their likelihood, as derived from the
corpus. It then identifies shared features of the para-
phrases and the verb using the WordNet (Fellbaum,
1998) hierarchy and removes unrelated concepts. It
then identifies literal paraphrases among the remain-
ing candidates based on the verb’s automatically in-
duced selectional preferences and the properties of
the context.

3.2.1 Context-based Paraphrase Ranking
Following Shutova (2010), we compute the like-

lihood L of a particular paraphrase of the verb
v as a joint probability of the paraphrase i co-
occurring with the other lexical items from its con-
text w1, ..., wN in syntactic relations r1, ..., rN .

Li = P (i, (w1, r1), (w2, r2), ..., (wN , rN )). (2)

Assuming statistical independence between the rela-
tions of the terms in a phrase, we obtain:

P (i, (w1, r1), (w2, r2), ..., (wN , rN )) =

P (i) · P ((w1, r1)|i) · ... · P ((wN , rN )|i).
(3)

The probabilities can be calculated using maxi-
mum likelihood estimation as P (i) = f(i)∑

k f(ik)

and P (wn, rn|i) = f(wn,rn,i)
f(i) , where f(i) is the

frequency of the interpretation irrespective of its
arguments,

∑
k f(ik) is the number of times its

part of speech class is attested in the corpus and
f(wn, rn, i) is the number of times the interpreta-
tion co-occurs with context word wn in relation rn.
By performing appropriate substitutions into (3), we

obtain:

P (i, (w1, r1), (w2, r2), ..., (wN , rN )) =

f(i)∑
k f(ik)

· f(w1, r1, i)

f(i)
· ... · f(wN , rN , i)

f(i)
=∏N

n=1 f(wn, rn, i)

(f(i))N−1 ·
∑

k f(ik)
.

(4)
This model is then used to rank the candidate sub-
stitutes of the verb v in the fixed context according
to the data. The parameters of the model were esti-
mated from the RASP-parsed BNC using the gram-
matical relations output created by Andersen et al.
(2008). The goal of this model is to emphasize the
paraphrases that match the context of the verb in the
sentence best.

3.2.2 WordNet Filter
After obtaining the initial list of possible substi-

tutes for the verb v, the system filters out the terms
whose meanings do not share any common proper-
ties with that of the verb. This overlap of properties
is identified using the hyponymy relation in Word-
Net. Within the initial list of paraphrases, the sys-
tem selects the terms that are hypernyms of the verb
v, or share a common hypernym with it. Follow-
ing Shutova, we restrict the hypernym search to a
depth of three levels in the taxonomy. Table 1 shows
the filtered lists of paraphrases for the expressions
“stir excitement” and “campaign surged”. The goal
of the filter is to discard unrelated paraphrases and
thus ensure the meaning retention during paraphras-
ing. Note, however, that we define meaning reten-
tion broadly, as sharing a set of similar basic prop-
erties. Such a broad definition distinguishes our sys-
tem from other WordNet-based approaches to lexi-
cal substitution (McCarthy and Navigli, 2007) and
allows for a transition from metaphorical to literal
language, while preserving the original meaning.

3.2.3 SP-based Re-ranking
The lists of paraphrases which were generated as

described above contain some irrelevant paraphrases
(e.g. “campaign lifted” for “campaign surged”) and
some metaphorically-used paraphrases (e.g. “cam-
paign soared”). However, our aim is to identify lit-
eral paraphrases among the candidates. Shutova’s
method uses selectional preferences of the candi-
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Log-likelihood Paraphrase
Verb-DirectObject
stir excitement:
-14.28 create
-14.84 provoke
-15.53 make
-15.53 elicit
-15.53 arouse
-16.23 stimulate
-16.23 raise
-16.23 excite
-16.23 conjure
Subject-Verb
campaign surge:
-13.01 run
-15.53 improve
-16.23 soar
-16.23 lift

Table 1: The list of paraphrases with the initial ranking

dates for this purpose. Candidates used metaphor-
ically are likely to demonstrate semantic preference
for the source domain, e.g. soar would select for
birds or flying devices as its subject rather than cam-
paigns (the target domain), whereas the ones used
literally would have a higher preference for the tar-
get domain. This is yet another modification of
Wilks’ SP violation view of metaphor. Shutova
(2010) has previously shown that selecting the para-
phrases whose preferences the noun in the context
matches best allows to filter out non-literalness, as
well as unrelated terms.

As in case of the SPS filter, we automatically
acquired selectional preference distributions of the
verbs in the paraphrase lists (for verb-subject and
verb-direct object relations) from the RASP-parsed
BNC. In order to quantify how well a particular ar-
gument class fits the verb, we adopted the selectional
association measure proposed by Resnik (1993). Se-
lectional association is defined as follows:

AR(v, c) =
1

SR(v)
P (c|v) log

P (c|v)

P (c)
, (5)

where P (c) is the prior probability of the noun class,
P (c|v) is the posterior probability of the noun class
given the verb and SR is the overall selectional pref-
erence strength of the verb in the grammatical rela-
tion R.

We use selectional association as a measure of
semantic fitness of the paraphrases into the con-

Association Paraphrase
Verb-DirectObject
stir excitement:
0.0696 provoke
0.0245 elicit
0.0194 arouse
0.0061 conjure
0.0028 create
0.0001 stimulate
≈ 0 raise
≈ 0 make
≈ 0 excite
Subject-Verb
campaign surge:
0.0086 improve
0.0009 run
≈ 0 soar
≈ 0 lift

Table 2: The list of paraphrases re-ranked using SPs

text, which stands for their literalness. The para-
phrases are re-ranked based on their selectional as-
sociation with the noun in the context. The incor-
rect or metaphorical paraphrases are de-emphasized
within this ranking. The new ranking is shown in
Table 2. While the model in 3.2.1 selected the can-
didate paraphrases that match the context better than
all other candidates, the SP model emphasizes the
paraphrases that match this particular context better
than any other context they may appear in. Shutova’s
experiments have shown that the paraphrase in rank
1 (i.e. the verb with which the noun in the context
has the highest selectional association) represents a
literal interpretation in 81% of all cases. Such a level
of accuracy makes Shutova’s method state-of-the-art
in metaphor paraphrasing. We now apply it to the
task of metaphor identification.

3.3 Reverse Paraphrasing

At the heart of our approach to metaphor iden-
tification is the concept of reverse paraphrasing.
The main intuition behind it is that when literally-
used words are paraphrased with their literal substi-
tutes, the reverse literal paraphrasing of that substi-
tute should yield the original expression as one of
the candidates. This is, however, not the case for
metaphor, since its literal paraphrase would yield
another literal expression via literal paraphrasing.
We ran the above paraphrasing method on every
verb in the input text and then again on the top
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Original expression Lit. paraphrase Reverse paraphrase
Verb-DirectObject
stir excitement provoke: elicit, arouse,

cause, create,
stimulate, raise,
make

elicit: provoke, arouse,
see, derive, create,
raise, make

buy a dress
get: change, find, buy,

purchase, take, hit,
alter, ...

purchase: get, buy
Subject-Verb
campaign surge improve: change, turn

run: succeed, direct,
continue, lead, last,
win, extend, ...

prisoner escape flee: escape, run
get: drive, go, turn,

transfer, arrive,
bring, come, ...

Table 3: The list of top two literal paraphrases and their
reverse paraphrases, as identified by the system

two paraphrases it produces. If this process resulted
in retrieving the original expression then the latter
was tagged as literal, otherwise it was tagged as
metaphorical. Some examples of reverse paraphras-
ing results are given in Table 3. One can see from
the table that when the metaphorical verb stir in “stir
excitement” is paraphrased as the literal “provoke”,
the subsequent paraphrasing of “provoke” does not
produce “stir”. In contrast, when the literal expres-
sion “buy a dress” is paraphrased as “purchase”, the
reverse paraphrasing generates “buy” as one of the
candidates, indicating the literalness of the original
expression. The same is true for the metaphorical
surge in “campaign surged” and the literal escape in
“the prisoner escaped”.

4 Evaluation and Discussion

4.1 Baseline

The baseline system is the implementation of the se-
lectional preference violation view of Wilks (1978)
using automatically induced SPs. Such a choice of a
baseline allows us to compare our own modifications
of the SP violation view to the original approach of
Wilks in a computational setting, as well as evaluate
the latter on real-world data. Another motivation be-

hind this choice is that the symmetry of reverse para-
phrasing can be seen as a kind of “normality” test, in
a similar way as the satisfied selectional preferences
are in Wilk’s approach. However, we believe that
the SP-based reverse paraphrasing method captures
significantly more information than SP violations do
and thus compare the performance of the two meth-
ods in an experimental setting.

The baseline SP classes were created as described
above and the preferences were quantified using se-
lectional association as a measure. The baseline sys-
tem then classified the instances where selectional
association of the verb and the noun in the phrase
were below a certain threshold, as metaphorical.
We determined the optimal threshold by qualitative
analysis of the selectional preference distributions of
50 verbs of different frequency and SPS (through the
analysis of literally and metaphorically-used argu-
ments). The threshold was averaged over individual
verbs’ thresholds and equals 0.07 for direct object
relations, and 0.09 for subject relations.

4.2 Evaluation Corpus

We evaluated the system and the baseline against the
corpus of Shutova and Teufel (2010), that was man-
ually annotated for metaphorical expressions. The
corpus is a 14,000-word subset of the BNC, with
the texts selected to retain the original balance of
genre in the BNC itself. The corpus contains ex-
tracts from fiction, newspaper text, radio broadcast
(transcribed speech), essays and journal articles on
politics, social science and literature. Shutova and
Teufel (2010) identified 241 metaphorical expres-
sions in the corpus, out of which 164 were verbal
metaphors.

We parsed the corpus using the RASP parser and
extracted subject and direct object relations from its
output. Among the direct object relations there were
310 literal phrases and 79 metaphorical ones; and
among the subject relations 206 were literal and 67
metaphorical. This constitutes a dataset of 662 rela-
tions for the systems to classify.

4.3 Results and Discussion

The system and baseline performance was evaluated
against the corpus in terms of precision and recall.
Precision, P , measures the proportion of metaphor-
ical expressions that were tagged correctly among
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Relation Bsln P System P Bsln R System R

Verb-DObj 0.20 0.69 0.52 0.63
Verb-Subj 0.13 0.66 0.59 0.70
Average 0.17 0.68 0.55 0.66

Table 4: Baseline and system performance by relation

the ones that were tagged by the system. Recall,
R, measures the proportion of metaphorical expres-
sions that were identified out of all metaphorical ex-
pressions in the gold standard corpus. The system
P = 0.68 and R = 0.66, whereas the baseline only
attains P = 0.17 and R = 0.55. System perfor-
mance by relation is shown in Table 4. The hu-
man ceiling for this task, according to the annotation
experiments of Shutova and Teufel (2010) approxi-
mates to P = 0.80. Figure 1 shows example sen-
tences with metaphors identified and paraphrased by
the system. Table 5 provides a breakdown of the an-
notated instances into true / false positives and true
/ false negatives. As one can see from the table, the
systems can accurately annotate both metaphorical
and literal expressions, providing a balance between
precision and recall.

The system outperforms the baseline for both
verb-subject and verb-direct object constructions.
Its performance is also close to the previous
metaphor identification systems of Turney et al.
(2011) (accuracy of 0.73) and Shutova et al. (2010)
(precision of 0.79), however, the results are not di-
rectly comparable due to different experimental set-
tings. Our method has a strong advantage over the
system of Shutova et al. (2010) in terms of cover-
age: the latter system heavily relied on manually an-
notated seed metaphors which limited its applicabil-
ity in unrestricted text to the set of topics covered by
the seeds. As opposed to this, our method is domain-
independent and can be applied to any data. Shutova
et al. (2010) have not measured the recall of their
system, however indicated its possible coverage lim-
itations.

In addition, our system produces paraphrases for
the identified metaphorical expressions. Since the
identification is directly dependent on the quality
of literal paraphrasing, the majority of the inter-
pretations the system provided for the identified
metaphors appear to be correct. However, we found
a few instances where, despite the correct initial
paraphrasing, the system was not able to identify

FYT Gorbachev inherited a Soviet state which was, in
a celebrated Stalinist formulation, national in form but
socialist in content.
Paraphrase: Gorbachev received a Soviet state which
was, in a celebrated Stalinist formulation, national in
form but socialist in content.

CEK The Clinton campaign surged again and he easily
won the Democratic nomination.
Paraphrase: The Clinton campaign improved again and
he easily won the Democratic nomination.

CEK Their views reflect a lack of enthusiasm among
the British people at large for John Major ’s idea of Eu-
ropean unity.
Paraphrase: Their views show a lack of enthusiasm
among the British people at large for John Major ’s idea
of European unity.

J85 [..] the reasons for this superiority are never spelled
out.
Paraphrase [..] the reasons for this superiority are never
specified.

J85 Anyone who has introduced speech act theory to
students will know that these technical terms are not at
all easy to grasp.
Paraphrase: Anyone who has introduced speech act the-
ory to students will know that these technical terms are
not at all easy to understand.

G0N The man’s voice cut in .
Paraphrase: The man’s voice interrupted.

Figure 1: Metaphors tagged by the system (in bold) and
their paraphrases

the metaphor, usually in case of highly convention-
alized metaphorical expressions. Overall, the most
frequent system errors fall into the following cate-
gories:
Errors due to incorrect parsing: The system failed
to discover some of the metaphorical expressions in
the corpus since their grammatical relations were
missed by the parser. In addition, some of the in-
stances were misclassified, e.g. “pounds paid to
[...]” or “change was greatly accelerated” were la-
beled as subject relations. Overall, the parser missed
9 metaphorical expressions.
Errors due to incorrect paraphrasing: The most
common type of error that leads to false positives is
the incorrect paraphrasing (resulting in a change of
meaning). This makes it nearly impossible for the
system to retrieve the original term. There were also
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Positives Negatives Total
True 99 464 563
False 47 52 99
Total 146 516

Table 5: System tagging statistics

cases where the system could not generate any para-
phrase (usually for literal expressions, e.g. “play an
anthem”).

Errors due to metaphorical paraphrasing: Some
of the system errors are due to metaphorical para-
phrasing. For example, the metaphorical expression
“mend marriage” was paraphrased as “repair mar-
riage”, which is also used metaphorically. And re-
pair in return generated mend, when paraphrased in
reverse. Errors of this type have been mainly trig-
gered by the WordNet filter, and the fact that some
metaphorical senses are included in WordNet.

Errors due to metaphor conventionality: a num-
ber of conventional metaphors were missed by the
system, since the original verb was retrieved due to
its conventionality. Such examples include “impose
a decision”, “put the issue forward”, “lead a life”.
Such cases suggest that the system is better suited to
identify more creative, novel metaphors.

Cases of metonymy: a few cases of gen-
eral metonymy were annotated by the system as
metaphorical, e.g. “shout support”, which stands for
“shout the words of support”, and “humiliate a mo-
ment”, that is likely to mean “humiliate the event of
the moment”. However, there were only 4 errors of
this type in the data.

Baseline Errors: The output of the baseline exhib-
ited two main types of error. The first stemmed from
the conventionality of many metaphorical expres-
sions, which resulted in their literal annotation. Con-
ventionality leads to high selectional association for
verbs with their metaphorical arguments, e.g. em-
brace has {view, ideology, conception etc.} class as
its top ranked direct object argument with the selec-
tional association of 0.18. The second type of error
was the system selecting many language anomalies
that violate selectional preferences and tagging these
as metaphors. This resulted in a high number of false
positives.

5 Conclusions and Future Directions

Previous research on metaphor addressed a num-
ber of its aspects using both symbolic and statisti-
cal techniques. While some of this work met with
success with respect to precision in metaphor an-
notation, the methods often focused on a limited
domain and needed manually-labeled training data.
Their dependence on manually annotated training
data made the systems hard to scale. As a result,
many of these systems are not directly applicable to
aid real-world NLP due to their limited coverage. In
contrast, our method does not require any manually-
labeled data, which makes it more robust and appli-
cable to a wide range of genres. It is also the first
one to perform accurate metaphor identification and
interpretation in one step, as opposed to the previ-
ous systems focusing on one part of the task only.
It identifies metaphor with a precision of 68% and
a recall of 66%, which is a very encouraging result.
We believe that this work has important implications
for computational modeling of metaphor, and is rel-
evant to a range of other semantic tasks within NLP.

Although we have so far tested our system on
verb-subject and verb-object metaphors only, we be-
lieve that the described identification and paraphras-
ing techniques can be similarly applied to a wider
range of syntactic constructions. Extending the sys-
tem to deal with more parts of speech and types of
phrases (e.g. nominal and adjectival metaphors) is
part of our future work.

Another promising future research avenue is inte-
grating the techniques with unsupervised paraphras-
ing and lexical substitution methods, using e.g. dis-
tributional similarity measures (Pucci et al., 2009;
McCarthy et al., 2010) or vector space models of
word meaning (Erk and Padó, 2008; Erk and Padó,
2009; De Cao and Basili, 2009; Shutova et al.,
2012b). These methods could fully or partly replace
the WordNet filter in the detection of similar basic
features of the concepts, or add useful information
to it. Fully replacing the WordNet filter by an un-
supervised method would make the system more ro-
bust and more easily portable across domains and
genres. This may also eliminate some of the system
errors that arise from the inconsistent sense annota-
tion and the inclusion of some metaphorical senses
in WordNet.
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Abstract

Short answer questions for reading compre-
hension are a common task in foreign lan-
guage learning. Automatic short answer scor-
ing is the task of automatically assessing the
semantic content of a student’s answer, mark-
ing it e.g. as correct or incorrect. While pre-
vious approaches mainly focused on compar-
ing a learner answer to some reference an-
swer provided by the teacher, we explore the
use of the underlying reading texts as addi-
tional evidence for the classification. First, we
conduct a corpus study targeting the links be-
tween sentences in reading texts for learners of
German and answers to reading comprehen-
sion questions based on those texts. Second,
we use the reading text directly for classifi-
cation, considering three different models: an
answer-based classifier extended with textual
features, a simple text-based classifier, and a
model that combines the two according to con-
fidence of the text-based classification. The
most promising approach is the first one, re-
sults for which show that textual features im-
prove classification accuracy. While the other
two models do not improve classification ac-
curacy, they do investigate the role of the text
and suggest possibilities for developing auto-
matic answer scoring systems with less super-
vision needed from instructors.

1 Introduction

Reading comprehension exercises are a common
means of assessment for language teaching: students
read a text in the language they are learning and are
then asked to answer questions about the text. The

types of questions asked of the learner may vary in
their scope and in the type of answers they are de-
signed to elicit; in this work we focus on “short an-
swer” responses, which are generally in the range of
1–3 sentences.

The nature of the reading comprehension task is
that the student is asked to show that he or she has
understood the text at hand. Questions focus on one
or more pieces of information from the text, and cor-
rect responses should contain the relevant semantic
content. In the language learning context, responses
classified as correct might still contain grammatical
or spelling errors; the focus lies on the content rather
than the form of the learner answer.

Automatic scoring of short answer responses to
reading comprehension questions is in essence a tex-
tual entailment task, with the additional complica-
tion that, in order to answer a question correctly, the
learner must have identified the right portion of the
text. It isn’t enough that a student answer is en-
tailed by some part of the reading text; it must be
entailed by the part of the text which is responsive
to the question under discussion.

Previous approaches to automatic short answer
scoring have seldom considered the reading text it-
self, instead comparing student answers to target an-
swers supplied by instructors; we will refer to these
as answer-based models. In this paper we explore
the role of the text for short answer scoring, evalu-
ating several models for considering the text in au-
tomatic scoring, and presenting results of an anno-
tation study regarding the semantic links between
reading texts and answers to reading comprehension
questions.
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TEXT: SCHLOSS PILLNITZ

This palace, which lies in the east of Dresden, is to me the most beautiful palace in the Dresden area. (. . . ) One special
attraction in the park is the camellia tree. In 1992, the camellia, which is more than 230 years old and 8.90 meters tall, got a
new, moveable home, in which temperature, ventilation, humidity, and shade are controlled by a climate regulation computer.
In the warm seasons, the house is rolled away from the tree. During the Blossom Time, from the middle of February until April,
the camellia has tens of thousands of crimson red blossoms. Every year, a limited number of shoots from the Pillnitz camellia
are sold during the Blossom Time, making it an especially worthwhile time to visit.

QUESTION:
A friend of yours would like to see the historic camellia tree. When should he go to Pillnitz, and why exactly at this time?

TARGET ANSWERS:

• From the middle of February until April is the Blossom Time.

• In spring the camellia has tens of thousands of crimson red blossoms.

LEARNER ANSWERS:

• [correct] He should go from the middle of February until April, because then the historic camellia has tens of thousands
of crimson red blossoms.

• [incorrect] Every year, a limited number of Pillnitz camellia are sold during the Blossom Time.

• [incorrect] All year round against temperature and humidity are controlled by a climate regulation computer.

Figure 1: Example of reading text with question and answers (translation by authors)

These investigations are done for German lan-
guage texts, questions, and answers. Figure 1 shows
a (translated) sample reading text, question, set of
target answers, and set of learner answers.

We show that the use of text-based features
improves classification performance over purely
answer-based models. We also show that a very sim-
ple text-based classifier, while it does not achieve
the same performance as the answer-based classifier,
does reach an accuracy of 76% for binary classifica-
tion (correct/incorrect) of student answers. The im-
plication of this for automatic scoring is that reason-
able results may be achievable with much less effort
on the part of instructors; namely, a classifier trained
on the supervision provided by marking the region
of a text relevant to a given question performs rea-
sonably well, though not as well as one trained on
full target answers.

The paper proceeds as follows: in Section 2 we
discuss the task and related approaches. In Sec-
tion 3, we describe our baseline model and the data
set we use. In Section 4 and Section 5 we discuss
our text-based models and present experiments and
results.

2 Approaches to short answer scoring

In short answer scoring (SAS) the task is to auto-
matically assign labels to individual learner answers.
Those labels can either be binary, a value on some
scale of points or grades, or a more fine-grained di-
agnosis. For example, one fine-grained set of labels
(Bailey, 2008) classifies answers as (among others)
correct, as missing a necessary concept or concepts,
containing extra content, or as failing to answer the
question. Our present study is restricted to binary
classification.

Previous work on SAS, including early systems
like (Leacock and Chodorow, 2003; Pulman and
Sukkarieh, 2005; Sukkarieh and Pulman, 2005) is
of course not only in the domain of foreign lan-
guage learning. For example, Mohler et al. (2011)
and Mohler and Mihalcea (2009) use semantic graph
alignments and semantic similarity measures to as-
sess student answers to computer science questions,
comparing them to sample solutions provided by a
teacher. Accordingly, not all SAS settings include
reading or other reference texts; many involve only
questions, target answers, and learner answers. Our
approach is relevant for scenarios in which some sort
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of reference text is available.
The work we present here is strongly based on

approaches towards SAS by Meurers and colleagues
(Bailey and Meurers, 2008; Meurers et al., 2011a;
Meurers et al., 2011b; Ziai et al., 2012). Specifically,
the sentence alignment model described in Section 3
(and again discussed in Section 4) is modeled after
the one used by Meurers et al. to align target answers
and student answers.

Rather than using answers provided by instruc-
tors, Nielsen et al. (2008) represent target answers to
science questions as a set of hand-annotated facets,
i.e. important aspects of the answer, typically repre-
sented by a pair of words and the relation that con-
nects them. Student answers, and consequently stu-
dents’ understanding of target science concepts, are
then assessed by determining whether the relevant
facets are addressed by the learner answers.

Evaluating short answers on the basis of associ-
ated reading texts, as we do here, is a task related
to textual entailment. In the context of tutoring sys-
tems, Bethard et al. (2012) identify students’ mis-
conceptions of science concepts in essay writing us-
ing textual entailment techniques. They align stu-
dents’ writings to extracted science concepts in or-
der to identify misconceptions, using a similar ap-
proach to identify the correct underlying concept.

An excellent and more detailed overview of re-
lated work can be found in Ziai et al. (2012).

To our knowledge, there is no previous work that
uses reading texts as evidence for short answer scor-
ing in the context of foreign language learning.

3 Answer-based models

In order to compare to previous work, we first im-
plement an alignment-based model following that
proposed in (Meurers et al., 2011b). We refer to
this class of models as answer-based because they
function by aligning learner answers to instructor-
supplied target answers along several different di-
mensions, discussed below. Answers are then clas-
sified as correct or incorrect on the basis of features
derived from these alignments.

Wherever possible/practical, we directly re-
implement the Meurers model for German data.
In this section we describe relevant aspects of the
Meurers model, along with modifications and exten-

sions in our implementation of that model.1

Preprocessing

We preprocess all material (learner answers, target
answers, questions and reading texts) using stan-
dard NLP tools for sentence splitting and tokeniza-
tion (both OpenNLP2), POS tagging and stemming
(both Treetagger (Schmid, 1994)), NP chunking
(OpenNLP), and dependency parsing (Zurich Parser
(Sennrich et al., 2009)). We use an NE Tagger
(Faruqui and Padó, 2010) to annotate named enti-
ties. Synonyms and semantic types are extracted
from GermaNet (Hamp and Feldweg, 1997).

For keywords, which serve to give more emphasis
to content words in the target answer, we extract all
nouns from the target answer.

Given that we are dealing with learner language,
but do not want to penalize answers for typical
learner errors, spellchecking (and subsequent cor-
rection of spelling errors) is especially important for
this task. Our approach is as follows: we first iden-
tify all words from the learner answers that are not
accepted by a German spellchecker (aspell3). We
then check for each word whether the word never-
theless occurs in the target answer, question or read-
ing text. If so, we accept it as correct. Otherwise, we
try to identify (using Levenshtein distance) which
word from the target answer, question, or reading
text is most likely to be the form intended by the
student.

Prior to alignment, we remove from the answer
all punctuation, stopwords (restricted to determiners
and auxiliaries), and material present in the question.

Alignment

The alignment process in short answer scoring ap-
proximates determination of semantic equivalence
between target answer and learner answer. Dur-
ing alignment, we identify matches between an-
swer pairs on a number of linguistic levels: tokens,
chunks, and dependency triples.

On the token level, we consider a number of dif-
ferent metrics for identity between tokens, with each

1Some extensions were made in order to bring performance
of our re-implementation closer to the figures reported in previ-
ous work.

2http://opennlp.apache.org/index.html
3http://aspell.net/
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metric associated with a certain alignment weight.
After weights have been determined for all possible
token pairs, the best applicable weight is used as in-
put for a traditional marriage alignment algorithm
(Gale and Shapley, 1962).

We use the following types of identity (id),
weighted in the following order:

token id > lemma id >
spelling id > synonym & NE id >
similarity id>
NE type, semantic type & POS id

For synonym identity, we take a broad notion of
synonymy, extracting (from GermaNet) as potential
synonyms all words which are at most two levels (in
either direction) away from the target word. Simi-
larity identity is defined as two words having a Ger-
maNet path relatedness above some threshhold. In
order to have semantic type identity, two words must
have a common GermaNet hypernym (from a pre-
determined set of relevant hypernyms). Only some
closed-class words are eligible for POS identity. We
treat e.g. all types of determiners as POS identical.

Unlike, for example, alignment in machine trans-
lation, in which every token pair is considered a can-
didate for alignment, under the Meurers model only
candidates with at least one type of token identity are
available for alignment. This aims to prevent com-
pletely unrelated word pairs from being considered
for alignment.

In order to favor alignment of content words over
alignment of function words, and in departure from
the Meurers model, we use a content word multiplier
for alignment weights.

Chunks can only be aligned if at least one pair
of tokens within the respective chunks has been
aligned, and the percentage of aligned tokens be-
tween learner and target answer chunks is used as
input for the alignment process. Dependency triple
pairs are aligned when they share dependency rela-
tion, head lemma, and dependent lemma.

Features and classifier

After answers have been aligned, the following fea-
tures are extracted as input for the classifier: key-
word overlap (percentage of aligned keywords), tar-
get token overlap (percentage of aligned target to-
kens), learner token overlap (percentage of aligned

learner tokens), token match (percentage of token
alignments that are token identical), lemma match,
synonym match, type match, target triple overlap,
learner triple overlap, target chunk overlap, learner
chunk overlap, target bigram overlap, learner bigram
overlap, target trigram overlap, learner trigram over-
lap, and variety of alignment (number of different
token alignment types).

The n-gram features are the only new features in
our re-implementation of the Meurers model, hoping
to capture the influence of linear ordering of aligned
tokens. These features did not in the end improve
the model’s performance.

For classification, we use the timbl toolkit (Daele-
mans et al., 2009) for k-nearest neighbors classi-
fication. We treat all features as numeric values
and evaluate performance via leave-one-out cross-
validation. Further details appear in Section 5.

Data

For all work reported in this paper, we use the Ger-
man CREG corpus (Ott et al., 2012) of short answers
to questions for reading comprehension tasks. More
specifically, we use a balanced subset of the CREG
corpus containing a total of 1032 learner answers.
This corpus consists of 30 reading texts with an av-
erage of 5.9 questions per text. Each question is as-
sociated with one or more target answers, specified
by a teacher. For each question in turn there are an
average of 5.8 learner answers, each manually anno-
tated according to both binary and fine-grained la-
beling schemes. When there are several target an-
swers for a question, the best target answer for each
learner answer is indicated.

4 Text-based approach

Previous approaches to this task take the instructor-
supplied target answer(s) as a sort of supervision;
the target answer is meant to indicate the seman-
tic content necessary for a correct student answer.
Alignment between student answer and target an-
swer is then taken as a way of approximating se-
mantic equivalence. The key innovation of the cur-
rent study is to incorporate the reading text into the
evaluation of student answers. In this section we de-
scribe and evaluate three approaches to incorporat-
ing the text. The aim is to consider the semantic
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relationships between target answer, learner answer,
and the text itself.4

A target answer is in fact just one way of ex-
pressing the requisite semantic content. Teachers
who create such exercises are obviously looking at
the text while creating target answers, and target an-
swers are often paraphrases of one or more sentences
of the reading text. Some learner answers which are
scored as incorrect by the answer-based system may
in fact be variant expressions of the same semantic
content as the target answer. Due to the nature of the
reading comprehension task, in which students are
able to view the text while answering questions, we
might expect students to express things in a man-
ner similar to the text. This is especially true for
language learners, as they are likely to have a lim-
ited range of options both for lexical expression and
grammatical constructions.

Along similar lines, one potential source of incor-
rect answers is an inability on the part of the stu-
dent to correctly identify the portion of the text that
is relevant to the question at hand. Our hypothesis
therefore is that a learner answer which links to the
same portion of the reading text as the target answer
is likely to be a correct answer. Similarly, a learner
answer which closely matches some part of the text
that is not related to the target answer is likely to be
incorrect.

Our text-based models investigate this hypothesis
in several different ways, described in Section 4.2.

4.1 Annotation study

The CREG data includes questions, learner answers,
target answers, and reading texts; associations be-
tween text and answers are not part of the anno-
tations. We undertook an annotation project in or-
der to have gold-standard source sentences for both
learner and target answers. This gold-standard is
then used to inform the text-based models described
below.

After removing a handful of problematic ques-
tions and their associated answers, we acquired hu-
man annotations for 889 of the 1032 learner an-
swers from the balanced subset of the CREG cor-
pus, in addition to 294 target answers. Each answer

4In future work we will also consider semantic relationships
between the question and the text.

was labeled separately by two (of three) annotators,
who were given the reading text and the question
and asked to identify the single best source sentence
from the text. Annotators were not told whether any
given instance was a target or learner answer, nor
whether learner answers were correct or incorrect.

Although we expected most answers to corre-
spond directly to a single text passage (Meurers et
al., 2011b), annotators were asked to look for (and
annotate appropriately) two different conditions in
which more than one source sentence may be rele-
vant. We refer to these as the repeated content con-
dition and the distributed content condition.

In the repeated content condition, the same se-
mantic content may be fully represented in more
than one sentence from the original text. In such
cases, we would expect the text to contain sen-
tences that are paraphrases or near-paraphrases of
one another. The distributed content condition oc-
curs when the relevant semantic content spans multi-
ple sentences, and some degree of synthesis or even
inference may be required to arrive at the answer.
Annotators were instructed to assume that pronouns
had been resolved; in other words, a sentence should
not be considered necessary semantic content sim-
ply because it contains the NP to which a pronoun in
another sentence refers. For both of these multiple-
sentence conditions, annotators were asked to select
one single-best source sentence from among the set
and also to mark the alternative source sentences.

For 31.2% of the answers annotated, one or more
annotator provided more than one possible source
sentence. Upon closer inspection, though, the an-
notations for these conditions are not very consis-
tent. In the repeated content condition, there is very
little agreement between annotators regarding when
the text contains more than one full-sentence source
for the answer. In the distributed content condition,
sometimes annotators disagree on the primary sen-
tence, and in many instances, one annotator identi-
fied multiple sentences and the other only one. Due
to these inconsistencies, for the purpose of this study
we decided to treat the multiple-sentence conditions
in an underspecified fashion. When an annotator has
identified either of these conditions, we convert the
annotations to a single-best sentence and a set of al-
ternatives.

The annotations were processed to automatically
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Answer type agree altagree disagree nolink
Learner answers (all) 70.3% 9.4% 16.9% 3.4%
Learner answers (correct) 75.1% 11.7% 12.7% 0.5%
Learner answers (incorrect) 65.9% 7.3% 20.7% 6.4%
Target 73.1% 8.1% 17.3% 1.4%

Table 1: Inter-annotator agreement for linking answers to source sentences in text

produce a gold-standard set of source sentence IDs,
indicating the single sentence in the reading text to
which each answer is most closely linked. We iden-
tify four distinct categories with respect to agree-
ment between annotators. Agreement figures appear
in Table 1.

** agree: In this case, both annotators linked the
answer to the same source sentence, and that sen-
tence is identified as the gold-standard link to the
answer.

** altagree: This category covers two different
situations in which the two annotators fail to agree
on the single-best sentence. First, there are cases in
which the best sentence selected by one annotator
is a member of the set of alternatives indicated by
the other. Second, in a small number of cases, both
annotators agree on one member of the set of alter-
natives. In other words, the single sentence in the
intersection of the sets of sentences identified by the
two annotators is taken as the gold-standard annota-
tion. There was no (non-agree) case in which that
intersection contained more than one sentence.

** disagree: This category also includes two dif-
ferent types of cases. In the first, one of the two
annotators failed to identify a source sentence to
link with the answer. In that case, we consider
the annotators to be in disagreement, and for the
gold-standard we use the sentence ID provided by
the one responding annotator. In the second case,
the annotators disagree on the single-best sentence
and there is no overlap between indicated alterna-
tive sentences. In those cases, for the gold standard
we choose from the two source sentences that which
appears first in the reading text.5

** nolink: For a small number of answers (n=34),
5This is a relatively arbitrary decision motivated by the de-

sire to have a source sentence associated with as many answers
as possible. Future work may include adjudication of annota-
tions to reduce the noise introduced to the gold standard by this
category of responses.

both annotators found no link to the text. One ex-
ample of such a case is an answer given entirely in
English. For these cases, the gold standard provides
no best source sentence.

If we consider both altagree and nolink to be
forms of agreement, interannotator agreement is
about 74% for both learner and target answers.

4.2 Text-based models

In this paper we consider two different models for
incorporating the reading text into automatic short
answer scoring. In the first approach, we employ
a purely text-based model. The second combines
either text-based features or the text-based model
with the answer-based model described in Section 3.
Evaluation of all three approaches appears in Sec-
tion 5.

4.2.1 Simple text-based model
This model classifies student answers by compar-

ing the source sentence most closely associated with
the student answer to that associated with the tar-
get answer. If the two sentences are identical, the
answer is classified as correct, and otherwise as in-
correct.

We consider both the annotated best sentences
(goldlink) and automatically-identified answer-
sentence pairs (autolink). For automatic identifica-
tion, we use the alignment model described in Sec-
tion 3 to identify the best matching source sentence
in the text for both learner and target answers. We
use the token alignment process to align a given an-
swer with each sentence from its respective reading
text; the best-matching source sentence is that with
the highest alignment weight. Chunk alignments are
used only for correction of token alignments, and
dependency alignments are not considered.

This model takes an extremely simple approach to
answer classification, and could certainly be refined
and improved. At the same time, its relatively strong
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performance (see Table 3) suggests that the mini-
mal level of supervision offered by teachers simply
marking the sentence of a text most relevant to a
given reading comprehension question may be ben-
eficial for automatic answer scoring.

4.2.2 Combining text-based and answer-based
models

In addition to the purely text-based model, we ex-
plore two ways of combining text- and answer-based
models.

Textual features in the answer-based model In
the first, we extract four features from the align-
ments between answers and source sentences and in-
corporate these as additional features in the answer-
based model.

Features 1, 3, and 4 are each computed in two
versions, using source sentences from either the an-
notated gold standard (goldlink), or the alignment
model (autolink).

1. SourceAgree This boolean feature is true if
both learner and target answer link to the same
source sentence, and false otherwise (also if no
source sentence was annotated or automatically
found).

2. SourceEntropy For this feature we look at the
two most-likely source sentences for the learner
answer, as determined by automatic alignment
scores. We treat the alignment weights as
probabilities, normalizing so that they sum up
to one. We then take the entropy between
these two alignment weights as indicative of the
confidence of the automatic alignment for the
learner answer.

3. AgreeEntropy Here we weight the first feature
according to the second, taking the entropy as a
confidence score for the binary feature. Specif-
ically, we value SourceAgree at 0.5 when the
feature is true, −0.5 when false, and multiply
this with (1− entropy).

4. TextAdjacency This feature captures the dis-
tance (in number of sentences) between the
source sentence linked to the learner answer
and that linked to the target answer. With this

feature we aim to capture the tendency of adja-
cent passages in a text to exhibit topical coher-
ence (Mirkin et al., 2010).

Classifier combination In the second approach,
we combine the output of the answer-based and
text-based classifiers to arrive at a final classifica-
tion system, allowing the text-based classifier to pre-
dominate in those cases for which it is most con-
fident and falling back to the answer-based classi-
fier for other cases. Confidence of the text-based
classifier is determined based on entropy of the two
highest-scoring alignments between learner answer
and source sentence. The entropy threshhold was
determined empirically to 0.5.

5 Experiments and results

This section discusses experiments on short an-
swer scoring (binary classification) for German, in
the context of reading comprehension for language
learning. Specifically, we investigate the text-based
models described in Section 4.2. In all cases, fea-
tures and parameter settings were tuned on a de-
velopment set which was extracted from the larger
CREG corpus. In other words, there is no over-
lap between test and development data. For test-
ing, we perform leave-one-out cross-validation on
the slightly-smaller subset of the corpus which was
used for annotation.

5.1 Answer-based baseline

As a baseline for our text-based models we take
our implementation of the answer-based model from
(Meurers et al., 2011b). As previously mentioned,
our implementation diverges from theirs at some
points, and we do not quite reach the performance
reported for their model (accuracy of 84.6% on the
balanced CREG corpus) and are far from reaching
the current state of the art accuracy of 86.3%, as re-
ported in Hahn and Meurers (2012).

Our answer-based model appears as baseline in
Table 2. During development, the one extension to
the baseline which helped most was the use of ex-
tended synonyms. This variant of the model appears
in the results table with the annotation +syn.
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model k=5 k=15 k=30
baseline 0.817 0.820 0.822
baseline+syn 0.822 0.826 0.825
text: goldlink 0.827 0.827 0.829
text+syn:goldlink 0.830 0.835* 0.837*
text:autolink 0.837* 0.836* 0.825
text+syn:autolink 0.844* 0.836* 0.832
combined 0.810 0.819 0.816
combined+syn 0.817 0.822 0.818

Table 2: Classification accuracy for answer-based base-
line (baseline), answer-based plus textual features (text),
and classifier combination (combined). +syn indicates
expanded synonymy features, goldlink indicates identi-
fying the source sentences via annotated links, autolink
indicates determining source sentences using the align-
ment model, k=number of neighbors. Results marked
with * are significant compared to the best baseline
model. See Section 5.2.1 for details.

5.2 Text-based models

As described in Section 4.2, we consider three dif-
ferent approaches for incorporating the reading text
into answer classification: use of textual features
in the answer-based model, combination of separate
answer-based and text-based models, and a simple
text-based classifier.

5.2.1 Combining text-based and answer-based
models

We explore two ways of combining text- and
answer-based models.

Adding textual features to the answer-based
model

We evaluate the contribution of the four new text-
based features, computed in two variations: with
source sentences as they are identified in the gold
standard (goldlink) and as they are computed using
the alignment model (autolink). We add those ad-
ditional features to the two answer-based systems:
the baseline (text) and the baseline with extended
synonym set (text+syn). Results are presented in
Table 2.

We present results for using the 5, 15, and 30 near-
est neighbors for classification, as the influence of
various features changes with the number of neigh-
bors. We calculate the significance for the difference

autolink goldlink alt-set
Accuracy 0.762 0.722 0.747
P correct 0.805 0.781 0.753
R correct 0.667 0.585 0.702
F correct 0.729 0.668 0.727
P incorrect 0.735 0.689 0.742
R incorrect 0.851 0.849 0.788
F incorrect 0.789 0.761 0.764

Table 3: Classification accuracy, precision, recall, and f-
score for simple text-based classifier, under three differ-
ent conditions. See Section 5.2.2 for details.

between the best baseline model (0.826) and each
model which uses textual features, using a resam-
pling test (Edgington, 1986). The results marked
with a * in the Table 2 are significant at p ≤ 0.01.

Although the impact of the textual features is
clearly not as big with a stronger baseline model,
we still see a clear pattern of improved accuracy.
We may expect this difference to increase with more
data and with additional and/or improved text-based
features.

Classifier combination
Combining the two classifiers (answer-based and

text-based) according to confidence levels results in
decreased performance compared to the baseline.
These results appear in Table 2 as combined.

5.2.2 Simple text-based classification
We have seen that textual features improve clas-

sification accuracy over the answer-driven model,
yet this approach still requires the supervision pro-
vided by teacher-supplied target answers. In our
third model, we investigate how the system performs
without this degree of supervision, considering how
far we can get by using only the text.

The simple text-based classifier, rather than tak-
ing a feature-based approach to classification, bases
its decision solely on whether or not the learner and
target answers link to the same source sentence. We
compare three different methods for obtaining these
links. The first approach (autolink) automatically
links each answer to a source sentence from the
text, based on alignments as described in Section 3.
The second (goldlink) uses links as provided by the
gold standard; in this case, learner answers without
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a linked sentence (e.g. nolink cases) are immedi-
ately classified as incorrect. The third approach (alt-
set) exploits that fact that in many cases annotators
provided alternate source sentences. Under this ap-
proach, an answer is classified as correct provided
that there is a non-empty intersection between the
set of possible source sentences for the learner an-
swer and that for the target answer. For the second
and third approaches, we classify as incorrect those
learner answers lacking a gold-standard annotation
for the corresponding target answer.

In Table 3 we present classification accuracy, pre-
cision, recall, and f-score for the three different con-
ditions. Precision, recall, and f-score are reported
separately for correct and incorrect learner answers.
The 76% accuracy reached using the simple text-
based classifier suggests that a system which has
teachers supply source sentences instead of target
answers and then automatically aligns learner an-
swers to the text, while nowhere near comparable to
the state-of-the-art supervised system, still achieves
a reasonably accurate classification.

6 Conclusion

In this paper we have presented the first use of
reading texts for automatic short answer scoring in
the context of foreign language learning. We show
that, for German, the use of simple text-based fea-
tures improves classification accuracy over purely
answer-based models. We plan in the future to inves-
tigate a wider range of text-based features. We have
also shown that a simple classification model based
only on linking answers to source sentences in the
text achieves a reasonable classification accuracy.
This finding has the potential to reduce the amount
of teacher supervision necessary for authoring short
answer exercises within automatic answer scoring
systems. In addition to these findings, we have pre-
sented the results of an annotation study linking both
target and learner answers to source sentences.

In the near-term future we plan to further inves-
tigate the role of the reading text for short answer
scoring along three lines. First, we will address the
question of the best size of text unit for alignment.
In many cases, the best answers are linked not to
entire sentences but to regions of sentences; in oth-
ers, answers may correspond to more than one sen-

tence. Our current approach ignores this issue. Sec-
ond, we are interested in the variety of semantic re-
lationships holding between questions, answers and
texts. Along these lines, we will further investigate
the sets of alternatives provided by annotators, as
well as bringing in notions from work on paraphras-
ing and recognizing textual entailment. Finally, we
are interested in moving from simple binary classi-
fication to the fine-grained level of diagnosis.
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Abstract

Social scientists are increasingly using the
vast amount of text available on social me-
dia to measure variation in happiness and
other psychological states. Such studies count
words deemed to be indicators of happiness
and track how the word frequencies change
across locations or time. This word count ap-
proach is simple and scalable, yet often picks
up false signals, as words can appear in differ-
ent contexts and take on different meanings.
We characterize the types of errors that occur
using the word count approach, and find lex-
ical ambiguity to be the most prevalent. We
then show that one can reduce error with a
simple refinement to such lexica by automat-
ically eliminating highly ambiguous words.
The resulting refined lexica improve precision
as measured by human judgments of word oc-
currences in Facebook posts.

1 Introduction

Massive social media corpora, such as blogs, tweets,
and Facebook statuses have recently peaked the in-
terest of social scientists. Compared to traditional
samples in tens or hundreds, social media sample
sizes are orders of magnitude larger, often contain-
ing millions or billions of posts or queries. Such text
provides potential for unobtrusive, inexpensive, and
real-time measurement of psychological states (such
as positive or negative affect) and aspects of sub-
jective well-being (such as happiness and engage-
ment). Social scientists have recently begun to use
social media text in a variety of studies (Cohn et

al., 2004; Kramer, 2010; Tausczik and Pennebaker,
2010; Kamvar and Harris, 2011; Dodds et al., 2011;
Golder and Macy, 2011).

One of the most popular approaches to estimate
psychological states is by using the word count
method (Pennebaker et al., 2007), where one tracks
the frequency of words that have been judged to be
associated with a given state. Greater use of such
words is taken to index the prevalence of the cor-
responding state. For example, the use of the word
‘happy’ is taken to index positive emotion, and ‘an-
gry’ to index negative emotion. The most widely
used tool to carry out such analysis, and the one we
investigate in this paper, is Pennebaker’s Linguistic
Inquiry and Word Count, (LIWC) (Pennebaker et al.,
2001; Pennebaker et al., 2007). LIWC, originally de-
veloped to analyze writing samples for emotion and
control, has grown to include a variety of lexica for
linguistic and psychosocial topics including positive
and negative emotions, pronouns, money, work, and
religion. The word count approach has high appeal
to social scientists in need of a tool to approach so-
cial media, and although others have been used (see,
for example (Gottschalk and Bechtel, 1998; Bollen
et al., 2010), LIWC’s lexica are generally perceived
as a “tried-and-tested” list of words (Miller, 2011).

Unfortunately, the word count approach has some
drawbacks when used as indicators for psycholog-
ical states. Words are the unit of measurement, but
words can carry many different meanings depending
on context. Consider the Facebook posts below con-
taining instances of ‘play’, a word associated with
positive emotion in LIWC.
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1. so everyone should come to the play tomor-
row...

2. Does anyone what type of file i need to convert
youtube videos to play on PS3???

3. Time to go play with Chalk from the Easter
Bunny!

Out of the three instances, only (3) seems to com-
municate positive emotion. In (1), ‘play’ is used as
a noun rather than the expected verb, while in (2),
‘play’ is a verb but it is used in a sense that is not
directly associated with positive emotion. (1) and
(2) demonstrate how lexical ambiguities (i.e. multi-
ple parts-of-speech or word senses) can affect accu-
racy of words in a lexicon. Additionally, even when
appearing as the expected part of speech and word
sense, signal from a word may change due to its con-
text, such as being within the scope of a negation as
in (4), or describing something desired as in (5).

4. ...all work no play :-(

5. i sure wish i had about 50 hours a day to play
cod

Our goal is to characterize the errors of the widely
used word count approach, and show that such lex-
ica can be significantly improved by employing an
ambiguity metric to refine such lexica. Rather than
work on a new method of measuring psychological
states, we work within the bounds of word count and
ask how accurate it is and whether we can improve
it without sacrificing its simplicity and scalability.

We attempt to reduce the erroneous signal of
the word count approach while maintaining legiti-
mate signal simply by refining the lexicon. In other
words, we would like to move closer to the goal in
Figure 1, by eliminating words that often carry er-
roneous signal such as ’play’, and keeping words
which often carry the sought-after signal, such as
’cheerful’. The difficulty in doing this is that we do
not have the data to tell us which words are most
likely to carry signal (even if we had such data we
would like to develop a method that could be applied
to any newly created lexica). Instead we leverage
part-of-speech and word sense data to help us deter-
mine which words are lexically ambiguous.

Figure 1: The relationship between text expressing posi-
tive emotion (POSEMO) and text containing LIWC terms
for POSEMO.

Our approach of eliminating ambiguous words
increases the precision at the expense of recall, a
reasonable trade-off in social media where we are
working with millions or even billions of word in-
stances. Additionally, it is minimally-supervised, in
that we do not require training data on human-state;
instead we use existing hand-labeled corpora, such
as SemCor (Miller et al., 1993), for word sense in-
formation. Not requiring training data also means
our refinement is flexible; it can be applied to mul-
tiple domains and lexica, it makes few assumptions
that might introduce problems of over-fitting, and it
is parsimonious in that it merely improves an estab-
lished approach.

This paper makes two primary contributions: (1)
an analysis of the types of errors common for the
word count approach (Section 3), and (2) a general
method for refining psychosocial lexica based on the
ambiguity of words (Section 4). Before describing
these contributions, we discuss related work, mak-
ing the case for using social media in social science
and surveying some work in computational linguis-
tics. We then evaluate both the original LIWC lex-
icon and our refinement of it against human judg-
ments of expression of positive and negative emo-
tions on hand-annotated Facebook posts, and show
the benefit of lexicon refinement for estimating well-
being over time for large aggregates of posts. Fi-
nally, we discuss the implications of our work and
possible future directions.
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2 Background

Compared to traditional approaches in the social sci-
ences, large scale analysis of social media is cheap,
near real-time, unobtrusive, and gives high cover-
age. We outline these advantages below.

Inexpensive Extracting information from sources
such Facebook and Twitter is vastly cheaper than the
more conventional polling done by companies such
as Gallup – and by many social science researchers.
Social media data does not require phone calls to be
made or doors to be knocked on. For example, a rep-
resentative survey asking 1,000 people by a leading
polling company costs to the order of $10,0001. In
contrast, once the software exists, social media data
from tens of millions of users can be obtained and
analyzed at a fraction of the cost.

Temporal Resolution Much of the attraction of
social media stems from the fact that it captures
a written live stream of collective thought. When
Google relied on search queries to monitor health-
seeking behavior to predict influenza epidemics, the
reporting lag was a mere day, whereas traditional
CDC surveillance systems take 1-2 weeks to pub-
lish their data (Ginsberg et al., 2009). Infrastructure
based on social media and Internet use data allows
reporting and analysis systems with little to no re-
porting lag. Additionally, traditional survey designs
are typically only designed to assess psychological
states at a given point in time.

Unobtrusive Estimation Traditional self-report
survey approaches, even those implemented on the
web, suffer from social desirability, priming, and
other biases. For example, Kahneman et al. (Kah-
neman et al., 2006) found that the order in which
questions are asked on questionnaires can determine
how they are answered. By looking directly into the
social worlds, many of these self-report biases can
be avoided. The traces of human interactions in so-
cial media represent the goings-on in their original
ecologies of meaning and signification. This ap-
proach diminishes the inferential distance between
the context of the phenomena and the context of
measurement – and thus decreases the room for sys-
tematic distortion of signal.

1Gallup, Personal correspondence.

2.1 The Word Count Approach

As previously noted, the word count approach is
most often used by social scientists through the tool
known as Linguistic Inquiry and Word Count or
LIWC (Pennebaker et al., 2007). The LIWC2007
dictionary is composed of almost 4,500 words and
word stems organized across one or more word cat-
egories, including 406 positive emotion words and
499 negative emotion words. When long form texts
are analyzed with LIWC, the program simply re-
turns the percentages of words belonging to the dif-
ferent analytical categories – the simplicity of this
approach makes it popular with non-technical social
scientists.

LIWC’s positive and negative emotion lexica have
recently begun to be used on “short form” writing in
social media. For example, Golder and Macy (2011)
used LIWC to study diurnal and seasonal variation
in mood in a collection of 400 million Twitter mes-
sages. Kramer (2010) proposed the “Gross National
Happiness” index and Kivran-Swaine and Naaman
(2011) examined associations between user expres-
sions of positive and negative emotions and the size
and density of social networks. A comprehensive
review can be found in Tausczik and Pennebaker
(2010).

To our knowledge there is only one work which
has evaluated LIWC’s accuracy over social media.
Bantum and Owen (2009) evaluated LIWC on a set
of posts to an Internet-based breast cancer support
group. By annotating expression of emotion within
this text, they were able to produce accuracy figures
of sensitivity (much like recall) and predictive va-
lidity (precision). Sensitivity measured how often
a word (in context) expressing positive or negative
emotion was captured by LIWC. Predictive validity
measured how often a word (in context) captured
by LIWC as measuring positive or negative emotion
was indeed expressing positive or negative emotion.
While they found a recall of 0.88, the precision was
only 0.31 – that is, only 31% of instances contain-
ing words indexed by LIWC actually conveyed the
associated emotion. We contend that this is a major
drawback for applying LIWC to social media, be-
cause while it is not important to catch every expres-
sion of emotion out of a million Tweets, it is impor-
tant that when something is captured it is an accurate
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estimate of the true state.

2.2 Related Work in Computational
Linguistics

Researchers have been exploring the use of lexica
that define the subjective orientation of words for
tasks such as sentiment or subjectivity analysis. A
common weakly-supervised approach starts with a
small set of sentiment knowledge (seed words as-
sociated with a given sentiment) and expands the
words into a large lexicon (Hatzivassiloglou and
McKeown, 1997; Kamps and Marx, 2002; Kim and
Hovy, 2004; Kanayama and Nasukawa, 2006; Bac-
cianella et al., 2010). We take a different approach.
Rather than expanding lexica, we start with a large
set of words and refine the set. The refinement in-
creases precision at the cost of recall, which is a
reasonable exchange when we are looking at mil-
lions or even billions of word instances. Standard
applications of sentiment analysis, such as annotat-
ing movie reviews, may not be as inclined to skip
instances, since they want to make predictions for
items which have very few reviews.

Another line of work in sentiment analysis has
created lexicons using supervised learning. One of
the first works to do so was by Pang and colleagues
(2002), who used data including author ratings of
reviews, such as IMDB movie reviews. The author
ratings become training data for sentiment classifi-
cation. Pang et al. showed that human-created lexi-
cons did not perform as well as lexicons based on
simple word statistics over the training data. In-
terestingly, they found that words like ‘still’ were
most predictive of positive movie reviews, and that
punctuation marks of ‘!’ and ‘?’ were strong signs
of negative movie reviews. Unfortunately, training
data for subjective well-being or happiness is not
yet available, preventing the use of such supervised
learning methods. Additionally, this work seeks to
experiment within the bounds of what social sci-
entists are in fact using (with publications in high-
impact venues such as Science). We thus take a dif-
ferent approach, and automatically improve human
created lexicons.

Wiebe and Cardie (2005) generalized the task of
sentiment analysis to that of discovering subjectiv-
ity such as “opinions, emotions, sentiments, specu-
lations, evaluations, etc.”. More recently, Wilson et

POSEMO NEGEMO
term frequency term frequency
like 774,663 hate 167,109
love 797,833 miss 158,274
good 571,687 bad 151,496

friend* 406,568 bore* 140,684
happy 384,797 shit* 114,923
LOL 370,613 hurt* 98,291
well* 284,002 craz* 94,518
great 263,113 lost 94,059
haha* 240,587 damn* 93,666
best 227,381 fuck 90,212

better 212,547 stupid* 85,587
fun 216,432 kill* 83,593

please* 174,597 hell 80,046
hope 170,998 fuckin* 79,959
thank 161,827 wrong* 70,714

Table 1: Most frequent POSEMO and NEGEMO terms in
LIWC in the 12.7 million Facebook posts. “*” indicates a
wildcard, so that “well*” matches “wellness”.

al. (2009) contended that the context may neutralize
or change the polarity of the subjective orientation
of a word. It is difficult to determine where concepts
of happiness such as quality of relationships or de-
gree of achievement in life fit in with subjectivity.
Thus, we do not claim to be measuring subjectivity
and instead we use the general term of ‘psychologi-
cal state’, referring to “the way something [a person]
is with respect to its main attributes” (Miller, 1993).

To the best of our knowledge, while part-of-
speech tagging and word sense disambiguation are
staple tasks in the computational linguistics commu-
nity, the utility of a lexical ambiguity metric has yet
to be explored.

3 Annotation and Analysis of Errors from
the Word Count Method

One objective of our work is to document and de-
scribe how often different types of errors occur when
using the word count approach on social media. To
do this, we first judged a sample of 1,000 instances
of LIWC terms occurring in Facebook posts to indi-
cate whether they contribute signal towards the as-
sociated LIWC category (i.e. positive emotion). We
then took instances that were deemed to carry erro-
neous signal and annotated them with a label for the
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category agreement instances base rate
POSEMO 0.742 500 .654
NEGEMO 0.746 500 .697

TOTAL 0.744 1,000 .676
random 0.343 - -

Table 2: Inter-annotator agreement over 1,000 instances
of LIWC terms in Facebook posts. Base rate is the aver-
age of how often an annotator answered true.

type of signal error. This section describes the pro-
cess we used in generating these annotations and the
results we found.

3.1 Annotation Process

Annotating social media instances of lexica terms
provides insight into how well the word count ap-
proach works, and also yields a “ground truth” for
evaluating our lexicon refinement methods. We ran-
domly selected for labeling a sample of 1,000 sta-
tus updates containing words from a given lexicon
drawn from a collection of 12.7 million Facebook
status updates provided by the Cambridge myPer-
sonality project (Kosinski and Stillwell, 2012).

We used terms from the LIWC positive emotion
(POSEMO) and negative emotion (NEGEMO) lex-
ica, which are the same lexica used by the works of
Kramer (2010), Kivran-Swaine and Naaman (2011),
and Golder and Macy (2011). Table 1 lists the
most frequent POSEMO and NEGEMO terms in our
Facebook sample.

As mentioned above, we did two types of annota-
tions. First, we judged whether each given instance
of a word conveyed the correct associated type of
emotion. The second task took a sample of instances
judged to have incorrect signal and labeled them
with a reason for the error; We refer to this as signal
error type.

For the first task, we had three human judges inde-
pendently evaluate the 1,000 status update instances
as to whether they were indeed correct signal. The
question the judges were told to answer was “Does
the word contribute to the associated psychological-
state (POSEMO or NEGEMO) within the sentence
it appears?”. In other words, “would the sentence
convey less [positive emotion or negative emotion]
without this word?”. Subjective feedback from the
judges indicated that it was often difficult to make

a decision, so we used three judges per instance. In
the case of conflict between judges, the “correct” la-
bel for validation of the refined lexicon was defined
to be the majority vote. A sampling of Facebook sta-
tuses demonstrates a mixed picture of relevance for
the unrefined LIWC dictionaries:

1. has had a very good day (‘good’ - POSEMO)

2. is so very bored. (‘bore*’ - NEGEMO)

3. damn, that octopus is good, lol (‘damn’ -
NEGEMO)

4. thank you for his number (‘numb*’ -
NEGEMO)

5. I got pranked sooooo bad (‘bad’ - NEGEMO)

6. don’t be afraid to fail (‘afraid’ - NEGEMO)

7. I wish I could . . . and we could all just be happy
(‘happy’ - POSEMO)

Some posts clearly use positive or negative lexicon
words such as (1) and (2). Curse words can signify
negative emotion or emphasize the opposite state as
in (3), which is clearly emphasizing positive emo-
tion here. Example (5) demonstrates the word sense
issue we discussed previously. Words with wild-
cards that expand into other words with different
meanings can be particularly problematic, as the ex-
panded word can be far more frequent – and very
different in meaning – from the original word. For
example, ‘numb*’ matches ‘number’ in 4.

A different problem occurs when the context
of the word changes its implication for the emo-
tional state of the writer. This can either occur
through negation such as in (6) where ‘afraid’ sig-
nals NEGEMO, but is negated with ‘don’t’ or the
signal can be changed indirectly through a variety of
words indicating that the writer desires (and hence
lacks) the state, as in (7) where someone is wishing
to be ‘happy’.

Table 2 shows the agreement between an-
notators calculated as

∑
i agree(A

(i)
1 ,A

(i)
2 ,A

(i)
3 )

1,000
, where

agree(A1, A2, A3) was 1 when all three annota-
tions matched and 0 otherwise. Given the aver-
age positive base rate across annotators was 0.676
the chance that all three reviewers agree accord-
ing to chance (random agreement) is calculated as
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category precision instances
POSEMO 67.9% 500
NEGEMO 72.8% 500

both 70.4% 1,000

Table 4: Accuracy of LIWC POSEMO and NEGEMO
lexica over Facebook posts.

0.6763+(1−0.676)3 = 0.343, the probability of all
three answering yes plus the probability of all three
answering no.

For the second task, we selected 100 instances
judged to be incorrect signal from the first task, and
labeled them according to the best reason for the
mistake. This task required more linguistic exper-
tise and was performed by a single annotator. La-
bels and descriptions are given in Table 3, which
breaks down the cases into lexical ambiguity, direct
or indirect negation, and other reasons such as the
stemming issue (stem plus wildcard expanding into
words indicating a different (or no) emotional state).

3.2 Analysis of Errors

Before discussing the types of errors we found when
using the word count approach, we examine LIWC’s
overall accuracy on our dataset. Table 4 shows the
precision broken down for both the positive emotion
(POSEMO) and the negative emotion (NEGEMO)
lexica. We see that the precision for NEGEMO is
slightly higher than POSEMO, indicating the terms
in that category may be more likely to indicate their
associated state.

Although the overall accuracy seems decent, one
should keep in mind our subjective judgement crite-
ria were quite tolerant, allowing any amount of con-
tribution of the corresponding signal to be consid-
ered accurate. For example, a salutation like “Happy
New Year” was judged to be a correct use of “happy”
to signal POSEMO, even though it clearly does not
have as strong a signal as someone saying “I feel
deliriously happy”.

Frequencies of signal errors are given in Table
5. The most common signal error was wrong word
sense, where the word did not signal emotional
state and some other sense or definition of the word
was intended (e.g. “u feel like ur living in a mu-
sic video”; corresponding to the sense “to inhabit”
rather than the intended sense, “to have life; be

category label frequency

Lexical Ambiguity
Wrong POS 15
Wrong WS 38

Signal Negation
Strict Negation 16

Desiring 6

Other
Stem Issue 5

Other 24

Table 5: Frequency of the signal error types.

alive” (Miller, 1993)). Other common signal errors
include strict negation where the word is canceled
out by a clear negative quantifier (e.g. “Don’t be
afraid to fail”) and wrong part of speech where the
word is signaling a different part of speech than the
emotion (e.g. “well, we cant afford to go to NYC”).
There were also various other signal error types that
include stem issues where the stem matched clearly
unintended words, desiring statuses where the status
is commenting on wanting the emotion instead of
experiencing it and other less prevalent issues such
as non-English language post, memes, or clear sar-
casm.

4 Method for Refining Lexica

The idea behind our refinement method is to remove
words that are likely to carry erroneous signal about
the underlying state or emotion of the person writ-
ing the tweet or Facebook post.2 We do so in an
indirect fashion, without actually using training data
of which posts are, in fact indicative of positive or
negative emotion. Instead, we focus on reducing er-
rors that are due to lexical ambiguity. By remov-
ing words that are often used with multiple parts of
speech or multiple senses, we can tilt the balance to-
ward precision at some cost in recall (losing some
signal from the ambiguous words). This makes the
word count approach more suitable for use in the
massive corpora afforded by social media.

4.1 Lexical Ambiguity

We address lexical ambiguity at the levels of both
part of speech (POS) and word sense. As a metric
of inverse-ambiguity, we determine the probability
that a random instance is the most frequent sense
(mfs) of the most frequent part of speech (mfp) of

2Refinement tool is available at wwbp.org.
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category label description examples

Lexical Ambiguity
Wrong POS Not a valid signal because it is

the wrong POS
so everyone should come to the
play tomorrow...

Wrong WS Not a valid signal because it is
the wrong word sense (includes
metaphorical senses)

Does anyone what type of file i
need to convert youtube videos
to play on PS3???

Signal Negation
Strict Negation Within the scope of a negation,

where there is a clear negative
quantifier

...all work no play :-(

Desiring Within the scope of a desire /
wishing for something

i sure wish i had about 50 hours
a day to play cod

Other
Stem Issue Clearly not intended to be

matched with the given stem
numb* for NEGEMO match-
ing number

Other Any other issue or difficult to
classify

Table 3: Signal error types.

the word, denoted TSP (for top sense probability).
Given a wordw, we consider all parts of speech ofw
(POS(w)) and all senses for the most frequent part
of speech (senses(mfp(w))):

pmfp(w) =

max
[wpos∈POS(w)]

fp(wpos)∑
wpos∈POS(w)

fp(wpos)

pmfs(w) =

max
[wsense∈senses(mfp(w))]

fs(wsense)∑
wsense∈senses(mfp(w))

fs(wsense)

TSP (w) = (pmfp(w) ∗ pmfs(w))2 (1)

Here, fp and fs represent the frequencies of a cer-
tain part-of-speech and a certain sense of a word,
respectively. This is the squared-probability that an
instance of w is the top sense – the most-frequent
part-of-speech and the most-frequency sense of that
part-of-speech. The probability is squared because
both the word in the lexicon and the word occurring
in context should be the top sense (two independent
probabilities: given an instance of a word in a cor-
pus, and another instance of the word in the lexicon,
what is the probability that both are the top POS
and sense?). Frequency data is provided for parts-
of-speech from the Google N-Grams 2.0 (Lin et al.,
2010) and for word senses from SemCor (Miller et

al., 1993). This aspect of the refinement is inspired
by the most frequent sense heuristic for word sense
disambiguation (McCarthy et al., 2004; Yarowsky,
1993), in which the sense of a word is chosen with-
out regard to the context, but rather is simply based
on the frequencies of senses in corpora. In our case,
we restrict ourselves this way in order for the appli-
cation of the lexicon to remain unchanged.

For some words, we were unable to find sense fre-
quency data. We decided to keep such terms, on
the assumption that a lack in available frequency in-
formation implies that the word is not very ambigu-
ous. Many of these terms include Web speak such as
‘haha’ or ‘lol’, which we believe can carry a strong
signal for positive and negative emotion.

Lastly, since TSP is only a metric for the in-
verse ambiguity of a word, we must apply a thresh-
old to determine which words to keep. We denote
this threshold as θ, and the description of the refined
lexicon for a category, cat, is below.

lexθ(cat) = {w|w ∈ cat ∧ TSP (w) > θ}

4.2 Handling Stems
Some lexica, such as the LIWC dictionary, include
word stems that are intended to match multiple
forms of a word. Stems are marked by the suffix
‘*’. LIWC describes the application of stems as fol-
lows “the asterisk, then, denotes the acceptance of
all letters, hyphens, or numbers following its ap-

302



lex cat prec size

full
POSEMO 67.9% 500
NEGEMO 72.8% 500

both 70.4% 1,000

lex0.10

POSEMO 70.9% 392
NEGEMO 71.6% 423

both 71.3% 815

lex0.50

POSEMO 75.7% 239
NEGEMO 78.9% 232

both 77.3% 471

lex0.90

POSEMO 72.5% 109
NEGEMO 78.1% 128

both 75.5% 237

Table 6: Precision (prec) and instance subset size (size)
of refinements to the LIWC POSEMO and NEGEMO lex-
ica with various θ thresholds (0.10, 0.50, 0.90)

pearance.”3 This presents a problem because, while
the creators of such lexica obviously intended stems
to match multiple forms of a word, stems also often
match completely different words, such as ‘numb*’
matching ‘number’ or ‘won*’ matching ‘won’t’.

We identified how often unintended matches hap-
pen in Section 3. Finding that the stemming issues
were not the biggest problem, here, we just describe
how they fit into our lexical ambiguity metric, rather
than describe a technique to rid the lexicon of stem-
ming problems. One approach might be to deter-
mine how ambiguous a stem is – i.e. determine
how many words, parts-of-speech, and senses a stem
could be expanded into, but this ignores the fact that
the dictionary creators obviously intended the stem
to match multiple words. Instead, we expand stems
into all words that they match and replace them into
the lexica.

We base our expansion on the actual terms used
in social media. We find all words matching stems
among 1 million randomly selected Twitter mes-
sages posted over a 6-month period (August 2009
- February 2010), and restrict to those occurring at
least 20 times. Then, each word stem in the lexicon
is replaced with the expanded set of matching words.

Figure 2: The relationship between precision and size
when increasing the TSP threshold (θ).

5 Evaluation

We evaluate our refinement by comparing against
human judgements of the emotion conveyed by
words in individual posts. In the case of hu-
man judgements, we find that the subset of human-
annotated instances matching the refined lexica are
more accurate than the complete set.

In section 3 we discussed the method we used to
judge instances of LIWC POSEMO and NEGEMO
words as to whether they contributed the associated
affect. Each of the 1,000 instances in our evaluation
corpus were judged three times such that the major-
ity was taken as truth. In order to validate our refined
lexica, we find the accuracy (precision) of the subset
of instances which contain the refined lexica terms.

Table 6 shows the change in precision when us-
ing the refined lexica. size represents the number of
instances from the full evaluation corpus matching
words in the refined lexica. One can see that ini-
tially precision increase as the size becomes smaller.
This is more clearly seen in Figure 2. As discussed
in the method section, our goal with the refine-
ment is improving precision, making lexica more
suitable to applications over massive social media
where one can more readily afford to skip instances
(i.e. smaller size) in order to achieve more accu-
racy. Still, removing more ambiguous words does

3“How it works”: http://www.liwc.net/howliwcworks.php
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not guarantee improved precision at capturing the
intended psychological state; it is possible that that
all senses of an ambiguous word do in fact carry in-
tended signal or that the intended sense a low ambi-
guity word is not the most frequent.

Our maximum precision occurs with a threshold
of 0.50, where things somewhat level-out. This rep-
resents approximately a 23% reduction in error, and
verifies that we can increase precision through the
automatic lexicon refinement based on lexical ambi-
guity.

6 Conclusions

Social scientists and other researchers are starting
to measure psychological states such as happiness
through text in Facebook and Twitter. We have
shown that the widely used word count method,
where one simply counts occurrences of positive or
negative words, can often produce noisy and inaccu-
rate estimates of expressions of psychological states.
We characterized and measured the frequency of
different types of errors that occur using this ap-
proach, and found that when counting words without
considering context, it is lexical ambiguities (unin-
tended parts-of-speech or word senses) which cause
the most errors. We proposed a method for refin-
ing lexica by removing those words most likely to
be ambiguous, and showed that we can significantly
reduce error as measured by human judgements.
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Abstract

Implicit arguments are a discourse-level phe-
nomenon that has not been extensively stud-
ied in semantic processing. One reason for
this lies in the scarce amount of annotated data
sets available. We argue that more data of
this kind would be helpful to improve exist-
ing approaches to linking implicit arguments
in discourse and to enable more in-depth stud-
ies of the phenomenon itself. In this paper, we
present a range of studies that empirically val-
idate this claim. Our contributions are three-
fold: we present a heuristic approach to auto-
matically identify implicit arguments and their
antecedents by exploiting comparable texts;
we show how the induced data can be used as
training data for improving existing argument
linking models; finally, we present a novel ap-
proach to modeling local coherence that ex-
tends previous approaches by taking into ac-
count non-explicit entity references.

1 Introduction

Semantic role labeling systems traditionally process
text in a sentence-by-sentence fashion, construct-
ing local structures of semantic meaning (Palmer et
al., 2010). Information relevant to these structures,
however, can be non-local in natural language texts
(Palmer et al., 1986; Fillmore, 1986, inter alia). In
this paper, we view instances of this phenomenon,
also referred to as implicit arguments, as elements
of discourse. In a coherent discourse, each utter-
ance focuses on a salient set of entities, also called
“foci” (Sidner, 1979) or “centers” (Joshi and Kuhn,
1979). According to the theory of Centering (Grosz

et al., 1995), the salience of an entity in a discourse
is reflected by linguistic factors such as choice of
referring expression and syntactic form. Both ex-
tremes of salience, i.e., contexts of referential conti-
nuity (Brown, 1983) and irrelevance, can also be re-
flected by the non-realization of an entity. Altough
specific instances of non-realization, so-called zero
anaphora, have been well-studied in discourse anal-
ysis (Sag and Hankamer, 1984; Tanenhaus and Carl-
son, 1990, inter alia), this phenomenon has widely
been ignored in computational approaches to entity-
based coherence modeling. It could, however, pro-
vide an explanation for local coherence in cases that
are not covered by current models of Centering (cf.
Louis and Nenkova (2010)). In this work, we pro-
pose a new model to predict whether realizing an
argument contributes to local coherence in a given
position in discourse. Example (1) shows a text frag-
ment, in which argument realization is necessary in
the first sentence but redundant in the second.

(1) El Salvador is now the only Latin Ameri-
can country which still has troops in [Iraq].
Nicaragua, Honduras and the Dominican
Republic have withdrawn their troops [∅].

From a semantic processing perspective, a human
reader can easily infer that “Iraq”, the marked en-
tity in the first sentence of Example (1), is also an
implicit argument of the predicate “withdraw” in the
second sentence. This inference step is, however,
difficult to model computationally as it involves an
interplay of two challenging sub-tasks: first, a se-
mantic processor has to determine that an argument
is not realized (but inferrable); and second, a suit-
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able antecedent has to be found within the discourse
context. For the remainder of this paper, we refer to
these steps as identifying and linking implicit argu-
ments to discourse antecedents.

As indicated by Example (1), implicit arguments
are an important aspect in semantic processing, yet
they are not captured in traditional semantic role la-
beling systems. The main reasons for this are the
scarcity of annotated data, and the inherent difficulty
of inferring discourse antecedents automatically.

In this paper, we propose to induce implicit ar-
guments and discourse antecedents by exploiting
complementary (explicit) information obtained from
monolingual comparable texts (Section 3). We ap-
ply the empirically acquired data in argument link-
ing (Section 4) and coherence modeling (Section 5).
We conclude with a discussion on the advantages of
our data set and outline directions for future work
(Section 6).

2 Related work

The most prominent approach to entity-based coher-
ence modeling nowadays is the entity grid model by
Barzilay and Lapata (2005). It has originally been
proposed for automatic sentence ordering but has
also been applied in coherence evaluation and read-
ability assessment (Barzilay and Lapata, 2008; Pitler
and Nenkova, 2008), and story generation (McIntyre
and Lapata, 2009). Based on the original model,
a few extensions have been proposed: for exam-
ple, Filippova and Strube (2007) and Elsner and
Charniak (2011b) suggested additional features to
characterize semantic relatedness between entities
and features specific to single entities, respectively.
Other entity-based approaches to coherence model-
ing include the pronoun model by Charniak and El-
sner (2009) and the discourse-new model by Elsner
and Charniak (2008). All of these approaches are,
however, based on explicitly realized entity men-
tions only, ignoring references that are inferrable.

The role of implicit arguments has been studied
early on in the context of semantic processing (Fill-
more, 1986; Palmer et al., 1986). Yet, the phe-
nomenon has mostly been ignored in semantic role
labeling. First data sets, focusing on implicit argu-
ments, have only recently become available: Rup-
penhofer et al. (2010) organized a SemEval shared

task on “linking events and participants in dis-
course”, Gerber and Chai (2012) made available im-
plicit argument annotations for the NomBank corpus
(Meyers et al., 2008) and Moor et al. (2013) pro-
vide annotations for parts of the OntoNotes corpus
(Weischedel et al., 2011). However, these resources
are very limited: The annotations by Moor et al. and
Gerber and Chai are restricted to 5 and 10 predi-
cate types, respectively. The training set of the Se-
mEval task contains only 245 resolved implicit argu-
ments in total. As pointed out by Silberer and Frank
(2012), additional training data can be heuristically
created by treating anaphoric mentions as implicit
arguments. Their experimental results showed that
artificial training data can indeed improve results,
but only when obtained from corpora with manual
semantic role annotations (on the sentence level) and
gold coreference chains.

3 Identifying and linking implicit
arguments

The aim of this work is to automatically construct
a data set of implicit arguments and their discourse
antecedents. We propose an induction approach that
exploits complementary information obtained from
pairs of comparable texts. As a basis for this ap-
proach, we rely on several preparatory steps pro-
posed in the literature that first identify informa-
tion two documents have in common (cf. Figure 1).
In particular, we align corresponding predicate-
argument structures (PAS) using graph-based clus-
tering (Roth and Frank, 2012b). We then determine
co-referring entities across the texts using corefer-
ence resolution techniques on concatenated docu-
ment pairs (Lee et al., 2012). These preprocessing
steps are described in more detail in Section 3.1.

Given the preprocessed comparable texts and
aligned PAS, we propose to heuristically iden-
tify implicit arguments and link them to their
antecedents via the cross-document coreference
chains. We describe the details of this approach in
Section 3.2.
3.1 Data preparation
The starting point for our approach is the data set of
automatically aligned predicate pairs that has been
released by Roth and Frank (2012a).1 This data

1cf. http://www.cl.uni-heidelberg.de/%7Emroth/
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Sentence that comprises a PAS with an (correctly predicted) implicit argument induced antecedent

The [∅A0] [operatingA3] loss, as measured by . . . widened to 189 million euros . . . T-Online[’s]
It was handed over to Mozambican control . . . 33 years after [∅A0] independence. Mozambique[’s]
. . . [local officials A0] failed to immediately report [the accident A1] [∅A2] . . . [to] the government

Table 1: Three positive examples of automatically induced implicit argument and antecedent pairs.

Figure 1: Illustration of the induction approach: texts
consist of PAS (represented by overlapping circles);
we exploit alignments between corresponding predicates
across texts (marked by solid lines) and co-referring enti-
ties (marked by dotted lines) to infer implicit arguments
(marked by ‘i’) and link antecedents (curly dashed line)

set, henceforth just R&F data, is a collection of
283,588 predicate pairs that have been aligned “with
high precision”2 across comparable newswire arti-
cles from the Gigaword corpus (Parker et al., 2011).
To use these documents for our argument induc-
tion technique, we apply a couple of pre-processing
tools on each single document and perform cross-
document entity coreference on pairs of documents.

Single document pre-processing. We apply sev-
eral preprocessing steps to all documents in
the R&F data: we use the Stanford CoreNLP
package3 for tokenization and sentence split-
ting. We then apply MATE tools (Bohnet, 2010;
Björkelund et al., 2010), including the integrated
PropBank/NomBank-style semantic parser, to re-
construct local predicate-argument structures for
aligned predicates. Finally, we resolve pronouns that
occur in a PAS using the coreference resolution sys-
tem by Martschat et al. (2012).

2The used method achieved a precision of 86.2% at a recall
of 29.1% on the Roth and Frank (2012a) test set.

3http://nlp.stanford.edu/software/

Cross-document coreference. We apply cross-
document coreference resolution to induce an-
tecedents for implicit arguments. In practice, we
use the Stanford Coreference System (Lee et al.,
2013) and run it on pairs of texts by simply pro-
viding a single document as input, comprising of a
concatenation of the two texts. To perform this step
with high precision, we only use the most precise
resolution sieves: “String Match”, “Relaxed String
Match”, “Precise Constructs”, “Strict Head Match
[A-C]”, and “Proper Head Noun Match”.

3.2 Identification and linking approach
Given a pair of aligned predicates from two compa-
rable texts, we examine the parser output to identify
the arguments in each predicate-argument structure
(PAS). We compare the set of realized argument po-
sitions in both structures to determine whether one
PAS contains an argument position (explicit) that
has not been realized in the other PAS (implicit).
For each implicit argument, we identify appropri-
ate antecedents by considering the cross-document
coreference chain of its explicit counterpart. As our
goal is to link arguments within discourse, we re-
strict candidate antecedents to mentions that occur
in the same document as the implicit argument.

We apply a number of restrictions to the resulting
pairs of implicit arguments and antecedents to mini-
mize the impact of errors from preprocessing:

- The aligned PAS should consist of a different
number of arguments (to minimize the impact
of argument labeling errors)

- The antecedent should not be a resolved pro-
noun (to avoid errors resulting from incorrect
pronoun resolution)

- The antecedent should not be in the same sen-
tence as the implicit argument (to circumvent
cases, in which an implicit argument is actu-
ally explicit but has not been recognized by the
parser)
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3.3 Resulting data set
We apply the identification and linking approach to
the full R&F data set of aligned predicates. As a re-
sult, we induce a total of 701 implicit argument and
antecedent pairs, each in a separate document, in-
volving 535 different predicates. Examples are dis-
played in Table 1. Note that 701 implicit arguments
from 283,588 pairs of predicate-argument structures
seem to represent a fairly low recall. Most predicate
pairs in the high precision data set of Roth and Frank
(2012a) do, however, consist of identical argument
positions (84.5%). In the remaining cases, in which
an implicit argument can be identified (15.5%), an
antecedent in discourse cannot always be found us-
ing the high precision coreference sieves. This does
not mean that implicit arguments are a rare phe-
nomenon in general. In fact, 38.9% of all manually
aligned predicate pairs in Roth and Frank (2012a)
involved a different number of arguments.

We manually evaluated a subset of 90 induced im-
plicit arguments and found 80 discourse antecedents
to be correct (89%). Some incorrectly linked in-
stances still result from preprocessing errors. In Ta-
ble 2, we present a range of different error types that
occurred when extracting implicit arguments with-
out any restrictions.

4 Experiment 1: Linking implicit
arguments

Our first experiment assesses the utility of automat-
ically induced implicit arguments and antecedent
pairs for the task of implicit argument linking. For
evaluation, we use the data sets from the SemEval
2010 task on Linking Events and their Participants
in Discourse (Ruppenhofer et al., 2010, henceforth
just SemEval). For direct comparison with previous
results and heuristic acquisition techniques (cf. Sec-
tion 2), we apply the implicit argument identifica-
tion and linking model by Silberer and Frank (2012,
henceforth S&F) for training and testing.

4.1 Task summary
Both the training and test sets of the SemEval task
are text corpora extracted from Sherlock Holmes
novels, with manual frame semantic annotations in-
cluding implicit arguments. In the actual linking
task (“NI-only”), labels are provided for local argu-
ments and participating systems have to perform the

following three sub-tasks: (1) identify implicit argu-
ments (IA), (2) predict whether each IA is resolvable
and, if so, (3) find an appropriate antecedent.

The task organizers provide two versions of their
data sets: one based on FrameNet annotations and
one based on PropBank/NomBank annotations. We
found that the latter, however, only contains a sub-
set of the implicit argument annotations from the
FrameNet-based version. As all previous results in
this task have been reported on the FrameNet data
set, we adopt the same setting. Note that our addi-
tional training data is automatically labeled with a
PropBank/NomBank-style parser. That is, we need
to map our annotations to FrameNet. The organizers
of the SemEval shared task provide a manual map-
ping dictionary for predicates in the annotated data
set. We make use of this manual mapping and ad-
ditionally use SemLink 1.14 for mapping predicates
and arguments not in the dictionary.

4.2 Model details

We make use of the system by S&F to train a new
model for the NI-only task. As mentioned in the pre-
vious sub-section, this task consists of three steps:
In step (1), implicit arguments are identified as un-
filled FrameNet core roles that are not competing
with roles that are already filled; in step (2), a SVM
classifier is used to predict whether implicit argu-
ments are resolvable based on a small amount of
features – semantic type of the affected Frame Ele-
ment, the relative frequency of its realization type in
the SemEval training corpus, and a boolean feature
that indicates whether the affected sentence is in pas-
sive voice and does not contain a (deep) subject. In
step (3), we apply the same features and classifier as
S&F, i.e., the BayesNet implementation from Weka
(Witten and Frank, 2005), to find appropriate an-
tecedents for (predicted) resolvable arguments. S&F
report that their best results were obtained when
considering all entities as candidate antecedents that
are syntactic constituents from the present and the
past two sentences, or entities that occurred at least
five times in the previous discourse (“Chains+Win”
setting). In their evaluation, the latter of these two
restrictions crucially depended on gold coreference
chains. As the automatic coreference chains in our

4http://verbs.colorado.edu/semlink/
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Sentence that comprises a PAS with an (incorrectly predicted) implicit argument induced antecedent

(1) .. [Statistics∗] released [Tuesday TMP ] [∅A0] showed the death toll dropped . . . official statistics
(2) A [French LOC∗] [∅A0] draft resolution . . . demands full . . . compliance . . . France
(3) An earthquake . . . is capable of causing .. [heavy EXT ] damage [∅A2∗] major

Table 2: Examples of erroneous pairs of implicit arguments and antecedents. In (1), the parser did not recognize
“Statistics” as an argument of showed; in (2), the parser mislabeled “French” as a locative modifier; both errors lead
to incorrectly identified implicit arguments. In (3), the implicit argument is correct but the wrong antecedent was
identified because “major” had been mislabeled in the aligned predicate-argument structure

data are rather sparse (and noisy), we only consider
syntactic constituents from the present and the past
two sentences as antecedents (“SentWin” setting).

Before training and testing a new model with
our own data, we perform feature selection us-
ing 10-fold cross validation. We run the feature
selection on a combination of the SemEval train-
ing data and our additional data set in order to
find a set of features that generalizes best across
the two different corpora. We found these to be
features regarding “prominence”, selectional pref-
erences (“sp supersense”), the POS tags of entity
mentions, and semantic types of argument positions
(“semType dni.entity”). Note that the S&F system
does not make use of any lexicalized information.
Instead, semantic features are computed based on
the highest abstraction level in WordNet (Fellbaum,
1998). For detailed description of all features, see
Silberer and Frank (2012).

4.3 Results

For direct comparison in the full task, both with
S&F’s model and other previously published results,
we adopt the precision, recall and F1 measures as
defined in Ruppenhofer et al. (2010). We compare
our results with those previously reported on the Se-
mEval task (see Table 3 for a summary): Chen et
al. (2010) adapted SEMAFOR, the best performing
system that participated in the actual task in 2010.
Tonelli and Delmonte (2011) presented a revised
version of their SemEval system (Tonelli and Del-
monte, 2010), which outperformed SEMAFOR in
terms of recall (6%) and F1 score (8%). The best
results in terms of recall and F1 score up to date
have been reported by Laparra and Rigau (2012),
with 25% and 19%, respectively. Our model outper-
forms their state-of-the-art system in terms of preci-
sion (21%) but at a higher cost of recall (8%). Two

P R F

Chen et al. (2010)5 0.25 0.01 0.02

Tonelli and Delmonte (2011) 0.13 0.06 0.08
Laparra and Rigau (2012) 0.15 0.25 0.19
Laparra and Rigau (2013) 0.14 0.18 0.16
Gorinski et al. (2013)6 0.14 0.12 0.13

S&F (no additional data) 0.06 0.09 0.07
S&F (best additional data) 0.09 0.11 0.10
This paper 0.21 0.08 0.12

Table 3: Results in terms of precision (P), recall (R) and
F1 score (F) for identifying and linking implicit argu-
ments in the SemEval test set.

influencing factors for their high recall are probably
(1) their improved method for identifying (resolv-
able) implicit arguments, and (2) their addition of
lexicalized and ontological features.

Comparison to the original results reported by
S&F, whose system we use, shows that our addi-
tional data improves precision (from 6% to 21%)
and F1 score (from 7% to 12%). The loss in recall
is marginal (-1%) given the size of the test set (259
resolvable cases in total). The result in precision is
the second highest score reported on this task. Inter-
estingly, the improvements are higher than those of
the best training set used in the original study by Sil-
berer and Frank (2012), even though their additional
data set is three times bigger than ours and is based
on manual semantic annotations. We conjecture that
their low gain in precision could be a side effect trig-
gered by two factors: on the one hand, their model
crucially relies on coreference chains, which are au-
tomatically generated for the test set and hence are
rather noisy. On the other hand, their heuristically
created training data might not represent implicit ar-
gument instances adequately.
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5 Experiment 2: Implicit arguments in
coherence modeling

In our second experiment, we examine the effect of
implicit arguments on local coherence, i.e., the ques-
tion of how well a local argument (non-)realization
fits into a given context. We approach this question
as follows: first, we assemble a data set of document
pairs that differ only with respect to a single realiza-
tion decision (Section 5.1). Given each pair in this
data set, we ask human annotators to indicate their
preference for the implicit or explicit argument re-
alization in the pre-specified context (Section 5.2).
Second, we attempt to emulate the decision pro-
cess computationally using a discriminative model
based on discourse and entity-specific features (Sec-
tion 5.3).

5.1 Data compilation

We use the induced data set (henceforth source
data), as described in Section 3, as a starting point
for composing a set of document pairs that involve
implicit and explicit arguments. To make sure that
each document pair in this data set only differs with
respect to a single realization decision, we first cre-
ate two copies of each document from the source
data: one copy remains in its original form, and the
other copy will be modified with respect to a sin-
gle argument realization. Example (2) illustrates an
example of an original and modified (marked by an
asterik) sentence:

(2) [The Dalai Lama’sA0] visit [to FranceA1] ends
on Tuesday.

* [The Dalai Lama’sA0] visit ends on Tuesday.

Note that adding and removing arguments at ran-
dom can lead to structures that are semantically
implausible. Hence, we restrict this procedure to
predicate-argument structures (PAS) that actually
occur and are aligned across two texts, and create
modifications by replacing a single argument posi-
tion in one text with the corresponding argument po-
sition in the comparable text. Examples (2) and (3)

5Results as reported in Tonelli and Delmonte (2011)
6Results computed as an average over the scores given for

both test files; rounded towards the number given for the test
file that contained more instances.

show two such comparable texts. The original PAS
in Example (2) contains an explicit argument that is
implicit in the aligned PAS and hence removed in
the modified version. Vice versa, the original text
in (3) involves an implicit argument, which is made
explicit in the modified version.

(3) [The Dalai Lama’sA0] visit coincides with the
Beijing Olympics.

* [The Dalai Lama’sA0] visit [to FranceA1] co-
incides with the Beijing Olympics.

We ensure that the modified structure fits into
the given context grammatically by only consid-
ering PAS with identical predicate form and con-
stituent order. We found that this restriction con-
strains affected arguments to be modifiers, prepo-
sitional phrases and direct objects. We argue that
this is actually a desirable property because more
complicated alternations could affect coherence by
themselves; resulting interplays would make it diffi-
cult to distinguish between the isolated effect of ar-
gument realization itself and other effects, triggered
for example by sentence order (Gordon et al., 1993).

5.2 Annotation
We set up a web experiment using the NLTK pack-
age (Belz and Kow, 2011) to collect (local) coher-
ence ratings for implicit and explicit arguments. For
this experiment, we compiled a data set of 150 doc-
ument pairs. As described in Section 5.1, each text
pair consists of mostly the same text, with the only
difference being one argument realization.

We presented all 150 pairs to two annotators7 and
asked them to indicate their preference for one al-
ternative over the other using a continuous slider
scale. The annotators got to see the full texts, with
the alternatives presented next to each other. To
make texts easier to read and differences easier to
spot, we collapsed all identical sentences into one
column and highlighted the aligned predicate (in
both texts) and the affected argument (in the explicit
case). An example is shown in Figure 2. To avoid
any bias in the annotation process, we shuffled the
sequence of text pairs and randomly assigned the
side of display (left/right) of each realization type

7Both annotators are undergraduate students in Computa-
tional Linguistics.
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Figure 2: Texts as displayed to the annotators.

(explicit/implicit). Note that instead of providing a
definition of local coherence ourselves, we simply
asked the annotators to rate how “natural” a realiza-
tion sounds given the discourse context.

We found that annotators made use of the full rat-
ing scale, which spans from -50 to +50, with the ex-
tremes indicating either a strong preference for the
text on the left hand side or the right hand side, re-
spectively. Most ratings are, however, concentrated
more towards the center of the scale (i.e., around
zero). This seems to imply that the use of im-
plicit or explicit arguments did not make a consid-
erable difference most of the time. The first author
confirmed this assumption and resolved disagree-
ments between annotators in several group discus-
sions. The annotators also affirmed that some cases
do not read naturally when a specific argument is or
is not realized at a given position in discourse. Ex-
amples (4) and (5) illustrate two cases, in which a
redundant argument is realized (A4, or destination)
or a coherence establishing argument has been omit-
ted (A2, or co-signer).8

(4) ? The remaining contraband was picked up at
Le Havre. The containers had arrived [in
Le Havre] from China.

(5) ? Lt.-Gen. Mohamed Lamari (. . . ) denied
his country wanted South African weapons
to fight Muslim rebels fighting the govern-
ment. “We are not going to fight a flea with

8Note that both examples are only excerpts from the affected
texts. The annotators got to see the full context.

a hammer,” Lamari told reporters after sign-
ing the agreement of intent [∅].

Following discussions with the annotators, we
discarded all items from the final data set, for which
no clear preference could be established (72%) or
the annotators had different preferences (9%). We
mapped all remaining items into two classes accord-
ing to whether the affected argument had to be im-
plicit (9 texts) or explicit (20 texts). All 29 uniquely
classified texts are used as a small gold standard test
set for evaluation.

5.3 Coherence model

We model the decision process that underlies the
(non-)realization of arguments using a SVM classi-
fier and a range of discourse features. The features
can be classified into three groups: features specific
to the affected predicate-argument structure (Parg),
the (automatic) coreference chain of the affected ar-
gument (Coref), and the discourse context (Disc).

Parg includes the absolute and relative number of
realized arguments; the number of modifiers in the
PAS; and the total length (in words) of the PAS and
the complete sentence.

Coref includes the number of previous/follow-up
mentions in a fixed sentence window; the distance
(in number of words/sentences) to the previous/next
mention; the distribution of occurrences over the
previous/succeeding two sentences;9 and the POS of
previous/follow-up mentions.

Disc includes the total number of coreference
chains in the text; the occurrence of pronouns
in the current sentence; lexical repetitions in the
previous/follow-up sentence; the current position in
discourse (begin, middle, end); and a feature indi-
cating whether the affected argument occured in the
first sentence.

Note that most of these features overlap with
those successfully applied in previous work. For
example, Pitler and Nenkova (2008) also use text

9This type of feature is very similar to the transition pat-
terns in the original entity grid. The only difference is that our
features are not typed with respect to the grammatical function
of explicit realizations. The reason for skipping this informa-
tion lies in the insignificant amount of relevant samples in our
(noisy) training data.

312



length, sentence-to-sentence transitions, word over-
lap and pronoun occurrences as features for predict-
ing readability. Our own contribution lies in the defi-
nition of PAS-specific features and the adaptation of
all features to the task of predicting (non-)realization
of arguments in a predicate-argument structure.

5.4 Training data

We do not make use of any manually annotated data
for training. Instead, our model relies solely on the
automatically induced source data, described in Sec-
tion 3, for learning. We prepare this data set as fol-
lows: first, we remove all data points that also occur
in the test set. Second, we split all pairs of texts into
two groups – texts that contain a predicate-argument
structure in which an implicit argument has been
identified (IA), and their comparable counterparts
that contain the aligned PAS with an explicit argu-
ment (EA). All texts are labelled according to their
group. For all texts in group EA, we remove the ex-
plicit argument from the aligned PAS. This way, the
feature extractor always gets to see the text and au-
tomatic annotations as if the realization decision had
not been performed and can thus extract unbiased
feature values for the affected entity and argument
position.

5.5 Evaluation setting

The goal of this task is to correctly predict the re-
alization type (implicit or explicit) of an argument
that maximizes the coherence of the document. As
a proxy for coherence, we use the naturalness rat-
ings given by our annotators. We evaluate classifica-
tion performance on the part of our test set for which
clear preferences have been established. We report
results in terms of precision, recall and F1 score. We
compute precision as the fraction of correct classifier
decisions divided by the total number of classifica-
tions; and recall as the fraction of correct classifier
decisions divided by the total number of test items.
Note that precision and recall are identical when the
model provides a class label for every test item. We
compute F1 as the harmonic mean between precision
and recall.

For comparison with previous work, we further
apply a couple of previously proposed local co-
herence models: the original entity grid model by
Barzilay and Lapata (2005), a modified version that

uses topic models (Elsner and Charniak, 2011a) and
an extended version that includes entity-specific fea-
tures (Elsner and Charniak, 2011b). We further ap-
ply the discourse-new model by Elsner and Charniak
(2008) and the pronoun-based model by Charniak
and Elsner (2009). For all of the aforementioned
models, we use their respective implementation pro-
vided with the Brown Coherence Toolkit10. Note
that the toolkit only returns one coherence score for
each document. To use the toolkit for argument clas-
sification, we use two documents per data point –
one that contains the affected argument explicitly
and one that does not (implicit argument) – and treat
the higher scoring variant as classification output. If
both documents achieve the same score, we neither
count the test item as correctly nor as incorrectly
classified. In contrast, we apply our own model only
on the document that contains the implicit argument,
and use the classifier to predict whether this realiza-
tion type fits into the given context or not. Note that
our model has an advantage here because it is specif-
ically designed for this task. Yet, all models com-
pute local coherence ratings based on entity occur-
rences and should thus be able to predict which re-
alization type coheres best with the given discourse
context.11

5.6 Results

The results are summarized in Table 4. As all mod-
els provided class labels for almost all test instances,
we focus our discussion on F1 scores. The majority
class in our test set is the explicit realization type,
making up 20 of the 29 test items (69%).

The original entity grid model produced differing
scores for the two realization types only in 26 cases.
The model exhibits a strong preference for the im-
plicit realization type: it predicts this class in 22
cases, resulting in an F1 score of only 15%. Tak-
ing a closer look at the features of the model reveals
that this an expected outcome: in its original set-
ting, the entity grid learns realization patterns in the
form of sentence-to-sentence transitions. Most enti-
ties are, however, only mentioned a few times in a

10cf. http://www.ling.ohio-state.edu/%7Emelsner/
11Recall that input document pairs are identical except for the

affected argument position. Consequently, the resulting coher-
ence scores only differ with respect to affected entity realiza-
tions.
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P R F

Entity grid models – – –
Baseline entity grid 0.15** 0.14** 0.15**
Extended entity grid 0.19** 0.17** 0.18**
Topical entity grid 0.34** 0.34** 0.34**

Other models – – –
Pronouns 0.43** 0.34** 0.38**
Discourse-newness 0.48** 0.48** 0.48**

This paper – – –
Our (full) model 0.90 0.90 0.90
Simplified model 0.83 0.83 0.83

Majority class 0.69* 0.69* 0.69*

Table 4: Results in terms of precision (P), recall (R) and
F1 score for correctly predicting argument realization; re-
sults that significantly differ from our (full) model are
marked with asterisks (* p<0.1; ** p<0.01)

text, which means that non-realizations make up the
‘most probable’ class – independently of whether
they are relevant in a given context or not. The mod-
els by Charniak and Elsner (2009) and Elsner and
Charniak (2011a), which are not based on an entity
grid, do not suffer from this effect and achieve bet-
ter results, with F1 scores of 38% and 48%, respec-
tively. The topical and entity-specific refinements to
the entity grid model also alleviate the bias towards
non-realizations, resulting in improved F1 scores of
18% and 34%, respectively.

To counter-balance this issue altogether, we train
a simplified version of our own model that only
uses features that involve occurrence patterns. The
main difference between this simplified model and
the original entity grid model lies in the different
use of training data: while entity grid models treat
all non-realized items equally, our model gets to
“see” actual examples of entities that are implicit.
In other words, our simplified model takes into ac-
count implicit mentions of entities, not only explicit
ones. The results show that this extra information
has a significant (p<0.01, using a randomization test
(Yeh, 2000)) impact on test set performance, basi-
cally raising F1 from 15% to 83%. Using all features
of our model further increases F1 score to 90%, the
highest score achieved overall.

The highest weighted features in our model in-
clude all three feature groups: for example, the

number of coreferent mentions within the preceed-
ing/following two sentences (Coref), the number
of words already realized in the affected predicate-
argument structure (Parg), and the total number of
coreference chains in the document (Disc).

6 Conclusions

In this paper, we presented a novel approach to ac-
curately induce implicit arguments and discourse an-
tecedents from comparable texts (cf. Section 3). We
demonstrated the benefit of this kind of data for link-
ing implicit arguments and modeling local coher-
ence. Our experiments revealed three particularly
interesting results.

Firstly, a small data set of (automatically induced)
implicit arguments can have a greater impact on ar-
gument linking models than a bigger data set of ar-
tificially created instances (cf. Section 4). Secondly,
the use of implicit vs. explicit arguments, while be-
ing a subtle difference in most contexts, can have a
clear impact on text ratings. Thirdly, our automat-
ically created training data enables models to learn
features that considerably improve prediction of lo-
cally coherent argument realizations (cf. Section 5).

For the task of implicit argument linking, more
training data will be needed to further advance
the state-of-the-art. Our method for inducing
this kind of data, by exploiting aligned predicate-
argument structures from comparable texts, has
shown promising results. Future work will have
to explore this direction more fully, for example,
by identifying ways to induce data with higher re-
call. Integrating argument (non-)realization into a
full model of local coherence also remains part of
future work. In this paper, we presented a suitable
basis for such work: a training set that contains em-
pirical data on implicit arguments in discourse; and
a feature set that models argument realization with
high accuracy.
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Abstract

We present an approach which uses the sim-
ilarity in semantic structure of bilingual par-
allel sentences to bootstrap a pair of seman-
tic role labeling (SRL) models. The setting
is similar to co-training, except for the inter-
mediate model required to convert the SRL
structure between the two annotation schemes
used for different languages. Our approach
can facilitate the construction of SRL models
for resource-poor languages, while preserving
the annotation schemes designed for the tar-
get language and making use of the limited re-
sources available for it. We evaluate the model
on four language pairs, English vs German,
Spanish, Czech and Chinese. Consistent im-
provements are observed over the self-training
baseline.

1 Introduction

The success of statistical modeling methods in a va-
riety of natural language processing (NLP) tasks in
the last decade depended crucially on the availability
of annotated resources for their training. And while
sizable resources for most standard tasks are only
available for a few languages, the human effort re-
quired to achieve reasonable performance on such
tasks for other languages may be significantly re-
duced by leveraging existing resources and the sim-
ilarities between languages.

This idea has lead to the development of cross-
lingual annotation projection approaches, which
make use of parallel corpora (Padó and Lapata,
2009), as well as attempts to adapt models directly

to other languages (McDonald et al., 2011). In this
paper we consider correspondences between SRL
structures in translated sentences from a different
perspective. Most cross-lingual annotation projec-
tion approaches transfer the source language anno-
tation scheme to the target language without modifi-
cation, which makes it hard to combine their output
with existing target language resources, as annota-
tion schemes may vary significantly. We instead ad-
dress the problem of information transfer between
two existing annotation schemes (figure 1) for a pair
of languages using an intermediate model of role
correspondence (RCM). An RCM models the prob-
ability of a pair of corresponding arguments being
assigned a certain pair of roles. We then use it to
guide a pair of monolingual models toward compat-
ible predictions on parallel data in order to extend
the coverage and/or accuracy of one or both models.

Romanian is not taught in their schools .

Ve školách se neučí rumunsky .

A1

PAT

AM-LOC

LOC

AM-NEG

Figure 1: Role correspondence in parallel sentences, an
example.

The notion of compatibility here is highly non-
trivial, even for sentences translated as close to the
original as possible. Zhuang and Zong (2010), for
example, observe that in the English-Chinese paral-
lel PropBank (Palmer et al., 2005b) corresponding
arguments often bear different labels, even though
the same inventory of semantic roles is used for both
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languages and the annotation guidelines are similar.
When different annotation schemes are considered,
the problem is further complicated by the difference
in the granularity of semantic roles used and varying
notions of what is an argument and what is not.

Manually annotated training data for such a model
is hard to come by. Instead, we propose an itera-
tive procedure similar to bootstrapping, where the
parameters of the RCM are initially estimated from
a parallel corpus automatically annotated with se-
mantic roles using the monolingual models indepen-
dently, and then the RCM is used to refine these an-
notations via a joint inference procedure, serving to
enforce consistency on the predictions of monolin-
gual models on parallel sentences. The obtained an-
notations on the parallel corpus are expected to be
of higher quality than the independent predictions of
the models, so they can be used to improve the SRL
models’ performance and/or coverage. We evalu-
ate this approach by augmenting the original train-
ing data with the annotations obtained on parallel
data and observing the change in the model’s perfor-
mance. This is especially useful if one of the lan-
guages is relatively poor in resources, in which case
the proposed procedure will help propagate infor-
mation from the stronger model to the weaker one.
Even if the two models are comparable in their pre-
dictive power, we may be able to benefit from the
fact that certain semantic roles are realized less am-
biguously in one language than in another. We will
henceforth refer to these two alternatives as the pro-
jection and symmetric setups.

The paper is structured as follows. In the next sec-
tion we present our approach and discuss the issues
of role correspondence modeling, then describe the
implementation and datasets used in evaluation in
section 3, present the evaluation and results in sec-
tion 4 and conclude with the discussion of related
work in section 5.

2 Approach

We consider bootstrapping a pair of SRL models on
a parallel corpus, using the correspondence between
their predictions on parallel sentences to guide the
learning. The models are forced toward compatible
predictions, where the notion of compatibility is de-
fined by a (statistical) role correspondence model.

Let us consider a pair of languages, α and β,
and their corresponding datasets T 0

α and T 0
β , anno-

tated with semantic roles (the upper indices here de-
note the iteration number). We will refer to these
as the initial training sets. We also assume that a
word-aligned parallel corpus is available for the pair
of languages, which we denote P , with the pred-
icates and their respective arguments identified on
both sides.

The procedure is then as follows: we train mono-
lingual models M0

α and M0
β on T 0

α and T 0
β , respec-

tively, apply them to the two sides of the parallel
corpus, resulting in a labeling P 0. We collect the se-
mantic role co-occurrence information and train the
role correspondence model C0 on it, then proceed to
the joint inference step involving M0

α, M0
β and C0,

resulting in a refined labeling P 1 of the parallel cor-
pus. The two sides of the P 1 are then used to aug-
ment the initial training sets, yielding T 1

α and T 1
β ,

and new models M1
β and M1

β are trained on these.
The process can then be repeated using M1

α and M1
β

instead of the initial models.
We report the model’s performance on a held-out

test set, drawn from the same corpus as the corre-
sponding initial training set.

The procedure can be seen as a form of co-
training (Blum and Mitchell, 1998) of a pair of
monolingual SRL models. In our case, however, the
question of the models’ agreement is not as trivial as
in most applications of co-training, requiring a sta-
tistical model of its own (Ci).

In the low-resource (projection) setup our ap-
proach is also similar to self-training with weak su-
pervision coming from the stronger model.

Note that although the approach is iterative, we
have observed no significant improvements from re-
peating the procedure, possibly owing to the noise
introduced by the errors in preprocessing. In the
evaluation we run only one iteration. In the notation
introduced above, the self-training baseline model
(SELF) is trained on P 0

β , the joint model (JOINT) –
on P 1

β and the combined model (COMB) – on T 1
β .

2.1 Modeling Role Correspondence

It is necessary to distinguish between semantic
roles and their interpretation in a particular con-
text. The former can be defined in a variety of
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ways, depending on the formalism used. In case of
FrameNet (Baker et al., 1998), for example, the in-
terpretation of a semantic role (frame element) is ex-
plicitly provided for each separate frame, so a frame
and a frame element label together describe the se-
mantics of an argument. PropBank (Palmer et al.,
2005a) follows a mixed strategy – the labels for a
relatively small set of core roles are numbered and
their interpretations are provided separately for each
predicate (although those of the first two roles, A0
and A1, consistently denote what is known as Proto-
Agent and Proto-Patient), while modifiers (Merlo
and Leybold, 2001) bear labels that are interpreted
consistently across all predicates. Other resources,
such as Prague Dependency Treebank (Hajič et al.,
2006), use a single set of semantic roles (functors),
which are interpretable across different predicates.

From the standpoint of defining the semantic sim-
ilarity of parallel sentences, the important implica-
tion is that we cannot assume that the corresponding
arguments should bear the same label, even if the
annotation schemes used are compatible (Zhuang
and Zong, 2010). Nor can we write down a single
mapping between the roles that will be valid across
different predicates (figure 2), which motivates the
need for a statistical model of semantic role corre-
spondence.

I do not have these concerns

Yo no tengo tales preocupaciones

A0

arg1-tem

A1

arg2-atr

Parliament adopted the resolution

El Parlamento aprueba la resolución

A0

arg0-agt

A1

arg1-pat

We would like to know their names

Nos gustaría conocer sus nombres

A0

arg2-ben

A1

arg1-tem

Figure 2: Predicate-specific role mapping. Note that A0
corresponds to art0-agt, art1-tem or art2-ben,
depending on the predicate.

We assume the existence of a one-to-one map-

ping between semantic roles for a given predicate
pair. As the mappings are not completely indepen-
dent – at least some roles have the same interpre-
tation across different predicate pairs, – we choose
to build a single model, which relies on features de-
rived from the pair of predicates in question, rather
than create a separate model for each predicate pair.
The model can then make decisions specific to par-
ticular predicates or predicate pairs, where sufficient
data has been observed or back off to a generic map-
ping where there is not enough data.

For the purpose of this study, we choose to sep-
arately model the probability of a target role, given
the source one and the necessary contextual infor-
mation and vice versa. These two components are
referred to as projection models and realized as a
pair of linear classifiers.

Training such a model in a conventional fash-
ion would require a rather specific kind of dataset,
namely a parallel corpus annotated with semantic
roles, and assuming the availability of such data
would severely limit the applicability of the ap-
proach proposed, as, to our knowledge, it is cur-
rently only available for two language pairs, namely
English-Chinese (Palmer et al., 2005b) and English-
Czech (Hajič et al., 2012). We instead use the auto-
matically produced annotations on a parallel corpus,
effectively enforcing consistency on the role corre-
spondence in the monolingual models’ predictions.

2.2 Joint Inference

The joint inference would have been simplest if the
arguments were classified independently. This as-
sumption is too restrictive, though, since the inter-
dependencies between the arguments can be used
to improve the accuracy of semantic role label-
ing (Roth and Yih, 2005).

2.2.1 Projection Setup
In the projection setup we assume that the model

for one of the languages, which we will henceforth
refer to as source, is much better informed than
the one for the other language, referred to as tar-
get, so we only have to propagate the information
one way. The scoring functions of these two mod-
els will be denoted fs and ft, respectively, and that
of the projection model from source to target – fst.
Source and target sentences are denoted Ss and St,
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and aligned predicates in these sentences – ps and
pt. The task is then to identify the target language
role assignment rt that would maximize the objec-
tive L(rt) = λtft(rt, St, pt) + λstfst(rt, rs, ps, pt),
where rs = argmaxrfs(rs, Ss, ps) is the role as-
signment of the source-side arguments as predicted
by the monolingual model and λ are the weights as-
sociated with the models.

The exact maximization of this objective is com-
putationally expensive, so we resort to an approx-
imation. We chose to use the dual decomposition
method primarily because it fits the structure of the
objective particularly well (in that it is a sum of the
objectives of two independent models) and since it
allows a wide range of monolingual models to be
used in this setup. The only requirement here is that
the monolingual model must be able to incorporate
a bias toward or away from a certain prediction.

To apply this approximation, we decouple the
rt variables into rt and rst and get L1(rt, rst) =
λtft(rt, St, pt) + λstfst(rst, rs, ps, pt) under the
condition that rt = rst. Applying the Lagrangian
relaxation, we replace the hard equality constraint
on rt and rst with a soft one, using slack variables δ,
which results in the following objective:

minδmaxrt,rstL
′
1(rt, rst, δ) =

λtft(rt, St, pt) + λstfst(rst, rs, ps, pt)+ (1)∑
i

∑
r∈Rt

δi,r
(
I(rit = r)− I(rist = r)

)
,

where i indexes aligned argument pairs and I is an
indicator function. This is equivalent to

minδmaxrt,rstL
′
1(rt, rst, δ) =

minδ

(
maxrtgt(rt, St, pt, δ)+ (2)

maxrstgst(rst, rs, ps, pt, δ)
)
,

where

gt(rt, St, pt, δ) =

λtft(rt, St, pt) +
∑
i

∑
r∈Rt

δi,rI(rit = r)

gstp(rst, rs, ps, pt, δ) = (3)

λstfst(rst, rs, ps, pt)−
∑
i

∑
r∈Rt

δi,rI(rist = r)

are the augmented objectives of the two component
models, incorporating bias factors on various possi-
ble predictions.

The minimization with respect to δ is per-
formed using a subgradient descent algorithm fol-
lowing Sontag et al. (2011). Whenever the method
converges, it converges to the global maximum of
the sum of the objectives. We found that in our case
it reaches a solution within the first 1000 iterations
over 99% of the time.

2.2.2 Symmetric Setup
If the models have comparable accuracy, the

above inference procedure can be extended to per-
form projection both ways. Formulating this as a
dual decomposition problem would require using
three separate components, two for the monolingual
models and one for the RCM, which would have to
make its own predictions for the semantic roles on
both sides without conditioning on the predictions
of the monolingual models. This calls for a different
kind of model than the one we use – a model that
will rely on a (possibly simplified) feature represen-
tation of the source and target arguments to jointly
predict their labels. Instead, we perform the pro-
jection setup inference procedure in both directions
simultaneously, interleaving gradient descent steps
and allowing the projection models to access the up-
dated predictions of the monolingual models. This
results in a block gradient descent algorithm with the
following updates:

rn+1
t = argmaxrtgt(rt, St, pt, δ

n
t )

rn+1
s = argmaxrtgs(rs, Ss, ps, δ

n
s )

rn+1
st = argmaxrstgst(rst, r

n
s , ps, pt, δ

n
t )

rn+1
ts = argmaxrtsgts(rts, r

n
t , pt, ps, δ

n
s ) (4)

∀i∀r∈Rsδ
n+1,i,r
s = δn,i,rs +

γs(n)(I(rn,its = r)− I(rn,is = r))

∀i∀r∈Rtδ
n+1,i,r
t = δn,i,rt +

γt(n)(I(rn,ist = r)− I(rn,it = r)),

where γs(n) = γt(n) = γ0
n+1 is the update rate func-

tion for step n, and gs and gts are defined as in (3),
but with the direction reversed.

This procedure allows us to use the same RCM
implementation as in the projection setup. More-
over, the inference procedure for projection setup is
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a special case of this one with γs(n) set to 0. The
algorithm also demonstrates convergence similar to
that of the projection version, although it lacks the
optimality guarantees.

3 Experimental Setup

We evaluate our approach on four language pairs,
namely English vs German, Spanish, Czech and
Chinese, which we will denote en-de, en-es,
en-cz and en-zh respectively.

3.1 Parallel Data
The parallel data for the first three language pairs
is drawn from Europarl v6 (Koehn, 2005) and
from MultiUN (Eisele and Chen, 2010) for English-
Chinese. We applied Stanford Tokenizer for En-
glish, tokenizer scripts (Koehn, 2005) provided
with the Europarl corpus to German, Spanish and
Czech, and Stanford Chinese Segmenter (Chang et
al., 2008) to Chinese, then performed POS-tagging,
morphology tagging (where applicable) and depen-
dency parsing using MATE-tools (Bohnet, 2010).

Word alignments were acquired using
GIZA++ (Och and Ney, 2003) with its stan-
dard settings. Predicate identification on the parallel
data was done using the supervised classifiers of
the monolingual SRL systems, except for German,
where a simple heuristic had to be used instead,
as only some of the predicates are marked in
the training data, which makes it hard to train a
supervised classifier. Following van der Plas et al.
(2011), we then retain only those sentences where
all identified predicates were aligned.

In the experiments we used 50 thousand predicate
pairs in each case, as increasing the amount further
did not yield noticeable benefits, while increasing
the running time.

3.2 Annotated Data
The CoNLL’09 (Hajič et al., 2009) datasets were
used as a source of annotated data for all languages.
Only verbal predicates were considered and pre-
dicted syntax was used in evaluation.

We consider subsets of the training data in order
to emulate the scenario with a resource-poor lan-
guage. Due to the different sources the datasets
were derived from, sentences contain different pro-
portions of annotated predicates depending on the

language. The German corpus, for example, con-
tains about 6 times fewer argument labels per sen-
tence than the English one. We will therefore in-
dicate the sizes of the datasets used in the number
of argument labels they contain, referred to as in-
stances, rather than the number of predicates or sen-
tences. The corpus for English, for example, con-
tains 6.2 such instances per sentence on average.

We use the 20 thousand instances of the available
data as the training corpus for each language and
split the rest equally between the development and
the test set. The secondary (“out-of-domain”) test
sets are preserved as they are.

In dependency-based SRL, only heads of syntac-
tic constituents are marked with semantic roles. The
heads of corresponding arguments may or may not
align, however, even if the arguments are lexically
very similar, because their syntactic structure may
differ. In general, one would have to identify the
whole phrase for each argument and take into ac-
count the links between constituents, rather than sin-
gle words (Padó and Lapata, 2005). As reconstruct-
ing the constituents from the dependency tree is non-
trivial (Hwang et al., 2010), we are using a heuristic
to address the most common version of this problem,
i.e. a preposition or an auxiliary verb being an argu-
ment head. In such a case we also take into account
any alignment links involving the head’s immediate
descendants.

3.3 Implementation

Our system is based on that of Björkelund et al.
(2009). It is a pipeline system comprised of a set of
binary or multiclass linear classifiers. Both here and
in the projection model, the classifiers are trained
using Liblinear (Fan et al., 2008).

We employed a uniqueness constraint on role la-
bels (Chang et al., 2007), preventing some of them
from being assigned to more than one argument in
the same predicate, which appears to be more reli-
able in a low-resource setting we consider than the
reranker the original system employed. The con-
straint is enforced in the monolingual model infer-
ence using a beam-search approximation with the
beam size of 10. The label uniqueness information
was derived from the training sets.
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3.4 The Projection Model

Each projection model is realized by a single lin-
ear classifier applied to each argument pair indepen-
dently. It relies on features derived from the source
semantic role and source and target predicates, and
predicts the semantic role for the argument in the
target sentence.

The features include the source semantic role and
its conjunctions with (lowercased) forms and lem-
mata of the source and target predicates. For ex-
ample, assuming the source semantic role is A3 and
the source and target predicates are went and ging
(past tense of “gehen”, German), the features would
be as shown in figure 3.

FORMPAIR=A3-went-ging
LEMMAPAIR=A3-go-gehen
FORMSRC=A3-went
FORMTGT=A3-ging
LEMMASRC=A3-go
LEMMATGT=A3-gehen
LABEL=A3

Figure 3: Projection model features example.

3.5 Parameters

In case of projection there are two parameters, λst
and λt, – the weights of the component models in the
objective. Only their relative values matter (except
in the choice of γ0), so we set λt to 1 and only tune
the weight of the role correspondence model.

In the symmetric setup, the objective takes
the form L(rt, rs) = λtft(rt, St, pt) +
λstfst(rt, rs, ps, pt) + λsfs(rs, Ss, ps) +
λtsfts(rs, rt, pt, ps). Since we assume that the
two monolingual models here have comparable
performance, we do not tune their relative weights,
setting both λs and λt to 1.

We also use the same weight for both projection
models, λst = λts, and this value plays an important
role – it basically indicates how strongly we insist
on the role correspondence models’ correctness. If
this weight is set to 0, the RCM will accept the ini-
tial predictions the monolingual models make, and if
it is set to a sufficiently large value, the predictions
of the monolingual models will be biased until they
match the mapping suggested by the RCM. The op-
timal weight will therefore depend on the language

pair, the sizes of the initial training sets and the RCM
used. We use the value of 0.7 in all projection ex-
periments and 0.5 in the symmetric setup, however,
as excessive tuning may be undesirable in the low-
resource setting.

3.6 Domains
One important factor in the understanding of the
evaluation figures presented is the fact that sources
of annotated and parallel data belong to different do-
mains. The former usually contains some sort of
newswire text – Wall Street Journal in case of En-
glish, Xinhua newswire, Hong Kong news and Sino-
rama news magazine for Chinese, etc. Parallel data,
on the other hand, comes from the proceedings of
European Parliament and United Nations, which are
quite different. For example, the sentences in the
latter domain often start with someone being ad-
dressed, either by name or by title, which can hardly
be expected to occur as often in a newspaper or a
magazine article.

As is well-known, the performance of many sta-
tistical tools drops significantly outside the domain
they were trained on (Pradhan et al., 2008), and the
preprocessing and SRL models used here are no ex-
ception, which results in relatively low quality of
the initial predictions on the parallel text. The low
argument identification performance, in particular,
is presumably due to inaccurate dependency parses,
on which it heavily relies. Several approached have
been proposed to improve the accuracy of depen-
dency parsers and other tools on out-of-domain data,
but this is beyond the scope of this paper. In some
cases (though seldom), sources of parallel data be-
longing to the same domain as the annotated training
data can be obtained.

Another concern is that the performance of a
model trained on automatically labeled parallel data
as measured on a test set we use may not reflect the
quality of these annotations. To assess the resulting
model’s coverage, it would be interesting to evaluate
it on data outside the original domain, so we con-
sider the out-of-domain (OOD) test sets as provided
for the CoNLL Shared Task 2009 where available.

Perhaps the most interesting one of these is the
German OOD test set, which is drawn from Europarl
(as is the parallel data we use). It was originally
annotated with syntactic dependency trees and se-
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mantic structure in the SALSA format (Burchardt
et al., 2006) for Padó and Lapata (2005), and then
converted into a PropBank-like form for the CoNLL
Shared Task 2009 (Hajič et al., 2009). The OOD
test set for English is drawn from the Brown cor-
pus (Francis and Kucera, 1967) and the one for
Czech – from a Czech translation of Wall Street
Journal articles (Hajič et al., 2012).

4 Evaluation

The first question we are interested in is how the
joint inference affects the quality of the automati-
cally obtained annotations on the parallel data. To
answer this, we will run the monolingual models in-
dependently and jointly, then train models on the
output of these two procedures and compare their
performance on a test set. Note that we do not add
the initial training data at this point, so the initial
model scores are provided for reference, rather than
as a baseline.

4.1 Projection Setup
A small initial training set of 600 instances was used
here for the target language here and the full training
set (20000 instances) for the source one. λst was set
to 0.7 in all experiments in this section.

INIT SELF JOINT ∆SELF

en-cz* 61.11 60.68 63.01 2.33
en-cz 62.45 62.15 63.11 0.96
en-de* 66.81 63.96 67.64 3.69
en-de 70.40 68.34 70.13 1.79
en-es 64.20 64.51 66.01 1.50
en-zh 75.80 73.52 74.87 1.35
cz-en* 66.82 63.95 64.97 1.02
cz-en 74.92 71.60 71.90 0.29
de-en* 66.82 63.58 63.21 -0.37
de-en 74.93 71.31 70.72 -0.59
es-en* 66.82 63.95 64.18 0.23
es-en 74.93 71.47 72.09 0.62
zh-en* 66.82 64.51 63.67 -0.83
zh-en 74.93 72.26 71.24 -1.01

Table 1: Projection setup results: self-training baseline,
refined model and the difference in their performance.
Asterisk indicates out-of-domain test set, statistically sig-
nificant improvements are highlighted in bold.

In table 1, we present the accuracy of the model
trained on the output of the joint inference (JOINT)

against that of the self-training baseline (SELF). The
∆SELF column contains the difference between the
two. Note that the SELF model is trained on the
parallel data automatically annotated using mono-
lingual SRL models (not mixed with the initial train-
ing set), since we are interested in the effect of joint
inference on the quality of the annotation obtained.
Where the improvement is positive and statistically
significant with p < 0.005 according to the permuta-
tion test (Good, 2000), they are highlighted in bold.

We can see that the refined model (JOINT) outper-
forms the self-training baseline in most cases by a
moderate, but statistically significant margin, which
indicates that the joint inference does improve the
quality of annotations on the parallel corpus.

The slightly higher improvement on the German
OOD test set supports our hypothesis that the proce-
dure enhances the performance of the model on par-
allel data, as the data for this test set is also drawn
from the Europarl corpus. The improvement over
the initial model (∆INIT) in this case is statistically
significant with p < 0.05. Higher p-value may be
attributed to the smaller test set size.

Figure 4 shows how the performance of the JOINT

model changes with the size of the initial training
set. The improvements are smaller for en-cz, en-
de and en-zh, but they are also statistically signifi-
cant for initial training sets of up to 2000 instances.
Projection to English from other languages performs
worse.

Figure 4: Projection setup, English-Spanish, model per-
formance as a function of the size of the initial training
set.
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4.2 Combining

In practice, automatically obtained annotations are
usually combined with the existing labeled data. For
this purpose, the initial training set is replicated so
as to constitute 0.3 (an empirically chosen value that
appears to work well in most experiments) of the
size of the automatically labeled dataset. We com-
pare the performance of the model trained on the re-
sulting dataset (COMB) with that of the JOINT model
and the initial models. The results are presented in
table 2. We omit projection from other languages to
English, since the JOINT model there fails to outper-
form the initial model and we do not expect to ben-
efit from adding the automatically annotated data to
the initial training set in this case.

INIT JOINT COMB ∆JOINT ∆INIT

en-cz* 61.11 63.01 62.98 -0.03 1.87
en-cz 62.45 63.11 63.30 0.19 0.85
en-de* 66.81 67.64 67.64 0.00 0.84
en-de 70.39 70.19 70.53 0.34 0.15
en-es 64.20 66.01 66.01 0.00 1.81
en-zh 75.80 74.87 75.03 0.16 -0.77

Table 2: The effect of adding automatically obtained an-
notation to the initial training set. Asterisk indicates out-
of-domain test set, statistically significant improvements
are highlighted in bold.

4.3 Symmetric Setup

In the symmetric setup evaluation, we use a slightly
larger initial training set of 1400 instances for both
source and target language. The projection model
weight is set to 0.5. Table 3 shows the accuracy of
the JOINT model and the SELF baseline.

Note that here, unlike section 4.1, the joint in-
ference is run once and then a model is trained for
each language and evaluated on the corresponding
test set(s).

The results support our intuition that joint infer-
ence helps improve the quality of the resulting an-
notations, at least in some cases.

4.4 Oracle RCM

It would be useful to know to what extent the per-
formance of the role correspondence model affects
the quality of the output (and thus the performance
of the resulting model). The RCM we use is rather

INIT SELF JOINT ∆SELF

en-cz* 67.07 66.15 68.18 2.02
en-cz 67.56 66.42 66.72 0.30
en-de* 67.64 66.72 68.57 1.84
en-de 75.13 71.97 73.57 1.60
en-es 68.14 67.80 69.04 1.24
en-zh 76.28 72.96 75.22 2.26
cz-en* 69.37 66.45 66.22 -0.23
cz-en 77.32 74.72 75.02 0.31
de-en* 69.37 66.45 66.68 0.23
de-en 77.32 73.56 73.72 0.17
es-en* 69.37 66.64 66.40 -0.23
es-en 77.32 74.05 74.89 0.84
zh-en* 69.37 66.08 65.53 -0.56
zh-en 77.32 74.48 74.25 -0.24

Table 3: Comparing JOINT model against the self-
training baseline in symmetric setup. Asterisk indicates
out-of-domain test set, statistically significant improve-
ments are highlighted in bold.

simplistic, and we believe it can be substantially im-
proved for any given language pair by incorporat-
ing prior knowledge and/or using external sources
of information. In order to estimate the potential
impact of such improvements, we simulate a better
informed projection model, giving it access to the
predictions of more accurate monolingual models on
the parallel data – those trained on the full training
set, rather than the initial training set used in this par-
ticular experiment. We refer to the resulting RCM as
oracle and assess the difference it makes, compared
to a regular one (table 4).

5 Related Work

There is a number of approaches to semi-supervised
semantic role labeling, and most suggest that some
external supervision is required for such approaches
to work (He and Gildea, 2006), such as measures of
syntactic and semantic similarity (Fürstenau and La-
pata, 2009) or external confidence measures (Gold-
wasser et al., 2011). The alternative we propose is
primarily motivated by the research on annotation
projection (Padó and Lapata, 2009; van der Plas
et al., 2011; Annesi and Basili, 2010; Naseem et
al., 2012) and direct transfer (Durrett et al., 2012;
Søgaard, 2011; Lopez et al., 2008; McDonald et al.,
2011). The key difference of the present approach
compared to annotation projection is that we assume
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INIT SELF JOINT ∆SELF ∆INIT

en-cz* 61.11 60.68 72.49 11.81 11.38
en-cz 62.45 62.15 70.19 8.04 7.74
en-de* 66.81 63.96 76.78 12.82 9.97
en-de 70.39 68.34 79.22 10.88 8.84
en-es 64.20 64.51 75.43 10.92 11.23
en-zh 75.80 73.52 76.75 3.22 0.94
cz-en* 66.82 63.95 70.75 6.80 3.93
cz-en 74.93 71.60 79.70 8.10 4.76
de-en* 66.82 63.58 69.46 5.88 2.64
de-en 74.93 71.31 77.34 6.03 2.41
es-en* 66.82 63.95 69.92 5.97 3.10
es-en 74.93 71.47 79.55 8.08 4.62
zh-en* 66.82 64.51 67.19 2.68 0.37
zh-en 74.93 72.26 76.51 4.26 1.58

Table 4: Oracle RCM performance, projection setup: ini-
tial model, self-training baseline, refined model and its
improvement over the other two. Asterisk indicates out-
of-domain test set, statistically significant improvements
are highlighted in bold.

the availability of some amount of training data for
the target language, possibly using a different inven-
tory of semantic roles.

As mentioned previously, from the training point
of view this approach can be seen as similar to co-
training (Blum and Mitchell, 1998), other applica-
tions of which to NLP are too numerous to list here.

Most closely related is the joint inference in
Zhuang and Zong (2010), the main difference being
that it relies on a manually annotated parallel corpus,
aligned on the argument level, and evaluates only the
inference procedure and only on in-domain data.

Other related approaches include Kim et al.
(2010), where a cross-lingual transfer of relations
is performed (which basically represent parts of
the predicate-argument structure considered by SRL
methods), and Frermann and Bond (2012), where
semantic structure matching is used to rank HPSG
parses for parallel sentences.

Unsupervised semantic role labeling meth-
ods (Lang and Lapata, 2010; Lang and Lapata,
2011; Titov and Klementiev, 2012a; Lorenzo and
Cerisara, 2012) present an alternative to the cross-
lingual information propagation approaches such as
ours, and at least one the methods in this area also
makes use of parallel data (Titov and Klementiev,
2012b).

Conclusions

We have presented an approach to information trans-
fer between SRL systems for different language
pairs using parallel data. The task proves challeng-
ing due to non-trivial mapping between the role la-
bels used in different SRL annotation schemes and
the nature of parallel data – the difference in do-
mains and the limited accuracy of the preprocess-
ing tools. We observe consistent improvements over
self-training baseline from using joint inference and
the experiments suggest that improving the role cor-
respondence model, for example using language-
specific prior knowledge or external data sources,
may dramatically increase the performance of the re-
sulting system.
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Abstract

Existing semantic parsing research has
steadily improved accuracy on a few domains
and their corresponding databases. This paper
introduces FreeParser, a system that trains on
one domain and one set of predicate and con-
stant symbols, and then can parse sentences
for any new domain, including sentences that
refer to symbols never seen during training.
FreeParser uses a domain-independent archi-
tecture to automatically identify sentences
relevant to each new database symbol, which
it uses to supplement its manually-annotated
training data from the training domain. In
cross-domain experiments involving 23
domains, FreeParser can parse sentences for
which it has seen comparable unannotated
sentences with an F1 of 0.71.

1 Introduction

Semantic parsing is the task of converting a sentence
into a representation of its meaning, usually in a log-
ical form grounded in the symbols of some fixed
ontology or relational database (Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005; Kate and
Mooney, 2006). A growing body of research on
semantic parsing has yielded consistent improve-
ments in parsing accuracy. Yet existing semantic
parsers have always been limited by the need for
significant amounts of manually-annotated training
data for each domain of discourse, or for each new
database. As a result, current semantic parsers have
been constrained to small domains, like answering
geography questions.

In an effort to break out of these narrowly-
constrained domains, we investigate semantic
parsers for Freebase, an online database of user-

contributed facts divided into 86 domains, includ-
ing everything from architecture to zoos. Freebase is
much larger than standard benchmark databases for
semantic parsing; for example, it contains 300 times
as many relations, and 75,000 times as many in-
stances, as the GeoQuery database. On average, the
benchmark GeoQuery dataset has 125 training sen-
tences per relation. An equivalent dataset for Free-
base would require labeling close to 40,000 training
sentences, an expensive undertaking.

The size and diversity of data in Freebase forces
us to consider a new task of open-domain seman-
tic parsing. We introduce FreeParser, which trains
on labeled examples from a select group of initial
domains. It also uses the information in Freebase
to automatically find unlabeled training sentences
from Wikipedia for every Freebase relation. Using
a self-supervised architecture, FreeParser automat-
ically labels these sentences, and then trains a se-
mantic parser for all of Freebase. The current re-
striction to Wikipedia has a downside: 44% of the
test questions in our dataset contained a word that
never appeared in our set of automatically-collected
sentences, suggesting that significant further gains
could be had by scaling to a larger corpus. However,
FreeParser is able to find correct parses for 70% of
the questions from new domains where it could find
relevant sentences in Wikipedia, at a precision of
72%.

The next section provides background on se-
mantic parsing for Freebase, and discusses related
work. Section 3 describes the main modules of the
FreeParser system. Section 4 analyzes the perfor-
mance of FreeParser on an open-domain semantic
parsing task. Section 5 concludes.
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domain num. queries % of total

film 49 12
business 46 11
tv 34 8
location 32 8
award 32 8
people 30 7
medicine 25 6
organization 24 6
finance 21 5
book 21 5
et al. 89 22

total 403 100

Table 1: Breakdown of our Freebase data set into do-
mains. Several questions used symbols from multiple
Freebase domains, in which cases human judges selected
the best domain they could for that question’s category.

2 Background and Previous Work

2.1 Freebase Dataset

Freebase is a free, online, user-contributed, rela-
tional database (www.freebase.com) covering many
different domains of knowledge. The full schema
and contents are available for download.

Freebase has a number of advantages for build-
ing an open-domain semantic parser. Most obvi-
ously, it provides a much tougher test for seman-
tic parsing than traditional benchmark databases like
GeoQuery. It also provides a testbed for semantic
parsing across domains. As a reference point, the
GeoQuery database contains a single domain (ge-
ography), 8 relations, and 698 total instances. The
“Freebase Commons” subset of Freebase, which is
our focus, consists of 86 domains, an average of 25
relations per domain (total of 2134 relations), and
615,000 known instances per domain (53 million in-
stances total). By dividing Freebase into different
sub-databases according to domain, we can readily
test the portability of our parser across domains, and
its ability to handle relations and symbols that never
occur in manually-labeled training data.

Our dataset contains 403 questions and a meaning
representation for each question, written in a variant
of lambda calculus1. We believe the dataset in it-
self is an important contribution to the field, as it

1The data is available from the second author’s webpage.

Examples

1. What are the neighborhoods in New
York City?
λx . neighborhoods(new york, x)

2. How many countries use the rupee?
count(x) . countries used(rupee, x)

3. How many Peabody Award winners are
there?
count(x) . ∃y . award honor(y) ∧

award winner(y, x) ∧
award(y, peabody award)

Figure 1: Example questions with their logical forms.

provides a testbed for semantic parsing across mul-
tiple domains. Several examples are listed in Fig. 1,
and Table 1 provides a breakdown of the domains in
our data. The questions were provided by two na-
tive English speakers, one high school student and
one computer science undergraduate student. Each
contributor was introduced to the Freebase website,
and asked to come up with English questions that
they would like to have answered. No restrictions
were placed on the type of questions they should
produce, except that they should produce questions
for multiple domains. 23 domains are represented in
the data set. Inspection of the dataset indicates that
most questions have relatively simple and regular
syntax, compared with the more complex construc-
tions observed in datasets like GeoQuery. Collecting
more complex questions for open-domain tests is an
ongoing project, but the existing dataset is already
a significant challenge for current semantic parsing
learning algorithms.

2.2 Challenges for a Freebase Semantic Parser

To provide a benchmark for comparison, we applied
the PCCG-based semantic parser called UBL, de-
veloped by Kwiatkowski et al. (2010). Source code
for UBL is freely available. Its authors found that it
achieves results competitive with the state-of-the-art
on a variety of standard semantic parsing data sets,
including Geo250 English (0.85 F1). Using a fixed
CCG grammar and a procedure based on unification
in second-order logic, UBL learns a lexicon Λ from
the training data which includes entries like:
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Example Lexical Entries

New York City ` NP : new york

neighborhoods in `
S\NP/NP : λxλy.neighborhoods(x, y)

Example CCG Grammar Rules

X/Y : f Y : g ⇒ X : f(g)
Y : g X\Y : f ⇒ X : f(g)

Using Λ, UBL selects a logical form z for a sen-
tence S by selecting the z with the most likely parse
derivations y: h(S) = arg maxz

∑
y p(y, z|x; θ,Λ).

The probabilistic model is a log-linear model with
features for lexical entries used in the parse, as
well as indicator features for relation-argument pairs
in the logical form, to capture selectional prefer-
ences. Inference (parsing) and parameter estimation
are driven by standard dynamic programming algo-
rithms (Clark and Curran, 2007; Wilks et al., 1990),
using a context-free, combinatory categorial gram-
mar that includes rules for forward application and
composition.

In a standard experimental setup on our dataset,
UBL provides an F1 of 0.35. We took a random split
of 70% of the data for training, 30% for test. An
F1 of 0.35 is significantly worse than UBL’s perfor-
mance on GeoQuery data (F1 of 0.85) but within the
bounds of reason, given that our data has over 200
relation symbols that need to be learned using less
than 300 training sentences, compared with the 8 re-
lations and 250 sentences that make up the Geo250
English dataset.

However, UBL is not designed for open-domain
semantic parsing, and after training on the training
set above, it is not be able to handle questions for
any of the remaining 63 domains in Freebase. In
open-domain tests, it achieves an F1 of 0.0, and for
most sentences, it cannot produce a parse. As one
example, we created a test set from the business
and finance domains, and separated the remain-
ing domains for training. Every test example has a
predicate symbol that has never been observed be-
fore in training. The F1 of 0.0 on this dataset is not a
fault of UBL, but rather it shows the difficulty of the
task. Porting a system across domains often results
in substantial loss of accuracy for many natural lan-
guage processing tasks (Huang et al., 2011), but usu-
ally the drop in accuracy is no more than 10-20%.
Open-domain semantic parsing is an even starker

challenge; it involves not just new natural language
words in the new domains, but also new database
symbols, which existing technology cannot handle.

2.3 Previous Work
Krishnamurthy and Mitchell (2012) also create a se-
mantic parser for Freebase, covering 77 of Free-
base’s over 2000 relations. Like our work, their
technique uses distant supervision to drive training
over a collection of sentences gathered from the
Web, and they do not require any manually-labeled
training data. However, their technique does require
manual specification of rules that construct CCG
lexical entries from dependency parses. In compar-
ison, we fully automate the process of constructing
CCG lexical entries for the semantic parser by mak-
ing it a learning task. We test our results on a dataset
of over 400 questions covering over 200 Freebase re-
lations, a more extensive test than the 50 questions
used by Krishnamurthy and Mitchell.

Yahya et al. (2012) report on a system for
translating natural language queries to SPARQL
queries over the Yago2 (Hoffart et al., 2013)
database. Yago2 consists of information extracted
from Wikipedia, WordNet, and other resources us-
ing manually-defined extraction patterns. The man-
ual extraction patterns pre-define a link between nat-
ural language terms and Yago2 relations. Our tech-
niques automate the process of identifying matches
between textual phrases and database relation sym-
bols, in order to scale up to databases with more
relations, like Freebase. A more minor difference
between Yahya et al.’s work and ours is that their
system handles SPARQL queries, which do not han-
dle aggregation queries like argmax and count.
We rely on an existing semantic parsing technology
to learn the language that will translate into such
aggregation queries. On the other hand, their test
questions involve more conjunctions and complex
semantics than ours. Developing a dataset with more
complicated semantics in the queries is part of our
ongoing efforts.

Goldwasser et al.’s self-supervised, grounded se-
mantic parser (2011) relies on co-training between
two different semantic parsing models, one being a
simple machine-translation model and the other a
more complex structured-prediction model. They
achieve an impressive F1 of 0.66 on the bench-
mark GeoQuery 250 (English) dataset, compared
with state-of-the-art supervised models that achieve
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accuracies around 0.85. Unlike semantic parsers
for Freebase, Goldwasser et al.’s work assumes that
a dataset of unlabeled geography questions already
exists, for use in unsupervised training. FreeParser
answers orthogonal questions: how can we auto-
matically acquire a dataset containing the right key-
words and phrases, given only the database itself,
and how can we ensure that the acquired sentences
are relevant to the relations in the database, with-
out manual supervision? Also, unlike Goldwasser
et al.’s experiments, FreeParser is tested in a signif-
icantly more challenging setting, with far more do-
mains, relations, and entities to be learned.

Many supervised learning frameworks have been
applied, including inductive logic programming
(Zelle and Mooney, 1996; Thompson and Mooney,
1999; Thompson and Mooney, 2003), support vec-
tor machine-based kernel approaches (Kate et al.,
2005; Kate and Mooney, 2006; Kate and Mooney,
2007), machine translation-style synchronous gram-
mars (Wong and Mooney, 2007), and context-
free grammar-based approaches like probabilistic
Combinatory Categorial Grammar (Zettlemoyer and
Collins, 2005; Zettlemoyer and Collins, 2007;
Zettlemoyer and Collins, 2009; Kwiatkowski et al.,
2010; Kwiatkowski et al., 2011; Lu et al., 2008) and
discriminative reranking (Ge and Mooney, 2006; Ge
and Mooney, 2009). These approaches have yielded
steady improvements on standard test sets like Geo-
Query, but are difficult to apply to Freebase because
of their built-in assumption that relation symbols
will be observed during training.

There has been a recent push towards develop-
ing techniques which reduce the annotation cost or
the data complexity of the models. Models have
been developed which can handle some ambiguity
in terms of which logical form is the correct label
for each training sentence (Chen et al., 2010; Liang
et al., 2009). Another set of approaches has investi-
gated the case where no logical forms are provided,
but instead some form of feedback or response from
the world is used as evidence for what the correct
logical form must have been (Clarke et al., 2010;
Liang et al., 2011; Artzi and Zettlemoyer, 2011).
While such techniques are important, they can only
reduce the annotation cost per domain, and annota-
tion efforts would still be required for each new do-
main that contains new database symbols. The goal
of the Freebase semantic parser, in contrast, is to

program actor role 

Party Down Ryan Hansen Kyle Bradway 

structure owner 

CN Tower Canada Lands Co. 

particle sub-particle number 

Proton Up Quark 2 

TV domain 

cast member table 

Architecture domain 

ownership table 

Physics domain 

particle composition 

Figure 2: Example Freebase relations (tables) and in-
stances for three domains.

port to all domains automatically, without any new
manually-labeled data per domain.

3 FreeParser

We introduce FreeParser, an automated system for
converting natural language sentences into represen-
tations of their meaning, where the relation and con-
stant symbols for the meaning representations are
taken from Freebase. FreeParser’s modules are de-
scribed below.
Sentence Retrieval Engine: This module con-
structs keyword queries for sentences that are likely
to express the same relationships as the ones ob-
served in Freebase. It uses an index over a large
corpus, currently a snapshot of English Wikipedia,
to identify sentences that match the query. Each sen-
tence, along with the Freebase relation r and query
q that generated it, is then fed to the Auto-Labeler.
Auto-Labeler: The Auto-Labeler uses knowledge
of the relation and query for a sentence to automati-
cally generate a simple logical form for the sentence.
The automatically-labeled sentences are then sent to
the Assessor.
Assessor: Using a set of domain-independent fea-
tures, the Assessor filters out sentences that are un-
suitable for training the semantic parser. These in-
clude sentences that are too long or complex, and
sentences where the label from the Auto-Labeler ap-
pears to be incorrect. The sentences that pass this
filter are added to the training data for FreeParser’s
semantic parser.
Open-domain Regularizer: FreeParser relies on an
existing semantic parser, but with a novel regularizer
that helps it learn more appropriate lexical entries for
domain-independent function words.

3.1 Sentence Retrieval Engine
The Sentence Retrieval Engine is FreeParser’s open-
domain technique for retrieving sentences from a
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Input: Freebase relation r, unlabeled corpus C
Output: Sent, a set of sentences relevant to r
1. Initialize Sent← ∅
2. E ←M random instances from r,

each projected onto two random attributes
3. E′ ← N pairs (e1, e2) ∈ E with smallest
relation-count(e1, e2)

4. For each (e1, e2) ∈ E′:
S2← {sentences in C containing e1 and e2}
S1← {sents containing e2, in docs with e1}
Sent← Sent ∪ S1 ∪ S2

5. Return Sent

Figure 3: The Sentence Retrieval Engine algorithm

corpus that are relevant to a particular relation in the
database.

Definition relevance: We say that a sentence s is
relevant to a relation r in Freebase if there exist
database symbols a1, . . . , ak such that r(a1, . . . , ak)
appears in Freebase, and r(a1, . . . , ak) forms part of
the meaning of s, if the meaning were written in a
logical form.

For example, for the cast member relation in the
Freebase sample shown in Figure 2, the sentence

Hansen also played Kyle Bradway on the
Starz show Party Down.

would be relevant, since the sentence expresses a
known instance of cast member.

Of course, the corpus given as input to the Sen-
tence Retrieval Engine contains only sentences, not
the logical forms required to determine relevance ac-
cording to our definition. FreeParser’s strategy is
to generate keyword queries that list several named
entities that belong to a particular relation. For in-
stance, one query that the Sentence Retrieval Engine
might generate for the cast member relation is
“Ryan Hansen Kyle Bradway,” and another might
be “Kyle Bradway Party Down.”

Figure 3 shows the algorithm for the Sentence
Retrieval Engine. In our experiments, we create
M = 1000 candidate entity pairs, and we select
N = 50 for queries. We use the open-source Apache
Lucene software for constructing an index over the
Wikipedia corpus and retrieving relevant sentences.

We have found that selecting good queries is in
fact quite tricky, and our experiments in Section 4.4

indicate how badly things can go wrong if it is not
done carefully. Two important lessons stand out:
First, for reasonable recall, we limit queries to just
one or two names. Queries with two names (we call
these 2-entity queries) are very often highly relevant,
but there are not enough sentences in Wikipedia that
match such queries for all relations. We therefore
also include queries (which we refer to as 1-entity
queries) that first identify Wikipedia articles for one
name from a relation, such as articles that mention
“Ryan Hansen”, and then within this resulting docu-
ment set, we select sentences that match a second
name, such as “Party Down”. The resulting sen-
tences therefore always contain one name from the
relation, and appear near (within the same document
as) a second name. These sentences are noisier than
sentences selected with two names, but there are far
more matches of such sentences within Wikipedia.

The second lesson for sentence retrieval is that we
need to select queries that are not ambiguous. For
instance, “James Cameron Avatar” retrieves many
sentences for the relation directed by. Un-
fortunately, this same query also produces many
sentences for the relations written by and won
award for. The two entities are not enough to un-
ambiguously identify the relationship between them.
To combat this problem, FreeParser scores candidate
queries according to relation-count, the number of
relations in Freebase that hold between the names
in the query, and keeps the top-N least ambiguous
queries, breaking ties randomly.

3.2 Auto-Labeler
The Auto-Labeler automatically generates a log-
ical form label for every sentence in our data
set. It provides a form of “distant supervision”
(Bunescu and Mooney, 2007). As an example, if
the sentence above were generated from the cast
member relation using the query “Hansen Brad-
way”, and “Hansen” and “Bradway” are names
for the database symbols Ryan Hansen and
Kyle Bradway, then the Auto-Labeler produces
∃pcast member(p,Ryan Hansen,Kyle Bradway) as a la-
bel for the sentence. The existentially quantified p
variable is necessary to supply enough arguments for
the cast member relation.

For the general case, let s be a sentence generated
from a relation r of arity n via queries involving the
entities e = (e1, . . . , em), and let a = (a1, . . . , am)
be the sequence of attribute indices of r such that
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Input: auto-labeled sentences S for relation r
Output: S′ ⊂ S, a high-quality training dataset

1. For each (s, l) ∈ S:
C[s, l]← complexity-score(s, l)

2. Sort S in descending order according to C
3. T ← top 100 examples from S
4. CW ← critical-words(T )
5. result← ∅
6. For each cw ∈ CW :
Scw ← top two (s, l) ∈ (S − result)

such that s contains cw
result← result ∪ Scw

7. Return result

Figure 4: The Assessor algorithm

ei is a value for r’s attribute ai. The Auto-Labeler
produces the following logical form for s:

∃v1, . . . vn s.t. r(v1, . . . , vn)∧
va1 = e1 ∧ . . . ∧ vam = em

3.3 Assessor
Automatically retrieving training sentences from an
unlabeled corpus is a noisy process. In order to
improve its precision, FreeParser automatically as-
sesses whether each sentence from the Sentence Re-
trieval Engine is relevant and useful for training. Its
goal is to select, for each relation r, a set of sen-
tences that are all structurally simple; that include a
variety of ways of expressing r in English; and that
do not include any sentences about other relations
r′. The full Assessor algorithm is given in Figure 4.

The Assessor uses two sources of evidence. The
first is the complexity of the sentence. After ex-
perimenting with numerous features for measur-
ing complexity, we have found that a few types
of word counts are the most helpful. Specifically,
the most helpful features include: the number of
words between two named entities (for two-entity
queries), the number of words before the named
entity that was part of the query (for one-entity
queries), and the total number of non-named-entity,
non-stopword words in the sentence. Our imple-
mentation uses a list of 200 common stopwords. We
trained a maximum-entropy classifier over the com-
plexity features to predict the probability that a sen-
tence is simple enough for training. We manually

labeled a small sample of 50 sentences, which were
retrieved for relations not found in any of our test
sentences. Sentences that truly expressed the rela-
tions in the logical form and no other relation were
labeled as positive, and all others were labeled neg-
ative. The Assessor uses the probability from this
classifier to rank all sentences for a relation, and se-
lects the top 100 sentences for further processing.

Complexity statistics alone are not sufficient for
selecting good training sentences. For instance,
“‘Being Spiderman is a dream come true,’ says An-
drew Garfield” is a short sentence mentioning two
entities that participate in the acted in relation.
However, none of the words in the sentence are par-
ticularly indicative of acted in, and if FreeParser
were to use this as a training sentence, it would most
likely learn a wrong lexical entry.

The Assessor additionally weeds out sentences
which do not include words strongly associated with
a database relation. Previous work has used statisti-
cal machine translation models like IBM Model 1
(Brown et al., 1993) as a method for initially de-
termining which words should be associated with
which database symbols. After experimenting with
this and other models, as implemented in GIZA++
(Och and Ney, 2003), we have found that a simpler
procedure is more effective for finding the words
which are most indicative of a database relation.
Taking the set T of top 100 sentences for r from the
complexity ranker, we preprocess the sentences by
discarding stopwords and applying stemming. We
then count all the remaining word types v ∈ V
appearing in T , and rank them by frequency. We
select the top K as word stems that are highly in-
dicative of relation r; we call these word stems the
critical words for r. For example, for the relation
date founded, this technique produces the crit-
ical words “found,” “establish,” and “settl,” among
others. Sentences which do not contain some vari-
ant of one of these critical words are unlikely to be
good training examples. To obtain a set of diverse
but relevant sentences, the Assessor selects at most
two sentences for each of the K critical words, tak-
ing care not to select any sentence twice. In practice
we found that using more than 2 sentences per criti-
cal word has no effect on parsing accuracy, but slows
the parser training procedure significantly. We tuned
K on development data, and set it to K = 7.
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Example lexical entries for “is” learned by UBL

S|NP : λx . religion(x)
S|NP |NP : λxλy . person(x)∧

appearance type(x, newscaster)
S|NP |NP : λxλy . brand(x, y)∧

company brand relationship(x)

Table 2: Overly-specific lexical entries for the function
word “is,” as learned by a state-of-the-art PCCG se-
mantic parser on our Freebase data set. All entries
shown have significant positive weight in the learned lex-
icon.

3.4 Initializing the Lexicon for Learning a
Semantic Parser

Existing semantic parsing technology requires some
initial knowledge in order to learn a full parser. Typ-
ically, this knowledge includes lexical entries for
named entities and the database symbols to which
they correspond, a small number of additional en-
tries for important function words, and a procedure
for initializing the weights for learned lexical en-
tries. For instance, UBL uses GIZA++ (Och and
Ney, 2003) to initialize the weight of learned lexi-
cal entries.

FreeParser includes initial lexical entries for all
named entities in our dataset, as well as 29 hand-
crafted lexical entries for the words “who,” “what,”
“when,” and “where.” These helped to combat
the problem of learning a semantic parser from
small numbers of questions and large numbers of
automatically-retrieved sentences that were almost
all declarative statements rather than questions. Fol-
lowing Kwiatkowski et al., these hand-crafted lexi-
cal entries are assigned a fixed positive initial weight
of 10. We found the following procedure more effec-
tive than GIZA++ for initializing the lexicon weights
for learned lexical entries in practice: for each crit-
ical word and relation pair (v, r) in the sentences
from the Assessor, we found a maximum likelihood
estimate of P (v|r), the probability of observing the
critical word v, given that a sentence expresses the
relation r. We then created initial learned lexical en-
tries that pair v and r, with a weight equal to P (v|r).

3.5 New Learning Component for Semantic
Parsing: An Open-Domain Regularizer

Training FreeParser’s semantic parsing component
on the automatically-labeled sentences, as the sys-

tem has been described thus far, results in disap-
pointing performance. This is in large part because
the UBL semantic parser learns highly domain-
specific meanings for function words. Table 2 shows
example lexical entries learned for the word “is”.
These types of learned meanings are the rule, not
the exception, in the existing semantic parser. For
single-domain tests, they pose no particular diffi-
culties, even though intuitively they are bad repre-
sentations of the meaning of a function word. For
open-domain semantic parsing, however, it becomes
nearly impossible to parse sentences correctly on
a new domain, if the only meanings for function
words include relations from training domains.

To overcome this problem, we devised a novel
regularization technique to encourage the parser to
learn domain-independent meanings for function
words. Unlike most of FreeParser, this technique
is specific to the log-linear CCG semantic pars-
ing technique used by Kwiatkowski et al. How-
ever, similar mechanisms could potentially be de-
vised for other semantic parsing frameworks. The
Kwiatkowski et al. model includes a feature func-
tion fw,l for every lexical entry mapping a wordw to
a logical form l. Our novel regularizer R(·) over the
parameters θ, which we call an open-domain regu-
larizer, penalizes parameters for lexical entries map-
ping function words to any domain-specific lambda
calculus expression. Formally, let F be a set of func-
tion words, and P a set of domain-specific predi-
cates from Freebase:

R(θ) =
∑
w,l

{
θ2
w,l if w ∈ F ∧ ∃p ∈ P.p ∈ l

0 otherwise.

In our implementation, we added all relations in
Freebase that are not part of its common domain to
P , and collected a set of 282 common English func-
tion words for F .

4 Experiments

We now test FreeParser’s ability to provide semantic
parses in domains where it has seen no manually-
labeled training data. We also empirically analyze
the design decisions for FreeParser.

4.1 Experimental Setup
All of our experiments are conducted on the Free-
base dataset described in Section 2.1. To create
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Q: What is ‘Big Daddy’ rated?
Movie ratings are stored as special codes in Free-
base, and are rarely observed ‘as is’ in text.

Q: Who is the CEO of Apple?
Wikipedia regularly uses the full form ‘Chief Ex-
ecutive Officer’; no retrieved sentence had ‘CEO’
together with the executive’s name and company
name.

Q: When did Jack Albertson die?
Many sentences contain “person died on date”, but
no retrieved sentence contained the morphological
variant “(did) die.”

Table 3: Example infeasible questions, and why
FreeParser had difficulty finding sentences in Wikipedia
that contain the relevant keywords from the question.

manually-labeled training and test sets for domain
adaptation, we divide the dataset into three groups
of nearly-equal size by placing similar domains to-
gether in the same group. No domain has ques-
tions in more than one group. We then perform 3-
fold cross-validation across these three groups. We
run FreeParser’s Sentence Retrieval Engine, Auto-
Labeler, and Assessor for all relations that appear
in our dataset, and we include the automatically-
labeled data in the training data.

4.2 Testing the Sentence Retrieval Engine

179 of the 403 questions (44%) in our dataset in-
cluded critical words which could not be found us-
ing the Sentence Retrieval Engine’s queries over
Wikipedia. Table 3 lists example infeasible ques-
tions. One obvious improvement is to open the re-
trieval engine to sentences from the Web, for greater
recall; this is an important task for future work. For
now, this is FreeParser’s biggest source of errors.
However, note that without this component, the se-
mantic parser parses none of the test data correctly.

4.3 Open-domain semantic parsing tests

We now turn to an experiment that assesses the full
FreeParser system on open-domain semantic pars-
ing. For the current experiments, we concentrate
on the 224 questions (56% of the full dataset) for
which all of the words (except named entities) could
be found in at least one of the auto-labeled sentences
returned by the Sentence Retrieval Engine. We call

these 224 questions the feasible questions. For the
remaining infeasible questions, FreeParser almost
never produces a correct logical form.

Figure 5 shows FreeParser’s performance on fea-
sible questions in all test domains, as well as for each
of the seven most-common test domains. FreeParser
performs quite well, achieving an overall F1 of
0.71, which represents a huge improvement over the
F1 of 0.0 for the supervised UBL semantic parser
in a domain adaptation setting. An unsupervised
parser, which uses only the initial lexical entries
from FreeParser and the auto-labeled training data,
achieves an F1 of 0.43. Precision and recall differ-
ences between FreeParser and these two baselines
are statistically significant (p < 0.01) using Fisher’s
exact test. Including both feasible and infeasible
questions, FreeParser’s F1 is 0.37 because of the low
recall on infeasible questions, but as more unlabeled
text becomes available to FreeParser, it should have
fewer and fewer infeasible questions.

4.4 Testing Critical Design Components
We tested FreeParser with different choices for key
parts of the design, to measure their impact. Ta-
ble 4 presents precision, recall, and F1 scores for
four variations of FreeParser, where each variation
is missing a critical component of the design. In the
first variation, the Sentence Retrieval Engine only
issues two-entity queries; it is missing the ability to
issue the less-precise single-entity queries. In the
second variation, the Assessor uses only the critical
words to select sentences for training; it is missing
the ability to rank sentences based on their complex-
ity. In the third variation, the Assessor selects the
top 2K, or 14, sentences based on the complexity
ranking; it ignores the critical words test. Finally,
the last variation shows FreeParser’s performance
when UBL’s training procedure has not been mod-
ified with the open-domain regularizer.

Deleting any one of these critical design ele-
ments substantially degrades FreeParser’s perfor-
mance, but the 1-entity queries appear to be the most
critical design choice, followed by the critical words
test and open-domain regularizer. Removing the 1-
entity queries surprisingly hurts both precision and
recall. The 2-entity queries do tend to retrieve bet-
ter sentences on average than 1-entity queries, but
because they retrieve so few, the Assessor has more
difficulty selecting good critical words.

Error analysis showed that incorrect or missing
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Figure 5: FreeParser achieves an overall F1 of 0.71, in a test where every correct logical form has some element
never seen in manually-labeled training data. Results across different domains vary, but FreeParser performs well
in a variety of domains. Numbers next to domain labels indicate the number of feasible test questions. Results for
“all” domains are the micro-average across our three cross-validation folds.

Model P R F1

−1-entity queries .29 .29 .29
−complexity ranking .59 .53 .56
−critical words test .47 .41 .44
−open-domain regul. .50 .45 .47
FreeParser .72 .70 .71

Table 4: FreeParser compared with variations that are
missing critical design components. All precision and
recall differences between the full system and its varia-
tions are statistically significant (p < 0.01) using a two-
tailed Fisher’s exact test.

lexical entries for critical words were responsible for
most (68%) of the 67 incorrect or missing parses for
feasible test questions. Many of the incorrect en-
tries mapped critical words like “directed” to related
but incorrect predicates, like written by. Miss-
ing lexical entries were often because the Assessor
incorrectly weeded out good auto-labeled examples.
The remaining 32% of the errors were mostly due to
complex syntax in the questions, or vague questions
that require significant reasoning to come up with a
valid interpretation.

5 Conclusion and Future Work

Most work on semantic parsing focuses on improv-
ing parser accuracy on a small number of relations in
a single domain. FreeParser is an exploration of the
possibility of automated semantic parsing for arbi-

trary domains. Among the lessons from our experi-
ence in designing FreeParser, these stand out: First,
finding training sentences that cover all of the dif-
ferent ways a person may refer to a database ele-
ment is difficult, and requires carefully constructed
retrieval mechanisms for sufficient recall. Second,
simple measures of sentence complexity and cooc-
currence statistics are effective techniques for iden-
tifying good training sentences. And third, standard
semantic parsing algorithms require modification for
open-domain semantic parsing, to enforce that func-
tion words are not mapped to domain-specific logi-
cal forms. We report results that help in understand-
ing FreeParser’s current strengths and weaknesses,
and that also serve as a baseline for future open-
domain semantic parsers.

Significant work remains: ideally, a system would
be able to incorporate relational data from multi-
ple schemas, and could leverage much larger cor-
pora for learning alignments. Also, FreeParser cur-
rently maps English words only to individual Free-
base symbols; more sophisticated algorithms and
representations are necessary for learning how to
map to conjunctions, disjunctions, and more com-
plex combinations of Freebase symbols.
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