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Abstract

We describe the Heidelberg University system
for the Cross-lingual Textual Entailment task
at SemEval-2012. The system relies on fea-
tures extracted with statistical machine trans-
lation methods and tools, combining mono-
lingual and cross-lingual word alignments
as well as standard textual entailment dis-
tance and bag-of-words features in a statisti-
cal learning framework. We learn separate bi-
nary classifiers for each entailment direction
and combine them to obtain four entailment
relations. Our system yielded the best overall
score for three out of four language pairs.

1 Introduction

Cross-lingual textual entailment (CLTE) (Mehdad et
al., 2010) is an extension of textual entailment (TE)
(Dagan and Glickman, 2004). The task of recog-
nizing entailment is to determine whether a hypoth-
esis H can be semantically inferred from a text T .
The CLTE task adds a cross-lingual dimension to the
problem by considering sentence pairs, where T and
H are in different languages. The SemEval-2012
CLTE task (Negri et al., 2012) asks participants to
judge entailment pairs in four language combina-
tions1, defining four target entailment relations, for-
ward, backward, bidirectional and no entailment.

We investigate this problem in a statistical learn-
ing framework, which allows us to combine cross-
lingual word alignment features as well as common

1Spanish-English (es-en), Italian-English (it-en), French-
English (fr-en) and German-English (de-en).

monolingual entailment metrics, such as bag-of-
words overlap, edit distance and monolingual align-
ments on translations of T and H , using standard
statistical machine translation (SMT) tools and re-
sources. Our goal is to address this task without deep
processing components to make it easily portable
across languages. We argue that the cross-lingual
entailment task can benefit from direct alignments
between T and H , since a large amount of bilin-
gual parallel data is available, which naturally mod-
els synonymy and paraphrasing across languages.

2 Related Work

With the yearly Recognizing Textual Entailment
(RTE) challenge (Dagan et al., 2006), there has been
a lot of work on monolingual TE. We therefore in-
clude established monolingual features in our ap-
proach, such as alignment scores (MacCartney et
al., 2008), edit distance and bag-of-words lexical
overlap measures (Kouylekov and Negri, 2010). So
far, the only work on CLTE that we are aware of is
Mehdad et al. (2010), where the problem is reduced
to monolingual entailment using machine transla-
tion, and Mehdad et al. (2011), which exploits par-
allel corpora for generating features based on phrase
alignments as input to an SVM. Our approach com-
bines ideas from both, mostly resembling Mehdad
et al. (2011). There are, however, several differ-
ences; we use word translation probabilities instead
of phrase tables and model monolingual and cross-
lingual alignment separately. We also include addi-
tional similarity measures derived from the MT eval-
uation metric Meteor, which was used in Volokh and
Neumann (2011) for the monolingual TE task. Con-
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versely, Padó et al. (2009) showed that textual entail-
ment features can be used for measuring MT quality,
indicating a strong relatedness of the two problems.

The CLTE task is also related to the problem of
identifying parallel sentence pairs in a non-parallel
corpus, so we adapt alignment-based features from
Munteanu and Marcu (2005), where a Maximum
Entropy classifier was used to judge if two sentences
are sufficiently parallel.

Regarding the view on entailment, MacCartney
and Manning (2007) proposed the decomposition
of top-level entailment, such as equivalence (which
corresponds to the CLTE bidirectional class), into
atomic forward and backward entailment predic-
tions, which is mirrored in our multi-label approach
with two binary classifiers.

3 SMT Features for CLTE

The SemEval-2012 CLTE task emerges from the
monolingual RTE task; however the perception of
entailment differs slightly. In CLTE, the sentences
T1 and T2 are of roughly the same length and the
entailment is predicted in both directions. Negri et
al. (2011) states that the CLTE pairs were created
by paraphrasing an English sentence E and leaving
out or adding information to construct a modified
sentence E′, which was then translated into a dif-
ferent language2, yielding sentence F and thus cre-
ating a bilingual entailment pair. For this reason,
we believe that our system should be less inference-
oriented than some previous RTE systems and rather
should capture

• paraphrases and synonymy to identify semantic
equivalence,

• phrases that have no matching correspondent in
the other sentence, indicating missing (respec-
tively, additional) information.

To this end, we define a number of similarity
metrics based on different views on the data pairs,
which we combine as features in a statistical learn-
ing framework. Our features are both cross- and
monolingual. We obtain monolingual pairs by trans-
lating the English sentence E into the foreign lan-

2We refer to the non-English language sentence as F .

guage, yielding T (E) and vice versa T (F ) from F ,
using Google Translate3.

3.1 Token ratio features

A first indicator for additional or missing informa-
tion are simple token ratio features, i.e. the fraction
of the number of tokens in T1 and T2. We define
three token ratio measures:

• English-to-Foreign, |E||F |

• English-to-English-Translation, |E|
|T (F )|

• Foreign-to-Foreign-Translation, |T (E)|
|F |

3.2 Bag-of-words and distance features

Typical similarity measures used in monolingual
TE are lexical overlap metrics, computed on bag-
of-words representations of both sentences. We
use the following similarities, computing both
sim(E, T (F )) and sim(F, T (E)).

• Jaccard coefficient, sim(A, B) = |A∩B|
|A∪B|

• Overlap coefficient, sim(A, B) = |A∩B|
min(|A|,|B|)

We also compute the lexical overlap on bigrams
and trigrams.

In addition, we include a simple distance measure
based on string edit distance ed, summing up over
all distances between every token a in A and its most
similar token b in B, where we assume that the cor-
responding token is the one with the smallest edit
distance:

• dist(A, B) = log
∑
a∈A

min
b∈B

ed(a, b)

3.3 Meteor features

The Meteor scoring tool (Denkowski and Lavie,
2011) for evaluating the output of statistical machine
translation systems can be used to calculate the simi-
larity of two sentences in the same language. Meteor
uses stemming, paraphrase tables and synonym col-
lections to align words between the two sentences
and scores the resulting alignment. We include the
overall weighted Meteor score both for (E, T (F ))

3http://translate.google.com/
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and (F, T (E))4 as well as separate alignment preci-
sion, recall and fragmentation scores for (E, T (F )).

3.4 Monolingual alignment features
We use the alignments output by the Meteor-1.3
scorer for (E, T (F ))5 to calculate the following
metrics:

• number of unaligned words

• percentage of aligned words

• length of the longest unaligned subsequence

3.5 Cross-lingual alignment features
We calculate IBM model 1 word alignments (Brown
et al., 1993) with GIZA++ (Och and Ney, 2003) on
a data set concatenated from Europarl-v66 (Koehn,
2005) and a bilingual dictionary obtained from
dict.cc7 for coverage. We then heuristically align
each word e in E with the word f in F for which we
find the highest word translation probability p(e|f)
and vice versa. Words for which no translation is
found are considered unaligned. From this align-
ment a, we derive the following features both for
E and F (resulting in a total of eight cross-lingual
alignment features):

• number of unaligned words

• percentage of aligned words

• alignment score 1
|E|

∑
e∈E

p(e|a(e))

• length of the longest unaligned subsequence

4 Classification

To account for the different data ranges, we normal-
ized all feature value distributions to the normal dis-
tribution N (0, 1

3), so that 99% of the feature values
are in [−1, 1]. We employed SVMlight (Joachims,
1999) for learning different classifiers to output the
four entailment classes. We submitted a second

4Meteor-1.3 supports English, Spanish, French and German.
We used the Spanish version for scoring Italian, since those lan-
guages are related.

5Since the synonymy module is only available for English,
we do not use the alignment of (F, T (E)).

6http://www.statmt.org/europarl/
7http://www.dict.cc/

T1 → T2 T2 → T1 entailment
1 1 bidirectional
1 0 forward
0 1 backward
0 0 no entailment

Table 1: Combination of atomic entailment relations.

run to evaluate our recently implemented stochastic
learning toolkit Sol (Fendrich, 2012), which imple-
ments binary, multi-class, and multi-label classifica-
tion.

For development, we split the training set in two
parts, which were alternatingly used as training and
test set. We first experimented with a multi-class
classifier that learned all four entailment classes at
once. However, although the task defines four tar-
get entailment relations, those can be broken down
into two atomic relations, namely directional entail-
ment from T1 to T2 and from T2 to T1 (table 1). We
therefore learned a binary classifier for each atomic
entailment relation and combined the output to ob-
tain the final entailment class. We found this view to
be a much better fit for the problem, improving the
accuracy score on the development set by more than
10 percentage points (table 2). This two-classifiers
approach can also be seen as a variant of multi-label
learning, with the two atomic entailment relations
as labels. We therefore also trained a direct imple-
mentation of multi-label classification. Although it
substantially outperformed the multi-class approach,
the system yielded considerably lower scores than
the version using two binary classifiers.

5 Results

The accuracy scores of our two runs on the
SemEval-2012 CLTE test set are presented in ta-
ble 3. Our system performed best out of ten sys-
tems for the language pairs es-en and de-en and tied
in first place for fr-en. For it-en, our system came
in second. Regarding the choice of the learner, our
toolkit slightly outperformed SVMlight on three of
the four language pairs.

To determine the contribution of different fea-
ture types for each language combination, we per-
formed ablation tests on the development set, where
we switched off groups of features and measured the

469



es-en it-en fr-en de-en
multi-class 0.47 0.456 0.466 0.458
multi-label 0.586 0.526 0.568 0.522
2× binary 0.646 0.614 0.628 0.588

Table 2: Different classifiers on development set.

es-en it-en fr-en de-en
SVMlight 0.630 0.554 0.564 0.558
Sol 0.632 0.562 0.570 0.552

Table 3: Results on test set.

impact on the accuracy score (table 4). We assessed
the statistical significance of differences in score
with an approximate randomization test8 (Noreen,
1989), indicating a significant impact in bold font.
The results show that only in two cases a single fea-
ture group significantly impacts the score, namely
the Meteor score features for es-en and the cross-
lingual alignment features for de-en. However, no
feature group hurts the score either, since negative
variations in score are not significant. To ensure
that the different feature groups actually express di-
verse information, we also evaluated our system us-
ing only one group of features at a time. The re-
sults confirm the most significant feature type for
each language pair, but even the best-scoring feature
group for each pair always yielded scores 3-6 per-
centage points lower than the system with all feature
groups combined. We therefore conclude that the
combination of diverse features is one key aspect of
our system.

8Using a significance level of 0.05.

6 Conclusions

We have shown that SMT methods can be profitably
applied for the problem of CLTE and that combining
different feature types improves accuracy. Key to
our approach is furthermore the view of the four-
class entailment problem as a bidirectional binary or
multi-label problem. A possible explanation for the
superior performance of the multi-label approach is
that the overlap of the bidirectional entailment with
forward and backward entailment might confuse the
multi-class learner.

Regarding future work, we think that our results
can be improved by building on better alignments,
i.e. using more data for estimating cross-lingual
alignments and larger paraphrase tables. Further-
more, we would like to investigate more thoroughly
in what way the representation of the problem in
terms of machine learning impacts the system per-
formance on the task – in particular, why the two-
classifiers approach substantially outperforms the
multi-label implementation.
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