
First Joint Conference on Lexical and Computational Semantics (*SEM), pages 310–318,
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Abstract

This paper describes the first of two systems
submitted from the University of Oslo (UiO)
to the 2012 *SEM Shared Task on resolving
negation. Our submission is an adaption of
the negation system of Velldal et al. (2012),
which combines SVM cue classification with
SVM-based ranking of syntactic constituents
for scope resolution. The approach further ex-
tends our prior work in that we also identify
factual negated events. While submitted for
the closed track, the system was the top per-
former in the shared task overall.

1 Introduction

The First Joint Conference on Lexical and Compu-
tational Semantics (*SEM 2012) hosts a shared task
on resolving negation (Morante and Blanco, 2012).
This involves the subtasks of (i) identifying nega-
tion cues, (ii) identifying the in-sentence scope of
these cues, and (iii) identifying negated (and factual)
events. This paper describes a system submitted by
the Language Technology Group at the University of
Oslo (UiO). Our starting point is the negation system
developed by Velldal et al. (2012) for the domain of
biomedical texts, an SVM-based system for classi-
fying cues and ranking syntactic constituents to re-
solve cue scopes. However, we extend and adapt
this system in several important respects, such as in
terms of the underlying linguistic formalisms that
are used, the textual domain, handling of morpho-
logical cues and discontinuous scopes, and in that
the current system also identifies negated events.

The data sets used for the shared task include
the following, all based on negation-annotated Co-
nan Doyle (CD) stories (Morante and Daelemans,
2012): a training set of 3644 sentences (hereafter

referred to as CDT), a development set of 787 sen-
tences (CDD), and a held-out evaluation set of 1089
sentences (CDE). We will refer to the combination
of CDT and CDD as CDTD. An example of an an-
notated sentence is shown in (1) below, where the
cue is marked in bold, the scope is underlined, and
the event marked in italics.

(1) There was no answer.

We describe two different system configurations,
both of which were submitted for the closed track
(hence we can only make use of the data provided
by the task organizers). The systems only differ
with respect to how they were optimized. In the
first configuration, (hereafter I), all components in
the pipeline had their parameters tuned by 10-fold
cross-validation across CDTD. The second config-
uration (II) is tuned against CDD using CDT for
training. The rationale for this strategy is to guard
against possible overfitting effects that could result
from either optimization scheme, given the limited
size of the data sets. For the held-out testing all mod-
els are estimated on the entire CDTD.

Unless otherwise noted, all reported scores are
generated using the evaluation script provided by the
organizers, which breaks down performance with re-
spect to cues, events, scope tokens, and two vari-
ants of scope-level exact match (one requiring exact
match of cues and the other only partial cue match).
The latter two scores are identical for our system
hence are not duplicated in this paper. Furthermore,
as we did not optimize for the scope tokens measure
this is only reported for the final evaluation.

Note also that the evaluation actually includes
two variants of the metrics mentioned above; a set
of primary measures with precision computed as
P = TP/(TP + FP ) and a set of so-called B mea-
sures that instead uses P = TP/S, where S is the
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total number of predictions made by the system. The
reason why S is not identical with TP + FP is
that partial matches are only counted as FNs (and
not FPs) in order to avoid double penalties. We
do not report the B measures for development test-
ing as they were only introduced for the final eval-
uation and hence were not considered in our sys-
tem optimization. We note though, that the relative-
ranking of participating systems for the primary and
B measures is identical, and that the correlation be-
tween the paired lists of scores is nearly perfect
(r = 0.997).

The paper is structured according to the compo-
nents of our system. Section 2 details the process of
identifying instances of negation through the disam-
biguation of known cue words and affixes. Section 3
describes our hybrid approach to scope resolution,
which utilizes both heuristic and data-driven meth-
ods to select syntactic constituents. Section 4 dis-
cusses our event detection component, which first
applies a classifier to filter out non-factual events
and then uses a learned ranking function to select
events among in-scope tokens. End-to-end results
are presented in Section 5.

2 Cue Detection

Cue identification is based on the light-weight clas-
sification scheme presented by Velldal et al. (2012).
By treating the set of cue words as a closed class,
Velldal et al. (2012) showed that one could greatly
reduce the number of examples presented to the
learner, and correspondingly the number of fea-
tures, while at the same time improving perfor-
mance. This means that the classifier only attempts
to ‘disambiguate’ known cue words, while ignoring
any words not observed as cues in the training data.

The classifier applied in the current submission
is extended to also handle morphological or affixal
negation cues, such as the prefix cue in impatience,
the infix in carelessness, and the suffix of colourless.
The negation affixes observed in CDTD are; the pre-
fixes un, dis, ir, im, and in; the infix less (we inter-
nally treat this as the suffixes lessly and lessness);
and the suffix less. Of the total set of 1157 cues in
the training and development data, 192 are affixal.
There are, however, a total of 1127 tokens matching
one of the affix patterns above, and while we main-

tain the closed class assumption also for the affixes,
the classifier will need to consider their status as a
cue or non-cue when attaching to any such token, as
in image, recklessness, and bless.

2.1 Features
In the initial formulation of Velldal (2011), an SVM
classifier was applied using simple n-gram features
over words, both full forms and lemmas, to the
left and right of the candidate cues. In addition to
these token-level features, the classifier we apply
here includes features specifically targeting affixal
cues. The first such feature records character n-
grams from both the beginning and end of the base
that an affix attaches to (up to five positions). For
a context like impossible we would record n-grams
such as {possi, poss, . . .} and {sible, ible, . . .}, and
combine this with information about the affix itself
(im) and the token part-of-speech (“JJ”).

For the second type of affix-specific features, we
try to emulate the effect of a lexicon look-up of the
remaining substring that an affix attaches to, check-
ing its status as an independent base form and its
part-of-speech. In order to take advantage of such
information while staying within the confines of the
closed track, we automatically generate a lexicon
from the training data, counting the instances of each
PoS tagged lemma in addition to n-grams of word-
initial characters (again recording up to five posi-
tions). For a given match of an affix pattern, a fea-
ture will then record these counts for the substring it
attaches to. The rationale for this feature is that the
occurrence of a substring such as un in a token such
as underlying should be less likely as a cue given
that the first part of the remaining string (e.g., derly)
would be an unlikely way to begin a word.

It is also possible for a negation cue to span multi-
ple tokens, such as the (discontinuous) pair neither /
nor or fixed expressions like on the contrary. There
are, however, only 16 instances of such multiword
cues (MWCs) in the entire CDTD. Rather than let-
ting the classifier be sensitive to these corner cases,
we cover such MWC patterns using a small set of
simple post-processing heuristics. A small stop-list
is used for filtering out the relevant words from the
examples presented to the classifier (on, the, etc.).
Note that, in terms of training the final classifiers,
CDTD provides us with a total of 1162 positive and
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Data set Model Prec Rec F1

CDTD
Baseline 92.25 88.50 90.34
ClassifierI 94.99 95.07 95.03

CDD
Baseline 90.68 84.39 87.42
ClassifierII 93.75 95.38 94.56

CDE
Baseline 87.10 92.05 89.51
ClassifierI 91.42 92.80 92.10
ClassifierII 89.17 93.56 91.31

Table 1: Detecting negation cues using the two clas-
sifiers and the majority-usage baseline.

1100 negative training examples, given our closed-
class treatment of cues.

Before we turn to the results, note that the dif-
ference between the two submitted versions of the
classifier (I and II) only concerns the orders of the
n-grams used for the token-level features.1

2.2 Results
Table 1 presents the results for our cue classifier. As
an informed baseline, we also tried classifying each
word based on its most frequent use as a cue or non-
cue in the training data. (Affixal cue occurrences are
counted by looking at both the affix-pattern and the
base it attaches to, basically treating the entire token
as a cue. Tokens that end up being classified as cues
are then matched against the affix patterns observed
during training in order to correctly delimit the an-
notation of the cue.) This simple majority-usage
approach actually provides a fairly strong baseline,
yielding an F1 of 90.34 on CDTD. Compare this to
the F1 of 95.03 obtained by the classifier on the same
data set. However, when applying the models to the
held-out set, with models estimated over the entire
CDTD, the classifier suffers a slight drop in perfor-
mance, leaving the baseline even more competitive:
While our best performing final cue classifier (I)
achieves F1=92.10, the baseline achieves F1=89.51,
and even outperforms four of the ten cue detection
systems submitted for the shared task (three of the
12 shared task submissions use the same classifier).

1Classifier I records the lemma and full form of the target
token, and lemmas two positions left/right. Classifier II records
the lemma, form, and PoS of the target, full forms three posi-
tions to the left and one to the right, PoS one position right/left,
and lemmas three positions to the right. The affixal-specific fea-
tures are the same for both configurations as described above.
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DT
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NN
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.

Figure 1: Example parse tree provided in the data,
highlighting our candidate scope constituents.

Inspecting the predictions of the classifier on
CDD, which comprises a total of 173 gold anno-
tated cues, we find that Classifier I mislabels 11
false positives (FPs) and seven false negatives (FNs).
Of the FPs, we find five so-called false negation
cues (Morante et al., 2011), including three in-
stances of the fixed expression none the less. The
others are affixal cues, of which two are clearly
wrong (underworked, universal) while others might
arguably be due to annotation errors (insuperable,
unhappily, endless, listlessly). Among the FNs, two
are due to MWCs not covered by our heuristics (e.g.,
no more), with the remainder concerning affixes.

3 Constituent-Based Scope Resolution

During the development of our scope resolution sys-
tem we have pursued both a rule-based and data-
driven approach. Both are rooted in the assumption
that the scope of negations corresponds to a syntac-
tically meaningful unit. Our starting point here will
be the syntactic analyses provided by the task or-
ganizers (see Figure 1), generated using the rerank-
ing parser of Charniak and Johnson (2005). How-
ever, as alignment between scope annotations and
syntactic units is not straightforward for all cases,
we apply several exception rules that ‘slacken’ the
requirements for alignment, as discussed in Sec-
tion 3.1. In Sections 3.2 and 3.3 we detail our
rule-based and data-driven approaches, respectively.
Note that the predictions of the rule-based compo-
nent will be incorporated as features in the learned
model, similarly to the set-up described by Read et
al. (2011). Section 3.4 details the post-processing
we apply to handle cases of discontinuous scope, be-
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fore Section 3.5 finally presents development results
together with a brief error analysis.

3.1 Constituent Alignment and Slackening
In order to test our initial assumption that syntactic
units correspond to scope annotations, we quantify
the alignment of scopes with constituents in CDT,
excluding 97 negations that do not have a scope.
We find that the initial alignment is rather low at
52.42%. We therefore formulate a set of slacken-
ing heuristics, designed to improve on this alignment
by removing certain constituents at the beginning or
end of a scope. First of all, removing constituent-
initial and -final punctuation improves alignment to
72.83%. We then apply the following slackening
rules, with examples indicating the resulting scope
following slackening (not showing events):

- Remove coordination (CC) and following con-
juncts if the coordination is a rightwards sibling
of an ancestor of the cue and it is not directly
dominated by an NP.

(2) Since we have been so unfortunate as to miss him
and have no notion [. . . ]

- Remove S* to the right of cue, if delimited by
punctuation.

(3) “There is no other claimant, I presume ?”

- Remove constituent-initial SBAR.

(4) If it concerned no one but myself I would not
try to keep it from you.”

- Remove punctuation-delimited NPs.

(5) “But I can’t forget them, Miss Stapleton,” said I.

- Remove constituent-initial RB, CC, UH,
ADVP or INTJ.

(6) And yet it was not quite the last.

The slackening rules are based on a few obser-
vations. First, scope rarely crosses coordination
boundaries (with the exception of nominal coordi-
nation). Second, scope usually does not cross clause
boundaries (indicated by S/SBAR). Furthermore, ti-
tles and other nominals of address are not included
in the scope. Finally, sentence and discourse adver-
bials are often excluded from the scope. Since these
express semantic distinctions, we approximate this

RB//VP/SBAR if SBAR\WH*
RB//VP/S
RB//S
DT/NP if NP/PP
DT//SBAR if SBAR\WHADVP
DT//S
JJ//ADJPVP/S if S\VP\VB*[@lemma="be"]
JJ/NP/NP if NP\PP
JJ//NP
UH
IN/PP
NN/NP//S/SBAR if SBAR\WHNP
NN/NP//S
CC/SINV

Figure 2: Scope resolution heuristics.

notion syntactically using parts-of-speech and con-
stituent category labels expressing adverbials (RB),
coordinations (CC), various types of interjections
(UH, INTJ) and adverbial phrases (ADVP). We may
note here that syntactic categories are not always
sufficient to express semantic distinctions. Preposi-
tional phrases, for instance, are often used to express
the same type of discourse adverbials, but can also
express a range of other distinctions (e.g., tempo-
ral or locative adverbials), which are included in the
scope. So a slackening rule removing initial PPs was
tried but not found to improve overall alignment.

After applying the above slackening rules the
alignment rate for CDT improves to 86.13%. This
also represents an upper-bound on our performance,
as we will not be able to correctly predict a scope
that does not align with a (slackened) constituent.

3.2 Heuristics Operating over Constituents
The alignment of constituents and scopes reveal con-
sistent patterns and we therefore formulate a set of
heuristic rules over constituents. These are based
on frequencies of paths from the cue to the scope-
aligned constituent for the annotations in CDT, as
well as the annotation guidelines (Morante et al.,
2011). The rules are formulated as paths over con-
stituent trees and are presented in Figure 2. The
path syntax is based on LPath (Lai and Bird, 2010).
The rules are listed in order of execution, showing
how more specific rules are consulted before more
general ones. We furthermore allow for some ad-
ditional functionality in the interpretation of rules
by enabling simple constraints that are applied to
the candidate constituent. For example, the rule
RB//VP/SBAR if SBAR\WH* will be activated when
the cue is an adverb having some ancestor VP which
has a parent SBAR, where the SBAR must contain a
WH-phrase among its children.
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In cases where no rule is activated we use a de-
fault scope prediction, which expands the scope to
both the left and the right of the cue until either the
sentence boundary or a punctuation mark is reached.
The rules are evaluated individually in Section 3.5
below and the rule predictions are furthermore em-
ployed as features for the ranker described below.

3.3 Constituent Ranking
Our data-driven approach to scope resolution in-
volves learning a ranking function over candidate
syntactic constituents. The approach has similari-
ties to discriminative parse selection, except that we
here rank subtrees rather than full parses.

When defining the training data, we begin by se-
lecting negations for which the parse tree contains
a constituent that (after slackening) aligns with the
gold scope. We then select an initial candidate by
selecting the smallest constituent that spans all the
words in the cue, and then generate subsequent can-
didates by traversing the path to the root of the
tree (see Figure 1). This results in a mean ambi-
guity of 4.9 candidate constituents per negation (in
CDTD). Candidates whose projection corresponds
to the gold scope are labeled as correct; all others are
labeled as incorrect. Experimenting with a variety of
feature types (listed in Table 2), we use the imple-
mentation of ordinal ranking in the SVMlight toolkit
(Joachims, 2002) to learn a linear scoring function
for preferring correct candidate scopes.

The most informative feature type is the LPath
from cue, which in addition to recording the full
path from the cue to the candidate constituent
(e.g., the path to the correct candidate in Fig-
ure 1 is no/DT/NP/VP/S), also includes delexicalized
(./DT/NP/VP/S), generalized (no/DT//S), and gen-
eralized delexicalized versions (./DT//S).

Note that the rule prediction feature facilitates a
hybrid approach by recording whether the candidate
matches the boundaries of the scope predicted by the
rules of Section 3.2, as well as the degree of overlap.

3.4 Handling Discontinuous Scope
10.3% of the scopes in the training data are what
(Morante et al., 2011) refer to as discontinuous. This
means that the scope contains two or more parts
which are bridged by tokens other than the cue.

Feature types I II

LPath from cue • •
LPath from cue bigrams and trigrams • •
LPath from cue to left/right boundary •
LPath to left/right boundary •
LPath to root •
Punctuation to left/right • •
Rule prediction •
Sibling bigrams •
Size in tokens, relative to sentence (%) • •
Surface bigrams • •
Tree distance from cue • •

Table 2: Features used to describe candidate con-
stituents for scope resolution, with indications of
presence in our two system configurations.

(7) I therefore spent the day at my club and did not
return to Baker Street until evening.

(8) There was certainly no physical injury of any kind.

The sentence in (7) exemplifies a common cause
of scopal discontinuity in the data, namely ellipsis
(Morante et al., 2011). Almost all of these are cases
of coordination, as in example (7) where the cue is
found in the final conjunct (did not return [. . . ]) and
the scope excludes the preceding conjunct(s) (there-
fore spent the day at my club). There are also some
cases of adverbs that are excluded from the scope,
causing discontinuity, as in (8), where the adverb
certainly is excluded from the scope.

In order to deal with discontinuous scopes we for-
mulate two simple post-processing heuristics, which
are applied after rules/ranking: (1) If the cue is in
a conjoined phrase, remove the previous conjuncts
from the scope, and (2) remove sentential adverbs
from the scope (where a list of sentential adverbs
was compiled from the training data).

3.5 Results
Our development procedure evaluated all permuta-
tions of feature combinations, searching for opti-
mal parameters using gold-standard cues. Table 2
indicates which features are included in our two
ranker configurations, i.e., tuning by 10-fold cross-
validation on CDTD (I) vs. a train/test-split for
CDT/CDD(II).

Table 3 lists the results of our scope resolution
approaches applied to gold cues. As a baseline, all
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Data set Model Prec Rec F1

CDTD
Baseline 98.31 33.18 49.61
Rules 100.00 71.37 83.29
RankerI 100.00 73.55 84.76

CDD
Baseline 100.00 36.31 53.28
Rules 100.00 69.64 82.10
RankerII 100.00 70.24 82.52

CDE

Baseline 96.47 32.93 49.10
Rules 98.73 62.65 76.66
RankerI 98.77 64.26 77.86
RankerII 98.75 63.45 77.26

Table 3: Scope resolution for gold cues using the
two versions of the ranker, also listing the perfor-
mance of the rule-based approach in isolation.

cases are assigned the default scope prediction of the
rule-based approach. On CDTD this results in an F1

of 49.61 (P=98.31, R=33.18); compare to the ranker
in Configuration I on the same data set (F1=84.76,
P=100.00, R=73.55). We note that our different op-
timization procedures do not appear to have made
much difference to the learned ranking functions as
both perform similarly on the held-out data, though
suffering a slight drop in performance compared to
the development results. We also evaluate the rules
and observe that this approach achieves similar held-
out results. This is particularly note-worthy given
that there are only fourteen rules plus the default
scope baseline. Note that, as the rankers performed
better than the rules in isolation on both CDTD and
CDD during development, our final system submis-
sions are based on rankers I and II from Table 3.

We performed a manual error analysis of our
scope resolution system (RankerII) on the basis of
CDD (using gold cues). First, we may note that
parse errors are a common sources of scope res-
olution errors. It is well-known that coordina-
tion presents a difficult construction for syntactic
parsers, and we often find incorrectly parsed coordi-
nate structures among the system errors. Since coor-
dination is used both in the slackening rules and the
analysis of discontinuous scopes, these errors have
clear effects on system performance. We may fur-
ther note that discourse-level adverbials, such as in
the second place in example (9) below, are often in-
cluded in the scope assigned by our system, which
they should not be according to the gold annotation.

(9) But, in the second place, why did you not come at once?

There are also quite a few errors related to the scope
of affixal cues, which the ranker often erroneously
assigns a scope that is larger than simply the base
which the affix attaches to.

4 Event Detection

Our event detection component implements two
stages: First we apply a factuality classifier, and
then we identify negated events2 for those contexts
that have been labeled as factual. We detail the two
stages in order below.

4.1 Factuality Detection
The annotation guidelines of Morante et al. (2011)
specify that events should only be annotated for
negations that have a scope and that occur in fac-
tual statements. This means that we can view the
*SEM data sets to implicitly annotate factuality and
non-factuality, and take advantage of this to train an
SVM factuality classifier. We take positive exam-
ples to correspond to negations annotated with both
a scope and an event, while negative examples corre-
spond to scope negations with no event. For CDTD,
this strategy gives 738 positive and 317 negative ex-
amples, spread over a total of 930 sentences. Note
that we do not have any explicit annotation of cue
words for these examples. All we have are instances
of negation that we know to be within a factual or
non-factual context, but the indication of factuality
may typically be well outside the annotated nega-
tion scope. For our experiments here, we therefore
use the negation cue itself as a place-holder for the
abstract notion of context that we are really classi-
fying. Given the limited amount of data, we only
optimize our factuality classifier by 10-fold cross-
validation on CDTD (i.e., the same configuration is
used for submissions I and II).

The feature types we use are all variations over
bag-of-words (BoW) features. We include left- and
right-oriented BoW features centered on the nega-
tion cue, recording forms, lemmas, and PoS, and us-
ing both unigrams and bigrams. The features are ex-

2Note that the annotation guidelines use the term event
rather broadly as referring to a process, action, state, or prop-
erty (Morante et al., 2011).
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Data set Model Prec Rec F1 Acc

CDTD
Baseline 69.95 100.00 82.32 69.95
Classifier 84.51 96.07 89.92 83.98

CDE
Baseline 69.48 100.00 81.99 69.48
Classifier 77.73 95.91 85.86 78.31

Table 4: Results for factuality detection (using gold
negation cues and scopes). Due to the limited train-
ing data for factuality, the classifier is only opti-
mized by 10-fold cross-validation on CDTD.

tracted from the sentence as a whole, as well as from
a local window of six tokens to each side of the cue.

Table 4 provides results for factuality classifica-
tion using gold-standard cues and scopes.3 We also
include results for a baseline approach that simply
considers all cases to be factual, i.e., the majority
class. In this case precision is identical to accuracy
and recall is 100%. For precision and accuracy we
see that the classifier improves substantially over the
baseline on both data sets, although there is a bit of a
drop in performance when going from the 10-fold to
held-out results. There also seem to be some signs
of overfitting, given that roughly 70% of the training
examples end up as support vectors.

4.2 Ranking Events
Having filtered out non-factual contexts, events are
identified by applying a similar approach to that of
the scope-resolving ranker described in Section 3.3.
In this case, however, we rank tokens as candidates
for events. For simplicity in this first round of de-
velopment we make the assumption that all events
are single words. Thus, the system will be unable to
correctly predict the event in the 6.94% of instances
in CDTD that are multi-word.

We select candidate words from all those marked
as being in the scope (including substrings of to-
kens with affixal cues). This gives a mean ambigu-
ity of 7.8 candidate events per negation (in CDTD).
Then, discarding multi-word training examples, we
use SVMlight to learn a ranking function for identi-
fying events among the candidates.

Table 5 shows the features employed, with in-
3As this is not singled out as a separate subtask in the shared

task itself, these are the only scores in the paper not computed
using the script provided by the organizers.

Feature type I II

Contains affixal cue •
Following lemma •
Lemma • •
LPath to scope constituent • •
LPath to scope constituent bigrams • •
Part-of-speech • •
Position in scope • •
Preceding lemma • •
Preceding part-of-speech • •
Token distance from cue • •

Table 5: Features used to describe candidates for
event detection, with indications of presence in our
two system configurations.

Data set Model Prec Rec F1

CDTD RankerI 91.49 90.83 91.16
CDD RankerII 92.11 91.30 91.70

CDE RankerI 83.73 83.73 83.73
RankerII 84.94 84.95 84.94

Table 6: Event detection for gold scopes and gold
factuality information.

dications as to their presence in our two configu-
rations (after an exhaustive search of feature com-
binations). The most important feature was LPath
to scope constituent. For example, in Figure 1
the scope constituent is the S root of the tree;
the path that describes the correct candidate is
answer/NN/NP/VP/S. As discussed in Section 3.3,
we also record generalized, delexicalized and gener-
alized delexicalized paths.

Table 6 lists the results of the event ranker applied
to gold-standard cues, scopes, and factuality. For a
comparative baseline, we implemented a keyword-
based approach that simply searches in-scope words
for instances of events previously observed in the
training set, sorted according to descending fre-
quency. This baseline achieves F1=29.44 on CDD.
For comparison, the ranker (II) achieves F1=91.70
on the same data set, as seen in Table 6. We also
see that Configuration II appears to generalize best,
with over 1.2 points improvement over the F1 of I.

An analysis of the event predictions for CDD in-
dicates that the most frequent errors (41.2%) are in-
stances where the ranker correctly predicts part of
the event but our single word assumption is invalid.
Another apparent error is that the system fails to

316



Submission I Submission II
Prec Rec F1 Prec Rec F1

Cues 91.42 92.80 92.10 89.17 93.56 91.31
Scopes 87.43 61.45 72.17 83.89 60.64 70.39
Scope Tokens 81.99 88.81 85.26 75.87 90.08 82.37
Events 60.50 72.89 66.12 60.58 75.00 67.02
Full negation 83.45 43.94 57.57 79.87 45.08 57.63

Cues B 89.09 92.80 90.91 86.97 93.56 90.14
Scopes B 59.30 61.45 60.36 56.55 60.64 58.52
Events B 57.62 72.89 64.36 58.60 75.00 65.79
Full negation B 42.18 43.94 43.04 41.90 45.08 43.43

Table 7: End-to-end results on the held-out data.

predict a main verb for the event, and instead pre-
dicts nouns (17.7% of all errors), modals (17.7%) or
prepositions (11.8%).

5 Held-Out Evaluation

Table 7 presents our final results for both system
configurations on the held-out evaluation data (also
including the B measures, as discussed in the intro-
duction). Comparing submission I and II, we find
that the latter has slightly better scores end-to-end.
However, as seen throughout the paper, the picture is
less clear-cut when considering the isolated perfor-
mance of each component. When ranked according
to the Full Negation measures, our submissions were
placed first and second (out of seven submissions in
the closed track, and twelve submissions total). It
is difficult to compare system performance on sub-
tasks, however, as each component will be affected
by the performance of the previous.

6 Conclusions

This paper has presented two closed-track submis-
sions for the *SEM 2012 shared task on negation
resolution. The systems were ranked first and sec-
ond overall in the shared task end-to-end evaluation,
and the submissions only differ with respect to the
data sets used for parameter tuning. There are four
components in the pipeline: (i) An SVM classifier
for identifying negation cue words and affixes, (ii)
an SVM-based ranker that combines empirical evi-
dence and manually-crafted rules to resolve the in-
sentence scope of negation, (iii) a classifier for de-
termining whether a negation is in a factual or non-

factual context, and (iv) a ranker that determines
(factual) negated events among in-scope tokens.

For future work we would like to try training sepa-
rate classifiers for affixal and token-level cues, given
that largely separate sets of features are effective for
the two cases. The system might also benefit from
sources of information that would place it in the
open track. These include drawing information from
other parsers and formalisms, generating cue fea-
tures from an external lexicon, and using additional
training data for factuality detection, e.g., FactBank
(Saurı́ and Pustejovsky, 2009).

From observations on CDTD we note that approx-
imately 14% of scopes will be unresolvable as they
are not aligned with constituents (see Section 3.1).
This can perhaps be tackled by ranking tokens as
candidates for left and right scope boundaries (sim-
ilar to the event ranker in the current work). This
would improve the upper-bound to 100% at the ex-
pense of greatly increasing the number of candi-
dates. However, the strong discriminative power of
our current approach can still be incorporated using
constituent-based features.
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