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Abstract

We investigate the semantic relationship be-
tween a noun and its adjectival modifiers.
We introduce a class of probabilistic mod-
els that enable us to to simultaneously cap-
ture both the semantic similarity of nouns
and modifiers, and adjective-noun selectional
preference. Through a combination of novel
and existing evaluations we test the degree to
which adjective-noun relationships can be cat-
egorised. We analyse the effect of lexical con-
text on these relationships, and the efficacy of
the latent semantic representation for disam-
biguating word meaning.

1 Introduction

Developing models of the meanings of words and
phrases is a key challenge for computational linguis-
tics. Distributed representations are useful in captur-
ing such meaning for individual words (Sato et al.,
2008; Maas and Ng, 2010; Curran, 2005). How-
ever, finding a compelling account of semantic com-
positionality that utilises such representations has
proven more difficult and is an active research topic
(Mitchell and Lapata, 2008; Baroni and Zamparelli,
2010; Grefenstette and Sadrzadeh, 2011). It is in
this area that our paper makes its contribution.

The dominant approaches to distributional se-
mantics have relied on relatively simple frequency
counting techniques. However, such approaches fail
to generalise to the much sparser distributions en-
countered when modeling compositional processes
and provide no account of selectional preference.
We propose a probabilistic model of the semantic
representations for nouns and modifiers. The foun-
dation of this model is a latent variable representa-

tion of noun and adjective semantics together with
their compositional probabilities. We employ this
formulation to give a dual view of noun-modifier
semantics: the induced latent variables provide an
explicit account of selectional preference while the
marginal distributions of the latent variables for each
word implicitly produce a distributed representation.

Most related work on selectional preference uses
class-based probabilities to approximate (sparse)
individual probabilities. Relevant papers include
Ó Séaghdha (2010), who evaluates several topic
models adapted to learning selectional preference
using co-occurence and Baroni and Zamparelli
(2010), who represent nouns as vectors and adjec-
tives as matrices, thus treating them as functions
over noun meaning. Again, inference is achieved
using co-occurrence and dimensionality reduction.

2 Adjective-Noun Model

We hypothesize that semantic classes determine the
semantic characteristics of nouns and adjectives, and
that the distribution of either with respect to other
components of the sentences they occur in is also
mediated by these classes (i.e., not by the words
themselves). We assume that in general nouns select
for adjectives,1 and that this selection is dependent
on both their latent semantic classes. In the next sec-
tion, we describe a model encoding our hypotheses.

2.1 Generative Process
We model a corpus D of tuples of the form
(n,m, c1 . . . ck) consisting of a noun n, an adjective
m (modifier), and k words of context. The context
variables (c1 . . . ck) are treated as a bag of words and

1We evaluate this hypothesis as well as its inverse.
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Figure 1: Plate diagram illustrating our model of noun
and modifier semantic classes (designated N and M , re-
spectively), a modifier-noun pair (m,n), and its context.

include the words to the left and right of the noun,
its siblings and governing verbs. We designate the
vocabulary Vn for nouns, Vm for modifiers and Vc

for context. We use zi to refer to the ith tuple in D

and refer to variables within that tuple by subscript-
ing them with i, e.g., ni and c3,i are the noun and
the third context variable of zi. The latent noun and
adjective class variables are designated Ni and Mi.

The corpus D is generated according to the plate
diagram in figure 1. First, a set of parameters is
drawn. A multinomial ΨN representing the distribu-
tion of noun semantic classes in the corpus is drawn
from a Dirichlet distribution with parameter αN. For
each noun class i we have distributions ΨM

i over
adjective classes, Ψn

i over Vn and Ψc
i over Vc, also

drawn from Dirichlet distributions. Finally, for each
adjective class j, we have distributions Ψm

j over Vm.
Next, the contents of the corpus are generated by

first drawing the length of the corpus (we do not
parametrise this since we never generate from this
model). Then, for each i, we generate noun class
Ni, adjective class Mi, and the tuple zi as follows:

Ni | ΨN ∼ Multi(ΨN)

Mi | ΨM
Ni
∼ Multi(ΨM

Ni
)

ni | Ψn
Ni
∼ Multi(Ψn

Ni
)

mi | Ψm
Mi
∼ Multi(Ψm

Mi
)

∀k: ck,i | Ψc
Ni
∼ Multi(Ψc

Ni
)

2.2 Parameterization and Inference
We use Gibbs sampling to estimate the distributions
ofN andM , integrating out the multinomial param-
eters Ψx (Griffiths and Steyvers, 2004). The Dirich-
let parameters α are drawn independently from a
Γ(1, 1) distribution, and are resampled using slice
sampling at frequent intervals throughout the sam-
pling process (Johnson and Goldwater, 2009). This
“vague” prior encourages sparse draws from the
Dirichlet distribution. The number of noun and ad-
jective classes N and M was set to 50 each; other
sizes (100,150) did not significantly alter results.

3 Experiments

As our model was developed on the basis of several
hypotheses, we design the experiments and evalu-
ation so that these hypotheses can be examined on
their individual merit. We test the first hypothesis,
that nouns and adjectives can be represented by se-
mantic classes, recoverable using co-occurence, us-
ing a sense clustering evaluation by Ciaramita and
Johnson (2003). The second hypothesis, that the dis-
tribution with respect to context and to each other is
governed by these semantic classes is evaluated us-
ing pseudo-disambiguation (Clark and Weir, 2002;
Pereira et al., 1993; Rooth et al., 1999) and bigram
plausibility (Keller and Lapata, 2003) tests.

To test whether noun classes indeed select for ad-
jective classes, we also evaluate an inverse model
(Modi), where the adjective class is drawn first, in
turn generating both context and the noun class. In
addition, we evaluate copies of both models ignoring
context (Modnc and Modinc).

We use the British National Corpus (BNC), train-
ing on 90 percent and testing on 10 percent of the
corpus. Results are reported after 2,000 iterations
including a burn-in period of 200 iterations. Classes
are marginalised over every 10th iteration.

4 Evaluation

4.1 Supersense Tagging
Supersense tagging (Ciaramita and Johnson, 2003;
Curran, 2005) evaluates a model’s ability to clus-
ter words by their semantics. The task of this eval-
uation is to determine the WORDNET supersenses
of a given list of nouns. We report results on the
WN1.6 test set as defined by Ciaramita and John-
son (2003), who used 755 randomly selected nouns
with a unique supersense from the WORDNET 1.6
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corpus. As their test set was random, results weren’t
exactly replicable. For a fair comparison, we select
all suitable nouns from the corpus that also appeared
in the training corpus. We report results on type and
token level (52314 tokens with 1119 types). The
baseline2 chooses the most common supersense.

k Token Type
Baseline .241 .210
Ciaramita & Johnson .523 .534
Curran - .680
Mod 10 .592 .517
Modnc 10 .473 .410

Table 1: Supersense evaluation results. Values are the
percentage of correctly assigned supersenses. k indicates
the number of nearest neighbours considered.

We use cosine-similarity on the marginal noun
class vectors to measure distance between nouns.
Each noun in the test set is then assigned a su-
persense by performing a distance-weighted voting
among its k nearest neighbours. Results of this eval-
uation are shown in Table 1, with Figure 2 showing
scores for model Mod across different values for k.

Figure 2: Scores of Mod on the supersense task. The up-
per line denotes token-, the lower type-level scores. The
y-axis is the percentage of correct assignments, the x-axis
denotes the number of neighbours included in the vote.

The results demonstrate that nouns can semanti-
cally be represented as members of latent classes,
while the superiority of Mod over Modnc supports
our hypothesis that context co-occurence is a key
feature for learning these classes.

4.2 Pseudo-Disambiguation
Pseudo-disambiguation was introduced by Clark
and Weir (2002) to evaluate models of selectional
preference. The task is to select the more probable
of two candidate arguments to associate with a given

2The baseline results are from Ciaramita and Johnson
(2003). Using the majority baseline on the full test set, we only
get .176 and .160 for token and type respectively.

predicate. For us, this is to decide which adjective,
a1 or a2, is more likely to modify a noun n.

We follow the approach by Clark and Weir (2002)
to create the test data. To improve the quality of
the data, we filtered using bigram counts from the
Web1T corpus, setting a lower bound on the proba-
ble bigram (a1, n) and chosing a2 from five candi-
dates, picking the lowest count for bigram (a2, n).

We report results for all variants of our model in
Table 2. As baseline we use unigram counts in our
training data, chosing the more frequent adjective.

L-bound 0 100 500 1000
Size 5714 5253 3741 2789
Baseline .543 .543 .539 .550
Mod .783 .792 .810 .816
Modi .781 .787 .800 .810
Modnc .720 .728 .746 .750
Modinc .722 .730 .747 .752

Table 2: Pseudo-disambiguation: Percentage of correct
choices made. L-bound denotes the Web1T lower bound
on the (a1, n) bigram, size the number of decisions made.

While all models decisively beat the baseline, the
models using context strongly outperform those that
do not. This supports our hypothesis regarding the
importance of context in semantic clustering.

The similarity between the normal and inverse
models implies that the direction of the noun-
adjective relationship has negligible impact for this
evaluation.

4.3 Bigram Plausibility
Bigram plausibility (Keller and Lapata, 2003) is a
second evaluation for selectional preference. Unlike
the frequency-based pseudo-disambiguation task, it
evaluates how well a model matches human judge-
ment of the plausibility of adjective-noun pairs.
Keller and Lapata (2003) demonstrated a correlation
between frequencies and plausibility, but this does
not sufficiently explain human judgement. An ex-
ample taken from their unseen data set illustrates the
dissociation between frequency and plausibility:
• Frequent, implausible: “educational water”
• Infrequent, plausible: “difficult foreigner”3

The plausibility evaluation has two data sets of 90
adjective-noun pairs each. The first set (seen) con-
tains random bigrams from the BNC. The second set
(unseen) are bigrams not contained in the BNC.

3At the time of writing, Google estimates 56,900 hits for
“educational water” and 575 hits for “difficult foreigner”. “Ed-
ucational water” ranks bottom in the gold standard of the unseen
set, “difficult foreigner” ranks in the top ten.
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Recent work (Ó Séaghdha, 2010; Erk et al.,
2010) approximated plausibility with joint probabil-
ity (JP). We believe that for semantic plausibility
(not probability!) mutual information (MI), which
factors out acutal frequencies, is a better metric.4 We
report results using JP, MI and MIˆ2.

Seen Unseen
r ρ r ρ

AltaVista .650 — .480 —
BNC (Rasp) .543 .622 .135 .102
Padó et al. .479 .570 .120 .138
LDA .594 .558 .468 .459
ROOTH-LDA .575 .599 .501 .469
DUAL-LDA .460 .400 .334 .278
Mod (JP) .495 .413 .286 .276
Mod (MI) .394 .425 .471 .457
Mod (MIˆ2) .575 .501 .430 .408
Modnc (JP) .626 .505 .357 .369
Modnc (MI) .628 .574 .427 .385
Modnc (MIˆ2) .701 .623 .423 .394

Table 3: Results (Pearson r and Spearman ρ correlations)
on the Keller and Lapata (2003) plausibility data. Bold
indicates best scores, underlining our best scores. High
values indicate high correlation with the gold standard.

Table 3 shows the performance of our models
compared to results reported in Ó Séaghdha (2010).
As before, results between the normal and the in-
verse model (omitted due to space) are very simi-
lar. Surprisingly, the no-context models consistently
outperform the models using context on the seen
data set. This suggests that the seen data set can
quite precisely be ranked using frequency estimates,
which the no-context models might be better at cap-
turing without the ‘noise’ introduced by context.

Standard Inverse (i)
r ρ r ρ

Mod (JP) .286 .276 .243 .245
Mod (MI) .471 .457 .409 .383
Mod (MIˆ2) .430 .408 .362 .347
Modnc (JP) .357 .369 .181 .161
Modnc (MI) .427 .385 .220 .209
Modnc (MIˆ2) .423 .394 .218 .185

Table 4: Results on the unseen plausibility dataset.

The results on the unseen data set (Table 4)
prove interesting as well. The inverse no-context
model is performing significantly poorer than any
of the other models. To understand this result we
must investigate the differences between the unseen
data set and the seen data set and to the pseudo-
disambiguation evaluation. The key difference to
pseudo-disambiguation is that we measure a human

4See (Evert, 2005) for a discussion of these metrics.

plausibility judgement, which — as we have demon-
strated — only partially correlates with bigram fre-
quencies. Our models were trained on the BNC,
hence they could only learn frequency estimates for
the seen data set, but not for the unseen data.

Based on our hypothesis about the role of con-
text, we expect Mod and Modi to learn semantic
classes based on the distribution of context. Without
the access to that context, we argued thatModnc and
Modinc would instead learn frequency estimates.5

The hypothesis that nouns generally select for ad-
jectives rather than vice versa further suggests that
Mod and Modnc would learn semantic properties
that Modi and Modinc could not learn so well.

In summary, we hence expected Mod to perform
best on the unseen data, learning semantics from
both context and noun-adjective selection. Also, as
supported by the results, we expected Modinc to
performs poorly, as it is the model least capable of
learning semantics according to our hypotheses.

5 Conclusion

We have presented a class of probabilistic mod-
els which successfully learn semantic clusterings of
nouns and a representation of adjective-noun selec-
tional preference. These models encoded our beliefs
about how adjective-noun pairs relate to each other
and to the other words in the sentence. The perfor-
mance of our models on estimating selectional pref-
erence strongly supported these initial hypotheses.

We discussed plausibility judgements from a the-
oretical perspective and argued that frequency esti-
mates and JP are imperfect approximations for plau-
sibility. While models can perform well on some
evaluations by using either frequency estimates or
semantic knowledge, we explained why this does
not apply to the unseen plausibility test. The perfor-
mance on that task demonstrates both the success of
our model and the shortcomings of frequency-based
approaches to human plausibility judgements.

Finally, this paper demonstrated that it is feasi-
ble to learn semantic representations of words while
concurrently learning how they relate to one another.

Future work will explore learning words from
broader classes of semantic relations and the role of
context in greater detail. Also, we will evaluate the
system applied to higher level tasks.

5This could also explain their weaker performance on
pseudo-disambiguation in the previous section, where the neg-
ative examples had zero frequency in the training corpus.
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