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Abstract

Parser Evaluation using Textual Entail-
ments (PETE) is a shared task in the
SemEval-2010 Evaluation Exercises on
Semantic Evaluation. The task involves
recognizing textual entailments based on
syntactic information alone. PETE intro-
duces a new parser evaluation scheme that
is formalism independent, less prone to
annotation error, and focused on semanti-
cally relevant distinctions.

1 Introduction

Parser Evaluation using Textual Entailments
(PETE) is a shared task that involves recognizing
textual entailments based on syntactic information
alone. Given two text fragments called “text” and
“hypothesis”, textual entailment recognition is the
task of determining whether the meaning of the
hypothesis is entailed (can be inferred) from the
text. In contrast with general RTE tasks (Dagan
et al., 2009) the PETE task focuses on syntactic
entailments:

Text: The man with the hat was tired.
Hypothesis-1: The man was tired. (yes)
Hypothesis-2: The hat was tired. (no)

PETE is an evaluation scheme based on a natu-
ral human linguistic competence (i.e. the ability to
comprehend sentences and answer simple yes/no
questions about them). We believe systems should
try to model natural human linguistic competence
rather than their dubious competence in artificial
tagging tasks.

The PARSEVAL measures introduced nearly two
decades ago (Black et al., 1991) still dominate the
field of parser evaluation. These methods com-
pare phrase-structure bracketings produced by the
parser with bracketings in the annotated corpus, or
“treebank”. Parser evaluation using short textual

entailments has the following advantages com-
pared to treebank based evaluation.

Consistency: Recognizing syntactic entail-
ments is a more natural task for people than
treebank annotation. Focusing on a natural
human competence makes it practical to collect
high quality evaluation data from untrained
annotators. The PETE dataset was annotated by
untrained Amazon Mechanical Turk workers at
an insignificant cost and each annotation is based
on the unanimous agreement of at least three
workers. In contrast, of the 36306 constituent
strings that appear multiple times in the Penn
Treebank (Marcus et al., 1994), 5646 (15%) have
multiple conflicting annotations. If indicative of
the general level of inconsistency, 15% is a very
high number given that the state of the art parsers
claim f-scores above 90% (Charniak and Johnson,
2005).

Relevance: PETE automatically focuses atten-
tion on semantically relevant phenomena rather
than differences in annotation style or linguistic
convention. Whether a phrase is tagged ADJP vs
ADVP rarely affects semantic interpretation. At-
taching the wrong subject to a verb or the wrong
prepositional phrase to a noun changes the mean-
ing of the sentence. Standard treebank based eval-
uation metrics do not distinguish between seman-
tically relevant and irrelevant errors (Bonnema et
al., 1997). In PETE semantically relevant differ-
ences lead to different entailments, semantically
irrelevant differences do not.

Framework independence: Entailment recog-
nition is a formalism independent task. A com-
mon evaluation method for parsers that do not use
the Penn Treebank formalism is to automatically
convert the Penn Treebank to the appropriate for-
malism and to perform treebank based evaluation
(Nivre et al., 2007a; Hockenmaier and Steedman,
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2007). The inevitable conversion errors compound
the already mentioned problems of treebank based
evaluation. In addition, manually designed tree-
banks do not naturally lend themselves to unsu-
pervised parser evaluation. Unlike treebank based
evaluation, PETE can compare phrase structure
parsers, dependency parsers, unsupervised parsers
and other approaches on an equal footing.

PETE was inspired by earlier work on represen-
tations of grammatical dependency, proposed for
ease of use by end users and suitable for parser
evaluation. These include the grammatical rela-
tions (GR) by (Carroll et al., 1999), the PARC rep-
resentation (King et al., 2003), and Stanford typed
dependencies (SD) (De Marneffe et al., 2006) (See
(Bos and others, 2008) for other proposals). Each
use a set of binary relations between words in
a sentence as the primary unit of representation.
They share some common motivations: usability
by people who are not (computational) linguists
and suitability for relation extraction applications.
Here is an example sentence and its SD represen-
tation (De Marneffe and Manning, 2008):

Bell, based in Los Angeles, makes and dis-
tributes electronic, computer and building prod-
ucts.

nsubj(makes-8, Bell-1)
nsubj(distributes-10, Bell-1)
partmod(Bell-1, based-3)
nn(Angeles-6, Los-5)
prep-in(based-3, Angeles-6)
conj-and(makes-8, distributes-10)
amod(products-16, electronic-11)
conj-and(electronic-11, computer-13)
amod(products-16, computer-13)
conj-and(electronic-11, building-15)
amod(products-16, building-15)
dobj(makes-8, products-16)

PETE goes one step further by translating most
of these dependencies into natural language entail-
ments.

Bell makes something.
Bell distributes something.
Someone is based in Los Angeles.
Someone makes products.

PETE has some advantages over representations
based on grammatical relations. For example SD
defines 55 relations organized in a hierarchy, and

it may be non-trivial for a non-linguist to under-
stand the difference between ccomp (clausal com-
plement with internal subject) and xcomp (clausal
complement with external subject) or between
nsubj (nominal subject) and xsubj (controlling
subject). In fact it could be argued that proposals
like SD replace one artificial annotation formal-
ism with another and no two such proposals agree
on the ideal set of binary relations to use. In con-
trast, untrained annotators have no difficulty unan-
imously agreeing on the validity of most PETE
type entailments.

However there are also significant challenges
associated with an evaluation scheme like PETE.
It is not always clear how to convert certain rela-
tions into grammatical hypothesis sentences with-
out including most of the original sentence in the
hypothesis. Including too much of the sentence in
the hypothesis would increase the chances of get-
ting the right answer with the wrong parse. Gram-
matical hypothesis sentences are especially diffi-
cult to construct when a (negative) entailment is
based on a bad parse of the sentence. Introduc-
ing dummy words like “someone” or “something”
alleviates part of the problem but does not help
in the case of clausal complements. In summary,
PETE makes the annotation phase more practical
and consistent but shifts the difficulty to the entail-
ment creation phase.

PETE gets closer to an extrinsic evaluation by
focusing on semantically relevant, application ori-
ented differences that can be expressed in natu-
ral language sentences. This makes the evaluation
procedure indirect: a parser developer has to write
an extension that can handle entailment questions.
However, given the simplicity of the entailments,
the complexity of such an extension is comparable
to one that extracts grammatical relations.

The balance of what is being evaluated is also
important. A treebank based evaluation scheme
may mix semantically relevant and irrelevant mis-
takes, but at least it covers every sentence at a uni-
form level of detail. In this evaluation, we focused
on sentences and relations where state of the art
parsers disagree. We hope this methodology will
uncover weaknesses that the next generation sys-
tems can focus on.

The remaining sections will go into more de-
tail about these challenges and the solutions we
have chosen to implement. Section 2 explains the
method followed to create the PETE dataset. Sec-
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tion 3 evaluates the baseline systems the task or-
ganizers created by implementing simple entail-
ment extensions for several state of the art parsers.
Section 4 presents the participating systems, their
methods and results. Section 5 summarizes our
contribution.

2 Dataset

To generate the entailments for the PETE task we
followed the following three steps:

1. Identify syntactic dependencies that are chal-
lenging to state of the art parsers.

2. Construct short entailment sentences that
paraphrase those dependencies.

3. Identify the subset of the entailments with
high inter-annotator agreement.

2.1 Identifying Challenging Dependencies
To identify syntactic dependencies that are chal-
lenging for current state of the art parsers, we used
example sentences from the following sources:

• The “Unbounded Dependency Corpus”
(Rimell et al., 2009). An unbounded de-
pendency construction contains a word or
phrase which appears to have been moved,
while being interpreted in the position of
the resulting “gap”. An unlimited number
of clause boundaries may intervene between
the moved element and the gap (hence
“unbounded”).

• A list of sentences from the Penn Treebank
on which the Charniak parser (Charniak and
Johnson, 2005) performs poorly1.

• The Brown section of the Penn Treebank.

We tested a number of parsers (both phrase
structure and dependency) on these sentences and
identified the differences in their output. We took
sentences where at least one of the parsers gave a
different answer than the others or the gold parse.
Some of these differences reflected linguistic con-
vention rather than semantic disagreement (e.g.
representation of coordination) and some did not
represent meaningful differences that can be ex-
pressed with entailments (e.g. labeling a phrase
ADJP vs ADVP). The remaining differences typ-
ically reflected genuine semantic disagreements

1http://www.cs.brown.edu/˜ec/papers/badPars.txt.gz

that would effect downstream applications. These
were chosen to turn into entailments in the next
step.

2.2 Constructing Entailments
We tried to make the entailments as targeted as
possible by building them around two content
words that are syntactically related. When the two
content words were not sufficient to construct a
grammatical sentence we used one of the follow-
ing techniques:

• Complete the mandatory elements using the
words “somebody” or “something”. (e.g.
To test the subject-verb dependency in “John
kissed Mary.” we construct the entailment
“John kissed somebody.”)

• Make a passive sentence to avoid using a spu-
rious subject. (e.g. To test the verb-object
dependency in “John kissed Mary.” we con-
struct the entailment “Mary was kissed.”)

• Make a copular sentence or use existen-
tial “there” to express noun modification.
(e.g. To test the noun-modifier dependency
in “The big red boat sank.” we construct the
entailment “The boat was big.” or “There was
a big boat.”)

2.3 Filtering Entailments
To identify the entailments that are clear to human
judgement we used the following procedure:

1. Each entailment was tagged by 5 untrained
annotators from the Amazon Mechanical
Turk crowdsourcing service.

2. The results from the annotators whose agree-
ment with the gold parse fell below 70% were
eliminated.

3. The entailments for which there was unani-
mous agreement of at least 3 annotators were
kept.

The instructions for the annotators were brief
and targeted people with no linguistic background:

Computers try to understand long sentences by
dividing them into a set of short facts. You will
help judge whether the computer extracted the
right facts from a given set of 25 English sen-
tences. Each of the following examples consists
of a sentence (T), and a short statement (H) de-
rived from this sentence by a computer. Please
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read both of them carefully and choose “Yes”
if the meaning of (H) can be inferred from the
meaning of (T). Here is an example:

(T) Any lingering suspicion that this was a trick
Al Budd had thought up was dispelled.
(H) The suspicion was dispelled. Answer: YES
(H) The suspicion was a trick. Answer: NO

You can choose the third option “Not sure” when
the (H) statement is unrelated, unclear, ungram-
matical or confusing in any other manner.

The “Not sure” answers were grouped with the
“No” answers during evaluation. Approximately
50% of the original entailments were retained after
the inter-annotator agreement filtering.

2.4 Dataset statistics

The final dataset contained 367 entailments which
were randomly divided into a 66 sentence devel-
opment test and a 301 sentence test set. 52% of
the entailments in the test set were positive.

Approximately half of the final entailments
were from the Unbounded Dependency Corpus,
a third were from the Brown section of the Penn
Treebank, and the remaining were from the Char-
niak sentences. Table 1 lists the most frequent
grammatical relations encountered in the entail-
ments.

GR Entailments
Direct object 42%
Nominal subject 33%
Reduced relative clause 21%
Relative clause 13%
Passive nominal subject 6%
Object of preposition 5%
Prepositional modifier 4%
Conjunct 2%
Adverbial modifier 2%
Free relative 2%

Table 1: Most frequent grammatical relations en-
countered in the entailments.

3 Baselines

In order to establish baseline results for this task,
we built an entailment decision system for CoNLL
format dependency files and tested several pub-
licly available parsers. The parsers used were the
Berkeley Parser (Petrov and Klein, 2007), Char-
niak Parser (Charniak and Johnson, 2005), Collins
Parser (Collins, 2003), Malt Parser (Nivre et al.,
2007b), MSTParser (McDonald et al., 2005) and

Stanford Parser (Klein and Manning, 2003). Each
parser was trained on sections 02-21 of the WSJ
section of Penn Treebank. Outputs of phrase
structure parsers were automatically annotated
with function tags using Blaheta’s function tag-
ger (Blaheta and Charniak, 2000) and converted to
the dependency structure with LTH Constituent-
to-Dependency Conversion Tool (Johansson and
Nugues, 2007).

To decide the entailments both the test and
hypothesis sentences were parsed. All the con-
tent words in the hypothesis sentence were de-
termined by using part-of-speech tags and depen-
dency relations. After applying some heuristics
such as active-passive conversion, the extracted
dependency path between the content words was
searched in the dependency graph of the test sen-
tence. In this search process, same relation types
for the direct relations between the content word
pairs and isomorphic subgraphs in the test and hy-
pothesis sentences were required for the ”YES”
answer.

Table 2 lists the baseline results achieved. There
are significant differences in the entailment accu-
racies of systems that have comparable unlabeled
attachment scores. One potential reason for this
difference is the composition of the PETE dataset
which emphasizes challenging syntactic construc-
tions that some parsers may be better at. Another
reason is the complete indifference of treebank
based measures like UAS to the semantic signif-
icance of various dependencies and their impact
on potential applications.

System PETE UAS
Berkeley Parser 68.1% 91.2
Stanford Parser 66.1% 90.2
Malt Parser 65.5% 89.8
Charniak Parser 64.5% 93.2
Collins Parser 63.5% 91.6
MST Parser 59.8% 92.0

Table 2: Baseline systems: The second column
gives the performance on the PETE test set, the
third column gives the unlabeled attachment score
on section 23 of the Penn Treebank.

4 Systems

There were 20 systems from 7 teams participat-
ing in the PETE task. Table 3 gives the percent-
age of correct answers for each system. 12 sys-
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System Accuracy Precision Recall F1
360-418-Cambridge 0.7243 0.7967 0.6282 0.7025
459-505-SCHWA 0.7043 0.6831 0.8013 0.7375
473-568-MARS-3 0.6678 0.6591 0.7436 0.6988
372-404-MDParser 0.6545 0.7407 0.5128 0.6061
372-509-MaltParser 0.6512 0.7429 0.5000 0.5977
473-582-MARS-5 0.6346 0.6278 0.7244 0.6726
166-415-JU-CSE-TASK12-2 0.5781 0.5714 0.7436 0.6462
166-370-JU-CSE-TASK12 0.5482 0.5820 0.4551 0.5108
390-433-Berkeley Parser Based 0.5415 0.5425 0.7372 0.6250
473-566-MARS-1 0.5282 0.5547 0.4551 0.5108
473-569-MARS-4 0.5249 0.5419 0.5385 0.5402
390-431-Brown Parser Based 0.5216 0.5349 0.5897 0.5610
473-567-MARS-2 0.5116 0.5328 0.4679 0.4983
363-450-VENSES 0.5083 0.5220 0.6090 0.5621
473-583-MARS-6 0.5050 0.5207 0.5641 0.5415
390-432-Brown Reranker Parser Based 0.5017 0.5217 0.4615 0.4898
390-435-Berkeley Parser with substates 0.5017 0.5395 0.2628 0.3534
390-434-Berkeley Parser with Self Training 0.4983 0.5248 0.3397 0.4125
390-437-Combined 0.4850 0.5050 0.3269 0.3969
390-436-Berkeley Parser with Viterbi Decoding 0.4784 0.4964 0.4359 0.4642

Table 3: Participating systems and their scores. The system identifier consists of the participant ID,
system ID, and the system name given by the participant. Accuracy gives the percentage of correct
entailments. Precision, Recall and F1 are calculated for positive entailments.

tems performed above the “always yes” baseline
of 51.83%.

Most systems started the entailment decision
process by extracting syntactic dependencies,
grammatical relations, or predicates by parsing the
text and hypothesis sentences. Several submis-
sions, including the top two scoring systems used
the C&C Parser (Clark and Curran, 2007) which
is based on Combinatory Categorical Grammar
(CCG) formalism. Others used dependency struc-
tures produced by Malt Parser (Nivre et al.,
2007b), MSTParser (McDonald et al., 2005) and
Stanford Parser (Klein and Manning, 2003).

After the parsing step, the decision for the en-
tailment was based on the comparison of relations,
predicates, or dependency paths between the text
and the hypothesis. Most systems relied on heuris-
tic methods of comparison. A notable exception is
the MARS-3 system which used an SVM-based
classifier to decide on the entailment using depen-
dency path features.

Table 4 lists the frequency of various grammati-
cal relations in the instances where the top system
made mistakes. A comparison with Table 1 shows
the direct objects and reduced relative clauses to
be the frequent causes of error.

5 Contributions

We introduced PETE, a new method for parser
evaluation using textual entailments. By basing
the entailments on dependencies that current state

GR Entailments
Direct object 51%
Reduced relative clause 36%
Nominal subject 20%
Object of preposition 7%
Passive nominal subject 7%

Table 4: Frequency of grammatical relations in en-
tailment instances that got wrong answers from the
Cambridge system.

of the art parsers disagree on, we hoped to cre-
ate a dataset that would focus attention on the
long tail of parsing problems that do not get suffi-
cient attention using common evaluation metrics.
By further restricting ourselves to differences that
can be expressed by natural language entailments,
we hoped to focus on semantically relevant deci-
sions rather than accidents of convention which
get mixed up in common evaluation metrics. We
chose to rely on untrained annotators on a natu-
ral inference task rather than trained annotators
on an artificial tagging task because we believe
(i) many subfields of computational linguistics are
struggling to make progress because of the noise
in artificially tagged data, and (ii) systems should
try to model natural human linguistic competence
rather than their dubious competence in artificial
tagging tasks. Our hope is datasets like PETE will
be used not only for evaluation but also for training
and fine-tuning of systems in the future. Further
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work is needed to automate the entailment gener-
ation process and to balance the composition of
syntactic phenomena covered in a PETE dataset.
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