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Abstract

Researchers in Computational Linguistics
build models of similarity and test them
against human judgments. Although there
are many empirical studies of the compu-
tational models of similarity for the En-
glish language, the similarity for other lan-
guages is less explored. In this study
we are chiefly interested in two aspects.
In the first place we want to know how
much of the human similarity is grounded
in the visual perception. To answer this
question two neural computer vision mod-
els are used and their correlation with the
human derived similarity scores is com-
puted. In the second place we investigate
if language influences the similarity com-
putation. To this purpose diverse com-
putational models trained on Estonian re-
sources are evaluated against human judg-
ments.

1 Introduction

Various disciplines and research communities are
interested in the study of similarity: Philosophy,
Psychology, Computational Linguistics, Semantic
Web and the Linked Data communities, to name
a few. For example, to integrate heterogeneous
semantic resources the Linked Data and Seman-
tic Web communities estimate the degree of sim-
ilarities between the concepts in these resources
(Euzenat and Shvaiko, 2013; Harispe et al., 2015).

In Computational Linguistics researchers build
computational models of similarity. To test
them, the correlation between the human similar-
ity scores and the scores assigned by the computa-
tional models is calculated. It is assumed that the
best computational models predict better the hu-
man judge scores.

However, earlier studies of similarity suffered
from a drawback: they do not distinguish be-
tween the relations of similarity and association.
In psychology, for example, the distinction be-
tween these two notions is well understood. The
association between two concepts is defined as the
propensity of a subject to activate a representa-
tion of the second concept when the first concept
is presented. In contrast, the similarity is defined
as the proximity of two mental representations. In
the Gestalt psychology for example (Wertheimer,
1938) the similarity is seen as the principle of or-
ganization of objects in perceptual groups. The
concepts cup and tea are associated but not sim-
ilar: there is no perceptual principle to group to-
gether an object like a cup and a liquid like tea.
However, the objects denoted by the concepts ap-
ple and pear are perceptually similar. To remedy
this problem SimLex-999 (Hill et al., 2015), a gen-
uine data similarity set containing human judge
similarity and concreteness scores for 999 English
word pairs, has been built.

An interesting distinction is that between the
surface similarity and deep similarity (Vosniadou
and Ortony, 1989). The surface similarity is per-
ceptually grounded and it is used in categorization.
In contrast, the deep similarity is related to deeper
properties not readily accessible to perception. A
question we study is: How much of the similar-
ity is grounded in the perceptual properties? In
this research the degree of similarity grounded in
visual properties is estimated by computer vision
models.

If for the English language computational mod-
els of similarity have been implemented and eval-
uated, this is not the case for other languages. In
particular, for the Estonian language there is no
human annotated set that reflects the true similar-
ity. We translate the SimLex-999 into Estonian
and evaluate computational models of similarity
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based on Estonian language resources: corpora,
taxonomies and lexical ontologies.

The rest of the paper is organized as follows.
The next section puts our research in context and
then the EstSimLex-999 set, the SimLex-999 set
translated into Estonian, is presented 3. Section 4
discusses the families of models for computing the
similarity between the word pairs in EstSimLex-
999. Section 5 presents and discusses the results.
In particular, we answer how similarity is influ-
enced by language and quantify the power of the
computer vision models to capture the similarity
for concrete concepts. The paper ends with the
conclusions.

2 Related Work

Felix Hill and coauthors (2015) undertook an ex-
tensive discussion of the concept of similarity in
Computational Linguistics, introduced the gen-
uine similarity set SimLex-999 and computed the
correlations between the similarity measures of
corpus based computational models and the hu-
man judge scores. Closely following this line
of research Ira Leviant and Roi Reichart (2015)
translated SimLex-999 in Italian, German and
Russian and collected similarity scores from na-
tive speakers. They compute correlations between
the human judgments and Vector Space Models
(VSM) in a multilingual setting.

In the subsequent research the authors improve
the similarity computational models and boost
the correlation coefficient with the human judg-
ments. For example, Schwartz et al. (2015)
learn a word level representation based on sym-
metric patterns that achieves a Spearman corre-
lation of 0.517 with SimLex-999. An interest-
ing work belongs to Faruqui and Dyer (2015),
who used non-distributional word representations
derived form Princeton WordNet, FrameNet and
Penn Treebank to reach a Spearman correlation of
0.58 with SimLex-999. Hybrid models (Recski
et al., 2016),combining features from lexical on-
tologies and word embeddings, seem to be even
better (Spearman Correlation 0.76).

In this work we were not interested in obtain-
ing the best correlation between the computational
models and the human judgments. That will be
the topic of a future work. Instead, we were con-
cerned with three problems. First, we are inter-
ested in how much of similarity is grounded in the
visual features, that is, how much of the similarity

is surface similarity. By evaluating the similarity
using computational vision models we contribute
to a better understanding of the notion of similarity
itself. Second, we ask how the traditional models
derived from Estonian corpora and lexical ontolo-
gies correlate with the judgments of native Esto-
nian speakers. In this way we extend the similar-
ity study to other language, a less explored one,
yet an interesting one. Third, we study if our com-
putational models trained on Estonian data predict
better the EstSimLex-999 scores or the SimLex-
999 scores. More precisely we want to know if the
language influences the similarity judgments.

3 EstSimLex-999

To translate SimLex-999 the Google Translation
API and a bilingual English-Estonian dictionary
containing 87665 entries have been used, obtain-
ing rough Estonian equivalents. A native Estonian
speaker has chosen the correct translations. If an
English word in a similarity pair is ambiguous, the
sense that makes the pair more similar is preferred.
Finally, after correction and the discussion with an
Estonian linguist we have produced the similar-
ity set referred from now on as EstSimLex-999.
When translating, we have been careful to pre-
serve the part of speech of the English concepts.
This makes the comparison between the computa-
tional models of similarity for English and Esto-
nian easier. Nevertheless, due to cultural and lin-
guistic differences some English similarity pairs
were hard to translate. For example, the English
pair (taxi, cab) was translated as (taksi, takso)
even if the second term of the Estonian pair is not
widely used. Another example is the pair (sup-
per, dinner). The Estonian culinary tradition does
not distinguish between the two concepts, there-
fore we have translated the pair with the synony-
mous words (õhtusöök, õhtueine). Please, notice,
that for many non-British native English speakers
the words supper and dinner are also synonymous.
Some translations would have been more accu-
rate using multiwords, but we abide by the orig-
inal requirement that the similarity pairs should
contain single words only. Overall, we have pro-
duce an accurate translation of the English original
SimLex-999 set preserving the distribution of the
part of speeches and satisfying the demand that the
word pairs should not contain multiple words.

Four native Estonian speakers have rated the de-
gree of similarity between each of the 999 pairs.
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The rating instructions are the same as in the orig-
inal study (Hill et al., 2015). These instructions do
not attempt to define what similarity is, but rather
clarify the concept contrasting it with associa-
tion, and comparing it with synonymy. The inter-
annotator agreement was computed as the aver-
age of pairwise Spearman correlations between
the scores of all raters. The overall agreement is
0.766. A direct comparison with the correlation
coefficient computed in the English study (0.67)
is not possible because the number of annotators
is different. At this stage we were not interested
in recruiting many annotators through platforms
like Mechanical Turk, but rather in gaining in-
sights into human similarity judgments by direct
discussion with the annotators. In any case, re-
cruiting a comparable number of Estonian speak-
ers is unlikely, as this language is natively spoken
by less than 1 million people. The main thing no-
ticed is that there are few pairs of adjectives and
verbs highly rated in English but with a low score
in Estonian. For example, the English verb pair
(appear, attend) has a score of 6.28 in SimLex-999
and its Estonian translation (ilmuma, osalema) has
a score equal to 0.5.

4 Models for Similarity Computations

Three families of similarity models are evaluated
: distributional models, semantic network models
and computer vision models.

The distributional models are an implementa-
tion of John Rupert Firth’s hypothesis “You shall
know a word by the company it keeps” (Firth,
1961) which basically states that words that have
similar meanings appear in comparable syntag-
matic contexts. Nowadays, the most advanced
distributional models are the neural word embed-
dings.

The second family of models derive the seman-
tic similarity from the taxonomic structure of se-
mantic networks. The IS-A relation induces the
inheritance of the properties.The above mentioned
concepts, apple and pear, are similar because they
inherit all the properties from their superordinate
concept (fruit). Unlike the distributional models,
the semantic networks tells us also why the con-
cepts are similar.

The third family of models are the computer
vision models. The similarity between two con-
cepts is the distance between their image represen-
tations. Because of the visual nature of this sim-

ilarity the computer vision models work best for
concepts representing concrete objects.

In what follows we will briefly describe the
models tested.

1. Word2Vec. Word2Vec is a distributional
model (Mikolov et al., 2013) implemented as
a two layer neural network. If two words ap-
pear in similar contexts in a corpus the net-
work will output embedding vectors, known
as neural vector embeddings, which are close
in the embedding space. Word2Vec computes
the neural vector embeddings either predict-
ing the target word from the context (this
method is known as continuous bag of word
(CBOW)) or as the target context from the
word (this method is know as Skip Gram).

2. SenseGram. SenseGram (Pelevina et al.,
2016) is not a distributional model per se,
but a method to obtain word senses from
word embeddings. This word discrimination
method takes as input word embeddings (like
those generated by Word2Vec or any other
distributional model) and clusters them. The
induced word senses correspond to the clus-
ters of word embeddings.

3. Path Similarity Measures. The path sim-
ilarity measures exploit the graph struc-
ture of semantic networks to find simi-
larities between concept pairs. We have
explored various similarity measures like
Leacock-Chodorow similarity (Leacock and
Chodorow, 1998).

4. Autoencoders. Autoencoders are deep neu-
ral networks which learn to reconstruct the
input. In the reconstruction process one of
the autoencoder layers contains less nodes
than the input layer, thus forcing the net-
work to learn a lower level representation of
the input. The idea behind using the au-
toencoders is that the sparse representations
learned when encoding similar concepts will
be close in the embedding space.

5. Pretrained Convolutional Neural Net-
works. Convolutional Neural Networks
(CNN) are deep neural networks architec-
tures suitable for extracting patterns from
images. Inspired by experiments in neuro-
science (Hubel and Wiesel, 1959), CNN’s
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first layers train convolution filters to detect
low-level features of an image like lines and
corners. Higher network levels combine the
low level-features to find high-level image
features roughly corresponding to the human
language semantic descriptions of the ob-
jects. For example, they might detect parts,
like the wheels or the hood of a car. When
CNN are trained on big databases of classi-
fied images the semantic representations of
the concrete concepts can be “read” from the
deeper network levels. These representations
are then used to compute concept similarity.

5 Results

First the results for the distributional models are
shown, then the results for the semantic network
models will be presented. Finally, the results for
the neural computer vision models will be shown.
The correlation coefficients between the scores as-
signed by the computational similarity models for
interesting subsets (e.g. abstract and concrete con-
cepts) and the two similarity sets are also com-
puted. In the tables in this section the SimLex-999
is abbreviated as SL-999 and the EstSimLex-999
as ESL-999.

5.1 Distributional Models

When evaluating the Word2Vec and SenseGram
models, if the embedding vectors corresponding to
the words in the SimLex-999 or EstSimlex-999 are
missing, the word-pair is eliminated. The model
word similarity score is computed as cosine simi-
larity between the vector embeddings correspond-
ing to the words in the each word pair. Pearson (r),
Spearman (ρ ), and Kendall (τ ) correlations are
calculated between EstSimLex-999 and Simlex-
999 human judge scores and the model word sim-
ilarity scores. The word embeddings were trained
on Estonian monolingual corpora and the Estonian
Wikipedia. The following word embeddings have
been used:

• EA word embeddings. 9 Skip-Gram and
20 CBOW models, with different parame-
ter settings, were trained on the lemmatized
version of etTenTen corpus of Estonian Web
1 by Eleri Aedma. Word senses were in-
duced from the traditional word embeddings
using SenseGram. SenseGram finds 1.6

1DOI: 10.15155/1-00-0000-0000-0000-0012EL

SL-999 ESL-999
Model r ρ τ r ρ τ

cbow 1 .42 .42 .29 .46 .47 .33
sg 2 .37 .36 .24 .41 .42 .3

cbow 3 .33 .33 .23 .33 .34 .24

Table 1: The results for the best three distribu-
tional models

senses/concept, with about 300 word pairs
having more than one sense. For the am-
biguous word pairs (where at least one of the
words in the pair has more than one sense) the
word sense that maximizes the cosine simi-
larity score of a word pair is evaluated.

• Estnltk pretrained word embeddings. Es-
tnltk (Orasmaa et al., 2016) contains 8 word
pretrained embeddings. 4 of them are trained
with the CBOW method and the other 4 were
trained with the Skip-Gram method, on the
raw and lemmatized versions of the Estonian
Reference Corpus (Kaalep et al., 2010). The
Estonian Reference Corpus is a 1.3 billion
word corpus, crawled from the web, contain-
ing mainly newspaper text.

• Facebook pretrained word embeddings.
The Facebook word embeddings (Bo-
janowski et al., 2017) have been trained with
CBOW method on 294 language versions of
Wikipedia.

The distributional models evaluate on average
985 word pairs. Each CBOW and Skip Gram
model has 4 meta-parameters : the number of di-
mensions, the window size, the minimum count
threshold and the number of iterations. Due to
consideration related to space we only present the
best three results in the table 5.1. The whole set
of results for the 67 distributional models trained
and all the figures and the tables in this paper are
available online linked from our github repository.
2. The best model on the first row in the table
5.1, for example, has been trained with the 300 di-
mensions, a window size equal to 1, the minimum
count threshold being 10, and 20 iterations.

In the first place one can notice that CBOW
trained word embedding perform better than Skip-
Gram trained word embeddings. Moreover, the
correlation coefficients between EstSimLex-999

2https://github.com/estsl/EstSimLex-999
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Figure 1: The average performance for POS-based
subsets

human scores and the model computed word sim-
ilarity are higher than the correlation coefficients
between SimLex-999 human scores and the model
computed word similarity. The automatic sense
discrimination had a negative influence on the re-
sults, as the SenseGram induced vector senses
show a slight drop in performance over the tra-
ditional word-embeddings. The Estnltk trained
word embeddings perform worse than EA word
embeddings, but better than Estonian Facebook
pretrained word embeddings.

Furthermore, we study if the part of speech cat-
egory influences the strength of the correlation
between human judgments and the distributional
models. The model similarity scores between the
words in the word pairs is the average similarity
scores for all the distributional models.The corre-
lation coefficients between the model scores for
666 noun pairs, 111 adjective pairs and 222 verb
pairs and the human judgment scores is calculated.

As it can be seen in figure 1, the best (Spear-
man) correlation coefficients between the mod-
els and the similarity sets are obtained for the
nouns. The (Spearman) correlation coefficient be-
tween the distributional models and the human
judgments is higher for EstSimLex-999 set than
for the original SimLex-999 set.

The correlation coefficients between the 250
most concrete word pairs and the 250 most ab-
stract word pair and the distributional models have

Figure 2: The average performance for the most
concrete and abstract subsets

also been computed. The results presented in fig-
ure 5.1 show that, on average, the distributional
models correlate better with the abstract human
judgments scores and that the correlation coeffi-
cient is higher for the EstSimLex-999 set.

5.2 Semantic Network Models
The similarity between the concepts correspond-
ing to the words in EstSimLex-999 word is com-
puted for two semantic networks: the Estonian
Wordnet and a taxonomy derived from the Esto-
nian Wikipedia.

As the Estonian Wordnet lists multiple senses
for words, a disambiguation procedure to select
the most likely sense is implemented. The Carte-
sian product between the word senses in the se-
mantic network corresponding to the words in the
EstSimLex-999 is generated. Thus we obtain a
set of word-sense pairs. Subsequently, as ex-
plained below, a similarity scores is assigned to
each word-sense pair in this set. The word sense
pair that maximizes the similarity score is chosen.
This procedure of mapping the words onto a se-
mantic network is very effective, obtaining over 90
percent precision for the Estonian Wordnet (Barbu
et al., 2018) .

Three similarity measures between the seman-
tic network concepts have been computed: path
similarity (PS), Leacock & Chodorow similarity
(LC) (Leacock and Chodorow, 1998) and Wu &
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SL-999 ESL-999
r ρ τ r ρ τ

PS .47 .47 .35 .54 .52 .39
LC .36 .36 .26 .41 .43 .31

WuP .41 .45 .32 .49 .53 .39

Table 2: The results for the Estonian Wordnet

Palmer similarity (WuP) (Wu and Palmer, 1994).
Pearson (r), Spearman (ρ ), and Kendall (τ ) cor-
relations were calculated between EstSimLex-999
and SimLex-999 human judge scores and the net-
work similarity scores for the disambiguated word
pairs.

The Estonian Wordnet is an ongoing effort,
it pursues roughly the same organization princi-
ples as Princeton WordNet (Miller et al., 1990),
and it is manually built by a group of linguists.
The version used in this study contains approxi-
mately 85.000 synsets. The above described dis-
ambiguation procedure maps approximately 770
word pairs onto the Estonian Wordnet. The results
corresponding to the Estonian Wordnet are in the
table 2.

The best results are obtained for Wu & Palmer
similarity measure and EstSimLex-999. This sim-
ilarity measure considers the depth of the concepts
in the semantic network hierarchy along with the
depth of their Lowest Common Subsumer. Unlike
the path similarity measure it favour the concepts
that are deeper in the hierarchy. As in the case
of the distributional models the EstSimLex-999
correlation scores are better than the SimLex-999
ones. A fact worth noticing is that the difference
between the correlation scores for the two similar-
ity sets is greater when we compute the similar-
ity score based on the Estonian Wordnet structure
instead of estimating the similarity using distribu-
tional models.

The taxonomy was extracted from the (Esto-
nian) Wikipedia page text (Wikipedia Page Tax-
onomy) by the language technology research
group at Università Roma Tre (Flati et al., 2016).
The Wikipedia Page Taxonomy contains approx-
imately 87000 concepts. We could map around
200 word pairs onto the Wikipedia Page Taxon-
omy. The results for this taxonomy are in Table
3.

The correlation coefficients between the simi-
larity measures computed for the Wikipedia Page
taxonomy and the human judgments scores are

SL-999 ESL-999
r ρ τ r ρ τ

PS .32 .31 .22 .37 .34 .24
LC .31 .3 .21 .35 .34 .28

WuP .39 .37 .28 .4 .37 .27

Table 3: The results for the Wikipedia Page Tax-
onomy

much lower than those computed before (with the
Estonian Wordnet). Also, surprisingly and for the
first time in this study, there is no statistically sig-
nificant difference between the correlation coef-
ficients computed with SimLex-999 human judg-
ments scores and the EstSimLex-999 human judg-
ment scores.

5.3 Computer Vision Models

Because the visual similarity is correlated with the
level of concreteness of an object, the computer
vision models are fed with word pairs where both
words have a degree of concreteness higher than
the a threshold equal to 4.8 . This criterion gives
us 136 word pairs. We have downloaded, using
Yandex image search engine 200 images for each
word in the selected word pairs.

The first architecture trains a Convolutional Au-
toencoder (CAE) on the downloaded images. The
encoder consists of 3 convolutional layers, each
followed by a max-pooling layer. The decoder
consists of 3 convolutional followed by upsam-
pling layers. The similarity between two images is
calculated as the cosine similarity between the cor-
responding encoder vectors. The similarity score
for a word pair is the average score between all the
images corresponding to the words in the pair.

The second architecture is the winner of the Im-
ageNet 2015 competition. It is a CNN network ar-
chitecture invented by Microsoft Research, called
ResNet(He et al., 2016) (abbreviation for Resid-
ual Network). DNNs with many layers are diffi-
cult to train due to vanishing and exploding gra-
dient problems. ResNet solves these problems
with residual learning. The ResNet architecture
comes in many variants, depending on the number
of layers the network has. The widely employed
ResNet-18 variant with 18 layers is used in this
study. The network is pretrained on the ImageNet
database (Deng et al., 2009) which contains over
1 million images classified under 1000 Princeton
WordNet categories. Being trained on such a big
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Figure 3: Architecture of ResNet-18

and diverse database of images, ResNet learns rich
feature representations that help discriminate be-
tween images belonging to different categories.

The architecture of ResNet-18 network is pre-
sented in 5.3. As can be noticed the network re-
peats the same structure, and it ends with the av-
erage pool layer that feeds a fully connected layer.
The probability that an image belongs to a cate-
gory is computed by a softmax layer. The network
is fed with the downloaded images corresponding
to the words in the selected concrete set. The im-
age representation learned by the network is read
from the average pool layer. The score this visual
model assigns to a word pair is the average co-
sine similarity score between the pair words im-
age representations. As a way of example let’s
take the hypothetical word pair (cat, dog). The

Model SL-999 ESL-999
r ρ τ r ρ τ

CAE .25 .28 .19 .17 .22 .15
RN18 .37 .38 .26 .34 .38 .27

Table 4: The results for the convolutional autoen-
coder (CAE) and ResNet-18 (RN18) architectures

score assigned by the model to this pair is the aver-
age cosine similarity score between the ResNet-18
representations of the images corresponding to the
words dog and cat.

The results for the two computer vision archi-
tecture are presented in Table 4. As expected, the
rich visual features learned by the ResNet-18 ar-
chitecture boost the results (the best results are
bold marked in the table) for both similarity sets.
The highest correlation coefficients are between
the computer vision models and both similarity
sets human judge scores.

For the three families of models three correla-
tion coefficients have been computed. These co-
efficients do not induce a different order on the
results, therefore the usage Spearman correlation
coefficient in the previous studies is justified.

In general the correlation coefficients between
all families of computational models and the hu-
man judge scores of EstSimLex-999 are better
than the same correlation coefficients and the hu-
man judge scores of SimLex-999. This result
shows that there is a slight language effect on the
perception of similarity.

Regarding the magnitude of the Spearman cor-
relation coefficient for the Estonian side of the
equation, the distributional models show a moder-
ate strength 3 of correlation with the human judge
scores. This means that the distributional mod-
els do capture some of the notion of similarity be-
tween the words, but they also capture something
else. The best Spearman correlation coefficient is
obtained with the Estonian Wordnet (0.53), being
better than the best correlation coefficient for dis-
tributional models (0.47), but still in the moder-
ate range. It seems that the best predictor of hu-
man similarity is derived from a manually built
resource containing clearly defined semantic rela-
tions.

Less than 40 percents of the similarity of the
concrete concepts can be explained by the visual

3In the literature the strength is moderate if the coefficient
is in the range 0.4-0.59.
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semantic features when these features are com-
puted from huge databases of images like Ima-
geNet. Although the empirical evidence heavily
depends on the quality of the ImageNet database
this finding shows that other factors have sig-
nificant weight in human similarity judgments.
Maybe a case can be that these factors are the deep
semantic features we have briefly mentioned in the
introduction section. However, a definitive answer
to what these factors are and how to account for
them goes beyond this research.

6 Conclusions

In this study have addressed some aspects of the
computational models of similarity applied to the
Estonian language.

In the first place we have found that the neu-
ral visual models of similarity can explain a part
of the similarity between the words representing
concrete concepts. This invites the conclusion that
deep similarity models might be involved in ac-
counting for the unexplained part of similarity.

In the second place and differently from the
finding in (Leviant and Reichart, 2015) an effect of
the language on the similarity has been found. Un-
like in that study the Estonian computational mod-
els of similarity better correlate with the word pair
similarity score assigned by the Estonian subjects
that with the scores assigned by English speaking
subjects.

In the third place the best computational mod-
els are those derived from human built semantic
networks. They are better than the neural distri-
butional models but still they correlate moderately
with the human judgments. This means that there
is more to similarity than taxonomic similarity. On
the other hand the Estonian Wordnet is still work
in progress, therefore we cannot rule out that a
more complete wordnet can boost the similarity
scores. Unlike the original study (Hill et al., 2015)
we have found that the word embedding compu-
tational models better correlate to the scores for
nouns and not the adjectives. Intuitively, this re-
sult makes sense as nouns have richer mental rep-
resentations than other morphological categories,
therefore one expects that the similarity is better
defined for nouns than for other parts of speech.

In the future we will work to better understand
the other components of similarity for the concrete
concepts, improve and refine the computational
models of similarity for the Estonian language and

address the same problem for different languages.

Reproducibility

The EstSimLex-999 set annotated with the hu-
man judge similarity scores, the code used to
compute the results in this paper, the complete
set of tables and the figures and most of the
resources used in this paper can be referenced
from the Github repository https://github.
com/estsl/EstSimLex-999 .
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