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Abstract

Morphological segmentation of words is
the process of dividing a word into smaller
units called morphemes; it is tricky es-
pecially when a morphologically rich or
polysynthetic language is under question.
In this work, we designed and evaluated
several Recurrent Neural Network (RNN)
based models as well as various other ma-
chine learning based approaches for the
morphological segmentation task. We
trained our models using annotated seg-
mentation lexicons. To evaluate the effect
of the training data size on our models, we
decided to create a large hand-annotated
morphologically segmented corpus of Per-
sian words, which is, to the best of our
knowledge, the first and the only seg-
mentation lexicon for the Persian lan-
guage. In the experimental phase, using
the hand-annotated Persian lexicon and
two smaller similar lexicons for Czech and
Finnish languages, we evaluated the effect
of the training data size, different hyper-
parameters settings as well as different
RNN-based models.

1 Introduction

Morphological analysis must be tackled somehow
in all natural language processing tasks, such as
machine translation, speech recognition, and in-
formation retrieval. Morphological segmentation
of words is the process of dividing a word into
smaller units called morphemes. Morphological
segmentation task is harder for those languages
which are morphologically rich and complex like
Persian, Arabic, Czech, Finnish or Turkish, espe-
cially when there are not enough annotated data

for those languages. In this paper, we designed
and evaluated various supervised setups to per-
form morphological segmentation using a hand-
annotated segmented lexicon for training.

The efficiency of supervised approaches (espe-
cially of deep neural network models) is naturally
highly dependent on the size of training data. In
order to evaluate the effect of the training data
size on our segmentation models, we created a
rich Persian hand-annotated segmentation lexicon,
which is, as far as we know, the first and the only
such computer-readable dataset for Persian. Per-
sian (Farsi) is one of the languages of the Indo-
European language family within the Indo-Iranian
branch and is spoken in Iran, Afghanistan, Tajik-
istan and some other regions related to ancient
Persian. In addition, we evaluated our models on
Czech and Finnish, however, the amount of anno-
tated data for them is substantially lower.

Automatic morphological segmentation was
firstly introduced by Harris (1970). More re-
cent research on morphological segmentation has
been usually focused on unsupervised learning
(Goldsmith, 2001; Creutz and Lagus, 2002; Poon
et al., 2009; Narasimhan et al., 2015; Cao and
Rei, 2016), whose goal is to find the segmenta-
tion boundaries using an unlabeled set of word
forms (or possibly a corpus too). Probably the
most popular unsupervised systems are LINGUIS-
TICA (Goldsmith, 2001) and MORFESSOR, with
a number of variants (Creutz and Lagus, 2002;
Creutz et al., 2007; Grönroos et al., 2014). An-
other version of the latter which includes a semi-
supervised extension was introduced by (Kohonen
et al., 2010). Poon et al. (2009) presented a log-
linear model which uses overlapping features for
unsupervised morphological segmentation.

In spite of the dominance of the unsupervised
systems, as soon as even just a small amount of
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segmented training data is available, then the en-
tirely unsupervised systems tend not to be com-
petitive. Furthermore, unsupervised segmenta-
tion still has considerable weaknesses, including
over-segmentation of roots and erroneous segmen-
tation of affixes (Wang et al., 2016). To deal
with those limitations, recent works show a grow-
ing interest in semi-supervised and supervised
approaches (Kohonen et al., 2010; Ruokolainen
et al., 2013, 2014; Sirts and Goldwater, 2013;
Wang et al., 2016; Kann and Schütze, 2016; Kann
et al., 2018; Cotterell and Schütze, 2017; Grönroos
et al., 2019) which employ annotated morpheme
boundaries in the training phase.

In our work we designed and evaluated various
machine learning models and trained them using
only the annotated lexicon in a supervised manner.
Our models do not leverage the unannotated data
nor context information and only use the primary
hand-annotated segmentation lexicons.

Experimental results show that our Bi-LSTM
model perform slightly better than other models in
boundary prediction for our hand-segmented Per-
sian lexicon, while KNN (K-Nearest Neighbors al-
gorithm) performs better when the whole word ac-
curacy is under question.

The paper is organized as follows: Section 2
addresses the related work on morphological seg-
mentation. Section 3 describes the methodology
and machine learning models used in this work.
Section 4 introduces our hand-segmented Persian
lexicon as well as related preprocessing phases.
Section 5 presents the experiment results com-
pared to some other baseline systems and finally
Section 6 concludes the paper.

2 Related Work

Supervised morphological segmentation, i.e. us-
ing a lexicon (or a corpus) with annotated mor-
pheme boundaries in the training phase, has at-
tracted increasing attention in recent years. One
of the most recent successful research directions
on supervised morphological segmentation is the
work of (Ruokolainen et al., 2013), whose au-
thors employ CRF (Conditional Random Fields), a
popular discriminative log-linear model to predict
morpheme boundaries given their local sub-string
contexts instead of learning a morpheme lexicon.
(Ruokolainen et al., 2014) extended their work
to semi-supervised learning version by exploiting
some available unsupervised segmentation tech-

niques into their CRF-based model via a feature
set augmentation. (Ruokolainen et al., 2014)

Long Short Term Memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997) have recently
achieved great success in sequence learning tasks,
including outstanding results on sequential tasks
such as machine translation (Sutskever et al.,
2014). Wang et al. (2016) proposed three types
of window-based LSTM neural network models
named Window LSTM, Multi-window LSTMs
and Bidirectional Multi-Window LSTMs, in or-
der to automatically learn sequence structures and
predict morphological segmentations of words in a
raw text. They used only word boundary informa-
tion without any need for extra feature engineer-
ing in the training phase. The authors compared
their models with selected supervised models as
well as with an LSTM architecture (Wang et al.,
2016), and similarly to the work of Ruokolainen
et al. (2013), their architecture is based on the
whole text and context information instead of us-
ing only the lexicon. Cotterell and Schütze (2017)
increased the segmentation accuracy by employ-
ing semantic coherence information in their mod-
els. They used RNN (Recurrent Neural Network)
to design a composition model. They also found
that using RNN with dependency vector has the
best results on vector approximation (Cotterell and
Schütze, 2017).

Recently, using encoder-decoder models Bah-
danau et al. (2014) (attention-based models) made
some great successes in machine translation sys-
tems. Kann and Schütze (2016) used an encoder-
decoder model which encodes the input as a se-
quence of morphological tags of source and tar-
gets and feeds the model by sequence of letters of
a source form. They select the final answer using
a majority voting amongst their five different en-
sembled RNN encoder-decoder models. Kann and
Schütze (2016), proposed a seq2seq (sequence-to-
sequence network) architecture for the word seg-
mentation task. They used a bi-directional RNN
to encode the input word (i.e. sequence of charac-
ters) and concatenated forward and backward hid-
den states yielded from two GRUs and pass the re-
sult vector to decoder part. The decoder is a single
GRU which uses segmentation symbols for train-
ing. She introduced two multi-task training ap-
proaches as well as data augmentations to improve
the quality of the presented model. She shows that
neural seq2seq models perform on par with or bet-
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ter than other strong baselines for polysynthetic
languages in a minimal-resource setting. Their
suggested neural seq2seq models constitute the
state of the art for morphological segmentation in
high-resource settings and for (mostly) European
languages (Kann et al., 2018).

The main studied language in our work is Per-
sian, which belongs to morphologically rich lan-
guages and which is powerful and versatile in
word building. Having many affixes to form new
words (over a hundred), and the ability to build af-
fixes and especially prefixes from nouns, the Per-
sian language is considered as an agglutinative
language since it also frequently uses derivational
agglutination to form new words from nouns, ad-
jectives, and verbal stems. Hesabi (1988) claimed
that Persian can derive more than 226 million
words (Hesabi, 1988).

To the best of our knowledge, the research
on morphology of the Persian language is very
limited. Rasooli et al. (2013) claimed that per-
forming morphological segmentation in the pre-
processing phase of statistical machine transla-
tion could improve the quality of translations for
morphology rich and complex languages. Al-
though they segmented very low portion of Per-
sian words (only some Persian verbs), the qual-
ity of their machine translation system increases
by 1.9 points of BLEU score. Arabsorkhi and
Shamsfard (2006) proposed a Minimum Descrip-
tion Length (MDL) based algorithm with some
improvements for discovering the morphemes of
Persian language through automatic analysis of
corpora.

3 Our Machine Learning Models

In this work we decided to evaluate selected ma-
chine learning models including those feature-
based machine learning approaches in which the
task of word segmentation is reformulated as
a classification task, as well as various deep-
learning (DL for short) neural network models.

Because of huge number of learned parame-
ters in DL, having enough training data is critical.
The fact that we decided to create a large hand-
annotated dataset for Persian allows evaluating the
effect of the training data size on a relatively wide
scale, as described in Section 4.

We convert all segmentations into a simple
string format in which letters “B” and “L” en-
code the presence of the boundary letter and

the continuation letter, respectively. For exam-
ple for word “goes”, the encoded segmentation
is “LLBL”, which shows that there is a segmen-
tation boundary in front of the third letter (“e”).
While in our model we consider only morpholog-
ically segmented lexicon and we do not employ
any other information like corpus contexts or lists
of unannotated words, this encoding is sufficient
and make the specification of boundary location
easy.

In the case of presence of a semi-space let-
ter (a feature specific for the Persian written lan-
guage), the semi-space letter is always considered
as a boundary letter. An experiments focused on
this feature is described in Subsection 5.2.3, which
shows that our models could perform better when
this information exists in the annotated lexicon.

3.1 Classification-Based Segmentation
Models

In the first setup, we convert the segmentation task
(the task of segmenting a word into a sequence
morphemes) simply to a set of independent bi-
nary decisions capturing the presence or absence
of a segmentation boundary in front of each let-
ter in the word. For this task, we use various
standard off-the-shelf classifiers available in the
Scikit-learn toolkit (Pedregosa et al., 2011).

So far, we provide the classifiers only with fea-
tures that are extractable from the word alone.
More specifically, we use only character-based
features. These character-based features include
letters and letter sequences (and their combina-
tions) before and after under the character under
question, which is subsequently assigned one out
of two classes: “B” for boundary characters, and
“L” which stands for continuation characters. The
main task of these methods is then to train a classi-
fication model to classify all characters in the word
into those two classes, given binary features based
on surrounding characters. For example, for the
fifth character of word “hopeless”, some of our
features could be: “e”, “le”, and “ope”. The classi-
fication predictions are performed independently.

3.2 Deep Neural Network Based Models
Besides the classification-based segmentation
models, we designed and evaluated five DL mod-
els based on GRU, LSTM, Bi-LSTM, seq2seq and
Bi-LSTM with the attention mechanism, respec-
tively. The first three models are illustrated in Fig-
ures 1 and 2. The presented seq2seq model, is
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similar to the model described in (Grönroos et al.,
2019). The last presented model is an attention
based model, which is shown in Figure 3. In this
model, we use Bi-LSTM as encoder and LSTM as
attention layer, and finally, outputs of encoder and
attention layers are added together.

Figure 1: The schema of the LSTM/GRU models
used in this experiments.

Figure 2: The schema of the Bi-LSTM model used
in this experiments.

Figure 3: The schema of the Bi-LSTM with the
attention mechanism model used in this experi-
ments.

4 Morphological Segmentation Lexicons

In this section, the rich Persian hand-annotated
dataset and the existing Finnish datasets from
the Morpho-Challenge shared task 2010 (Virpioja

et al., 2011) as well as the Czech dataset used in
our experiments are described.

4.1 Persian Hand-Annotated Morphological
Segmentation Dataset

We extracted our primary word list from three dif-
ferent corpora. The first corpus contains sentences
extracted from the Persian Wikipedia (Karimi
et al., 2018). The second one is popular Persian
mono-lingual corpus BijanKhan (Bijankhan et al.,
2011), and the last one is Persian-NER1 (Poostchi
et al., 2018).

For all introduced corpora, using Hazm tool-
set (Persian preprocessing and tokenization tools)2

and the stemming tool presented by Taghi-Zadeh
et al. (2015), we extracted and normalized all
sentences and in the final steps using our rule-
based stemmer and a Persian lemma collection, all
words are lemmatized and stemmed. Finally all
semi-spaces are automatically detected and fixed.
Words with more than 10 occurrences in the cor-
pora were selected for manual annotation. We
decided to send all 80K words to our 16 anno-
tators in the way that each word is checked and
annotated by two independent persons. Annota-
tors decided about the lemma of a word under
question, segmentation parts, plurality, ambiguity
(whether a word has more than one meaning) or
they might delete the word if they think is not a
proper Persian word. Moreover, some segmenta-
tions predicted by our automatic segmentator with
high confidence score were offered to our annota-
tors. We removed almost 30K words which were
selected to be deleted by both annotators. And re-
maining 50K words sent for inter-annotation com-
parison part. In this step, all disagreements were
checked and corrected by the authors of this paper
and finally all words were quickly reviewed by two
Persian linguists. The whole process took around
six weeks. In order to use a hand-annotated lex-
icon in our work, we extracted the segmentation
part from the dataset and converted it to our binary
model which is described in Section 3.

The total number of words we used in our Per-
sian dataset is 40K. The dataset is publicly avail-
able in the LINDAT/CLARIN repository (Ansari
et al., 2019).

1https://github.com/HaniehP/
PersianNER

2https://github.com/sobhe/hazm

https://github.com/HaniehP/PersianNER
https://github.com/HaniehP/PersianNER
https://github.com/sobhe/hazm
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4.2 Existing Finnish and Czech Segmentation
Datasets

We downloaded the Finnish segmentation dataset
from the Morpho-Challenge shared task 20103

(Virpioja et al., 2011) and converted them into our
binary format. The Finnish dataset contains 2000
segmented words. While comparing to our hand-
annotated Persian dataset these datasets are small,
we used them to see the efficiency of our presented
models when the size of training dataset is limited.

The Czech dataset results from a prototype seg-
mentation annotation of Czech words. A sample
of 1000 lemmas were selected randomly from De-
riNet, which is a lexical database focus on deriva-
tion in Czech (Žabokrtský et al., 2016). The
lemmas were manually segmented by two inde-
pendent annotators, and all annotation differences
were resolved subsequently during a third pass
through the data. The annotation resulted in 4.6
morphemes per word, partially as a result of the
fact that the lemmas were sampled uniformly, re-
gardless of their corpus frequency, and thus the se-
lection is biased towards longer words.

5 Experimental Results

To partition our dataset (Persian, Czech and
Finnish) into training, development and test sets
a commonly used method is used (Ruokolainen
et al., 2013), which involves sorting words accord-
ing to their frequency and assigning every eighth
term starting from the first one into the test set
and every eighth term from the second into the de-
velopment set, while moving the remaining terms
into the training set.

In order to evaluate the effect of the training
data size, we randomly select the first 1/64, 1/32,
1/16, 1/8, 3/8, 1/4, 1/2, 3/4 and all amount of data
from the training set to carry out experiments with
different training sizes. In all experiments, we re-
port three evaluation measures: the number of cor-
rectly predicted morpheme boundaries (in terms of
precision, recall, and f-measure), the percentage
of correct binary predictions on all characters, and
the percentage of correctly segmented words.

As described in Section 2, some previous works
reported accuracy in terms of the number of cor-
rect predictions (boundary and word) in a running
text, instead of considering unique words sampled
from a lexicon. Hence we decided to also report

3http://morpho.aalto.fi/events/
morphochallenge2010/datasets.shtml

such accuracy in our experiments in addition to
our lexicon evaluation. For this new experiment,
we selected a part of a mono-lingual text and after
removing all presented words in the text from our
training lexicon, the remaining segmented words
are considered as the training set and finally ac-
curacy of word segmentation of words in test sen-
tences is reported separately.

5.1 Baselines

We used two baseline systems which we selected
to compare our models with. The first base-
line is an unsupervised version of MORFESSOR,
which is introduced and implemented by Creutz
et al. (2007). The second baseline is FlatCat
(Grönroos et al., 2014), which is a well-known
semi-supervised version of MORFESSOR that
uses the Hidden Markov Model for segmentation.
In addition to the annotated data, semi-supervised
MORFESSOR (i.e. FlatCat) uses a set of 100,000
word types following their frequency in the cor-
pus as their unannotated training dataset. For both
baselines, the best performing model is selected
and compared with our neural network based mod-
els.

5.2 Results and Discussion

As described in Section 4, we designed vari-
ous models for the morphological segmentation
task. In the following subsections, different ex-
periments done in this work are reviewed. In all
tables, the column entitled by W% indicates the
proportion of perfectly segmented words. The
column entitled by Ch% indicated the accuracy
of characters which are classified as boundary or
non-boundary. Finally, P%, R%, and F% indi-
cate precision, recall and F-measure score respec-
tively for the morpheme boundary detection, natu-
rally excluding the trivial final position characters
from our evaluation.

5.2.1 Comparison of Different Models
Table 1 shows the evaluation results of mor-
phological segmentation using our Persian hand-
annotated dataset if the whole training data is
used. For each model, only results of the best-
performing hyperparameter configuration are re-
ported. As is shown in Table 1, our Bi-LSTM
model performs slightly better than the rest in
boundary prediction, however, the classification
models are surprisingly almost on the par with our
complex DL model. Considering word accuracy,

http://morpho.aalto.fi/events/morphochallenge2010/datasets.shtml
http://morpho.aalto.fi/events/morphochallenge2010/datasets.shtml
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Model P% / R% / F% W% Ch%

LSTM 90.09 / 87.55 / 88.80 64.10 93.20
GRU 85.43 / 84.50 / 84.96 58.35 91.44
Bi-LSTM 92.50 / 88.65 / 90.53 66.51 94.37
Seq2Seq 88.04 / 84.04 / 86.09 59.10 91.65
Bi-LSTM with Attention 92.57 / 85.85 / 89.08 65.30 93.52
SVC, Kernel: linear 85.86 / 82.20 / 83.94 73.08 94.45
SVC, Kernel: poly, Degree: 2 89.57 / 85.86 / 87.67 78.72 95.72
SVC, Kernel: rbf 89.71 / 84.42 / 86.99 77.61 95.52
SVC, Kernel: poly, Degree: 5 89.77 / 83.91 / 86.74 77.17 95.45
SVC, Kernel: poly, Degree: 3 89.58 / 85.89 / 87.70 78.70 95.73
Logistic Regression, Solver: sag 87.55 / 79.66 / 83.42 72.60 94.39
Logistic Regression, Solver: liblinear 87.55 / 79.60 / 83.42 72.63 94.39
Logistic Regression, Solver: lbfgs 87.49 / 79.78 / 83.46 72.64 94.39
KNeighbors, Neighbors: 5 86.22 / 82.47 / 84.30 73.12 94.56
KNeighbors, Neighbors: 10 86.22 / 82.47 / 84.03 73.12 94.56
KNeighbors, Neighbors: 30 90.23 / 86.69 / 88.42 78.64 95.73
Ada Boost, Estimators: 100 83.34 / 64.10 / 72.46 58.21 90.83
Decision Tree 88.25 / 87.05 / 87.65 76.83 95.38
Random Forest, Estimators: 10 89.75 / 84.87 / 87.15 76.08 95.30
Random Forest, Estimators: 100 89.93 / 85.92 / 87.88 77.37 95.54
Bernoulli Naive Bayes 78.38 / 88.31 / 83.05 66.71 93.21
Perceptron MaxIteration: 50 83.98 / 74.45 / 78.93 65.07 92.52
Unsupervised MORFESSOR 69.58 / 81.10 / 74.90 29.01 83.28
Supervised MORFESSOR 82.13 / 92.94 / 87.20 59.56 91.60

Table 1: Result of applying our models on small
Persian segmented lexicon. P%, R%, and F%
indicate precision, recall and F-measure score re-
spectively. W% means the percentage of number
of correct predicted words and Ch% indicated the
the accuracy of characters which are classified in
two boundary or non-boundary classes.

classification models are performing better than
DL models. A possible explanation for this is that
the classification models make use of n-gram fea-
tures and handle the characteristics of the whole
word more efficiently than sequence-based mod-
els. Moreover, regarding our experiments, the pre-
sented seq2seq model does not perform well. An
explanation could be that while there is not any
available context information, the used attention
mechanism does not have any far parts to make a
relation between them. Moreover, our Bi-LSTM
with the attention mechanism does not perform
better than normal Bi-LSTM either. Finally, Ta-
bles 2 and 3 show the results of this experiment on
two other languages, Finnish and Czech, for which
the sizes of training data are very limited compar-
ing the Persian dataset. As we expected, with so
small training data, the classification methods per-
form better than more complex DL strategies.

Table 4 shows a comparison of our DL models,
when different LSTM output sizes and drop-out
thresholds are tested. Only two best-performing
models (LSTM and Bi-LSTM) are shown.

As is seen in the tables, the classification mod-
els perform well when compared to more complex
DL models. One explanation for this evidence is
the lack of any external information (other than
a segmented lexicon) which limits the number of

Model P% / R% / F% W% Ch%

LSTM 99.67 / 29.08 / 44.98 03.58 81.57
GRU 99.99 / 28.01 / 45.01 03.59 81.60
Bi-LSTM 86.96 / 32.82 / 47.66 04.88 81.30
Bi-LSTM with Attention 81.50 / 44.18 / 57.30 05.53 78.26
SVC, Kernel: linear 78.39 / 76.83 / 77.31 38.11 91.16
SVC, Kernel: poly, Degree: 2 89.00 / 77.62 / 82.23 47.55 93.63
SVC, Kernel: rbf 90.06 / 74.83 / 81.74 45.92 93.34
SVC, Kernel: poly, Degree: 5 91.35 / 64.71 / 75.75 35.83 91.75
SVC, Kernel: poly, Degree: 3 89.70 / 76.56 /82.61 46.57 93.58
Logistic Regression, Solver: sag 82.43 / 69.37 / 75.34 31.92 90.95
Logistic Regression, Solver: liblinear 82.43 / 69.37 / 75.34 31.92 90.95
Logistic Regression, Solver: lbfgs 82.43 / 69.37 / 75.34 31.92 90.95
KNeighbors, Neighbors: 5 82.56 / 71.23 / 76.48 33.55 91.27
KNeighbors, Neighbors: 10 82.56 / 71.23 / 76.48 33.55 91.27
KNeighbors, Neighbors: 30 82.56 / 71.23 / 76.48 33.55 91.27
Ada Boost, Estimators: 100 76.45 / 38.48 / 51.19 16.28 85.38
Decision Tree 79.58 / 76.29 / 77.90 39.41 91.38
Random Forest, Estimators: 10 87.41 / 68.44 / 76.77 37.45 91.75
Random Forest, Estimators: 100 88.08 / 72.83 / 79.73 44.29 92.62
Bernoulli Naive Bayes 64.27 / 76.43 / 69.82 26.38 86.84
Perceptron MaxIteration: 50 73.22 / 75.36 / 74.27 31.92 89.60
Unsupervised MORFESSOR 25.85 / 89.87 / 40.15 00.32 30.53
Supervised MORFESSOR 70.48 / 79.67 / 74.79 31.49 87.68

Table 2: Result of applying our models on small
Finnish segmented lexicon.

Model P% / R% / F% W% Ch%

LSTM 69.64 / 36.44 / 47.82 04.19 69.77
GRU 74.72 / 27.23 / 39.92 00.59 63.86
Bi-LSTM 68.56 / 48.33 / 56.69 05.38 67.45
Bi-LSTM with Attention 66.62 / 71.16 / 68.81 08.98 72.16
SVC, Kernel: linear 84.28 / 70.84 / 76.98 20.95 83.88
SVC, Kernel: poly, Degree: 2 91.42 / 69.46 / 78.94 31.73 85.90
SVC, Kernel: rbf 91.39 / 67.40 / 77.59 30.53 85.19
SVC, Kernel: poly, Degree: 5 94.03 / 48.71 / 64.18 20.35 79.32
SVC, Kernel: poly, Degree: 3 90.95 / 60.37 / 72.57 25.14 82.64
Logistic Regression, Solver: sag 90.69 / 66.89 / 76.99 25.04 84.80
Logistic Regression, Solver: liblinear 90.69 / 66.89 / 76.99 25.04 84.80
Logistic Regression, Solver: lbfgs 90.69 / 66.89 / 76.99 25.04 84.80
KNeighbors, Neighbors: 5 82.18 / 79.93 / 81.04 28.74 85.77
KNeighbors, Neighbors: 10 87.50 / 76.15 / 81.24 29.34 86.62
KNeighbors, Neighbors: 30 82.18 / 79.93 / 81.04 28.74 85.77
Ada Boost, Estimators: 100 88.85 / 57.46 / 69.79 16.16 81.08
Decision Tree 78.46 / 56.26 / 65.53 15.56 77.49
Random Forest, Estimators: 10 91.42 / 65.86 / 76.57 29.34 84.67
Random Forest, Estimators: 100 91.76 / 68.78 / 76.82 29.34 85.77
Bernoulli Naive Bayes 85.94 / 74.44 / 79.77 26.94 85.64
Perceptron MaxIteration: 50 80.45 / 72.04 / 76.01 19.16 82.71
Unsupervised MORFESSOR 44.28 / 99.33 / 61.25 00.59 44.61
Supervised MORFESSOR 67.12 / 77.43 / 71.91 05.95 73.33

Table 3: Result of applying our models on the
Czech segmented lexicon.

Model Parameters P% / R% / F% W% Ch%
Bi-LSTM Outstate: 25 Dropout: 0.2 89.44 / 82.80 / 86.00 59.44 91.73
Bi-LSTM Outstate: 50 Dropout: 0.2 88.79 / 87.89 / 88.34 62.57 92.86
Bi-LSTM Outstate: 70 Dropout: 0.2 91.39 / 88.85 / 90.10 64.51 93.70
Bi-LSTM Outstate: 70 Dropout: 0.5 92.50 / 88.65 / 90.53 66.51 94.37

LSTM Outstate: 25 Dropout: 0.2 91.69 / 83.00 / 87.13 62.32 92.45
LSTM Outstate: 50 Dropout: 0.2 93.09 / 82.29 / 87.36 60.82 92.67
LSTM Outstate: 70 Dropout: 0.2 90.09 / 87.55 / 88.80 64.10 93.20
LSTM Outstate: 70 Dropout: 0.5 87.86 / 88.59 / 88.22 62.19 92.72

Table 4: Effect of using different hyper-
parameters on LSTM and Bi-LSTM models, two
best performing deep neural network models for
Persian dataset

possible features from the training data. For ex-
ample there is no information about some previ-
ous words, and consequently RNN-based models
can not learn any information about distant pre-
vious characters in the training phase. Possibly,
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this also explains the inferior performance of our
seq2seq model compared to the Bi-LSTM model
implemented for this work.

Finally, Table 5 shows results of selected mod-
els when the segmentation is done on all words
occurring in a corpus instead of a segmented lexi-
con. In this experiments we expected those words
with more frequency has higher effect on results
comparing with less frequent words.

5.2.2 Effect of Training Data Size
In order to evaluate the effect of the training data
size on our DL models, different amount of train-
ing data are selected from and feed to our models.
Figure 4 and Figure 5 demonstrate an experiment
in which the baseline line is the results of unsu-
pervised version of MORFESSOR for similar test
dataset. Only four best performing feature-based
models in addition to two DL-based models are
selected to be shown here. As this figure shows,
after having more than 10K training instances, in-
creasing the training data further does not have a
substantial effect any more.

5.2.3 Semi-Space Feature for Persian Words
An important feature of the Persian and Arabic
languages is the existence of semi-space. For ex-
ample word ”کتابها“ (books) is a combination of
word ”کتاب“ and ,”ها“ in which the former is Per-
sian translation of word “book” and the latter is
morpheme for a plural form. We can say these
semi-space signs segment words into smaller mor-
phemes. However, in formal writing and in all Per-
sian normal corpora, this space is neglected fre-
quently and it could make a lot of problems in
Persian and Arabic morphological segmentation
task. For example both forms for the previous
example, ”کتابها“ and ”کتابها“ , are considered
correct in Persian text and have the same mean-
ing. To deal with this problem and in order to
improve the quality of our segmentation dataset,
we implemented a preprocessor to distinguish this

Model P% / R% / F% W% Ch%

LSTM 94.42 / 92.93 / 93.67 78.14 95.13
Bi-LSTM 95.97 / 93.69 / 94.89 78.37 95.79
SVC, Kernel: poly, Degree: 3 93.88 / 92.11 / 92.99 89.85 97.02
KNeighbors, Neighbors: 30 94.50 / 92.77 / 93.63 89.91 96.93
Random Forest, Estimators: 100 94.32 / 91.99 / 93.10 88.64 96.66

Table 5: Experiment results when a model is used
to predict boundaries of Persian words of a small
corpus instead of lexicon words. Only five best
performing models are shown.

kind of space in Persian words and consequently
our hand-annotated dataset contains these semi-
spaces correctly. While we wanted to test the ef-
fect of having this prior knowledge in the lexicon,
we evaluated our models in two different forms. In
the first case, we used our hand annotated dataset
as is. In the second case, we removed all semi-
spaces from the lexicon. Table 6 shows a compar-
ison for deploying our models on these two dif-
ferent datasets and as could be seen in this table,
having the accurate dataset which is created by our
preprocessing strategy could improve results dras-
tically.

6 Conclusion

The main task of this work is to evaluate different
supervised models to find the best segmentation
of a word when only a segmented lexicon without
any extra information is available in the training
phase. In recent years, recurrent neural networks
(RNN) attracted a growing interest in morpholog-
ical analysis, that is why we decided to design
and evaluate various neural network based mod-
els (LSTM, Bi-LSTM, GRU, and attention based
models) as well as some machine learning classi-
fication models including SVM, Random Forest,
Logistic Regression and others for our morpho-
logical segmentation task. While a critical point
in any DL model is the training data size, we de-
cided to create a rich hand annotated Persian lex-
icon which is the only segmented corpus for Per-
sian words. Using this lexicon we evaluated our
presented models as well as the effect of train-
ing data size on results. Moreover, we evaluated
and tested our models on some limited datasets for
Czech and Finnish languages. Experimental re-
sults show our Bi-LSTM model performs slightly
better in boundary prediction, however the results
of classification-based approaches overcome the
DL models in percentage of completely correctly
segmented words.
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Figure 4: The effect of Persian training data size on boundary detection F-measure.

Figure 5: The effect of Persian training data size on whole-word segmentation accuracy.

with semi without semiModel P% / R% / F% W% Ch% P% / R% / F% W% Ch%
LSTM 90.09 / 87.57 / 88.80 64.10 93.20 91.15 / 74.76 / 82.15 51.42 89.53
Bi-LSTM 92.50 / 88.65 / 90.53 66.51 94.37 89.19 / 77.18 / 82.75 52.58 89.64
SVC, Kernel: linear 85.86 / 82.20 / 83.94 73.08 94.45 81.67 / 77.75 / 79.66 68.17 92.62
SVC, Kernel: poly, Degree: 2 89.57 / 85.86 / 87.67 78.72 95.72 86.52 / 82.96 / 84.71 75.66 94.43
SVC, Kernel: rbf 89.71 / 84.42 / 86.99 77.61 95.52 86.34 / 80.96 / 83.56 74.39 94.08
SVC, Kernel: poly, Degree: 5 89.77 / 83.91 / 86.74 77.17 95.45 86.11 / 80.11 / 83.00 73.00 93.90
SVC, Kernel: poly, Degree: 3 89.58 / 85.89 / 87.70 78.70 95.73 86.30 / 83.02 / 84.63 75.30 94.39
Logistic Regression, Solver: sag 87.55 / 79.66 / 83.42 72.60 94.39 83.83 / 75.75 / 79.58 68.61 92.77
Logistic Regression, Solver: liblinear 87.55 / 79.60 / 83.42 72.63 94.39 83.84 / 75.75 / 79.59 68.63 92.78
Logistic Regression, Solver: lbfgs 87.49 / 79.78 / 83.46 72.64 94.39 83.74 / 75.59 / 79.46 68.47 92.73
KNeighbors, Neighbors: 5 82.47 / 86.22 / 84.30 73.12 94.56 82.19 / 76.34 / 79.15 67.36 92.52
KNeighbors, Neighbors: 10 86.22 / 82.47 / 84.30 73.12 94.56 82.19 / 76.34 / 79.15 67.36 95.52
KNeighbors, Neighbors: 30 90.23 / 86.69 / 88.42 78.64 95.73 82.19 / 76.34 / 79.15 67.36 92.52
Ada Boost, Estimators: 100 83.34 / 64.10 / 72.46 58.21 90.83 75.17 / 51.87 / 61.39 52.95 87.87
Decision Tree 88.25 / 87.05 / 87.65 76.83 95.38 88.24 / 86.05 / 87.13 75.92 95.21
Random Forest, Estimators: 10 89.75 / 84.87 / 87.15 76.08 95.30 85.04 / 78.17 / 81.46 70.83 93.38
Random Forest, Estimators: 100 89.93 / 85.92 / 87.88 77.37 95.54 85.21 / 79.66 / 82.34 71.95 93.65
Bernoulli Naive Bayes 78.38 / 88.31 / 83.05 66.71 93.21 75.63 / 84.91 / 80.00 62.01 92.01
Perceptron MaxIteration: 50 83.98 / 74.45 / 78.93 65.07 92.52 75.41 / 77.28 / 76.34 62.51 90.05
Unsupervised MORFESSOR 69.58 / 81.10 / 74.90 29.01 83.28 71.16 / 81.88 / 76.14 30.33 83.48
Supervised MORFESSOR 82.13 / 92.94 / 87.20 59.56 91.60 81.60 / 92.24 / 86.60 58.84 90.80

Table 6: The effect of considering semi-space on training data when all training data are used.
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Saraçlar, and Andreas Stolcke. 2007. Morph-
based speech recognition and modeling of out-
of-vocabulary words across languages. ACM
Trans. Speech Lang. Process. 5(1):3:1–3:29.
https://doi.org/10.1145/1322391.1322394.

Mathias Creutz and Krista Lagus. 2002. Un-
supervised discovery of morphemes. In Pro-
ceedings of the ACL-02 Workshop on Mor-
phological and Phonological Learning. Associa-
tion for Computational Linguistics, pages 21–30.
https://doi.org/10.3115/1118647.1118650.

John Goldsmith. 2001. Unsupervised learn-
ing of the morphology of a natural lan-
guage. Comput. Linguist. 27(2):153–198.
https://doi.org/10.1162/089120101750300490.

Stig-Arne Grönroos, Sami Virpioja, and Mikko Ku-
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