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Abstract

The quality of Neural Machine Translation
(NMT), as a data-driven approach, mas-
sively depends on quantity, quality and
relevance of the training dataset. Such
approaches have achieved promising re-
sults for bilingually high-resource scenar-
ios but are inadequate for low-resource
conditions. This paper describes a round-
trip training approach to bilingual low-
resource NMT that takes advantage of
monolingual datasets to address training
data scarcity, thus augmenting transla-
tion quality. We conduct detailed experi-
ments on Persian-Spanish as a bilingually
low-resource scenario. Experimental re-
sults demonstrate that this competitive ap-
proach outperforms the baselines.

1 Introduction

Neural Machine Translation (NMT) has made
considerable progress in recent years. However,
to achieve acceptable translation output, large sets
of aligned parallel sentences are required for the
training phase. Thus, as a data-driven paradigm,
the quality of NMT output strongly depends on the
quality as well as quantity of the provided train-
ing data (Bahdanau et al., 2015). Unfortunately,
in practice, collecting such parallel text by human
labeling is very costly and time consuming (Ah-
madnia and Serrano, 2017).

Low-resource languages are those that have
fewer technologies and datasets relative to some
measure of their international importance. The
biggest issue with low-resource languages is
the extreme difficulty of obtaining sufficient re-
sources. Natural Language Processing (NLP)
methods that have been created for analysis of
low-resource languages are likely to encounter

similar issues to those faced by documentary and
descriptive linguists whose primary endeavor is
the study of minority languages. Lessons learned
from such studies are highly informative to NLP
researchers who seek to overcome analogous chal-
lenges in the computational processing of these
types of languages.

Assuming that large monolingual texts are
available, an obvious next step is to leverage
these texts to augment the NMT systems’ per-
formance. Various approaches have been devel-
oped for this purpose. In some approaches, target
monolingual texts are employed to train a Lan-
guage Model (LM) that is then integrated with
MT models trained from parallel texts to enhance
translation quality (Brants et al., 2007; Gülçehre
et al., 2015). Although these approaches utilize
monolingual text to train a LM, they do not ad-
dress the shortage of bilingual training datasets.

In other approaches, bilingual datasets are au-
tomatically generated from monolingual texts by
utilizing the Translation Model (TM) trained on
aligned bilingual text; the resulting sentence pairs
are used to enlarge the initial training dataset
for subsequent learning iterations (Ueffing et al.,
2008; Sennrich et al., 2016). Although these ap-
proaches enlarge the bilingual training dataset,
there is no quality control and, thus, the accuracy
of the generated bilingual dataset cannot be guar-
anteed (Ahmadnia et al., 2018).

To tackle the issues described above, we ap-
ply a new round-tripping approach that incorpo-
rates dual learning (He et al., 2016) for automatic
learning from unlabeled data, but transcends this
prior work through effective leveraging of mono-
lingual text. Specifically, the round-tripping ap-
proach takes advantage of the bootstrapping meth-
ods including self-training and co-training. These
methods start their mission from a small set of
labelled examples, while also considering one or
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two weak translation models, and makes improve-
ment through the incorporation of unlabeled data
into the training dataset.

In the round-tripping approach, the two transla-
tion tasks (forward and backward) together make
a closed loop, i.e., one direction produces infor-
mative feedback for training the TM for the other
direction, and vice versa. The feedback signals—
which consist of the language model likelihood of
the output model and the reconstruction error of
the original sentence—drive the process of itera-
tive updates of the forward and backward TMs.

For the purpose of evaluation, we apply this ap-
proach to a bilingually low-resource language pair
(Persian-Spanish) to leverage monolingual data in
a more effective way. By utilizing the round-
tripping approach, the monolingual data play a
similar role to the bilingual data, effectively re-
ducing the requirement for parallel data. In par-
ticular, each model provides guidance to the other
throughout the learning process. Our results show
that round-tripping for NMT works well in the
Persian-Spanish low-resource scenario. By learn-
ing from monolingual data, this approach achieves
comparable accuracy to a NMT approach trained
from the full bilingual data for the two translation
tasks (forward and backward).

The remainder of this paper is organized as fol-
lows; Section 2 presents the previous related work.
In Section 3, we briefly review the relevant mathe-
matical background of NMT paradigm. Section 4
describes the round-trip training approach. The
experiments and results are presented in Section 5.
Conclusions and future work are discussed in Sec-
tion 6.

2 Related Work

The integration of monolingual data for NMT
models was first proposed by (Gülçehre et al.,
2015), who train monolingual LMs independently,
and then integrate them during decoding through
rescoring of the beam (adding the recurrent hid-
den state of the LM to the decoder state of the
encoder-decoder network). In this approach, an
additional controller mechanism controls the mag-
nitude of the LM signal. The controller parameters
and output parameters are tuned on further paral-
lel training data, but the LM parameters are fixed
during the fine tuning stage.

Jean et al. (2015) also report on experiments
with reranking of NMT output with a 5-gram LM,

but improvements are small. The production of
synthetic parallel texts bears resemblance to data
augmentation techniques, where datasets are often
augmented with rotated, scaled, or otherwise dis-
torted variants of the (limited) training set (Rowley
et al., 1998).

A similar avenue of research is self-training
(McClosky et al., 2006). The self-training ap-
proach as a bootstrapping method typically refers
to the scenario where the training dataset is en-
hanced with training instances with artificially
produced output labels (whereas we start with neu-
ral network based output, i.e., the translation, and
artificially produce an input). We expect that this
is more robust towards noise in MT.

Hoang et al. (2018) showed that the quality of
back translation matters and proposed an iterative
back translation, in which back translated data are
used to build better translation systems in forward
and backward directions. These, in turn, are used
to reback translate monolingual data. This process
is iterated several times.

Improving NMT with monolingual source data,
following similar work on phrase-based SMT
(Schwenk, 2008), remains possible future work.
Domain adaptation of neural networks via contin-
ued training has been shown to be effective for
neural language models by (Ter-Sarkisov et al.,
2015).

Round-tripping has already been utilized in
SMT by (Ahmadnia et al., 2019). In this work,
forward and backward models produce informa-
tive feedback to iteratively update the TMs during
the training of the system.

3 Neural Machine Translation

NMT consists of an encoder and a decoder. Fol-
lowing (Bahdanau et al., 2015), we adopt an
attention-based encoder-decoder model, i.e., one
that selectively focuses on sub-parts of the sen-
tence during translation. Consider a source sen-
tence X = {x1, x2, ..., xJ} and a target sentence
Y = {y1, y2, ..., yI}. The problem of translation
from the source language to the target is solved
by finding the best target language sentence ŷ that
maximizes the conditional probability:

ŷ = arg max
y

P (y|x) (1)

The conditional word probabilities given the
source language sentence and preceding target lan-
guage words compose the conditional probability
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as follows:

P (y|x) =

I∏
i=1

P (yi|y<i, x) (2)

where yi is the target word emitted by the decoder
at step i and y<i = (y1, y2, ..., yi−1).

To compose the model, both the encoder and de-
coder are implemented employing Recurrent neu-
ral Networks (RNNs) (Rumelhart et al., 1986), i.e.,
the encoder converts source words into a sequence
of vectors, and the decoder generates target words
one-by-one based on the conditional probability
shown in the Equation (2). More specifically, the
encoder takes a sequence of source words as inputs
and returns forward hidden vectors

−→
hj(1 ≤ j ≤ J)

of the forward-RNN:
−→
hj = f(

−−→
hj−1, x) (3)

Similarly, we obtain backward hidden vectors←−
hj(1 ≤ j ≤ J) of the backward-RNN, in the re-
verse order.

←−
hj = f(

←−−
hj−1, x) (4)

These forward and backward vectors are con-
catenated to make source vectors hj(1 ≤ j ≤ J)
based on Equation (5):

hj =
[−→
hj ;
←−
hj

]
(5)

The decoder takes source vectors as input and
returns target words. It starts with the initial hid-
den vector hJ (concatenated source vector at the
end), and generates target words in a recurrent
manner using its hidden state and an output con-
text.

The conditional output probability of a target
language word yi is defined as follows:

P (yi|y<i, x) = softmax (f(di, yi−1, ci)) (6)

where f is a non-linear function and di is the hid-
den state of the decoder at step i:

di = g(di−1, yi−1, ci) (7)

where g is a non-linear function taking its previ-
ous state vector with the previous output word as
inputs to update its state vector. ci is a context
vector to retrieve source inputs in the form of a
weighted sum of the source vectors hj , first tak-
ing as input the hidden state di at the top layer of

a stacking LSTM (Hochreiter and Schmidhuber,
1997). The goal is to derive a context vector ci
that captures relevant source information to help
predict the current target word yi.

While these models differ in how the context
vector ci is derived, they share the same subse-
quent steps. ci is calculated as follows:

ci =

J∑
j=1

αt,jhj (8)

where hj is the annotation of source word xj and
αt,j is a weight for the jth source vector at time
step t to generate yi:

αt,j =
exp (score (di, hj))∑J

j′=1 exp (score (di, hj′))
(9)

The score function above may be defined in a va-
riety of ways as discussed by Luong et al. (2015).

In this paper, we denote all the parameters to be
optimized in the neural network as Θ and denoteC
as the dataset that contains source-target sentence
pairs for the training phase. Hence, the learning
objective is to seek the optimal parameters Θ∗:

Θ∗ = arg max
Θ

∑
(x,y)∈C

I∑
(i=1)

logP (yt|y<t, x; Θ)

(10)

4 Method Description

Round-tripping involves two related translation
tasks: the outbound-trip (source-target direction)
and the inbound-trip (target-source direction). The
defining traits of these forward and backward tasks
are that they form a closed loop and both pro-
duce informative feedback that enables simultane-
ous training of the TMs.

We assume availability of: (1) monolingual
datasets (CX and CY ) for the source and target
languages; and (2) two weak TMs (emergent from
training on initial small bilingual corpora) that
bidirectionally translate sentences from source and
target languages. The goal of the round-tripping
approach is to augment the accuracy of the two
TMs by employing the two monolingual datasets
instead of a bilingual text.

We start by translating a sample sentence in one
of the monolingual datasets, as the outbound-trip
(forward) translation to the target language. This
step generates more bilingual sentence pairs be-
tween the source and target languages. We then
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translate the resulting sentence pairs backward
through the inbound-trip translation to the original
language. This step finds high-quality sentences
throughout the entirety of the generated sentence
pairs. Evaluating the results of this round-tripping
approach will provide an indication of the qual-
ity of the two TMs, and will enable their enhance-
ment, accordingly. This process is iterated for sev-
eral rounds until both TMs converge.

We define KX as the number of sentences in
CX and KY as the number of sentences in CY .
We take P (.|S; ΘXY ) and P (.|S; ΘY X) to be two
neural TMs in which ΘXY and ΘY X are supposed
as their parameters. We also assume the existence
of two LMs for languages X and Y , trained in
advance either by using other resources or using
the monolingual data (CX and CY ). Each LM
takes a sentence as input and produces a real num-
ber, based on target-language fluency (LM correct-
ness) together translation accuracy (TM correct-
ness). This number represents the confidence of
the translation quality of the sentence in its own
language.

We start with a sentence in CX and denote
Ssample as a translation output sample. This step
has a score as follows:

R1 = LMY (Ssample) (11)

The R1 score indicates the well-formedness of the
output sentence in language Y .

Given the translation output Ssample, we em-
ploy the log probability value of s recovered from
the Ssample as the score of the construction:

R2 = logP (S|Ssample; ΘY X) (12)

We then adopt the LM score and construction
score as the total reward score:

Rtotal = αR1 + (1− α)R2 (13)

where α is an input hyper-parameter.
The total reward score is considered a function

of S, Ssample, ΘXY and ΘY X . To maximize this
score, we optimize the parameters in the TMs uti-
lizing Stochastic Gradient Descent (SGD) (Sutton
et al., 2000). According to the forward TM, we
sample the ssample and then compute the gradi-
ent of the expected score (E[Rtotal]), where E is
taken from Ssample:

∇ΘXY
E[Rtotal] =

E[Rtotal∇ΘXY
logP (Ssample|S; ΘXY )] (14)

∇ΘY X
E[Rtotal] =

E[(1− α)∇ΘY X
logP (S|Ssample; ΘY X)] (15)

Algorithm 1 shows the round-tripping procedure.

Algorithm 1 Round-trip training for NMT
Input: Monolingual dataset in source and target

languages (CX and CY ), initial translation
models in outbound and inbound trips (ΘXY

and ΘY X ), language models in source and tar-
get languages (LMX and LMY ), trade-off pa-
rameter between 0 and 1 (α), beam search size
(N ), learning rates (γ1,t and γ2,t).

1: repeat:
2: t = t+ 1.
3: Sample sentences SX and SY from CX and
CY respectively.

4: // Update model starting from language X .
Set S = SX .

5: // Generate top-N translations using ΘXY .
Generate sentences Ssample,1, ..., Ssample,N .

6: for n = 1, ..., N do
7: // Set LM score for nth sampled sentence.
R1,n = LMY (Ssample,n).

8: // Set TM score for nth sampled sentence.
R2,n = logP (S|Ssample,n; ΘY X).

9: // Set total score of nth sampled sentence.
Rn = αR1,n + (1− α)R2,n.

10: end for
11: // SDG computing for ΘXY .
∇ΘXY

Ê [Rtotal] = 1
N

∑N
n=1

[Rn∇ΘXY
logP (Ssample,n|S; ΘXY )].

12: // SDG computing for ΘY X .
∇ΘY X

Ê [Rtotal] = 1
N

∑N
n=1

[(1− α)∇ΘY X
logP (S|Ssample,n; ΘY X)].

13: // Model update.
ΘXY ← ΘXY + γ1,t∇ΘXY

Ê[Rtotal].
14: // Model update.

ΘY X ← ΘY X + γ2,t∇ΘY X
Ê[Rtotal].

15: // Update model starting from language Y .
Set S = SY .

16: Go through lines 5− 14 symmetrically.
17: until convergence.

To achieve reasonable translations we use beam
search. We generate N-best sample translations
and use the averaged value on the beam search re-
sults to estimate the true gradient value.1

1We used beam sizes 500 and 1000.
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5 Experiments and Results

We apply the round-trip training approach to bilin-
gual Persian-Spanish translation, and evaluate the
results. We used the Persian-Spanish small bilin-
gual corpora from the Tanzil corpus (Tiedemann,
2012),2 which contains about 50K parallel sen-
tence pairs. We also used 5K and 10K parallel sen-
tences extracted from the OpenSubtitles2018 col-
lection (Tiedemann, 2012),3 as the validation and
test datasets, respectively. Finally, we utilized 70K
parallel sentences from the KDE4 corpus (Tiede-
mann, 2012),4 as the monolingual data.

We implemented the DyNet-based model ar-
chitecture (Mi et al., 2016) on top of Mantis
(Cohn et al., 2016) which is an implementation of
the attention sequence-to-sequence (Seq-to-Seq)
NMT. For each language, we constructed a vo-
cabulary with the most common 50K words in
the parallel corpora, and OOV words were re-
place with a special token <UNK>. For mono-
lingual corpora, sentences containing at least one
OOV word were removed. Additionally, sentences
with more than 80 words were removed from the
training set.5 The encoders and decoders make
use of Long Short-Term Memory (LSTM) with
500 embedding dimensions, 500 hidden dimen-
sions. For training, we used the SGD algorithm
as the optimizer. The batch size was set as 64
with 20 batches pre-fetched and sorted by sentence
lengths.

Below we compare the system based on
the optimized round-trip training (round-tripping)
through two translation systems; the first one is the
standard NMT system (baseline), and the second
one is the system that generates pseudo bilingual
sentence pairs from monolingual corpora to assist
the training step (self-training). For the pseudo-
NMT we used the trained NMT model to generate
pseudo bilingual sentence pairs from monolingual
text, removed sentences with more than 80 words
(as above), merged the generated data with the
original parallel training data, and then trained the
model for testing. Each of the translation systems
was trained on a single GPU until their perfor-
mances stopped improving on the validation set.
This approach required an LM for each language.

2http://opus.nlpl.eu/Tanzil.php
3http://opus.nlpl.eu/OpenSubtitles-v2018.php
4http://opus.nlpl.eu/KDE4-v2.php
5The average sentence length is 47; an upper bound of 80

ensured exclusion of non-sentential and other spurious mate-
rial.

We trained an RNN-based LM (Mikolov et al.,
2010) for each language using its corresponding
monolingual corpus. The LM was then fixed and
the log-likelihood of a received message was uti-
lized for scoring the TM.

To start the round-trip training approach, the
systems are initialized using warm-start TMs
trained from initial small bilingual data. The goal
is to see whether the round-tripping augments the
baseline accuracy. We retrain the baseline systems
by enlarging the initial small bilingual corpus: we
add the optimized generated bilingual sentences to
the initial parallel text. The new enlarged transla-
tion system contains both the initial and optimized
generated bilingual text. For each translation task,
we train the round-trip training approach.

We employ Bilingual Evaluation Understudy
(BLEU) (Papineni et al., 2001) (using multi-
bleu.perl script from Moses) as the evaluation
metric. BLEU is calculated for individual trans-
lated segments by comparing them with a data set
of reference translations. The scores of each seg-
ment, ranging between 0 and 100, are averaged
over the entire evaluation dataset to yield an es-
timate of the overall translation quality (higher is
better).

The baseline systems for Persian-Spanish are
first trained, while our round-trip method conducts
joint training. We summarize the overall perfor-
mances in Table 1:

NMT systems Pe-Es Es-Pe
baseline 31.12 29.56
self-train 29.29 27.36
round-trip 34.91 33.43

Table 1: BLEU scores for Persian-Spanish trans-
lation task and vice-versa.

As seen in Table 1, the round-tripping systems
outperform the others in both translation direc-
tions. In Persian to Spanish translation, the round-
tripping system outperforms the baseline by about
3.87 BLEU points and also outperforms the self-
training system by about 6.07 BLEU points. In the
back translation from Spanish to Persian, the im-
provement of the round-tripping outperforms both
the baseline and self-training by about 3.79 and
5.62 BLEU points, respectively.

These results demonstrate the effectiveness of
the round-trip training approach. The baseline sys-
tems outperform the self-training ones in all cases
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because of the noise in the generated bilingual sen-
tences used by self-training. Upon further exami-
nation, this result might have been expected given
that the aim of round-trip training is to optimize
the generated bilingual sentences by selecting the
high-quality sentences to get better performance
over self-training systems. When the size of bilin-
gual corpus is small, the round-tripping makes a
larger improvement. This outcome is an indication
that round-trip training approach makes effective
use of monolingual data.

Table 2 shows the performance of the base-
line alongside of the enlarged translation systems,
where the latter leverages the training text of the
baseline and the round-tripping systems as well.

NMT systems Pe-Es Es-Pe
baseline 31.12 29.56
enlarged 34.21 33.03

Table 2: BLEU scores comparing the baseline and
enlarged NMT systems for Persian-Spanish trans-
lation task and vice-versa.

As seen in Table 2, the BLEU scores of the en-
larged NMT systems are better than the baseline
ones in both translation directions. The enlarged
system in the Persian-Spanish direction outper-
forms the baseline by about 3.47 BLEU points,
and outperforms the baseline by about 3.09 BLEU
points in the back translation. The improvements
show that the optimized round-trip training system
is promising for tackling the training data scarcity
and it also helps to enhance translation quality.

6 Conclusions and Future Work

In this paper, we applied a round-tripping ap-
proach based on a retraining scenario to tackle
training data scarcity in NMT systems. An excit-
ing finding of this work is that it is possible to learn
translations directly from monolingual data of the
two languages. We employed a low-resource lan-
guage pair and verified the hypothesis that, re-
gardless of the amount of training resources, this
approach outperforms the baseline. The results
demonstrate that round-trip training is promising
and better utilizes the monolingual data.

Many Artificial Intelligence (AI) tasks are natu-
rally in dual form. Some examples are: (1) speech
recognition paired with text-to-speech; (2) image
captioning paired with image generation; and (3)
question answering paired with question gener-

ation. Thus, a possible future direction would
be to design and test the round-tripping approach
for more tasks beyond MT. We note that round-
tripping is not restricted to two tasks only. Indeed,
the key idea is to form a closed loop so feedback
signals are extracted by comparing the original in-
put data with the final output data. Therefore, if
more than two associated tasks form a closed loop,
this approach can applied in each task for improve-
ment of the overall model, even in the face of un-
labeled data.
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