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Abstract

This paper describes a novel approach to
find evidence for implicit semantic roles.
Our data-driven models generalize over
large amounts of explicit annotations only,
in order to acquire information about im-
plicit roles. We establish a generic back-
ground knowledge base of probablistic
predicate-role co-occurrences in an unsu-
pervised manner, and estimate thresholds
which trigger the prediction of a missing
role. Our approach outperforms the state-
of-the-art in terms of recognition rate and
offers a more flexible alternative to rule-
based solutions which rely on costly, lan-
guage and domain-specific lexica.

1 Introduction

In its classical form, an automated semantic role
labeling (SRL) system (Gildea and Jurafsky, 2002)
detects events (verbal or nominal predicates), to-
gether with their associated participants within the
local context. Semantic roles are assigned to syn-
tactic elements, such as A0 for the agent of an
event, A1 for the patient (i.e. the entity which
undergoes the action), etc.1 The output of SRL
systems have proven to offer a good approxima-
tion to a deeper semantic modeling of natural lan-
guage. However, given its inherent complexity, re-
cent efforts for improvement have tried to extend
traditional SRL from the sentence-internal context
to the surrounding discourse. As an illustration,
consider the following biomedical example from
Ruppenhofer et al. (2010).

[A0Twenty-two month old] with history of re-
current right middle lobe infiltrate. Increased
[A0∅] cough, [A0∅] tachypnea, and [A0∅] work
of breathing.

1For details on the PropBank labels used in our study, see
Palmer et al. (2005).

In the second sentence, a standard SRL system
would ideally identify cough, tachypnea and work
of breathing as nominal predicates. However, the
A0 (experiencer/agent) role of these predicates is
unfilled in the current sentence, and only explic-
itly realized in the preceding one (cf. twenty-two
month old). Its identification is thus beyond the
scope of the traditional parser, which is restricted
to an isolated per-sentence analysis.

More precisely, the agent (argument) role of
cough, for example, is non-overt or implicit, i.e.
locally unexpressed in the second sentence and
can only be resolved from the wider context. In
general, many role realizations of this sort are sup-
pressed on the surface level. These implicit roles
are also called null instantiations (NIs) (Fillmore,
1986; Ruppenhofer, 2005) and have been exten-
sively studied in the literature, cf. zero anaphora
(Levinson, 1987; Hangyo et al., 2013).

The automated detection of such implicit roles
(iSRL) and their fillers is a challenging task. Yet,
if uncovered, NIs provide highly beneficial ‘sup-
plementary’ information: These can in turn be in-
corporated into practical, downstream applications
in the context of Natural Language Understand-
ing, like text summarization, recognizing textual
entailment or question answering.

Current issues in iSRL Corpus data with man-
ually annotated implicit roles is extremely sparse
and hard to obtain, and annotation efforts have
emerged only recently; cf. Ruppenhofer et al.
(2010), Gerber and Chai (2012), and also Feiz-
abadi and Padó (2015) for an attempt to enlarge the
number of annotation instances by combination of
scarce resources. As a result, most state-of-the-
art iSRL systems cannot be trained in a supervised
setting and thus integrate custom, rule-based com-
ponents to detect NIs. (We elaborate on related
work in Section 2.) To this end, a predicate’s overt
roles are matched against a predefined predicate-
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specific template. Informally, all roles found in the
template but not in the text are regarded as null in-
stantiations. Such pattern-based methods perform
satisfactorily, yet there are drawbacks:
(1) They are inflexible and absolute according to
their type, in that they assume that all candidate
NIs are equally likely to be missing, which is unre-
alistic given the variety of different linguistic con-
texts in which predicates co-occur with their se-
mantic roles.
(2) They are expensive in that they require hand-
crafted, idiosyncratic rules (Ruppenhofer et al.,
2011) and rich background knowledge in the form
of language-specific lexical resources, such as
FrameNet (Baker et al., 1998), PropBank (Palmer
et al., 2005) or NomBank (Meyers et al., 2004).
Dictionaries providing information about each
predicate and status of the individual roles (e.g.,
whether they can serve as implicit elements or not)
are costly, and for most other languages not avail-
able to the same extent as for English.
(3) Most earlier studies heuristically restrict im-
plicit arguments to core roles only,2 but this is
problematic as it ignores the fact that implicit non-
core roles also provide valid and valuable infor-
mation. Our approach remains agnostic regarding
the role inventory, and can address both core and
non-core arguments. Yet, in accordance with the
limited evaluation data and in line with earlier lit-
erature, we had to restrict ourselves to evaluate NI
predictions for core arguments only.

Our contribution We propose a novel, generic
approach to infer information about implicit roles
which does not rely on the availability of manually
annotated gold data. Our focus is exclusively on
NI role identification, i.e., per-predicate detection
of the missing implicit semantic role(s) given their
overtly expressed explicit role(s) (without finding
filler elements) as we believe that it serves as a
crucial preprocessing step and still bears great po-
tential for improvement. We treat NI identification
separately from the resolution of their fillers, also
because not all NIs are resolvable from the con-
text. In order to facilitate a more flexible mech-
anism, we propose to condition on the presence
of other roles, and primarily argue that NI de-
tection should be probabilistic instead of rule-
based. More specifically, we predict implicit ar-

2Core roles are obligatory arguments of a predicate. Infor-
mally, non-core roles are optional arguments often realized as
adjuncts or modifiers.

guments using large corpora from which we build
a background knowledge base of predicates, co-
occurring (explicit) roles and their probabilities.
With such a memory-based approach, we gener-
alize over large quantities of explicit roles to find
evidence for implicit information in a mildly su-
pervised manner. Our proposed models are largely
domain independent, include a sense distinction
for predicates, and are not bound to a specific re-
lease of a hand-maintained dictionary. Our ap-
proach is portable across languages in that train-
ing data can be created using projected SRL anno-
tations. Unlike most earlier approaches, we em-
ploy a generic role set which is based on Prop-
Bank/NomBank rather than FrameNet: The Prop-
Bank format comprises a relatively small role in-
ventory which is better suited to obtain statisti-
cal generalizations than the great variety of highly
specific FrameNet roles. While FrameNet roles
seem to be more fine-grained, their greater num-
ber arises mostly from predicate-specific semantic
roles, whose specific semantics can be recovered
from PropBank annotations by pairing semantic
roles with the predicate.

Yet another motivation of our work is related
to the recent development of AMR parsing (Ba-
narescu et al., 2013, Abstract Meaning Represen-
tation) which aims at modeling the semantic rep-
resentation of a sentence while abstracting from
syntactic idiosyncrasies. This particular appraoch
makes extensive use of the PropBank-style frame-
sets, as well, and would greatly benefit from the
integration of information on implicit roles.

The paper is structured as follows: Section 2
outlines related work in which we exclusively fo-
cus on how previous research has handled the sole
identification of NIs. Section 3 describes our ap-
proach to probabilistic NI detection; Section 4
presents two experiments and their evaluation in
comparison with previous studies. Finally, we
conclude our work in Section 5.

2 Related Work

In the context of the 2010 SemEval Shared Task
on Linking Events and Their Participants in Dis-
course3 on implicit argument resolution, Ruppen-
hofer et al. (2010) have released a data set of fic-
tion novels with manual NI role annotations for
diverse predicates. The data has been referred to

3http://semeval2.fbk.eu/semeval2.php
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by various researchers in the community for di-
rect or indirect evaluation of their results. The
NIs in the data set are further subdivided into two
categories: Definite NIs (DNIs) are locally unex-
pressed arguments which can be resolved to ele-
ments in the proceeding or following discourse;
Indefinite NIs (INIs) are elements for which no an-
tecedent can be identified in the surrounding con-
text.4 Also, the evaluation data comes in two fla-
vors: a base format which is compliant with the
FrameNet paradigm and a CoNLL-based Prop-
Bank format. Previous research has exclusively
focused on the former.

Chen et al. (2010) present an extension of an ex-
isting FrameNet-style parser (SEMAFOR) to han-
dle implicit elements in text. The identification of
NIs is guided by the assumption that, whenever the
traditional SRL parser returns the default label in-
volved in a non-saturated analysis for a sentence,
an implicit role has to be found in the context in-
stead. Additional FrameNet-specific heuristics are
employed in which, e.g., the presence of one par-
ticular role in a frame makes the identification of
another implicit role redundant.5

Tonelli and Delmonte (2010, VENSES++)
present a deep semantic approach to NI resolu-
tion whose system-specific output is mapped to
FrameNet valency patterns. For the detection of
NIs, they assume that these are always core ar-
guments, i.e., non-omissible roles in the interac-
tion with a specific predicate. It is unclear how
different predicate senses are handled by their ap-
proach. Moreover, not all types of NIs can be de-
tected, resulting in a low overall recall of identi-
fied NIs, also having drawbacks for nouns. Again
using FrameNet-specific modeling assumptions,
their work has been significantly refined in Tonelli
and Delmonte (2011).

Despite their good performance in the overall
task, Silberer and Frank (2012, S&F) give a rather
vague explanation regarding NI identification in
text. Using a FrameNet API, the authors restrict
their analysis only to the core roles by exclud-
ing “conceptually redundant” roles without further
elaboration.

Laparra and Rigau (2013) propose a determinis-
tic algorithm to detect NIs on grounds of discourse
coherence: It predicts an NI for a predicate if the
corresponding role has been explicitly realized for

4The average F-score annotator agreement for frame as-
signments is about .75 (Ruppenhofer et al., 2010).

5Cf. CoreSet and Exludes relationship in FrameNet.

the same predicate in the preceding discourse but
is currently unfilled. Their approach is promising
but ignorant of INIs.

Earlier, Laparra and Rigau (2012, L&R) intro-
duce a statistical approach to identifying NIs sim-
ilar to ours in that they rely on frequencies from
overt arguments to predict implicit arguments. For
each predicate template (frame), their algorithm
computes all Frame Element patterns, i.e., all co-
occurring overt roles and their frequencies. For
NI identification a given predicate and its overtly
expressed roles are matched against the most fre-
quent pattern not violated by the explicit argu-
ments. Roles of the pattern which are not overtly
expressed in the text are predicted as missing NIs.
Even though their approach outperforms all pre-
vious results in terms of NI detection, Laparra
and Rigau (2012) only estimate the raw frequen-
cies from a very limited training corpus, raising
the question whether all patterns are actually suf-
ficiently robust. Also, the authors disregard all the
valuable less frequent patterns and limit their anal-
ysis to only a subtype of NI instances which are
resolvable from the context.

Finally, Gerber and Chai (2012) describe a su-
pervised model for implicit argument resolution
on the NomBank corpus which—unlike the pre-
vious literature—follows the PropBank annotation
format. However, NI detection is still done by dic-
tionary lookup, and the analysis is limited to only
a small set of predicates with only one unambigu-
ous sense. Again limiting NIs to only core roles,
the authors empirically demonstrate that this sim-
plification accounts for 8% of the overall error rate
of their system.

3 Experimental Setup

3.1 Memory-Based Learning

Memory-based learning for NLP (Daelemans and
van den Bosch, 2009) is a lazy learning technique
which keeps a record of training instances in the
form of a background knowledge base (BKB).
Classification compares new items directly to the
stored items in the BKB via a distance metric. In
semantics, the method has been applied by, e.g.,
Peñas and Hovy (2010) for semantic enrichment,
and Chiarcos (2012) to infer (implicit markers for)
discourse relations. Here, we adopt its methodol-
ogy to identify null-instantiated argument roles in
text. More precisely, we setup a BKB of proba-
blistic predicate-role co-occurrences and estimate
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thresholds which serve as a trigger for the predic-
tion of an implicit role (a slight modification of the
distance metric). We elaborate on this methodol-
ogy in Section 4.

3.2 Data & Preprocessing

We train our model on a subset of the
WaCkypedia EN6 corpus (Baroni et al., 2009).
The data set provides a 2008 Wikipedia dump
from which we extracted 1

5 of the complete corpus
(≈ 10 million sentences which are tokenized al-
ready). We applied the MATE7 parser (Björkelund
et al., 2009) for the automatic detection of seman-
tic roles to the portion of the Wikipedia dump an-
notating it with SRL information. MATE has been
used in previous research on implicit elements in
text (Roth and Frank, 2013) and provides semantic
roles with a sense disambiguation for both verbal
and nominal predicates. The resulting output is
based on the PropBank format.

3.3 Model Generation

We build a probablistic model from annotated
predicate-role co-occurrences as follows:
1. For every sentence, record all distinct predicate

instances and their associated roles.
2. For every predicate instance, sort the role labels

lexicographically (not the role fillers), disre-
garding their sequential order. (We thus obtain
a normalized template of role co-occurrences
for each frame instantiation.)

3. Compute the frequencies for all templates asso-
ciated with the same predicate.

4. By relative frequency estimation, derive all
conditional probabilities of the form:

P (r|R, PREDICATE)

with R being the role inventory of the SRL
parser, R ⊆ R a (sub)set of explicitly realized
semantic roles, and r ∈ R \ R an arbitrary
semantic role. When we try to gather infor-
mation on null instantiated roles, r is typically
an unrealized role label. The PREDICATE con-
sists of the lemma of the corresponding verb
or noun, followed by sense number (predicates
are sense-disambiguated) and its part of speech
(V/N), e.g., PLAY.01.N.

6http://wacky.sslmit.unibo.it/doku.php?id=corpora
7http://code.google.com/p/mate-tools/

Paradigm #Roles #Overt
Overt DNI INI #DNI+#INI

Train FrameNet 2,526 303 277 4.36
PropBank 1,027 125 101 4.52

Test FrameNet 3,141 349 361 4.42
PropBank 1,332 167 85 5.28

Table 1: Label distribution of the SemEval 2010 data set for
overt and null instantiated arguments for both the FrameNet
(all roles and parts of speech) and the PropBank version (only
core roles for nouns and verbs).

3.4 Annotated Data

In accordance with previous iSRL studies, we
evaluate our model on the SemEval data set (Rup-
penhofer et al., 2010). However, to the best of our
knowledge, this is the first study to focus on the
PropBank version of this data set. It has been de-
rived semi-automatically from the FrameNet base
format using hand-crafted mapping rules (as part
of the data set) for both verbs and nouns. For
example, a conversion for the predicate fear in
FrameNet’s EXPERIENCER FOCUS frame is de-
fined as fear.01 (its first sense) with the roles EX-
PERIENCER and CONTENT mapped to PropBank
labels A0 and A1, respectively. In accordance
with the mapping patterns, the resulting distribu-
tion of NIs varies slightly from the base format.
Table 1 shows the label distribution of overt roles,
DNIs, INIs for both the FrameNet and PropBank
versions, respectively. Some information is lost
while the general proportions remain similar to the
base format. This is also due to the fact that for
some parts of speech (e.g., for adjectives) no map-
pings are defined, even though some of them are
annotated with NI information in the FrameNet
version. Moreover, mapping rules exist only for
core roles A0-A4 (agent, patient, . . . ). As a con-
sequence, we restrict our analysis to these five
(unique) roles, even though our models described
in this work incorporate probabilistic information
for all possible roles in R, i.e., A0-A4, but also
for non-core (modifier) roles, such as AM-TEMP
(temporal), AM-LOC (location), etc.

4 Experiments

4.1 Experiment 1

Usually, a predicate occurs with an arbitrary num-
ber of overt arguments, and similarly the number
of missing NIs varies, too. In this experiment, we
introduce different data-driven variants to predict
the correct set of null instantiations for any given
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NI Pattern Freq NI Pattern Freq
- 706 A0 A2 7

A1 86 A1 A2 6
A0 51 A3 5
A2 35 A1 A4 3
A4 18 A0 A1 A2 1

A0 A1 11

Table 2: The 929 NI role patterns from the test set sorted
by their number of occurrence. Most of the predicates are
saturated and do not seek an implicit argument. Only one
predicate instance has three implicit roles.

predicate and its associated explicit roles. Specifi-
cally, to tackle the problem, we take the SemEval
train and test split (744 vs. 929 unrestricted frame
instances of the form: any combination of overt
roles vs. any combination of NI roles per predi-
cate). In this setting, we do not draw a distinction
between DNIs and INIs, but treat them generally
as NIs. Table 2 shows the distribution of the dif-
ferent NI role patterns in the test data.

4.1.1 Task Description
Given a predicate and its overtly expressed argu-
ments (ranging from any combination of A0 to A4
or none), predict the correct set of null instantia-
tions (which can also be empty or contain up to
five different implicit elements).

4.1.2 Predicting Null Instantiations
We distinguish two main types of classifiers: su-
pervised classifiers are directly obtained from NI
annotations in the SemEval training data, mildly
supervised classifiers instead use only information
about (automatically obtained) explicitly realized
semantic roles in a given corpus, hybrid classifiers
combine both sources of information. We esti-
mated all parameters optimizing F-measure on the
train section of the SemEval data set. Their perfor-
mance is evaluated on its test section. We aim to
demonstrate that mildly supervised classifiers are
capable of predicting implicit roles, and to study
whether NI annotations can be used to improve
their performance.
Baseline: Given the diversity of possible patterns,
it is hard to decide how a suitable and competitive
baseline should be defined: predicting the majority
class means not to predict anything. So, instead,
we predict implicit argument roles randomly, but
in a way that emulates their frequency distribu-
tion in the SemEval data (cf. Tab. 2), i.e., predict
no NIs with a probability of 76.0% (706/929), A1
with 38.6% (86/929), etc. The baseline scores are

averaged over 100 runs of this random ‘classifier’,
further referred to as A.
Supervised classifier: Supervised classifiers, as
understood here, are classifiers that use the in-
formation obtained from manual NI annotations.
We set up two predictors B1 and B2 tuned on the
SemEval training set: B1 is obtained by count-
ing for each predicate its most frequent NI role
pattern. For instance, for seem.02—once anno-
tated with implicit A1, but twice without implicit
arguments—B1 would predict an empty set of
NIs. B2 is similar to B1 but conditions NI role pat-
terns not only on the predicate, but also on its ex-
plicit arguments.8 For prediction, these classifiers
consult the most frequent NI pattern observed for
a predicate (B2: plus its overt arguments). If a test
predicate is unknown (i.e., not present in the train-
ing data), we predict the majority class (empty set)
for NI.
Mildly supervised classifier: Mildly supervised
classifiers do not take any NI annotation into ac-
count. Instead, they rely on explicitly realized
semantic roles observed in a corpus, but use ex-
plicit NI annotations only to estimate prediction
thresholds. In what follows, we present eight
parameter-based classification algorithms for our
model trained on 10 million sentences.

We define prediction for classifier C0 as fol-
lows: Given a predicate PREDICATE, the role in-
ventory R = {A0..A4}, its (possibly empty) set
of overt roles R ⊆ R and a fixed, predicate-
independent threshold t0. We start by optimiz-
ing threshold t0 on all predicate instances with no
given overt argument. If there is no overt role and
an unrealized role ni ∈ R for which it is true that
P (ni|PREDICATE) > t0, then predict ni as an im-
plicit role. If there is an overt role oj ∈ R and an
unrealized role ni ∈ R\R for which it is true that
P (ni|oj ,PREDICATE) > t0, then predict ni as an
implicit role. Note that C0 requires that this condi-
tion to hold for one oj , not all explicit arguments
of the predicate instance (logical disjunction).

We refine this classifier by introducing an
additional parameter that accounts for the
group of overtly realized frames with exactly
one overt argument, i.e., C1 predicts ni if
P (ni|oj ,PREDICATE) > t1; for all other configu-

8Specifically, we extract finer-grained patterns, e.g.,
evening.01[A1] → {}=2, {A2}=3, where a predicate is as-
sociated with its overt role(s) (left side of the arrow). The
corresponding implicit role patterns and their number of oc-
currence is shown to the right.
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Classifier A B1 B2 C0 C1 C2 C3 C4 C4n,v C4n,v,B1 C4n,v,B2

Precision 0.149 0.848 0.853 0.368 0.378 0.398 0.400 0.400 0.423 0.561 0.582
Recall 0.075 0.155 0.206 0.861 0.851 0.837 0.837 0.837 0.782 0.615 0.814
F1 Score 0.100 0.262 0.332 0.516 0.523 0.540 0.541 0.541 0.549 0.589 0.679

Table 3: Precision, recall and F1 scores for all classifiers introduced in Experiment 2. Scores are compared row-wise to the
best-performing classifier C4n,v,B2 . A significant improvement over a cell entry with p < .05 is indicated in italics.

rations the procedure is the same as in C0, i.e., the
threshold t0 is applied.

Classifiers C2, C3 and C4 extend C1 ac-
cordingly and introduce additional thresholds t2,
t3, t4 for the respective number of overt ar-
guments. For example, C3 predicts ni if
P (ni|oj1 , oj2 , oj3 ,PREDICATE) > t3, for config-
urations with less arguments, it relies on C2, etc.
Our general intuition here is to see whether the in-
creasing number of specialized parameters for in-
creasingly marginal groups of frames is justified
by the improvements we achieve in this way.

A final classifier C4n,v extends C4 by distin-
guishing verbal and nominal predicates, yielding
a total of ten parameters t0n ..t4n , t0v ..t0n .
Hybrid classifier: To explore to what extent ex-
plicit NI annotations improve the classification re-
sults, we combine the best-performing and most
elaborate mildly supervised classifier C4n,v with
the supervised classifiers B1 and B2: For pred-
icates encountered in the training data, C4n,v,B1

(resp., C4n,v,B2
) uses B1 (resp., B2) to predict the

most frequent pattern observed for the predicate;
for unknown predicates, apply the threshold-based
procedure of C4n,v .

4.1.3 Results & Evaluation

Table 3 contains the evaluation scores for the in-
dividual parameter-based classifiers. All classi-
fiers demonstrate significant improvements over
the random baseline. Also the mildly supervised
classifiers outperform the supervised algorithms in
terms of F1 score and recall. However, detecting
NIs by the supervised classifiers is very accurate in
terms of high precision. Classifier B2 outperforms
B1 as a result of directly incorporating additional
information about the overt arguments.

Concerning our parameter-based classifiers, the
main observations are: First, the overall perfor-
mance (F1 score) increases from C0 to C4 (yet
not significantly). Secondly, with more param-
eters, recall decreases while precision increases.
We can observe, however, that improvements from

C2 to C4 are marginal, at best, due to the spar-
sity of predicates with two or more overt argu-
ments. Similar problems related to data sparsity
have been reported in Chen et al. (2010). Results
for C3 and C4 are identical, as no predicate with
more than three overt arguments occurred in the
test data. Encoding the distinction between ver-
bal and nominal predicates into the classifier again
slightly increases the performance.

A combination of the high-precision supervised
classifiers and the best performing mildly super-
vised algorithm yields a significant boost in per-
formance (Tab. 3, last two columns). In Table 4,
we report the performance of our best classifier
C4n,v,B2 with detailed label scores.

Roles A0 A1 A2 A3 A4

# Labels 70 107 49 5 21

Precision 0.675 0.578 0.432 0.400 0.791

Recall 0.800 0.897 0.653 0.400 0.905

F1 Score 0.732 0.703 0.520 0.400 0.844

Table 4: Evaluation of C4n,v,B2 for all 252 implicit roles.

Summarizing our results, Experiment 1 has
shown that combining supervised and mildly su-
pervised strategies to NI detection achieves the
best results on the SemEval test set. Concerning
the mildly supervised, parameter-based classifiers,
it has proven beneficial to incorporate a maximum
of available information on overtly expressed ar-
guments in order to determine implicit roles.

4.2 Experiment 2

A second experiment focuses on the comparison
with previous research in which DNI and INI pre-
dictions are separately evaluated. In our setting,
however, we regard this evaluation as artificial as
DNI/INI classification could alternatively be de-
cided depending on distance and availability of po-
tential antecedents, a problem we would like to ad-
dress in subsequent experiments.

575



System NI recall DNI/INI interpret. prec
relative absolute

L&P 0.66 - -
SEMAFOR 0.63 0.55 0.35
S&F 0.58 0.70 0.40
T&D 0.54 0.75 0.40
VENSES++ 0.08 0.64 0.05
This Paper 0.81 0.57 0.36

Table 5: Recognition rate (recall) for all NIs, relative
(based on correctly recognized) and absolute precision scores
comparing the different state-of-the-art systems to our best-
performing classifier C4n,v,B2 .

4.2.1 Task Description
For every predicate, predict the set of null instanti-
ations as in Exp. 1. Then, classify every predicted
NI as DNI or INI.

4.2.2 Predicting Null Instantiations
We take the best-performing classifier C4n,v,B2

from Exp. 1. Following Tonelli and Delmonte
(2011), we then employ a rule-based classifier
CDNI,INI to separate predicted NIs into DNIs or
INIs: (a) predict INI for predicates with part of
speech VBN/VBG (e.g., in passive voice); (b)
predict the majority class according to DNI/INI
frequencies for the predicate in the SemEval train-
ing set; (c) predict DNI if DNI/INI frequencies are
equal or the predicate is missing in the SemEval
training data.

4.2.3 Results
Incorporating CDNI,INI into the best performing NI
classifier from Experiment 1 outperforms current
state-of-the-art systems in terms of NI recall (Ta-
ble 5) but has drawbacks in DNI/INI classifica-
tion.9

A closer look at the individual NI types (upper
part of Table 6) reveals that, overall, the perfor-
mance of our predictor is competitive regarding
the accuracies by the systems reported by Tonelli
and Delmonte (2011, T&D) and Chen et al. (2010,
SEMAFOR). More specifically, there is no single
best performing system. The T&D system is gen-
erally powerful in predicting INIs, SEMAFOR has
high recall and high precision for both, while we
outperform the others on DNI analysis. Clearly,
the best results are obtained by Laparra and Rigau

9Note that our scores are not directly comparable as none
of the other systems report precision scores for their pattern-
based NI detection modules and our evaluation is based on
the PropBank version of the data set whose label distribution,
contrasting DNIs and INIs, is different from the FrameNet
format (DNI majority class: 66.3% vs. 50.8%).

System Type Precision Recall F1 Score
T&D DNI 0.39 0.43 0.41

INI 0.46 0.38 0.42
SEMAFOR DNI 0.57 0.03 0.06

INI 0.20 0.61 0.30
This paper DNI 0.43 0.44 0.43

INI 0.24 0.51 0.32
L&R DNI 0.50 0.66 0.57
This paper DNI 0.41 0.86 0.55

Table 6: INI vs. DNI classification compared to previous
works (upper part). Silberer and Frank (2012) do not report
individual NI type scores. L&R focus only on DNI detection.
Our results on this subtask are shown in the last column.

(2012, L&R). However, they only report accura-
cies for the identification of DNIs, as INIs are be-
yond their scope. The last row of Table 6 gives the
scores of our tool when we substitute CDNI,INI by
predicting the majority class (DNI). Outperform-
ing all other systems, we are able to detect 86%
of all DNIs in the test set with an F1 score only
marginally worse than L&R.

5 Summary and Outlook

We have presented a novel, statistical method to
infer evidence for implicit roles from their ex-
plicit realizations in large amounts of automati-
cally annotated SRL data. Despite its simplicity,
we demonstrated the suitability of our approach:
Even though our results do not outperform the
state-of-the-art in F1 score, they are still highly
competitive. Our models are best in the overall
recognition rate, however, still suffer in precision
of the respective null instantiated arguments.

Thus, directions for future research should con-
sider integrating additional contextual features and
would benefit from the complete role inventory
of our models (including non-core/modifier roles).
Regarding this extended setting, we would like
to experiment with other machine learning ap-
proaches, as well, in order to assess whether the
accuracy of the detected NIs can be increased.

In addition, we plan to extend the memory-
based strategy described in this paper to NI
resolution (on top their detection), and in this
context, also re-address the DNI/INI classification
problem.

We conclude that—especially when anno-
tated training data is sparse—memory-based ap-
proaches to implicit role detection seem highly
promising and offer an alternative solution to static
rule- or template-based methods with a much
greater degree of flexibility.
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