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Abstract

The lack of labeled data always poses
challenges for tasks where machine learn-
ing is involved. Semi-supervised and
cross-domain approaches represent the
most common ways to overcome this dif-
ficulty. Graph-based algorithms have been
widely studied during the last decade and
have proved to be very effective at solv-
ing the data limitation problem. This pa-
per explores one of the most popular state-
of-the-art graph-based algorithms - label
propagation, together with its modifica-
tions previously applied to sentiment clas-
sification. We study the impact of mod-
ified graph structure and parameter vari-
ations and compare the performance of
graph-based algorithms in cross-domain
and semi-supervised settings. The re-
sults provide a strategy for selecting the
most favourable algorithm and learning
paradigm on the basis of the available la-
beled and unlabeled data.

1 Introduction

Sentiment classification is an active area of re-
search concerned with the automatic identification
of sentiment strength or valence in texts. Being
a special case of topic classification, it can bene-
fit from all well-known classification algorithms.
However, as sentiment classification relies on sen-
timent markers rather than frequent topic words, it
potentially needs more data for satisfactory perfor-
mance. When a limited amount of labeled data is
available, cross-domain learning (CDL) or semi-
supervised learning (SSL) approaches are com-
monly used. CDL techniques endeavour to ex-
ploit existing annotated data from a different do-
main (i.e. different topic and/or genre) but their
success largely depends on how similar the source
and target domains are. In contrast, SSL relies on
a small amount of labeled data from the same do-
main which requires additional annotations.

Graph-based (GB) learning has been intensively
studied in the last ten years (Zhu et al., 2003;
Joachims, 2003; Talukdar and Crammer, 2009;
Subramanya and Bilmes, 2011) and applied to
many NLP tasks. In particular, in the field of sen-
timent analysis GB models have been employed
for sentiment classification (Pang and Lee, 2004;
Goldberg and Zhu, 2006; Wu et al., 2009), auto-
matic building of sentiment lexicons (Hassan and
Radev, 2010; Xu et al., 2010), cross-lingual sen-
timent analysis (Scheible et al., 2010) and social
media analysis (Speriosu et al., 2011). The popu-
larity of GB algorithms is not accidental: they not
only represent a competitive alternative to other
SSL techniques (co-training, transductive SVM,
etc.) but also feature a number of remarkable
properties, including scalability (Bilmes and Sub-
ramanya, 2011) and easy extension to multi-class
classification (Zhu et al., 2003). GB algorithms
exploit the ability of the data to be represented
as a weighted graph where instances are vertices
and edges reflect similarities between instances.
Higher edge weights correspond to more similar
instances and vice versa. GB approaches assume
smoothness of the label function on the graph so
that strongly connected nodes belong to the same
class. In this paper we focus on the adaptation of
a widely used Label Propagation (LP ) algorithm
(Zhu and Ghahramani, 2002) to semi-supervised
and cross-domain sentiment classification.

The goal of our research is two-fold. First, we
attempt to formalise and unify the research on GB
approaches in the field of sentiment analysis. In
particular, we conduct a comparison between LP
and its variants and study the impact of differ-
ent graph structures and parameter values on al-
gorithm performance. We also demonstrate that
GB-SSL and GB-CDL accuracies are competitive
or superior to the accuracies shown by other SSL
and CDL techniques.

Second, most research on sentiment classifica-
tion which deals with limited or no in-domain la-
beled data usually favours one learning paradigm
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- SSL or CDL. However, in real life situations
out-of-domain labeled data is often available, and
therefore focusing only on SSL means overlook-
ing the potential of already existing resources.
At the same time, relying only on out-of-domain
data might be risky as CDL accuracy largely de-
pends on the properties of in-domain and out-of-
domain data sets, e.g., domain similarity and com-
plexity (Ponomareva and Thelwall, 2012a; Pono-
mareva and Thelwall, 2012b). Thus, it is impor-
tant to investigate what data properties determine
the choice of either CDL or SSL and what amount
of in-domain labeled data is needed to outperform
CDL accuracy. In light of this, the second objec-
tive of the paper is to develop a strategy for select-
ing the most appropriate learning paradigm under
limited data conditions.

The paper is organised as follows. Section 2
presents the LP algorithm and its variants, some
of which have been recently proposed for the sen-
timent classification task. Section 3 describes our
approach to building the sentiment graph. Sec-
tion 4 contains an extensive comparative analysis
of LP and its variants in CDL and SSL settings.
Section 5 lists some works on sentiment classifi-
cation and GB learning related to our research. Fi-
nally, Section 6 defines the strategy suggesting the
best algorithm and learning paradigm under lim-
ited data conditions and gives directions for fur-
ther research.

2 Graph-based Approaches

2.1 Label Propagation

LP was one of the first GB algorithms to be devel-
oped, introduced by Zhu and Ghahramani (2002).
It represents an iterative process that at each step
propagates information from labeled to unlabeled
nodes until convergence, i.e. when node labels do
not change from one iteration to another. LP can
be seen as weighted averaging of labels in a node
neighbourhood where the influence of neighbours
is defined by edge weights. In case of sentiment
classification, the nodes are documents and the
edge weights indicate the closeness of document
ratings.

Let us introduce a formalism for a description
of the algorithm. Let G = (V,E) be an undi-
rected graph with n vertices V = {x1, ..., xn}
connected through edges E = {(xi, xj)}. As-
sume that the first l nodes are labeled with Yl =
{y1, ..., yl} while the remaining u nodes are un-

labeled. Clearly l + u = n. We consider a bi-
nary classification problem, i.e. yi ∈ {0, 1}, al-
though the algorithm can be easily extended to
multi-class cases. The task is to assign labels Ŷu =
{ŷl+1, ...ŷn} to unlabeled nodes. Let W = (wij)
be a weight matrix on E with elements corre-
sponding to the similarity between xi and xj , and
let W̄ = (w̄ij) be its normalised version:

w̄ij =
wij∑
j wij

(1)

LP is formally presented in Algorithm 1.

Algorithm 1. LP

1. Initialise Ŷ = (y1, ..., yl, 0, ..., 0)

2. Propagate Ŷ ← W̄ Ŷ

3. Clamp the labeled data: Ŷl ← Yl
4. Repeat from 2 until convergence

Bengio et al. (2006) demonstrated that LP is
equivalent to minimising a quadratic cost function:

C(Ŷ ) =
∑
ij

wij(ŷi − ŷj)2 → min (2)

Zhu et al. (2003) showed that if we consider a
continuous label space ŷ ∈ R instead of the dis-
crete there exists a harmonic function delivering a
closed form solution to the optimisation problem:
Let us split the normalised weight matrix W̄ into
four sub-matrices:

W̄ =

(
W̄ll W̄lu

W̄ul W̄uu

)
(3)

The harmonic solution of (2) can be given by:

Ŷu = (I − W̄uu)−1W̄ulYl (4)

Zhu et al. (2003) pointed out that if classes
are not well-separated then the final distribution
of classes can be highly skewed. To avoid un-
balanced classification they adopt the class mass
normalisation (CMN ) procedure which scales the
output values on the basis of the class priors. Let
q be the desirable proportion for the classes and
let
∑

i ŷi and
∑

i (1− ŷi) be the masses of classes
1 and 0 respectively. The decision rule for ŷi to
belong to the class 1 can then be represented as:

q
ŷi∑
i ŷi

> (1− q) 1− ŷi∑
i (1− ŷi)

(5)

2.2 Modifications to the LP algorithm
The graph structure used in LP does not differ-
entiate between labeled and unlabeled neighbours.
However, in some cases it might be beneficial to
give them different impacts. For example, in SSL
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Figure 1: Modified graph structures for the LP algorithm.
A Different impact of labeled and unlabeled nodes; B incorporation of predictions by external classifiers

it is natural to rely more on labeled data whose la-
bels are identified with a high level of confidence.
In contrast, for CDL highly reliable labels do not
help much when source and target data are very
different and it might be better to prioritise unla-
beled examples. Let us introduce a coefficient γ
with γ ∈ (0, 1) responsible for the proportion of
influence between labeled and unlabeled data, so
that γ < 0.5 gives preference to unlabeled and
γ > 0.5 to labeled examples. This modifica-
tion (LPγ) leads to the redistribution of the weight
function on graph edges (Figure 1A).

An approach very similar to LPγ has been pro-
posed by Wu et al. (2009) for cross-domain sen-
timent classification. The suggested method has
two main differences from LPγ . First, the weight
matrices Wuu and Wul are normalised separately
instead of using the same scaling factor for labeled
and unlabeled data. This difference has no effect
as long as the scaling factors for both matrices are
similar. However, this might not be the case for
cross-domain graphs. Indeed, if source and target
domains are very different so that out-of-domain
neighbours are much farther away than in-domain
neighbours, the scaling factors can have different
orders of magnitude. Second, the updated values
of unlabeled nodes are normalised after each iter-
ation using the CMN procedure which fixes data
skewing. As we will see in Section 4, these differ-
ences lead to a large performance increase in the
results of GB-CDL. We formalise the method of
Wu et al. (2009) (further called LPnγ , where “n”
states for normalisation) in Algorithm 2.

We can further improve the graph structure in
Figure 1A by incorporating external classifiers for
unlabeled examples. This was implemented by
Goldberg and Zhu (2006) in an application for
semi-supervised multi-class sentiment classifica-

Algorithm 2. LPnγ

1. Normalise separately Wuu and Wul

2. Initialise Yl and Yu
3. Propagate Ŷu ← (1− γ)W̄uuŶu + γW̄ulŶl
4. Normalise Ŷu with CMN
5. Repeat from 3 until convergence

tion (Figure 1B). In this modification, each labeled
and unlabeled vertex is connected to a dongle node
which is a labeled node with either the true value
yi or prediction ŷ0

i given by an external classifier.
This LP variant (called LPαβ) is able to take ad-
vantage of different sources of information. It re-
lies on two main parameters, α and β. β is an ana-
logue of γ in LPγ , β = 1−γ

γ . Parameter α controls
the weight of the GB solution compared to the ini-
tial predictions. Specifically, α close to 0 gives
more importance to the initial predictions whilst
high values of α prioritise the GB solution. For
further details about the implementation of LPαβ
the reader is invited to refer to Goldberg and Zhu
(2006).

3 Sentiment Graph Construction

Construction of a good graph with an adequate ap-
proximation to similarity between data instances
is key for the successful performance of GB algo-
rithms (Zhu, 2005). Sentiment classification re-
quires a similarity metric which assigns values to
a pair of documents on the basis of their senti-
ments, so that documents with the same sentiment
obtain high similarity scores and documents of op-
posite sentiments obtain low scores. This implies
that vector representation of the data must con-
tain sentiment markers rather than topic words.
Previous research suggests several possible vec-
tor representations for documents. Pang and Lee
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(2005) proposed PSP-based similarity and docu-
ment representation as (PSP, 1-PSP), where PSP
is the percentage of positive sentences in a docu-
ment. They used an additional classifier for learn-
ing sentence polarity that was trained on exter-
nal data with user-provided scores. As a result,
the PSP values gave a high correlation with docu-
ment ratings. Goldberg and Zhu (2006) also used
in-domain labeled data to approximate sentiment
similarity for semi-supervised sentiment classifi-
cation. In particular, they constructed a vector rep-
resentation based on document words. The weight
of words was calculated using their mutual infor-
mation with positive and negative classes from the
external data set. The main disadvantage of both
of the above approaches is that they require la-
beled in-domain data. The principal purpose of
our research is to develop a learning strategy when
a limited amount of labeled data is available.

Research on sentiment analysis suggests that
certain parts of speech, e.g., adjectives, verbs and
adverbs, are good sentiment markers (Pang and
Lee, 2008). Thus, we represent a document as
a vector of unigrams and bigrams and filter out
those that do not contain above parts of speech. As
nouns can also convey sentiments, we extend our
feature space by the nouns listed in the SO-CAL-
dictionaries (Taboada et al., 2010). The similarity
between two documents is measured by the cosine
similarity between their vector representations.

Another issue that needs to be tackled when
constructing a graph is connectivity. Graphs can
be fully connected or sparse. The former represen-
tation, besides its high computational cost, usually
performs worse than sparse models (Zhu, 2005).
The most common way to construct sparse graphs
is to introduce either a threshold for the number
of nearest neighbours k (kNN graphs) or a max-
imum proximity radius ε which removes edges
with weights less than ε (εNN graphs). Accord-
ing to Zhu (2005) all kNN graphs tend to per-
form well empirically. Following this observation
as well as our own experiments with εNN graphs,
which showed no significant difference in the per-
formance, we choose the kNN graph structure for
all our models. Moreover, unlike much previous
work we distinguish labeled and unlabeled nodes
in a way that we connect each unlabeled node with
kl labeled and ku unlabeled neighbours, where kl
and ku can be different. This modification is justi-
fied empirically (see Section 4).

4 Experiments

4.1 Data and Experimental Objectives

In our experiments we use the popular multi-
domain data set (Blitzer et al., 2007) compris-
ing Amazon product reviews on 4 topics: books
(BO), electronics (EL), kitchen appliances (KI)
and DVDs (DV). Reviews are rated using a binary
scale, 1-2 star reviews are considered as negative
and 4-5 star reviews as positive. The data within
each domain are balanced: they contain 1000 pos-
itive and 1000 negative reviews.

We experiment with these data in two differ-
ent settings: CDL and SSL. In CDL settings we
assume that there are 2 data sets: one labeled
(source) and the other unlabeled (target). The task
is to label the target data on the basis of the in-
formation given by the source data. In SSL set-
tings we assume that we have a limited amount
of labeled data and vast amount of unlabeled data
and we aim to classify some test data belonging
to the same domain. As both settings use some
labeled data all algorithms described in Section 2
can be easily applied to these tasks. In our exper-
iments we examine the performance of LP and
its 3 variants: LPγ , LPnγ and LPαβ . We also
compute normalise values of the obtained results:
LPγ + CMN and LPαβ + CMN .

Our experiments aim to answer four questions:

1. Which modifications of graph structure im-
prove the algorithm performance and which
algorithm delivers the best results?

2. Can GB-CDL approach fully-supervised in-
domain accuracy levels?

3. How much labeled data does GB-SSL ap-
proach need to achieve the performance of
fully-supervised classification?

4. Do GB algorithms provide results compara-
ble with other state-of-the-art CDL and SSL
techniques?

4.2 Cross-domain Learning

Previous studies on CDL agreed that properties
of source and target data determine the results
given by CDL algorithms. Asch and Daelemans
(2010) and Plank and van Noord (2011) focused
on the similarity between source and target data
sets as the main factor influencing the CDL accu-
racy loss. Our previous research (Ponomareva and
Thelwall, 2012a) brought forward another data
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source- baseline LP LPγ LPγ LPαβ LPαβ LPnγ SCL SFA in-domain
target +CMN +CMN accuracy

EL-BO 65.5 68.5 69.0 70.3 69.2 70.5 72.3 75.4 75.7 78.6
KI-BO 64.7 68.8 69.2 69.9 69.2 71.5 73.9 68.6 74.8 78.6
DV-BO 74.4 78.5 79.9 80.4 80.3 81.1 80.9 79.7 77.5 78.6
BO-EL 70.0 69.8 70.0 73.8 73.2 74.1 77.4 77.5 72.5 81.2
KI-EL 79.7 83.3 83.0 83.8 83.4 83.7 82.3 86.8 85.1 81.2
DV-EL 67.2 74.1 74.3 74.9 74.1 76.2 78.9 74.1 76.7 81.2
BO-KI 69.5 73.0 74.8 76.3 76.1 77.0 81.4 78.9 78.8 82.9
EL-KI 81.6 82.3 83.8 84.7 85.0 86.1 84.1 85.9 86.8 82.9
DV-KI 70.2 75.3 75.5 76.2 77.3 77.6 80.9 81.4 80.8 82.9
BO-DV 76.5 78.0 77.0 79.5 78.8 80.8 78.6 75.8 81.4 79.6
EL-DV 71.3 71.3 72.3 73.0 74.7 74.6 74.6 76.2 77.2 79.6
KI-DV 70.1 71.0 72.5 72.8 72.8 75.2 76.3 76.9 77.0 79.6
average 71.7 74.5 75.1 76.3 76.2 77.3 78.4 78.1 78.7 80.6

Table 1: Accuracies (%) of GB algorithms in CDL settings (accuracies within the 95% confidence inter-
val of the in-domain accuracies are highlighted).

property called domain complexity which we de-
fined as vocabulary richness and approximated by
the percentage of rare words. We showed a non-
symmetry of the accuracy drop, specifically, that
it tends to be higher when source data are more
complex. We also demonstrated:

a) similarity between BO and DV on the one
hand, and between EL and KI on the other hand;

b) a higher level of complexity of BO and DV
with respect to EL and KI.

We exploit these findings to analyse the GB-
CDL results. The four data sets give 12 combi-
nations of source-target pairs and, therefore, 12
series of experiments. Our experimental setup in-
cludes 2 stages: parameter tuning and algorithm
testing. We randomly extract 400 examples from
the target data and use them as the development
data set for tuning the parameters α, β(γ), ku
and kl. The parameter search is run over the fol-
lowing ranges: ku ∈ {5, 10, 20, 50, 100}, kl ∈
{5, 20, 50, 100, 200, 400}, β ∈ {0.2, 0.5, 1, 2, 5},
α ∈ {1, 2, 5, 10, 50, 100, 200}. LPαβ also re-
quires initial approximations for the labels which
we obtain by applying a linear-kernel SVM1 clas-
sifier trained on the source data. The best set
of parameter values is established on the basis of
the highest average accuracy over all source-target
pairs.

Analysing the optimal set of parameter values
we observe an overall agreement between the al-
gorithms on the choice of β(γ) with a preference

1We used the LIBSVM library (Chang and Lin, 2011).

for high values of β = 5 and correspondingly low
values of γ = 0.2. This implies that GB algo-
rithms in CDL settings heavily rely on labels pro-
vided by in-domain neighbours. Optimal value
of α is obtained to be 200 as low values of α
(α < 10) keep output labels very close to the
supervised solution. In most cases, the best re-
sults are achieved for low ku ≤ 10 and relatively
high kl = 100, which confirms the importance of
separate parameters for the number of labeled and
unlabeled neighbours. The obtained optimal pa-
rameter values are used in algorithms’ testing con-
ducted over the remaining 1600 examples from the
target data.

GB-CDL accuracies are presented in Table 1.
The baseline stands for the performance of a
linear-kernel SVM classifier trained on the source
data. The in-domain accuracies computed on the
target data with 5-fold cross-validation give an es-
timation of the CDL performance upper bound.
All LP variants improve the LP results, although
the effect of some parameters is rather modest, e.g.
γ. Incorporating external classifiers leads to an ac-
curacy gain of more than 1% on average which
is consistent over the domain pairs. The CMN
procedure also brings a considerable contribution
with overall accuracy increase of 1%. The highest
results are achieved by LPnγ which outperforms
LPγ + CMN by 2.5%.

All GB algorithms show a significant improve-
ment over the baseline. Moreover, the accuracy
gain given by the best two methods LPnγ and
LPαβ +CMN reaches 5-6% on all domain pairs.
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GB-CDL demonstrates excellent results for pairs
with similar source and target (DV-BO, BO-DV,
KI-EL and EL-KI) outperforming in-domain su-
pervised classification. At the same time, GB ac-
curacies are rather low for pairs with large discrep-
ancies between source and target data. In this re-
spect, LPnγ is promising as it can “fix” the domain
discrepancies for some source-target pairs: BO-
EL, DV-EL, BO-KI and DV-KI. Keeping in mind
that EL and KI have lower values of lexical rich-
ness than BO and DV, we can presume that LPnγ
works better when the target domain is simple.
This could be due to the fact that for simple do-
mains the weight function better approximates the
actual similarities between documents, but further
research is necessary before such a conclusion can
be drawn with high confidence.

GB algorithms demonstrate competitive perfor-
mance with respect to other state-of-the-art ap-
proaches, namely SCL (Blitzer et al., 2007) and
SFA (Pan et al., 2010). Indeed, Table 1 shows that
the difference between average accuracies of SCL,
SFA and the two best GB algorithms are not sta-
tistically significant. However, the GB approach is
more beneficial for multi-class classification as its
adaptation to this task is straightforward.

4.3 Semi-supervised Learning

SSL experiments are carried out separately for
each domain. We randomly divide our data into 5
folds where one is used for parameter tuning and
4 for testing the algorithms in the cross-validation
setup. Thus, in every experiment, 400 examples
are used for testing/tuning and the remaining 1600
instances are split into labeled and unlabeled sets.
We gradually increase the amount of labeled data
from 50 to 800 to analyse the impact of the labeled
data size on the algorithms’ performance.

In contrast to the CDL experiments, we sub-
stitute kl by the proportion of labeled neighbours
∆l with respect to the labeled data size. We find
this parameter more natural for variable sizes of
labeled data. The best value for ∆l is searched
for in the range {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. The
search for remaining parameters is run in the same
ranges as for CDL and the optimal set is estab-
lished on the basis of the highest average accuracy
over all domains and labeled data sizes. Optimal
value for β is found to be quite low: β = 0.5 (γ
= 0.7) which is consistent with our expectations
of the algorithms’ preference for more reliable la-

beled data from the same domain. All algorithms
agree on low values of ku and ∆l, showing best
results for ku = 5 and ∆l = 0.1 or 0.2.

GB-SSL accuracies are presented in Table 22.
The baseline corresponds to the accuracy given by
a linear-kernel SVM classifier trained on the same
portion of labeled data. We observe that GB-SSL
algorithms outperform the in-domain results with
600-700 labeled examples. Moreover, relatively
high accuracies (within the 95% confidence inter-
val of the in-domain accuracies) can be achieved
with only 500 labeled examples.

We also compare GB-SSL with two state-of-
the-art SSL approaches tested on the same data
(Dasgupta and Ng, 2009; Li et al., 2010) (Table
2). The method of Dasgupta and Ng (2009) com-
bines spectral clustering with active learning. The
authors report the accuracy for 100 and 500 la-
beled examples selected by active learning. The
accuracies shown by LPαβ + CMN are signifi-
cantly higher than the accuracies obtained by their
method with an average difference of approxi-
mately 4% for both sizes of labeled data. Li et
al. (2010) adopt a co-training approach which de-
ploys classifiers trained on personal and imper-
sonal view data sets. Although the co-training
achieves very high accuracies for the KI domain it
gives considerably worse results for the domains
of BO and DV. Averaging accuracies across do-
mains gives 71.4% for LPαβ + CMN vs. 64.5%
for the co-training when 100 labeled examples
are used and 77.2% vs. 74.7% for 300 exam-
ples. Moreover, unlike the proposed co-training
approach the GB algorithms are much more robust
delivering equally good results across all data sets.

5 Related Work

There are several fields related to our research.
GB-SSL has received extensive attention from the
research community (Zhu et al., 2003; Joachims,
2003; Talukdar and Crammer, 2009; Subramanya
and Bilmes, 2011). Two of the most recent meth-
ods proposed in this field are Modified Adsorption
(MAD) and Measure Propagation (MP), which
present some advantages over LP. However, pre-
liminary experiments we performed using MAD
did not lead to very promising results and more
experiments are necessary. Our paper is also re-

2We deliberately reduced the number of algorithms re-
ported in this paper due to space constraints and similar be-
haviour of some LP variants.
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in-domain
No. labeled data 50 100 200 300 400 500 600 700 800 accuracy

books
SVM 60.3 65.2 71.8 71.8 73.2 74.9 76.1 76.8 76.3 78.6
LPγ + CMN 68.0 71.1 72.7 75.5 77.6 78.5 79.3 80.2 81.1
LPnγ 65.5 69.9 73.1 76.6 78.0 78.7 80.0 80.1 79.7
LPαβ + CMN 66.5 70.8 73.1 75.5 75.4 78.2 79.3 79.9 80.1
Dasgupta and Ng (2009) – 62.1 – – – 73.5 – – –
Li et al. (2010) – 60.1 73.0 71.6 – – – – –

electronics
SVM 57.4 66.6 72.3 73.9 75.1 76.7 77.5 78.2 79.0 81.2
LPγ + CMN 70.6 74.2 76.7 77.9 79.2 80.6 80.1 80.6 81.5
LPnγ 66.7 72.8 77.4 79.4 79.9 81.0 81.0 81.3 82.0
LPαβ + CMN 69.9 74.1 77.8 78.4 78.9 80.6 81.6 81.8 82.8
Dasgupta and Ng (2009) – 70.6 – – – 77.5 – – –
Li et al. (2010) – 70.0 77.0 78.2 – – – – –

kitchen
SVM 60.0 69.2 74.1 75.8 76.8 78.1 77.5 79.9 80.1 82.9
LPγ + CMN 70.7 73.2 76.8 79.1 80.6 80.8 81.8 82.5 82.2
LPnγ 68.3 71.4 76.7 80.1 81.0 81.9 82.4 82.7 83.5
LPαβ + CMN 71.4 74.2 76.5 79.5 80.3 82.0 81.8 83.2 83.5
Dasgupta and Ng (2009) – 74.1 – – – 78.4 – – –
Li et al. (2010) – 78.6 79.0 83.3 – – – – –

DVDs
SVM 53.8 63.4 70.6 73.9 75.0 75.9 76.0 77.8 77.1 79.6
LPγ + CMN 65.8 67.1 71.7 74.2 76.5 78.0 80.0 80.8 81.4
LPnγ 65.2 66.3 72.3 75.1 78.3 79.2 80.3 80.6 80.9
LPαβ + CMN 65.2 66.3 72.1 75.3 77.3 78.4 80.0 80.4 80.2
Dasgupta and Ng (2009) – 62.7 – – – 73.4 – – –
Li et al. (2010) – 49.5 63.0 65.5 – – – – –

Table 2: Accuracies (%) of GB algorithms in SSL settings (accuracies within the 95% confidence interval
are highlighted; accuracies outperforming the in-domain accuracies are underlined).

lated to work in cross-domain sentiment classifi-
cation and the results we obtain are comparable to
those reported by (Blitzer et al., 2007; Pan et al.,
2010). The SSL methods discussed in Section 4.3
(Dasgupta and Ng, 2009; Li et al., 2010) offer an
interesting alternative to GB algorithms, but their
results are substantially lower.

6 Conclusions and Future Work

This paper has explored GB algorithms in CDL
and SSL settings. The evaluation of the GB-
CDL algorithms has shown that the best methods,
LPαβ + CMN and LPnγ , consistently improve
the baseline by 5-6% for all domain pairs. There-
fore, if source and target domains are similar (i.e.
the baseline classifier loses less than 5% accuracy
when adapted from the source to target domain)

GB-CDL algorithms are a competitive alternative
to the fully supervised techniques. Moreover, we
have shown that if the target domain has low com-
plexity, the LPnγ algorithm can deliver good per-
formance even for quite different domain pairs.

For large discrepancies between source and tar-
get data GB-SSL can help to achieve good re-
sults with a reasonably small amount of labeled
data. Specifically, even 500 labeled examples are
enough to ensure performance within a 95% con-
fidence interval of the in-domain accuracy.

In the future, we plan to compare GB-SSL and
GB-CDL for multi-class sentiment classification.
This extension should be straightforward as GB
algorithms can be easily adapted to multi-class
cases. In addition, we will include in our exper-
iments other algorithms such as MAD and MP.
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