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Abstract

The paper presents a wordnet expan-
sion algorithm, which is based on lexico-
semantic relations extracted from large
text corpora. We do not assume that
the extracted relation instances (i.e. word
pairs) are described by probabilities. Thus,
results produced by any method, includ-
ing pattern-based and Distributional Se-
mantics approaches can be used. The algo-
rithm is based on a general spreading acti-
vation model. Support for word-to-word
semantic associations is first mapped on
the existing wordnet structure. Next, the
support is spread over the wordnet net-
work in order to find attachment areas for
a new word. Evaluation and comparison
with other approaches in experiments on
Princeton WordNet 3.0 is presented.

1 Introduction

Wordnets became important large scale language
resources providing relational description of lex-
ical meanings. e.g. WordNet (Fellbaum, 1998),
GermaNet (Hamp and Feldweg, 1997) or plWord-
Net (Maziarz et al., 2012). The required large
amount of work on wordnet construction can be
lessened by supporting manual work with auto-
mated tools for the extraction of lexico-semantic
relations and wordnet expansion. A scheme for
lexico-semantic network extraction from corpus
includes, e.g. (Yang and Callan, 2009; Navigli et
al., 2011): term extraction, extraction of term as-
sociations and taxonomy induction. A taxonomy
structure is mostly a subset of the whole word-
net hyper/hyponynymy structure. Thus, a more
general task, for the last phase, is extraction of

lexico-semantic relations (sensu stricto), called re-
lation formation in (Yang and Callan, 2009). In
our work, we focus on the automated expansion of
a such wordnet hypernymy structure.

Upper levels of a wordnet hypernymy describe
more general, often highly abstract lexical units
(i.e. pairs: lemma and its sense). Such fine grained
distinctions are hard to trace in a corpus, but
mostly it is this part of a wordnet that is cre-
ated first. Thus, we assumed that upper hyper-
nymic levels are already built manually, and what
is needed is to expand the wordnet structure to-
wards the lower levels. Our goal is to develop
a method of automated expansion of wordnet hy-
pernymy structure based on both lexico-semantic
associations extracted automatically from a large
text corpus and the prior partial wordnet structure.
We do not assume the existence of any kind of se-
mantic annotation or document structure, to make
the proposed method general.

Most taxonomy induction methods use only the
existing hypernymy structure as a basis for the in-
cremental wordnet expansion, e.g. (Snow et al.,
2006; Piasecki et al., 2009b). We explore all dif-
ferent types of wordnet links to identify the appro-
priate location for a new lemma sense.

2 Related works

(Alfonseca and Manandhar, 2002) and (Witschel,
2005) treat wordnet hypernymy as a kind of de-
cision tree applied to word meanings described
by Distributional Semantics. (Widdows, 2003) at-
taches words on the basis of their semantic neigh-
bours – k most similar words according to their
co-occurrence with the most frequent words.

(Snow et al., 2006) proposed Probabilistic
Wordnet Expansion (PWE) method, which is
based on a probabilistic model of the taxonomy
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expressed in terms of taxonomic relations. For
WordNet expansion Snow et al. consider two type
of relations: (transitive) hypernymy and (m,n)-
cousin. To prevent adding a new word to overly-
specific hypernym λ coefficient was introduced
penalized by: λk−1 factor, where k is number
of links between attachment synset and its hy-
pernym. (m,n)-cousinhood occurs between two
word senses i and j if their least common sub-
sumer is exactly m links from i and n links
from j in the WordNet graph. Hypernymy and
(m,n)-cousinhood instances imply sets of other in-
stances, e.g. a direct hypernym of one word sense
implies all other indirect hypernyms. To add a
new word to the taxonomy, the whole taxonomy
must be (locally) searched for an attachment place
that maximises probabilities of all the implied re-
lations. The attachment of new elements trans-
forms the structure T into a new T’. The appro-
priate T’ maximises the probability of the change
in relation to the evidence at hand. Multiplicative
change computation is based on all added relation
links, including the links implied by hyponymy.
Multiplicative change depends on the inverse odds
of the prior k which is a constant independent of
words and taxonomy T. (Snow et al., 2006) have
not provided any value of k.

(Kozareva and Hovy, 2010) presented two step
taxonomy induction. First, hyponym-hypernym
pairs are extracted from Internet and ranked. The
extraction mechanism is exclusively based on
“doubly-anchored lexico-syntactic patterns” and
a heuristic iterative algorithm. The process is
weakly controlled by a root and seed lemmas.
(Navigli et al., 2011) divided taxonomy induction
into four steps. Three initial ones are devoted to
the extraction of hypernymy instances. The pro-
cess is focused on ontology learning, identifica-
tion of overt definitions in text and the extraction
of hypernymy instances from them. However, def-
initions are infrequent and occur only in specific
text genres. The initial graph emerging from the
extracted pairs is next weighted and pruned.

(Yang and Callan, 2009) proposed a metric-
based taxonomy induction framework aimed at
utilising different extraction methods: 15 methods
in total were used. Each method produces a fea-
ture function a term pair→ a real value or {0, 1}
value. The process starts with an initial partial tax-
onomy T 0, used also to estimate values of param-
eters, so it is a taxonomy expansion. The expan-

sion is controlled by Minimum Evolution Assump-
tion and Abstractness Assumption principles. The
first results in minimising “the overall semantic
distance among the terms” but also avoiding “dra-
matic changes” between the initial taxonomy and
the expanded one. The total distance and change
are characterised by the Information Function of a
taxonomy T . Weights for different feature func-
tions can be estimated in supervised training for
each taxonomy level separately by approximating
ontology metrics for term pairs:
d(cx, cy) =

∑
j∈featureswjhj(cx, cy)

where hj() is a feature function and wj its weight.
The approximation was done by ridge regression,
but it is not clear whether it was done separately
for different taxonomy levels. Finally, Multi-
Criterion Optimization Algorithm (MCOA) finds
a place for each new term by joint application of
both conditions, i.e. by minimising: the change
in the taxonomy Information Function and the
sum over the square error of the difference be-
tween new ontology metrics and their estimation
based on the weighted feature functions. (Yang
and Callan, 2009) performed evaluation on Word-
Net and an ontology. As far the first, 50 “ hyper-
nym taxonomies” were extracted from 12 topics
(mostly concrete nouns) and 50 “meronymic tax-
onomies” from 15 topics (mostly concrete). The
size of the test taxonomies and the way of their de-
limitation was not defined. Feature functions were
built on the basis of a corpus including English
Wikipedia and 1000 top documents per each term
from Google. Precision and recall were calculated
on the level of relation links. The number of the
correctly attached terms is not known. MCOA
achieved slightly better results in reconstructing of
the hypernymic taxonomies than PWE.

(Piasecki et al., 2009a; Piasecki et al., 2011)
proposed a heuristic wordnet expansion algorithm
called Area Attachment Algorithm (AAA) which
utilises different relation extraction methods. A
modified version of AAA, was presented in (Pi-
asecki et al., 2012). Our present work inherits sev-
eral assumptions from AAA, but it based on a dif-
ferent model of spreading activation.

3 Paintball Algorithm

3.1 The idea of information spreading

A corpus is a very imprecise source of lexi-
cal semantics knowledge. Knowledge describ-
ing lexico-semantic relations that is extracted from
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it is always partial (not all word senses occur,
most senses are infrequent) and may suggest erro-
neously accidental semantic associations between
words. We cannot avoid errors, but we can to try to
compensate them by combining word associations
suggested by several extraction methods. Rela-
tions extracted automatically can be represented as
sets of triples: 〈x, y, w〉, where y is a word already
included in the wordnet, x is a ‘new’ word not in-
cluded yet, and w ∈ < is a weight. We call such a
set a knowledge source (henceforth KS) extracted
by a method from a corpus. A triple 〈x, y, w〉 from
a KS K informs that x is semantically associated
with y andw describes the strength of this associa-
tion. In many approaches, e.g. (Snow et al., 2006),
weights are interpreted as probabilities. However,
many relation extraction methods are not based on
statistics, and word-pairs extracted by them cannot
be described by probabilities, e.g. the majority of
pattern-based methods extract word pairs on the
basis of a few occurrences. Nevertheless, as we
need to ‘squeeze’ all available lexical knowledge
out from the text, and we cannot loose any KS. We
have to try to utilise those non-probabilistic KSs,
too. Most if not all reliable extraction methods
produce KSs for words, not word senses. Thus, we
assume that w is a value of support for the given
word pair x & y as semantically associated.

A triple 〈x, y, w〉 from a KSKi suggests linking
x to synsets including y. However, there are two
problems: x and y can have several senses each,
and the triple can express some error. In fact, the
triple suggests linking x to different senses of y
represented by synsets – each y synset describes a
possible meaning of x. The triple does not disam-
biguate this, e.g. PWE hypernymy classifier gen-
erates 〈feminism, movement, 1.0〉, 〈feminism, the-
ory, 0.948〉, 〈feminism, politics, 0.867〉, etc. As far
the second, apart from clearly wrong, accidental
triples, KSs very often include too general sugges-
tions, e.g. y can be in fact an indirect hypernym
of x or y can be associated with x by a kind of
fuzzynymy. Combining information coming from
several different triples describing x may solve
both problems by identifying those parts of the
wordnet hypernymy structures that are best sup-
ported by the evidence in KSs.

We proposed a wordnet expansion algorithm
called Paintball which is based on a general model
of spreading activation (Collins and Loftus, 1975;
Salton and Buckley, 1988; Akim et al., 2011): the

support from KS triples is the activation which is
spread along the wordnet relations. Paintball al-
gorithm is based on the metaphor of semantic sup-
port for x resembling drops of liquid paint that ini-
tially fall on some wordnet graph nodes (synsets)
due to KSs and next the paint starts spreading over
the graphs. Those regions that represent the high-
est amounts of paint after the spreading represent
possible senses of x and include places for x.

The spreading model is motivated by the nature
of KSs. KSs are typically extracted to represent
selected wordnet relations, e.g. synonymy and hy-
per/hyponymy, but in practice KS triples represent
a whole variety of relations, e.g. indirect hyper-
nymy, but also meronymy, co-hyponymy (cousin
or coordinate) or just stronger semantic associa-
tion. A KS element 〈x, y〉 can suggest linking an x
sense directly to a y sense by synonymy, but also
indirectly by some other relation. KSs based on
Distributional Semantics do not specify this rela-
tion, and pattern-based KS are mostly focused on
hypernymy. So, a real attachment places for an x
sense can be somewhere around the y synsets as-
suming that the given KS does not include too seri-
ous errors or too fuzzy semantic associations, e.g.
triples generated by PWE hypernymy classifier:
〈feminism, relationship, 0.768〉, 〈feminism, study,
0.951〉, 〈feminism, idea, 0.951〉, etc. On the basis
of the assumption that semantic similarity between
a synset S, which is a proper attachment place for
x, and y (suggested by the KS) is correlated with
the length of the shortest path in the wordnet graph
linking S and a synset of y, we can expect that the
proper attachment places for a x sense is linked to
y synset with relatively short path. For a KS triple
we should consider a subgraph of potential synsets
for x. Its shape should depend on the nature of
a given KS. For instance, as it is easier to mis-
match synonymy and hypernymy then hypernymy
and antonymy, the subgraph is more likely to in-
clude hypo/hypernymic paths than paths including
antonymy links, too. As we expect that KSs of
some minimal accuracy include a large number of
minor errors1, we need to consider only subgraphs
with limited length of paths corresponding to less
serious errors. Thus, each KS triple marks whole
wordnet subgraphs as potential attachment places
for the senses of x.

Spreading activation model follows a general

1In the sense of a semantic difference between the sug-
gested place and the proper one.
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scheme, e.g. (Akim et al., 2011), in which initial
activation is set at the start and then the node ac-
tivation depends on the previous value and the ac-
tivation coming from the connected nodes. The
spreading is controlled by parameters representing
the amount of initial activation and activation de-
cay, respectively (Troussov et al., 2008). We iden-
tify activation with semantic support for x, the ini-
tial activation is called direct support while sup-
port coming from other nodes is called indirect
support. Indirect support is intended to compen-
sate errors of KSs and resolve the ambiguity of
lemma-based information delivered in them.

Most frequent wordnet relations link synsets,
but in every wordnet there are also many rela-
tions linking directly lexical units (LUs) (i.e. pairs
word–sense number, e.g. antonymy. In order to
use the whole wordnet graph structure, not only
defined by synset relations, we treat LUs as nodes
and synset relations are mapped to relations be-
tween all LUs from the linked synsets.

In Spreading Activation models, the activation
decay parameter µ ∈ [0, 1) and have the same
value for all links. In our approach the activation
decay value depends on the link types due to dif-
ferent distribution of errors across KSs. Follow-
ing (Piasecki et al., 2012), that part of the decay
dependent on the link type is represented by two
functions: transmittance and impedance. Trans-
mittance is a function: lexico-semantic relation
→ < and describes the ability of links to transmit
support. Link-to-link connection is characterised
by the impedance function: relation pair → <.
The impedance describes how much indirect sup-
port can be transferred through the given con-
nection, e.g. the transmission of support through
holonymy–meronymy would mean that the direct
support assigned to the whole (a holonym) via
a part (a meronym) could be attributed to an-
other whole (its second holonym), e.g. car–holo–
windscreen–mero:substance–glass: indirect sup-
port could go from car to glass that is clearly too
far. By an appropriate impedance function we can
reduce the transmission or block it, i.e. we can
shape the considered part of the wordnet graph.

3.2 Algorithm

The algorithm works in four main steps preceded
by the preparatory Step 0. First, the initial lo-
cal support for LUs is calculated on the basis of
KSs. Next, the local support is recursively repli-

cated from LUs to local subgraphs of connected
LUs. Support for synsets is calculated on the ba-
sis of their LUs. Finally, following (Piasecki et
al., 2012), connected wordnet subgraphs such that
each synset in a subgraph has some significant
support are identified. Such subgraphs are called
activation areas. Top several activation areas with
the highest support value are selected as attach-
ment areas – descriptions of potential senses of x.
In each attachment area, the synset with the high-
est support is a potential place to add x sense. At-
tachment areas are next presented to linguists to
explain the suggested meanings of x.

Let x be a new word, J be a set of LUs, L – a set
of lemmas, and A ⊆ 2J2

– a set of lexico-semantic
relations defined on J (including relations inher-
ited from synsets like hypernymy and lexical rela-
tions). A knowledge source K is a set of triples of
the type: L×L×< where < is a set of real num-
bers. Let K be a set of all KSs and σ : J×L→ <;
σ(j, x) =

∑
K∈KK(j, x) equals the sum of all

weights assigned to the pair. The transmitation
is represented by: fT : A × < → < and the
impedance is represented by: fI : A2 ×< → <.

Step 0 Constructing a graph of LUs on the basis
of the graph of synsets

Step 1 Setting up the initial state

1. ∀j∈J .Q[j] = σ(j, x)

2. for each j ∈ J if Q[j]) > τ0 add j
to the queue T

Step 2 Support replication across the LU graph

1. k = take first node from T

2. supReplication(k, x, σ(k, x)) – sup-
port for x is replicated from k onto the
connected nodes

3. if not empty(T ) then goto 1

Step 3 Synset support calculation: for each s
in Syn
if s does not have any support in any KS for
x then F[s] = 0
else F[s] = synsetSup(s,Q)

Step 4 Identification of attachment areas

1. Recognition of connected subgraphs in
WN , such that Gm = {s ∈ Syn :
F[s] > τ3}

2. for each Gm score(Gm) = F[jm],
where jm = maxj∈Gm(F(j))
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3. Return Gm, such that score(Gm) > τ4
as activation areas.

In Step 1 only nodes that represent some mean-
ingful value of local support (τ0) are added to
the queue as starting points for the replication in
Step 2. The value of τ0 depends on the KSs, but
it can be set to the smallest weight value that sig-
nals good triples in the KS of the biggest coverage.
All threshold values can be also automatically op-
timised, e.g., as in (Łukasz Kłyk et al., 2012).

In Step 2 support replication is run for nodes
stored in the queue and is described by the follow-
ing functions (where j is a LU to be processed and
M support value to be replicated, dsc(j) returns
the set of outgoing relation links and p|1 returns
the first element – a relation link target node).
supReplication(j, x,M):
1) ifM < ε then return
2) for each p ∈ dsc(j)
supRepTrans(p, x, fT (p, µ ∗M))

supRepTrans(p, x,M):
1) ifM < ε then return
2) for each p′ ∈ dsc(p|1)
supRepTrans(p′, x, fI(p, p

′, fT (p′, µ ∗M)))
3) Q[p|1] = Q[p|1] +M

Incoming support is stored in the given node
and part of it is spread further on according to µ.
The parameter µ together with the transmittance
function fT corresponds to activation decay. The
spreading stops when the incoming support goes
down below ε and is additionally blocked on con-
nections of the predefined types by the impedance
function fI . The value of ε was heuristically set
to τ0/2, but it can be obtained during optimisa-
tion. The parameters µ and ε control (together)
the maximal distance of the support flow.

In Step 3, support for synsets is calculated on
the basis of the support for LUs included in them.
It can be done in many different ways, but the best
results were obtained by using a function proposed
in (Piasecki et al., 2009b):
synsetSup(S,Q′) =
1) sum =

∑
si∈S Q

′[si]
2) if δ(1,sum, |S|) > 0 then return sum
else return 0
where δ(h, n, s) = 1 if (n ≥ 1, 5 ∗ h ∧ s ≤ 2)
∨ (n ≥ 2 ∗ h ∧ s > 2) else 0

The idea is to expect more support for larger
synsets, but this dependency is not linear, as larger
synset very often include many less frequent and

worse described LUs. In Step 3, we also filter out
synsets that do not have any local support in order
to preserve only the most reliable data.

Finally, in Step 4, activation areas (subgraphs)
are identified with the help of a subset of word-
net relations, which includes all relations defining
the basic wordnet structure, e.g. in some wordnets
a synset can be linked by a relation different then
hyponymy as its only relation. The whole activa-
tion area expresses a location found by the algo-
rithm for x: however, we also need one particular
synset to attach a LU for x. Thus, we look for
local maxima of the support value and use these
values as the semantic support for the whole at-
tachment areas. Paintball is focused on support-
ing linguists, recall is important, so up to maxatt

activation areas are finally returned as suggested
attachment areas.

4 Evaluation

4.1 Methodology

The evaluation is based on wordnet reconstruction
task proposed in (Broda et al., 2011): randomly
selected words are removed from a wordnet and
next the expansion algorithm is applied to reattach
them. Removing of every word changes wordnet
structure, so it is best to remove one word at a
time, but due to the efficiency, small word sam-
ples are processed in one go. As the algorithm
may produce multiple attachment suggestions for
a word, they are sorted according to semantic sup-
port of the suggested attachments. A histogram
of distances between a suggested attachment place
and the original synset is built. We used two ap-
proaches to compute the distance between the pro-
posed and original synsets. According to the first,
called straight, a proper path can include only hy-
pernymy or hyponymy links (one direction only
per path), and one optional final meronymic link.
Only up to 6 links are considered, as longer paths
are not useful suggestions for linguists.

In the second approach, called folded, shorter
paths are considered, up to 4 links. Paths can in-
clude both hypernymy and hyponymy links, but
only one change of direction and an optional
meronymic link must be final. In this approach we
consider close cousins (co-hyponyms) as valuable
suggestions for linguists.

The collected results are analysed according
to three strategies. In the closest path strategy
we analyse only one attachment suggestion per
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lemma that is the closest to any of its original lo-
cations. In the strongest, only one suggestion with
the highest support for a lemma is considered. In
the all strategy all suggestions are evaluated.

A set of test words was selected randomly from
wordnet words according to the following condi-
tions. Only words of the minimal frequency cor-
pus 200 were used due to the applied methods for
relation extraction. Moreover, only words located
further than 3 hyponymy links from the top were
considered, as we assumed that the upper parts are
constructed manually in most wordnets.

4.2 Experiment setup

For the sake of comparison with (Snow et al.,
2006) and (Piasecki et al., 2012) two similar KSs
were built: a hypernym classifier and a cousin
classifier. The first (Snow et al., 2004) was trained
on English Wikipedia corpus (1.4 billion words)
parsed by Minipar (Lin, 1993). We extracted all
patterns linking two nouns in dependency graphs
and occurring at least five times and used them as
features for logistic regression classifier from Li-
bLINEAR. Word pairs classified as hyperonymic
were described by probabilities of positive deci-
sions. Following (Piasecki et al., 2012), the cousin
classifier was based on distributional similarity in-
stead of text clustering as the clustering method
was not well specified in (Snow et al., 2006). The
cousin classifier is meant to predict (m,n)-cousin
relationship between words. The classifier was
trained to recognize two classes: 0 ≤ m,n ≤ 3
and the negative. The measure of Semantic Re-
latedness (MSR) was used to produce input fea-
tures to the logistic regression classifier. MSR
was calculated as a cosine similarity between dis-
tributional vectors: one vector per a word, each
vector element corresponds to the frequency of
co-occurrences with other words in the selected
dependency relations. Co-occurrence frequencies
were weighted by PMI.

A sample of 1064 test words was randomly se-
lected from WordNet 3.0. It is large enough for the
error margin 3% and 95% confidence level (Israel,
1992). Trained classifiers were applied to every
pair: a test word and a noun from WordNet.

As a baseline we used the well known and of-
ten cited algorithm PWE (Snow et al., 2006). Its
performance strongly depends on values of prede-
fined parameters. We tested several combinations
of values and selected the following ones: mini-

mal probability of evidence: 0.1, inverse odds of
the prior: k = 4, cousins neighbourhood size:
(m,n) ≤ (3, 3), maximum links in hypernym
graph: 10, penalization factor: λ = 0.95.

In Paintball probability values produced by the
classifiers were used as weights. The hypernym
classifier produces values from the range 〈0, 1].
Values from the cousin classifier were mapped to
the same range by multiplying them by 4. Values
of the parameters were set heuristically in relation
to the weight values as follows: τ0 = 0.4, τ3 = τ0,
τ4 = 0.8, ε = 0.14 and µ = 0.65.

Transmittance was used to define links for sup-
port spreading in Paintball. The graph was formed
by hyper/hyponymy (H/h), holo/meronymy (o/m),
antonymy (a) and synonymy (represented by
synsets). Transmittance is fT (r, v) = α ∗ v,
where alpha was: 0.7 for hypernymy, 0.6 for
mero/holonymy and 0.4 for antonymy. The pa-
rameter α was 1 for other selected relations and
0 for non-selected. Impedance allows for control-
ling the shape of the spreading graph. Here, the
impedance function is defined as: fI(r1, r2, v) =
β ∗ v, where β ∈ {0, 1}. We selected heuristically
β = 0 for the following pairs: 〈h, a〉, 〈h, m.〉, 〈H,
h〉, 〈H, o〉, 〈a, a〉, 〈a, m〉, 〈a, o〉, 〈m, a〉 and 〈o, a〉.

4.3 Results

Paintball and PWE algorithms were tested on the
same word sample, the results are presented in
Tab. 1 and 2. Test words were divided into two
sub-samples: frequent words, >1000 occurrences
(Freq in tables) and infrequent, ≤999 (Rare in ta-
bles), as we expected different precision and cov-
erage of KSs. Statistically significant results were
marked with a ‘*’. We rejected the null hypothe-
sis of no difference between results at significance
level α = 0.05. The paired t-test was used.

Considering straight paths and their maximal
length up to 6 links PWE performs slightly bet-
ter than Paintball. Coverage for words and senses
is also higher for PWE: 100% (freq.: 100%)
44.79% (43.93%) than for Paintball: 63.15%
(freq.: 91.63%) and 24.66% (26.62%). However,
a closer analysis reveals that PWE shows a ten-
dency to find suggestions in larger distances from
the proper place. If we take into account only sug-
gestions located up to 3 links – the column [0,2] in
Tab. 1, than the order is different: Paintball is sig-
nificantly better than PWE. Paintball mostly sug-
gests more specific synsets for new words and ab-
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STRATEGY
HITS DISTANCE [%]

0 1 2 3 4 5 6 [0,2] total

P
W

E R
A

R
E CLOSEST 3.7 21.7 16.2 9.6 6.9 3.4 0.1 41.6 *61.5

STRONGEST 0.5 5.9 9.7 10.9 8.9 4.5 0.5 *16.1 40.9
ALL 0.8 4.9 5.0 4.5 3.8 2.0 0.4 *10.7 21.5

F
R

E
Q CLOSEST 0.8 14.8 24.2 21.0 15.1 5.5 0.2 39.8 *81.6

STRONGEST 0.1 2.7 9.4 16.1 15.7 13.2 0.8 *12.2 *58.0
ALL 0.2 3.2 7.0 10.0 9.8 7.3 0.5 10.4 *38.0

PA
IN

T
B

A
L

L

R
A

R
E CLOSEST 9.2 21.7 12.6 6.7 4.2 1.0 0.6 43.5 *56.1

STRONGEST 4.8 13.1 10.0 6.5 3.4 1.2 0.4 *27.9 39.4
ALL 2.9 6.9 4.8 3.5 2.2 1.0 0.2 *14.6 21.5

F
R

E
Q CLOSEST 6.3 20.5 15.0 11.9 6.7 2.6 0.5 41.8 *63.3

STRONGEST 1.9 9.1 8.4 8.1 4.8 1.9 0.3 *19.4 *34.7
ALL 1.4 4.9 4.4 4.4 3.1 1.6 0.2 10.7 *20.0

Table 1: Straight path strategy: PWE and Paintball precision on WordNet 3.0.

STRATEGY
HITS DISTANCE [%]

0 1 2 3 4 total

P
W

E R
A

R
E CLOSEST 3.7 21.7 18.4 11.8 2.5 *58.2

STRONGEST 0.5 5.9 10.7 12.6 2.3 *32.0
ALL 0.8 4.9 6.6 6.9 1.5 *20.7

F
R

E
Q CLOSEST 0.8 14.8 25.2 22.9 4.0 67.7

STRONGEST 0.1 2.7 9.6 17.0 3.4 *32.8
ALL 0.2 3.2 7.9 12.2 2.9 *26.4

PA
IN

T
B

A
L

L

R
A

R
E CLOSEST 9.2 21.7 21.9 10.7 1.9 *65.5

STRONGEST 4.8 13.1 15.3 13.1 1.5 *47.9
ALL 2.9 6.9 14.7 13.2 1.7 *39.4

F
R

E
Q CLOSEST 6.3 20.5 20.7 18.6 2.8 68.8

STRONGEST 1.9 9.1 11.5 13.5 3.1 *39.2
ALL 1.4 4.9 8.4 11.6 2.3 *28.5

Table 2: Folded path evaluation strategy: PWE and Paintball precision on WordNet 3.0 .

stains in the case of the lack of evidence, e.g., for
x=feminism, PWE suggests the following synset
list: {abstraction, abstract entity}, {entity}, {com-
munication}, {group, grouping}, {state}
while suggestions of Paintball, still not perfect,
are more specific: {causal agent, cause, causal
agency}, {change}, {political orientation, ideol-
ogy, political theory}, {discipline, subject, subject
area, subject field, field, field of study, study, baili-
wick}, {topic, subject, issue, matter}.

PWE very often suggests abstract and high level
synsets like: {entity}, { event}, {object}, {causal
agent, cause, causal agency} etc. They dominate
whole branches and are in a distance non-greater
than 6 links to many synsets. Paintball outper-
forms PWE in the evaluation based on the folded
paths. For more than half test words, the strongest
proposal was in the right place or up to a cou-
ple of links from it. Suggestions were generated
for 72.65% of lemmas and the sense recall was
24.63% that is comparable with other algorithms.

5 Conclusions

We presented a new wordnet expansion algorithm
called Paintball. It is based on a spreading activa-

tion model applied to the wordnet and expanded
with notions of transmittance and impedance. The
model enables combining different heterogeneous
and partial KSs extracted from corpora. Con-
trary to many approaches, e.g. PWE (Snow et al.,
2006), Paintball can use any KS, as it does not
assume the probabilistic character of KSs. Paint-
ball includes several parameters (but the same is
the case of PWE), but their values can be tuned
on a wordnet sample. Paintball offers a simpler
and less heuristic model than LAAA and is a gen-
eral tool. There are almost no works on wordnet
expansion by spreading activation, e.g. (Liu et al.,
2005) presented rather an idea, not a solution, but
this model was used for Word Sense Disambigua-
tion, e.g. (Tsatsaronis et al., 2007). Contrary to
(Yang and Callan, 2009) we do not assume any
properties of the lexical semantic network, but we
try to shape it according to the language data. We
aim also at an unsupervised or very weakly su-
pervised algorithm in which training is limited to
finding only general properties of the wordnet re-
lations. Paintball expressed significantly better re-
sults than well known PWE and LAAA algorithms
in test on performed on on Princeton WordNet 3.0.
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