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Abstract

Information extraction systems automati-
cally extract structured information from
machine-readable documents, such as
newswire, web, and multimedia. Despite
significant improvement, the performance
is far from perfect. Hence, it is useful to
accurately estimate confidence in the cor-
rectness of the extracted information. Us-
ing the Knowledge Base Population Slot
Filling task as a case study, we propose a
confidence estimation model based on the
Maximum Entropy framework, obtaining
an average precision of 83.5%, Pearson
coefficient of 54.2%, and 2.3% absolute
improvement in F-measure score through
a weighted voting strategy.

1 Introduction

Despite significant progress in recent years, In-
formation Extraction (IE) technologies are still
far from completely reliable. Errors result from
the fact that language itself is ambiguous as well
as methodological and technical limitations (Gan-
drabur et al., 2006). Therefore, evaluating the
probability that the extracted information is cor-
rect can contribute to improve IE system perfor-
mance. Confidence Estimation (CE) is a generic
machine learning rescoring approach for measur-
ing the probability of correctness of the outputs,
and usually adds a layer on top of the baseline sys-
tem to analyze the outputs using additional infor-
mation or models (Gandrabur et al., 2006). There
is previous work in IE using probabilistic and
heuristic methods to estimate confidence for ex-
tracting fields using a sequential model, but to the
best of our knowledge, this work is the first proba-
bilistic CE model for the multi-stage systems em-
ployed for the Knowledge Base Population (KBP)
Slot Filling task (Section 2).

The goal of Slot Filling (SF) is to collect infor-
mation from a corpus of news and web documents
to determine a set of predefined attributes (“slots”)
for given person and organization entities (Ji et al.,
2011a) (Section 3). Many existing methodologies
have been used to address the SF task, such as Dis-
tant Supervision (Min et al., 2012) and Question
Answering (Chen et al., 2010), and each method
has its own strengths and weaknesses. Many cur-
rent KBP SF systems actually consist of several
independent SF pipelines. The system combines
intermediate responses generated from different
pipelines into final slot fills. Since these interme-
diate outputs may be highly redundant, if confi-
dence values can be associated, it will definitely
help re-ranking and aggregation. For this pur-
pose, we require comparable confidence values
from disparate machine learning models or differ-
ent slot filling strategies.

Robust probabilistic machine learning models
are capable of accurate confidence estimation be-
cause of their intelligent handling of uncertainty
information. In this paper, we use the Maximum
Entropy (MaxEnt) framework (Berger et al., 1996)
to automatically predict the correctness of KBP
SF intermediate responses (Section 4). Results
achieve an average precision of 83.5%, Pearson’s r
of 54.2%, and 2.3% absolute improvement in final
F-measure score through a weighted voting system
(Section 5).

2 Related Work

Confidence estimation is a generic machine learn-
ing approach for measuring confidence of a given
output, and many different CE methods have
been used extensively in various Natural Lan-
guage Processing (NLP) fields (Gandrabur et al.,
2006). Gandrabur and Foster (2003) and Nguyen
et al. (2011) investigated the use of machine
learning approaches for confidence estimation in
machine translation. Agichtein (2006) showed
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Expectation-Maximization algorithms to estimate
the confidence for partially supervised relation ex-
traction. White et al. (2007) described how a
maximum entropy model can be used to gener-
ate confidence scores for a speech recognition en-
gine. Louis and Nenkova (2009) presented a study
of predicting the confidence of automatic sum-
marization outputs. Many approaches for confi-
dence estimation have also been explored and im-
plemented in other NLP research areas.

There are also many previous confidence es-
timation studies in IE, and most of these have
been in the Active Learning literature. Thomp-
son et al. (1999) proposed a rule-based extraction
method to compute confidence. Scheffer et al.
(2001) utilized hidden Markov models to measure
the confidence in an IE system, but they only esti-
mated the confidence of singleton tokens. Culotta
and McCallum (2004)’s work is the most relevant
to our work, since they also utilized a machine
learning model to estimate the confidence values
for IE outputs. They estimated the confidence of
both extracted fields and entire multi-field records
mainly through a linear-chain Conditional Ran-
dom Field (CRF) model, but their case studies are
not as complicated and challenging as slot filling,
since SF systems need to handle difficult cross-
document coreference resolution, sophisticated in-
ference, and also other challenges (Min and Gr-
ishman, 2012). Furthermore, to the best of our
knowledge, there is no previous work in confi-
dence estimation for the KBP slot filling task.

3 KBP Slot Filling

3.1 Task Definition

The Knowledge Base Population (KBP) track, or-
ganized by U.S. National Institute of Standards
and Technology (NIST)’s Text Analysis Confer-
ence (TAC), aims to promote research in discov-
ering information about entities and augmenting
a Knowledge Base (KB) with this information (Ji
et al., 2010). KBP mainly consists of two tasks:
Entity Linking, linking names in a provided doc-
ument to entities in the KB or NIL; and Slot Fill-
ing (SF), extracting information about an entity in
the KB to automatically populate a new or existing
KB. As a new but influential IE evaluation, Slot
Filling is a challenging and practical task (Min and
Grishman, 2012).

The Slot Filling task at KBP2012 provides a
large collection of 3.7 million newswire articles

and web texts as the source corpus, and an initial
KB derived from the Wikipedia infoboxes. In such
a large corpus, some information can be highly re-
dundant. Given a list of person (PER) and orga-
nization (ORG) entity names (“queries”), SF sys-
tems retrieve the documents about these entities in
the corpus and then fill the required slots with cor-
rect, non-redundant values. Each query consists
of the name of the entity, its type (PER or ORG),
a document (from the corpus) in which the name
appears, its node ID if the entity appears in the pro-
vided KB, and the slots which need not be filled.
Along with each slot fill, the system should also
provide the ID of the document that justifies this
fill. If the system does not extract any informa-
tion for a given slot, the system just outputs “NIL”
without any document ID. The task defines a total
of 42 slots, 26 for person entities and 16 for or-
ganization entities. Some slots are single-valued,
like “per:date of birth”, which can only accept at
most a single value, while the other slots, for ex-
ample “org:subsidiaries”, are list-valued, which
can take a list of values. Since the overall goal
is to augment an existing KB, the redundancy in
list-valued slots must be detected and avoided, re-
quiring a system to identify different but equiva-
lent strings. Such as, both “United States” and
“U.S.” refer to the same country. More informa-
tion can be found in the task definition (Ji et al.,
2010).

3.2 Baseline System Description

We use a slot filling system that has achieved
highly competitive results (ranked top 2) at the
KBP2012 evaluation as our baseline. Like most
SF systems, our system has three basic compo-
nents: Document Retrieval, Answer Extraction,
and Response Combination. Our SF system starts
by retrieving relevant documents based on a match
to the query name or the results of query expan-
sion. Then our system applies a two-stage pro-
cess to generate final slot fills: Answer Extrac-
tion, which produces intermediate responses from
different pipelines, and Response Combination,
which merges all intermediate responses into final
slot fills. Answer extraction begins with document
pre-processing, such as part-of-speech tagging,
name tagging, and coreference resolution. Then
it uses a set of 6 SF pipelines operating in paral-
lel on the retrieved documents to extract answers.
Our pipelines consist of two that use hand-coded
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PER# ORG# Total# Response#
KBP2010 50 50 100 7917

KBP2011 50 50 100 14976

KBP2012 40 40 80 8989

total 140 140 280 31878

Table 1: Number of Queries and Number of Intermediate Responses from Each Year Data

patterns, two pattern-based slot fillers in which the
patterns are generated semi-automatically from
a bootstrapping procedure, one based on name
coreference, and one distant-supervision based
pipeline. The result of this stage is a set of inter-
mediate slot responses, potentially highly redun-
dant. Next, Response Combination validates an-
swers and eliminates redundant answers to aggre-
gate all intermediate responses into final slot fills,
where the best answer is selected for each single-
valued slot and non-redundant fills are generated
for list-valued slots. More details about our KBP
Slot Filling system can be found in the system de-
scription paper (Min et al., 2012).

4 Confidence Estimation Model

Our confidence estimation model is based on the
Maximum Entropy (MaxEnt) framework, a prob-
abilistic model able to incorporate all features
into a uniform model by assigning weights au-
tomatically. We implement a mix of binary and
real-valued features from different aspects to es-
timate confidence of each intermediate slot fill-
ing response under a consistent and uniform stan-
dard, incorporating four categories of features:
Response Features extract features from the slot
and the Response context; Pipeline Features indi-
cate how well each pipeline performed previously;
Local Features explore how Query and Response
are correlated in the supporting context Sentence;
Global Features detect how closely Query corre-
lates with Response in the global context. Each
specific feature in the above categories is listed in
Table 2, where Q refers to a person or organiza-
tion Query; R indicates the pipeline-generated Re-
sponse for a particular slot of a query; and S rep-
resents the Sentence that supports the correctness
of the Response.

5 Experiments

We have collected and merged the previous three
years’ KBP SF evaluation data, which consists of

a total of 280 queries, and Table 1 lists the number
of person and organization queries as well as the
number of intermediate responses from each year.
There are in total 31878 intermediate responses
generated by 6 different pipelines from our SF
system. We trained our CE model and measured
the confidence values through a 10-fold cross-
validation, so that each fold randomly contains 14
person queries and 14 organization queries with
their associated intermediate responses. Then for
each iteration, the CE model is trained on 9 folds
and approximates the confidence values in the re-
maining fold, and it assigns the probability of each
intermediate response being correct as confidence.

5.1 Voting Systems
To evaluate the reliability of confidence values
generated by this model, we used the weighted
voting method to investigate the relationship be-
tween the confidence values and the performance.

5.1.1 Baseline Voting System
Our baseline SF system applies a basic plural-
ity voting to combine all intermediate responses
to generate the final response submission. This
voting system simply counts the frequencies of
each response entity, which is a unique response
tuple in the form <Query ID, Slot Name, Re-
sponse Fill>. For a single-valued slot of a query,
the response with the highest count is returned as
the final response fill. For the list-valued slots, all
non-redundant responses are returned as the final
response fills. In this basic voting system, each
intermediate response contributes equally.

5.1.2 Weighted Voting System
Weighted voting is based on the idea that not all
the voters contribute equally. Instead, voters have
different weights concerning the outcome of an
election. In our experiment, voters are all of in-
termediate responses generated by all pipelines,
and the voters’ weights are their confidence val-
ues. We set a threshold τ in this weighted voting
system, where those intermediate responses with
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Category Feature Description

Response
Features

slot name The slot name
slot response length The conjunction of the length of R and the slot name
name response slot The slot requires a name as the response

Pipeline
Features

pipeline name The name of pipeline which generates R
pipeline precision The Precision of the pipeline which generates R
pipeline recall The Recall of the pipeline which generates R
pipeline fmeasure The F-measure of the pipeline which generates R

Local
Features

sent contain QR S contains both original Q and R
sent contain ExQR S contains both co-referred Q or expanded Q and R
dpath length The length of shortest dependency path between Q and R in S
shortest dpath The shortest dependency path between Q and R in S
NE boolean R is a person or organization name in S
NE margin The difference between the log probabilities of this name R

and the second most likely name
n-gram Tri-gram context window associated with part-of-speech tags

containing Q or R
genre The supporting document is a newswire or web document

Global
Features

query doc num The number of documents retrieved by Q
response doc num The number of documents retrieved by R
co-occur doc num The number of documents retrieved by the co-occurrences of

Q and R
cond prob givenQ The conditional probability of R given Q
cond prob givenR The conditional probability of Q given R
mutual info The Point-wise Mutual Information (PMI) of Q and R

Table 2: Features of Confidence Estimation Model

confidences that are lower than τ would be elimi-
nated. For each response entity, this weighted vot-
ing system simply sums all the weights of the in-
termediate responses that support this response en-
tity as its weight. Then for a single-valued slot of
a query, it returns the response with the highest
weight as the final slot fill, while it returns all non-
redundant responses as the final slot fills for the
list-valued slots. The maximum confidence ψ of
supporting intermediate responses is used as the
final confidence for that slot fill. We also set a
threshold η (optimized on a validation data set),
where the final slot fills with confidence ψ lower
than η would not be submitted finally.

5.1.3 Results

Table 3 compares the results of this weighted vot-
ing system (with τ = 0, η = 0.17) and the baseline
voting system, where the responses were judged
based only on the answer string, ignoring the doc-
ument ID. As we can see, the weighted voting
system achieves 2.3% absolute improvement in
F-measure over the baseline, at a 99.8% confi-

Precision Recall F-measure
Baseline 0.351 0.246 0.289

Weighted 0.441 0.241 0.312

Table 3: Results Comparison between Baseline
Voting System and Weighted Voting System

dence level according to the Wilcoxon Matched-
Pairs Signed-Ranks Significance Test. Precision
obtains 9.0% absolute improvement with only a
small loss of 0.5% in Recall.

Figure 1 summarizes the results of this weighted
voting system with different threshold τ settings.
When τ is raised, Precision continuously increases
to around 1, while Recall gradually decreases to 0.

In addition to improving overall performance,
the confidence estimates can be used to convey to
the user of slot filling output our confidence in in-
dividual slot fills. After the intermediate responses
are combined by the above weighted voting sys-
tem (setting τ and η as 0), we divide the range of
confidence values (0 to 1) into 10 equal intervals (0
to 0.1, 0.1 to 0.2, and so on) and categorize these
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Figure 1: Impact of Threshold Settings

final slot fills by their confidence values. Then for
each category, the final slot fills are scored in Pre-
cision. Figure 2 strongly demonstrates that the slot
fills with higher confidence consistently generate
more precise answers, indirectly validating the re-
liability of the confidence estimates.
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Figure 2: Performance of Confidence Intervals

5.2 Evaluation

We use another two different methods to evaluate
the quality of confidence estimation in a more di-
rect way. The first method is Pearson’s r, a corre-
lation coefficient ranging from −1 to 1 that mea-
sures the correlation between a confidence value
and whether or not the instance is correct. It is
widely used in the sciences as a measure of lin-
ear dependence between two variables. The sec-
ond method is average precision, used in the Infor-
mation Retrieval community to evaluate a ranked

Avg. Prec Pearson’s r
RANKED 0.835 0.542
RANDOM 0.525 0.001

WORSTCASE 0.330 -

Table 4: Evaluation of Confidence Estimates

list. It calculates the precision at each point in the
ranked list where a relevant document is found and
then averages these values. Instead of ranking doc-
uments by their relevance scores, the intermediate
responses are ranked by their confidence values.

Table 4 shows the Pearson’s r and average
precision results for all intermediate responses,
where RANKED ranks the responses based on their
confidence values; RANDOM assigns confidence
values uniformly at random between 0 and 1;
WORSTCASE ranks all incorrect responses above
all correct ones.

Applying the features separately, we find that
slot response length and response doc num are
the best predictors of correctness. dpath length
(the length of the shortest dependency path be-
tween query and response) is also a significant
contributor. Among the features, only NE margin
seeks to directly estimate the confidence of a
pipeline component, and it makes only a mini-
mal contribution to the result. Overall this shows
that confidence can be predicted quite well from
features of the query and response, their appear-
ance in the corpus, and prior IE system perfor-
mance, without modeling the confidence of indi-
vidual pipeline components.

6 Conclusion

We have presented our Maximum Entropy based
confidence estimation model for information ex-
traction systems. The effectiveness of this model
has been demonstrated in the challenging Knowl-
edge Base Population Slot Filling task, where a
weighted voting system achieves 2.3% absolute
improvement in F-measure score based on the
confidence estimates. A strong correlation be-
tween the confidence estimates in KBP slot fills
and the correctness has also been proved by ob-
taining an average precision of 83.5% and Pear-
son’s r of 54.2%. In the future, further experi-
ments are planned to investigate more elaborate
models, explore more interesting feature sets, and
study the contribution of each feature through a
more detailed and thorough analysis.
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