
Proceedings of Recent Advances in Natural Language Processing, pages 487–494,
Hissar, Bulgaria, 12-14 September 2011.

Parallel Suffix Arrays for Linguistic Pattern Search

Johannes Goller
Macmillan, Digital Science

Chiyoda Bldg., 2-37 Ichigayatamachi
Shinjuku-ku, Tokyo

jogojapan@gmail.com

Abstract

The paper presents the results of an ana-
lysis of the merits and problems of us-
ing suffix arrays as an index data struc-
ture for annotated natural-language cor-
pora. It shows how multiple suffix arrays
can be combined to represent layers of an-
notation, and how this enables matches for
complex linguistic patterns to be identi-
fied in the corpus quickly and, for a large
subclass of patterns, with greater theoreti-
cal efficiency than alternative approaches.
The results reported include construction
times and retrieval times for an annotated
corpus of 1.9 billion characters in length,
and a range of example patterns of varying
complexity.

1 Introduction

Empirical linguistic studies require access to large
corpora of text, and they benefit greatly when the
text is stored in a form that enables the efficient re-
trieval of specific elements, such as sentences that
match a pattern defined by a linguist. The size and
contents of the corpus, the type and structure of
its annotations, and the form of patterns involved
vary greatly; the present paper deals with the re-
quirements of only a subset of linguistic studies,
which are characterized as follows:

• The corpus is large (hundreds of millions of
words), but not extremely large (hundreds of
millions of documents);

• Annotations exist in any number of layers, for
example a layer of part-of-speech (POS) an-
notations and a layer of semantic role labels,
but the annotations on each individual layer
are non-overlapping and non-ambiguous;

• A pattern is essentially a regular expression,
made up of literals (to be matched against the

text), annotations (each with a specification
of the layer it is expected to be found in) and
wildcard elements (“gaps”);

• The retrieval results are expected to be de-
livered within seconds or minutes (that is,
not necessarily as fast as web search), and
to be comprehensive (that is, to contain all
matches, not only the top-N defined by some
relevancy ranking);

• New patterns are generated constantly, per-
haps by many different users or automated
programs in parallel, while the text is largely
static.

Corpus search engines that respond to a similar,
albeit not identical, set of requirements include the
Corpus Workbench1, WebCorp Linguist’s Search
Engine2 and Manatee/Bonito (Rychlý, 2007). The
implementation of all of these systems relies on
the principle of inverted files, which is the main al-
ternative to the suffix arrays presented here3. Both
approaches are described and briefly compared in
section 2, a direct comparison is also available in
(Puglisi et al., 2006). Sections 3 and 4 introduce
the concept of parallel suffix arrays and describe
how it enables annotations and complex pattern
search, including patterns equivalent to finite state
machines. Section 5 describes results obtained us-
ing an actual implementation of parallel suffix ar-
rays.

2 The Two Main Approaches to Indexing

2.1 Inverted Files
The concept of inverted files requires the text to
be tokenized, that is, to be segmented into tokens

1http://cwb.sourceforge.net/
2http://www.webcorp.org.uk/
3Suffix arrays are frequently used for n-gram analyses

(e.g. Yamamoto and Church (1998)), but without the ability
to process complex search patterns.

487

(usually roughly equivalent to words). The index
consists of a searchable dictionary of the tokens
(e.g. a hash table or sorted list), and a link connect-
ing each token with its inverted list, i.e. the list of
positions where the token is found (where the po-
sition of a token is defined as the token offset, i.e.
the number of tokens to its left).

The match result for a search pattern that con-
sists of a single token t is then readily retrieved
by determining the dictionary entry correspond-
ing to t (which if hashing is used typically takes
O(|t|) time, where |t| is the length of t in char-
acters) and returning the entire inverted list It.
The length of the list corresponds to the num-
ber of occurrences of t, occ(t). If the pattern
is a sequence of tokens P := t1, . . . , tr, the re-
trieval strategy is to determine all inverted lists in
O(|t1|) + . . . + |tr|) time, to then identify the in-
verted list of the least frequent token, i.e. Itµ such
that µ = argmini occ(ti), and to finally check for
each of the positions p ∈ Itµ whether it lies in
a match for the entire pattern P . That requires,
for each p a look-up in the remaining r − 1 in-
verted lists, specifically, for each 1 ≤ k < µ,
a look-up to check whether p − k ∈ Itµ−k , and
for each 1 ≤ k < (r − µ) to check whether
p + k ∈ Itµ+k

. Since inverted lists are usually
stored as sorted lists of integers, a look-up in Iti
requires O(log occ(ti)) time, hence the total time
taken to identify all matches for P is

O
(∑

k

|ti|+ occ(tµ)
∑
k 6=µ

log occ(tk)
)

(1)

Storing annotations in the index is straightforward:
Modify the inverted lists so as to store positions as
character offsets (rather than token offsets), and
the length of t in characters along with each oc-
currence of t. Annotations can then be indexed in
the same way as ordinary tokens, with character
offset and length, and the procedure above can be
modified so as to take into account the length of
each ti when computing the positions of adjacent
tokens. This enables patterns using a mix of text
and annotations, i.e. with some of the ti referring
to text, others to annotation. The time bound of (1)
is unchanged.

2.2 Suffix Arrays

A suffix array is any representation of the lexi-
cographically sorted list of all suffixes of a text,
where suffix is defined as any substring beginning

1 2 3 4 5 6 7 8 9

a b x a b d a e $

lcp=

a
b
d
a
e
$

a
b
x
a
b
d
a
e
$

a
e
$

b
d
a
e
$

b
x
a
b
d
a
e
$

d
a
e
$

e
$
x
a
b
d
a
e
$

T=
SA= 9 4 1 7 5 2 6 8 3

x $ d a a b a bebwt=
0 0 2 1 0 1 0 0 0

$

Figure 1: Suffix array SA for the string
T =abxabdae$, along with auxiliary data struc-
tures bwt, lcp and “brackets” indicating the match
ranges for substrings ab, a and b.

somewhere in the text and ending at the end of the
text, i.e. there are n suffixes in a text of length n.
Rather than storing copies of all the substrings,
the suffix array is usually represented as a list of
n integers, each indicating the starting position of
a suffix. An example of this is shown in Fig. 1:
The suffix array itself consists only of the integer
list SA; the lower part of Fig. 1 shows the strings
corresponding to each position, written vertically.
Suffix arrays have an important property related to
substring searches: Given a text T , its suffix array
SA and a search pattern P , the set of starting po-
sitions of matches for P in T forms a continuous
range in SA, as each match is the initial part of a
suffix of T . Because of the lexicographical sort-
ing, these suffixes must be adjacent to each other
in the suffix array. For example, the set of matches
for substring ab in Fig. 1 is the range [2; 3] of SA
(corresponding to positions 4 and 1 of T). This
shall be called the range property of suffix arrays.

Recent improvements in search algorithms for
suffix arrays, cf. Navarro and Mäkinen (2007),
make it possible to identify the match range for
P in O(|P |) time4, and since no tokenization is
required, recombining matches for individual to-
kens as in the case of inverted files is unneces-
sary. However, it is impossible to store annotation-
related information in the suffix array. The follow-

4Strictly speaking, the time is bound by O(|P |(1 +
log |Σ|/ log log n)), where |Σ| is the size of the alphabet.
However that is asymptotically equivalent to O(|P |) when
the alphabet is as much smaller than the text as it is the case
for large-scale natural-language corpus search. See Navarro
and Mäkinen (2007, 42) for details.

488

ing two sections describe a new concept, parallel
suffix arrays, and how it enables annotations and
more powerful search patterns.

3 Parallel Suffix Arrays

The first step is to allow annotations to enter the
index. In the following it is assumed that a text
T ∈ Σ∗ of length n is given, and one layer of q
annotations

A = ((a1, p1, `1), (a2, p2, `2), . . . , (aq, pq, `q))

such that each annotation (ai, pi, `i) consists of a
label ai ∈ Σ∗, a starting position pi < n and a
length `i. pi indicates where in T the substring
annotated with ai starts, `i indicates the number
of T -characters it covers. For example, given

T = is but a dream within a dream

and POS-annotations V, Conj etc., the annotation
layer might look like this:

A = ((V, 1, 2), (Conj, 4, 3), (Det, 8, 1), (N, 10, 5),
(Prep, 16, 6), (Det, 23, 1), (N, 25, 5)) .

There are two ways to bring these annotations into
the suffix-array-based index for T :

Method 1: Single-integer annotations. Three
steps need to be performed: (1) Each distinct an-
notation label is mapped to a unique integer (e.g.
using a hash table), that is, a new annotation al-
phabet Λ is created, in which each annotation is
represented as one integer. (2) An extra integer
is introduced in Λ, below represented by ∅, which
is used as a dummy annotation for all areas of T
that are not covered by any element of A (in the
example above, this applies to the space charac-
ters between words). (3) A is replaced by a string
A′ ∈ Λ∗ containing the new annotation symbols
in the order of the T -positions they refer to, and a
bitvectorBT↔A of length n indicating the starting
positions of annotations relative to T . The exam-
ple above now becomes:

A′ =1∅2∅3∅4∅5∅3∅4
BT↔A =10110011110000110000011110000 ,

where V has been mapped to 1, Conj to 2, and
so forth. The next step is to construct a suffix ar-
ray SAA′ from the Λ-string A′, along with aux-
iliary data structures required for fast searches,
cf. Navarro and Mäkinen (2007). That enables fast

searches for sequences consisting solely of anno-
tations. It will later be shown how the bitvector
is used to accomplish searches for mixed patterns,
that is, patterns that contain both, T -sequences and
A-sequences.

Method 2: Complex annotations. In some sit-
uations annotations are themselves complex and
one would like to be able to search inside them,
rather than mapping them to atomic integers. This
is accomplished by appending a new character
] /∈ Σ to every label ai as a separation mark, and
then concatenating all labels to a new string A′:

A′ = V]Conj]Det]N]Prep]Det]N]

In addition, two bitvectors BT↔A and BA↔A are
defined, the former in the same way as in method
1, while the latter is of length |A′| and has a 1
wherever a new annotation starts in A′:

BA↔A = 101000010001010000100010

Again, a suffix array SAA′ for A′ enables search-
ing for substrings of annotations as well as se-
quences of annotations. The]-symbols prevent
undesired matches across annotation-boundaries.

How the bitvectors are used for mixed T /A′
patterns. Both the bitvector of the first, and the
bitvectors of the second method need to undergo
an indexing process, during which a rank index
and a select index are generated for each bitvector,
defined as follows: Let B be a bitvector of length
b and i, j < b, then

rankB(i) := the total number of 1s in B[1..i]
selectB(j) := i s.t. there are j 1s in B[1..i] .

Using techniques described by Jacobson (1989), it
is possible to construct, in O(b) time, data struc-
tures that implement these functions, such that
a lookup can be performed in O(1) time and
no more than b + o(b) bits of space are con-
sumed in total (including the bitvector itself). In
the case of single-integer annotations (method 1),
rankBT↔A and selectBT↔A are constructed;
in the case of complex annotations, these and
rankBA↔A and selectBA↔A are constructed.
In addition, in both cases the inverse suffix ar-
rays for T and A′ must be computed and stored
in memory: Given a suffix array SA, its inverse is
defined as

invSA[j] := i such that SA[i] = j ,

489

and invSA can be generated from SA in linear
time. To see how these data structures work to-
gether, consider a mixed pattern σλ, where σ ∈
Σ∗ is a substring match against T and λ is a sub-
string match against the annotations. We first as-
sume that method 1 was used, hence that λ ∈ Λ∗

is a sequence of annotations mapped to integers.
The next step is to search the suffix arrays and de-
termine the match ranges (lσ, rσ) for σ in SAT and
(lλ, rλ) for λ in SAA′ . Clearly, the number of oc-
currences of σ in T is occ(σ) = rσ− lσ, the num-
ber of matches for λ is occ(λ) = rλ − lλ. We
must now check, for each σ-match, whether it is
followed by a λ-match. Let lσ ≤ x < rσ one of
the σ-matches. It begins at position p = SAT [x] of
T and it is |σ| characters in length. Hence it is fol-
lowed by a λ-match if and only if an A-annotation
starts at p + |σ| and that annotation corresponds
to a λ-match in A′, which is the case iff the cor-
responding position in A′ is a suffix in the match
range (lλ, rλ). We therefore verify, for the candi-
date offset q := p+ |σ|:

A-element exists: BT↔A[q] = 1 (2)

Location in A′: q′ := rankBT↔A(q) (3)

Is q′ a λ-match: lλ ≤ invSAA[q′] < rλ (4)

If SA and invSA are available for random access,
all of the above can be tested in O(1) time, hence
it takes O(occ(σ)) time to compute the set of
σλ-matches from the two individual match ranges.
Moreover, the procedure works in the reverse di-
rection, too, starting from the λ-matches and de-
termining those among them that are preceded by
a σ-match (using select instead of rank; the
time consumption becomes O(occ(λ))). Hence
it is possible to choose the matching direction ac-
cording to whichever part of the pattern has fewer
matches, i.e. let occµ := min(occ(σ), occ(λ)),
then the match combination can be computed in
O(occµ) time.

Without giving a detailed proof, we note that
this result can be extended to general sequential
patterns t1 · · · tr, ti ∈ Σ∗,Λ∗: The match com-
bination time depends only on the least frequent
(i.e. most specific) element tµ, that is, including
the time taken to determine the match range for
each ti, the total asymptotic time is

O
(∑

k

|tk|+ occ(tµ)
)
, (5)

which is obviously better than with inverted files,
where the match combination time depends on the

frequency of all elements, as shown in (1). This
shall be called the least-frequency property of
parallel suffix arrays5. It should also be noted that
for subsequences te · · · tf such that all elements
refer to the same layer, i.e. ∀ti ∈ Σ∗ or ∀ti ∈ Λ∗,
no match combination is required at all, since the
suffix arrays do not rely on tokenization, hence
t′ := te · · · tf can be searched for as a single el-
ement in O(|t′|) time.

Moreover, it is possible to define gaps of
fixed length (measured in terms of number of
T -characters, or alternatively, as number of A-
annotations) between the individual elements, e.g.
a pattern like σA:3

./ λ, indicating a distance of 3 ar-
bitrarily A-annotated elements between σ and λ,
can be evaluated in the same asymptotic time (be-
cause the length ` of the three wildcard elements
following σ can be computed for each match can-
didate using rank and select, and then added
to the candidate position, q := p+ |σ|+ ` used in
(2) and (3) before the match range check for λ).

The property also holds when complex annota-
tions and method 2 are used, at least when search-
ing for prefixes of annotations, rather than arbi-
trary substrings of them. The distance calculations
must then be made using the rank/select indexes
forBT↔A to map positions between T andA, and
those for BA↔A to compute the string length of
annotations in A′. If arbitrary substring matching
in annotations is required, the match process is de-
layed by a factor related to the length of λ, as every
position inside the annotation must be checked for
being a possible match continuation.

4 Complex Patterns

4.1 General patterns

Multiple annotation layers

It is straightforward to add further layers of
annotation, e.g. semantic or morphological in-
formation, constituent classes etc. Each layer
A1, A2, . . . is represented by an annotation string
A′i, a bitvector BT↔Ai , and BAi↔Ai if it is com-
plex. Direct mappings between layers Ai, Aj
are unnecessary, as they can be emulated using
BT↔Ai andBT↔Aj . Hence, total space consump-
tion of the index grows in an additive manner as
layers are added.

5The name parallel suffix arrays refers to the view of SAT
and SAA′ as parallel layers, both related to the same under-
lying text.

490

Branching patterns
An important step towards more powerful search
patterns is the ability to process branching pat-
terns, that is, patterns that specify multiple alter-
natives. This shall be denoted using a new opera-
tor ⊕, such that a pattern ⊕(e1, e2, . . . , em) is de-
fined as matching all substrings of T that match
any of the subexpressions ei. If all ei are dis-
tinct Σ-strings, the individual match sets for each
ei are disjoint, and the final result corresponds to
the union set of the match ranges for the ei.

But if some of the ei refer to annotations or are
themselves complex, i.e. sequential patterns or ⊕-
expressions, the individual match sets might not
be disjoint, causing the end result to contain du-
plicate matches, which makes it difficult to read
and might cause frequency counts to be wrong.
Hence, duplicate elements must be detected and
removed from the individual match sets. This can
be done either by creating a searchable result set
representation, such as a hash table or tree, and in-
serting the matches one by one, rejecting matches
that were inserted before; or, it can be done by
creating a simpler, non-searchable result list and
checking for each match for any ei whether it is
also a match for one of the other ej , j < i. Both
these methods are available when inverted files are
used instead of suffix arrays, too, but if the second
method is used, suffix arrays often have an advan-
tage because the member check for the ej , if it is a
Σ- or Λ-string, involves only anO(1) range check,
whereas it would be logarithmic in an inverted file.

Sequences of complex elements
In section 3, the least-frequency property was
established for sequential patterns, consisting of
atomic elements and fixed-length-gaps, i.e. ex-
pressions like

e1
Q1:x1
./ e2

Q2:x2
./ · · ·

Qm−1:xm−1

./ em ,

where ei ∈ Σ∗,Λ∗; Qi ∈ {Σ,Λ}; xi integers. For
even more powerful search patterns, it is impor-
tant that the above can also be processed if the ei
are themselves complex, i.e. sequences or branch-
ing elements. This is indeed possible; the pattern
then becomes a graph, and determining the least-
frequent element, at which the matching should
start, becomes a non-trivial problem. The num-
ber of matches of a sequence or branching subele-
ment cannot be calculated accurately before the
entire matching process has finished, but an up-
per bound can be determined: For a sequence, it is

the frequency of its least-frequent subelement, for
a branching element it is the sum of the frequen-
cies of its branches. Based on this, it is possible
to recursively determine the estimated best atomic
subelement of the graph for the match combina-
tion process to begin. Once it has begun, the least-
frequency property takes full effect during the pro-
cessing of sequential substructures, and the range
property accelerates the duplicate-checks where
branching substructures are involved, as described
above. Both is not true of inverted files, hence the
theoretical performance of parallel suffix arrays is,
generally, superior even for the most complex pat-
terns.

Iteration
Another useful operator in powerful linguistic
search patterns is the iteration operator, which is
denoted by ~(e) for any atomic or complex ex-
pression e. It corresponds to a sequence

e
T :0
./e

T :0
./ · · · T :0

./e

of undetermined length. Since all its elements
are identical, the least-frequency property is pre-
served, even if the matching simply starts on the
left end, or alternatively on the right end, and con-
tinues as long as new matches are found. There-
fore, iteration elements can itself become part of
complex patterns, and the three operations Q:x

./ , ⊕
and ~ establish a pattern syntax with the power
of regular expressions, over an annotated text with
any number of annotation layers, and including
fixed-length gaps (wildcards).

4.2 Gap-filling

In order to analyse linguistic patterns in specific
contexts, it is desirable that not only substrings
matching the entire pattern are identified, but that
selected parts of the patterns, especially matches
for gaps or annotation elements, can be extracted
and separately returned as frequency lists. For ex-
ample, if one wants to investigate the syntactic en-
vironment of “discussion”, i.e. usages like “dis-
cussion on”, “discussion with” etc., one might use
a pattern like

discussion
T :0
./ <Prep><Det>︸ ︷︷ ︸

(∗)

T :0
./<N>

and then obtain a frequency list of the content
that matched the part marked by (∗). Parallel suf-

491

fix arrays are particularly well-suited for this pur-
pose: Firstly, it is easy to keep track of the begin-
ning and ending offsets of the desired subexpres-
sions during the matching processing; secondly,
frequency lists are easy to generate: Given starting
positions p1, p2 of two matches for (∗), a compar-
ison of invSA[p1] and invSA[p2] in O(1) time suf-
fices to determine their lexicographic order. Once
the matches are in lexicographic order, identifying
duplicates and counting the frequencies of distinct
strings is easy.

4.3 Look-betweens and negation

Another feature related to gaps is the ability to
define some of their content partially. The three
types of patterns below are examples of this:

(a) e1
Q:x:y
./ e2 (b) e1

Q:x:y
./ [?e3]e2 (c) e1

Q:x:y
./ [!e3]e2

(a) represents a gap of length x ≤ ` ≤ y el-
ements on the annotation level Q; (b) requires
that somewhere inside the gap there must be a
match for e3 (positive look-between); (c) means
there must be no match for e3 in the gap (nega-
tive look-between). Without going into further de-
tail, it should be noted that these types of patterns
can be incorporated into the matching process us-
ing match combination techniques similar to those
described in section 3. There is, however, a spe-
cific disadvantage of suffix arrays when process-
ing variable-length gaps e1

Q:x:y
./ e2: Assuming that

occ(e1) ≤ occ(e2), let (p, `) be the position and
length of a match for e1. Let (qi, pi, `i) be a Q-
annotation located at pi = p+ `, and

(qi+1, pi+1, `i+1), . . . , (qi+y, pi+y, `i+y)

the following y Q-annotations. Then we need
to check whether a match for e2 is found at any
of the positions pi+x, . . . , pi+y, which requires
δ := y − x + 1 look-ups in invSAQ. Hence,
the gap length variability δ becomes a factor in
the time complexity of the match combination pro-
cess. That is not the case when inverted files are
used: It then suffices to check for matches at pi+x
and pi+y stored in the inverted list for e2. Since the
inverted list is sorted, all other relevant matches
must be located between these too and can be re-
trieved in one step.

5 Implementation and Results

5.1 Index construction and operation
The system has been implemented as a C++ pro-
gram that takes as input a file containing the text
T with three layers of annotations in XML: APOS
(POS-annotations); Alem (baseforms of words, in-
dexed using method 1 (see section 3); AcPOS (POS
along with morphological information; indexed
using method 2).

The index construction is performed by first es-
tablishing the parallel layers and bitvectors and
then creating SAQ, invSAQ and, as an auxiliary
data structure used to enable faster suffix array
search, the wavelet tree WVTQ (Grossi et al., 2003)
for each layer Q ∈ {T,APOS, Alem, AcPOS}. For
the construction of SAQ, a multi-threaded version
of the DC-algorithm (Kärkkäinen et al., 2006) is
used, invSAQ is computed in a trivial way in one
pass over SAQ, and the wavelet tree WVTQ is con-
structed using a simple multi-threaded method (for
details see Goller (2011)). The only highly time-
consuming steps are the constructions of SAQ and
WVTQ. Their running times are given in Table 1.

For efficient pattern search, it is necessary to
keep all data structures in main memory at all
times. Compression methods for SA, invSA
and WVT are available, cf. Navarro and Mäkinen
(2007), but unfortunately, using them causes the
time complexity of pattern search to be increased
by a factor of Ω(log n), eliminating the advan-
tage it has over inverted files. As a result, us-
ing parallel suffix arrays requires a large amount
of RAM. The implementation used to obtain the
results described above was found to require ≈
(0.06 ·N)/1024 MB for a corpus of N characters
with the three annotation layers described above.
Hence, on a 32-bit desktop computer with about 3
GB of memory available, a corpus of≈ 52 million
characters (≈ 7 million words) can be processed
efficiently. Therefore, although optimizing the im-
plementation’s use of RAM is certainly possible, it
is quite clear that possibilities to use the described
approach in linguistic practice depend on whether
servers with sufficiently large RAM are available,
and affordable.

5.2 Pattern Search
Table 2 presents response times for various kinds
of patterns and illustrates, as expected, that the
performance varies greatly depending on the com-
plexity of the pattern; more specifically, it de-

492

Threads
Used

Hard
drive

Available
RAM

SAT WVTT SAPOS WVTPOS SAlem WVTlem SAcPOS WVTcPOS

A 10 NFS 128 GB 3:17 3:48 1:30 1:13 1:27 11:46 3:03 2:03
B 20 Direct 512 GB 2:00 3:06 0:50 1:05 0:49 8:05 2:00 1:57
C 45 Direct 512 GB 2:00 2:37 0:51 0:54 0:55 6:16 1:49 1:43

Table 1: Construction times on three different system configurations. The text is 1.97 billion characters
(375 million words) in length and contains approx. 27,000 distinct baseforms of words. Test A was
performed on a server with AMD-Opteron CPUs 8356 (total 16 threads) and the hard drive mounted
through NFS, tests B and C were conducted on a server with Intel Xeon X7560 processors (total 64
threads) and the hard drive installed locally. Time durations are given in the format h:mm.

Pattern #results Search
time
(ms)

Extraction
time
(ms)

P1 millions 5,857 106 200
P2 thousands of 7,526 74 399
P3 #thousand# of 7,696 168 343
P4 discussion〈IN〉〈NN〉 1,296 213 80
P5 discussion$pr$$n$ 1,894 372 118
P6 discussion[$pr$$n$] 1,894 530 111

P7 #preparation#
APOS:0:2
./ 〈IN〉T :0

./ ⊕ (〈NN〉, 〈NNS〉) 752 191 28

P8 〈JJ〉〈NN〉〈NN〉
APOS:0:2
./ 〈IN〉T :0

./ ⊕ (〈NN〉, 〈NNS〉) 13,229 4,065 621

P9 〈NN〉〈NN〉
APOS:0:2
./ 〈IN〉T :0

./ ⊕ (〈NN〉, 〈NNS〉) 129,723 36,711 5,178

Table 2: Pattern processing times using hardware configuration A (see Table 1). Search time (identifying
the set of match positions) and extraction time (extracting matches, but not including result printing).
#..#-elements refer to Alem, 〈..〉 to APOS, $..$ to AcPOS. Elements enclosed in [..] are marked for separate
extraction and frequency counting (gap-filling). Times are in milliseconds.

493

pends on the “most specific atomic element” of
the pattern. An element is atomic, if it refers to
one layer (text or annotation) exclusively and con-
tains no gaps. For example, the POS sequence
〈JJ〉〈NN〉〈NN〉 in P8, which would consist of three
tokens in a standard inverted-file configuration, is
atomic, as all three sub-elements refer to the same
layer APOS and can therefore be matched against
SAAPOS in a single step. In accordance with the
least-frequency property, the overall response time
for the entire pattern depends on the number of
occurrences of the most specific atomic element,
which in this case is 〈JJ〉〈NN〉〈NN〉, rather than
such high-frequency individual tokens as 〈JJ〉 or
〈NN〉. If the most specific atom is modified to be
less specific, as in P9, the search time is increased
by a factor of ≈ 9.

5.3 Discussion and Conclusion

The approach presented appears to be effective,
especially for complex patterns that contain at
least one relatively specific element. It provides
efficient solutions for special tasks like context-
specific pattern matching and frequency-list gen-
eration (described as gap-filling above), and it
does not require any kind of tokenization, neither
on the level of the main text, nor on the level
of annotations and is hence suitable for corpora
that involve annotations on the morpheme level, or
across token boundaries, as well as for languages
or writing systems that are hard to tokenize. Its
biggest disadvantage is its high memory consump-
tion, which however is likely to be less important
in the future, as ever larger RAM hardware be-
comes available at increasingly low cost.

Although this has not been discussed in detail in
previous sections, it is important to point out that
the approach is not suitable in situations that call
for frequent updates to the text or the annotations.
The index structures described above, especially
rank and select indexes for bit vectors as well as
the suffix arrays themselves cannot be updated ef-
ficiently. Although data structures for suffix arrays
that can be searched as well as dynamically up-
dated are known, cf. (Russo et al., 2008; González
and Navarro, 2008), using them would cause de-
lays in the order ofO(log n) (where n is the length
of the text) in lookups of select, rank and SA,
hence rendering the system considerably less effi-
cient the corresponding version of an inverted file
based system.

There are plans to release an open-source ver-
sion of the implementation used for the tests de-
scribed above as a corpus exploration tool for lin-
guists before the end of the year.

References
Johannes Goller. 2011. Exploring text corpora using

index structures. PhD thesis. To appear, Centrum
für Informations- und Sprachverarbeitung, Ludwig-
Maximilians-Universität München.

Rodrigo González and Gonzalo Navarro. 2008. Im-
proved dynamic rank-select entropy-bound struc-
tures. In LNCS 4957/2008, LATIN 2008: Theoreti-
cal Informatics, pages 374–386, Berlin / Heidelberg.
Springer.

Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vit-
ter. 2003. High-order entropy-compressed text in-
dexes. In SODA ’03: Proceedings of the 14th an-
nual ACM-SIAM symposium on discrete algorithms,
pages 841–850, Philadelphia, PA, USA. Society for
Industrial and Applied Mathematics.

Guy Jacobson. 1989. Space-efficient static trees and
graphs. In Proc. of the 30th IEEE Symposium on
Foundations of Computer Science (FOCS), pages
549–554.

Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt.
2006. Linear work suffix array construction. J.
ACM, 53(6):918–936.

Gonzalo Navarro and Veli Mäkinen. 2007. Com-
pressed full-text indexes. ACM Comput. Surv.,
39(1):2.

Simon Puglisi, W. Smyth, and Andrew Turpin. 2006.
Inverted files versus suffix arrays for locating pat-
terns in primary memory. In Fabio Crestani, Paolo
Ferragina, and Mark Sanderson, editors, String Pro-
cessing and Information Retrieval, volume 4209 of
Lecture Notes in Computer Science, pages 122–133.
Springer Berlin / Heidelberg.

Luı́s M. Russo, Gonzalo Navarro, and Arlindo L.
Oliveira. 2008. Dynamic fully-compressed suffix
trees. In CPM ’08: Proceedings of the 19th an-
nual symposium on Combinatorial Pattern Match-
ing, pages 191–203, Berlin, Heidelberg. Springer-
Verlag.

P. Rychlý. 2007. Manatee/bonito – a modular corpus
manager. In P. Sojka and A. Horák, editors, First
Workshop on Recent Advances in Slavonic Natural
Language Processing 2007, Faculty of Informatics,
Masaryk University, Botanická 68a, 60200 Brno,
Czech Republic.

Mikio Yamamoto and Kenneth W. Church. 1998. Us-
ing suffix arrays to compute term frequency and doc-
ument frequency for all substrings in a corpus. Com-
putational Linguistics, 27:28–37.

494

