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Abstract

Aggregation is a sub-task of Natural Lan-
guage Generation (NLG) that improves
the conciseness and readability of the text
outputted by NLG systems. Till date,
approaches towards the aggregation task
have been predominantly manual (man-
ual analysis of domain specific corpus and
development of rules). In this paper, a
new algorithm for aggregation in NLG is
proposed, that learns context sensitive ag-
gregation rules from a parallel corpus of
multi-sentential texts and their underly-
ing semantic representations. Addition-
ally, the algorithm accepts external con-
straints and interacts with the surface re-
alizer to generate the best output. Ex-
periments show that the proposed con-
text sensitive probablistic aggregation al-
gorithm performs better than the determin-
istic hand crafted aggregation rules.

1 Introduction

Aggregation is the process in which two or more
linguistic structures are merged to form a single
sentence. It helps in generating concise and flu-
ent text and hence is an essential component in
any NLG system (Reiter and Dale 2000). Fig-
ure 1(a) presents an example of de-aggregated text
while Figure 1(b) shows its aggregated counter-
part. Clearly, the aggregated text is fluent while
the de-aggregated text is artificial with lot of re-
dundancy.
Reiter (1994) proposed a consensus pipeline ar-

chitecture for NLG systems with three stages:

• Content-Determination: Selects the informa-
tion (propositions) to be conveyed and orga-
nizes the information in a rhetorically coher-
ent manner.

• Sentence-Planning: Generates referring ex-
pressions, combines multiple propositions,
selects appropriate lexical items and syntac-
tic structures for each (aggregated) proposi-
tion and adds cohesion devices (eg, discourse
markers) to make the text flow smoothly.

• Surface-Realizer: Converts the lexicalized
linguistic structure into a linearized string
while ensuring grammaticality, proper punc-
tuation, correct morphology.

Figure 1: Example showing de-aggregated text
and its equivalent aggregated text.

The input to the process of aggregation, a sub-
module of Sentence-Planning in the consensus ar-
chitecture described above, is a set of propositions
selected by Content-Determination module which
are organized using rhetorical relations between
the propositions. Typical NLG systems use a two-
stage aggregation process (Wilkinson, 1995). In
the first stage, i.e., semantic grouping, the input set
of propositions are partitioned into multiple sets,
each of which is realized as a sentence. In the sec-
ond stage, decisions related to actual realization of
each set partition are taken.
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The essential idea behind semantic grouping is
that the propositions that form a set and get real-
ized as a meaningful sentence are related some-
how. For example in Figure 1, the first two propo-
sitions (Bacteria are unicellular. Bacteria are
prokaryotic.) are two assertive sentences about
Bacteria and hence are aggregated. But it is not
true that these two propositions will always be ag-
gregated into a single sentence as shown in Figure
2.

Figure 2: Example answer from a corpus of QAs
in Biology domain.

This shows that semantic grouping depends not
only on the similarity between propositions, but
also on the context (communicative goal of the
text). The issue of context in semantic group-
ing gains importance especially in systems that
present the same information in different views
(Example: QA systems). For example, the two
propositions (Bacteria are unicellular. Bacteria
are prokaryotic) occur in examples shown in Fig-
ures 1 & 2. In the example in Figure 1, these
propositions are aggregated while in the example
in Figure 2 they are not. If we look at the context
of these texts, the text in Figure 1 is a short de-
scription about Bacteria. On the other hand, the
text in Figure 2 talks about the fundamental differ-
ence between Bacteria and Fungi.
The problem that is considered in this paper

is as follows: Given a parallel corpus of multi-
sentential texts and their underlying semantic rep-
resentations along with the communicative goal
of the text, can we learn semantic grouping rules
automatically? The semantic representation as-
sumed in this paper is a conceptual graph (Fig-
ure 3 shows an example of a conceptual graph),
but the applicability of the approach is generic
and can be customised to accomodate any seman-
tic representation. A context-dependent discrim-
inative model is learned which, given a proposi-
tion set and the context, estimates the probabil-
ity of aggregation of the propositions. The prob-

lem of semantic grouping is modelled as a hyper-
graph partitioning problem that uses the probabil-
ities outputted by the context-dependent discrim-
inative model. To address the problem of hyper-
graph partioning, Multi-level Fiduccia-Mattheyses
Framework (MLFM) is used (Karypis and Kumar,
1999).

Figure 3: Example of a conceptual graph.

The approach is evaluated in the biology do-
main against two alternatives, namely hand-
crafted rules (HC) and a greedy clustering ap-
proach (GC) using the probabilities outputted by
the context-dependent discriminative model. Ad-
ditionally, we also test the impact of context by
ignoring context while learning the discrimina-
tive model (Context-independent discriminative
model).
An overview of related work is presented in

Section 2. The corpus used in the experiments is
discussed in Section 3. Then, in Section 4, the ap-
proach is discussed followed by Section 5 which
presents the experiments done and their results.
Finally, Section 6 concludes the paper with dis-
cussions and future work.

2 Related Work

Aggregation has been employed since the early
NLG systems. In PROTEUS, a computer program
that generates commentaries on a tic-tac-toe game,
Davey (1979) used conjunctions to express SE-
QUENCE and CONTRASTIVE relations. Derr
and McKeown (1984) showed how focus of atten-
tion helps in taking decisions related to choice be-
tween a sequence of simple sentences and a com-
plex one. ANA (Kukich, 1983), used financial do-
main specific aggregation rules to generate com-
plex sentences upto 34 words. Logical derivations
were used to combine clauses and to remove eas-
ily inferrable clauses in (Mann and Moore, 1980).
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Hand-crafted aggregation rules developed as a re-
sult of corpus analysis are employed by (Scott
and de Souza, 1990; Hovy, 1990; Dalianis, 1999;
Shaw, 1998). Walker et al. (2001) proposed
a overgenerate-and-select approach in which the
over-generate stage lists out large number of po-
tential sentence plans while the ranking stage se-
lects the top ranked sentence plan using rules that
are learned automatically from the training data.
Cheng and Mellish (2000) propose a genetic algo-
rithm coupled with a preference function. Barzi-
lay and Lapata (2006) view the problem of seman-
tic grouping as a set partioning problem. They
employ a local classifier that learns similarity be-
tween the propositions and then use ILP (Branch-
and-bound algorithm) to infer a globally optimal
partition.
This work is different from the earlier work in

two aspects. We use contextual information to ob-
tain better grouping that is applicable across differ-
ent systems (even QA systems) while their work
does not use the contextual information. Also, we
assume a more generic hypergraph representation
and use MLFM technique which works well even
with large number of propositions.

Figure 4: Example of a QA pair and its triple rep-
resentation.

3 Corpus

A total of 717 QA pairs are collected from vari-
ous sources in the biology domain. Concepts are
extracted from the question which acts as contex-

tual information. For example, when the question
is What is a binary fission?, the concept Binary-
Fission becomes the context. The answer is con-
verted into sets of triples, each set corresponding
to a sentence. Each triple consists of two concepts
(or instances of concepts) connected by a relation.
For example, the triple (Mitosis next-event Cytoki-
nesis) contains two concepts namely Mitosis and
Cytokinesis connected by the relation next-event.
Figure 4 shows a QA pair and its triple representa-
tion. The context and sets of triples are extracted
from each QA pair manually. The manual annota-
tion process uses the component library described
in (Barker et al., 2001).1

A total of 6337 triples are collected correspond-
ing to 717 answers with each answer having 8.839
triples on an average. The highest number of
triples for an answer is 46 while the lowest is 1.
The total number of sentences in the answers is
1862, i.e., 2.596 sentences per an answer.

4 Approach

4.1 Hypergraphs

A hypergraph (H) is a generic graph wherein edges
can connect any number of vertices and are called
hyperedges. In other words, each edge is a set of
vertices. It is formally represented by a pair (V,E)
where V is the set of vertices and E is the set of hy-
peredges. Each edge ei � E has associated weight
wi. An edge with zero weight means that the the
edge does not exist.

4.2 k-way Hypergraph Partitioning problem

Let P be a k-tuple (p0 , p1, p2...) where each pi is
a set of vertices from V such that ∩i=k−1

i=0 pi = φ
and ∪i=k−1

i=0 pi = V . The k-way Hypergraph parti-
tioning problem can be formulated as follows:

Given a hypergraph H = (V,E), find a k-way
partitionment δ : V → P that maps each of
the vertices of H to one of the k disjoint par-
titions such that some cost function γ : P →
R is minimized.

4.3 Modelling Aggregation as hypergraph
partitioning problem

Relationships among the propositions are often
complex than pairwise. Assuming this complex
relationship as pairwise ones reduces the fluency

1The component library is available online at
http://www.cs.utexas.edu/ mfkb/RKF/tree/
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of the verbalized text in some cases. To deal with
this complex relationship, it is better to directly
use hypergraphs instead of pair-wise approxima-
tion.
We view the problem of aggregation as a hyper-

graph partioning problem guided by a data-driven
context sensitive discriminative model. The input
to the algorithm is a conceptual graph which can
be alternatively represented as a set of proposi-
tions. The goal is to find optimal partitions of the
set of propositions given context, where each par-
tition represents an aggregated sentence. The set
of propositions is viewed as a graph where each
proposition represents a vertex as shown in Fig-
ure 5. Hyperedges are constructed on the graph
obtained from propositions. Each hyperedge of
this hypergraph connects one or more proposi-
tions. The weight wi of each hyperedge is given
by the context sensitive discriminative model dis-
cussed in section 4.4. The hypergraph along with
edge weights is the input to the multi-level k-
partitioning algorithm.

Figure 5: Example of a proposition set and its view
as a graph

4.4 Context Sensitive Discriminative Model
The weight wiA of a hyperedge (A) in the hyper-
graph formed from the inputs (S) is the probability
of aggregation of propositions in A given contex-
tual information (C) and S.

wiA = pA = P (A|C, S) (1)

The contextual information include the commu-
nicative goal (the concepts in the question) The
features that are used to predict the probability of
aggregation of a proposition set are based on:

• Cohesion of the proposition set is the aver-
age score of similarities between each pair of
propositions in A:

CohA =

�i=|A|,j=|A|
i=1,j=1,i�=j sim(Ai, Aj)

|A| (2)

The similarity between each pair is the
number of matches in the components of
triples. For example, since the triples (Mi-
tosis subevent Prophase), (Mitosis subevent
Anaphase) match in two slots, the similarity
score is 2/3.

• Complexity of the realization is a cumulative
weighted score of number of words, number
of relative clauses, number of connectives,
etc. and this score depicts how difficult it
is to interpret the sentence corresponding to
the proposition set A (if it is generated using
the surface realizer). The score value is∞ if
the propositions cannot be realized as a sin-
gle sentence because the surface realizer can-
not find suitable structure that accomodates
all the propositions.

• Dissimilarity with rest of the propositions cal-
culates how dissimilar the proposition set A
is with the rest of the propositions (S-A). The
maximum distance (or minimum similarity)
of each proposition in S-A from A is calcu-
lated and averaged.

• Similarity with context C is the score of the
extent of the cover of context by the triples.
It is the ratio of number of concepts in the
context C that occur in any of the triples in A
to the total number of concepts in C.

A number of boolean features and their conjunc-
tive features are generated using the above scores
with score bounds. Such feature structures are
generated for each hyperedge in the hypergraph
formed from S. All the subsets of S which are in
Z (the correct partitioning of S) are positive in-
stances and rest are negative instances. A max-
imum entropy model is employed to predict the
probabilities of aggregation of a set of proposi-
tions.
While using the maximum entropy model to

predict the aggregation probability, we can also
utilize pattern matching rules to group proposi-
tions as a pre-processing step. The pattern match-
ing rules can include domain specific rules, infer-
ence rules, etc. The motivations for this grouping
are: (1) propositions are a mere representation of
complex texts, (2) when the number of propositons
is very high, optimization on the level of proposi-
tions becomes intractable.
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Any constraint on the output can be expressed
as features in the discriminative model. Transitiv-
ity constraint on set of propositions is automati-
cally captured in the usage of hyperedges. Exter-
nal constraints like complexity of sentence is ex-
pressed in the features of the discriminative model
(Complexity of the realization).

5 Experiments

We use a n-fold cross validation on the corpus
described in section II. We use two baselines for
comparison: (1) Hand-Crafted rules (HC) and
(2) Greedy clustering of hypergraph (GC). Hand-
crafted rules are pattern matching rules on sets of
propositions. An example rule is to aggregate two
triples if they share atleast two slots. In the sec-
ond baseline, i.e., the greedy clustering of hyper-
graph, the graph is clustered using the probability
scores of hyperedges based on the context sensi-
tive model. The top scoring hyperedges that are
non-overlapping and cover the entire input set are
outputted. Also, in order to test the impact of con-
text, we build a context independent discrimina-
tive model but follow the same hypergraph parti-
tioning approach (HGP).

5.1 Evaluation metrics
Let Y be the output partition of our approach and
Z be the correct partitioning which is annotated
manually. We use the following evaluation met-
rics:

• Precision: the ratio of correct pair-wise ag-
gregations in Y and total pair-wise aggrega-
tions in Y

• Recall : the ratio of correct pair-wise aggre-
gations in Y and total pair-wise aggregations
in Z

• F-score: the harmonic mean of Precision and
Recall

5.2 Results
The results are shown in Table 1. All the scores
are average scores on a 5-fold cross validation.
Hand-Crafted rules performed very poor because
there are very few rules covering aggregation of
more than five propositions while the corpus con-
sisted of many such proposition sets. The effect of
context is clear as the context dependent (HGPC)
model outperforms context independent model by
7.15%. This proves that the usage of context is

very important if the model has to be generic and
adaptable to any kind of NLG system.

Model Recall Precision F-Score
HC 32.5 21.6 25.9
GC 41.7 47.5 44.4
HGP 40.02 58.8 47.6
HGPC 49.6 61.1 54.75

Table 1: Results on pairwise aggregations; Com-
parison between Hand-Crafted rules (HC), Greedy
clustering (GC), Hyper-graph partitioning model
with context (HGPC) and without context (HGP)

6 Conclusions

The number of propositions in an answer in our
corpus varied from 1 to as large as 46. We
used an empirically proven scalable partitioning
framework that works well when the number of
propositions is huge. We presented a novel con-
text sensitive aggregation algorithm for NLG sys-
tems. Also we presented a much natural hyper-
graph approach to semantic grouping than other
methods that approximate the complicated rela-
tionships (among the entities that are checked for
aggregation) with pair-wise approximations. The
approach is adaptable to any domain and any rep-
resentation. With a small corpus of 717 QA pairs,
good results are obtained over the hand-crafted ap-
proaches.
In our future work, we would like to test the de-

scribed approach for scalability. The MLFM tech-
nique used in this work is proven to be the best
technique for partitioning a set of more than 200
propositions. Also, the evaluations in this paper
have been conducted in partial isolation from the
actual output of the surface realizer. In our future
work, we would also like to consider the impact of
aggregation on the final textual outputs.
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