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Abstract
Object-oriented analysis and design has now be-
come a major approach in the design of soft-
ware system. This paper presents a method to
automate natural language requirements analy-
sis for object identification and generation based
on the Parsed Use Case Descriptions (PUCDs)
for capturing the output of the parsing stage.
We employ Use-Case Descriptions (UCDs) as in-
put into the whole framework of identification of
classes and relationship. PUCD is used to ex-
tract nouns, verbs, adjectives and adverbs from
use case descriptions as part of an identification
process to identify objects/classes and relation-
ships. We refine classes by human expert to pro-
duce a class model as output.
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1 Introduction

The process of requirements identification is consid-
ered one of the most critical and difficult tasks in
database design because most of the input to this pro-
cess is in natural languages, such as English, which
are inherently ambiguous. Developers need to interact
with users in their language. Also they need to review
and analyse documents written in natural language.
This paper presents the work we have achieved so far
to find a solution to the problem of automatic iden-
tification of objects/classes and relationships from a
Requirements Specifications (RS) written in a natural
language. Firstly, we review existing literature on the
subjects of requirements specifications, object identifi-
cation, and conceptual database design. The different
techniques adopted in the natural language processing
systems that attempt to transform natural language to
conceptual models have been reviewed. Moreover, we
have reviewed the rules to convert English sentences
into ER and EER diagrams to determine entity types,
attribute types and relationship types.

We intend to employ use-case descriptions as input
into the whole framework of identification of classes
and relationships, using an existing parsing tool to
identify noun phrases, verb phrases, adjectives and
adverbs. We propose an intermediate representation

called Parsed Use Case Descriptions (PUCD) for cap-
turing the output of the parsing stage, which is then
used in subsequent steps. A PUCD is a set of original
sentences, parsed sentences, nouns, verbs, adjectives
and adverbs, which we use to extract nouns, verbs, ad-
jectives and adverbs from use case descriptions. The
next step is the identification process to identify ob-
jects/classes, attributes, operations, associations, ag-
gregations and inheritance so as to produce a class
model. We refine classes by human expert. In addi-
tion to the literature review, the work achieved to date
includes an outline of the proposed method for object
identification, which is based on existing work on how
to map English sentences into conceptual models. The
next step identify objects/classes, attributes, opera-
tions, and the association, aggregation and inheritance
abstractions to produce a class model by applying a set
of rules.

2 Motivation

Our motivation is therefore to identify automatically
objects/classes and relationships from requirements
specifications written in a natural language, e.g. En-
glish, so as to increase efficiency in the use of scarce
resources and to reduce errors in dealing with com-
plex requests. Therefore we investigate how natural
language processing tools and techniques can be used
to support the Object-Oriented Analysis (OOA) pro-
cess. We assume that an English description of the
software problem to be solved has already been writ-
ten. This can be an initial description of the problem
or a more detailed list of requirements. We employ
Use Case Descriptions (UCDs) as input for identifying
classes and relationships as these are well-structured
texts . Automation of the Systems Development Life
Cycle (SDLC) can alleviate the critical problems of
ambiguity, inconsistencies and conflicts in functional
requirements [11]. Use case descriptions are very ef-
fective in analyzing and capturing functional require-
ments. They play a major role in defining the pro-
cesses and actors who can be part of the shareholders
of the system. They can be extended, automated and
implemented to achieve complete, consistent, and con-
flict free requirements specification.

The contribution of this paper is to develop a PUCD
automatically from use case descriptions as input to
extract nouns, verbs, adjectives and adverbs.
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3 Challenges

Handling of Cycles. Software engineering tools
nearly always involve a number of cycles with dis-
cussion at the end of each iteration on each solution.
Thus we have the well-known first- and second-cut ap-
proaches. This style of working facilitates the refine-
ment of the models developed. In the work described
here we anticipate that two or three cycles will be
needed to optimise convergence on an agreed outcome.
A framework has to be constructed for handling the
cycles.

Use of Natural Language (NL). There are many
difficulties often associated with the use of NL which
can be summarised as following:

• The ambiguity and complexity of NL are major
problems in requirements specifications, as they
may lead to misunderstanding between the differ-
ent users, which most likely will badly affect cus-
tomer satisfaction with the implementation pro-
duced. Furthermore any errors, mistakes or in-
consistencies incurred at this stage can be very
costly later especially when a system has already
been implemented. It has been reported that the
cost difference to correct an error in the early
stage compared with leaving it till the end is
1:100. See [18, 2, 13].

• The analysis process is considered to be one of
the most critical and difficult tasks because most
of the input to this process is in natural language
such as English.

• Automatic identification of objects/classes and
relationships is potentially faster than manual
identifications but may be less accurate.

• There is no standard method for automatically
identifying objects and classes from English sen-
tences.

• With NLP it is now possible to distinguish nouns
and verbs but it is not so easy to classify the verbs
as particular types of relationships such as asso-
ciation, aggregation or inheritance, in the identi-
fication process.

• There is little or no adaption of standards like
UML for expressing requirements specification
(RS) for the purpose of object identification.

4 Background and Related
Work

Previous studies provide some rules for mapping nat-
ural language elements to object-oriented concepts.
However, it appears that the coverage is incomplete.
For example Abbott [1] first suggested that nouns in-
dicate classes and objects, while verbs can denote be-
haviours. Researchers and software designers such as
Booch et al., and Liang et al., [3, 12] have come to
the conclusion that object identification and the re-
finement process are an ill-defined task, because of the
difficulty of heuristics and the lack of a unified method-
ology for analysis and design. This is mainly due to

the lack of a formalism for object-oriented analysis and
design.

Although there are many projects focusing on Com-
puter Aided Software Engineering (CASE) tools for
object-oriented analysis and design, there are only a
few focusing on the formalisation and implementation
of the methodology for the object model creation pro-
cess. Also they are not developed well for the soft-
ware design that requires collaborative working among
members of a software design project team. Wahono
and Far [21, 20] examine the issues associated with the
methodology for collaborative object-oriented analysis
and design. This system is called OOExpert.

Data Model Generator (DMG) is a rule-based de-
sign tool by Tjoa and Berger [19] which maintains rules
and heuristics in several knowledge bases and employs
a parsing algorithm to access information on a gram-
mar using a lexicon designed to meet the requirements
of the tool. During the parsing phase, the sentence is
parsed by retrieving necessary information using the
rules and heuristics to set up a relationship between
linguistic and design knowledge. The DMG has to in-
teract with the user if a word does not exist in the
lexicon or the input of the mapping rules is ambigu-
ous. The linguistic structures are then transformed by
heuristics into EER concepts. Though there is a con-
version from natural language to EER models, the tool
has not yet been developed into a practical system.

ER generator by Gomez et al. [8] is another rule-
based system that generates E-R models from natural
language specifications. The E-R generator consists
of two kinds of rules: specific rules linked to seman-
tics of some words in sentences, and generic rules that
identify entities and relationships on the basis of the
logical form of the sentence and of the entities and
relationships under construction. The knowledge rep-
resentation structures are constructed by a Natural
Language Understanding (NLU) system which uses a
semantic interpretation approach.

CM-Builder by Harmain and Gaizauskas [9] is a nat-
ural language based CASE tool which aims at sup-
porting the analysis stage of software development in
an object-oriented framework. The tool documents
and produces initial conceptual models represented in
the Unified Modelling Language. The system uses dis-
course interpretation and frequency analysis in linguis-
tic analysis. For example, attachment of postmodifiers
such as prepositional phrases and relative clauses is
limited. Other shortcomings include the state of the
knowledge bases which are static and not easily up-
dateable nor adaptive. Meziane and Vadera [15] and
Farid [7] implemented a system for the identification
of VDM data types and simple operations from natu-
ral language software requirements. The system first
generates an Entity-Relationship Model (ERM) from
the input text followed by VDM data types from the
ERM.

Mich and Garigliano [17] and Mich [16] described an
NL-based prototype system, NL-OOPS, that is aimed
at the generation of object-oriented analysis models
from natural language specifications. This system
demonstrated how a large scale NLP system called
LOLITA can be used to support the OO analysis stage.

Some researchers, also advocating NL-based sys-
tems, have tried to use a controlled subset of a natu-
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ral language to write software specifications and build
tools that can analyse these specifications to produce
useful results. Controlled natural languages are devel-
oped to limit the vocabulary, syntax and semantics of
the input language. Macias and Pulman [14] discuss
some possible applications of NLP techniques, using
the CORE Language Engine, to support the activity
of writing unambiguous formal specifications in En-
glish.

The research work described above has provided
valuable insights into how NLP can be used to sup-
port the analysis and design stages of software de-
velopment. However, each of these approaches has
weaknesses, which means that as yet NL-based CASE
tools have not emerged into common use for OO anal-
ysis and design. Abbott and Booch’s work describes a
methodology, but they have not produced a working
system which implements their ideas. Meziane pro-
duced workable systems but these required an unac-
ceptable level of user interaction such as accepting or
rejecting noun phrases to be represented in the final
model on a sentence by sentence basis as the require-
ments document is processed.

Mich and Garigliano’s approach, which is closest to
our own, is reliant on the coverage of a very large scale
knowledge base and the impact of (inevitable) gaps in
this knowledge base on the ability of the system to gen-
erate usable class models is unclear. It is also worth
noting that none of these systems, so far as we are
aware, has been evaluated on a set of previously un-
seen software requirements documents from a range of
domains. This ought to become a mandatory method-
ological component of any research work in this area,
as it has in other areas of language processing technol-
ogy, such as the DARPA-sponsored Message Under-
standing Conferences (see, e.g. [10]).

5 Research Method

Figure 1 outlines the research activities involved in the
research method as follows. The method begins with
the Requirements Specification (RS) that describes the
structure and behaviour of the system. RS are usu-
ally written in Natural Language (NL) e.g., English.
NL enables non-technical users to understand the re-
quirements. NL needs to be analyzed, transformed
and restructured into a form used as a notation for
software requirements specifications. NL includes text
from different linguistic levels such as words, sentence
and meaning.

The object identification process uses RS to iden-
tify fundamental elements (e.g., classes, attributes,
operations and relationships) of a conceptual design.
The process to generate a conceptual model uses a
diagrammatic notation (e.g., UML class diagram or
ERM). Figure 1 appears to be recursive but in prac-
tice three cycles are likely to be sufficient. The purpose
of the first cycle is to check if there is any error in the
requirements specifications; the purpose of the second
cycle is to correct the errors by refinement to the re-
quirements specification; the purpose of the third cycle
completes the whole process by a verification and val-
idation process which checks whether the class model
conforms to the original RS. This model therefore in-

cludes object identification, conceptual design genera-
tion, refinement and verification and validation.

The work described here will make a greater use
of automation than earlier approaches, by considering
a generated structured output PUCD automatically.
The automation is assisted by the sentence-based na-
ture of the parser and the use of a complex set of rules
to assist with object identification.

Fig. 1: Outline of research method

6 Overview of the Proposed
Method

Figure 2 gives an overview of the identification of
classes and relationship. Use Case Descriptions
(UCDs) represent input to the process as a whole. As
explained in more detail later, the parsing process as
a whole involves as preliminaries a tokenizer, sentence
splitter, part-of-speech tagger and chunking, followed
by the parser itself. The PUCD generated is a set
of original sentences, parsed sentences, nouns, verbs,
adjectives and adverbs. A preliminary class model is
generated from the PUCD, which is then refined by a
human expert. The steps to design the class diagram
from NL are listed below:

Step 1: Parse the use-case description(s) using
Memory-Based Shallow Parser (MBSP) to generate
noun phrases and verb phrases.

Step 2: Generate PUCD from the output of step 1.
Step 3: Identify classes, and association, aggre-

gation and inheritance abstractions from PUCD ob-
jects/classes, using the rules to produce a class model.

Step 4: Refine the output of step 3 using a human
expert.

6.1 Use Case Descriptions (UCDs)

UCDs written in a natural language are usually em-
ployed for specifying of functional requirements. The
format of a use case is not standardized. UCD takes a
function requirements text file containing the software
requirements. We impose no limitations on the form
of the requirements document provided that it is writ-
ten in English. It can be in the structure of a general
problem statement describing the software problem or
a list of more detailed functional requirements.
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Fig. 2: Overview of Identification of classes and rela-
tionships

6.2 Comprehension of the Input using
MBSP

MBSP is an essential component in text analysis sys-
tems for text mining applications such as information
extraction and question answering. See [22]. Shal-
low parsing gives only a partial analysis of the syntac-
tic structure of sentences as opposed to full-sentence
parsing. The parsing includes detecting the main con-
stituents of sentences (for example noun phrases (NPs)
and verb phrases (VPs)). The MBSP for English con-
sists of the following modules:

(a) Tokenizing: The tokenizer splits a plain text file
into tokens. This includes, e.g., separating words
and punctuation, identifying numbers, and so on.

(b) Sentence Splitting: The sentence splitter identi-
fies sentence boundaries.

(c) Part-of-Speech (POS) Tagging: The POS tag-
ger assigns to each word in an input sentence its
proper part of speech such as noun, verb and de-
terminer to reflect the words syntactic category.
See [5, 4].

(d) Chunker: The chunking involves the process of
detecting the boundaries between phrases (for
example noun phrases) in sentences. See [6].
Chunking can be regarded as light parsing. In
MBSP, NL chunking and bracket prediction is ap-
plied for the chunking purposes.

(e) Parsing: The parsing here means the process of
determining the syntactic structure of a sentence
given a formal description of the allowed struc-
tures in the language called a Grammar.

6.3 Parsed Use-Case Description
(PUCD)

The inputs for the PUCD are parsed and tagged text.
The main purpose of PUCD is to extract nouns, verbs,
adjective and adverbs so as to collect the class/entity
type, attribute and relationship from the tagged input.

In some cases the use of one use case description
may not be enough to provide all of the information
that we need. Therefore, it is recommended to employ
more than one use case description to cover all the
information needed on properties such as attributes
and relationships to produce a class model.

The parsed and tagged text PUCD is defined as a
set of tuples as follows:

PUCD = {< original sentence, parsed sentence, Ns,
Vs, ADJs, ADVs >}.

Ns = {< N, tag>}, where N is any noun and tag ∈
{NN, NNP, NNPS, NNS}

Vs = {< V, tag>}, where V is any verb and tag ∈
{VB, VBD, VBG, VBN, VBZ}

ADJs = {< ADJ, tag>}, where ADJ is any adjective
and tag ∈ {JJ, JJR, JJS}

ADVs = {< ADV, tag>}, where ADV is any adverb
and tag ∈ {RB, RBR, RBS}

OS is an original sentence.
PS is a parsed sentence

6.4 Object Identification Process

Details of the object identification process are given
in Figure 2. After we extract nouns, verbs, adjectives
and adverbs from the generated PUCD, we can then
identify classes/entities, attributes and relationships
using identification process rules.

Below we illustrate how classes, attributes and rela-
tionships are identified:

6.4.1 Identifying Classes/Entities

Figure 2 shows the identification process for identi-
fying classes/entity types, attributes, operations and
relationships. We describe more details for each one
in the identification process.

The first step in identifying classes is to produce a
list of candidate classes. Using PUCD and applying
the rules, this can be done by considering all the basic
nouns in the PUCD.

A class is defined as follows:

C := {< Cn, ATT, B, R >}
where Cn is a class name, ATT is a set of attributes,

B is a set of behaviour or operations and R is a set of
relationships.

We identify a list of candidate classes and attributes
as follows:

1. Determiners (such as: a, an, the, each, and, with,
etc.) do not play a crucial role at this stage of
identification, so they are ignored.
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2. Plural noun phrases are converted to their singu-
lar form because class names in UML are given in
the singular. For example, customers is changed
to customer, and order items to order item.

3. Redundant candidates are removed from the list
of the output PUCD as they are not needed. An
exact string matching technique can be used to
compare the candidates in the list with each other.
For example, customer in our example sentences is
a redundant customer which appears many times
in the text. The same is done for all other candi-
dates.

Example 1: Identifying objects/classes and rela-
tionship with use case description as input.

This example is a very simple one to demonstrate
the technique. The inputs for the Parsed Use-Case
Description (PUCD) are parsed and tagged text. The
main purpose of PUCD is to extract nouns, verbs,
adjectives and adverbs that indicate the class/entity
type, attribute and relationship from the tagged in-
put. In this example we show the effect of PUCD on
one original sentence. This example is simple but we
also used many other use case descriptions of varying
complexity as input to show the identification of ob-
jects/classes and relationships in the production of a
class model.

PUCD = {{< OS: Some customers will search for
specific CDs or CDs by specific artists, while other
customers will want to browse for interesting CDs
in certain categories (e.g., rock, jazz, classical),
PS:(TOP (S (NP (NNS Customers)) (VP (MD
will) (NP (NN access)) (NP (NP (DT the) (NNP
Internet) (NNS sales) (NN system)) (SBAR (S
(VP (TO to) (VP (VB look) (PP (IN for) (NP
(NP (NNS CDs)) (PP (IN of) (NP (NN inter-
est))))))))))) (. .))), Ns:{< NNS Customers >, <
NN Access >, < NNP Internet >, < NNS Sales
>, < NN System >, < NN Interest>}, Vs: {<
Look >} >,

6.4.2 Identify Attributes

A class A has a set of attributes ATTs that describe
information about each object:

ATT := {A|A :=< An, T >}
where each attribute A has an attribute name An

and a type T .
The first step in the attribute identification process

is to extract ADJ and ADV written in the PUCD and
apply the attribute rules; this can be done by consider-
ing all the basic adjectives and adverbs in the PUCD.

6.4.3 Identifying Relationships

There are four basic kinds of relationships: Associa-
tion, Aggregation, Composition and Inheritance. Each
class C has a set of relationships R. Relationship is
represented by relationship type, related class and car-
dinality. A relationship R is defined as follows:

R := {rel|rel :=< RelType, relC, Cr >}

where RelType is a relationship type (e.g., asso-
ciated with, aggregation, composition and Inherits),
relC is a related class and Cr is a cardinality.

7 Result of Building an Ini-
tial Class Model using semi-
automatic Means

Figure 3 shows a class diagram of the CD Selections
Internet System (Place Order Use-Case View) written
as functional requirements into the UCDs. This model
shows 17 classes drawn as solid rectangles. These
classes are linked to each other with associations rep-
resented by lines between the class boxes.

We review the production of the refined list of can-
didate classes and attributes and a list of candidate
relationships. Figure 3 shows the result of building
an Initial Class Model using semi-automatic means
from UCDs as input. The original sentence goes
through certain stages: parsed by Memory-based Shal-
low Parser (MBSP) into tokens, split into sentences,
tagged with part-of-speech flag, and identification of
noun phrases, verb phrases, adjective phrases and ad-
verb phrases. The next step shows how to extract
nouns, verbs, adjectives and adverbs by applying the
rules we have identified for classes, attributes, opera-
tions and relationships. The candidate classes identi-
fied are Customer, Search Request, CD, CD List, Re-
view. Three different types of search requests were re-
vealed: Title Search, Artist Search, Category Search.
By applying the rules to the brief description an ad-
ditional candidate class identified was Order. By re-
viewing the verbs, contained in this use case, we saw
that a Customer places an Order and that a Customer
makes a Search Request.

Using verbs for identifying relationships is not al-
ways straight-forward: a verb may indicate an associ-
ation or an aggregation or inheritance. The use of NLP
to distinguish between these types of relationship is a
non-trivial problem, which still needs to be addressed
but it is hoped that the use of the whole structure of
the PUCD will provide an advance in this area.

We identified a set of attributes for the Customer
(name, address, e-mail and credit card) and for the
Order (CDs to purchase and quantity) classes and
uncovered additional candidate classes CD Categories
and Credit Card Center. Finally, we realized that the
Category Search class used the CD Categories class,
and also identified three subclasses of CD Categories,
namely Rock, Jazz, Classical.
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Fig. 3: Class Model from Use Case Descriptions

8 Conclusion and Further Work

In this paper we outline an approach that we believe
may help to strengthen the process of object identi-
fication. We have developed a method called Parse
Use-Case Descriptions (PUCDs) to extract nouns,
verbs, adjectives and adverbs from use case descrip-
tion. This model is then used for the identification of
objects/classes, their attributes, and the static rela-
tionships among them to produce a class model. We
presented a refinement that generates the class model
by using a human expert.

In further work we will focus in with more realis-
tic examples on developing the full method for auto-
matically identifying objects/classes and relationships
from RS. We will investigate available technologies and
tools to be used, design a system architecture and im-
plement a prototype to realise the identification of en-
tities, attributes and relationships. We will also assess
the differences between manually and automatically
identifying classes and relationships and evaluate the
prototype both in its own right and in a comparison
with existing work.
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