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Abstract

We present a multiattentive recurrent neural
network architecture for automatic multilin-
gual readability assessment. This architecture
considers raw words as its main input, but
internally captures text structure and informs
its word attention process using other syntax-
and morphology-related datapoints, known to
be of great importance to readability. This
is achieved by a multiattentive strategy that
allows the neural network to focus on spe-
cific parts of a text for predicting its reading
level. We conducted an exhaustive evaluation
using data sets targeting multiple languages
and prediction task types, to compare the pro-
posed model with traditional, state-of-the-art,
and other neural network strategies.

1 Introduction

For decades, readability assessment has been used
by diverse stakeholders–from educators to public
institutions—for determining the complexity of
texts (Benjamin, 2012). Traditional formulas do so
by focusing only on superficial linguistic features
(e.g., average length of sentences or syllables per
word). This leads to criticism, as these formulas
do not explore deeper levels of text processing
and thus yield rough estimates of complexity (i.e.,
difficulty) that often lack accuracy (Arfé et al.,
2018). In fact, traditional formulas can label a text
as ‘‘easy to read’’ even if its content is completely
nonsensical (Davison and Kantor, 1982).

To improve the quality of automatic read-
ability assessment, researchers turned to more
sophisticated techniques that go beyond examin-
ing shallow features. These techniques, typically
based on supervised machine learning, incorpo-
rate hundreds (even thousands) of features that
describe a text from multiple perspectives: syntax,
morphology, cohesion, discourse structure, and

subject matter (Dell’Orletta et al., 2011; François
and Fairon, 2012; Denning et al., 2016; Arfé
et al., 2018). The dependency on these numerous
features, however, has made readability assess-
ment tools too complex to deploy and apply to
languages beyond the one for which they were
originally designed. Furthermore, feature and
language dependency, along with lack of homo-
geneity in terms of readability scales, often
prevent researchers from comparing new strate-
gies with state-of-the-art counterparts, preventing
community consensus on which features are the
most beneficial for capturing text complexity
(De Clercq and Hoste, 2016).

Existing literature reflects the fact that appli-
cations that leverage text complexity analysis,
including book recommendation or categorization
(Lexile, 2016; Pera and Ng, 2014), Web result
summarization (Kanungo and Orr, 2009), and
accessibility in the health domain (Bernstam et al.,
2005; Fitzsimmons et al., 2010), still favor less
precise but easier to implement alternatives, with
Flesch as the most accepted choice (Ballesteros-
Peña and Fernández-Aedo, 2013; Bea-Muñoz
et al., 2015). We argue that this is caused by the
uncertainty induced by the lack of uniformity of
readability scales, adaptability among readability
assessment tools, and benchmarks.

Areas of study that were historically heavily
dependent on feature engineering, including sen-
timent analysis or image processing (Manjunath
and Ma, 1996; Abbasi et al., 2008), have made
their way towards alternatives that do not involve
manually developing features, and instead favor
deep learning (Wang et al., 2016). This resulted in
more reproducible strategies—easily portable to
other domains or languages, as they only require
implementing the structure of a specific neural
network and just rely on core components of
resources, such as words, signals, or pixels, rather
than features specifically designed for a domain
or language.
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Issues pertaining to readability assessment are
not limited to performance and adaptability. As
stated by Benjamin (2012), a teacher should never
use a readability score blindly when giving a text
to a student, as specifics of the difficulties of the
reader and the text should always be considered
in this process. For this pairing to be successful,
it is imperative for readability assessment tools
to provide information beyond a single score.
The explainability issue has been addressed in
systems like Coh-Metrix (Graesser et al., 2011)
by showing users the individual values of the
features incorporated in the system. This strategy,
however, has been criticized by the education
community as most features presented are not
straightforward to understand for people without
background in both computation and linguistics
(Elfenbein, 2011). More intuitive explanations
could greatly ease the use of readability tools.

In this paper, we present a multilingual auto-
matic readability assessment strategy based on
deep learning: Vec2Read.1 We still follow the
premise of words being the core components for
a neural network that deals with text. However,
in order to avoid the aforementioned domain de-
pendency issue and adapt the architecture to the
readability task, we inform our model with part
of speech (POS) and morphological tags. This is
done by a multiattentive structure that allows the
network to filter important words that influence
the final complexity level estimation of a text.
Apart from informing the network, the multiat-
tentive structure can also be used to offer users
further insights on which parts of a text have the
most influence for determining its reading level.

Our research contributions include the following:

• We propose a multiattentive recurrent deep
learning architecture specifically oriented to
the readability assessment task.

• The proposed strategy is, to the best of our
knowledge, the first capable of estimating
readability in more than two languages.

• We incorporate an attention structure that
allows a model to use multiple focuses of at-
tention (with different degrees of importance)
to inform word selection.

1The implementation and evaluation framework code is
available on a public repository:
https://github.com/ionmadrazo/Vec2Read.

• We conduct an exhaustive evaluation based on
different languages, readability-measuring
scales, and data sets of varied sizes, in order
to compare the performance of Vec2Read
with existing baselines, a comparison that
is rarely done in this area due to lack of
benchmarks.

• We present an initial analysis on the use of
attention mechanisms as a potential alternative
for providing explanations for readability.

Task Definition. Given a text t, use model M
to predict its reading level. The functionality of
M is directly dependent on the characteristics
of a data set D used for training: language and
readability scale. The scale can be discrete (binary
or multilevel) or continuous. Any language is
viable; for data set availability we train M for
Basque, Catalan, Dutch, English, French, Italian,
and Spanish.

2 Method

In this section we introduce Vec2Read, a multi-
attentive recurrent neural network architecture for
readability assessment.

2.1 General Architecture
The general architecture of Vec2Read (illustrated
in Figure 1) is designed to emulate the structure
of a text. A text is inherently recurrent, as it is
composed of a series of words that depend on
each other in order to produce a message. A text is
also hierarchical, as it is composed of structural
components such as sentences or paragraphs in
order to group information.Vec2Read takes into
account both characteristics to better capture
text structure. Unlike existing hierarchical neural
networks that take advantage of both word and
sentence level recurrent layers (Yang et al., 2016),
Vec2Read has a single recurrent layer at word-
level; hierarchical information is used to generate
both word- and sentence-level attention scores for
creating a text representation.

2.2 Input
Given a text t, let the input of Vec2Read be
x = < xw, xp, xm >, where xw, xp, and xm
represent data structures containing a sequence of
tokens in t, their corresponding POS tags, and
morphological tags, respectively. xwi refers to the
ith sentence in t and xwij is the jth token in
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Figure 1: Description of the general architecture of Vec2Read.

xwi . xpi and xmi refer to the POS and morphol-
ogical tag sequences for xwi , and xpij and xmij

represent the POS and the morphological tags for
xwij . Note that xmij contains a set of tags per
word rather than a single token or POS label. For
instance, given the word plays: xwij = ‘‘plays’’,
xpij = ‘‘Verb’’, and xmij = ‘‘{Tense: present,
Person: 3...}’’. To ease further processing, xmij

always contains all possible morphological tags
considered for the language, assigning a Not
applicable (NA) value when the label cannot be
applied to the token—for example, tense would
have a value of NA for all nouns. The number of
tags used is language dependent. (See Section 3.1
for details on tag set used in the experiments.)

2.3 Dense Vector Representations
Dense vector representations or embeddings have
shown to be useful for representing discrete
values, such as words, in applications dealing with
text (Tang et al., 2014; Madrazo Azpiazu et al.,
2018). Vec2Read converts all discrete values in x
into dense vector representations before feeding
them to the model. This is achieved by using a
lookup table Ωw ∈ R

v×d where each row is an
embedding for a specific word in the vocabulary,
v is the vocabulary size, and d is the number of
latent features used for representation. Similarly,
lookup tables Ωp and Ωm are used for representing
POS and morphological tags, respectively. ωwij

refers to the embedding of xwij ; ωpij to the
embedding of the POS tag of xwij ; and ωmij

to the embedding that captures the morphological

information of xwij created by concatenating the
representations of each morphological tag in xmij .
Ωw, Ωp, and Ωm can be either initialized using
random uniform distributions and then trained
along with the other weights of our model or based
on pretrained representations (see Section 3.1).
Note that representations of each input type are
maintained separately and can therefore be of
different size.

2.4 Encoding Sentences and Words
A recurrent neural network (RNN) (Grossberg,
1988) is an extension of a traditional neural net-
work where each node in a layer takes as input not
only information from the previous layer but also
from a node in the same layer located directly next
to it. This creates a structure designed to handle
sequences like words in a text. Unfortunately,
traditional RNNs are prone to the vanishing gra-
dient problem that makes them difficult to train,
hindering final performance (Hochreiter, 1991).
A long short-term memory (LSTM) network
(Hochreiter and Schmidhuber, 1997) addresses a
traditional RNN’s vanishing gradient problem by
using several gates on each RNN cell responsible
for storing or forgetting information from the cell
state.

Vec2Read uses a bidirectional LSTM network
that considers the input sentences in forward and
backward directions for creating representations
of whole sentences and individual words. We refer
to hwi as the representation of xwi , obtained by
concatenating the outputs of the final states of
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Figure 2: Description of the multiattentive network for token in position j in sentence i.

the LSTM network in both the forward and final
pass; hwij is the representation generated by the
LSTM network at time step j (i.e., for word xwij )
for i, concatenating the outputs of forward and
backward passes.

2.5 Textual Representation Layer

A final general representation of t, denoted hout,
is created by aggregating all the encoded word
representations generated by the LSTM network
(Equation 1). This is done using a weighted sum
over hwij , where the weights are defined by the
attention mechanism described in Section 2.6.

hout =

∑l
i=1

∑ni
j=1 aiaijhwij∑l
i=1 ni

(1)

where ai is the attention generated for sentence
i, aij is the attention for xwij , ni reflects the
number of tokens in sentence i, and l is the
number of sentences in t. The denominator is a
normalization factor meant to remove the effect
of length in texts. This normalization factor is
especially important for readability prediction,
given that the network could otherwise learn to
discriminate texts based mostly on length, due to
a strong bias in readability data sets for harder
texts to be longer. Informing the model with
length distribution of texts in each reading level
could lead to performance improvement in an
experimental setting. However, doing so would
not allow us to estimate model performance in a

real scenario, where text length will rarely follow
the distribution seen in training sets. Therefore,
we favor a length-independent model.

2.6 Attention Mechanism
Vec2Read is designed to capture the general
structure of t in order to predict its reading level.
Although one could argue that the reading level
of a text is dependent on every one of its words,
text simplification studies (Glavaš and Štajner,
2015; Paetzold and Specia, 2016) indicate that
difficulty is generally introduced in a text by
specific words and sentences—just a few hard
sentences could significantly increase overall text
difficulty. Following this intuition, Vec2Read uses
an attention-generation mechanism (described in
Figure 2) capable of predicting which parts of t
have the most influence in its overall difficult.
This way, our model can focus on the important
parts of t and provide a more accurate readability
estimation.

The attention mechanism of Vec2Read works
on two levels: sentence and word. It detects
which sentences have most influence towards
determining the reading level of t and also which
words are most influential. Each of these two-
level predictions are composed of three attentions,
oriented to consider the influence of each part
of t from three linguistic perspectives: semantic,
syntactic, and morphologic.

We now describe how the multiattentive
mechanism works at word level, then we detail

424



how to adapt this model for the sentence-level
version.

2.6.1 Word-Level Attention
The word level attention mechanism consists
of three single attention mechanisms that are
aggregated. Each individual attention network
follows the same structure, a two-layer neural net-
work, only differing on the size of the input and
the number of hidden units. We set the number of
hidden units proportional to the input length (see
Section 3.1 for configuration details). Specifically,
we compute each attention score aattij as follows:

sattij = σ(Watt × ωattij + batt)

aattij = σ(Watt2 × sattij + batt2)
(2)

where att ∈ {w, p,m} is an attention type, Watt

and Watt2 are the weights of the first and second
network layers, batt and batt2 are their respective
biases, sattij is an intermediary representation,
and σ is a sigmoid activation function.

Similar to the model in Figure 1, the input for
generating semantic and syntactic attention scores
are ωwij and ωpij . For calculating morphological
attention scores, the input is instead the con-
catenation of each of the morphological tag em-
beddings in ωmij .

After generating a score using each single
attention mechanism, Vec2Read aggregates them
into one value that will be the final attention
score predicted for xwij . Previous works in feature
engineering for readability assessment indicate
that not all features are of equal importance for
predicting the readability of a text (Dell’Orletta
et al., 2011; Gonzalez-Dios et al., 2014). We
believe that this phenomena also apply to atten-
tion generation, and therefore each single attention
will not contribute equally to the final attention
prediction.

To allow our model the flexibility of deciding
which attention matters most, we use an attention
aggregation strategy that assigns a different weight
to each attention. z = < zw, zp, zm > is a vector
containing the weights corresponding to each
attention mechanism, which are automatically
estimated during the training phase to allow
Vec2Read to learn which attention has the most
influence. We constrain the weights to sum to 1
by applying a softmax function to z:

znormatt =
exp(zatt)∑
att exp(zatt)

(3)

The final attention aij for xwij is calculated as:

aij =
∑
att

znormatt × aattij (4)

Lastly, we constrain all word attentions in a
sentence to sum to 1 using a softmax function.

2.6.2 Sentence Level Attention
Sentence level attention follows the same structure
as word level attention described in Section 2.6.1,
differing only on how the inputs of each single
attention network are generated. In this case, for
the semantic attention we use hwi vectors already
defined in the general architecture (see Figure 1);
for syntactic and morphological attentions we feed
separate LSTM models using the sequence of
syntactic and morphological embeddings in the
sentence and use the output of the last recurrent
step as input to the attention mechanism. We then
normalize sentence level attentions so that they
sum to one using a softmax function.

2.7 Output Layer
The output layer of Vec2Read is responsible for
mapping hout to a reading level prediction. Two
different output layers are used depending on the
type of prediction required in each task: discrete
or continuous.

2.7.1 Discrete Prediction
To predict a discrete reading level for t, Vec2Read
generates a probability distribution over each
reading level ŷ ∈ [0, 1]c, where c represents
the set of possible prediction classes, that is,
reading levels. This is achieved by applying a
fully connected layer with a softmax activation
function to hout to ensure that the probabilities in
ŷ add up to one.

ŷ = softmax(Wout × h�
out + bout) (5)

where Wout ∈ R
|c|×r is the matrix of weights

of the fully connected layer, bout is a vector of
length |c| containing the biases, |c| is the number
of possible reading levels to be predicted, r is the
number of latent features in hout, and � refers to
the transpose operation. The class that yields the
highest probability is the one assigned to t.

2.7.2 Continuous Prediction
When the reading level of t is defined as a
continuous value, Vec2Read generates a real value
ŷ ∈ [ymin, ymax], where ymin and ymax refer
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to the minimum and maximum readability score
possible in the used scale. This is achieved by
applying a fully connected layer with a min-max
leaky rectified linear unit as activation function.
The leaky version of this function is favored given
its benefits in terms of avoiding neuron death
during training (Xu et al., 2015a).

ŷ = ϑ(Wout × h�
out + bout) (6)

ϑ(q) =

⎧⎪⎨
⎪⎩

ymax + ε ∗ q, q > ymax

q, ymin < q < ymax

ymin − ε ∗ q, q < ymin

(7)
where Wout ∈ R

1×r is the matrix of weights of
the fully connected layer, bout is a bias, r is the
number of latent features in hout, � refers to the
transpose operation, and ε is a constant set to
0.001 during training and to 0 during prediction.

2.8 Fitting Parameters
For fitting the parameters of our model we use
stochastic gradient descent. This strategy com-
putes the prediction of our model given specific
data, and compares it to the actual objective
value using an error or loss function. The goal
is to minimize the error for which a gradient
is backpropagated to each of the parameters in
the model by subsequently updating them in a
direction that will minimize the overall prediction
error. As the objective function for training the
model, we consider two different loss functions,
depending on how the reading level is estimated.

For discrete predictions, we used cross-entropy:

H(y, ŷ) = −
|c|∑
i=1

yi log(ŷi) (8)

where ŷ = < ŷ1, .., ŷ|c| > is the probability
distribution predicted by our model and y =
< y1, .., y|c| > is the one-hot encoded vector
representing the target class.

For continuous predictions, we use instead
mean square error (MSE):

MSE =
1

|D|
∑
d∈D

(ŷd − yd)
2 (9)

where D is a collection of texts in a given data
set, |D| is the number of documents in D, and ŷd
and yd are the prediction generated by our model
for document d and its ground-truth, respectively.

3 Experiments and Discussion

In this section, we first describe model config-
uration. We then outline data sets and baselines
considered for evaluation purposes. Lastly, we
discuss the results of the analysis conducted to
verify the overall performance of Vec2Read and
showcase the validity of its attention mechanism.

3.1 Model Setup
We describe Vec2Read’s configuration; parame-
ters were empirically determined using a hold-out
set as escribed in Section 3.4.

Optimization. For fitting the parameters of
our model, we used the Adaptive Movement
Estimation (Kingma and Ba, 2014); learning
rate = 0.001.

Initializations. For Ωw we used a pretrained
version of word embeddings, which were trained
using a skip-gram algorithm on Wikipedia docu-
ments, as described in Bojanowski et al. (2017).
All the remaining weights and biases of our model,
as well as initial states of LSTM layers, were
initialized using a random uniform distribution.

Dimensions. The number of hidden units in
the semantic, syntactic, and morphologic LSTM
networks were empirically set to 128, 32, 64,
respectively. The dimensions of the embedding
representations were set to 300, 16, 16. Given
that the input of the morphological attention com-
bines multiple embeddings corresponding to the
morphological labels used, the final dimension of
ωmij is u×16, where u is the number of tags used.

Tagging. We used SyntaxNet (Andor et al., 2016)
trained on Universal Dependencies data sets v1.3
for computing the POS and Morphology tags of
words. All POS and Morphology tags available in
the data set were used. Accuracy per language is
varied, Dutch being the one with lowest accuracy
(POS: 89.89%, Morph: 89.12%) and Catalan the
language where the tagging is most accurate (POS:
98.06%, Morph: 97.56%).2

3.2 Data Sets
For assessment and analysis purposes, we use
several data sets based on both expert-labeled

2For per language accuracy details see https://
github.com/mldbai/tensorflow-models/
blob/master/syntaxnet/universal.md.
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SimpleWiki Wizenoze Newsela
S C 1 2 3 4 5 3 4 5 6 7 8 9 12

Words per text 111 5987 35 128 67 266 801 448 674 777 872 927 990 970 1169
Sentences per text 6 222 3 10 5 16 35 43 54 54 54 52 46 46 50
Syllables per word 1.31 1.37 1.40 1.41 1.44 1.52 1.53 1.27 1.30 1.33 1.36 1.39 1.40 1.43 1.42
Words per sentence 17 25 11 14 14 16 21 10 12 14 16 18 20 21 24
Ratio of unique words 0.69 0.32 0.86 0.79 0.79 0.65 0.55 0.44 0.42 0.42 0.42 0.43 0.43 0.43 0.43
Flesch-Kincaid 6.37 10.70 5.40 6.61 6.65 8.65 10.76 3.42 4.63 5.72 6.81 7.77 8.73 9.68 10.48

WikiViki Ikasbil MTDE*
S C A2 B1 B2 C1 C2 1 2 3 4

Words per text 303 6036 215 276 320 327 354 294 276 288 301
Sentences per text 16 217 21 18 18 16 15 11 12 13 23
Syllables per word 1.36 1.38 1.40 1.39 1.43 1.37 1.40 1.51 1.47 1.37 1.23
Words per sentence 17 25 10 15 17 20 23 26 23 23 14
Ratio of unique words 0.62 0.31 0.51 0.53 0.52 0.52 0.51 0.56 0.56 0.54 0.49
Flesch-Kincaid 7.13 10.71 4.83 6.66 7.91 8.38 9.90 12.5 10.71 9.63 4.64

Table 1: Statistics on the data sets considered in our assessment, where S and C stand for Simple and
Complex, respectively. When data sets are multilingual, texts from all languages are considered for
computing average. * Given that ground truth scores for MTDE are continuous, for illustration purposes
we reported statistics grouped in 4 levels, i.e., 0-25, 26-50, 51-75, 76-100 (original values preserved in
the experiments).

educational materials (Ikasbil, Newsela, Wizenoze)
and crowd-source generated and simplified texts
(MTDE, SimpleWiki, VikiWiki). We describe
each data set below; detailed statistics are in
Table 1.

SimpleWiki. Simple.Wikipedia(.org) is a sim-
plified version of the most representative articles
in English Wikipedia written with simple vocab-
ulary and grammar. These articles target readers
who are learning English. We created a binary
(simple or complex) data set using the 131,459
articles available in Simple Wikipedia and their
Wikipedia counterparts, totaling 262,918 docu-
ments. The use of Simple.Wikipidia/Wikipedia
articles has already proved to be useful for read-
ability and simplification assessment (Ambati
et al., 2016), a fact we confirm in our qualitative
analysis in Section 3.6. (See Wikimedia [2018]
for details on how articles on Simple.Wikipedia
are simplified.)

VikiWiki. Vikidia(.org) is similar to Simple
Wikipedia, but it is not constrained to articles
written in English. Following a similar procedure
to SimpleWiki, we created VikiWiki using all
the articles in Vikidia along with their Wikipedia
counterparts. The data set comprises 70,514 docu-
ments: 23,648 in French, 9,470 in Italian, 8,390
in Spanish, 3,534 in English, 924 in Catalan,
and 898 in Basque, uniformly distributed among
simple and complex levels.

MTDE. MTDE is the data set presented in
De Clercq and Hoste (2016), generated using
crowd-sourcing techniques. It consists of 105 docu-
ments both in English and Dutch, each labeled
with a score in the 0–100 range that indicates its
complexity.

Newsela. Newsela is an instructional content
platform that provides reading materials for class-
room use. As part of their research program,
Newsela makes available a sample of their labeled
corpora, which we use for evaluation. The data set
consists of 10,786 documents distributed among
grade levels 2–12 (around 1,200 per level for
English and 120 for Spanish). We excluded from
our experiments grade levels 2, 10, and 11,
as the number documents for those levels are
significantly lower when compared with other
classes (284, 11, and 2, respectively, for English).

Ikasbil. Ikasbil (2018) is an online resource
for learning Basque containing articles leveled
following the Common European Framework of
Reference for Languages. Using this source, we
created a data set consisting of 5 reading levels
(A2, B1, B2, C1, and C2), with 200 documents per
level. Level A1 was omitted due to insufficient
documents.

Wizenoze. Data set provided by Wizenoze
(2018), an online platform dedicated to easing
the retrieval of (curated) resources suitable for
the classroom setting. The data set consists of
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2,000 documents in English and Dutch, equally
distributed and labeled using a 5-level readability
scale (1–5).

3.3 Compared Strategies

We now describe the strategies considered in our
assessment, including traditional formulas, state-
of-the-art tools based on extensive feature engi-
neering, and neural network structures intended
for an ablation study on major components of
Vec2Read.

3.3.1 Traditional Strategies
Flesch. Even if simple, Flesch (1948) remains
one of the most used readability formulas and
is therefore treated as a baseline by authors of
publications pertaining to readability estimation.
In addition to the traditional version for English
texts, we consider language-specific adaptations
(Kandel and Moles, 1958; Fernández Huerta,
1959; Douma, 1960; Lucisano and Piemontese,
1988). We followed the framework used in
Madrazo Azpiazu (2017), which maps the Flesch
score of a given text t into a binary value (simple
or complex) based on its distance with the aver-
age Flesch score computed using the training
documents for the respective classes.

3.3.2 State-of-the-Art Strategies
S1. The system proposed by De Clercq and Hoste
(2016) is the only one designed for readability
assessment for more than one language: Dutch
and English. Its design consists of a support vec-
tor machine that uses ad hoc features to cap-
ture varied linguistic characteristics of texts (e.g.,
syntax or semantics). Given that the algorithm
implementation is not publicly available, compar-
isons against this strategy are based on results
reported in De Clercq and Hoste (2016).

S2. A multilevel Basque readability assessment
strategy that relies on random forest and linguistic
features with a major emphasis on morphology and
syntax (Madrazo, 2014). The authors provided
their data set (including cross-validation folds)
for comparison purposes. Because of lack of
implementation availability, comparisons against
S2 are limited to the Basque language.

S3. Similar to S2, the strategy introduced in
Madrazo Azpiazu (2017) also relies on a random
Forest and linguistic features. Given implemen-
tation availability, we adapted it to run on all

discrete and continuous prediction tasks by chang-
ing its linguistic annotation tools. For fairness
in the comparison, we used the same linguistic
annotation tools used by Vec2Read (described in
Section 3.1).

S1, S2, and S3 are treated as examples of feature
engineered state-of-the-art strategies.

3.3.3 Ablation Study Strategies

To determine the utility of each feature incor-
porated in the architecture of Vec2Read, we
consider several variations of Vec2Read in the
assessment.

FC. A two-layer fully connected neural network
with 256 hidden units, taking as input the average
of the word embeddings of all words in a text.

¬Attention. Basic architecture of Vec2Read. It
maintains Vec2Read’s hierarchical and recurrent
structure, but overrides the output of its attention
generation mechanism by assigning each word and
sentence a uniformly distributed attention score.
¬Word, ¬Sent, ¬Sem, ¬Syn, and ¬Morph.
Vec2Read architecture without word-level,
sentence-level, semantic, syntactic, and morpho-
logical attention, respectively.

3.4 Experimental Setup

We followed a 10-cross-fold validation frame-
work for measuring the performance of each
strategy considered. A disjoint stratified 10% of
data in SimpleWiki (includes both simple and
complex) was excluded from the experiments
and used for developmental and hyper-parameter
tuning purposes. Note that to abide by the adapt-
ability premise intended for our model, we only
tuned hyper-parameters for English. Doing so
allows us to understand to what extent the model
can directly transfer to other languages without
language-specific tuning, thus simulating a real-
world scenario for tool adaptation.

To conduct fair comparisons, we used the same
cross-validation folds across experiments (when
possible, we used the foldsmade publicly available;
otherwise we re-run strategies using our data and
folds). The only exception are experiments related
to S1, for which we could only access the original
data set. Consequently, we compare our results
with respect to those published in De Clercq and
Hoste (2016).
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Data set Lang. Flesch State of the art Ablation Vec2ReadS1 S2 S3 FC ¬Attention ¬Word ¬Sent ¬Sem ¬Syn ¬Morph

Binary Prediction (Accuracy)

SimpleWiki en .724 - - .822 .722 .877 .893 .896 .887 .897 .915 .918�
VikiWiki en .720 - - .827 .721 .852 .860 .862 .859 .868 .876 .879�

es .687 - - .792 .719 .816 .823 .831 .828 .835 .839 .847�
fr .670 - - .842 .756 .864 .869 .870 .869 .870 .872 .884�
it .653 - - .755 .766 .783 .797 .802 .793 .801 .805 .814�
eu - - - .693 .648 .682 .683 .686 .684 .684 .685 .687
ca - - - .733 .677 .715 .725 .737 .728 .732 .734 .742

Multilevel Prediction (Accuracy)

Ikasbil eu - - .625 .622 .617 .679 .685 .689 .681 .684 .686 .692�
Newsela en - - - .464 .447 .489 .501 .517 .498 .502 .525 .527�

es - - - .467 .452 .487 .494 .510 .504 .509 .503 .519�
Wizenoze en - - - .649 .631 .665 .678 .685 .682 .685 .700 .701�

du - - - .652 .636 .668 .679 .687 .681 6.85 .683 .695�

Continuous Prediction (RMSE)

MTDE du - .0003� - - .0171 .0068 .0064 .0064 .0066 .0062 .0059 .0059
en - .0060 - - .0184 .0054 .0052 .0051 .0051 .0053 .0051 .0051

Table 2: Performance comparison among traditional, state-of-the-art, ablation strategies, and Vec2Read
on different data sets. ‘*’ denotes statistically significant improvement over counterparts (Flesch, S1,
S2, S3, Vec2Read). Accuracy (higher is better) is reported for all data sets except for MTDE, where
RMSE (lower is better) is used in order to be able to compare with S1. Cells marked with ‘-’ denote
that the strategy is not applicable to the data set.

3.5 Overall Performance

As mentioned by De Clercq and Hoste (2016),
each work in the readability area interprets the
readability estimation task in a different manner—
using different languages and data sets—often
making the community unable to compare proposed
tools with each other. In order to best contextualize
the performance of Vec2Read, we consider a
broad set of tasks using data sets of varied (i)
size, that go from 105 documents to 262,918, (ii)
language, considering seven languages, and (iii)
prediction type, namely, binary, multilevel, and
continuous predictions.

To quantify performance of different readability
estimation alternatives, we use accuracy for classi-
fication tasks and Root Mean Square Error
(RMSE) for regression tasks. Table 2 summarizes
the results obtained by Vec2Read and its counter-
parts on the aforementioned data sets. As we
followed a 10-cross-fold validation framework,
scores in Table 2 correspond to the averages over
the 10 folds. Statistical significance was tested
using a paired t-test with a confidence interval of
p < 0.05.

General Discussion. As anticipated, we observe
that traditional formulas (Flesch) yield the low-
est performance, followed by the general-purpose

neural network approach (FC). This validates our
hypothesis that a neural network that simply con-
siders words without considering text structure or
other linguistic features is not enough for read-
ability assessment. Further, models that consider
richer traits of text, such as Vec2Read and its
attention-less version (¬Attention), are consis-
tently comparable or outperform state-of-the-art
strategies (S1, S2, S3), demonstrating the validity
of the proposed architecture. Vec2Read achieved
a statistically lower rate only for 1 out of 14 tasks
(defined as a data set–language pair) in our eval-
uation. We attribute this to the size of the data
set, which only includes 105 texts. It is anticipated
for a strategy based on feature engineering such
as S1, which has been specifically designed for
Dutch, to outperform a neural network based
counterpart (such as Vec2Read), as the latter is
known to need large amounts of data for best
performance.

Data set size. The number of instances used
for training has a strong effect on the overall
performance of Vec2Read. All the analyzed strat-
egies generate lower scores for smaller data sets;
performance drop is more prominent among the
strategies based on deep learning (Vec2Read
and all the ablation strategies). We attribute this
behavior to the higher variance of deep learning
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Data set Lang Words Part Of Speech Morphological

SimpleWiki en unincorporated, reside, inhabitants CCONJ, SCONJ, DET Relative (pronoun), Past, Infinitive
VikiWiki en belonged, abolished, comprising SCONJ, CCONJ, DET Relative (pronoun), Infinitive, Past

es recae, mantiene, consiste SCONJ, ADJ, AUX Participle, Subjunctive, Past
fr circonscriptions, associer, comporter CCONJ, ADV, SCONJ Reflexive, Subjunctive, Passive
it comprende, risiede, rivelato CCONJ, SCONJ, VERB Past, Subjunctive, Relative (pronoun)
eu aldarrikapen, gizarte, eskumen NOUN, ADJ, DET Subjunctive, Inessive, Dative
ca acreditat, mantenir, contribuint ADJ, NOUN, CCONJ Subjunctive, Relative (pronoun), Participle

Ikasbil eu hedatu, irudikatu, biltzartu CCONJ, VERB, SCONJ Subjunctive, Genitive, Inessive
MTDE du geregeld, omvat, stemhebbend NOUN, ADJ, CCONJ Past, Participle, Infinitive

en handled, retained, consisting NOUN, SCONJ, ADJ 3rd Person, Relative (pronoun), Past
Newsela en aquaponics, government, unwavering CCONJ, SCONJ, ADJ Infinitive, Relative (pronoun), Past

es postularse, extintos, realizacion CCONJ, SCONJ, AUX Subjunctive, 3rd Person, Participle
Wizenoze en controversy, transition, equality SCONJ, CONJ, NOUN Relative (pronoun), 3rd Person, Past

du vervaardiging, afgezette, bijgevolg CCONJ, NOUN, ADJ Participle, Past, Infinitive

Table 3: Words, POS tags, and Morphological tags that receive highest attention from Vec2Read. 3

models, needing more data than feature engineered
models to achieve good generalization. In addition,
we also note that the attention mechanism becomes
more useful the larger the data set and its effect is
negligible in small data sets such as MTDE.

Language and task type. We observe no emerg-
ing patterns in terms of performance induced by
the language or the type of task. One could argue
that results for English are in general higher,
although we attribute these differences to data set
size (English data sets are in general larger) rather
than to the language itself. Accuracy scores for
multilevel estimation are lower than for binary,
which is expected, as it is harder for a model
to learn readability predictions for scales that go
beyond just simple or complex.

Ablation study. By comparing Vec2Read with
its attention-less counterpart (¬Attention) we can
conclude that the proposed multiattentive mechanism
has indeed a positive effect for readability pre-
diction. In 11 out of 14 tasks the multiattentive
mechanism achieved statistically significant improve-
ments over ¬Attention; for the remaining 3 tasks
(VikiWiki-EU, MTDE-EN, MTDE-DU) there was
no statistically relevant difference. The usefulness
of the attention mechanism is influenced by the
size of the data set, as the larger the data set,
the more prominent the improvement obtained
by the model using the attention mechanism.
We also notice that the difference of using the
morphological attention for certain languages such
as English is insignificant whereas it is more
prominent in other languages, a fact we attribute
to the low morphological diversity of English.

3For definition of POS tags refer to
https://universaldependencies.org/u/pos/.

3.6 Attention Mechanism

As outlined in Section 3.5, the attention mech-
anism of Vec2Read leads to improvement in
prediction performance. In this section, we aim
to shed light on what the attention mechanism
is actually learning to do and whether this infor-
mation could be used for explaining the estimated
reading levels from a more qualitative standpoint.
Even if attention mechanisms are used in manifold
applications, there exists no defined framework
for evaluating their behavior. Instead, researchers
focus on finding explanations of what the mecha-
nism is learning (Hermann et al., 2015; Xu
et al., 2015b). For this reason, the following
discussion is not intended to be conclusive but
instead to provide initial results meant to be
inspirational for future work on readability pre-
diction explainability.

In order to illustrate the parts of a text that
receive the most attention from Vec2Read, we
show in Table 3 the top-3 words, POS, and mor-
phological tags that score the highest attention
level for each individual task. We observe that
words that receive most attention are in general
words that are not frequently used by an average
speaker, and therefore can present a challenge
for the reader. We also observe that conjunctions
(used for making sentences longer) are consis-
tently among the most influential POS tags and
that subjunctive mood, passive voice, and specific
verb forms, such as infinite or participle, are
considered important by our model. Both the
use of conjunctions and passive voice align with
features already found positive in the readability
literature (François and Fairon, 2012; Gonzalez-
Dios et al., 2014), leading us to infer that the
attention mechanism is learning valid assumptions
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for detecting which parts of a text are most
influential for readability prediction.

One of the benefits of using a multiattentive
mechanism rather than a traditional attention
mechanism that considers all features at once
is that the model can adapt and give more
importance to specific datapoints depending on
the task. In order to illustrate how Vec2Read
takes advantage of this functionality, we show
in Table 4 the weights4 assigned by the attention
mechanism for each task (i.e., znorm). We observe
that higher weight is assigned to semantics when
the data set is large, whereas syntax is more
relevant for smaller data sets. This behavior
depicts the adaptability of our model, using more
generalizable information, such as POS tags, when
data is scarce and taking advantage of more
fine grained information, such as words, when
data is abundant. Weights for morphological and
syntactic attention are similar for most of the tasks
with the exception of English, where morphology
receives a lower weight compared with other lan-
guages. We attribute this phenomena to English
being a morphologically poor language.

Consider Figures 3 and 4, two examples
of attentions generated by Vec2Read. Figures 3
showcases the combined attention scores aij pre-
dicted by Vec2Read for a text snippet extracted
from the English Wikipedia document about
Qatna. The model used for predicting the atten-
tions was trained using the SimpleWiki data set.
In this example, we see that Vec2Read mostly
focuses on complex nouns and adjectives, and
tends to ignore less informative words, such as
determiners.

Figures 4 shows the attentions generated for a
sentence in Spanish by Vec2Read trained using
Spanish VikiWiki. This example is meant to
illustrate the ‘‘extra" information that can be ob-
tained from a multiattentive mechanism, not only
by showing which of the words are important
for estimating text difficulty, but also hinting
about why they influence the process. As captured
in Figure 4, the connector Consequentemente
(Consequently) is most important from a syntactic
perspective, whereas the sequence fue cerrado
(was closed) is more important from a morphol-
ogical standpoint.

Manual analysis of the attention scores lead
us to identify which parts of a text the model

4Weights averaged across 10 folds, see Section 3.5.

is focusing on. This initial examination reveals
that the model is indeed learning about linguistic
patterns known to be important for defining the
difficulty of a text as opposed to stylistic biases
caused by how the data sets were generated. This
also serves as an indication for the validity of using
crowd-sourced data sets, such as SimpleWiki and
VikiWiki, for training purposes.

We found many examples where the multi-
attentive mechanism yielded interesting outputs,
however, we also found some deficiencies we
would like to highlight. Even if connectors, like
Consequentemente, were detected correctly by
Vec2Read, other commonly used connectors, such
as sin embargo (nevertheless) or a pesar de ello
(nonetheless), were not detected correctly given
their multi-word structure. This indicates that
word level attentions might not be enough for
some languages, thus demonstrating the need to
consider more sophisticated structures such as
dependency trees, as well as other syntactic and
morphological features of the text, in the future.

4 Related Work

Literature on automatic readability assessment is
rich, not only in the languages to which existing
strategies can be applied, but also on the diversity
of linguistic perspectives that have been explored
(Benjamin, 2012; Arfé et al., 2018).

Feature engineering has been the main focus
in the readability assessment area. Techniques
that exploit shallow features (e.g., number of
syllables per word and average sentence length)
remain a prominent strategy for estimating com-
plexity levels of texts in diverse languages (Flesch,
1948; Spaulding, 1956; Al-Ajlan et al., 2008) and
show better prediction capabilities than more
sophisticated features when considered individ-
ually (Feng et al., 2010). Language models have
also been proved useful when determining the
reading level of a text (Schwarm and Ostendorf,
2005). The use of features capturing the syntax
of a text have been demonstrated to be of great
importance, as illustrated by Karpov et al. (2014),
who built a system that heavily relies on features
based on POS tags and the syntactic dependency
tree of a text. Structural features may not influ-
ence text complexity estimation for languages like
Chinese, which is why some researchers favor
analyzing lexical representations (i.e., term fre-
quencies; Chen et al., 2011). Even if not for most
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SimpleWiki VikiWiki Ikasbil MTDE Newsela Wizenoze
en en es fr it eu ca eu en du en es en du

Semantic .72 .67 .53 .55 .62 .43 .39 .68 .38 .31 .62 .41 .39 .32
Syntactic .20 .26 .26 .19 .21 .28 .41 .15 .32 .37 .30 .35 .32 .40
Morphological .08 .07 .21 .26 .17 .29 .20 .17 .30 .32 .08 .24 .29 .28

Table 4: Weights learned by Vec2Read for each of the data sets considered.

Figure 3: Attention scores generated by Vec2Read for a snippet of a Wikipedia article about Qatna. Color
saturation indicates magnitude of the attention score, and hue indicates polarity (blue for simple, red for complex).
Magnitudes are provided by the attention mechanism and the polarities are determined by the readability prediction
generated when using each word as input to Vec2Read.

languages, morphological features have also been
shown to be of great importance in terms of
influencing the complexity level of texts writ-
ten in languages known to be morphologically
rich, such as Basque (Gonzalez-Dios et al., 2014).
For considering semantic information in a text,
existing works incorporate features related to true
or false cognates, as a manner to better capture
text difficulty for non-native readers (François and
Fairon, 2012), or measure the coherence of the text
based on graphical models (Mesgar and Strube,
2015, 2016, 2018). Unlike the aforementioned
techniques, which rely on engineering features for
specific languages and tasks, Vec2Read uses a
deep learning strategy that automatically detects
patterns related to readability.

Historically, readability assessment tools have
been designed and evaluated in one language.
To the best of our knowledge, only De Clercq
and Hoste (2016) evaluate readability assess-
ment performance in more than one language (i.e.,
Dutch and English) with the purpose of comparing
the importance of features in each language. As
presented in this paper, we go beyond two lan-
guages and instead quantify the performance of
Vec2Read in seven different languages.

Attention mechanisms have been used with
great success in several domains, including image
classification (Xu et al., 2015b), question answer-
ing (Hermann et al., 2015), and automatic text
translation (Bahdanau et al., 2014). The attention
mechanism proposed for Vec2Read differs from
the counterparts applied to the aforementioned

Figure 4: Scores generated using individual attention
mechanisms by Vec2Read for a sentence in Spanish;
saturation indicates the magnitude of the attention
score.

tasks in the sense that it provides a composed
attention score that can be decoupled to further
analyze the influence individual words have in
the overall complexity of a text from different
linguistic perspectives.

5 Conclusion

We introduced Vec2Read, a multiattentive recur-
rent neural network architecture designed for
automatic multilingual readability assessment.
Vec2Read takes advantage of deep learning tech-
niques by incorporating a multiattentive mecha-
nism that allows the system to consider words and
sentences that most influence the reading level of a
text. We demonstrated the validity of our proposed
architecture by conducting an exhaustive analysis
using data sets in seven different languages and
comparing Vec2Read to traditional, state-of-the-
art, and other neural network architectures. More-
over, we outlined the benefits of this type of
architecture for readability assessment, including
the interpretability of the predictions using the
attention scores.
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This research work sets the foundations for
language agnostic readability assessment, demon-
strating that it is indeed possible to design a
readability assessment strategy that works regard-
less of the language. This is achieved by dis-
regarding hand-engineered features, historically
known to be tedious to create and test, in favor
of using simple tokens as input. We anticipate
that given the magnitude and the diversity of the
evaluation conducted, we have set a new baseline
in the readability area, considerably harder to
beat than the popularly used Flesch. This is sup-
ported by (i) the use of data sets in multiple
languages that can, for the most part, be easily
obtained and (ii) the release of our algorithm, so
that other researchers can run it for comparison
purposes. We expect this will make an area that is
currently crowded with hard-to-compare systems
finally progress towards more precise, usable, and
comparable tools.

In the future, our research will be focused on
generating more valuable explanations on what
influences the readability of a text, as well as
enhancing our model so that it can be trained
jointly for multiple languages or can obtain benefit
of cross-lingual data in order to improve the
performance in languages with small corpora. We
also plan on experimenting with character-based
models, which could potentially take advantage
of morphological information of texts without the
need of a morphological tagger.
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All mixed up? Finding the optimal feature
set for general readability prediction and its
application to english and dutch. Computational
Linguistics, 42(3):457–490.

Felice Dell’Orletta, Simonetta Montemagni, and
Giulia Venturi. 2011. Read-it: Assessing read-
ability of italian texts with a view to text
simplification. In Workshop on Speech and
Language Processing for Assistive Technolo-
gies, pages 73–83.

Joel Denning, Maria Soledad Pera, and Yiu-Kai
Ng. 2016. A readability level prediction tool
for k-12 books. Journal of the Association
for Information Science and Technology,
67(3):550–565.

W.H. Douma. 1960. De leesbaarheid van
landblouwbladen een onderzoek naar en een
toepassing van lees baarheidsformules. afd. Socio-
logie en Sociographie van de Landbouwhogeschool
te Wageningen, Bulletin 17.

Andrew Elfenbein. 2011. Research in text and the
uses of coh-metrix. Educational Researcher,
40(5):246–248.

Lijun Feng, Martin Jansche, Matt Huenerfauth,
and Noémie Elhadad. 2010. A comparison of
features for automatic readability assessment.
In Proceedings of the International Confer-
ence on Computational Linguistics: Posters,
pages 276–284.
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