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Abstract

Neural methods have had several recent
successes in semantic parsing, though they
have yet to face the challenge of pro-
ducing meaning representations based on
formal semantics. We present a sequence-
to-sequence neural semantic parser that is
able to produce Discourse Representation
Structures (DRSs) for English sentences
with high accuracy, outperforming tradi-
tional DRS parsers. To facilitate the learn-
ing of the output, we represent DRSs as
a sequence of flat clauses and introduce a
method to verify that produced DRSs are
well-formed and interpretable. We compare
models using characters and words as in-
put and see (somewhat surprisingly) that the
former performs better than the latter. We
show that eliminating variable names from
the output using De Bruijn indices increases
parser performance. Adding silver training
data boosts performance even further.

1 Introduction

Semantic parsing is the task of mapping a natu-
ral language expression to an interpretable mean-
ing representation. Semantic parsing used to be
the domain of symbolic and statistical approaches
(Pereira and Shieber, 1987; Zelle and Mooney,
1996; Blackburn and Bos, 2005). Recently, how-
ever, neural methods, and in particular sequence-
to-sequence models, have been successfully
applied to a wide range of semantic parsing tasks.
These include code generation (Ling et al., 2016),
question answering (Dong and Lapata, 2016; He
and Golub, 2016) and Abstract Meaning Repre-
sentation parsing (Konstas et al., 2017). Because
these models have no intrinsic knowledge of the

structure (tree, graph, set) they have to produce,
recent work also focused on structured decod-
ing methods, creating neural architectures that
always output a graph or a tree (Alvarez-Melis
and Jaakkola, 2017; Buys and Blunsom, 2017).
These methods often outperform the more general
sequence-to-sequence models but are tailored to
specific meaning representations.

This paper will focus on parsing Discourse
Representation Structures (DRSs) proposed in
Discourse Representation Theory (DRT), a well-
studied formalism developed in formal semantics
(Kamp, 1984; Van der Sandt, 1992; Asher, 1993;
Kamp and Reyle, 1993; Muskens, 1996; Van Eijck
and Kamp 1997; Kadmon, 2001; Asher and
Las-carides, 2003), dealing with many semantic
phenomena: quantifiers, negation, scope ambi-
guities, pronouns, presuppositions, and discourse
structure (see Figure 1). DRSs are recursive struc-
tures and thus form a challenge for sequence-to-
sequence models because they need to generate
a well-formed structure and not something that
looks like one but is not interpretable.

The problem that we try to tackle bears
similarities to the recently introduced task of map-
ping sentences to an Abstract Meaning Represen-
tation (AMR; Banarescu et al. 2013). But there
are notable differences between DRS and AMR.
Firstly, DRSs contain scope, which results in a
more linguistically motivated treatment of modals,
quantification, and negation. Secondly, DRSs con-
tain a substantially higher number of variable
bindings (reentrant nodes in AMR terminol-
ogy), which are challenging for learning (Damonte
et al., 2017).

DRS parsing was attempted in the 1980s for
small fragments of English (Johnson and Klein,
1986; Wada and Asher, 1986). Wide-coverage
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Raw input:
Tom isn’t afraid of anything.

System output of a DRS in a clausal form:
b1 REF x1 b3 REF s1
b1 male "n.02" x1 b3 Time s1 t1
b1 Name x1 "tom" b3 Experiencer s1 x1
b2 REF t1 b3 afraid "a.01" s1
b2 EQU t1 "now" b3 Stimulus s1 x2
b2 time "n.08" t1 b3 REF x2
b0 NOT b3 b3 entity "n.01" x2

The same DRS in a box format:
b0

¬

s1 x2 b3

afraid.a.01(s1)
Time(s1, t1)
Stimulus(s1, x2)
Experiencer(s1, x1)

entity.n.01(x2)

x1 b1

male.n.02(x1)
Name(x1, tom)

t1 b2

time.n.08(t1)
t1 = now

Figure 1: DRS parsing in a nutshell. Given a
raw text, a system has to generate a DRS in the
clause format, a flat version of the standard box
notation. The semantic representation formats are
made more readable by using various letters for
variables: the letters x, e, s, and t are used for
discourse referents denoting individuals, events,
states, and time, respectively, and b is used for
variables denoting DRS boxes.

DRS parsers based on supervised machine learn-
ing emerged later (Bos, 2008b; Le and Zuidema,
2012; Bos, 2015; Liu et al., 2018). The objectives
of this paper are to apply neural methods to DRS
parsing. In particular, we are interested in answers
to the following research questions (RQs):

1. Are sequence-to-sequence models able to
produce formal meaning representations
(DRSs)?

2. What is better for input: sequences of charac-
ters or sequences of words; does tokenization
help; and what kind of casing is best used?

3. What is the best way of dealing with variables
that occur in DRSs?

4. Does adding silver data increase the perfor-
mance of the neural parser?

5. What parts of semantics are learned and what
parts of semantics are still challenging?

We make the following contributions to seman-
tic parsing:1 (a) The output of our parser consists
of interpretable scoped meaning representations,

1The code is available here: https://github.com/
RikVN/Neural_DRS.

guaranteed by a specially designed checking tool
(§3). (b) We compare different methods of repre-
senting input and output in §4. (c) We show in
§5 that using additional, non-gold standard
data can improve performance. (d) We per-
form a thorough analysis of the produced out-
put and compare our methods with symbolic/
statistical approaches (§6).

2 Discourse Representation Structures

2.1 The Structure of DRS
DRSs are meaning representations introduced by
DRT (Kamp and Reyle, 1993). In general, a DRS
can be seen as an ordered pair 〈A, l :B〉, where A
is a set of presuppositional DRSs, and B a DRS
with a label l. The presuppositional DRSs A can
be viewed as propositions that need to be anchored
in the context in order to make the main DRS B
true, where presuppositions comprise anaphoric
phenomena, too (Van der Sandt, 1992; Geurts,
1999; Beaver, 2002).

DRSs are either elementary DRSs or segmented
DRSs. An elementary DRS is an ordered pair
of a set of discourse referents and a set of con-
ditions. There are basic conditions and complex
conditions. A basic condition is a predicate ap-
plied to constants or discourse referents, whereas
a complex condition can introduce Boolean oper-
ators ranging over DRSs (negation, conditionals,
disjunction). Segmented DRSs capture discourse
structure by connecting two units of discourse by
a discourse relation (Asher and Lascarides, 2003).

2.2 Annotated Corpora
Despite a long tradition of formal interest in DRT,
it is only recently that textual corpora annotated
with DRSs have been made available. The Gronin-
gen Meaning Bank (GMB) is a large corpus with
DRS annotation for mostly short English news-
paper texts (Basile et al., 2012; Bos et al., 2017).
The DRSs in this corpus are produced by an existing
semantic parser and then partially corrected. The
DRSs in the GMB are therefore not gold standard.

A similar corpus is the Parallel Meaning
Bank (PMB), which provides DRSs for English,
German, Dutch, and Italian sentences based on
a parallel corpus (Abzianidze et al., 2017). The
PMB, too, is constructed using an existing seman-
tic parser, but a part of it is completely manually
checked and corrected (i.e., gold standard). In con-
trast to the GMB, the PMB involves two major
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additions: (a) its semantics are refined by mod-
eling tense and using semantic tagging (Bjerva
et al., 2016; Abzianidze and Bos, 2017), and (b)
the non-logical symbols of the DRSs correspond-
ing to concepts and semantic roles are grounded
in WordNet (Fellbaum, 1998) and VerbNet
(Bonial et al., 2011), respectively.

These additions make the DRSs of the PMB
more fine-grained meaning representations. For
this reason we choose the PMB (over the GMB)
as our corpus for evaluating our semantic parser.
Even though the sentences in the current release
of the PMB are relatively short, they contain
many difficult semantic phenomena that a seman-
tic parser has to deal with: pronoun resolution,
quantifiers, scope of modals and negation, multi-
word expressions, word senses, semantic roles,
presupposition, tense, and discourse relations. As
far as we know, we are the first group to use the
PMB corpus for semantic parsing.

2.3 Formatting DRSs with Boxes and Clauses

The usual way to represent DRSs is the well-
known box format. To facilitate reading a DRS
with unresolved presuppositions, it can be de-
picted as a network of boxes, where a non-
presuppositional (i.e., main) DRS l : B is
connected to the presuppositional DRSsAwith ar-
rows. Each box comes with a unique label and has
two rows. In the case of elementary DRSs, these
rows contain discourse referents in the top row and
conditions in the bottom row (Figure 1). A seg-
mented DRS has a row with labeled DRSs and a
row with discourse relations (Figure 2).

The DRS in Figure 1 consists of a main box b0
and two presuppositional boxes, b1 and b2. Note
that b0 has no discourse referents but introduces
negation via a single condition ¬b3 with a nested
box b3. The conditions of b3 represent unary and
binary relations over discourse referents that are
introduced either by b3 or the presuppositional
DRSs.

A clausal form is another way of formatting
DRSs. It represents a DRS as a set of clauses
(see Figures 1 and 2). This format is better suited
for machine learning than the box format, as it
has a simple, flat structure and facilitates partial
matching of DRSs, which is useful for evaluation
(van Noord et al., 2018). Conversion from the box
notation to the clausal form and vice versa is trans-
parent: Discourse referents, conditions, and dis-

Figure 2: A segmented DRS. Discourse relations
are formatted with uppercase characters.

course relations in the clausal form are preceded
by the label of the box in which they occur. Notice
that the variable letters in the semantic representa-
tions are automatically set and they simply serve
for readability purposes. Throughout the experi-
ments described in this paper, we utilize clausal
form DRSs.

3 Method

3.1 Annotated Data
We use the English DRSs from release 2.1.0 of the
PMB (Abzianidze et al., 2017).2 The release sug-
gests using the parts 00, 10, 20, and 30 as the de-
velopment set, resulting in 3,998 training and 557
development instances. Basic statistics are shown
in Table 1, and the number of occurrences of some
of the semantic phenomena mentioned in §2.2 are
given in Table 2.

Because this is a rather small training set,
we tune our model using 10-fold cross-validation
(CV) on the training set, rather than tuning on
a separate development set. This means that we
will use the suggested development set as a test
set (and refer to it as such). When testing on this
set, we train a model on all available training data.
The utilized PMB release also comes with “silver”
data—namely, 71,308 DRSs that are only partially

2http://pmb.let.rug.nl/data.php.
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Sentences Tokens Avg tok/sent

Gold train 3,998 24,917 6.2
Gold test 557 3,180 5.7
Silver 73,778 638,610 8.7

Table 1: Number of documents, sentences, and to-
kens for the English part of PMB release 2.1.0.
Note that the number of tokens is based on the
PMB tokenization, treating multiword expressions
as a single token.

Phenomenon Train Test Silver

Negation & modals 442 73 17,527
Scope ambiguity ≈67 15 ≈3,108
Pronoun resolution ≈291 31 ≈3,893
Discourse rel. & imp. 254 33 16,654
Embedded clauses ≈160 30 ≈46,458

Table 2: Counts of relevant semantic phenomena
for PMB release 2.1.0.3 These phenomena are
described and further discussed in §6.3.

manually corrected. In addition, we use the DRSs
from the silver data but without the manual cor-
rections, which makes them “bronze” DRSs (fol-
lowing PMB terminology). Our experiments will
initially use only the gold standard data, after
which we will use the silver or bronze data to fur-
ther push the score of our best systems.

3.2 Clausal Form Checker

The clausal form of a DRS needs to satisfy a set
of constraints in order to correspond to a semanti-
cally interpretable DRS, that is, translatable into a
first-order logic formula without free occurrences
of a variable (Kamp and Reyle, 1993). For ex-
ample, all discourse referents need to be explicitly
introduced with a REF clause to avoid free occur-
rences of variables.

We implemented a clausal form checker that
validates the clausal form if and only if it rep-
resents a semantically interpretable DRS. Distin-
guishing box variables from entity variables is
crucial for the validity checking, but automatically
learned clausal forms are not expected to differen-
tiate variable types. First, the checker separately

3The phenomena are automatically counted based on
clausal forms. The counting algorithm does not guarantee the
exact number for certain phenomena, though it returned
the exact counts of all the phenomena on the test data except
the pronoun resolution (30).

parses each clause in the form to induce variable
types based on the fixed set of comparison and
DRS operators. After typing all the variables, the
checker verifies whether the clauses collectively
correspond to a DRS with well-formed semantics.
For each box variable in a discourse relation, ex-
istence of the corresponding box inside the same
segmented DRS is checked. For each entity vari-
able in a condition, an introduction of the binder
(i.e., accessible) discourse variable is found. The
goal of these two steps is to prevent free occur-
rences of variables in DRSs. While binding the
entity variables, necessary accessibility relations
between the boxes are induced. In the end, the
checker verifies the transitive closure of the in-
duced accessibility relation on loops and checks
existence of a unique main box of the DRS.

The checker is applied to every automatically
obtained clausal form. If a clausal form fails the
test, it is considered as ill-formed and will not
have a single clause matched with the gold stan-
dard when calculating the F-score.

3.3 Evaluation

A DRS parser is evaluated by comparing its out-
put DRS to a gold standard DRS using the Counter
tool (van Noord et al., 2018). Counter calculates
an F-score over matching clauses. Because variable
names are meaningless, obtaining the matching
clauses essentially is a search for the best variable
mapping between two DRSs. Counter tries to find
this mapping by performing a hill-climbing search
with a predefined number of restarts to avoid get-
ting stuck in a local optimum, which is similar to
the evaluation system SMATCH (Cai and Knight,
2013) for AMR parsing.4 Counter generalizes over
WordNet synsets (i.e., a system is not penalized
for predicting a word sense that is in the same
synset as the gold standard word sense).

To calculate whether there is a significant differ-
ence between two systems, we perform approxi-
mate randomization (Noreen, 1989) with α = 0.05,
R = 1,000, and F (model1) > F (model2) as test
statistics for each individual DRS pair.

3.4 Neural Architecture

We use a recurrent sequence-to-sequence neu-
ral network (henceforth seq2seq) with two

4Counter ignores REF clauses in the calculation of the
F-score because they are usually redundant and therefore
inflate the final score (van Noord et al., 2018).
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Tom is n't afraid of

Encoder

Decoder

b1 REF x1 SEP b1

...
x2

anything

Attention

Figure 3: The sequence-to-sequence model with
word-representation input. SEP is used as a spe-
cial character to separate clauses in the output.

bidirectional long short-term memory (LSTM)
layers and 300 nodes, implemented in OpenNMT
(Klein et al., 2017). The network encodes a se-
quence representation of the natural language ut-
terance, while the decoder produces the sequences
of the meaning representation. We apply dropout
(Srivastava et al., 2014) between both the recurrent
encoding and decoding layers to prevent overfit-
ting, and use general attention (Luong et al., 2015)
to selectively give more weight to certain parts
of the input sentence. An overview of the gen-
eral framework of the seq2seq model is shown in
Figure 3.

During decoding we perform beam search with
length normalization, which in neural machine
translation (NMT) is crucial to obtaining good re-
sults (Britz et al., 2017). We experimented with
a wide range of parameter settings, of which the
final settings can be found in Table 3.

We opted against trying to find the best parame-
ter settings for each individual experiment (next
to impossible in terms of computing time nec-
essary, as a single 10-fold CV experiment takes
12 hours on GPU), but selected parameter settings
that showed good performance for both the initial
character and word-level representations (see §4
for details). The parameter search was performed
using 10-fold CV on the training set. Training is
stopped when there is no more improvement in
perplexity on the validation set, which in our case
occurred after 13–15 epochs.

A powerful, well-known technique in the field
of NMT is to use an ensemble of models during
decoding (Sutskever et al., 2014; Sennrich et al.,
2016a). The resulting model averages over the pre-
dictions of the individual models, which can bal-
ance out some of the errors. In our experiments,
we apply this method when decoding on the test
set, but not for our experiments of 10-fold CV (this
would take too much computation time).

Parameter Value Parameter Value

RNN-type LSTM dropout 0.2
encoder-type brnn dropout type naive
optimizer sgd bridge copy
layers 2 learning rate 0.7
nodes 300 learning rate decay 0.7
min freq source 3 max grad norm 5
min freq target 3 beam size 10
vector size 300 length normalization 0.9

Table 3: Parameters explored during training and
testing with their final values. All other parameters
have default values.

4 Experiments with Data
Representations

This section describes the experiments we con-
duct regarding the data representations of the input
(English sentences) and output (a DRS) during
training.

4.1 Between Characters and Words

We first try two (default) representations: character-
level and word-level. Most semantic parsers use
word-level representations for the input, but as a
result are often dependent on pre-trained word em-
beddings or anonymization of the input 5 to obtain
good results. Character-level models avoid this
issue but might be at a higher risk of producing
ill-formed output.

Character-based model In the character-level
model, the input (an English sentence) is rep-
resented as a sequence of individual characters.
The output (a DRS in clause format) is lin-
earized, with special characters indicating spaces
and clause separators. The semantic roles (e.g.,
Agent, Theme), DRS operators (e.g., REF,
NOT, POS), and deictic constants (e.g., "now",
"speaker", "hearer") are not represented
as character sequences, but treated as compound
characters, meaning that REF is not treated as a
sequence of R, E and F, but directly as REF. All
proper names, WordNet senses, time/date expres-
sions, and numerals are represented as character
sequences.

5This is done to keep the vocabulary small. An exam-
ple is to change all proper names to NAME in both the
sentence and meaning representation during training. When
producing output, the original names are restored by switch-
ing NAME with a proper name found in the input sentence
(Konstas et al., 2017).
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Word-based model In the word-level model,
the input is represented as a sequence of words,
using spaces as a separator (i.e., the original
words are kept). The output is the same as for
the character-based model, except that the char-
acter sequences are represented as words. We use
pre-trained GloVe embeddings (Pennington et al.,
2014)6 to initialize the encoder and decoder rep-
resentations. In the DRS representation, there are
semantic roles and DRS operators that might look
like English words, but should not be interpreted
as such (e.g. Agent, NOT). These entities are re-
moved from the set of pre-trained embeddings, so
that the model will learn them from scratch (start-
ing from a random initialization).

Hybrid representations: BPE We do not
necessarily have to restrict ourselves to using
only characters or words as input representa-
tion. In NMT, byte-pair encoding (BPE; Sennrich
et al. 2016b) is currently the de facto standard
(Bojar et al., 2017). This is a frequency-based
method that automatically finds a representation
that is between character-level and word-level.
It starts out with the character-level format and
then does a predefined number of merges of
frequently co-occurring characters. Tuning this
number of merges determines whether the result-
ing representation is closer to character-level or
word-level. We explore a large range of merges
(1k–100k), while applying a corresponding set
of pre-trained BPE embeddings (Heinzerling and
Strube, 2018). However, none of the BPE exper-
iments improved on the character-level or word-
level score (F-scores between 57 and 68), only
coming close when using a small number of
merges (which is very close to character-level any-
way). Therefore this technique was disregarded
for further experiments.

Combined char and word There is also a
fourth possible representation of the input: con-
catenating the character-level and word-level rep-
resentations. This is uncommon in NMT because
of the large size of the embedding space (hence
their preference for BPE), but possible here since
the PMB data contain relatively short sentences.
We simply add the word embedding vector af-
ter the sequence of character-embeddings for each

6The Common Crawl version trained on 840 billion
tokens, vector size 300.

Model Prec Rec F-score % ill

Char 78.1 69.7 73.7 6.2
Word 73.2 65.9 69.4 5.8
Char + Word 78.9 69.7 74.0 7.5

Table 4: Evaluating different input represen-
tations. The percentage of ill-formed DRSs is
denoted by % ill.

word in the input and still initialize these embed-
dings using the pre-trained GloVe embeddings.

Representation results The results of the ex-
periments (10-fold CV) for finding the best
representation are shown in Table 4. Character
representations are clearly better than word rep-
resentations, though the word-level representation
produces fewer ill-formed DRSs. Both represen-
tations are maintained for our further experiments.
Although the combination of characters and words
did lead to a small increase in performance over
characters only (Table 4), this difference is not sig-
nificant. Hence, this representation is discarded
in further experiments described in this paper.

4.2 Tokenization

An interesting aspect of the PMB data is the
way the input sentences are tokenized. In the data
set, multiword expressions are tokenized as sin-
gle words, for example, “New York” is tokenized
to “New∼York.” Unfortunately, most off-the-shelf
tokenizers (e.g., the Moses tokenizer) are not
equipped to deal with this. We experiment with
using Elephant (Evang et al., 2013), a tokenizer
that can be (re-)trained on individual data sets, us-
ing the tokenized sentences of the published silver
and gold PMB data set.7 Simultaneously, we are
interested in whether character-level models need
tokenization at all, which would be a possible ad-
vantage of this type of representing the input text.

Results of the experiment are shown in Table 5.
None of the two tokenization methods yielded
a significant advantage for the character-level
models, so they will not be used further. The
word-level models, however, did benefit from to-
kenization, but Elephant did not give us an ad-
vantage over the Moses tokenizer. Therefore, for

7Gold tokenization is available in the data set, but using
this would not reflect practical applications of DRS parsing,
as we want raw text as input for a realistic setting.
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b1 REF x1
b1 male "n.02" x1
b1 Name x1 "tom"
b2 REF t1
b2 EQU t1 "now"
b2 time "n.08" t1
b0 NOT b3
b3 REF s1
b3 Time s1 t1
b3 Experiencer s1 x1
b3 afraid "a.01" s1
b3 Stimulus s1 x2
b3 REF x2
b3 entity "n.01" x2

(a) Standard naming

$1 REF @1
$1 male "n.02" @1
$1 Name @1 "tom"
$2 REF @2
$2 EQU @2 "now"
$2 time "n.08" @2
$0 NOT $3
$3 REF @3
$3 Time @3 @2
$3 Experiencer @3 @1
$3 afraid "a.01" @3
$3 Stimulus @3 @4
$3 REF @4
$3 entity "n.01" @4

(b) Absolute naming

[NEW] REF 〈NEW〉
[0] male "n.02" 〈0〉
[0] Name 〈0〉 "tom"
[NEW] REF 〈NEW〉
[0] EQU 〈0〉 "now"
[0] time "n.08" 〈0〉
[NEW] NOT [NEW]
[0] REF 〈NEW〉
[0] Time 〈0〉 〈-1〉
[0] Experiencer 〈0〉 〈-2〉
[0] afraid "a.01" 〈0〉
[0] Stimulus 〈0〉 〈1〉
[0] REF 〈NEW〉
[0] entity "n.01" 〈0〉

(c) Relative naming

Figure 4: Different methods of variable naming exemplified on the clausal form of Figure 1. For (c),
positive numbers refer to introductions that have yet to occur, and negative numbers refer to known
introductions. A zero refers to the previous introduction for that variable type.

word-level models, we use Moses in our subse-
quent experiments.

4.3 Representing Variables
So far we did not attempt to do anything special
with the variables that occur in DRSs, as we sim-
ply tried to learn them as supplied in the PMB
data set. Obviously, DRSs constitute a challenge
for seq2seq models because of the high number of
multiple occurrences of the same variables, in par-
ticular compared with AMR. AMR parsers do not
deal well with this, because the reentrancy metric
(Damonte et al., 2017) is among the lowest met-
rics for all AMR parsers that reported them or are
publicly available (van Noord and Bos, 2017b).
Moreover, for AMR, only 50% of the represen-
tations contain at least one reentrant node, and
only 20% of the triples in AMR contain a reen-
trant node (van Noord and Bos, 2017a), but for
DRSs these are both virtually 100%. Although
seq2seq AMR parsers could get away with ig-
noring variables during training and reinstating
them in a post-processing step, for DRSs this is
unfeasible.

However, because variable names are chosen
arbitrarily, they will be hard for a seq2seq model
to learn. We will therefore experiment with two
methods of rewriting the variables to a more gen-
eral representation, distinguishing between box
variables and discourse variables. Our first method
(absolute) traverses down the list of clauses,
rewriting each new variable to a unique represen-
tation, taking the order into account. The second

Char parser Word parser

F1 % ill F1 % ill

Baseline (bs) 73.7 6.2 69.4 5.8

Moses (mos) 74.1 4.8 71.8 5.8
Elephant (ele) 74.0 5.4 71.1 7.5

bs/mos + absolute (abs) 75.3 3.5 73.5 2.0
bs/mos + relative (rel) 76.3 4.2 74.2 3.1

bs/mos + rel + lowercase 75.8 3.6 74.9 3.1
bs/mos + rel + truecase 76.2 4.0 73.3 3.3
bs/mos + rel + feature 76.9 3.7 74.9 2.9

Table 5: Results of the 10-fold CV experiments re-
garding tokenization, variable rewriting, and cas-
ing; bs/mos means that we use no tokenization for
the character-level parser, while we use Moses for
the word-level parser.

method (relative) is more sophisticated; it rewrites
variables based on when they were introduced,
inspired by the De Bruijn index (de Bruijn, 1972).
We view box variables as introduced when they
are first mentioned, and we take the REF clause of
a discourse referent as their introduction. The two
rewriting methods are illustrated in Figure 4.

The results are shown in Table 5. For both char-
acters and words, the relative rewriting method
significantly outperforms the absolute method and
the baseline, though the absolute method pro-
duces fewer ill-formed DRSs. Interestingly, the
character-level model still obtains a higher F1-
score compared to the word-level model, even
though it produces more ill-formed DRSs.
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Figure 5: Learning curve for different number
of gold instances for both the character-level and
word-level neural parsers (10-fold CV experiment
for every 500 instances).

4.4 Casing
Casing is a writing device mostly used for punc-
tuation purposes. On the one hand, it increases
the set of characters (hence adding more redun-
dant variation to the input). On the other hand,
case can be a useful feature to recognize proper
names because names of individuals are semanti-
cally analysed as presuppositions. Explicitly en-
coding uppercase with a feature could therefore
prevent us from including a named-entity recog-
nizer, often used in other semantic parsers. Al-
though we do not expect dealing with case to be a
major challenge, we try out different techniques to
find an optimal balance between abstracting over
input characters and parsing performance. The re-
sults, in Table 5, show that the feature works well
for the character-level model, but for the word-
level model, it does not outperform lowercasing.
These settings are used in further experiments.

5 Experiments with Additional Data

Because semantic annotation is a difficult and
time-consuming task, gold standard data sets are
usually relatively small. This means that semantic
parsers (and data-hungry neural methods in par-
ticular) can often benefit from more training data.
Some examples in semantic parsing are data re-
combination (Jia and Liang, 2016), paraphrasing
(Berant and Liang, 2014), or exploiting machine-
generated output (Konstas et al., 2017). However,
before we do any experiments using extra train-
ing data, we want to be sure that we can still ben-

Char parser Word parser

Data F1 % ill F1 % ill

Best gold-only 75.9 2.9 72.8 2.0
+ ensemble 77.9 1.8 75.1 0.9

Gold + silver 82.9 1.8 82.7 1.1
+ ensemble 83.6 1.3 83.1 0.7

Table 6: F1-score and percentage of ill-formed
DRSs on the test set, for the experiments with the
PMB-released silver data. The scores without us-
ing an ensemble are an average of five runs of the
model.

efit from more gold training data. For both the
character level and word level we plot the learn-
ing curve, adding 500 training instances at a time,
in Figure 5. For both models the F-score clearly
still improves when using more training instances,
which shows that there is at least the potential for
additional data to improve the score.

For DRSs, the PMB-2.1.0 release already con-
tains a large set of silver standard data (71,308 in-
stances), containing DRSs that are only partially
manually corrected. We then train a model on
both the gold and silver standard data, making no
distinction between them during training. After train-
ing we take the last model and restart the train-
ing on only the gold data, in a similar process as
described in Konstas et al. (2017) and van Noord
and Bos (2017b). In general, restarting the train-
ing to fine-tune the weights of the model is a com-
mon technique in NMT (Denkowski and Neubig,
2017).

We are aware that there are many methods to
obtain and utilize additional data. However, our main
aim is not to find the optimal method for DRS
parsing, but to demonstrate that using additional
data is indeed beneficial for neural DRS parsing.
Because we are not further fine-tuning our model,
we will show results on the test set in this section.

Table 6 shows the results of adding the sil-
ver data. This results in a large increase in per-
formance, for both the character- and word-level
models. We are still reliant on manually annotated
data, however, because without the gold data (so
training on only the silver data), we score even
lower than our baseline model (68.4 and 68.1 for
the char and word parser). Similarly, we are reliant
on the fine-tuning procedure, as we also score be-
low our baseline models without it (71.6 and 71.0
for the char and word parsers, respectively).
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Char parser Word parser

Data F1 % ill F1 % ill

Silver (Boxer-generated) 83.6 1.3 83.1 0.7
Bronze (Boxer-generated) 83.8 1.1 82.4 0.9
Bronze (NN-generated) 77.9 2.7 74.5 2.2

without ill-formed DRSs 78.6 1.6 74.9 0.9

Table 7: Test set results of the experiments that
analyze the impact of the silver data.

We believe there are two possible factors that
could explain why the addition of silver data re-
sults in such a large improvement: (i) the fact that
the data are silver instead of bronze or (ii) the
fact that a different DRS parser (Boxer, see §6)
is used to create the silver data instead of our own
parser. We conduct an experiment to identify the
impact on performance of silver versus bronze and
Boxer versus our parser. The results are shown
in Table 7. Note that these experiments are per-
formed to analyze the impact of the silver data, not
to further push the score, meaning Silver (Boxer-
generated) is our final model that will be com-
pared to other approaches in §6.

For factor (i), we compare the performance of
the model trained on silver and bronze versions of
the exact same documents (so leaving out the man-
ual corrections). Interestingly, we score slightly
higher for the character-level model with bronze
than with silver (though the difference is not statis-
tically significant), meaning that the extra manual
corrections are not beneficial (in their current for-
mat). This suggests that the silver data are closer
to bronze than to the gold standard.

For factor (ii), we use our own best parser (with-
out silver data) to parse the sentences in the PMB
silver data release and use that as additional train-
ing data.8 Because the silver data contain longer
and more complicated sentences than the gold
data, our best parser produces more ill-formed
DRSs (13.7% for char and 15.6% for word). We
can either discard those instances or still main-
tain them for the model to learn from. For Boxer
this is not an issue since only 0.3% of DRSs
produced were ill-formed. We observe that a full
self-training pipeline results in lower performance
compared with using Boxer-produced DRSs. In
fact, this does not seem to be beneficial over
only using the gold standard data. Most likely,

8Note that we cannot apply the manual corrections, so in
PMB terminology, these data are bronze instead of silver.

Prec Rec F-score

SPAR 48.0 33.9 39.7
SIM-SPAR 55.6 57.9 56.8

AMR2DRS 43.3 43.0 43.2
Boxer 75.7 72.9 74.3

Neural Char 79.7 76.2 77.9
Neural Word 77.1 73.3 75.1
Neural Char + silver 84.7 82.4 83.6
Neural Word + silver 84.0 82.3 83.1

Table 8: Test set results of our best neural models
compared to two baseline models and two parsers.

because Boxer combines symbolic and statistical
methods, it learns very different things from our
neural parsers, which in turn provides more valu-
able information to the model. A more detailed
analysis on the difference in (semantic) output is
performed in §6.2 and 6.3. Removing ill-formed
DRSs before training leads to higher F-scores for
both the char and word parsers, as well as a lower
number of ill-formed DRSs.

6 Discussion

6.1 Comparison

In this section, we compare our best neural mod-
els (with and without silver data, see Table 6)
with two baseline systems and with two DRS
parsers: AMR2DRS and Boxer. AMR2DRS is a
parser that obtains DRSs from AMRs by apply-
ing a set of rules (van Noord et al., 2018), in our
case using AMRs produced by the AMR parser of
van Noord and Bos (2017b). Boxer is an existing
DRS parser using a statistical combinatory cate-
gorical grammar parser for syntactic analysis and a
compositional semantics based on λ-calculus, fol-
lowed by pronoun and presupposition resolution
(Curran et al., 2007; Bos, 2008b). SPAR is a base-
line parser that outputs the same (fixed) default
DRS for each input sentence. We implemented a
second baseline model, SIM-SPAR, which outputs,
for each sentence in the test set, the DRS of the
most similar sentence in the training set. This sim-
ilarity is calculated by taking the cosine similar-
ity of the average word embedding vector (with
removed stopwords) based on the GloVe embed-
dings (Pennington et al., 2014).

Table 8 shows the result of the comparison.
The neural models comfortably outperform the
baselines. We see that both our neural models
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Char Word Boxer

All clauses 83.6 83.1 74.3

DRS Operators 93.2 93.3 88.0
VerbNet roles 84.1 82.5 71.4
WordNet synsets 79.7 79.4 72.5

nouns 86.1 88.5 82.5
verbs, adverbs, adj. 65.1 58.7 49.3

Oracle sense numbers 86.7 85.7 78.1
Oracle synsets 90.7 90.9 83.8
Oracle roles 87.4 87.2 82.0

Table 9: F-scores of fine-grained evaluation on the
test set of the three semantic parsers.

outperform Boxer by a large margin when using
the Boxer-labeled silver data. However, even with-
out this dependence, the neural models perform
significantly better than Boxer. It is worth noting
that the character-level model significantly outper-
forms the word-level model, even though it can-
not benefit from pre-trained word embeddings and
from a tokenizer.

Concurrently with our work, a neural DRS
parser has been developed by Liu et al. (2018).
They use a customized neural seq2seq model that
produces the DRS in three stages. It first pre-
dicts the general (deep) structure of the DRSs,
after which the conditions and referents are filled
in. Unfortunately, they train and evaluate their
parser on annotated data from the GMB rather
than from the PMB (see §2). This, combined with
the fact that their work is contemporaneous to the
current paper, make it difficult to compare the ap-
proaches. However, we see no apparent reason
why their method should not work on the PMB
data.

6.2 Analysis

An intriguing question is what our models actually
learn, and what parts of meaning are still challeng-
ing for neural methods. We do this in two ways, by
performing an automatic analysis and by doing a
manual inspection on a variety of semantic phe-
nomena. Table 9 shows an overview of the differ-
ent automatic evaluation metrics we implemented,
with corresponding scores of the three models.

The character- and word-level systems perform
comparably in all categories except for VerbNet
roles, where the character-based parser shows a
clear advantage (1.6 percentage point difference).
The score for WordNet synsets is similar, but
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Figure 6: Performance of each parser for sen-
tences of different length.

the word-level model has more difficulty predict-
ing synsets that are introduced by verbs than for
nouns. It is clear that the neural models outper-
form Boxer consistently on each of these met-
rics (partly because Boxer picks the first sense by
default). What also stands out is the impact of
the word senses: With a perfect word sense-
disambiguation module (oracle senses), large im-
provements can be gained for all three parsers.

It is interesting to look at what errors the model
makes in terms of producing ill-formed output.
For both the neural parsers, only about 2% of
the ill-formed DRSs are ill-formed because of a
syntactic error in an individual clause (e.g., b1
Agent x1, where a fourth argument is missing),
whereas all the other errors are due to a violated
semantic constraint (see §3.2). In other words,
the produced output is a syntactically well-formed
DRS but is not interpretable.

To find out how sentence length affects per-
formance, we plot in Figure 6 the mean F-score
obtained by each parser on input sentences of
different lengths, from 3 to 10 words.9 We ob-
serve that all the parsers degrade with sentence
length. To identify whether any of the parsers de-
grades significantly more than any other, we build
a regression model in which we predict the F-
score using as predictors the parser (char, word,
and Boxer), the sentence length, and the num-
ber of clauses produced. According to the re-
gression model, (i) the performance of all three

9Shorter and longer sentences are excluded as there are
fewer than 10 input sentences for any such length—for ex-
ample, there are only three sentences that have two words.
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systems decreases with sentence length, thus cor-
roborating the trends shown in Figure 6 and (ii) the
interaction between parser and sentence length is
not significant (i.e., none of the parsers decreases
significantly more than any other with sentence
length). The fact that the performance of the neu-
ral parsers degrades with sentence length is not
surprising, because they are based on the seq2seq
architecture, and models built on this architecture
for other tasks, such as machine translation, have
been shown to have the same issue (Toral and
Sánchez-Cartagena, 2017).

6.3 Manual Inspection

The automatic evaluation metrics provide overall
scores but do not capture how the models per-
form on certain semantic phenomena present in
the DRSs. Therefore, we manually inspected the
test set output of the three parsers for the seman-
tic phenomena listed in Table 2. We here describe
each phenomenon and explain how the parser out-
put is evaluated on them.

The negation & modals phenomenon cov-
ers possibility (POS), necessity (NEC), and nega-
tion (NOT). The phenomenon is considered
successfully captured if an automatically pro-
duced clausal form has the clause with the modal
operator and the main concept is correctly put
under the scope of the modal operator. For exam-
ple, to capture the negation in Figure 1, the pres-
ence of b0 NOT b3 and b3 afraid "a.01" s1
is sufficient. Scope ambiguity counts nested
pairs of scopal operators such as possibility
(POS), necessity (NEC), negation (NOT), and
implication (IMP). Pronoun resolution checks
if an anaphoric pronoun and its antecedent
are represented by the same discourse referent.
Discourse relation & implication involves deter-
mining a discourse relation or an implication with
a main concept in each of their scopes (i.e., boxes).
For instance, to get the discourse relation in Fig-
ure 2 correctly, a clausal form needs to include
b0 CONTINUATION b1 b5, b1 play "v.03" e1,
and b5 sing "v.01" e2. Finally, the embedded
clauses phenomenon verifies whether the main
verb concept of an embedded clause is placed
inside the propositional box (PRP). This phe-
nomenon also covers control verbs: It checks
whether a controlled argument of a subordinate
verb is correctly identified as an argument of a
control verb.

Phenomenon # Char Word Boxer

Negation & modals 73 0.90 0.81 0.89
Scope ambiguity 15 0.73 0.57 0.80
Pronoun resolution 31 0.84 0.77 0.90
Discourse rel. & imp. 33 0.64 0.67 0.82
Embedded clauses 30 0.77 0.70 0.87

Table 10: Manual evaluation of the output of the
three semantic parsers on several semantic phe-
nomena. Reported numbers are accuracies.

The results of the semantic evaluation of the
parsers on the test set is given in Table 10.
The character-level parser performs better than
the word-level parser on all the phenomena ex-
cept one. Even though both our neural parsers
clearly outperformed Boxer in terms of F-score,
they perform worse than Boxer on the selected se-
mantic phenomena. Although the differences are
not big, Boxer obtained the highest score for four
out of five phenomena. This suggests that just the
F-score is perhaps not good enough as an evalua-
tion metric, or that the final F-score should perhaps
be weighted towards certain clauses. For example,
it is arguably more important to capture a nega-
tion correctly than tense. Our current metric only
gives a rough indication about the contents, but not
about the inferential capabilities of the meaning
representation.

7 Conclusions and Future Work

We implemented a general, end-to-end neural
seq2seq model that is able to produce well-formed
DRSs with high accuracy (RQ1). Character-level
models can outperform word-level models, even
though they are not dependent on tokenization
and pre-trained word embeddings (RQ2). It is
beneficial to rewrite DRS variables to a more
general representation (RQ3). Obtaining and us-
ing additional data can benefit performance as
well, though it might be better to use an exter-
nal parser rather than doing a full self-training
pipeline (RQ4). F-score is only a rough measure
for semantic accuracy: Boxer still outperformed
our best neural models on a subset of specific
semantic phenomena (RQ5).

We think there are many opportunities for fu-
ture work. Because the sentences in the PMB data
set are relatively short, it makes sense to investi-
gate seq2seq models performing well for longer
texts. There are a few promising directions here

629



that could combat the degrading performance on
longer sentences. First, the Transformer model
(Vaswani et al., 2017) is an interesting candidate
for exploration, a state-of-the-art neural model de-
veloped for MT that does not have worse perfor-
mance for longer sentences. Second, a seq2seq
model that is able to first predict the general struc-
ture of the DRS, after which it can fill in the de-
tails, similar to Liu et al. (2018), is something that
could be explored. A third possibility is a neural
parser that tries to build the DRS incrementally,
producing clauses for different parts of the sen-
tence individually, and then combining them to a
final DRS.

Concerning the evaluation of DRS parsers, we
feel there are a couple of issues that could be
addressed in future work. One idea is to facil-
itate computing F-scores tailored to specific se-
mantic phenomena that are dubbed important, so
the evaluation we performed in this paper manu-
ally could be carried out automatically. Another
idea is to evaluate the application of DRSs to
improve performance on other linguistic or seman-
tic tasks in which DRSs that capture the full se-
mantics will, presumably, have an advantage. A
combination of glass-box and black-box evalua-
tion seems a promising direction here (Bos, 2008a;
van Noord et al., 2018).
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