
Low-Rank RNN Adaptation for Context-Aware Language Modeling

Aaron Jaech and Mari Ostendorf
Department of Electrical Engineering, University of Washington

185 Stevens Way, Paul Allen Center AE100R, Seattle, WA
{ajaech,ostendor}@uw.edu

Abstract

A context-aware language model uses loca-
tion, user and/or domain metadata (context)
to adapt its predictions. In neural language
models, context information is typically rep-
resented as an embedding and it is given to the
RNN as an additional input, which has been
shown to be useful in many applications. We
introduce a more powerful mechanism for us-
ing context to adapt an RNN by letting the
context vector control a low-rank transforma-
tion of the recurrent layer weight matrix. Ex-
periments show that allowing a greater frac-
tion of the model parameters to be adjusted
has benefits in terms of perplexity and classi-
fication for several different types of context.

1 Introduction

In many language modeling applications, the speech
or text is associated with some metadata or contex-
tual information. For example, in speech recogni-
tion, if a user is speaking to a personal assistant then
the system might know the time of day or the iden-
tity of the task that the user is trying to accomplish.
If the user takes a picture of a sign to translate it with
their smart phone, the system would have contextual
information related to the geographic location and
the user’s preferred language. The context-aware
language model targets these types of applications
with a model that can adapt its predictions based on
the provided contextual information.

There has been much work on using context infor-
mation to adapt language models. Here, we are in-
terested in contexts described by metadata (vs. word

history or related documents) and in neural network
approaches due to their flexibility for representing
diverse types of contexts. Specifically, we focus
on recurrent neural networks (RNNs) due to their
widespread use.

The standard approach to adapt an RNN language
model is to concatenate the context representation
with the word embedding at the input to the RNN
(Mikolov and Zweig, 2012). Optionally, the con-
text embedding is also concatenated with the out-
put from the recurrent layer to adapt the softmax
layer. This basic strategy has been adopted for var-
ious types of adaptation such as for LM personal-
ization (Wen et al., 2013; Li et al., 2016), adapting
to television show genres (Chen et al., 2015), and
adapting to long range dependencies in a document
(Ji et al., 2016), etc.

We propose a more powerful mechanism for us-
ing a context vector, which we call the FactorCell.
Rather than simply using context as an additional
input, it is used to control a factored (low-rank)
transformation of the recurrent layer weight matrix.
The motivation is that allowing a greater fraction of
the model parameters to be adjusted in response to
the input context will produce a model that is more
adaptable and responsive to that context.

We evaluate the resulting models in terms of
context-dependent perplexity and context classifica-
tion accuracy on six tasks reflecting different types
of context variables, comparing to baselines that rep-
resent the most popular methods for using context
in neural models. We choose tasks where context
is specified by metadata, rather than text samples
as used in many prior studies. The combination

497

Transactions of the Association for Computational Linguistics, vol. 6, pp. 497–510, 2018. Action Editor: Phil Blunsom.
Submission batch: 1/2018; Revision batch: 3/2018; Published 7/2018.

c©2018 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

of experiments on a variety of data sources pro-
vides strong evidence for the utility of the Factor-
Cell model, but the results show that it can be useful
to consider more than just perplexity in training a
language model.

The remainder proceeds as follows. In Section 2,
we introduce the FactorCell model and show how it
differs mathematically from alternative approaches.
Next, Section 3 describes the six datasets used to
probe the performance of different models. Ex-
periments and analyses contrasting perplexity and
classification results for a variety of context vari-
ables are provided in Section 4, demonstrating con-
sistent improvements in both criteria for the Fac-
torCell model but also confirming that perplexity is
not correlated with classification performance for all
models. Analyses explore the effectiveness of the
model for characterizing high-dimensional context
spaces. The model is compared to related work in
Section 5. Finally, Section 6 summarizes contribu-
tions and open questions.

2 Context-Aware RNN

Our model uses adaptation in both the recurrent
layer and in the bias vector of the output layer. In
this section we describe how we represent context
as an embedding and methods for adapting the re-
current layer and the softmax layer, showing that our
proposed model is a generalization of prior methods.
The novelty of our model is that instead of using
context as an additional input to the model, it uses
the context information to transform the weights of
the recurrent layer. This is accomplished using a
low-rank decomposition in order to control the ex-
tent of parameter sharing between contexts, which
is important for handling high-dimensional, sparse
contexts.

2.1 Context representation

We assume the availability of contextual in-
formation (metadata or other side information)
that is represented as a set of context variables
f1:n = f1, f2, . . . fn, from which we produce a k-
dimensional representation in the form of an embed-
ding, c ∈ Rk. Each of the context variables, fi, rep-
resents some type of information or metadata about
the sequence and can be either categorical or numer-

ical. The embeddings can either be learned off-line
using a topic model (Mikolov and Zweig, 2012) or
end-to-end as part of the adapted LM (Tang et al.,
2016). Here, we use end-to-end learning, where the
context embedding is the output of a feed-forward
network with a ReLU activation function. The re-
sulting embedding, c, is used for adapting both the
recurrent layer and the output layer of the RNN.

2.2 Adapting the recurrent layer
The basic operation of the recurrent layer is to use a
matrix W to transform the concatenation of a word
embedding, wt ∈ Re, with the hidden state from the
previous time step, ht−1 ∈ Rd, and produce a new
hidden state, ht, as given by Equation 1:

ht = σ(W1wt +W2ht−1 + b)

= σ(W[wt, ht−1] + b).
(1)

The size of W is d × (e + d). For simplicity, our
equations assume a simple RNN. Appendix A shows
how the equations can be adjusted to work with an
LSTM.

The standard approach to recurrent layer adapta-
tion is to include (via concatenation) the context em-
bedding as an additional input to the recurrent layer
(Mikolov and Zweig, 2012). When the context em-
bedding is constant across the whole sequence, it is
easy to show that this concatenation is equivalent to
using a context-dependent bias at the recurrent layer:

ht = σ(Ŵ[wt, ht−1, c] + b)

= σ(W[wt, ht−1] +Vc+ b)

= σ(W[wt, ht−1] + b′),

(2)

where Ŵ = [W V] and b′ = Vc+ b is the context-
dependent bias, formed by adding a linear projection
of the context embedding. We refer to this adapta-
tion approach as the ConcatCell model.

Our proposed model extends the ConcatCell
by using a context-dependent weight matrix
W′ = W +A, in place of the generic weight ma-
trix W. (We refer to W as generic because it is
shared across all context settings.) The adaptation
matrix, A, is generated by taking the product of the
context embedding vector against a set of left and
right basis tensors to produce a rank r matrix. The
left and right adaptation basis tensors are given as

498

ZL ∈ Rk×(e+d)×r and ZR ∈ Rr×d×k. The two
bases tensors together can be thought of as holding
k different rank r matrices, Aj = ZL,jZR,j , each
the size of W. By taking the product between c and
the corresponding tensor modes of ZL and ZR (us-
ing ×i to denote the mode-i tensor product, i.e., the
product with the i-th dimension of the tensor), the
context determines the weighted combination of the
k matrices:

A = (c×1 ZL)(ZR ×3 c
ᵀ). (3)

The number of degrees of freedom ofA is controlled
by the dimension k of the context vector and the rank
r of the k weight matrices. The rank is treated as a
hyperparameter and controls the extent to which the
model relies on the generic weight matrix W versus
behaves in a more context-specific manner.

We call this model the FactorCell because the
weight matrix has been adapted by adding a factored
component. The ConcatCell model is a special case
of the FactorCell where ZL and ZR are set to zero.
In summary, the proposed model is given by:

ht = σ(W′[wt, ht−1] + b′)

W′ = W + (c×1 ZL)(ZR ×3 c)

b′ = Vc+ b.

(4)

If the context is known in advance, W′ can be pre-
computed, in which case applying the RNN at test
time requires no more computation than using an un-
adapted RNN of the same size. This means that for
a fixed sized recurrent layer, the FactorCell model
can have many more parameters than the Concat-
Cell model but hardly any increase in computational
cost.

2.3 Adapting the Softmax Bias
The last layer of the model predicts the probability
of the next symbol in the sequence using the output
from the recurrent layer using the softmax function
to create a normalized probability distribution. The
output probabilities are given by

yt = softmax(ELht + bout), (5)

where E ∈ R|V |×e is the matrix of word embed-
dings, L ∈ Re×d is a linear projection to match the
dimension of the recurrent layer (when e 6= d), and

bout ∈ R|V | is the softmax bias vector. We tie the
word embeddings in the input layer with the ones in
the output layer (Press and Wolf, 2017; Inan et al.,
2017).

If sj is the indicator row vector for the jth word
in the vocabulary then p(wt|w1:t−1) = styt and
log p(w1:T) =

∑
t log swtyt.

Adapting the softmax bias alters the unigram dis-
tribution. There are two ways to accomplish this.
When the values that the context can take are cate-
gorical with low cardinality then context-dependent
softmax bias vectors can be learned directly. This is
equivalent to replacing c with a one-hot vector. Oth-
erwise, a projection of the context embedding, Qc
where Q ∈ R|V |×k, can be used to adapt the bias
vector as in

yt = softmax(ELht +Qc+ bout). (6)

The projection can be thought of as a low-rank ap-
proximation to using the one-hot context vector.
Both strategies are explored, depending on the na-
ture of the original context space.

As noted in Section 5, adaptation of the softmax
bias has been used in other studies. As we show in
the experimental work, it is useful for representing
phenomena where unigram statistics are important.

3 Data

Our experiments make use of six datasets: four tar-
geting word-level sequences, and two targeting char-
acter sequences. The character studies are moti-
vated by the growing interest in character-level mod-
els in both speech recognition and machine transla-
tion (Hannun et al., 2014; Chung et al., 2016). By
using multiple datasets with different types of con-
text, we hope to learn more about what makes a
dataset amenable to adaptation. The datasets range
in size from over 100 million words of training data
to 5 million characters of training data for the small-
est one. When using a word-based vocabulary, we
preprocess the data by lowercasing, tokenizing and
removing most punctuation. We also truncate sen-
tences to be shorter than a maximum length of 60
words for AGNews and DBPedia and 150 to 200 to-
kens for the remaining datasets. Summary informa-
tion is provided in Table 1, including the training,
development, and test data sizes in terms of number

499

Name Train Dev Test Vocab Docs. Context
AGNews 4.6M 0.2M 0.3M 54,492 115K 4 Newspaper sections
DBPedia 28.7M 0.3M 3.6M 84,341 555K 14 Entity categories

TripAdvisor 127.2M 2.6M 2.6M 88,347 843K 3.5K Hotels/5 Sentiment
Yelp 91.5M 0.7M 7.1M 57,794 645K 5 Sentiment

EuroTwitter∗ 5.3M 0.8M 1.0M 194 80K 9 Languages
GeoTwitter∗ 51.7M 2.2M 2.2M 203 604K Latitude & Longitude

Table 1: Dataset statistics: Dataset size in words (* or characters) of Train, Dev and Test sets, vocabulary size, number
of training documents, and context variables.

of tokens, vocabulary size, number of training doc-
uments (i.e. context samples), and the context vari-
ables (f1:n). The largest dataset, TripAdvisor, has
over 800 thousand hotel review documents, which
adds up to over 125 million words of training data.

The first three datasets (AGNews, DBPedia, and
Yelp) have previously been used for text classifica-
tion (Zhang et al., 2015). These consist of newspa-
per headlines, encyclopedia entries, and restaurant
and business reviews, respectively. The context vari-
ables associated with these correspond to the news-
paper section (world, sports, business, sci & tech)
for each headline, the page category on DBPedia
(out of 14 options such as actor, athlete, building,
etc.), and the star rating on Yelp (from one to five).
For AgNews, DBPedia, and Yelp we use the same
test data as in previous work. Our fourth dataset,
from TripAdvisor, was previously used for language
modeling and consists of two relevant context vari-
ables: an identifier for the hotel and a sentiment
score from one to five stars (Tang et al., 2016). Some
of the reviews are written in French or German but
most are in English. There are 4,333 different hotels
but we group all the ones that do not occur at least 50
times in the training data into a single entity, leaving
us with around 3,500. These four datasets use word-
based vocabularies.

We also experiment on two Twitter datasets: Eu-
roTwitter and GeoTwitter. EuroTwitter consists
of 80 thousand tweets labeled with one of nine
languages: (English, Spanish, Galician, Catalan,
Basque, Portuguese, French, German, and Italian).
The corpus was created by combining portions of
multiple published datasets for language identifica-
tion including Twitter70 (Jaech et al., 2016), Tweet-
LID (Zubiaga et al., 2014), and the monolingual
portion of tweets from a code-switching detection

workshop (Molina et al., 2016). The GeoTwit-
ter data contains tweets with latitude and longitude
information from England, Spain, and the United
States.1 The latitude and longitude coordinates are
given as numerical inputs. This is different from
the other five datasets that all use categorical con-
text variables.

4 Experiments with Different Contexts

The goal of our experiments is to show that the
FactorCell model can deliver improved performance
over current approaches for multiple language
model applications and a variety of types of con-
texts. Specifically, results are reported for context-
conditioned perplexity and generative model text
classification accuracy, using contexts that capture
a range of phenomena and dimensionalities.

Test set perplexity is the most widely accepted
method for evaluating language models, both for use
in recognition/translation applications and genera-
tion. It has the advantage that it is easy to measure
and is widely used as a criteria for model fit, but the
limitation that it is not directly matched to most tasks
that language models are directly used for. Text clas-
sification using the model in a generative classifier is
a simple application of Bayes rule:

ω̂ = argmax
ω

p(w1:T |ω)p(ω) (7)

where w1:T is the text sequence, p(ω) is the class
prior, which we assume to be uniform. Classifica-
tion accuracy provides additional information about
the power of a model, even if it is not being designed
explicitly for text classification. Further, it allows
us to be able to directly compare our model perfor-

1Data was accessed from http://followthehashtag.com.

500

mance against previously published text classifica-
tion benchmarks.

Note that the use of classification accuracy for
evaluation here involves counting errors associated
with applying the generative model to independent
test samples. This differs from the accuracy criterion
used for evaluating context-sensitive language mod-
els for text generation based on a separate discrimi-
native classifier trained on generated text (Ficler and
Goldberg, 2017; Hu et al., 2017). We discuss this
further in Section 5.

The experiments compare the FactorCell model
(equations 4 and 6) to two popular alternatives,
which we refer to as ConcatCell (equations 2 and
6) and SoftmaxBias (equation 6). As noted earlier,
the SoftmaxBias method is a simplification of the
ConcatCell model, which is in turn a simplification
of the FactorCell model. The SoftmaxBias method
impacts only the output layer and thus only uni-
gram statistics. Since bag-of-word models provide
strong baselines in many text classification tasks, we
hypothesize that the SoftmaxBias model will cap-
ture much of the relative improvement over the un-
adapted model for word-based tasks. However, in
small vocabulary character-based models, the uni-
gram distribution is unlikely to carry much infor-
mation about the context, so adapting the recurrent
layer should become more important in character-
level models. We expect that performance gains will
be greatest for the FactorCell model for sources that
have sufficient structure and data to support learning
the extra degrees of freedom.

Another possible baseline would use models in-
dependently trained on the subset of data for each
context. This is the “independent component” case
in (Yogatama et al., 2017). This will fail when a
context variable takes on many values (or continu-
ous values) or when training data is limited, because
it makes poor use of the training data, as shown in
that study. While we do have some datasets where
this approach is plausible, we feel that its limitations
have been clearly established.

4.1 Implementation Details

The RNN variant that we use is an LSTM with cou-
pled input and forget gates (Melis et al., 2018). The

different model variants are implemented2 using the
Tensorflow library. The model is trained with the
standard negative log likelihood loss function, i.e.
minimizing cross entropy. Dropout is used as a reg-
ularizer in the recurrent connections as described in
Semeniuta et al. (2016). Training is done using the
Adam optimizer with a learning rate of 0.001. For
the models with word-based vocabularies, a sampled
softmax loss is used with a unigram proposal dis-
tribution and sampling 150 words at each time-step
(Jean et al., 2014). The classification experiments
use a sampled softmax loss with a sample size of
8,000 words. This is an order of magnitude faster to
compute with a minimal effect on accuracy.

Hyperparameter tuning was done based on min-
imizing perplexity on the development set and us-
ing a random search. Hyperparameters included
word embedding size e, recurrent state size d, con-
text embedding size k, and weight adaptation ma-
trix rank r, the number of training steps, recurrent
dropout probability, and random initialization seed.
The selected hyperparameter values are listed in Ta-
ble 2. For any fixed LSTM size, the FactorCell has a
higher count of learned parameters compared to the
ConcatCell. However, during evaluation both mod-
els use approximately the same number of floating-
point operations because W′ only needs to be com-
puted once per sentence. Because of this, we believe
limiting the recurrent layer cell size is a fair way to
compare between the FactorCell and the ConcatCell.

4.2 Word-based Models

Perplexities and classification accuracies for the four
word-based datasets are presented in Table 3. In
each of the four datasets, the FactorCell model gives
the best perplexity. For classification accuracy, there
is a bigger difference between the models, and the
FactorCell model is the most accurate on three out of
four datasets and tied with the SoftmaxBias model
on AgNews. For DBPedia and TripAdvisor, most
of the improvement in perplexity relative to the un-
adapted case is achieved by the SoftmaxBias model
with smaller relative improvements coming from the
increased power of the ConcatCell and FactorCell
models. For Yelp, the perplexity improvements are
small; the FactorCell model is just 1.3% better than

2Code available at http://github.com/ajaech/calm.

501

AgNews DBPedia EuroTwitter GeoTwitter TripAdvisor Yelp
Word Embed 150 114-120 35-40 42-50 100 200
LSTM dim 110 167-180 250 250 200 200

Steps 4.1-5.5K 7.5-8.0K 6.0-8.0K 6.0-11.1K 8.4-9.9K 7.2-8.8K
Dropout 0.5 1.00 0.95-1.00 0.99-1.00 0.97-1.00 1.00

Ctx. Embed 2 12 3-5 8-24 20-30 2-3
Rank 12 19 2 20 12 9

Table 2: Selected hyperparameters for each dataset. When a range is listed it means that a different values were
selected for the FactorCell, ConcatCell, SoftmaxBias or Unadapted models.

AGNews DBPedia TripAdvisor Yelp
Model PPL ACC PPL ACC PPL ACC PPL ACC

Unadapted 96.2 – 44.1 – 51.6 – 67.1 –
SoftmaxBias 95.1 90.6 40.4 95.5 48.8 51.9 66.9 51.6
ConcatCell 93.8 89.7 39.5 97.8 48.3 56.0 66.8 56.9
FactorCell 92.3 90.6 37.7 98.2 48.2 58.2 66.2 58.8

Table 3: Perplexity and classification accuracy on the test set for the four word-based datasets.

the unadapted model.

From Yogatama et al. (2017), we see that for AG-
News, much more so than for other datasets, the un-
igram statistics capture the discriminating informa-
tion, and it is the only dataset in that work where a
naive Bayes classifier is competitive with the gener-
ative LSTM for the full range of training data. The
fact that the SoftmaxBias model gets the same ac-
curacy as the FactorCell model on this task suggests
that topic classification tasks may benefit less from
adapting the recurrent layer.

For the DBPedia and Yelp datasets, the Factor-
Cell model beats previously reported classification
accuracies for generative models (Yogatama et al.,
2017). However, it is not competitive with state-of-
the-art discriminative models on these tasks with the
full training set. With less training data, it probably
would be, based on the results in (Yogatama et al.,
2017).

The numbers in Table 3 do not adequately convey
the fact that there are hyperparameters whose effect
on perplexity is greater than the sometimes small
relative differences between models. Even the seed
for the random weight initialization can have a “ma-
jor impact” on the final performance of an LSTM
(Reimers and Gurevych, 2017). We use Figure 1 to
show how the three classes of models perform across
a range of hyperparameters. The figure compares

perplexity on the x-axis with accuracy on the y-axis
with both metrics computed on the development set.
Each point in this figure represents a different in-
stance of the model trained with random hyperpa-
rameter settings and the best results are in the up-
per right corner of each plot. The color/shape differ-
ences of the points correspond to the three classes of
models: FactorCell, ConcatCell, and SoftmaxBias.

Figure 1: Accuracy vs. perplexity for different classes of
models on the four word-based datasets.

502

Within the same model class but across different
hyperparameter settings, there is much more varia-
tion in perplexity than in accuracy. The LSTM cell
size is mainly responsible for this; it has a much big-
ger impact on perplexity than on accuracy. It is also
apparent that the models with the lowest perplexity
are not always the ones with the highest accuracy.
See Section 4.4 for further analysis.

Figure 2 is a visualization of the per-word log
likelihood ratio between a model assuming a 5 star
review and the same model assuming a 1 star review.
Likelihoods were computed using an ensemble of
three models to reduce variance. The analysis is re-
peated for each class of model. Words highlighted
in blue are given a higher likelihood under the 5 star
assumption.

Unigrams with strong sentiment such as “lovely”
and “friendly” are well-represented by all three
models. The reader may not consider the tokens
“craziness” or “5-8pm” to be strong indicators of a
positive review but the way they are used in this re-
view is representative of how they are typically used
across the corpus.

As expected, the ConcatCell and FactorCell
model capture the sentiment of multi-token phrases.
As an example, the unigram “enough” is 3% more
likely to occur in a 5 star review than in a 1 star re-
view. However, “do enough” is 30 times more likely
to appear in a 5 star review than in a 1 star review.
In this example, the FactorCell model does a better
job of handling the word “enough.”

4.3 Character-based Models
Next, we evaluate the EuroTwitter and GeoTwitter
models using both perplexity and a classification
task. For EuroTwitter, the classification task is to
identify the language. With GeoTwitter, it is less ob-
vious what the classification task should be because
the context values are continuous and not categori-
cal. We selected six cities and then assigned each
sentence the label of the closest city in that list while
still retaining the exact coordinates of the Tweet.
There are two cities from each country: Manchester,
London, Madrid, Barcelona, New York City, and
Los Angeles. Tweets from locations further than 300
km from the nearest city on the list were discarded
when evaluating the classification accuracy.

Perplexities and classification accuracies are pre-

SoftmaxBias

ConcatCell

FactorCell

Figure 2: Log likelihood ratio between a model that as-
sumes a 5 star review and the same model that assumes
a 1 star review. Blue indicates a higher 5 star likelihood
and red is a higher likelihood for the 1 star condition.

sented in Table 4. The FactorCell model has the
lowest perplexity and the highest accuracy for both
datasets. Again, the FactorCell model clearly im-
proves on the ConcatCell as measured by classifi-
cation accuracy. Consistent with our hypothesis,
adapting the softmax bias is not effective for these
small vocabulary character-based tasks. The Soft-
maxBias model has small perplexity improvements
(< 1%) and low classification accuracies.

EuroTwitter GeoTwitter
Model PPL ACC PPL ACC

Unadapted 6.35 – 4.64 –
SoftmaxBias 6.29 43.0 4.63 29.9
ConcatCell 6.17 91.5 4.54 42.2
FactorCell 6.07 93.3 4.52 63.5

Table 4: Perplexity and classification accuracies for the
EuroTwitter and GeoTwitter datasets.

Figure 3 compares perplexity and classification
accuracy for different hyperparameter settings of the
character-based models. Again, we see that it is pos-

503

Figure 3: Accuracy vs. Perplexity for different classes of
models on the two character-based datasets.

sible to trade-off some perplexity for gains in classi-
fication accuracy. For EuroTwitter, if tuning is done
on accuracy rather than perplexity then the accuracy
of the best model is as high as 95%.

Sometimes there can be little to no perplexity im-
provement between the unadapted model and the
FactorCell model. This can be explained if the pro-
vided context variables are mostly redundant given
the previous tokens in the sequence. To investigate
this further, we trained a logistic regression clas-
sifier to predict the language using the state from
the LSTM at the last time step on the unadapted
model as a feature vector. Using just 30 labeled ex-
amples per class it is possible to get 74.6% accu-
racy. Furthermore, we find that a single dimension
in the hidden state of the unadapted model is often
enough to distinguish between different languages
even though the model was not given any supervi-
sion signal. This finding is consistent with previ-
ous work that showed that individual dimensions of
LSTM hidden states can be strong indicators of con-
cepts like sentiment (Karpathy et al., 2015; Radford
et al., 2017).

Figure 4 visualizes the value of the dimension
of the hidden layer that is the strongest indicator
of Spanish on three different code-switched tweets.
Code-switching is not a part of the training data but
it provides a compelling visualization of the abil-
ity of the unsupervised model to quickly recognize
the language. The fact that it is so easy for the
unadapted model to pick-up on the identity of the
contextual variable fits with our explanation for the
small relative gain in perplexity from the adapted
models in these two tasks.

Figure 4: The value of the dimension of the LSTM hidden
state in an unadapted model that is the strongest indicator
for Spanish text for three different code-switched tweets.

4.4 Hyperparameter Analysis

The hyperparameter with the strongest effect on per-
plexity is the size of the LSTM. This was consis-
tent across all six datasets. The effect on classifi-
cation accuracy of increasing the LSTM size was
mixed. Increasing the context embedding size gen-
erally helped with accuracy on all datasets, but it
had a more neutral effect on TripAdvisor and Yelp
and increased perplexity on the two character-based
datasets. For the FactorCell model, increasing the
rank of the adaptation matrix tended to lead to in-
creased classification accuracy on all datasets and
seemed to help with perplexity on AGNews, DBPe-
dia, and TripAdvisor.

Figure 5: Comparison of the effect of LSTM parameter
count and FactorCell rank hyperparameters on perplexity
for DBPedia.

Figure 5 compares the effect on perplexity of the
LSTM parameter count and the FactorCell rank hy-
perparameters. Each point in those plots represents
a separate instance of the model with varied hy-

504

perparameters. In the right subplot of Figure 5,
we see that increasing the rank hyperparameter im-
proves perplexity. This is consistent with our hy-
pothesis that increasing the rank can let the model
adapt more. The variance is large because differ-
ences in other hyperparameters (such as hidden state
size) also have an impact.

In the left subplot we compare the performance of
the FactorCell with the ConcatCell as the size of the
word embeddings and recurrent state change. The
x-axis is the size of the W recurrent weight matrix,
specifically 3(e + d)d for an LSTM with 3 gates.
Since the adapted weights can be precomputed, the
computational cost is roughly the same for points
with the same x-value. For a fixed-size hidden state,
the FactorCell model has a better perplexity than the
ConcatCell.

Since performance can be improved both by in-
creasing the recurrent state dimension and/or by in-
creasing rank, we examined the relative benefits of
each. The perplexity of a FactorCell model with an
LSTM size of 120K will improve by 5% when the
rank is increased from 0 to 20. To get the same de-
crease in perplexity by changing the size of the hid-
den state would require 160K parameters, resulting
in a significant computational advantage for the Fac-
torCell model.

Using a one-hot vector for adapting the softmax
bias layer in place of the context embedding when
adapting the softmax bias vector tended to have a
large positive effect on accuracy leaving perplexity
mostly unchanged. Recall from Section 2.3 that if
the number of values that a context variable can take
on is small then we can allow the model to choose
between using the low-dimensional context embed-
ding or a one-hot vector. This option is not avail-
able for the TripAdvisor and the GeoTwitter datasets
because the dimensionality of their one-hot vectors
would be too large. The method of adapting the soft-
max bias is the main explanation for why some Con-
catCell models performed significantly above/below
the trendline for DBPedia in Figure 1.

We experimented with an additional hyperparam-
eter on the Yelp dataset, namely the inclusion of
layer normalization (Ba et al., 2016). (We had ruled-
out using layer normalization in preliminary work
on the AGNews data before we understood that AG-
News is not representative, so only one task was

explored here.) Layer normalization significantly
helped the perplexity on Yelp (≈ 2% relative im-
provement) and all of the top-performing models on
the held-out development data had it enabled.

4.5 Analysis for Sparse Contexts

The TripAdvisor data is an interesting case because
the original context space is high dimensional (3500
hotels × 5 user ratings) and sparse. Since the model
applies end-to-end learning, we can investigate what
the context embeddings learn. In particular, we
looked at location (hotels are from 25 cities in the
United States) and class of hotel, neither of which
are input to the model. All of what it learns about
these concepts come from extracting information
from the text of the reviews.

To visualize the embedding, we used a 2-
dimensional PCA projection of the embeddings of
the 3500 hotels. We found that the model learns
to group the hotels based on geographic region;
the projected embeddings for the largest cities are
shown in Figure 6, plotting the 1.5σ ellipsoid of the
Gaussian distribution of the points. (Actual points
are not shown to avoid clutter.) Not only are hotels
from the same city grouped together, cities that are
close geographically appear close to each other in
the embedding space. Cities in the Southwest ap-
pear on the left of the figure, the West coast is on top
and the East coast and Midwest is on the right side.
This is likely due in part to the impact of the region
on activities that guests may mention, but there also
appears to be a geographic sampling bias in the hotel
class that may impact language use.

Class is a rating from an independent agency that
indicates the level of service and amenities that cus-
tomers can expect to receive at a hotel. Whereas, the
star rating is the average score given to each estab-
lishment by the customers who reviewed it. Hotel
class does not determine star rating although they
are correlated (r = 0.54). The dataset does not
contain a uniform sample of hotel classes from each
city. The hotels included from Boston, Chicago, and
Philly are almost exclusively high class and the ones
from L.A. and San Diego happen to be low class, so
the embedding distributions also reflect hotel class:
lower class hotels towards the top left and higher
class hotels towards the bottom right. The visual-
ization for the ConcatCell and SoftmaxBias models

505

Figure 6: Distribution of a PCA projection of hotel em-
beddings PCA from the TripAdvisor FactorCell model
showing the grouping of the hotels by city.

are similar.
Another way of understanding what the context

embeddings represent is to compute the softmax bias
projection Qc and examine the words that experi-
ence the biggest increase in probability. We show
three examples in Table 5. In each case, the top
words are strongly related to geography and include
names of neighborhoods, local attractions, and other
hotels in the same city. The top boosted words are
relatively unaffected by changing the rating. (Recall
that the hotel identifier and the user rating are the
only two inputs used to create the context embed-
ding.) This table combined with the other visualiza-
tions indicates that location effects tend to dominate
in the output layer, which may explain why the two
models adapting the recurrent network seem to have
a bigger impact on classification performance.

5 Prior Work

There have been many studies of neural language
models that can be dynamically adapted based on
context. Methods have been referred to as context-
dependent models (Mikolov and Zweig, 2012),
context-aware models (Tang et al., 2016), condi-
tioned models (Ficler and Goldberg, 2017), and con-
trollable text generation (Hu et al., 2017). These
models have been used in scoring word sequences
(such as for speech recognition or machine trans-
lation), for text classification, and for generation.
In some work, context corresponds to the previous

word history. Here, we instead consider known fac-
tors such as user, location and domain metadata,
though the framework could be used with history-
based context.

The studies that most directly relate to our work
are neural models that correspond to special cases of
the more general FactorCell model, including those
that leverage what we call the SoftmaxBias model
(Dieng et al., 2017; Tang et al., 2016; Yogatama et
al., 2017; Ficler and Goldberg, 2017) and others that
use the ConcatCell approach (Mikolov and Zweig,
2012; Wen et al., 2013; Chen et al., 2015; Ghosh et
al., 2016). One study (Ji et al., 2016) compares the
two approaches, which they refer to as ccDCLM and
coDCLM. They find that both approaches give sim-
ilar perplexities, but their ConcatCell style model
does better at an auxiliary sentence ordering task.
This is consistent with our finding that adapting at
the recurrent layer can benefit certain tasks while
having only a minor impact on perplexity. They
do not test any models that adapt both the recurrent
and output layers. Hoang et al. (2016) also consider
adapting at the hidden layer vs. at the softmax layer,
but their architecture does not fit cleanly into the
framework of the SoftmaxBias model because they
use an extra perceptron layer; thus, it is difficult to
compare the experimental findings with ours.

The FactorCell model is distinguished by hav-
ing an additive (factored) context-dependent trans-
formation of the recurrent layer weight matrix. A
related additive context-dependent transformation
has been proposed for log-bilinear sequence mod-
els (Eisenstein et al., 2011; Hutchinson et al., 2015),
but these are less powerful than the RNN. A some-
what different use of low-rank factorization has pre-
viously been used to reduce the parameter count in
an LSTM LM (Kuchaiev and Ginsburg, 2017), find-
ing that the reduced number of parameters leads to
faster training.

There is a long history of adapting n-gram lan-
guage models (see DeMori and Federico (1999) or
Bellegarda (2004) for a survey). One recent example
is Chelba and Shazeer (2015) where a 34% relative
improvement in perplexity was obtained when us-
ing geographic features for adaptation. We hypoth-
esize that the impressive improvement in perplexity
is possible because the language in their dataset of
Google mobile search queries is particularly sensi-

506

Hotel City Class Rating Top Boosted Words
Amalfi Chicago 4.0 5 amalfi, chicago, allegro, burnham, sable, michi-

gan, acme, conrad, talbott, wrigley
BLVD Hotel Suites Los Angeles 2.5 3 hollywood, kodak, highland, universal, reseda,

griffith, grauman’s, beverly, ventura
Four Points Sheraton Seattle 3.0 1 seattle, pike, watertown, deca, needle, pikes,

pike’s monorail, uw, safeco

Table 5: The top boosted words in the Softmax bias layer for different context settings in a FactorCell model.

tive to location. Compared to n-gram based LMs,
our model has two advantages in the way that it han-
dles context. First, as we showed in our GeoTwitter
experiments, we can adapt to geography using GPS
coordinates as input without using predefined geo-
graphic regions as in Chelba and Shazeer. Second,
our model supports the joint effect of multiple con-
textual variables. Neural models have an advantage
over discrete models as the number of context vari-
ables increases.

Much of the work on context-adaptive neural lan-
guage models has focused on incorporating doc-
ument or topic information (Mikolov and Zweig,
2012; Ji et al., 2016; Ghosh et al., 2016; Dieng
et al., 2017), where context is defined in terms
of word or n-gram statistics. Our work differs
from these studies in that the context is defined
by a variety of sources, including discrete and/or
continuous metadata, which is mapped to a con-
text vector in end-to-end training. Context-sensitive
language models for text generation tend to in-
volve other forms of context similar to the ob-
jective of our work, including speaker character-
istics (Luan et al., 2016; Li et al., 2016), dialog act
(Wen et al., 2015), sentiment and other factors
(Tang et al., 2016; Hu et al., 2017), and style (Ficler
and Goldberg, 2017). As noted earlier, some of
this work has used discriminative text classification
to evaluate generation. In preliminary experiments
with the Yelp data set, we found that the generative
classifier accuracy of our model is highly correlated
with discriminative classfier accuracy (r ≈ 0.95).
Thus, by this measure, we anticipate that the model
would be useful for generation applications. Anec-
dotally, we find that the model gives more coherent
generation results for DBPedia data, but further val-
idation with human ratings is necessary to confirm
the benefits on more sources.

6 Conclusions

In summary, this paper has introduced a new model
for adapting (or controlling) a language model de-
pending on contextual metadata. The FactorCell
model extends prior work with context-dependent
RNNs by using the context vector to generate a low-
rank, factored, additive transformation of the recur-
rent cell weight matrix. Experiments with six tasks
show that the FactorCell model matches or exceeds
performance of alternative methods in both perplex-
ity and text classification accuracy. Findings hold
for a variety of types of context, including high-
dimensional contexts, and the adaptation of the re-
current layer is particularly important for character-
level models. For many contexts, the benefit of
the FactorCell model comes with essentially no ad-
ditional computational cost at test time, since the
transformations can be pre-computed. Analyses of a
dataset with a high-dimensional sparse context vec-
tor show that the model learns context similarities to
facilitate parameter sharing.

In all six tasks that are explored here, all context
factors are available for all training and testing sam-
ples. In some scenarios, it may be possible for some
context factors to be missing. A simple solution for
handling this is to use the expected value for the
missing variable(s), since this is equivalent to using
a weighted combination of the adaptation matrices
for the different possible values of the missing vari-
ables.

In this work, the experiment scenarios all used
metadata to specify context, since this type of con-
text can be more sensitive to data sparsity and has
been less studied. In contrast, in many prior studies
of language model adaptation, context is specified
in terms of text samples, such as prior user queries,
prior sentences in a dialog, other documents related

507

in terms of topic or style, etc. The FactorCell frame-
work introduced here is also applicable to this type
of context, but the best encoding of the text into an
embedding (e.g. using bag of words, sequence mod-
els, etc.) is likely to vary with the application. The
FactorCell can also be used with online learning of
context vectors, e.g. to take advantage of previous
text from a particular author (or speaker) (Jaech and
Ostendorf, 2018).

The models evaluated here were tuned to mini-
mize perplexity, as is typical for language model-
ing. In analyses of performance with different hy-
perparameter settings, we find that perplexity is not
always positively correlated with accuracy, but the
criteria are more often correlated for approaches that
adapt the recurrent layer. While not surprising, the
results raise concerns about using perplexity as the
sole evaluation metric for context-aware language
models. More work is needed to understand the rel-
ative utility of these objectives for language model
design.

Acknowledgments

This research was supported in part by a Google
Faculty Research Award.

References

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Jerome R. Bellegarda. 2004. Statistical language model
adaptation: Review and perspectives. Speech Commu-
nication, 42(1):93–108.

Ciprian Chelba and Noam Shazeer. 2015. Sparse non-
negative matrix language modeling for geo-annotated
query session data. In Proc. IEEE Workshop on Auto-
matic Speech Recognition and Understanding, pages
8–14.

Xie Chen, Tian Tan, Xunying Liu, Pierre Lanchantin,
Moquan Wan, Mark J. F. Gales, and Philip C. Wood-
land. 2015. Recurrent neural network language model
adaptation for multi-genre broadcast speech recogni-
tion. In Proc. Interspeech, pages 3511–3515.

Junyoung Chung, Kyunghyun Cho, and Yoshua Bengio.
2016. A character-level decoder without explicit seg-
mentation for neural machine translation. Proc. An-
nual Meeting of the Assoc. for Computational Linguis-
tics (Proc. ACL), pages 1693–1703.

Renato DeMori and Marcello Federico. 1999. Language
model adaptation. In Computational Models of Speech
Pattern Processing, pages 280–303. Springer.

Adji B. Dieng, Chong Wang, Jianfeng Gao, and John
Paisley. 2017. TopicRNN: A recurrent neural network
with long-range semantic dependency. In Proc. Int.
Conf. Learning Representations (Proc. ICLR).

Jacob Eisenstein, Amr Ahmed, and Eric Xing. 2011.
Sparse additive generative models of text. In Proc. Int.
Conf. Machine Learning (Proc. ICML).

Jessica Ficler and Yoav Goldberg. 2017. Control-
ling linguistic style aspects in neural language genera-
tion. In Proc. Conf. on Empirical Methods in Natural
Language Processing (EMNLP) Workshop on Stylistic
Variation, pages 94–104.

Shalini Ghosh, Oriol Vinyals, Brian Strope, Scott Roy,
Tom Dean, and Larry Heck. 2016. Contextual LSTM
models for large scale NLP tasks. arXiv preprint
arXiv:1602.06291.

Awni Hannun, Carl Case, Jared Casper, Bryan Catan-
zaro, Greg Diamos, Erich Elsen, Ryan Prenger, San-
jeev Satheesh, Shubho Sengupta, Adam Coates, et al.
2014. Deep speech: Scaling up end-to-end speech
recognition. arXiv preprint arXiv:1412.5567.

Cong Duy Vu Hoang, Trevor Cohn, and Gholamreza Haf-
fari. 2016. Incorporating side information into re-
current neural network language models. In Proc.
Human Language Technology Conf. and Conf. North
American Chapter Assoc. for Computational Linguis-
tics (HLT-NAACL), pages 1250–1255.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P. Xing. 2017. Controllable
text generation. Proc. ICML.

Brian Hutchinson, Mari Ostendorf, and Maryam Fazel.
2015. A sparse plus low-rank exponential language
model for limited resource scenarios. IEEE Trans. Au-
dio, Speech and Language Processing, 23(3):494–504.

Hakan Inan, Khashayar Khosravi, and Richard Socher.
2017. Tying word vectors and word classifiers: A loss
framework for language modeling. In Proc. ICLR.

Aaron Jaech and Mari Ostendorf. 2018. Personalized
language model for query auto-completion. In Proc.
ACL, pages 2–6.

Aaron Jaech, George Mulcaire, Shobhit Hathi, Mari Os-
tendorf, and Noah A. Smith. 2016. Hierarchical
character-word models for language identification. In
Proc. EMNLP Workshop on Natural Language Pro-
cessing for Social Media.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and
Yoshua Bengio. 2014. On using very large target
vocabulary for neural machine translation. In Proc.
Annual Meeting of the Association for Computational
Linguistics and the International Joint Conference on
Natural Language Processing, pages 1–10.

508

Yangfeng Ji, Trevor Cohn, Lingpeng Kong, Chris Dyer,
and Jacob Eisenstein. 2016. Document context lan-
guage models. In Proc. ICLR.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2015.
Visualizing and understanding recurrent networks. In
Proc. ICLR.

Oleksii Kuchaiev and Boris Ginsburg. 2017. Factoriza-
tion tricks for LSTM networks. In Proc. ICLR.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A persona-based neural conver-
sation model. In Proc. ACL, pages 994–1003.

Yi Luan, Yangfeng Ji, and Mari Ostendorf. 2016.
LSTM based conversation models. arXiv preprint
arXiv:1603.09457.

Gábor Melis, Chris Dyer, and Phil Blunsom. 2018. On
the state of the art of evaluation in neural language
models. In Proc. ICLR.

Tomas Mikolov and Geoffrey Zweig. 2012. Context de-
pendent recurrent neural network language model. In
Proc. IEEE Spoken Language Technology Workshop
(SLT), pages 234–239.

Giovanni Molina, Fahad AlGhamdi, Mahmoud
Ghoneim, Abdelati Hawwari, Nicolas Rey-Villamizar,
Mona Diab, and Thamar Solorio. 2016. Overview
for the second shared task on language identifica-
tion in code-switched data. In Proc. Workshop on
Computational Approaches to Code Switching, pages
40–49.

Ofir Press and Lior Wolf. 2017. Using the output em-
bedding to improve language models. In Proc. Eu-
ropean Chapter Assoc. for Computational Linguistics
(EACL), pages 157–1763.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment. arXiv preprint arXiv:1704.01444.

Nils Reimers and Iryna Gurevych. 2017. Reporting
score distributions makes a difference: Performance
study of LSTM-networks for sequence tagging. In
Proc. EMNLP, pages 338–348.

Stanislau Semeniuta, Aliaksei Severyn, and Erhardt
Barth. 2016. Recurrent dropout without memory loss.
In Proc. Int. Conf. Computational Linguistics (COL-
ING), pages 1757–1766.

Jian Tang, Yifan Yang, Sam Carton, Ming Zhang, and
Qiaozhu Mei. 2016. Context-aware natural language
generation with recurrent neural networks. arXiv
preprint arXiv:1611.09900.

Tsung-Hsien Wen, Aaron Heidel, Hung-yi Lee, Yu Tsao,
and Lin-Shan Lee. 2013. Recurrent neural network
based language model personalization by social net-
work crowdsourcing. In Proc. Interspeech, pages
2703–2707.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-Hao
Su, David Vandyke, and Steve Young. 2015. Semanti-
cally conditioned LSTM-based natural language gen-
eration for spoken dialogue systems. In Proc. EMNLP,
pages 1711–1721.

Dani Yogatama, Chris Dyer, Wang Ling, and Phil Blun-
som. 2017. Generative and discriminative text classi-
fication with recurrent neural networks. arXiv preprint
arXiv:1703.01898.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. In Proc. Annu. Conf. Neural Inform. Process.
Syst. (NIPS), pages 649–657.

Arkaitz Zubiaga, Inaki San Vicente, Pablo Gamallo,
José Ramom Pichel Campos, Iñaki Alegrı́a Loinaz,
Nora Aranberri, Aitzol Ezeiza, and Vı́ctor Fresno-
Fernández. 2014. Overview of TweetLID: Tweet lan-
guage identification at SEPLN 2014. In TweetLID
Workshop at the Annual Conference of the Spanish
Society for Natural Language Processing (SEPLN),
pages 1–11.

A LSTM FactorCell Equations

Only trivial changes are needed to use the Factor-
Cell method on an LSTM instead of a vanilla RNN.
Here, we list the equations for an LSTM with cou-
pled input and forget gates, which is what was used
in our experiments.

The weight matrix W from Equation 1 is now size
3d × (e + d) and b is dimension 3d, where 3 is the
number of gates. Likewise, ZR from Equation 3 is
made to be of size r×3d×k. The weight matrix W′

is as defined in Equation 4 and after computing it’s
product with the input [wt, ht−1], the result is split
into three vectors of equal size: it, ft, and ot

[it, ft, ot] = W′[wt, ht−1] + b, (8)

where it, ft and ot are used in the input gate, the
forget gate, and the output gate, respectively.

Using these three vectors we perform the gating
operations to compute ht using the memory cell mt

as follows:

ft ← sigmoid(ft + 1.0)

mt = mt−1 � ft + (1.0− ft)� tanh(it)

ht = tanh(mt)� sigmoid(ot)

(9)

Note that equation 2, which shows that a con-
text vector concatenated with input is equivalent to
an additive bias term, extends to equation 8. In

509

other words, in the LSTM version of the ConcatCell
model, the context vector effectively introduces an
extra bias term for each of the 3 gates.

510

