
Comparing Apples to Apple: The Effects of Stemmers on Topic Models

Alexandra Schofield
Cornell University
Ithaca, NY 14853

xanda@cs.cornell.edu

David Mimno
Cornell University
Ithaca, NY 14853

mimno@cornell.edu

Abstract

Rule-based stemmers such as the Porter stem-
mer are frequently used to preprocess English
corpora for topic modeling. In this work, we
train and evaluate topic models on a variety of
corpora using several different stemming algo-
rithms. We examine several different quantita-
tive measures of the resulting models, includ-
ing likelihood, coherence, model stability, and
entropy. Despite their frequent use in topic
modeling, we find that stemmers produce no
meaningful improvement in likelihood and co-
herence and in fact can degrade topic stability.

1 Introduction

Stemming is a popular way to reduce the size of a
vocabulary in natural language tasks by conflating
words with related meanings. Specifically, stem-
ming aims to convert words with the same “stem” or
root (e.g “creative” and “creator”) to a single word
type (“create”). Though originally developed in the
context of information retrieval (IR) systems, stem-
mers are now commonly used as a preprocessing
step in unsupervised machine learning tasks. It this
work we consider one such application, topic model-
ing. Although stemmers are commonly used in topic
models (Liu et al., 2010; Lo et al., 2015; Nan et al.,
2015; Kamath S et al., 2015; Su, 2015; Jacobi et al.,
2016), we find no empirical benefits for the practice.

One could conjecture several reasons to stem
for semantic models. First, conflating semanti-
cally related words into one word type could im-
prove model fit by intelligently reducing the space

of possible models. Given that reducing the fea-
ture space randomly is already known to be poten-
tially beneficial (Ganchev and Dredze, 2008), do-
ing so in a semantically-inspired way might be even
better. Second, stemmers could reduce the effect
of small morphological differences on the stability
of a learned model. Reducing the words “happy”,
“happily”, and “happier” to one token may result in
fewer possible models with divergent “happy” top-
ics. Third, stemmers approximate intuitive word
equivalence classes, so language models based on
stemmed corpora inherit that semantic similarity,
which may improve interpretability as perceived by
human evaluators.

However, stemmers have the potential to be con-
fusing, unreliable, and possibly even harmful in lan-
guage models. First, many stemmers produce terms
that are not recognizable English words and may
be difficult to map back to a valid original word,
such as “stai” as the Porter stem of “stay”. Sec-
ond, although stemming aids document retrieval for
many languages, English is a notorious exception
(Harman, 1991). In English, the complexity of
compound affixes with meaning can lead to over-
stemming, such as “recondition,” a word sharing a
stem but not a root meaning with “recondite.” These
complexities can also lead to the incorrect conflation
of words with the same root but divergent meaning
such as “absolutely” and “absolution”. Third, and
most troubling, there are cases in which morpholog-
ical variants of the same stem carry significantly dif-
ferent meanings. Conflating “apple” and “apples” is
uncontroversial, but loses the distinction between a
device manufacturer and a type of fruit.

287

Transactions of the Association for Computational Linguistics, vol. 4, pp. 287–300, 2016. Action Editor: Hal Daume III.
Submission batch: 2/2016; Published 7/2016.

c©2016 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.



Topic modeling is sensitive to preprocessing be-
cause of its dependence on a sparse vocabulary
(Jockers and Mimno, 2013). In practice, however,
preprocessing methods are typically neither detailed
nor justified, leading to problems in reproducibility
(Fokkens et al., 2013). We believe investigating the
effects of stemming will inform researchers outside
the core natural language processing community as
to how to best preprocess their texts.

While stemmers are used in topic modeling, we
know of no analysis focused on their effect. We
draw inspiration from prior studies of the effects
of stemming for other tasks and models (Harman,
1991; Han et al., 2012; Jivani, 2011; Rani et al.,
2015) to apply rule-based stemmers to a variety of
corpora to test their effect on topic models. We
evaluate the quantitative fit of the models generated
and the qualitative differences between differently-
stemmed corpora to investigate the effects each
stemmer has on a corpus. We hope that these results
help guide future researchers as to how to select and
evaluate stemmers for a given task and corpus.

2 Background

In this work we consider two categories of word nor-
malization1 methods: rule-based stemmers, or stem-
mers primarily reliant on rules converting one af-
fix to another, and context-based methods, or strate-
gies that use dictionaries and other contextual, in-
flectional, and derivational information to infer the
correct word root Jivani (2011). We omit several
language-independent strategies of text normaliza-
tion, including those using Markov chains (Melucci
and Orio, 2003) and clustering (Majumder et al.,
2007). These methods are corpus-specific and error-
prone, and we have not observed their use in topic
modeling.

In our evaluation, we consider nine different
methods of word normalization, given below with
two-letter labels. In addition to including popu-
lar rule-based stemmers, we choose several sim-
ple stemmers that are stronger and weaker than the
named stemmers, where strength refers to how much
the vocabulary is reduced. We will sometimes use

1Other methods for word normalization include case folding
and replacing classes of tokens with a constant (e.g. NUMBER
for numerals).

the more general term conflation treatment or sim-
ply treatment to refer to these methods with respect
to our corpus. These are compared to the control,
no-stemmer treatment, NS.

2.1 Rule-Based Treatments
The first category, rule-based stemmers, includes
methods primarily governed by a set of rules that
convert one affix to another. Most classic stemmers
fit into this category, including the famous Porter
stemmer. These methods are quick, but also limited:
no concise rule set captures every English morpho-
logical exception, and these stemmers cannot use
context to resolve ambiguous word types. They also
are deterministic and consistent for each token: if
word type A maps to stem B in one location, it will
do so in every location word type A arises. Treat-
ments of this type therefore are effectively equiva-
lence relations over untreated words, with a confla-
tion class being an equivalence class of word types
under a conflation treatment t.

While Jivani (2011) refers to these as “truncation
stemmers” or “affix removal stemmers,” we find this
naming confusing: stemmers rarely strictly truncate,
and almost all stemmers aim to remove affixes. The
core similarity of these methods is that all of the
language-specific information used in these stem-
mers is encoded directly into the rules they apply.

Truncation Stemmers. k-truncation stemmers
(Bhamidipati and Pal, 2007) remove all but the first
k characters of a word. As a naı̈ve, high-strength
method, they serve as a good baseline for the rela-
tive effects of simple vocabulary reduction. We test
four-truncation (T4) and five-truncation (T5). Five-
truncation has strength close to a strong rule-based
stemmer; levels below four are incoherent.

“S” Stemmer. The S-removal stemmer or “S”
stemmer (SS) removes S-based endings using only
three rules. Harman (1991) introduces the “S” stem-
ming algorithm as a weaker and simpler counter-
point to more standard rule-based stemmers. As
the rules are simple and good representatives of the
types of rules employed by the other stemmers in
this section, we include them in Table 1.

Lovins Stemmer. The Lovins stemmer (LS) is
a rule-based stemmer using a two-step stemming al-
gorithm (Lovins, 1968). These steps use long lists of
rules, but the method is still fast and simple to imple-

288



If word ends
with:

. . . and does not
end with:

. . . replace
ending with:

-ies -aies, -eies -y
-es -aes, -ees, -oes -e
-s -ss, -us -

Table 1: The “S” stemmer of Harman (1991) consists of
three simple rules in order. Only the first rule applicable
in the first column is applied.

ment and is generally considered a strong stemmer.
Porter and Porter2 Stemmers. The Porter stem-

mer (Porter, 1980), one of the most popular in cur-
rent use, is a slightly less strong and more intricate
stemmer than Lovins’. It uses five phases of rules
and conditions that match patterns of vowel and con-
sonant sequences. Porter later created a slightly im-
proved version of the Porter stemmer for Snowball,
a programming language for rule-based stemmers
(Porter, 2001). We use both the original stemmer
(P1) and the new version (P2) in our evaluation.

Paice/Husk Stemmer. The Paice/Husk stemmer
(PH), or Lancaster stemmer, iterates indefinitely
over the same rule list, with some rules only ap-
plying to unmodified words and others terminating
iteration (Paice, 1990). While slightly more com-
plicated in rule structure, the Paice/Husk stemmer is
similar to the Lovins stemmer in strength.

2.2 Context-Based Treatments

While the methods above are fast, they are impre-
cise, as a limited set of rules cannot account for all
possible morphological exceptions. Subtleties such
as the difference between “frosting” windows and
cake “frosting” are lost without contextual informa-
tion. The methods below use tools such as dictio-
naries, inflectional analysis, and part-of-speech in-
ference to determine the correct conflated form of a
word. As such, they may not consistently reduce the
same word type to the same form. However, these
tools also demand more computational resources;
for our data, lemmatizing the corpus took more com-
putational time than training the topic model.

Krovetz Stemmer. The Krovetz stemmer
(Krovetz, 1993) uses inflectional analysis and a dic-
tionary to determine correct forms of words before
removing word endings. This process is complex,
but the stemmer itself is weak, as it aims less at

conflating words with different parts of speech than
normalizing verb forms and removing pluralization.
The dictionary itself is crucial for implementation;
for our Krovetz stemmer treatment (KS), we use the
Lemur Project implementation.

Lemmatizer. Lemmatizers use a database of lem-
mas, or standardized word forms, in order to find
the best normalized word form for a given token.
While the method is orders of magnitude slower than
rule-based stemmers, it is also much more princi-
pled and extremely unlikely to over-conflate. We use
the WordNet-based lemmatizer (WL) implemented
in the Natural Language ToolKit (Bird et al., 2009)
along with a Stanford POS Tagger (Toutanova et al.,
2003) on the unmodified text to provide auxiliary
part-of-speech information for the lemmatizer.

3 Model and Data

In this paper, we focus on modeling topics in English
datasets using Latent Dirichlet Allocation (LDA), a
generative model for documents based upon their
topics (Blei et al., 2003). A topic φ in this context
is a multinomial probability distribution over words,
without any embedded semantic model of how the
words are connected. In LDA, each document has a
multinomial distribution θ over topics; a document
d is generated by choosing a number of words, and
for each word first sampling a topic k from θd, then
a word w from the distribution over words φk asso-
ciated with topic k.

The name Latent Dirichlet Allocation comes from
the assumptions that information about each word’s
topic or the original distributions θ and φ is latent
(i.e. unobserved) and that the topic and word dis-
tributions θ and φ are drawn from Dirichlet distri-
butions: θ ∼ Dir(α), and φ ∼ Dir(β). Using
this model, one can attempt to infer the most likely
topics to generate a corpus for some preset number
of topics K. However, the optimization problem is
non-convex and intractable to solve analytically, and
is thus generally solved using iterative techniques
such as Gibbs sampling, expectation maximization,
or variational inference. The resulting topics fre-
quently display themes within the common words
in a topic that can be used for classification, search,
and recommendation systems.

Because stemming affects the vocabulary distri-

289



bution of a corpus, the optimal parameters of topic
model inference will vary depending on treatment.
We us adaptive optimization of both Dirichlet hy-
perparameters α and β. We use an asymmetric α
and symmetric β to obtain the best model fit in ac-
cordance with Wallach et al. (2009).

In order to test the various word normalization
treatments, we used an existing Python library for
the Lovins, Paice/Husk, and both Porter algorithms
(Chaput, 2010), modified to correct errors in im-
plementation. We implemented our own trunca-
tion stemmers and S-removal stemmer. We applied
each stemmer to each word token in four corpora:
articles from ArXiv in early 2015,2 articles from
The New York Times in 2007 (Sandhaus, 2008), bi-
ographies from IMDb,3 and reviews from the Yelp
Dataset Challenge.4 Corpora were partitioned into
75% training documents, 25% test documents and
lower-cased before conflation, which was performed
per-sentence on lower-cased text. After treatment,
we remove stopwords, digits, and punctuation. Ta-
ble 2 shows details of the corpora, and Table 3 shows
examples of each treatment.5 We train topic models
using MALLET (McCallum, 2002) for K = 10, 50,
and 200, with at least nine models for each corpus,
treatment, and K combination.

Training Data Evaluation Data
Corpus # docs # toks # docs # toks

ArXiv articles 17.1K 58.4M 5.7 K 19.5M
IMDb bios 84.6K 9.13M 28.2K 3.05M

NYT articles 29.4K 8.81M 9.79K 2.98M
Yelp reviews 844K 43.1M 281K 14.4M

Table 2: Training and test corpora represent considerable
variance in content, size of corpus, average length of doc-
ument, and proportion of training to test data.

4 Evaluations

In order to evaluate the differences between confla-
tion treatments of these corpora, we want to look
at a variety of different types of evaluation of topic
models. Unfortunately, as described later, standard

2Retrieved from ArXiv (http://www.arxiv.org).
3Courtesy of IMDb (http://www.imdb.com).
4Retrieved from Yelp (http://www.yelp.com/

dataset_challenge).
5Our code can be found at https://github.com/

heraldicsandfox/stemmers.

evaluations of topic quality such as held-out likeli-
hood and coherence are implicitly affected by the
size of the vocabulary. To be able to compare dif-
ferent treatments without simply favoring the maxi-
mum possible vocabulary reduction, we create mod-
ified versions of several existing classic evaluations
as well as new metrics for understanding differences
in models at the level of word types instead of topics.

4.1 Held-Out Likelihood
Strong stemmers can improve the joint probability
of documents occurring without improving the qual-
ity of the model. As we reduce the size of the vo-
cabulary, each topic-word distribution is spread over
fewer possible words; at its extreme, the probabil-
ity of any corpus under a zero-truncation stemmer
would be 1.0. Experiments confirmed that for these
treatments, the standard held-out likelihood score L
of the test corpus based on the trained model ordered
stemmers by how much they reduce the vocabulary,
assigning the highest likelihood to those treatments
with the smallest vocabularies.

To account for the likelihood improvement caused
by reducing vocabulary size, we normalize a model
with K topics by the likelihood of a smoothed un-
igram language model with the same β parameter.
We calculate from the normalized log likelihood
Lnorm a per-token metric PTLLnorm to put corpora
of different lengths on a comparable scale. We com-
pute the unigram model probability as a smoothed
multinomial with prior β, number of instances of
word type w in a corpus nw, vocabulary size W and
total token count N :

Lunigram =
∏

j

∏

i

nwij + β

N +Wβ
(1)

Lnorm = L/Lunigram (2)

PTLLnorm =
log(Lnorm)

N
=

logL
N
− log(Lunigram)

N
.

(3)

Our resulting metric measures how much on aver-
age the introduction of multiple topics improves the
probability of each token occurring.

4.2 Topic Coherence
Though log likelihood describes the statistical like-
lihood of the topic model generating the corpus, it

290

http://www.arxiv.org
http://www.imdb.com
http://www.yelp.com/dataset_challenge
http://www.yelp.com/dataset_challenge
https://github.com/heraldicsandfox/stemmers
https://github.com/heraldicsandfox/stemmers


Original This location does not have good service. Went through drive-through and they forgot our drinks and our
sides. While they were preparing what they forgot, we could see another girl who had her back to us and it
was obvious that she was on her phone. Any other KFC would be better.

Tokenized this location does not have good service went through drive through and they forgot our drinks and our sides
while they were preparing what they forgot we could see another girl who had her back to us and it was obvious
that she was on her phone any other kfc would be better

Stopped location good service drive forgot drinks sides preparing forgot girl back obvious phone kfc
NS location good service drive forgot drinks sides preparing forgot girl back obvious ...
T4 loca good serv driv forg drin side prep forg girl back obvi ...
T5 locat good servi drive forgo drink sides prepa forgo girl back obvio ...
LO loc good servic dr forgot drink sid prepar forgot girl back obv ...
P1 locat good servic drive forgot drink side prepar forgot girl back obviou ...
P2 locat good servic drive forgot drink side prepar forgot girl back obvious ...
PH loc good serv driv forgot drink sid prep forgot girl back obvy ...
SS location good service drive forgot drink side preparing forgot girl back obvious ...

KR location good service drive forgot drink side prepare forgot girl back obvious ...
WL location good service drive forget drink side prepare forget girl back obvious ...

Table 3: A demonstration of the steps of preprocessing on a Yelp review.

does not necessarily indicate topics that are seman-
tically coherent to a human observer. To measure
this, we use the topic coherence measure proposed
by Mimno et al. (2011). This metric is defined for a
given topic k and a list of the topM words of a topic
vk1 , . . . v

k
M as

C(k) =
M∑

m=2

m−1∑

l=1

log
D(vl, vm) + β

D(vl) + β
(4)

where D(vl) is the number of documents in which
word vl occurs and D(vl, vm) is the number of doc-
uments in which both words vl and vm occur. This
metric is similar to pointwise mutual information
Lau et al. (2014), but instead of using a sliding win-
dow over the text to determine co-occurrence, it uses
full documents as discrete windows.

To avoid biasing towards the smaller vocabular-
ies of stemmed datasets, we use the token-topic as-
signments output by the topic model with the list of
untreated tokens to produce untreated top keywords
for each topic. We then use the original untreated
corpus and these new keywords to compute coher-
ence values. This allows us to observe whether con-
flation treatments map tokens to the same topic in
a more coherent way than untreated corpora would.
We experimented with using Wikipedia as a refer-
ence corpus, but found it too general a reference for
a semantic model in a narrow context such as a sci-
entific paper or an actor biography.

4.3 Clustering Consistency

If we treat topic models as clusterings of tokens,
we can evaluate how consistent those clusters are.
Variation of information (VOI), a symmetric mea-
surement of difference between clusterings, allows
us to evaluate how much of a difference stemming
makes in the topics formed (Meilă, 2003; Grimmer
and King, 2011). Although some degree of vari-
ation is inevitable between different trials with the
same treatment due to randomness in the inference
algorithm, stemming may affect how much occurs.
We use two VOI-based metrics to examine treatment
stability and differences: intra-treatment VOI and
inter-treatment VOI. Intra-treatment VOI is VOI be-
tween models trained with different random initial-
izations but the same treatment. Correspondingly,
inter-treatment VOI is the VOI between outputted
topic assignments from different treatments. If the
inter-treatment VOI is equal to the VOI between tri-
als of the same treatment, we infer that the change
in treatment has made a negligible difference in the
assignment of tokens to topics.

4.4 Influential Words

The metrics above are all summary statistics that
measure different types of overall topic model qual-
ity. However, to understand why these metrics are
affected the way they are, we also need some way
to examine the individual components we have af-
fected: the word types available in our documents.

291



We use two heuristics to identify words that are
most affected by a given treatment. The first uses
inferred token probabilities in the test corpus. We
want a scoring function of untreated word types that
is positive if the estimated joint probability of to-
kens of a particular pre-treatment type increases af-
ter treatment, and negative if it decreases. We also
want the magnitude of the score to correspond with
both the difference in probability across all tokens
and the relative informativeness of that token in dis-
tinguishing documents or topics.

For a given word typew from the untreated corpus
and function t applying some conflation treatment,
we compute the word type probability, TPwt, as

D∑

d=1

Nd∑

i=1

I[xdi = w] log(P (t(xdi) = t(w)| . . . )),

(5)

where D is the number of documents, Nd is the
number of tokens in document d, xdi is the untreated
word type of token i in document d and t(xdi) is
the treated type, I[xdi = w] is the indicator func-
tion that is 1 if xdi = w and zero otherwise, and
P (t(xdi) = t(w)| . . . ) is shorthand for the held-
out likelihood estimate of treated token t(xdi) hav-
ing the type w generated using the left-to-right tech-
nique given the inferred parameters θ, φ and hyper-
parameters α, β of the trained model.

We average the quantity in Equation 5 across all
topic models of the same corpus, topic count, and
treatment to get TPwt. In order to compute a rela-
tive score of the amount of probability improvement
of an individual treatment for a word type from the
no-stemmer treatment t0, we take the difference be-
tween topic probabilities, weighted by inverse docu-
ment frequency (idf) to favor words that are specific
to particular documents. Our final score function is

TPscorewt = (TPwt − TPwt0) log

(
D

Dw

)
, (6)

whereDw is the number of documents of the totalD
containing at least one token of type w. The lowest
negative scores indicate higher probability and im-
portance of the unstemmed form of the token, while
high positive scores indicate higher probability and
importance of the stemmed form. While this does
not produce a symmetric distribution, as we have

not accounted for the increased probability of each
word in a smaller vocabulary, it allows us to sort
words by how much their probability of occurring
has changed between treatments and how much that
word affects the corpus as a whole.

The second heuristic tests whether stemming in-
creases or decreases certainty of the topic assign-
ment for each stemmed word type. Intuitively, cor-
rect conflation should reduce the information en-
tropy across tokens of a given conflation class by
forcing words with the same root to be treated as
a single word in inference. Topic models are in-
tuitively better when words are sparsely distributed
across topics; consequently, we prefer lower entropy
across topics, or mass concentrated in only a few
topics. A negative value for a word type under this
entropy metric favors the stemmed corpus, while a
positive score favors the untreated corpus.

In this case, for a given word type w, we use the
topic assignments from the final iteration of Gibbs
sampling to compute the number of instances of w
assigned to each topic k. To preserve the sparsity
inferred by the algorithm, we use this to generate a
maximum-likelihood estimate of the probability dis-
tribution of w being assigned to each topic, from
which we can compute the Shannon entropy:

Hwt(k) = −
K∑

k=1

Nwk

Nw
log

(
Nwk

Nw

)
, (7)

where Nwk is the count of all tokens of type w as-
signed to topic k. For each treated form of a word
w by a treatment t, we also consider the inverse im-
age t−1(w), or the set of all words that stem to have
form w. We therefore compute a change in entropy
using average H̄wt across all trials with treatment t
and control t0 for a given corpus and topic count,

∆Hwt(k) = H̄wt(k)− H̄t−1(w)t0(k), (8)

where H̄t−1(w)t0 is the information entropy for
the topic-word counts summed across all untreated
types that conflate to type w under treatment t.

5 Results

To evaluate the effects of conflation on topic mod-
els, we produced several thousand inferred models.
We apply the metrics described in Section 4, com-
puting means and standard errors across trials with

292



the same topic count, corpus, and treatment where
possible to ensure significance.

5.1 Treatment Strength
Many factors contribute to the general concept of
“strength” of a stemmer, but the most obvious sig-
nal is the amount by which a stemmer reduces the
vocabulary of a corpus. After stopword removal, we
count the total number of unique word types in our
stemmed corpus for each treatment and training cor-
pus, as well as the average number of characters in
each word after treatment. Comparing type-token
ratios of rule-based stemmers to the untreated cor-
pus gives a measurement of the ratio of untreated
words to conflation classes under that treatment. We
display these counts in Figure 1.

The results of these stemming treatments already
demonstrate that stemmer strength can depend heav-
ily on the type of corpus on which it is applied. For
instance, the Krovetz stemmer actually increases the
size of the vocabulary of ArXiv, whereas it produces
more vocabulary reduction than the lemmatizer on
both IMDb and Yelp. The proportions of rule-based
stemmer type-token ratios are consistent across cor-
pora, with the exception of truncation on arXiv. The
frequent use of scientific prefixes (such as “inter”
and “anti”) and bad conversion from PDF format
in arXiv lead truncation stemmers to conflate at a
higher rate than they do on other corpora with re-
spect to other rule-based stemmers. The three dif-
ferent light stemming methods — the S-stemmer,
the Krovetz stemmer, and the WordNet lemmatizer
— perform similarly on the IMDb corpus, but vary
substantially across the other three corpora.

Character-token ratios vary less between corpora
than type-token ratios. Five-truncation produces
words with an average length near the Paice-Husk
and Lovins stemmers. Not surprisingly, S-stemming
produces an average word length slightly less than
the untreated corpus, while the Krovetz stemmer
and WordNet lemmatizer vary in strength across cor-
pora.

We also verify some expected results for these
stemmers: truncation stemmers are very strong, with
four-truncation reducing vocabulary size to one-
fourth or one-fifth of the original. The Porter stem-
mers behave similarly to each other, with slightly
more liberal stemming by the Porter2 stemmer on

Figure 1: Type-token ratio and character-token ratio vary
substantially across training corpora and conflation treat-
ments. Due to the context-sensitive stemming done by
the Krovetz stemmer, it is possible for one untreated
word type to map to multiple stemmed types, producing
a greater type-to-token ratio for the ArXiv version of the
Krovetz stemmer than for the original untreated corpus.

all corpora but ArXiv. The Paice-Husk and Lovins
stemmers are both stronger than Porter, while the S-
stemmer is consistently weaker. While the vocabu-
lary of a corpus affects the strength of each stemmer,
it does little to affect the strengths of the rule-based
stemmers relative to each other.

5.2 Held-Out Likelihood

Using our normalized log likelihood measure from
Equation 3, we can compare likelihoods across all
our different treatments, as shown in Figure 2. We
observe for all standard rule-based stemmers treat-
ments provide little likelihood benefit apart from
reducing the vocabulary size; the Porter stemming

293



Figure 2: While light conflation treatments may help
particular corpora, word conflation generally decreases
the statistical fit of a topic model proportionally to its
strength as measured in normalized log likelihood. Con-
fidence intervals are the p = 0.99 range of belonging to
the distribution of that treatment’s normalized log likeli-
hoods across at least 9 samples each. Higher values of
normalized log likelihood represent better model fit.

treatments result in normalized log likelihoods sig-
nificantly lower than the unstemmed treatment. Sta-
tistically, the Porter stemmers do not appear to be
improving the quality of the model; they are merely
reducing the possible unigrams it could generate
in a moderately principled way. Both Paice/Husk
and Lovins have the same problem, but as they are
stronger stemmers, problems of overconflation seem
to reduce the quality further.

More surprising, however, is the mediocre per-
formance of the WordNet lemmatizer. The fact
that Yelp and IMDb do not see an improvement

with use of the lemmatizer is easy to explain away:
these corpora contain slang, misspellings, and plenty
of proper names, enough to make lemmatization a
challenge. However, we see the same result in the
case of New York Times articles, an ideal corpus for
topic modeling. While there are still many named
entities, they arise in carefully-edited text with stan-
dardized journalistic vocabulary.

Other observations are less surprising. Five-
truncation produces likelihoods comparable to the
stronger Lovins and Paice/Husk stemmers, and sig-
nificantly better than either for the 50-topic Yelp
model. This may relate to the irregularities of re-
view text: words elongated for emphasis (e.g. “hel-
loooo”) and other oddities of online informal En-
glish are hard for rule-based suffix stemmers to han-
dle but still benefit from naı̈ve forms of conflation.
The Porter and Porter2 stemmers are not signifi-
cantly different in any case, which serves as com-
forting validation that those not using the new gen-
eration of the Porter stemmer are not losing much.

5.3 Topic Coherence

Log likelihood measures can tell us about statisti-
cal fit, but do not necessarily tell us about the actual
apparent coherence of the model in terms of concep-
tual similarity of words in a topic. In Figure 3, we
display the negative average coherence scores from
Equation 4 for each treatment. The hypothesis we
test is that using a conflation treatment should map
morphologically different words with a shared con-
cept to the same word, automatically constraining
the topic model to ensure closely-related words are
proportionally present in the same topics.

Our results do not conform to this intuition.
The majority of treatments are statistically indistin-
guishable from the untreated control with respect
to coherence. The relative effects of these treat-
ments on coherence are magnified as the number
of topics increases; while no ArXiv treatment dif-
fers significantly in coherence at 10 topics, at 200,
the four strongest treatments (Lovins, Paice-Husk,
five-truncation and four-truncation) are significantly
worse. Four-truncation suffers a similar effect on
IMDb at 50 and 200 topics. In contrast, four-
truncation actually improves in coherence compared
to other treatments on Yelp as the number of topics
increases, reaching a significant level at 200 topics.

294



Figure 3: Conflation treatments introduce no significant
difference in almost all cases in the resulting average neg-
ative topic coherence of each model according to token
assignments. Smaller values indicating better coherence,
and error bars represent the p = 0.99 range of possible
mean values.

Given the lack of substantial statistical difference
across a variety of treatments, it seems safe to con-
clude that the use of stemmers is not substantially
improving the encoding of word similarities in these
topics. The topic model itself on the untreated cor-
pus is perhaps already doing as good a job ensuring
that words in the same conflation class have statisti-
cally similar topic distributions.

Unstemmed topics sometimes contain words from
the same conflation class (e.g. “restaurant” versus
“restaurants”). While these might give a slight ad-
vantage in coherence measures, this case implies
that the stemmers are not necessary for bringing to-
gether morphological variants in topics.

5.4 Clustering Consistency

Another hypothesized effect of stemming is that it
will produce more consistent results by reducing the
sensitivity of related words to random initialization.
We can use variation of information (VOI) to un-
derstand how these models differ from each other
relative to how much they vary between random ini-
tializations. We summarize the results in Figure 4.

Within statistical error bounds, intra-treatment
VOI is always less than or equal to the variation
across treatments, and VOI increases as the number
of topics increases. On ArXiv, the light treatments
— the Krovetz stemmer, S-stemmer, and WordNet
lemmatizer — behave indistinguishably from the
untreated corpus. The intra-treatment VOI trend
shows that stronger treatments generally result in
less consistent models. This contradicts the intuition
that stemming will help place words with similar
meaning into the same topic. While stemming con-
strains all conflated word types to share one prob-
ability in each topic, it does not ensure that those
probability distributions will favor few topics.

There are two striking exceptions to this trend.
The first is the Krovetz stemmer. The intra-treatment
VOI of Krovetz topic models stays closer to that
of the untreated corpus than the S-stemmer or the
WordNet lemmatizer. However, the higher inter-
treatment VOI between Krovetz and the unstemmed
corpus suggests that the Krovetz stemmer produces
small but significant changes in the optima of the
topic model. For IMDb, NYT, and Yelp at 200 top-
ics, and NYT again at 50 topics, the VOI between
the untreated corpus and Krovetz-stemmed corpus
is significantly greater than the VOI of the untreated
corpus with itself. In contrast, the variation of infor-
mation between untreated and S-stemmed corpora is
only negligibly higher than the intra-treatment VOI
of the S-stemmer. This is interesting given the repu-
tation of Krovetz as a weak stemmer.

The second exception is the five-truncation stem-
mer. Though a very strong stemmer, its VOI is in-
distinguishable from the heavier Lovins and Paice-
Husk stemmers on most corpora, but when applied
to Yelp with 200 topics, it actually does significantly
better than either, in both intra-treatment and inter-
treatment VOI with the unstemmed corpus. This ef-
fect can be seen to a less significant extent in mod-

295



Figure 4: The variation of information between different treatments of corpora indicates that while light stemming
may improve the comparative similarity of topic models, heavier stemmers produce less stable topic assignments. The
minimum for statistical significance is computed as the maximum p = 0.01 value for any topic model as compared
with itself (i.e. the 95% confidence interval on the diagonal).

296



els with fewer topics over Yelp. This does not im-
ply that five-truncation is a competitive stemmer, but
rather illustrates that by this measure strong stem-
mers perform worse than a naive baseline on a cor-
pus with short words and irregular text.

5.5 Influential Words

To identify word types that positively or negatively
affect the quality of the model after stemming, we
use our idf-probability and entropy metrics for each
word type. The idf-probability metric strongly indi-
cates that while conflation improves probability of
words on average, the improvement applied primar-
ily to conflated words. Untreated words that do not
share a conflation class under a treatment (e.g. “mar-
quess”) often become less probable on average after
stemming. Their inferred hyperparameters are larger
and thus encourage less sparsity in stemmed topic
models; as a result, the probability of rarer words in
their own conflation classes decreases as that prob-
ability is more distributed across topics. This also
increases the entropy of stemmed words from a size-
one conflation class.

We can confirm several hypotheses from earlier
in the paper using these methods. For entropy dif-
ferences, those conflation classes with the greatest
weighted probability improvement for the truncation
stemmers in ArXiv include huge conflation classes
of words with the same prefix but wildly different
roots. In effect, these have forced sparsity where it
should not necessarily have been, degrading coher-
ence. As exemplified in the 50-topic NYT models,
the Porter stemmer improves the likelihood of com-
mon words, like “street” (TPscore = 5370) and
“mr” (TPscore = 13945), an outcome aligned with
the rule-based stemmer’s aim to cope well with com-
mon words. But for rarer words like “purgative”
(TPscore = −17.5) and “pranks” (TPscore =
−15.4), no such improvement is seen. These com-
mon words do not have extreme entropy values,
which supports our hypothesis that while the likeli-
hood of common words improves with Porter stem-
ming, those words were already in the same topic
and did not affect model coherence. While we
cannot use the same entropy measurement on the
context-sensitive lemmatizer, we see the same ef-
fect, where the most-improved words are the most
common, and the less-likely words in the stemmed

model are rare words and names.
Interesting results also arise from the five-

truncation stemmer. Unlike prescriptive rule-based
stemmers, the truncation stemmer does not produce
more errors when typos arise; in fact, it can ac-
commodate typos at the ends of words in a way
that other stemmers cannot. While, once again,
we observe that the word probabilities of truncated
words are much improved for common words and
slightly reduced for rare words, we discover that
the best entropy improvements from untreated to
stemmed words are elongated words and exclama-
tions such as “eeeee” (∆Hw(k) = −2.56) and
“haaaa” (∆Hw(k) = −3.25). At the opposite score
extreme, several classes of words with many mis-
spellings have increased entropy after stemming,
but this is potentially misleading; topic models are
very good at distinguishing dialects, and system-
atic misspellings are likely to create differently-
spelled but semantically similar topics in a many-
topic model. Over one hundred words conflate to
“defin” with five-truncation, including upwards of
sixty misspellings of “definitely,” which removes
distinction between good and bad spellers that might
be correlated with other features.

6 Related Work

We are not aware of other work evaluating a vari-
ety of stemmers and conflation techniques on topic
models. Some prior work exists that evaluates the
effect of stemming. Several conflation methods
were tested on a variety of document clustering algo-
rithms by Han et al. (2012), finding that they could
reduce the number of features effectively but that the
correct choice of stemmer varied. More recently,
Stankov et al. (2013) developed a stemmer to im-
prove document clustering. Both of these techniques
demonstrate an improvement in clustering results
and a reduction in features required, with the for-
mer also introducing the notion of tradeoff between
the precision of lemmatization and the efficiency and
strength of stemmers.

Additionally, a variety of work exists in the gen-
eral field of stemmer evaluation, though much of
it centers on the information retrieval community.
In particular, the work of Harman (1991) highlights
some of the fundamental issues of strong stemming,

297



including the potential positive effect of light stem-
mers like the S-removal stemmer. The notion of
stemmer strength is detailed further by Frakes and
Fox (2003), as well as several more precise met-
rics of evaluation of stemmer strength. Survey pa-
pers from Jivani (2011) and Rani et al. (2015) detail
the different existing stemming and conflation tech-
niques for machine learning applications, including
several statistical stemming algorithms that do not
rely on a fixed set of rules. Findings suggest that,
while these statistical methods have potential, many
are inefficient, complex, and difficult to calibrate
well enough to produce good results. Though we
look forward to seeing the future development of
these stemmers, for this work we chose to focus on
simpler and more widely used methods.

7 Conclusion

Despite its abiding popularity, stemming does not
improve coherence after controlling for the size of
vocabulary, and may actually reduce predictive like-
lihood and increase sensitivity to random initializa-
tions. In most cases, the topic model was already
grouping together common words with the same
root on its own, and gained little by better model-
ing rare words. Light treatments seem to fare better
than strong stemmers, with Krovetz doing particu-
larly well for well-proofread corpora, but the small
differences between words that these target such as
pluralization and verb conjugation are often already
captured by semantic models like LDA.

In certain cases, a stemmer may encode an as-
sumption that is useful for coping with a corpus with
heavy variation, as with the 5-truncation stemmer
helping to correct misspellings on Yelp. While this
does not improve the quality of the topic model by
most measures, it may be suited for a particular task
involving abnormally varied word forms to which
the model is applied. However, for stemmers encod-
ing standard rules of spelling and grammar, such a
benefit is unlikely. Given the overly-strong effects
of truncation stemming, we suggest using a stem-
mer as a method of discovering misspellings to fix
instead of as a way of repairing them.

A common motivation for stemming is to display
more succinct results by not repeating minor mor-
phological variations (such as “place” and “places”

Unstemmed room hotel stay rooms pool nice stayed
strip night bed check clean bathroom
desk casino vegas free front resort
shower

Stemmed after
training

room hotel stai pool nice strip night bed
check clean bathroom desk casino vega
free front resort shower

Stemmed
before training

room hotel stai pool nice bed check
strip night vega suit casino clean bath-
room view desk resort dai walk area

Table 4: An example topic from an unstemmed Yelp
50-topic model with redundant keywords demonstrates
that stemming after modeling produces the same appar-
ent high-probability words as stemming before.

in the case of Yelp). As an alternative we suggest
post-stemming the list of keywords, as shown in Ta-
ble 4. Stemming a list of top words after modeling
allows topic models to exploit the nuances of mor-
phologies, such as “apple” and “apples” with respect
to the company and the fruit, while still allowing
the eventual viewer to browse through the resulting
concepts quickly. Post-stemming is computationally
much cheaper than stemming the full corpus, requir-
ing only a slightly longer input list of most probable
terms. Because context is unavailable for keywords
and strong stemmers reduce readability, we would
suggest using the S stemmer or a modification of the
Porter stemmer to return to English word forms.

Vocabulary curation can have a profound effect on
the results of statistical models, yet procedures for
vocabulary curation have largely been left to unex-
amined convention and undocumented folk wisdom.
We find that a commonly used method, stemming,
provides little measurable benefit and may in fact be
harmful. As text mining becomes more influential
outside core NLP research, more attention must be
paid to these issues.

8 Acknowledgements

We would like to thank Jacob Gardner, Jack Hessel,
Andrew Loeb, Brian McInnis, and Elly Schofield for
helping to refine the writing in this paper. We also
would like to thank the TACL editors Mark John-
son and Hal Daumé III and the reviewers for their
thoughtful comments and suggestions. The first au-
thor was funded by a Cornell University Fellowship.

298



References

Narayan L Bhamidipati and Sankar K Pal. 2007. Stem-
ming via distribution-based word segregation for clas-
sification and retrieval. Systems, Man, and Cyber-
netics, Part B: Cybernetics, IEEE Transactions on,
37(2):350–360.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural Language Processing with Python. O’Reilly Me-
dia. Available at: http://www.nltk.org/book/.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. The Journal of Ma-
chine Learning Research, 3:993–1022.

Matt Chaput. 2010. Stemming library. Available at:
https://bitbucket.org/mchaput/stemming.

Antske Fokkens, Marieke Van Erp, Marten Postma, Ted
Pedersen, Piek Vossen, and Nuno Freire. 2013. Off-
spring from reproduction problems: What replication
failure teaches us. In Proceedings of the 51st ACL,
pages 1691–1701.

William B Frakes and Christopher J Fox. 2003. Strength
and similarity of affix removal stemming algorithms.
In ACM SIGIR Forum, volume 37, pages 26–30. ACM.

Kuzman Ganchev and Mark Dredze. 2008. Small sta-
tistical models by random feature mixing. In Proceed-
ings of the ACL08 HLT Workshop on Mobile Language
Processing, pages 19–20.

Justin Grimmer and Gary King. 2011. General pur-
pose computer-assisted clustering and conceptualiza-
tion. PNAS, 108(7):2643–2650.

Pu Han, Si Shen, Dongbo Wang, and Yanyun Liu. 2012.
The influence of word normalization in english docu-
ment clustering. In Computer Science and Automation
Engineering (CSAE), 2012 IEEE International Con-
ference on, volume 2, pages 116–120. IEEE.

Donna Harman. 1991. How effective is suffixing? Jour-
nal of the American Society for Information Science,
42(1):7–15.

Carina Jacobi, Wouter van Atteveldt, and Kasper Wel-
bers. 2016. Quantitative analysis of large amounts of
journalistic texts using topic modelling. Digital Jour-
nalism, 4(1):89–106.

Anjali Ganesh Jivani. 2011. A comparative study of
stemming algorithms. International Journal of Com-
puter Technology and Applications, 2(6):1930–1938.

Matthew L Jockers and David Mimno. 2013. Significant
themes in 19th-century literature. Poetics, 41(6):750–
769.

Sowmya Kamath S, Atif Ahmed, and Mani Shankar.
2015. A composite classification model for web ser-
vices based on semantic & syntactic information inte-
gration. In Advance Computing Conference (IACC),
2015 IEEE International, pages 1169–1173. IEEE.

Robert Krovetz. 1993. Viewing morphology as an in-
ference process. In Proceedings of the 16th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 191–202.
ACM.

Jey Han Lau, David Newman, and Timothy Baldwin.
2014. Machine reading tea leaves: Automatically
evaluating topic coherence and topic model quality. In
Proceedings of the Association for Computational Lin-
guistics, pages 530–539.

Zhiyuan Liu, Wenyi Huang, Yabin Zheng, and Maosong
Sun. 2010. Automatic keyphrase extraction via topic
decomposition. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing,
pages 366–376. Association for Computational Lin-
guistics.

Siaw Ling Lo, David Cornforth, and Raymond Chiong.
2015. Effects of training datasets on both the extreme
learning machine and support vector machine for tar-
get audience identification on twitter. In Proceedings
of ELM-2014 Volume 1, pages 417–434. Springer.

Julie B Lovins. 1968. Development of a stemming al-
gorithm. Mechanical Translation and Computational
Linguistics, 11:22–31.

Prasenjit Majumder, Mandar Mitra, Swapan K Parui,
Gobinda Kole, Pabitra Mitra, and Kalyankumar Datta.
2007. Yass: Yet another suffix stripper. ACM Trans-
actions on Information Systems (TOIS), 25(4):18.

Andrew K McCallum. 2002. Mallet: a ma-
chine learning for language toolkit. Available at:
http://mallet.cs.umass.edu.

Marina Meilă. 2003. Comparing clusterings by the vari-
ation of information. In Bernhard Schölkopf and Man-
fred K. Warmuth, editors, Learning Theory and Kernel
Machines, volume 2777 of Lecture Notes in Computer
Science, pages 173–187. Springer Berlin Heidelberg.

Massimo Melucci and Nicola Orio. 2003. A novel
method for stemmer generation based on hidden
markov models. In Proceedings of the 12th Inter-
national Conference on Information and Knowledge
Management (CIKM), pages 131–138. ACM.

David Mimno, Hanna M Wallach, Edmund Talley,
Miriam Leenders, and Andrew McCallum. 2011. Op-
timizing semantic coherence in topic models. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 262–272. Asso-
ciation for Computational Linguistics.

Yuhong Nan, Min Yang, Zhemin Yang, Shunfan Zhou,
Guofei Gu, and XiaoFeng Wang. 2015. Uipicker:
User-input privacy identification in mobile applica-
tions. In 24th USENIX Security Symposium, pages
993–1008.

Chris D Paice. 1990. Another stemmer. ACM SIGIR
Forum, 24(3):56–61.

299



Martin F Porter. 1980. An algorithm for suffix stripping.
Program, 14(3):130–137.

Martin F Porter. 2001. Snowball: A lan-
guage for stemming algorithms. Available at:
http://www.snowball.tartarus.org/texts/introduction.html.

SP Ruba Rani, B Ramesh, M Anusha, and JGR Sathi-
aseelan. 2015. Evaluation of stemming techniques for
text classification. International Journal of Computer
Science and Mobile Computing, 4(3):165–171.

Evan Sandhaus. 2008. The new york times anno-
tated corpus. Linguistic Data Consortium, DVD:
LDC2009T19.

Ivan Stankov, Diman Todorov, and Rossitza Setchi.
2013. Enhanced cross-domain document clustering
with a semantically enhanced text stemmer (sets). In-
ternational Journal of Knowledge-based and Intelli-
gent Engineering Systems, 17(2):113–126.

Chuan Su. 2015. Machine learning for reducing the ef-
fort of conducting systematic reviews in SE. Bachelor
Thesis.

Kristina Toutanova, Dan Klein, Christopher D Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Pro-
ceedings of the 2003 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics on Human Language Technology-Volume 1,
pages 173–180. Association for Computational Lin-
guistics.

Hanna M Wallach, David M Mimno, and Andrew K Mc-
Callum. 2009. Rethinking LDA: Why priors matter.
In Advances in Neural Information Processing Sys-
tems, pages 1973–1981.

300


